Merge tag 'v3.10.70' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
119 {
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
123
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
129 {
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
133
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136 return cpu_to_le32(csum);
137 }
138
139 int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
143 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
154 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
155 return;
156
157 es->s_checksum = ext4_superblock_csum(sb, es);
158 }
159
160 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 {
162 void *ret;
163
164 ret = kmalloc(size, flags);
165 if (!ret)
166 ret = __vmalloc(size, flags, PAGE_KERNEL);
167 return ret;
168 }
169
170 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 {
172 void *ret;
173
174 ret = kzalloc(size, flags);
175 if (!ret)
176 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177 return ret;
178 }
179
180 void ext4_kvfree(void *ptr)
181 {
182 if (is_vmalloc_addr(ptr))
183 vfree(ptr);
184 else
185 kfree(ptr);
186
187 }
188
189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
190 struct ext4_group_desc *bg)
191 {
192 return le32_to_cpu(bg->bg_block_bitmap_lo) |
193 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
194 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
195 }
196
197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
198 struct ext4_group_desc *bg)
199 {
200 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
201 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
202 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
203 }
204
205 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
206 struct ext4_group_desc *bg)
207 {
208 return le32_to_cpu(bg->bg_inode_table_lo) |
209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
211 }
212
213 __u32 ext4_free_group_clusters(struct super_block *sb,
214 struct ext4_group_desc *bg)
215 {
216 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
219 }
220
221 __u32 ext4_free_inodes_count(struct super_block *sb,
222 struct ext4_group_desc *bg)
223 {
224 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
227 }
228
229 __u32 ext4_used_dirs_count(struct super_block *sb,
230 struct ext4_group_desc *bg)
231 {
232 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
235 }
236
237 __u32 ext4_itable_unused_count(struct super_block *sb,
238 struct ext4_group_desc *bg)
239 {
240 return le16_to_cpu(bg->bg_itable_unused_lo) |
241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
243 }
244
245 void ext4_block_bitmap_set(struct super_block *sb,
246 struct ext4_group_desc *bg, ext4_fsblk_t blk)
247 {
248 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
249 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
250 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
251 }
252
253 void ext4_inode_bitmap_set(struct super_block *sb,
254 struct ext4_group_desc *bg, ext4_fsblk_t blk)
255 {
256 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
257 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
258 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
259 }
260
261 void ext4_inode_table_set(struct super_block *sb,
262 struct ext4_group_desc *bg, ext4_fsblk_t blk)
263 {
264 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
267 }
268
269 void ext4_free_group_clusters_set(struct super_block *sb,
270 struct ext4_group_desc *bg, __u32 count)
271 {
272 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
275 }
276
277 void ext4_free_inodes_set(struct super_block *sb,
278 struct ext4_group_desc *bg, __u32 count)
279 {
280 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
283 }
284
285 void ext4_used_dirs_set(struct super_block *sb,
286 struct ext4_group_desc *bg, __u32 count)
287 {
288 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
291 }
292
293 void ext4_itable_unused_set(struct super_block *sb,
294 struct ext4_group_desc *bg, __u32 count)
295 {
296 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 }
300
301
302 static void __save_error_info(struct super_block *sb, const char *func,
303 unsigned int line)
304 {
305 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306
307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
309 es->s_last_error_time = cpu_to_le32(get_seconds());
310 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
311 es->s_last_error_line = cpu_to_le32(line);
312 if (!es->s_first_error_time) {
313 es->s_first_error_time = es->s_last_error_time;
314 strncpy(es->s_first_error_func, func,
315 sizeof(es->s_first_error_func));
316 es->s_first_error_line = cpu_to_le32(line);
317 es->s_first_error_ino = es->s_last_error_ino;
318 es->s_first_error_block = es->s_last_error_block;
319 }
320 /*
321 * Start the daily error reporting function if it hasn't been
322 * started already
323 */
324 if (!es->s_error_count)
325 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
326 le32_add_cpu(&es->s_error_count, 1);
327 }
328
329 static void save_error_info(struct super_block *sb, const char *func,
330 unsigned int line)
331 {
332 __save_error_info(sb, func, line);
333 ext4_commit_super(sb, 1);
334 }
335
336 /*
337 * The del_gendisk() function uninitializes the disk-specific data
338 * structures, including the bdi structure, without telling anyone
339 * else. Once this happens, any attempt to call mark_buffer_dirty()
340 * (for example, by ext4_commit_super), will cause a kernel OOPS.
341 * This is a kludge to prevent these oops until we can put in a proper
342 * hook in del_gendisk() to inform the VFS and file system layers.
343 */
344 static int block_device_ejected(struct super_block *sb)
345 {
346 struct inode *bd_inode = sb->s_bdev->bd_inode;
347 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
348
349 return bdi->dev == NULL;
350 }
351
352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
353 {
354 struct super_block *sb = journal->j_private;
355 struct ext4_sb_info *sbi = EXT4_SB(sb);
356 int error = is_journal_aborted(journal);
357 struct ext4_journal_cb_entry *jce;
358
359 BUG_ON(txn->t_state == T_FINISHED);
360 spin_lock(&sbi->s_md_lock);
361 while (!list_empty(&txn->t_private_list)) {
362 jce = list_entry(txn->t_private_list.next,
363 struct ext4_journal_cb_entry, jce_list);
364 list_del_init(&jce->jce_list);
365 spin_unlock(&sbi->s_md_lock);
366 jce->jce_func(sb, jce, error);
367 spin_lock(&sbi->s_md_lock);
368 }
369 spin_unlock(&sbi->s_md_lock);
370 }
371
372 /* Deal with the reporting of failure conditions on a filesystem such as
373 * inconsistencies detected or read IO failures.
374 *
375 * On ext2, we can store the error state of the filesystem in the
376 * superblock. That is not possible on ext4, because we may have other
377 * write ordering constraints on the superblock which prevent us from
378 * writing it out straight away; and given that the journal is about to
379 * be aborted, we can't rely on the current, or future, transactions to
380 * write out the superblock safely.
381 *
382 * We'll just use the jbd2_journal_abort() error code to record an error in
383 * the journal instead. On recovery, the journal will complain about
384 * that error until we've noted it down and cleared it.
385 */
386
387 static void ext4_handle_error(struct super_block *sb)
388 {
389 if (sb->s_flags & MS_RDONLY)
390 return;
391
392 if (!test_opt(sb, ERRORS_CONT)) {
393 journal_t *journal = EXT4_SB(sb)->s_journal;
394
395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
396 if (journal)
397 jbd2_journal_abort(journal, -EIO);
398 }
399 if (test_opt(sb, ERRORS_RO)) {
400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
401 sb->s_flags |= MS_RDONLY;
402 }
403 if (test_opt(sb, ERRORS_PANIC))
404 panic("EXT4-fs (device %s): panic forced after error\n",
405 sb->s_id);
406 }
407
408 void __ext4_error(struct super_block *sb, const char *function,
409 unsigned int line, const char *fmt, ...)
410 {
411 struct va_format vaf;
412 va_list args;
413
414 va_start(args, fmt);
415 vaf.fmt = fmt;
416 vaf.va = &args;
417 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
418 sb->s_id, function, line, current->comm, &vaf);
419 va_end(args);
420 save_error_info(sb, function, line);
421
422 ext4_handle_error(sb);
423 }
424
425 void ext4_error_inode(struct inode *inode, const char *function,
426 unsigned int line, ext4_fsblk_t block,
427 const char *fmt, ...)
428 {
429 va_list args;
430 struct va_format vaf;
431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
432
433 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
434 es->s_last_error_block = cpu_to_le64(block);
435 save_error_info(inode->i_sb, function, line);
436 va_start(args, fmt);
437 vaf.fmt = fmt;
438 vaf.va = &args;
439 if (block)
440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
441 "inode #%lu: block %llu: comm %s: %pV\n",
442 inode->i_sb->s_id, function, line, inode->i_ino,
443 block, current->comm, &vaf);
444 else
445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
446 "inode #%lu: comm %s: %pV\n",
447 inode->i_sb->s_id, function, line, inode->i_ino,
448 current->comm, &vaf);
449 va_end(args);
450
451 ext4_handle_error(inode->i_sb);
452 }
453
454 void ext4_error_file(struct file *file, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457 {
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es;
461 struct inode *inode = file_inode(file);
462 char pathname[80], *path;
463
464 es = EXT4_SB(inode->i_sb)->s_es;
465 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
466 save_error_info(inode->i_sb, function, line);
467 path = d_path(&(file->f_path), pathname, sizeof(pathname));
468 if (IS_ERR(path))
469 path = "(unknown)";
470 va_start(args, fmt);
471 vaf.fmt = fmt;
472 vaf.va = &args;
473 if (block)
474 printk(KERN_CRIT
475 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476 "block %llu: comm %s: path %s: %pV\n",
477 inode->i_sb->s_id, function, line, inode->i_ino,
478 block, current->comm, path, &vaf);
479 else
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 "comm %s: path %s: %pV\n",
483 inode->i_sb->s_id, function, line, inode->i_ino,
484 current->comm, path, &vaf);
485 va_end(args);
486
487 ext4_handle_error(inode->i_sb);
488 }
489
490 const char *ext4_decode_error(struct super_block *sb, int errno,
491 char nbuf[16])
492 {
493 char *errstr = NULL;
494
495 switch (errno) {
496 case -EIO:
497 errstr = "IO failure";
498 break;
499 case -ENOMEM:
500 errstr = "Out of memory";
501 break;
502 case -EROFS:
503 if (!sb || (EXT4_SB(sb)->s_journal &&
504 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
505 errstr = "Journal has aborted";
506 else
507 errstr = "Readonly filesystem";
508 break;
509 default:
510 /* If the caller passed in an extra buffer for unknown
511 * errors, textualise them now. Else we just return
512 * NULL. */
513 if (nbuf) {
514 /* Check for truncated error codes... */
515 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
516 errstr = nbuf;
517 }
518 break;
519 }
520
521 return errstr;
522 }
523
524 /* __ext4_std_error decodes expected errors from journaling functions
525 * automatically and invokes the appropriate error response. */
526
527 void __ext4_std_error(struct super_block *sb, const char *function,
528 unsigned int line, int errno)
529 {
530 char nbuf[16];
531 const char *errstr;
532
533 /* Special case: if the error is EROFS, and we're not already
534 * inside a transaction, then there's really no point in logging
535 * an error. */
536 if (errno == -EROFS && journal_current_handle() == NULL &&
537 (sb->s_flags & MS_RDONLY))
538 return;
539
540 errstr = ext4_decode_error(sb, errno, nbuf);
541 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
542 sb->s_id, function, line, errstr);
543 save_error_info(sb, function, line);
544
545 ext4_handle_error(sb);
546 }
547
548 /*
549 * ext4_abort is a much stronger failure handler than ext4_error. The
550 * abort function may be used to deal with unrecoverable failures such
551 * as journal IO errors or ENOMEM at a critical moment in log management.
552 *
553 * We unconditionally force the filesystem into an ABORT|READONLY state,
554 * unless the error response on the fs has been set to panic in which
555 * case we take the easy way out and panic immediately.
556 */
557
558 void __ext4_abort(struct super_block *sb, const char *function,
559 unsigned int line, const char *fmt, ...)
560 {
561 va_list args;
562
563 save_error_info(sb, function, line);
564 va_start(args, fmt);
565 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
566 function, line);
567 vprintk(fmt, args);
568 printk("\n");
569 va_end(args);
570
571 if ((sb->s_flags & MS_RDONLY) == 0) {
572 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
573 sb->s_flags |= MS_RDONLY;
574 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
575 if (EXT4_SB(sb)->s_journal)
576 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
577 save_error_info(sb, function, line);
578 }
579 if (test_opt(sb, ERRORS_PANIC))
580 panic("EXT4-fs panic from previous error\n");
581 }
582
583 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
584 {
585 struct va_format vaf;
586 va_list args;
587
588 va_start(args, fmt);
589 vaf.fmt = fmt;
590 vaf.va = &args;
591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
592 va_end(args);
593 }
594
595 void __ext4_warning(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 struct va_format vaf;
599 va_list args;
600
601 va_start(args, fmt);
602 vaf.fmt = fmt;
603 vaf.va = &args;
604 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
605 sb->s_id, function, line, &vaf);
606 va_end(args);
607 }
608
609 void __ext4_grp_locked_error(const char *function, unsigned int line,
610 struct super_block *sb, ext4_group_t grp,
611 unsigned long ino, ext4_fsblk_t block,
612 const char *fmt, ...)
613 __releases(bitlock)
614 __acquires(bitlock)
615 {
616 struct va_format vaf;
617 va_list args;
618 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
619
620 es->s_last_error_ino = cpu_to_le32(ino);
621 es->s_last_error_block = cpu_to_le64(block);
622 __save_error_info(sb, function, line);
623
624 va_start(args, fmt);
625
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
629 sb->s_id, function, line, grp);
630 if (ino)
631 printk(KERN_CONT "inode %lu: ", ino);
632 if (block)
633 printk(KERN_CONT "block %llu:", (unsigned long long) block);
634 printk(KERN_CONT "%pV\n", &vaf);
635 va_end(args);
636
637 if (test_opt(sb, ERRORS_CONT)) {
638 ext4_commit_super(sb, 0);
639 return;
640 }
641
642 ext4_unlock_group(sb, grp);
643 ext4_handle_error(sb);
644 /*
645 * We only get here in the ERRORS_RO case; relocking the group
646 * may be dangerous, but nothing bad will happen since the
647 * filesystem will have already been marked read/only and the
648 * journal has been aborted. We return 1 as a hint to callers
649 * who might what to use the return value from
650 * ext4_grp_locked_error() to distinguish between the
651 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
652 * aggressively from the ext4 function in question, with a
653 * more appropriate error code.
654 */
655 ext4_lock_group(sb, grp);
656 return;
657 }
658
659 void ext4_update_dynamic_rev(struct super_block *sb)
660 {
661 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
662
663 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
664 return;
665
666 ext4_warning(sb,
667 "updating to rev %d because of new feature flag, "
668 "running e2fsck is recommended",
669 EXT4_DYNAMIC_REV);
670
671 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
672 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
673 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
674 /* leave es->s_feature_*compat flags alone */
675 /* es->s_uuid will be set by e2fsck if empty */
676
677 /*
678 * The rest of the superblock fields should be zero, and if not it
679 * means they are likely already in use, so leave them alone. We
680 * can leave it up to e2fsck to clean up any inconsistencies there.
681 */
682 }
683
684 /*
685 * Open the external journal device
686 */
687 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
688 {
689 struct block_device *bdev;
690 char b[BDEVNAME_SIZE];
691
692 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
693 if (IS_ERR(bdev))
694 goto fail;
695 return bdev;
696
697 fail:
698 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
699 __bdevname(dev, b), PTR_ERR(bdev));
700 return NULL;
701 }
702
703 /*
704 * Release the journal device
705 */
706 static void ext4_blkdev_put(struct block_device *bdev)
707 {
708 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
709 }
710
711 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
712 {
713 struct block_device *bdev;
714 bdev = sbi->journal_bdev;
715 if (bdev) {
716 ext4_blkdev_put(bdev);
717 sbi->journal_bdev = NULL;
718 }
719 }
720
721 static inline struct inode *orphan_list_entry(struct list_head *l)
722 {
723 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
724 }
725
726 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
727 {
728 struct list_head *l;
729
730 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
731 le32_to_cpu(sbi->s_es->s_last_orphan));
732
733 printk(KERN_ERR "sb_info orphan list:\n");
734 list_for_each(l, &sbi->s_orphan) {
735 struct inode *inode = orphan_list_entry(l);
736 printk(KERN_ERR " "
737 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
738 inode->i_sb->s_id, inode->i_ino, inode,
739 inode->i_mode, inode->i_nlink,
740 NEXT_ORPHAN(inode));
741 }
742 }
743
744 static void ext4_put_super(struct super_block *sb)
745 {
746 struct ext4_sb_info *sbi = EXT4_SB(sb);
747 struct ext4_super_block *es = sbi->s_es;
748 int i, err;
749
750 ext4_unregister_li_request(sb);
751 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
752
753 flush_workqueue(sbi->dio_unwritten_wq);
754 destroy_workqueue(sbi->dio_unwritten_wq);
755
756 if (sbi->s_journal) {
757 err = jbd2_journal_destroy(sbi->s_journal);
758 sbi->s_journal = NULL;
759 if (err < 0)
760 ext4_abort(sb, "Couldn't clean up the journal");
761 }
762
763 ext4_es_unregister_shrinker(sb);
764 del_timer(&sbi->s_err_report);
765 ext4_release_system_zone(sb);
766 ext4_mb_release(sb);
767 ext4_ext_release(sb);
768 ext4_xattr_put_super(sb);
769
770 if (!(sb->s_flags & MS_RDONLY)) {
771 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
772 es->s_state = cpu_to_le16(sbi->s_mount_state);
773 }
774 if (!(sb->s_flags & MS_RDONLY))
775 ext4_commit_super(sb, 1);
776
777 if (sbi->s_proc) {
778 remove_proc_entry("options", sbi->s_proc);
779 remove_proc_entry(sb->s_id, ext4_proc_root);
780 }
781 kobject_del(&sbi->s_kobj);
782
783 for (i = 0; i < sbi->s_gdb_count; i++)
784 brelse(sbi->s_group_desc[i]);
785 ext4_kvfree(sbi->s_group_desc);
786 ext4_kvfree(sbi->s_flex_groups);
787 percpu_counter_destroy(&sbi->s_freeclusters_counter);
788 percpu_counter_destroy(&sbi->s_freeinodes_counter);
789 percpu_counter_destroy(&sbi->s_dirs_counter);
790 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
791 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
792 brelse(sbi->s_sbh);
793 #ifdef CONFIG_QUOTA
794 for (i = 0; i < MAXQUOTAS; i++)
795 kfree(sbi->s_qf_names[i]);
796 #endif
797
798 /* Debugging code just in case the in-memory inode orphan list
799 * isn't empty. The on-disk one can be non-empty if we've
800 * detected an error and taken the fs readonly, but the
801 * in-memory list had better be clean by this point. */
802 if (!list_empty(&sbi->s_orphan))
803 dump_orphan_list(sb, sbi);
804 J_ASSERT(list_empty(&sbi->s_orphan));
805
806 invalidate_bdev(sb->s_bdev);
807 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
808 /*
809 * Invalidate the journal device's buffers. We don't want them
810 * floating about in memory - the physical journal device may
811 * hotswapped, and it breaks the `ro-after' testing code.
812 */
813 sync_blockdev(sbi->journal_bdev);
814 invalidate_bdev(sbi->journal_bdev);
815 ext4_blkdev_remove(sbi);
816 }
817 if (sbi->s_mmp_tsk)
818 kthread_stop(sbi->s_mmp_tsk);
819 sb->s_fs_info = NULL;
820 /*
821 * Now that we are completely done shutting down the
822 * superblock, we need to actually destroy the kobject.
823 */
824 kobject_put(&sbi->s_kobj);
825 wait_for_completion(&sbi->s_kobj_unregister);
826 if (sbi->s_chksum_driver)
827 crypto_free_shash(sbi->s_chksum_driver);
828 kfree(sbi->s_blockgroup_lock);
829 kfree(sbi);
830 }
831
832 static struct kmem_cache *ext4_inode_cachep;
833
834 /*
835 * Called inside transaction, so use GFP_NOFS
836 */
837 static struct inode *ext4_alloc_inode(struct super_block *sb)
838 {
839 struct ext4_inode_info *ei;
840
841 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
842 if (!ei)
843 return NULL;
844
845 ei->vfs_inode.i_version = 1;
846 INIT_LIST_HEAD(&ei->i_prealloc_list);
847 spin_lock_init(&ei->i_prealloc_lock);
848 ext4_es_init_tree(&ei->i_es_tree);
849 rwlock_init(&ei->i_es_lock);
850 INIT_LIST_HEAD(&ei->i_es_lru);
851 ei->i_es_lru_nr = 0;
852 ei->i_reserved_data_blocks = 0;
853 ei->i_reserved_meta_blocks = 0;
854 ei->i_allocated_meta_blocks = 0;
855 ei->i_da_metadata_calc_len = 0;
856 ei->i_da_metadata_calc_last_lblock = 0;
857 spin_lock_init(&(ei->i_block_reservation_lock));
858 #ifdef CONFIG_QUOTA
859 ei->i_reserved_quota = 0;
860 #endif
861 ei->jinode = NULL;
862 INIT_LIST_HEAD(&ei->i_completed_io_list);
863 spin_lock_init(&ei->i_completed_io_lock);
864 ei->i_sync_tid = 0;
865 ei->i_datasync_tid = 0;
866 atomic_set(&ei->i_ioend_count, 0);
867 atomic_set(&ei->i_unwritten, 0);
868 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
869
870 return &ei->vfs_inode;
871 }
872
873 static int ext4_drop_inode(struct inode *inode)
874 {
875 int drop = generic_drop_inode(inode);
876
877 trace_ext4_drop_inode(inode, drop);
878 return drop;
879 }
880
881 static void ext4_i_callback(struct rcu_head *head)
882 {
883 struct inode *inode = container_of(head, struct inode, i_rcu);
884 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
885 }
886
887 static void ext4_destroy_inode(struct inode *inode)
888 {
889 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
890 ext4_msg(inode->i_sb, KERN_ERR,
891 "Inode %lu (%p): orphan list check failed!",
892 inode->i_ino, EXT4_I(inode));
893 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
894 EXT4_I(inode), sizeof(struct ext4_inode_info),
895 true);
896 dump_stack();
897 }
898 call_rcu(&inode->i_rcu, ext4_i_callback);
899 }
900
901 static void init_once(void *foo)
902 {
903 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
904
905 INIT_LIST_HEAD(&ei->i_orphan);
906 init_rwsem(&ei->xattr_sem);
907 init_rwsem(&ei->i_data_sem);
908 inode_init_once(&ei->vfs_inode);
909 }
910
911 static int init_inodecache(void)
912 {
913 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
914 sizeof(struct ext4_inode_info),
915 0, (SLAB_RECLAIM_ACCOUNT|
916 SLAB_MEM_SPREAD),
917 init_once);
918 if (ext4_inode_cachep == NULL)
919 return -ENOMEM;
920 return 0;
921 }
922
923 static void destroy_inodecache(void)
924 {
925 /*
926 * Make sure all delayed rcu free inodes are flushed before we
927 * destroy cache.
928 */
929 rcu_barrier();
930 kmem_cache_destroy(ext4_inode_cachep);
931 }
932
933 void ext4_clear_inode(struct inode *inode)
934 {
935 invalidate_inode_buffers(inode);
936 clear_inode(inode);
937 dquot_drop(inode);
938 ext4_discard_preallocations(inode);
939 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
940 ext4_es_lru_del(inode);
941 if (EXT4_I(inode)->jinode) {
942 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
943 EXT4_I(inode)->jinode);
944 jbd2_free_inode(EXT4_I(inode)->jinode);
945 EXT4_I(inode)->jinode = NULL;
946 }
947 }
948
949 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
950 u64 ino, u32 generation)
951 {
952 struct inode *inode;
953
954 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
955 return ERR_PTR(-ESTALE);
956 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
957 return ERR_PTR(-ESTALE);
958
959 /* iget isn't really right if the inode is currently unallocated!!
960 *
961 * ext4_read_inode will return a bad_inode if the inode had been
962 * deleted, so we should be safe.
963 *
964 * Currently we don't know the generation for parent directory, so
965 * a generation of 0 means "accept any"
966 */
967 inode = ext4_iget_normal(sb, ino);
968 if (IS_ERR(inode))
969 return ERR_CAST(inode);
970 if (generation && inode->i_generation != generation) {
971 iput(inode);
972 return ERR_PTR(-ESTALE);
973 }
974
975 return inode;
976 }
977
978 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
979 int fh_len, int fh_type)
980 {
981 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
982 ext4_nfs_get_inode);
983 }
984
985 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
986 int fh_len, int fh_type)
987 {
988 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
989 ext4_nfs_get_inode);
990 }
991
992 /*
993 * Try to release metadata pages (indirect blocks, directories) which are
994 * mapped via the block device. Since these pages could have journal heads
995 * which would prevent try_to_free_buffers() from freeing them, we must use
996 * jbd2 layer's try_to_free_buffers() function to release them.
997 */
998 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
999 gfp_t wait)
1000 {
1001 journal_t *journal = EXT4_SB(sb)->s_journal;
1002
1003 WARN_ON(PageChecked(page));
1004 if (!page_has_buffers(page))
1005 return 0;
1006 if (journal)
1007 return jbd2_journal_try_to_free_buffers(journal, page,
1008 wait & ~__GFP_WAIT);
1009 return try_to_free_buffers(page);
1010 }
1011
1012 #ifdef CONFIG_QUOTA
1013 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1014 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1015
1016 static int ext4_write_dquot(struct dquot *dquot);
1017 static int ext4_acquire_dquot(struct dquot *dquot);
1018 static int ext4_release_dquot(struct dquot *dquot);
1019 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1020 static int ext4_write_info(struct super_block *sb, int type);
1021 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1022 struct path *path);
1023 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1024 int format_id);
1025 static int ext4_quota_off(struct super_block *sb, int type);
1026 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1027 static int ext4_quota_on_mount(struct super_block *sb, int type);
1028 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1029 size_t len, loff_t off);
1030 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1031 const char *data, size_t len, loff_t off);
1032 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1033 unsigned int flags);
1034 static int ext4_enable_quotas(struct super_block *sb);
1035
1036 static const struct dquot_operations ext4_quota_operations = {
1037 .get_reserved_space = ext4_get_reserved_space,
1038 .write_dquot = ext4_write_dquot,
1039 .acquire_dquot = ext4_acquire_dquot,
1040 .release_dquot = ext4_release_dquot,
1041 .mark_dirty = ext4_mark_dquot_dirty,
1042 .write_info = ext4_write_info,
1043 .alloc_dquot = dquot_alloc,
1044 .destroy_dquot = dquot_destroy,
1045 };
1046
1047 static const struct quotactl_ops ext4_qctl_operations = {
1048 .quota_on = ext4_quota_on,
1049 .quota_off = ext4_quota_off,
1050 .quota_sync = dquot_quota_sync,
1051 .get_info = dquot_get_dqinfo,
1052 .set_info = dquot_set_dqinfo,
1053 .get_dqblk = dquot_get_dqblk,
1054 .set_dqblk = dquot_set_dqblk
1055 };
1056
1057 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1058 .quota_on_meta = ext4_quota_on_sysfile,
1059 .quota_off = ext4_quota_off_sysfile,
1060 .quota_sync = dquot_quota_sync,
1061 .get_info = dquot_get_dqinfo,
1062 .set_info = dquot_set_dqinfo,
1063 .get_dqblk = dquot_get_dqblk,
1064 .set_dqblk = dquot_set_dqblk
1065 };
1066 #endif
1067
1068 static const struct super_operations ext4_sops = {
1069 .alloc_inode = ext4_alloc_inode,
1070 .destroy_inode = ext4_destroy_inode,
1071 .write_inode = ext4_write_inode,
1072 .dirty_inode = ext4_dirty_inode,
1073 .drop_inode = ext4_drop_inode,
1074 .evict_inode = ext4_evict_inode,
1075 .put_super = ext4_put_super,
1076 .sync_fs = ext4_sync_fs,
1077 .freeze_fs = ext4_freeze,
1078 .unfreeze_fs = ext4_unfreeze,
1079 .statfs = ext4_statfs,
1080 .remount_fs = ext4_remount,
1081 .show_options = ext4_show_options,
1082 #ifdef CONFIG_QUOTA
1083 .quota_read = ext4_quota_read,
1084 .quota_write = ext4_quota_write,
1085 #endif
1086 .bdev_try_to_free_page = bdev_try_to_free_page,
1087 };
1088
1089 static const struct super_operations ext4_nojournal_sops = {
1090 .alloc_inode = ext4_alloc_inode,
1091 .destroy_inode = ext4_destroy_inode,
1092 .write_inode = ext4_write_inode,
1093 .dirty_inode = ext4_dirty_inode,
1094 .drop_inode = ext4_drop_inode,
1095 .evict_inode = ext4_evict_inode,
1096 .put_super = ext4_put_super,
1097 .statfs = ext4_statfs,
1098 .remount_fs = ext4_remount,
1099 .show_options = ext4_show_options,
1100 #ifdef CONFIG_QUOTA
1101 .quota_read = ext4_quota_read,
1102 .quota_write = ext4_quota_write,
1103 #endif
1104 .bdev_try_to_free_page = bdev_try_to_free_page,
1105 };
1106
1107 static const struct export_operations ext4_export_ops = {
1108 .fh_to_dentry = ext4_fh_to_dentry,
1109 .fh_to_parent = ext4_fh_to_parent,
1110 .get_parent = ext4_get_parent,
1111 };
1112
1113 enum {
1114 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1115 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1116 Opt_nouid32, Opt_debug, Opt_removed,
1117 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1118 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1119 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1120 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1121 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1122 Opt_data_err_abort, Opt_data_err_ignore,
1123 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1124 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1125 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1126 Opt_usrquota, Opt_grpquota, Opt_i_version,
1127 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1128 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1129 Opt_inode_readahead_blks, Opt_journal_ioprio,
1130 Opt_dioread_nolock, Opt_dioread_lock,
1131 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1132 Opt_max_dir_size_kb,
1133 };
1134
1135 static const match_table_t tokens = {
1136 {Opt_bsd_df, "bsddf"},
1137 {Opt_minix_df, "minixdf"},
1138 {Opt_grpid, "grpid"},
1139 {Opt_grpid, "bsdgroups"},
1140 {Opt_nogrpid, "nogrpid"},
1141 {Opt_nogrpid, "sysvgroups"},
1142 {Opt_resgid, "resgid=%u"},
1143 {Opt_resuid, "resuid=%u"},
1144 {Opt_sb, "sb=%u"},
1145 {Opt_err_cont, "errors=continue"},
1146 {Opt_err_panic, "errors=panic"},
1147 {Opt_err_ro, "errors=remount-ro"},
1148 {Opt_nouid32, "nouid32"},
1149 {Opt_debug, "debug"},
1150 {Opt_removed, "oldalloc"},
1151 {Opt_removed, "orlov"},
1152 {Opt_user_xattr, "user_xattr"},
1153 {Opt_nouser_xattr, "nouser_xattr"},
1154 {Opt_acl, "acl"},
1155 {Opt_noacl, "noacl"},
1156 {Opt_noload, "norecovery"},
1157 {Opt_noload, "noload"},
1158 {Opt_removed, "nobh"},
1159 {Opt_removed, "bh"},
1160 {Opt_commit, "commit=%u"},
1161 {Opt_min_batch_time, "min_batch_time=%u"},
1162 {Opt_max_batch_time, "max_batch_time=%u"},
1163 {Opt_journal_dev, "journal_dev=%u"},
1164 {Opt_journal_checksum, "journal_checksum"},
1165 {Opt_journal_async_commit, "journal_async_commit"},
1166 {Opt_abort, "abort"},
1167 {Opt_data_journal, "data=journal"},
1168 {Opt_data_ordered, "data=ordered"},
1169 {Opt_data_writeback, "data=writeback"},
1170 {Opt_data_err_abort, "data_err=abort"},
1171 {Opt_data_err_ignore, "data_err=ignore"},
1172 {Opt_offusrjquota, "usrjquota="},
1173 {Opt_usrjquota, "usrjquota=%s"},
1174 {Opt_offgrpjquota, "grpjquota="},
1175 {Opt_grpjquota, "grpjquota=%s"},
1176 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1177 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1178 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1179 {Opt_grpquota, "grpquota"},
1180 {Opt_noquota, "noquota"},
1181 {Opt_quota, "quota"},
1182 {Opt_usrquota, "usrquota"},
1183 {Opt_barrier, "barrier=%u"},
1184 {Opt_barrier, "barrier"},
1185 {Opt_nobarrier, "nobarrier"},
1186 {Opt_i_version, "i_version"},
1187 {Opt_stripe, "stripe=%u"},
1188 {Opt_delalloc, "delalloc"},
1189 {Opt_nodelalloc, "nodelalloc"},
1190 {Opt_removed, "mblk_io_submit"},
1191 {Opt_removed, "nomblk_io_submit"},
1192 {Opt_block_validity, "block_validity"},
1193 {Opt_noblock_validity, "noblock_validity"},
1194 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1195 {Opt_journal_ioprio, "journal_ioprio=%u"},
1196 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1197 {Opt_auto_da_alloc, "auto_da_alloc"},
1198 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1199 {Opt_dioread_nolock, "dioread_nolock"},
1200 {Opt_dioread_lock, "dioread_lock"},
1201 {Opt_discard, "discard"},
1202 {Opt_nodiscard, "nodiscard"},
1203 {Opt_init_itable, "init_itable=%u"},
1204 {Opt_init_itable, "init_itable"},
1205 {Opt_noinit_itable, "noinit_itable"},
1206 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1207 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1208 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1209 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1210 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1211 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1212 {Opt_err, NULL},
1213 };
1214
1215 static ext4_fsblk_t get_sb_block(void **data)
1216 {
1217 ext4_fsblk_t sb_block;
1218 char *options = (char *) *data;
1219
1220 if (!options || strncmp(options, "sb=", 3) != 0)
1221 return 1; /* Default location */
1222
1223 options += 3;
1224 /* TODO: use simple_strtoll with >32bit ext4 */
1225 sb_block = simple_strtoul(options, &options, 0);
1226 if (*options && *options != ',') {
1227 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1228 (char *) *data);
1229 return 1;
1230 }
1231 if (*options == ',')
1232 options++;
1233 *data = (void *) options;
1234
1235 return sb_block;
1236 }
1237
1238 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1239 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1240 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1241
1242 #ifdef CONFIG_QUOTA
1243 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1244 {
1245 struct ext4_sb_info *sbi = EXT4_SB(sb);
1246 char *qname;
1247 int ret = -1;
1248
1249 if (sb_any_quota_loaded(sb) &&
1250 !sbi->s_qf_names[qtype]) {
1251 ext4_msg(sb, KERN_ERR,
1252 "Cannot change journaled "
1253 "quota options when quota turned on");
1254 return -1;
1255 }
1256 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1257 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1258 "when QUOTA feature is enabled");
1259 return -1;
1260 }
1261 qname = match_strdup(args);
1262 if (!qname) {
1263 ext4_msg(sb, KERN_ERR,
1264 "Not enough memory for storing quotafile name");
1265 return -1;
1266 }
1267 if (sbi->s_qf_names[qtype]) {
1268 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1269 ret = 1;
1270 else
1271 ext4_msg(sb, KERN_ERR,
1272 "%s quota file already specified",
1273 QTYPE2NAME(qtype));
1274 goto errout;
1275 }
1276 if (strchr(qname, '/')) {
1277 ext4_msg(sb, KERN_ERR,
1278 "quotafile must be on filesystem root");
1279 goto errout;
1280 }
1281 sbi->s_qf_names[qtype] = qname;
1282 set_opt(sb, QUOTA);
1283 return 1;
1284 errout:
1285 kfree(qname);
1286 return ret;
1287 }
1288
1289 static int clear_qf_name(struct super_block *sb, int qtype)
1290 {
1291
1292 struct ext4_sb_info *sbi = EXT4_SB(sb);
1293
1294 if (sb_any_quota_loaded(sb) &&
1295 sbi->s_qf_names[qtype]) {
1296 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1297 " when quota turned on");
1298 return -1;
1299 }
1300 kfree(sbi->s_qf_names[qtype]);
1301 sbi->s_qf_names[qtype] = NULL;
1302 return 1;
1303 }
1304 #endif
1305
1306 #define MOPT_SET 0x0001
1307 #define MOPT_CLEAR 0x0002
1308 #define MOPT_NOSUPPORT 0x0004
1309 #define MOPT_EXPLICIT 0x0008
1310 #define MOPT_CLEAR_ERR 0x0010
1311 #define MOPT_GTE0 0x0020
1312 #ifdef CONFIG_QUOTA
1313 #define MOPT_Q 0
1314 #define MOPT_QFMT 0x0040
1315 #else
1316 #define MOPT_Q MOPT_NOSUPPORT
1317 #define MOPT_QFMT MOPT_NOSUPPORT
1318 #endif
1319 #define MOPT_DATAJ 0x0080
1320 #define MOPT_NO_EXT2 0x0100
1321 #define MOPT_NO_EXT3 0x0200
1322 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1323
1324 static const struct mount_opts {
1325 int token;
1326 int mount_opt;
1327 int flags;
1328 } ext4_mount_opts[] = {
1329 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1330 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1331 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1332 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1333 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1334 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1335 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1336 MOPT_EXT4_ONLY | MOPT_SET},
1337 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1338 MOPT_EXT4_ONLY | MOPT_CLEAR},
1339 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1340 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1341 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1342 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1343 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1344 MOPT_EXT4_ONLY | MOPT_CLEAR},
1345 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1346 MOPT_EXT4_ONLY | MOPT_SET},
1347 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1348 EXT4_MOUNT_JOURNAL_CHECKSUM),
1349 MOPT_EXT4_ONLY | MOPT_SET},
1350 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1351 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1352 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1353 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1354 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1355 MOPT_NO_EXT2 | MOPT_SET},
1356 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1357 MOPT_NO_EXT2 | MOPT_CLEAR},
1358 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1359 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1360 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1361 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1362 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1363 {Opt_commit, 0, MOPT_GTE0},
1364 {Opt_max_batch_time, 0, MOPT_GTE0},
1365 {Opt_min_batch_time, 0, MOPT_GTE0},
1366 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1367 {Opt_init_itable, 0, MOPT_GTE0},
1368 {Opt_stripe, 0, MOPT_GTE0},
1369 {Opt_resuid, 0, MOPT_GTE0},
1370 {Opt_resgid, 0, MOPT_GTE0},
1371 {Opt_journal_dev, 0, MOPT_GTE0},
1372 {Opt_journal_ioprio, 0, MOPT_GTE0},
1373 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1374 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1375 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1376 MOPT_NO_EXT2 | MOPT_DATAJ},
1377 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1378 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1379 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1380 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1381 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1382 #else
1383 {Opt_acl, 0, MOPT_NOSUPPORT},
1384 {Opt_noacl, 0, MOPT_NOSUPPORT},
1385 #endif
1386 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1387 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1388 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1389 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1390 MOPT_SET | MOPT_Q},
1391 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1392 MOPT_SET | MOPT_Q},
1393 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1394 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1395 {Opt_usrjquota, 0, MOPT_Q},
1396 {Opt_grpjquota, 0, MOPT_Q},
1397 {Opt_offusrjquota, 0, MOPT_Q},
1398 {Opt_offgrpjquota, 0, MOPT_Q},
1399 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1400 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1401 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1402 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1403 {Opt_err, 0, 0}
1404 };
1405
1406 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1407 substring_t *args, unsigned long *journal_devnum,
1408 unsigned int *journal_ioprio, int is_remount)
1409 {
1410 struct ext4_sb_info *sbi = EXT4_SB(sb);
1411 const struct mount_opts *m;
1412 kuid_t uid;
1413 kgid_t gid;
1414 int arg = 0;
1415
1416 #ifdef CONFIG_QUOTA
1417 if (token == Opt_usrjquota)
1418 return set_qf_name(sb, USRQUOTA, &args[0]);
1419 else if (token == Opt_grpjquota)
1420 return set_qf_name(sb, GRPQUOTA, &args[0]);
1421 else if (token == Opt_offusrjquota)
1422 return clear_qf_name(sb, USRQUOTA);
1423 else if (token == Opt_offgrpjquota)
1424 return clear_qf_name(sb, GRPQUOTA);
1425 #endif
1426 switch (token) {
1427 case Opt_noacl:
1428 case Opt_nouser_xattr:
1429 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1430 break;
1431 case Opt_sb:
1432 return 1; /* handled by get_sb_block() */
1433 case Opt_removed:
1434 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1435 return 1;
1436 case Opt_abort:
1437 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1438 return 1;
1439 case Opt_i_version:
1440 sb->s_flags |= MS_I_VERSION;
1441 return 1;
1442 }
1443
1444 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1445 if (token == m->token)
1446 break;
1447
1448 if (m->token == Opt_err) {
1449 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1450 "or missing value", opt);
1451 return -1;
1452 }
1453
1454 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1455 ext4_msg(sb, KERN_ERR,
1456 "Mount option \"%s\" incompatible with ext2", opt);
1457 return -1;
1458 }
1459 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1460 ext4_msg(sb, KERN_ERR,
1461 "Mount option \"%s\" incompatible with ext3", opt);
1462 return -1;
1463 }
1464
1465 if (args->from && match_int(args, &arg))
1466 return -1;
1467 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1468 return -1;
1469 if (m->flags & MOPT_EXPLICIT)
1470 set_opt2(sb, EXPLICIT_DELALLOC);
1471 if (m->flags & MOPT_CLEAR_ERR)
1472 clear_opt(sb, ERRORS_MASK);
1473 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1474 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1475 "options when quota turned on");
1476 return -1;
1477 }
1478
1479 if (m->flags & MOPT_NOSUPPORT) {
1480 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1481 } else if (token == Opt_commit) {
1482 if (arg == 0)
1483 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1484 sbi->s_commit_interval = HZ * arg;
1485 } else if (token == Opt_max_batch_time) {
1486 sbi->s_max_batch_time = arg;
1487 } else if (token == Opt_min_batch_time) {
1488 sbi->s_min_batch_time = arg;
1489 } else if (token == Opt_inode_readahead_blks) {
1490 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1491 ext4_msg(sb, KERN_ERR,
1492 "EXT4-fs: inode_readahead_blks must be "
1493 "0 or a power of 2 smaller than 2^31");
1494 return -1;
1495 }
1496 sbi->s_inode_readahead_blks = arg;
1497 } else if (token == Opt_init_itable) {
1498 set_opt(sb, INIT_INODE_TABLE);
1499 if (!args->from)
1500 arg = EXT4_DEF_LI_WAIT_MULT;
1501 sbi->s_li_wait_mult = arg;
1502 } else if (token == Opt_max_dir_size_kb) {
1503 sbi->s_max_dir_size_kb = arg;
1504 } else if (token == Opt_stripe) {
1505 sbi->s_stripe = arg;
1506 } else if (token == Opt_resuid) {
1507 uid = make_kuid(current_user_ns(), arg);
1508 if (!uid_valid(uid)) {
1509 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1510 return -1;
1511 }
1512 sbi->s_resuid = uid;
1513 } else if (token == Opt_resgid) {
1514 gid = make_kgid(current_user_ns(), arg);
1515 if (!gid_valid(gid)) {
1516 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1517 return -1;
1518 }
1519 sbi->s_resgid = gid;
1520 } else if (token == Opt_journal_dev) {
1521 if (is_remount) {
1522 ext4_msg(sb, KERN_ERR,
1523 "Cannot specify journal on remount");
1524 return -1;
1525 }
1526 *journal_devnum = arg;
1527 } else if (token == Opt_journal_ioprio) {
1528 if (arg > 7) {
1529 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1530 " (must be 0-7)");
1531 return -1;
1532 }
1533 *journal_ioprio =
1534 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1535 } else if (m->flags & MOPT_DATAJ) {
1536 if (is_remount) {
1537 if (!sbi->s_journal)
1538 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1539 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1540 ext4_msg(sb, KERN_ERR,
1541 "Cannot change data mode on remount");
1542 return -1;
1543 }
1544 } else {
1545 clear_opt(sb, DATA_FLAGS);
1546 sbi->s_mount_opt |= m->mount_opt;
1547 }
1548 #ifdef CONFIG_QUOTA
1549 } else if (m->flags & MOPT_QFMT) {
1550 if (sb_any_quota_loaded(sb) &&
1551 sbi->s_jquota_fmt != m->mount_opt) {
1552 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1553 "quota options when quota turned on");
1554 return -1;
1555 }
1556 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1557 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1558 ext4_msg(sb, KERN_ERR,
1559 "Cannot set journaled quota options "
1560 "when QUOTA feature is enabled");
1561 return -1;
1562 }
1563 sbi->s_jquota_fmt = m->mount_opt;
1564 #endif
1565 } else {
1566 if (!args->from)
1567 arg = 1;
1568 if (m->flags & MOPT_CLEAR)
1569 arg = !arg;
1570 else if (unlikely(!(m->flags & MOPT_SET))) {
1571 ext4_msg(sb, KERN_WARNING,
1572 "buggy handling of option %s", opt);
1573 WARN_ON(1);
1574 return -1;
1575 }
1576 if (arg != 0)
1577 sbi->s_mount_opt |= m->mount_opt;
1578 else
1579 sbi->s_mount_opt &= ~m->mount_opt;
1580 }
1581 return 1;
1582 }
1583
1584 static int parse_options(char *options, struct super_block *sb,
1585 unsigned long *journal_devnum,
1586 unsigned int *journal_ioprio,
1587 int is_remount)
1588 {
1589 struct ext4_sb_info *sbi = EXT4_SB(sb);
1590 char *p;
1591 substring_t args[MAX_OPT_ARGS];
1592 int token;
1593
1594 if (!options)
1595 return 1;
1596
1597 while ((p = strsep(&options, ",")) != NULL) {
1598 if (!*p)
1599 continue;
1600 /*
1601 * Initialize args struct so we know whether arg was
1602 * found; some options take optional arguments.
1603 */
1604 args[0].to = args[0].from = NULL;
1605 token = match_token(p, tokens, args);
1606 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1607 journal_ioprio, is_remount) < 0)
1608 return 0;
1609 }
1610 #ifdef CONFIG_QUOTA
1611 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1612 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1613 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1614 "feature is enabled");
1615 return 0;
1616 }
1617 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1618 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1619 clear_opt(sb, USRQUOTA);
1620
1621 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1622 clear_opt(sb, GRPQUOTA);
1623
1624 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1625 ext4_msg(sb, KERN_ERR, "old and new quota "
1626 "format mixing");
1627 return 0;
1628 }
1629
1630 if (!sbi->s_jquota_fmt) {
1631 ext4_msg(sb, KERN_ERR, "journaled quota format "
1632 "not specified");
1633 return 0;
1634 }
1635 }
1636 #endif
1637 if (test_opt(sb, DIOREAD_NOLOCK)) {
1638 int blocksize =
1639 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1640
1641 if (blocksize < PAGE_CACHE_SIZE) {
1642 ext4_msg(sb, KERN_ERR, "can't mount with "
1643 "dioread_nolock if block size != PAGE_SIZE");
1644 return 0;
1645 }
1646 }
1647 return 1;
1648 }
1649
1650 static inline void ext4_show_quota_options(struct seq_file *seq,
1651 struct super_block *sb)
1652 {
1653 #if defined(CONFIG_QUOTA)
1654 struct ext4_sb_info *sbi = EXT4_SB(sb);
1655
1656 if (sbi->s_jquota_fmt) {
1657 char *fmtname = "";
1658
1659 switch (sbi->s_jquota_fmt) {
1660 case QFMT_VFS_OLD:
1661 fmtname = "vfsold";
1662 break;
1663 case QFMT_VFS_V0:
1664 fmtname = "vfsv0";
1665 break;
1666 case QFMT_VFS_V1:
1667 fmtname = "vfsv1";
1668 break;
1669 }
1670 seq_printf(seq, ",jqfmt=%s", fmtname);
1671 }
1672
1673 if (sbi->s_qf_names[USRQUOTA])
1674 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1675
1676 if (sbi->s_qf_names[GRPQUOTA])
1677 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1678 #endif
1679 }
1680
1681 static const char *token2str(int token)
1682 {
1683 const struct match_token *t;
1684
1685 for (t = tokens; t->token != Opt_err; t++)
1686 if (t->token == token && !strchr(t->pattern, '='))
1687 break;
1688 return t->pattern;
1689 }
1690
1691 /*
1692 * Show an option if
1693 * - it's set to a non-default value OR
1694 * - if the per-sb default is different from the global default
1695 */
1696 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1697 int nodefs)
1698 {
1699 struct ext4_sb_info *sbi = EXT4_SB(sb);
1700 struct ext4_super_block *es = sbi->s_es;
1701 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1702 const struct mount_opts *m;
1703 char sep = nodefs ? '\n' : ',';
1704
1705 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1706 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1707
1708 if (sbi->s_sb_block != 1)
1709 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1710
1711 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1712 int want_set = m->flags & MOPT_SET;
1713 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1714 (m->flags & MOPT_CLEAR_ERR))
1715 continue;
1716 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1717 continue; /* skip if same as the default */
1718 if ((want_set &&
1719 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1720 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1721 continue; /* select Opt_noFoo vs Opt_Foo */
1722 SEQ_OPTS_PRINT("%s", token2str(m->token));
1723 }
1724
1725 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1726 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1727 SEQ_OPTS_PRINT("resuid=%u",
1728 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1729 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1730 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1731 SEQ_OPTS_PRINT("resgid=%u",
1732 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1733 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1734 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1735 SEQ_OPTS_PUTS("errors=remount-ro");
1736 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1737 SEQ_OPTS_PUTS("errors=continue");
1738 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1739 SEQ_OPTS_PUTS("errors=panic");
1740 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1741 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1742 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1743 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1744 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1745 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1746 if (sb->s_flags & MS_I_VERSION)
1747 SEQ_OPTS_PUTS("i_version");
1748 if (nodefs || sbi->s_stripe)
1749 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1750 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1751 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1752 SEQ_OPTS_PUTS("data=journal");
1753 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1754 SEQ_OPTS_PUTS("data=ordered");
1755 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1756 SEQ_OPTS_PUTS("data=writeback");
1757 }
1758 if (nodefs ||
1759 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1760 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1761 sbi->s_inode_readahead_blks);
1762
1763 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1764 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1765 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1766 if (nodefs || sbi->s_max_dir_size_kb)
1767 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1768
1769 ext4_show_quota_options(seq, sb);
1770 return 0;
1771 }
1772
1773 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1774 {
1775 return _ext4_show_options(seq, root->d_sb, 0);
1776 }
1777
1778 static int options_seq_show(struct seq_file *seq, void *offset)
1779 {
1780 struct super_block *sb = seq->private;
1781 int rc;
1782
1783 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1784 rc = _ext4_show_options(seq, sb, 1);
1785 seq_puts(seq, "\n");
1786 return rc;
1787 }
1788
1789 static int options_open_fs(struct inode *inode, struct file *file)
1790 {
1791 return single_open(file, options_seq_show, PDE_DATA(inode));
1792 }
1793
1794 static const struct file_operations ext4_seq_options_fops = {
1795 .owner = THIS_MODULE,
1796 .open = options_open_fs,
1797 .read = seq_read,
1798 .llseek = seq_lseek,
1799 .release = single_release,
1800 };
1801
1802 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1803 int read_only)
1804 {
1805 struct ext4_sb_info *sbi = EXT4_SB(sb);
1806 int res = 0;
1807
1808 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1809 ext4_msg(sb, KERN_ERR, "revision level too high, "
1810 "forcing read-only mode");
1811 res = MS_RDONLY;
1812 }
1813 if (read_only)
1814 goto done;
1815 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1816 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1817 "running e2fsck is recommended");
1818 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1819 ext4_msg(sb, KERN_WARNING,
1820 "warning: mounting fs with errors, "
1821 "running e2fsck is recommended");
1822 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1823 le16_to_cpu(es->s_mnt_count) >=
1824 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1825 ext4_msg(sb, KERN_WARNING,
1826 "warning: maximal mount count reached, "
1827 "running e2fsck is recommended");
1828 else if (le32_to_cpu(es->s_checkinterval) &&
1829 (le32_to_cpu(es->s_lastcheck) +
1830 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1831 ext4_msg(sb, KERN_WARNING,
1832 "warning: checktime reached, "
1833 "running e2fsck is recommended");
1834 if (!sbi->s_journal)
1835 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1836 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1837 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1838 le16_add_cpu(&es->s_mnt_count, 1);
1839 es->s_mtime = cpu_to_le32(get_seconds());
1840 ext4_update_dynamic_rev(sb);
1841 if (sbi->s_journal)
1842 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1843
1844 ext4_commit_super(sb, 1);
1845 done:
1846 if (test_opt(sb, DEBUG))
1847 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1848 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1849 sb->s_blocksize,
1850 sbi->s_groups_count,
1851 EXT4_BLOCKS_PER_GROUP(sb),
1852 EXT4_INODES_PER_GROUP(sb),
1853 sbi->s_mount_opt, sbi->s_mount_opt2);
1854
1855 cleancache_init_fs(sb);
1856 return res;
1857 }
1858
1859 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1860 {
1861 struct ext4_sb_info *sbi = EXT4_SB(sb);
1862 struct flex_groups *new_groups;
1863 int size;
1864
1865 if (!sbi->s_log_groups_per_flex)
1866 return 0;
1867
1868 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1869 if (size <= sbi->s_flex_groups_allocated)
1870 return 0;
1871
1872 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1873 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1874 if (!new_groups) {
1875 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1876 size / (int) sizeof(struct flex_groups));
1877 return -ENOMEM;
1878 }
1879
1880 if (sbi->s_flex_groups) {
1881 memcpy(new_groups, sbi->s_flex_groups,
1882 (sbi->s_flex_groups_allocated *
1883 sizeof(struct flex_groups)));
1884 ext4_kvfree(sbi->s_flex_groups);
1885 }
1886 sbi->s_flex_groups = new_groups;
1887 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1888 return 0;
1889 }
1890
1891 static int ext4_fill_flex_info(struct super_block *sb)
1892 {
1893 struct ext4_sb_info *sbi = EXT4_SB(sb);
1894 struct ext4_group_desc *gdp = NULL;
1895 ext4_group_t flex_group;
1896 unsigned int groups_per_flex = 0;
1897 int i, err;
1898
1899 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1900 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1901 sbi->s_log_groups_per_flex = 0;
1902 return 1;
1903 }
1904 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1905
1906 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1907 if (err)
1908 goto failed;
1909
1910 for (i = 0; i < sbi->s_groups_count; i++) {
1911 gdp = ext4_get_group_desc(sb, i, NULL);
1912
1913 flex_group = ext4_flex_group(sbi, i);
1914 atomic_add(ext4_free_inodes_count(sb, gdp),
1915 &sbi->s_flex_groups[flex_group].free_inodes);
1916 atomic64_add(ext4_free_group_clusters(sb, gdp),
1917 &sbi->s_flex_groups[flex_group].free_clusters);
1918 atomic_add(ext4_used_dirs_count(sb, gdp),
1919 &sbi->s_flex_groups[flex_group].used_dirs);
1920 }
1921
1922 return 1;
1923 failed:
1924 return 0;
1925 }
1926
1927 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1928 struct ext4_group_desc *gdp)
1929 {
1930 int offset;
1931 __u16 crc = 0;
1932 __le32 le_group = cpu_to_le32(block_group);
1933
1934 if ((sbi->s_es->s_feature_ro_compat &
1935 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1936 /* Use new metadata_csum algorithm */
1937 __le16 save_csum;
1938 __u32 csum32;
1939
1940 save_csum = gdp->bg_checksum;
1941 gdp->bg_checksum = 0;
1942 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1943 sizeof(le_group));
1944 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1945 sbi->s_desc_size);
1946 gdp->bg_checksum = save_csum;
1947
1948 crc = csum32 & 0xFFFF;
1949 goto out;
1950 }
1951
1952 /* old crc16 code */
1953 if (!(sbi->s_es->s_feature_ro_compat &
1954 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
1955 return 0;
1956
1957 offset = offsetof(struct ext4_group_desc, bg_checksum);
1958
1959 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1960 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1961 crc = crc16(crc, (__u8 *)gdp, offset);
1962 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1963 /* for checksum of struct ext4_group_desc do the rest...*/
1964 if ((sbi->s_es->s_feature_incompat &
1965 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1966 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1967 crc = crc16(crc, (__u8 *)gdp + offset,
1968 le16_to_cpu(sbi->s_es->s_desc_size) -
1969 offset);
1970
1971 out:
1972 return cpu_to_le16(crc);
1973 }
1974
1975 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1976 struct ext4_group_desc *gdp)
1977 {
1978 if (ext4_has_group_desc_csum(sb) &&
1979 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1980 block_group, gdp)))
1981 return 0;
1982
1983 return 1;
1984 }
1985
1986 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1987 struct ext4_group_desc *gdp)
1988 {
1989 if (!ext4_has_group_desc_csum(sb))
1990 return;
1991 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
1992 }
1993
1994 /* Called at mount-time, super-block is locked */
1995 static int ext4_check_descriptors(struct super_block *sb,
1996 ext4_group_t *first_not_zeroed)
1997 {
1998 struct ext4_sb_info *sbi = EXT4_SB(sb);
1999 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2000 ext4_fsblk_t last_block;
2001 ext4_fsblk_t block_bitmap;
2002 ext4_fsblk_t inode_bitmap;
2003 ext4_fsblk_t inode_table;
2004 int flexbg_flag = 0;
2005 ext4_group_t i, grp = sbi->s_groups_count;
2006
2007 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2008 flexbg_flag = 1;
2009
2010 ext4_debug("Checking group descriptors");
2011
2012 for (i = 0; i < sbi->s_groups_count; i++) {
2013 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2014
2015 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2016 last_block = ext4_blocks_count(sbi->s_es) - 1;
2017 else
2018 last_block = first_block +
2019 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2020
2021 if ((grp == sbi->s_groups_count) &&
2022 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2023 grp = i;
2024
2025 block_bitmap = ext4_block_bitmap(sb, gdp);
2026 if (block_bitmap < first_block || block_bitmap > last_block) {
2027 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2028 "Block bitmap for group %u not in group "
2029 "(block %llu)!", i, block_bitmap);
2030 return 0;
2031 }
2032 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2033 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2034 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2035 "Inode bitmap for group %u not in group "
2036 "(block %llu)!", i, inode_bitmap);
2037 return 0;
2038 }
2039 inode_table = ext4_inode_table(sb, gdp);
2040 if (inode_table < first_block ||
2041 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2042 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2043 "Inode table for group %u not in group "
2044 "(block %llu)!", i, inode_table);
2045 return 0;
2046 }
2047 ext4_lock_group(sb, i);
2048 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2049 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2050 "Checksum for group %u failed (%u!=%u)",
2051 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2052 gdp)), le16_to_cpu(gdp->bg_checksum));
2053 if (!(sb->s_flags & MS_RDONLY)) {
2054 ext4_unlock_group(sb, i);
2055 return 0;
2056 }
2057 }
2058 ext4_unlock_group(sb, i);
2059 if (!flexbg_flag)
2060 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2061 }
2062 if (NULL != first_not_zeroed)
2063 *first_not_zeroed = grp;
2064
2065 ext4_free_blocks_count_set(sbi->s_es,
2066 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2067 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2068 return 1;
2069 }
2070
2071 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2072 * the superblock) which were deleted from all directories, but held open by
2073 * a process at the time of a crash. We walk the list and try to delete these
2074 * inodes at recovery time (only with a read-write filesystem).
2075 *
2076 * In order to keep the orphan inode chain consistent during traversal (in
2077 * case of crash during recovery), we link each inode into the superblock
2078 * orphan list_head and handle it the same way as an inode deletion during
2079 * normal operation (which journals the operations for us).
2080 *
2081 * We only do an iget() and an iput() on each inode, which is very safe if we
2082 * accidentally point at an in-use or already deleted inode. The worst that
2083 * can happen in this case is that we get a "bit already cleared" message from
2084 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2085 * e2fsck was run on this filesystem, and it must have already done the orphan
2086 * inode cleanup for us, so we can safely abort without any further action.
2087 */
2088 static void ext4_orphan_cleanup(struct super_block *sb,
2089 struct ext4_super_block *es)
2090 {
2091 unsigned int s_flags = sb->s_flags;
2092 int nr_orphans = 0, nr_truncates = 0;
2093 #ifdef CONFIG_QUOTA
2094 int i;
2095 #endif
2096 if (!es->s_last_orphan) {
2097 jbd_debug(4, "no orphan inodes to clean up\n");
2098 return;
2099 }
2100
2101 if (bdev_read_only(sb->s_bdev)) {
2102 ext4_msg(sb, KERN_ERR, "write access "
2103 "unavailable, skipping orphan cleanup");
2104 return;
2105 }
2106
2107 /* Check if feature set would not allow a r/w mount */
2108 if (!ext4_feature_set_ok(sb, 0)) {
2109 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2110 "unknown ROCOMPAT features");
2111 return;
2112 }
2113
2114 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2115 /* don't clear list on RO mount w/ errors */
2116 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2117 jbd_debug(1, "Errors on filesystem, "
2118 "clearing orphan list.\n");
2119 es->s_last_orphan = 0;
2120 }
2121 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2122 return;
2123 }
2124
2125 if (s_flags & MS_RDONLY) {
2126 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2127 sb->s_flags &= ~MS_RDONLY;
2128 }
2129 #ifdef CONFIG_QUOTA
2130 /* Needed for iput() to work correctly and not trash data */
2131 sb->s_flags |= MS_ACTIVE;
2132 /* Turn on quotas so that they are updated correctly */
2133 for (i = 0; i < MAXQUOTAS; i++) {
2134 if (EXT4_SB(sb)->s_qf_names[i]) {
2135 int ret = ext4_quota_on_mount(sb, i);
2136 if (ret < 0)
2137 ext4_msg(sb, KERN_ERR,
2138 "Cannot turn on journaled "
2139 "quota: error %d", ret);
2140 }
2141 }
2142 #endif
2143
2144 while (es->s_last_orphan) {
2145 struct inode *inode;
2146
2147 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2148 if (IS_ERR(inode)) {
2149 es->s_last_orphan = 0;
2150 break;
2151 }
2152
2153 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2154 dquot_initialize(inode);
2155 if (inode->i_nlink) {
2156 ext4_msg(sb, KERN_DEBUG,
2157 "%s: truncating inode %lu to %lld bytes",
2158 __func__, inode->i_ino, inode->i_size);
2159 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2160 inode->i_ino, inode->i_size);
2161 mutex_lock(&inode->i_mutex);
2162 ext4_truncate(inode);
2163 mutex_unlock(&inode->i_mutex);
2164 nr_truncates++;
2165 } else {
2166 ext4_msg(sb, KERN_DEBUG,
2167 "%s: deleting unreferenced inode %lu",
2168 __func__, inode->i_ino);
2169 jbd_debug(2, "deleting unreferenced inode %lu\n",
2170 inode->i_ino);
2171 nr_orphans++;
2172 }
2173 iput(inode); /* The delete magic happens here! */
2174 }
2175
2176 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2177
2178 if (nr_orphans)
2179 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2180 PLURAL(nr_orphans));
2181 if (nr_truncates)
2182 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2183 PLURAL(nr_truncates));
2184 #ifdef CONFIG_QUOTA
2185 /* Turn quotas off */
2186 for (i = 0; i < MAXQUOTAS; i++) {
2187 if (sb_dqopt(sb)->files[i])
2188 dquot_quota_off(sb, i);
2189 }
2190 #endif
2191 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2192 }
2193
2194 /*
2195 * Maximal extent format file size.
2196 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2197 * extent format containers, within a sector_t, and within i_blocks
2198 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2199 * so that won't be a limiting factor.
2200 *
2201 * However there is other limiting factor. We do store extents in the form
2202 * of starting block and length, hence the resulting length of the extent
2203 * covering maximum file size must fit into on-disk format containers as
2204 * well. Given that length is always by 1 unit bigger than max unit (because
2205 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2206 *
2207 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2208 */
2209 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2210 {
2211 loff_t res;
2212 loff_t upper_limit = MAX_LFS_FILESIZE;
2213
2214 /* small i_blocks in vfs inode? */
2215 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2216 /*
2217 * CONFIG_LBDAF is not enabled implies the inode
2218 * i_block represent total blocks in 512 bytes
2219 * 32 == size of vfs inode i_blocks * 8
2220 */
2221 upper_limit = (1LL << 32) - 1;
2222
2223 /* total blocks in file system block size */
2224 upper_limit >>= (blkbits - 9);
2225 upper_limit <<= blkbits;
2226 }
2227
2228 /*
2229 * 32-bit extent-start container, ee_block. We lower the maxbytes
2230 * by one fs block, so ee_len can cover the extent of maximum file
2231 * size
2232 */
2233 res = (1LL << 32) - 1;
2234 res <<= blkbits;
2235
2236 /* Sanity check against vm- & vfs- imposed limits */
2237 if (res > upper_limit)
2238 res = upper_limit;
2239
2240 return res;
2241 }
2242
2243 /*
2244 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2245 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2246 * We need to be 1 filesystem block less than the 2^48 sector limit.
2247 */
2248 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2249 {
2250 loff_t res = EXT4_NDIR_BLOCKS;
2251 int meta_blocks;
2252 loff_t upper_limit;
2253 /* This is calculated to be the largest file size for a dense, block
2254 * mapped file such that the file's total number of 512-byte sectors,
2255 * including data and all indirect blocks, does not exceed (2^48 - 1).
2256 *
2257 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2258 * number of 512-byte sectors of the file.
2259 */
2260
2261 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2262 /*
2263 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2264 * the inode i_block field represents total file blocks in
2265 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2266 */
2267 upper_limit = (1LL << 32) - 1;
2268
2269 /* total blocks in file system block size */
2270 upper_limit >>= (bits - 9);
2271
2272 } else {
2273 /*
2274 * We use 48 bit ext4_inode i_blocks
2275 * With EXT4_HUGE_FILE_FL set the i_blocks
2276 * represent total number of blocks in
2277 * file system block size
2278 */
2279 upper_limit = (1LL << 48) - 1;
2280
2281 }
2282
2283 /* indirect blocks */
2284 meta_blocks = 1;
2285 /* double indirect blocks */
2286 meta_blocks += 1 + (1LL << (bits-2));
2287 /* tripple indirect blocks */
2288 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2289
2290 upper_limit -= meta_blocks;
2291 upper_limit <<= bits;
2292
2293 res += 1LL << (bits-2);
2294 res += 1LL << (2*(bits-2));
2295 res += 1LL << (3*(bits-2));
2296 res <<= bits;
2297 if (res > upper_limit)
2298 res = upper_limit;
2299
2300 if (res > MAX_LFS_FILESIZE)
2301 res = MAX_LFS_FILESIZE;
2302
2303 return res;
2304 }
2305
2306 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2307 ext4_fsblk_t logical_sb_block, int nr)
2308 {
2309 struct ext4_sb_info *sbi = EXT4_SB(sb);
2310 ext4_group_t bg, first_meta_bg;
2311 int has_super = 0;
2312
2313 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2314
2315 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2316 nr < first_meta_bg)
2317 return logical_sb_block + nr + 1;
2318 bg = sbi->s_desc_per_block * nr;
2319 if (ext4_bg_has_super(sb, bg))
2320 has_super = 1;
2321
2322 return (has_super + ext4_group_first_block_no(sb, bg));
2323 }
2324
2325 /**
2326 * ext4_get_stripe_size: Get the stripe size.
2327 * @sbi: In memory super block info
2328 *
2329 * If we have specified it via mount option, then
2330 * use the mount option value. If the value specified at mount time is
2331 * greater than the blocks per group use the super block value.
2332 * If the super block value is greater than blocks per group return 0.
2333 * Allocator needs it be less than blocks per group.
2334 *
2335 */
2336 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2337 {
2338 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2339 unsigned long stripe_width =
2340 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2341 int ret;
2342
2343 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2344 ret = sbi->s_stripe;
2345 else if (stripe_width <= sbi->s_blocks_per_group)
2346 ret = stripe_width;
2347 else if (stride <= sbi->s_blocks_per_group)
2348 ret = stride;
2349 else
2350 ret = 0;
2351
2352 /*
2353 * If the stripe width is 1, this makes no sense and
2354 * we set it to 0 to turn off stripe handling code.
2355 */
2356 if (ret <= 1)
2357 ret = 0;
2358
2359 return ret;
2360 }
2361
2362 /* sysfs supprt */
2363
2364 struct ext4_attr {
2365 struct attribute attr;
2366 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2367 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2368 const char *, size_t);
2369 int offset;
2370 };
2371
2372 static int parse_strtoull(const char *buf,
2373 unsigned long long max, unsigned long long *value)
2374 {
2375 int ret;
2376
2377 ret = kstrtoull(skip_spaces(buf), 0, value);
2378 if (!ret && *value > max)
2379 ret = -EINVAL;
2380 return ret;
2381 }
2382
2383 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2384 struct ext4_sb_info *sbi,
2385 char *buf)
2386 {
2387 return snprintf(buf, PAGE_SIZE, "%llu\n",
2388 (s64) EXT4_C2B(sbi,
2389 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2390 }
2391
2392 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2393 struct ext4_sb_info *sbi, char *buf)
2394 {
2395 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2396
2397 if (!sb->s_bdev->bd_part)
2398 return snprintf(buf, PAGE_SIZE, "0\n");
2399 return snprintf(buf, PAGE_SIZE, "%lu\n",
2400 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2401 sbi->s_sectors_written_start) >> 1);
2402 }
2403
2404 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2405 struct ext4_sb_info *sbi, char *buf)
2406 {
2407 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2408
2409 if (!sb->s_bdev->bd_part)
2410 return snprintf(buf, PAGE_SIZE, "0\n");
2411 return snprintf(buf, PAGE_SIZE, "%llu\n",
2412 (unsigned long long)(sbi->s_kbytes_written +
2413 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2414 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2415 }
2416
2417 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2418 struct ext4_sb_info *sbi,
2419 const char *buf, size_t count)
2420 {
2421 unsigned long t;
2422 int ret;
2423
2424 ret = kstrtoul(skip_spaces(buf), 0, &t);
2425 if (ret)
2426 return ret;
2427
2428 if (t && (!is_power_of_2(t) || t > 0x40000000))
2429 return -EINVAL;
2430
2431 sbi->s_inode_readahead_blks = t;
2432 return count;
2433 }
2434
2435 static ssize_t sbi_ui_show(struct ext4_attr *a,
2436 struct ext4_sb_info *sbi, char *buf)
2437 {
2438 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2439
2440 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2441 }
2442
2443 static ssize_t sbi_ui_store(struct ext4_attr *a,
2444 struct ext4_sb_info *sbi,
2445 const char *buf, size_t count)
2446 {
2447 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2448 unsigned long t;
2449 int ret;
2450
2451 ret = kstrtoul(skip_spaces(buf), 0, &t);
2452 if (ret)
2453 return ret;
2454 *ui = t;
2455 return count;
2456 }
2457
2458 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2459 struct ext4_sb_info *sbi, char *buf)
2460 {
2461 return snprintf(buf, PAGE_SIZE, "%llu\n",
2462 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2463 }
2464
2465 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2466 struct ext4_sb_info *sbi,
2467 const char *buf, size_t count)
2468 {
2469 unsigned long long val;
2470 int ret;
2471
2472 if (parse_strtoull(buf, -1ULL, &val))
2473 return -EINVAL;
2474 ret = ext4_reserve_clusters(sbi, val);
2475
2476 return ret ? ret : count;
2477 }
2478
2479 static ssize_t trigger_test_error(struct ext4_attr *a,
2480 struct ext4_sb_info *sbi,
2481 const char *buf, size_t count)
2482 {
2483 int len = count;
2484
2485 if (!capable(CAP_SYS_ADMIN))
2486 return -EPERM;
2487
2488 if (len && buf[len-1] == '\n')
2489 len--;
2490
2491 if (len)
2492 ext4_error(sbi->s_sb, "%.*s", len, buf);
2493 return count;
2494 }
2495
2496 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2497 static struct ext4_attr ext4_attr_##_name = { \
2498 .attr = {.name = __stringify(_name), .mode = _mode }, \
2499 .show = _show, \
2500 .store = _store, \
2501 .offset = offsetof(struct ext4_sb_info, _elname), \
2502 }
2503 #define EXT4_ATTR(name, mode, show, store) \
2504 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2505
2506 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2507 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2508 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2509 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2510 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2511 #define ATTR_LIST(name) &ext4_attr_##name.attr
2512
2513 EXT4_RO_ATTR(delayed_allocation_blocks);
2514 EXT4_RO_ATTR(session_write_kbytes);
2515 EXT4_RO_ATTR(lifetime_write_kbytes);
2516 EXT4_RW_ATTR(reserved_clusters);
2517 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2518 inode_readahead_blks_store, s_inode_readahead_blks);
2519 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2520 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2521 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2522 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2523 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2524 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2525 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2526 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2527 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2528 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2529
2530 static struct attribute *ext4_attrs[] = {
2531 ATTR_LIST(delayed_allocation_blocks),
2532 ATTR_LIST(session_write_kbytes),
2533 ATTR_LIST(lifetime_write_kbytes),
2534 ATTR_LIST(reserved_clusters),
2535 ATTR_LIST(inode_readahead_blks),
2536 ATTR_LIST(inode_goal),
2537 ATTR_LIST(mb_stats),
2538 ATTR_LIST(mb_max_to_scan),
2539 ATTR_LIST(mb_min_to_scan),
2540 ATTR_LIST(mb_order2_req),
2541 ATTR_LIST(mb_stream_req),
2542 ATTR_LIST(mb_group_prealloc),
2543 ATTR_LIST(max_writeback_mb_bump),
2544 ATTR_LIST(extent_max_zeroout_kb),
2545 ATTR_LIST(trigger_fs_error),
2546 NULL,
2547 };
2548
2549 /* Features this copy of ext4 supports */
2550 EXT4_INFO_ATTR(lazy_itable_init);
2551 EXT4_INFO_ATTR(batched_discard);
2552 EXT4_INFO_ATTR(meta_bg_resize);
2553
2554 static struct attribute *ext4_feat_attrs[] = {
2555 ATTR_LIST(lazy_itable_init),
2556 ATTR_LIST(batched_discard),
2557 ATTR_LIST(meta_bg_resize),
2558 NULL,
2559 };
2560
2561 static ssize_t ext4_attr_show(struct kobject *kobj,
2562 struct attribute *attr, char *buf)
2563 {
2564 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2565 s_kobj);
2566 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2567
2568 return a->show ? a->show(a, sbi, buf) : 0;
2569 }
2570
2571 static ssize_t ext4_attr_store(struct kobject *kobj,
2572 struct attribute *attr,
2573 const char *buf, size_t len)
2574 {
2575 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2576 s_kobj);
2577 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2578
2579 return a->store ? a->store(a, sbi, buf, len) : 0;
2580 }
2581
2582 static void ext4_sb_release(struct kobject *kobj)
2583 {
2584 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2585 s_kobj);
2586 complete(&sbi->s_kobj_unregister);
2587 }
2588
2589 static const struct sysfs_ops ext4_attr_ops = {
2590 .show = ext4_attr_show,
2591 .store = ext4_attr_store,
2592 };
2593
2594 static struct kobj_type ext4_ktype = {
2595 .default_attrs = ext4_attrs,
2596 .sysfs_ops = &ext4_attr_ops,
2597 .release = ext4_sb_release,
2598 };
2599
2600 static void ext4_feat_release(struct kobject *kobj)
2601 {
2602 complete(&ext4_feat->f_kobj_unregister);
2603 }
2604
2605 static struct kobj_type ext4_feat_ktype = {
2606 .default_attrs = ext4_feat_attrs,
2607 .sysfs_ops = &ext4_attr_ops,
2608 .release = ext4_feat_release,
2609 };
2610
2611 /*
2612 * Check whether this filesystem can be mounted based on
2613 * the features present and the RDONLY/RDWR mount requested.
2614 * Returns 1 if this filesystem can be mounted as requested,
2615 * 0 if it cannot be.
2616 */
2617 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2618 {
2619 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2620 ext4_msg(sb, KERN_ERR,
2621 "Couldn't mount because of "
2622 "unsupported optional features (%x)",
2623 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2624 ~EXT4_FEATURE_INCOMPAT_SUPP));
2625 return 0;
2626 }
2627
2628 if (readonly)
2629 return 1;
2630
2631 /* Check that feature set is OK for a read-write mount */
2632 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2633 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2634 "unsupported optional features (%x)",
2635 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2636 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2637 return 0;
2638 }
2639 /*
2640 * Large file size enabled file system can only be mounted
2641 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2642 */
2643 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2644 if (sizeof(blkcnt_t) < sizeof(u64)) {
2645 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2646 "cannot be mounted RDWR without "
2647 "CONFIG_LBDAF");
2648 return 0;
2649 }
2650 }
2651 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2652 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2653 ext4_msg(sb, KERN_ERR,
2654 "Can't support bigalloc feature without "
2655 "extents feature\n");
2656 return 0;
2657 }
2658
2659 #ifndef CONFIG_QUOTA
2660 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2661 !readonly) {
2662 ext4_msg(sb, KERN_ERR,
2663 "Filesystem with quota feature cannot be mounted RDWR "
2664 "without CONFIG_QUOTA");
2665 return 0;
2666 }
2667 #endif /* CONFIG_QUOTA */
2668 return 1;
2669 }
2670
2671 /*
2672 * This function is called once a day if we have errors logged
2673 * on the file system
2674 */
2675 static void print_daily_error_info(unsigned long arg)
2676 {
2677 struct super_block *sb = (struct super_block *) arg;
2678 struct ext4_sb_info *sbi;
2679 struct ext4_super_block *es;
2680
2681 sbi = EXT4_SB(sb);
2682 es = sbi->s_es;
2683
2684 if (es->s_error_count)
2685 /* fsck newer than v1.41.13 is needed to clean this condition. */
2686 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2687 le32_to_cpu(es->s_error_count));
2688 if (es->s_first_error_time) {
2689 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2690 sb->s_id, le32_to_cpu(es->s_first_error_time),
2691 (int) sizeof(es->s_first_error_func),
2692 es->s_first_error_func,
2693 le32_to_cpu(es->s_first_error_line));
2694 if (es->s_first_error_ino)
2695 printk(": inode %u",
2696 le32_to_cpu(es->s_first_error_ino));
2697 if (es->s_first_error_block)
2698 printk(": block %llu", (unsigned long long)
2699 le64_to_cpu(es->s_first_error_block));
2700 printk("\n");
2701 }
2702 if (es->s_last_error_time) {
2703 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2704 sb->s_id, le32_to_cpu(es->s_last_error_time),
2705 (int) sizeof(es->s_last_error_func),
2706 es->s_last_error_func,
2707 le32_to_cpu(es->s_last_error_line));
2708 if (es->s_last_error_ino)
2709 printk(": inode %u",
2710 le32_to_cpu(es->s_last_error_ino));
2711 if (es->s_last_error_block)
2712 printk(": block %llu", (unsigned long long)
2713 le64_to_cpu(es->s_last_error_block));
2714 printk("\n");
2715 }
2716 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2717 }
2718
2719 /* Find next suitable group and run ext4_init_inode_table */
2720 static int ext4_run_li_request(struct ext4_li_request *elr)
2721 {
2722 struct ext4_group_desc *gdp = NULL;
2723 ext4_group_t group, ngroups;
2724 struct super_block *sb;
2725 unsigned long timeout = 0;
2726 int ret = 0;
2727
2728 sb = elr->lr_super;
2729 ngroups = EXT4_SB(sb)->s_groups_count;
2730
2731 sb_start_write(sb);
2732 for (group = elr->lr_next_group; group < ngroups; group++) {
2733 gdp = ext4_get_group_desc(sb, group, NULL);
2734 if (!gdp) {
2735 ret = 1;
2736 break;
2737 }
2738
2739 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2740 break;
2741 }
2742
2743 if (group >= ngroups)
2744 ret = 1;
2745
2746 if (!ret) {
2747 timeout = jiffies;
2748 ret = ext4_init_inode_table(sb, group,
2749 elr->lr_timeout ? 0 : 1);
2750 if (elr->lr_timeout == 0) {
2751 timeout = (jiffies - timeout) *
2752 elr->lr_sbi->s_li_wait_mult;
2753 elr->lr_timeout = timeout;
2754 }
2755 elr->lr_next_sched = jiffies + elr->lr_timeout;
2756 elr->lr_next_group = group + 1;
2757 }
2758 sb_end_write(sb);
2759
2760 return ret;
2761 }
2762
2763 /*
2764 * Remove lr_request from the list_request and free the
2765 * request structure. Should be called with li_list_mtx held
2766 */
2767 static void ext4_remove_li_request(struct ext4_li_request *elr)
2768 {
2769 struct ext4_sb_info *sbi;
2770
2771 if (!elr)
2772 return;
2773
2774 sbi = elr->lr_sbi;
2775
2776 list_del(&elr->lr_request);
2777 sbi->s_li_request = NULL;
2778 kfree(elr);
2779 }
2780
2781 static void ext4_unregister_li_request(struct super_block *sb)
2782 {
2783 mutex_lock(&ext4_li_mtx);
2784 if (!ext4_li_info) {
2785 mutex_unlock(&ext4_li_mtx);
2786 return;
2787 }
2788
2789 mutex_lock(&ext4_li_info->li_list_mtx);
2790 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2791 mutex_unlock(&ext4_li_info->li_list_mtx);
2792 mutex_unlock(&ext4_li_mtx);
2793 }
2794
2795 static struct task_struct *ext4_lazyinit_task;
2796
2797 /*
2798 * This is the function where ext4lazyinit thread lives. It walks
2799 * through the request list searching for next scheduled filesystem.
2800 * When such a fs is found, run the lazy initialization request
2801 * (ext4_rn_li_request) and keep track of the time spend in this
2802 * function. Based on that time we compute next schedule time of
2803 * the request. When walking through the list is complete, compute
2804 * next waking time and put itself into sleep.
2805 */
2806 static int ext4_lazyinit_thread(void *arg)
2807 {
2808 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2809 struct list_head *pos, *n;
2810 struct ext4_li_request *elr;
2811 unsigned long next_wakeup, cur;
2812
2813 BUG_ON(NULL == eli);
2814 set_freezable();
2815
2816 cont_thread:
2817 while (true) {
2818 next_wakeup = MAX_JIFFY_OFFSET;
2819
2820 mutex_lock(&eli->li_list_mtx);
2821 if (list_empty(&eli->li_request_list)) {
2822 mutex_unlock(&eli->li_list_mtx);
2823 goto exit_thread;
2824 }
2825
2826 list_for_each_safe(pos, n, &eli->li_request_list) {
2827 elr = list_entry(pos, struct ext4_li_request,
2828 lr_request);
2829
2830 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2831 if (ext4_run_li_request(elr) != 0) {
2832 /* error, remove the lazy_init job */
2833 ext4_remove_li_request(elr);
2834 continue;
2835 }
2836 }
2837
2838 if (time_before(elr->lr_next_sched, next_wakeup))
2839 next_wakeup = elr->lr_next_sched;
2840 }
2841 mutex_unlock(&eli->li_list_mtx);
2842
2843 try_to_freeze();
2844
2845 cur = jiffies;
2846 if ((time_after_eq(cur, next_wakeup)) ||
2847 (MAX_JIFFY_OFFSET == next_wakeup)) {
2848 cond_resched();
2849 continue;
2850 }
2851
2852 schedule_timeout_interruptible(next_wakeup - cur);
2853
2854 if (kthread_freezable_should_stop(NULL)) {
2855 ext4_clear_request_list();
2856 goto exit_thread;
2857 }
2858 }
2859
2860 exit_thread:
2861 /*
2862 * It looks like the request list is empty, but we need
2863 * to check it under the li_list_mtx lock, to prevent any
2864 * additions into it, and of course we should lock ext4_li_mtx
2865 * to atomically free the list and ext4_li_info, because at
2866 * this point another ext4 filesystem could be registering
2867 * new one.
2868 */
2869 mutex_lock(&ext4_li_mtx);
2870 mutex_lock(&eli->li_list_mtx);
2871 if (!list_empty(&eli->li_request_list)) {
2872 mutex_unlock(&eli->li_list_mtx);
2873 mutex_unlock(&ext4_li_mtx);
2874 goto cont_thread;
2875 }
2876 mutex_unlock(&eli->li_list_mtx);
2877 kfree(ext4_li_info);
2878 ext4_li_info = NULL;
2879 mutex_unlock(&ext4_li_mtx);
2880
2881 return 0;
2882 }
2883
2884 static void ext4_clear_request_list(void)
2885 {
2886 struct list_head *pos, *n;
2887 struct ext4_li_request *elr;
2888
2889 mutex_lock(&ext4_li_info->li_list_mtx);
2890 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2891 elr = list_entry(pos, struct ext4_li_request,
2892 lr_request);
2893 ext4_remove_li_request(elr);
2894 }
2895 mutex_unlock(&ext4_li_info->li_list_mtx);
2896 }
2897
2898 static int ext4_run_lazyinit_thread(void)
2899 {
2900 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2901 ext4_li_info, "ext4lazyinit");
2902 if (IS_ERR(ext4_lazyinit_task)) {
2903 int err = PTR_ERR(ext4_lazyinit_task);
2904 ext4_clear_request_list();
2905 kfree(ext4_li_info);
2906 ext4_li_info = NULL;
2907 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2908 "initialization thread\n",
2909 err);
2910 return err;
2911 }
2912 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2913 return 0;
2914 }
2915
2916 /*
2917 * Check whether it make sense to run itable init. thread or not.
2918 * If there is at least one uninitialized inode table, return
2919 * corresponding group number, else the loop goes through all
2920 * groups and return total number of groups.
2921 */
2922 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2923 {
2924 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2925 struct ext4_group_desc *gdp = NULL;
2926
2927 for (group = 0; group < ngroups; group++) {
2928 gdp = ext4_get_group_desc(sb, group, NULL);
2929 if (!gdp)
2930 continue;
2931
2932 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2933 break;
2934 }
2935
2936 return group;
2937 }
2938
2939 static int ext4_li_info_new(void)
2940 {
2941 struct ext4_lazy_init *eli = NULL;
2942
2943 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2944 if (!eli)
2945 return -ENOMEM;
2946
2947 INIT_LIST_HEAD(&eli->li_request_list);
2948 mutex_init(&eli->li_list_mtx);
2949
2950 eli->li_state |= EXT4_LAZYINIT_QUIT;
2951
2952 ext4_li_info = eli;
2953
2954 return 0;
2955 }
2956
2957 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2958 ext4_group_t start)
2959 {
2960 struct ext4_sb_info *sbi = EXT4_SB(sb);
2961 struct ext4_li_request *elr;
2962 unsigned long rnd;
2963
2964 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2965 if (!elr)
2966 return NULL;
2967
2968 elr->lr_super = sb;
2969 elr->lr_sbi = sbi;
2970 elr->lr_next_group = start;
2971
2972 /*
2973 * Randomize first schedule time of the request to
2974 * spread the inode table initialization requests
2975 * better.
2976 */
2977 get_random_bytes(&rnd, sizeof(rnd));
2978 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2979 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2980
2981 return elr;
2982 }
2983
2984 int ext4_register_li_request(struct super_block *sb,
2985 ext4_group_t first_not_zeroed)
2986 {
2987 struct ext4_sb_info *sbi = EXT4_SB(sb);
2988 struct ext4_li_request *elr = NULL;
2989 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2990 int ret = 0;
2991
2992 mutex_lock(&ext4_li_mtx);
2993 if (sbi->s_li_request != NULL) {
2994 /*
2995 * Reset timeout so it can be computed again, because
2996 * s_li_wait_mult might have changed.
2997 */
2998 sbi->s_li_request->lr_timeout = 0;
2999 goto out;
3000 }
3001
3002 if (first_not_zeroed == ngroups ||
3003 (sb->s_flags & MS_RDONLY) ||
3004 !test_opt(sb, INIT_INODE_TABLE))
3005 goto out;
3006
3007 elr = ext4_li_request_new(sb, first_not_zeroed);
3008 if (!elr) {
3009 ret = -ENOMEM;
3010 goto out;
3011 }
3012
3013 if (NULL == ext4_li_info) {
3014 ret = ext4_li_info_new();
3015 if (ret)
3016 goto out;
3017 }
3018
3019 mutex_lock(&ext4_li_info->li_list_mtx);
3020 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3021 mutex_unlock(&ext4_li_info->li_list_mtx);
3022
3023 sbi->s_li_request = elr;
3024 /*
3025 * set elr to NULL here since it has been inserted to
3026 * the request_list and the removal and free of it is
3027 * handled by ext4_clear_request_list from now on.
3028 */
3029 elr = NULL;
3030
3031 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3032 ret = ext4_run_lazyinit_thread();
3033 if (ret)
3034 goto out;
3035 }
3036 out:
3037 mutex_unlock(&ext4_li_mtx);
3038 if (ret)
3039 kfree(elr);
3040 return ret;
3041 }
3042
3043 /*
3044 * We do not need to lock anything since this is called on
3045 * module unload.
3046 */
3047 static void ext4_destroy_lazyinit_thread(void)
3048 {
3049 /*
3050 * If thread exited earlier
3051 * there's nothing to be done.
3052 */
3053 if (!ext4_li_info || !ext4_lazyinit_task)
3054 return;
3055
3056 kthread_stop(ext4_lazyinit_task);
3057 }
3058
3059 static int set_journal_csum_feature_set(struct super_block *sb)
3060 {
3061 int ret = 1;
3062 int compat, incompat;
3063 struct ext4_sb_info *sbi = EXT4_SB(sb);
3064
3065 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3066 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3067 /* journal checksum v2 */
3068 compat = 0;
3069 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3070 } else {
3071 /* journal checksum v1 */
3072 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3073 incompat = 0;
3074 }
3075
3076 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3077 ret = jbd2_journal_set_features(sbi->s_journal,
3078 compat, 0,
3079 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3080 incompat);
3081 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3082 ret = jbd2_journal_set_features(sbi->s_journal,
3083 compat, 0,
3084 incompat);
3085 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3086 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3087 } else {
3088 jbd2_journal_clear_features(sbi->s_journal,
3089 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3090 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3091 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3092 }
3093
3094 return ret;
3095 }
3096
3097 /*
3098 * Note: calculating the overhead so we can be compatible with
3099 * historical BSD practice is quite difficult in the face of
3100 * clusters/bigalloc. This is because multiple metadata blocks from
3101 * different block group can end up in the same allocation cluster.
3102 * Calculating the exact overhead in the face of clustered allocation
3103 * requires either O(all block bitmaps) in memory or O(number of block
3104 * groups**2) in time. We will still calculate the superblock for
3105 * older file systems --- and if we come across with a bigalloc file
3106 * system with zero in s_overhead_clusters the estimate will be close to
3107 * correct especially for very large cluster sizes --- but for newer
3108 * file systems, it's better to calculate this figure once at mkfs
3109 * time, and store it in the superblock. If the superblock value is
3110 * present (even for non-bigalloc file systems), we will use it.
3111 */
3112 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3113 char *buf)
3114 {
3115 struct ext4_sb_info *sbi = EXT4_SB(sb);
3116 struct ext4_group_desc *gdp;
3117 ext4_fsblk_t first_block, last_block, b;
3118 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3119 int s, j, count = 0;
3120
3121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3122 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3123 sbi->s_itb_per_group + 2);
3124
3125 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3126 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3127 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3128 for (i = 0; i < ngroups; i++) {
3129 gdp = ext4_get_group_desc(sb, i, NULL);
3130 b = ext4_block_bitmap(sb, gdp);
3131 if (b >= first_block && b <= last_block) {
3132 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3133 count++;
3134 }
3135 b = ext4_inode_bitmap(sb, gdp);
3136 if (b >= first_block && b <= last_block) {
3137 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3138 count++;
3139 }
3140 b = ext4_inode_table(sb, gdp);
3141 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3142 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3143 int c = EXT4_B2C(sbi, b - first_block);
3144 ext4_set_bit(c, buf);
3145 count++;
3146 }
3147 if (i != grp)
3148 continue;
3149 s = 0;
3150 if (ext4_bg_has_super(sb, grp)) {
3151 ext4_set_bit(s++, buf);
3152 count++;
3153 }
3154 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3155 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3156 count++;
3157 }
3158 }
3159 if (!count)
3160 return 0;
3161 return EXT4_CLUSTERS_PER_GROUP(sb) -
3162 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3163 }
3164
3165 /*
3166 * Compute the overhead and stash it in sbi->s_overhead
3167 */
3168 int ext4_calculate_overhead(struct super_block *sb)
3169 {
3170 struct ext4_sb_info *sbi = EXT4_SB(sb);
3171 struct ext4_super_block *es = sbi->s_es;
3172 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3173 ext4_fsblk_t overhead = 0;
3174 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3175
3176 if (!buf)
3177 return -ENOMEM;
3178
3179 /*
3180 * Compute the overhead (FS structures). This is constant
3181 * for a given filesystem unless the number of block groups
3182 * changes so we cache the previous value until it does.
3183 */
3184
3185 /*
3186 * All of the blocks before first_data_block are overhead
3187 */
3188 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3189
3190 /*
3191 * Add the overhead found in each block group
3192 */
3193 for (i = 0; i < ngroups; i++) {
3194 int blks;
3195
3196 blks = count_overhead(sb, i, buf);
3197 overhead += blks;
3198 if (blks)
3199 memset(buf, 0, PAGE_SIZE);
3200 cond_resched();
3201 }
3202 /* Add the journal blocks as well */
3203 if (sbi->s_journal)
3204 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3205
3206 sbi->s_overhead = overhead;
3207 smp_wmb();
3208 free_page((unsigned long) buf);
3209 return 0;
3210 }
3211
3212
3213 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3214 {
3215 ext4_fsblk_t resv_clusters;
3216
3217 /*
3218 * There's no need to reserve anything when we aren't using extents.
3219 * The space estimates are exact, there are no unwritten extents,
3220 * hole punching doesn't need new metadata... This is needed especially
3221 * to keep ext2/3 backward compatibility.
3222 */
3223 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3224 return 0;
3225 /*
3226 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3227 * This should cover the situations where we can not afford to run
3228 * out of space like for example punch hole, or converting
3229 * uninitialized extents in delalloc path. In most cases such
3230 * allocation would require 1, or 2 blocks, higher numbers are
3231 * very rare.
3232 */
3233 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3234 EXT4_SB(sb)->s_cluster_bits;
3235
3236 do_div(resv_clusters, 50);
3237 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3238
3239 return resv_clusters;
3240 }
3241
3242
3243 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3244 {
3245 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3246 sbi->s_cluster_bits;
3247
3248 if (count >= clusters)
3249 return -EINVAL;
3250
3251 atomic64_set(&sbi->s_resv_clusters, count);
3252 return 0;
3253 }
3254
3255 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3256 {
3257 char *orig_data = kstrdup(data, GFP_KERNEL);
3258 struct buffer_head *bh;
3259 struct ext4_super_block *es = NULL;
3260 struct ext4_sb_info *sbi;
3261 ext4_fsblk_t block;
3262 ext4_fsblk_t sb_block = get_sb_block(&data);
3263 ext4_fsblk_t logical_sb_block;
3264 unsigned long offset = 0;
3265 unsigned long journal_devnum = 0;
3266 unsigned long def_mount_opts;
3267 struct inode *root;
3268 char *cp;
3269 const char *descr;
3270 int ret = -ENOMEM;
3271 int blocksize, clustersize;
3272 unsigned int db_count;
3273 unsigned int i;
3274 int needs_recovery, has_huge_files, has_bigalloc;
3275 __u64 blocks_count;
3276 int err = 0;
3277 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3278 ext4_group_t first_not_zeroed;
3279
3280 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3281 if (!sbi)
3282 goto out_free_orig;
3283
3284 sbi->s_blockgroup_lock =
3285 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3286 if (!sbi->s_blockgroup_lock) {
3287 kfree(sbi);
3288 goto out_free_orig;
3289 }
3290 sb->s_fs_info = sbi;
3291 sbi->s_sb = sb;
3292 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3293 sbi->s_sb_block = sb_block;
3294 if (sb->s_bdev->bd_part)
3295 sbi->s_sectors_written_start =
3296 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3297
3298 /* Cleanup superblock name */
3299 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3300 *cp = '!';
3301
3302 /* -EINVAL is default */
3303 ret = -EINVAL;
3304 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3305 if (!blocksize) {
3306 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3307 goto out_fail;
3308 }
3309
3310 /*
3311 * The ext4 superblock will not be buffer aligned for other than 1kB
3312 * block sizes. We need to calculate the offset from buffer start.
3313 */
3314 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3315 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3316 offset = do_div(logical_sb_block, blocksize);
3317 } else {
3318 logical_sb_block = sb_block;
3319 }
3320
3321 if (!(bh = sb_bread(sb, logical_sb_block))) {
3322 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3323 goto out_fail;
3324 }
3325 /*
3326 * Note: s_es must be initialized as soon as possible because
3327 * some ext4 macro-instructions depend on its value
3328 */
3329 es = (struct ext4_super_block *) (bh->b_data + offset);
3330 sbi->s_es = es;
3331 sb->s_magic = le16_to_cpu(es->s_magic);
3332 if (sb->s_magic != EXT4_SUPER_MAGIC)
3333 goto cantfind_ext4;
3334 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3335
3336 /* Warn if metadata_csum and gdt_csum are both set. */
3337 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3338 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3339 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3340 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3341 "redundant flags; please run fsck.");
3342
3343 /* Check for a known checksum algorithm */
3344 if (!ext4_verify_csum_type(sb, es)) {
3345 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3346 "unknown checksum algorithm.");
3347 silent = 1;
3348 goto cantfind_ext4;
3349 }
3350
3351 /* Load the checksum driver */
3352 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3353 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3354 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3355 if (IS_ERR(sbi->s_chksum_driver)) {
3356 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3357 ret = PTR_ERR(sbi->s_chksum_driver);
3358 sbi->s_chksum_driver = NULL;
3359 goto failed_mount;
3360 }
3361 }
3362
3363 /* Check superblock checksum */
3364 if (!ext4_superblock_csum_verify(sb, es)) {
3365 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3366 "invalid superblock checksum. Run e2fsck?");
3367 silent = 1;
3368 goto cantfind_ext4;
3369 }
3370
3371 /* Precompute checksum seed for all metadata */
3372 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3373 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3374 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3375 sizeof(es->s_uuid));
3376
3377 /* Set defaults before we parse the mount options */
3378 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3379 set_opt(sb, INIT_INODE_TABLE);
3380 if (def_mount_opts & EXT4_DEFM_DEBUG)
3381 set_opt(sb, DEBUG);
3382 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3383 set_opt(sb, GRPID);
3384 if (def_mount_opts & EXT4_DEFM_UID16)
3385 set_opt(sb, NO_UID32);
3386 /* xattr user namespace & acls are now defaulted on */
3387 set_opt(sb, XATTR_USER);
3388 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3389 set_opt(sb, POSIX_ACL);
3390 #endif
3391 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3392 set_opt(sb, JOURNAL_DATA);
3393 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3394 set_opt(sb, ORDERED_DATA);
3395 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3396 set_opt(sb, WRITEBACK_DATA);
3397
3398 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3399 set_opt(sb, ERRORS_PANIC);
3400 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3401 set_opt(sb, ERRORS_CONT);
3402 else
3403 set_opt(sb, ERRORS_RO);
3404 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3405 set_opt(sb, BLOCK_VALIDITY);
3406 if (def_mount_opts & EXT4_DEFM_DISCARD)
3407 set_opt(sb, DISCARD);
3408
3409 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3410 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3411 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3412 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3413 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3414
3415 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3416 set_opt(sb, BARRIER);
3417
3418 /*
3419 * enable delayed allocation by default
3420 * Use -o nodelalloc to turn it off
3421 */
3422 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3423 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3424 set_opt(sb, DELALLOC);
3425
3426 /*
3427 * set default s_li_wait_mult for lazyinit, for the case there is
3428 * no mount option specified.
3429 */
3430 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3431
3432 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3433 &journal_devnum, &journal_ioprio, 0)) {
3434 ext4_msg(sb, KERN_WARNING,
3435 "failed to parse options in superblock: %s",
3436 sbi->s_es->s_mount_opts);
3437 }
3438 sbi->s_def_mount_opt = sbi->s_mount_opt;
3439 if (!parse_options((char *) data, sb, &journal_devnum,
3440 &journal_ioprio, 0))
3441 goto failed_mount;
3442
3443 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3444 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3445 "with data=journal disables delayed "
3446 "allocation and O_DIRECT support!\n");
3447 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3448 ext4_msg(sb, KERN_ERR, "can't mount with "
3449 "both data=journal and delalloc");
3450 goto failed_mount;
3451 }
3452 if (test_opt(sb, DIOREAD_NOLOCK)) {
3453 ext4_msg(sb, KERN_ERR, "can't mount with "
3454 "both data=journal and dioread_nolock");
3455 goto failed_mount;
3456 }
3457 if (test_opt(sb, DELALLOC))
3458 clear_opt(sb, DELALLOC);
3459 }
3460
3461 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3462 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3463
3464 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3465 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3466 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3467 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3468 ext4_msg(sb, KERN_WARNING,
3469 "feature flags set on rev 0 fs, "
3470 "running e2fsck is recommended");
3471
3472 if (IS_EXT2_SB(sb)) {
3473 if (ext2_feature_set_ok(sb))
3474 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3475 "using the ext4 subsystem");
3476 else {
3477 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3478 "to feature incompatibilities");
3479 goto failed_mount;
3480 }
3481 }
3482
3483 if (IS_EXT3_SB(sb)) {
3484 if (ext3_feature_set_ok(sb))
3485 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3486 "using the ext4 subsystem");
3487 else {
3488 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3489 "to feature incompatibilities");
3490 goto failed_mount;
3491 }
3492 }
3493
3494 /*
3495 * Check feature flags regardless of the revision level, since we
3496 * previously didn't change the revision level when setting the flags,
3497 * so there is a chance incompat flags are set on a rev 0 filesystem.
3498 */
3499 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3500 goto failed_mount;
3501
3502 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3503 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3504 blocksize > EXT4_MAX_BLOCK_SIZE) {
3505 ext4_msg(sb, KERN_ERR,
3506 "Unsupported filesystem blocksize %d", blocksize);
3507 goto failed_mount;
3508 }
3509
3510 if (sb->s_blocksize != blocksize) {
3511 /* Validate the filesystem blocksize */
3512 if (!sb_set_blocksize(sb, blocksize)) {
3513 ext4_msg(sb, KERN_ERR, "bad block size %d",
3514 blocksize);
3515 goto failed_mount;
3516 }
3517
3518 brelse(bh);
3519 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3520 offset = do_div(logical_sb_block, blocksize);
3521 bh = sb_bread(sb, logical_sb_block);
3522 if (!bh) {
3523 ext4_msg(sb, KERN_ERR,
3524 "Can't read superblock on 2nd try");
3525 goto failed_mount;
3526 }
3527 es = (struct ext4_super_block *)(bh->b_data + offset);
3528 sbi->s_es = es;
3529 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3530 ext4_msg(sb, KERN_ERR,
3531 "Magic mismatch, very weird!");
3532 goto failed_mount;
3533 }
3534 }
3535
3536 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3537 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3538 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3539 has_huge_files);
3540 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3541
3542 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3543 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3544 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3545 } else {
3546 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3547 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3548 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3549 (!is_power_of_2(sbi->s_inode_size)) ||
3550 (sbi->s_inode_size > blocksize)) {
3551 ext4_msg(sb, KERN_ERR,
3552 "unsupported inode size: %d",
3553 sbi->s_inode_size);
3554 goto failed_mount;
3555 }
3556 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3557 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3558 }
3559
3560 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3561 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3562 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3563 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3564 !is_power_of_2(sbi->s_desc_size)) {
3565 ext4_msg(sb, KERN_ERR,
3566 "unsupported descriptor size %lu",
3567 sbi->s_desc_size);
3568 goto failed_mount;
3569 }
3570 } else
3571 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3572
3573 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3574 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3575 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3576 goto cantfind_ext4;
3577
3578 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3579 if (sbi->s_inodes_per_block == 0)
3580 goto cantfind_ext4;
3581 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3582 sbi->s_inodes_per_block;
3583 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3584 sbi->s_sbh = bh;
3585 sbi->s_mount_state = le16_to_cpu(es->s_state);
3586 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3587 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3588
3589 for (i = 0; i < 4; i++)
3590 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3591 sbi->s_def_hash_version = es->s_def_hash_version;
3592 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3593 i = le32_to_cpu(es->s_flags);
3594 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3595 sbi->s_hash_unsigned = 3;
3596 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3597 #ifdef __CHAR_UNSIGNED__
3598 if (!(sb->s_flags & MS_RDONLY))
3599 es->s_flags |=
3600 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3601 sbi->s_hash_unsigned = 3;
3602 #else
3603 if (!(sb->s_flags & MS_RDONLY))
3604 es->s_flags |=
3605 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3606 #endif
3607 }
3608 }
3609
3610 /* Handle clustersize */
3611 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3612 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3613 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3614 if (has_bigalloc) {
3615 if (clustersize < blocksize) {
3616 ext4_msg(sb, KERN_ERR,
3617 "cluster size (%d) smaller than "
3618 "block size (%d)", clustersize, blocksize);
3619 goto failed_mount;
3620 }
3621 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3622 le32_to_cpu(es->s_log_block_size);
3623 sbi->s_clusters_per_group =
3624 le32_to_cpu(es->s_clusters_per_group);
3625 if (sbi->s_clusters_per_group > blocksize * 8) {
3626 ext4_msg(sb, KERN_ERR,
3627 "#clusters per group too big: %lu",
3628 sbi->s_clusters_per_group);
3629 goto failed_mount;
3630 }
3631 if (sbi->s_blocks_per_group !=
3632 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3633 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3634 "clusters per group (%lu) inconsistent",
3635 sbi->s_blocks_per_group,
3636 sbi->s_clusters_per_group);
3637 goto failed_mount;
3638 }
3639 } else {
3640 if (clustersize != blocksize) {
3641 ext4_warning(sb, "fragment/cluster size (%d) != "
3642 "block size (%d)", clustersize,
3643 blocksize);
3644 clustersize = blocksize;
3645 }
3646 if (sbi->s_blocks_per_group > blocksize * 8) {
3647 ext4_msg(sb, KERN_ERR,
3648 "#blocks per group too big: %lu",
3649 sbi->s_blocks_per_group);
3650 goto failed_mount;
3651 }
3652 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3653 sbi->s_cluster_bits = 0;
3654 }
3655 sbi->s_cluster_ratio = clustersize / blocksize;
3656
3657 if (sbi->s_inodes_per_group > blocksize * 8) {
3658 ext4_msg(sb, KERN_ERR,
3659 "#inodes per group too big: %lu",
3660 sbi->s_inodes_per_group);
3661 goto failed_mount;
3662 }
3663
3664 /* Do we have standard group size of clustersize * 8 blocks ? */
3665 if (sbi->s_blocks_per_group == clustersize << 3)
3666 set_opt2(sb, STD_GROUP_SIZE);
3667
3668 /*
3669 * Test whether we have more sectors than will fit in sector_t,
3670 * and whether the max offset is addressable by the page cache.
3671 */
3672 err = generic_check_addressable(sb->s_blocksize_bits,
3673 ext4_blocks_count(es));
3674 if (err) {
3675 ext4_msg(sb, KERN_ERR, "filesystem"
3676 " too large to mount safely on this system");
3677 if (sizeof(sector_t) < 8)
3678 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3679 goto failed_mount;
3680 }
3681
3682 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3683 goto cantfind_ext4;
3684
3685 /* check blocks count against device size */
3686 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3687 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3688 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3689 "exceeds size of device (%llu blocks)",
3690 ext4_blocks_count(es), blocks_count);
3691 goto failed_mount;
3692 }
3693
3694 /*
3695 * It makes no sense for the first data block to be beyond the end
3696 * of the filesystem.
3697 */
3698 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3699 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3700 "block %u is beyond end of filesystem (%llu)",
3701 le32_to_cpu(es->s_first_data_block),
3702 ext4_blocks_count(es));
3703 goto failed_mount;
3704 }
3705 blocks_count = (ext4_blocks_count(es) -
3706 le32_to_cpu(es->s_first_data_block) +
3707 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3708 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3709 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3710 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3711 "(block count %llu, first data block %u, "
3712 "blocks per group %lu)", sbi->s_groups_count,
3713 ext4_blocks_count(es),
3714 le32_to_cpu(es->s_first_data_block),
3715 EXT4_BLOCKS_PER_GROUP(sb));
3716 goto failed_mount;
3717 }
3718 sbi->s_groups_count = blocks_count;
3719 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3720 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3721 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3722 EXT4_DESC_PER_BLOCK(sb);
3723 sbi->s_group_desc = ext4_kvmalloc(db_count *
3724 sizeof(struct buffer_head *),
3725 GFP_KERNEL);
3726 if (sbi->s_group_desc == NULL) {
3727 ext4_msg(sb, KERN_ERR, "not enough memory");
3728 ret = -ENOMEM;
3729 goto failed_mount;
3730 }
3731
3732 if (ext4_proc_root)
3733 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3734
3735 if (sbi->s_proc)
3736 proc_create_data("options", S_IRUGO, sbi->s_proc,
3737 &ext4_seq_options_fops, sb);
3738
3739 bgl_lock_init(sbi->s_blockgroup_lock);
3740
3741 for (i = 0; i < db_count; i++) {
3742 block = descriptor_loc(sb, logical_sb_block, i);
3743 sbi->s_group_desc[i] = sb_bread(sb, block);
3744 if (!sbi->s_group_desc[i]) {
3745 ext4_msg(sb, KERN_ERR,
3746 "can't read group descriptor %d", i);
3747 db_count = i;
3748 goto failed_mount2;
3749 }
3750 }
3751 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3752 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3753 goto failed_mount2;
3754 }
3755 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3756 if (!ext4_fill_flex_info(sb)) {
3757 ext4_msg(sb, KERN_ERR,
3758 "unable to initialize "
3759 "flex_bg meta info!");
3760 goto failed_mount2;
3761 }
3762
3763 sbi->s_gdb_count = db_count;
3764 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3765 spin_lock_init(&sbi->s_next_gen_lock);
3766
3767 init_timer(&sbi->s_err_report);
3768 sbi->s_err_report.function = print_daily_error_info;
3769 sbi->s_err_report.data = (unsigned long) sb;
3770
3771 /* Register extent status tree shrinker */
3772 ext4_es_register_shrinker(sb);
3773
3774 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3775 ext4_count_free_clusters(sb));
3776 if (!err) {
3777 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3778 ext4_count_free_inodes(sb));
3779 }
3780 if (!err) {
3781 err = percpu_counter_init(&sbi->s_dirs_counter,
3782 ext4_count_dirs(sb));
3783 }
3784 if (!err) {
3785 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3786 }
3787 if (!err) {
3788 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3789 }
3790 if (err) {
3791 ext4_msg(sb, KERN_ERR, "insufficient memory");
3792 goto failed_mount3;
3793 }
3794
3795 sbi->s_stripe = ext4_get_stripe_size(sbi);
3796 sbi->s_max_writeback_mb_bump = 128;
3797 sbi->s_extent_max_zeroout_kb = 32;
3798
3799 /*
3800 * set up enough so that it can read an inode
3801 */
3802 if (!test_opt(sb, NOLOAD) &&
3803 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3804 sb->s_op = &ext4_sops;
3805 else
3806 sb->s_op = &ext4_nojournal_sops;
3807 sb->s_export_op = &ext4_export_ops;
3808 sb->s_xattr = ext4_xattr_handlers;
3809 #ifdef CONFIG_QUOTA
3810 sb->dq_op = &ext4_quota_operations;
3811 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3812 sb->s_qcop = &ext4_qctl_sysfile_operations;
3813 else
3814 sb->s_qcop = &ext4_qctl_operations;
3815 #endif
3816 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3817
3818 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3819 mutex_init(&sbi->s_orphan_lock);
3820
3821 sb->s_root = NULL;
3822
3823 needs_recovery = (es->s_last_orphan != 0 ||
3824 EXT4_HAS_INCOMPAT_FEATURE(sb,
3825 EXT4_FEATURE_INCOMPAT_RECOVER));
3826
3827 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3828 !(sb->s_flags & MS_RDONLY))
3829 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3830 goto failed_mount3;
3831
3832 /*
3833 * The first inode we look at is the journal inode. Don't try
3834 * root first: it may be modified in the journal!
3835 */
3836 if (!test_opt(sb, NOLOAD) &&
3837 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3838 if (ext4_load_journal(sb, es, journal_devnum))
3839 goto failed_mount3;
3840 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3841 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3842 ext4_msg(sb, KERN_ERR, "required journal recovery "
3843 "suppressed and not mounted read-only");
3844 goto failed_mount_wq;
3845 } else {
3846 clear_opt(sb, DATA_FLAGS);
3847 sbi->s_journal = NULL;
3848 needs_recovery = 0;
3849 goto no_journal;
3850 }
3851
3852 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3853 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3854 JBD2_FEATURE_INCOMPAT_64BIT)) {
3855 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3856 goto failed_mount_wq;
3857 }
3858
3859 if (!set_journal_csum_feature_set(sb)) {
3860 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3861 "feature set");
3862 goto failed_mount_wq;
3863 }
3864
3865 /* We have now updated the journal if required, so we can
3866 * validate the data journaling mode. */
3867 switch (test_opt(sb, DATA_FLAGS)) {
3868 case 0:
3869 /* No mode set, assume a default based on the journal
3870 * capabilities: ORDERED_DATA if the journal can
3871 * cope, else JOURNAL_DATA
3872 */
3873 if (jbd2_journal_check_available_features
3874 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3875 set_opt(sb, ORDERED_DATA);
3876 else
3877 set_opt(sb, JOURNAL_DATA);
3878 break;
3879
3880 case EXT4_MOUNT_ORDERED_DATA:
3881 case EXT4_MOUNT_WRITEBACK_DATA:
3882 if (!jbd2_journal_check_available_features
3883 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3884 ext4_msg(sb, KERN_ERR, "Journal does not support "
3885 "requested data journaling mode");
3886 goto failed_mount_wq;
3887 }
3888 default:
3889 break;
3890 }
3891 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3892
3893 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3894
3895 /*
3896 * The journal may have updated the bg summary counts, so we
3897 * need to update the global counters.
3898 */
3899 percpu_counter_set(&sbi->s_freeclusters_counter,
3900 ext4_count_free_clusters(sb));
3901 percpu_counter_set(&sbi->s_freeinodes_counter,
3902 ext4_count_free_inodes(sb));
3903 percpu_counter_set(&sbi->s_dirs_counter,
3904 ext4_count_dirs(sb));
3905 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3906
3907 no_journal:
3908 /*
3909 * Get the # of file system overhead blocks from the
3910 * superblock if present.
3911 */
3912 if (es->s_overhead_clusters)
3913 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3914 else {
3915 err = ext4_calculate_overhead(sb);
3916 if (err)
3917 goto failed_mount_wq;
3918 }
3919
3920 /*
3921 * The maximum number of concurrent works can be high and
3922 * concurrency isn't really necessary. Limit it to 1.
3923 */
3924 EXT4_SB(sb)->dio_unwritten_wq =
3925 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3926 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3927 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3928 ret = -ENOMEM;
3929 goto failed_mount_wq;
3930 }
3931
3932 /*
3933 * The jbd2_journal_load will have done any necessary log recovery,
3934 * so we can safely mount the rest of the filesystem now.
3935 */
3936
3937 root = ext4_iget(sb, EXT4_ROOT_INO);
3938 if (IS_ERR(root)) {
3939 ext4_msg(sb, KERN_ERR, "get root inode failed");
3940 ret = PTR_ERR(root);
3941 root = NULL;
3942 goto failed_mount4;
3943 }
3944 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3945 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3946 iput(root);
3947 goto failed_mount4;
3948 }
3949 sb->s_root = d_make_root(root);
3950 if (!sb->s_root) {
3951 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3952 ret = -ENOMEM;
3953 goto failed_mount4;
3954 }
3955
3956 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3957 sb->s_flags |= MS_RDONLY;
3958
3959 /* determine the minimum size of new large inodes, if present */
3960 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3961 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3962 EXT4_GOOD_OLD_INODE_SIZE;
3963 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3964 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3965 if (sbi->s_want_extra_isize <
3966 le16_to_cpu(es->s_want_extra_isize))
3967 sbi->s_want_extra_isize =
3968 le16_to_cpu(es->s_want_extra_isize);
3969 if (sbi->s_want_extra_isize <
3970 le16_to_cpu(es->s_min_extra_isize))
3971 sbi->s_want_extra_isize =
3972 le16_to_cpu(es->s_min_extra_isize);
3973 }
3974 }
3975 /* Check if enough inode space is available */
3976 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3977 sbi->s_inode_size) {
3978 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3979 EXT4_GOOD_OLD_INODE_SIZE;
3980 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3981 "available");
3982 }
3983
3984 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
3985 if (err) {
3986 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
3987 "reserved pool", ext4_calculate_resv_clusters(sb));
3988 goto failed_mount4a;
3989 }
3990
3991 err = ext4_setup_system_zone(sb);
3992 if (err) {
3993 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3994 "zone (%d)", err);
3995 goto failed_mount4a;
3996 }
3997
3998 ext4_ext_init(sb);
3999 err = ext4_mb_init(sb);
4000 if (err) {
4001 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4002 err);
4003 goto failed_mount5;
4004 }
4005
4006 err = ext4_register_li_request(sb, first_not_zeroed);
4007 if (err)
4008 goto failed_mount6;
4009
4010 sbi->s_kobj.kset = ext4_kset;
4011 init_completion(&sbi->s_kobj_unregister);
4012 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4013 "%s", sb->s_id);
4014 if (err)
4015 goto failed_mount7;
4016
4017 #ifdef CONFIG_QUOTA
4018 /* Enable quota usage during mount. */
4019 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4020 !(sb->s_flags & MS_RDONLY)) {
4021 err = ext4_enable_quotas(sb);
4022 if (err)
4023 goto failed_mount8;
4024 }
4025 #endif /* CONFIG_QUOTA */
4026
4027 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4028 ext4_orphan_cleanup(sb, es);
4029 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4030 if (needs_recovery) {
4031 ext4_msg(sb, KERN_INFO, "recovery complete");
4032 ext4_mark_recovery_complete(sb, es);
4033 }
4034 if (EXT4_SB(sb)->s_journal) {
4035 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4036 descr = " journalled data mode";
4037 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4038 descr = " ordered data mode";
4039 else
4040 descr = " writeback data mode";
4041 } else
4042 descr = "out journal";
4043
4044 if (test_opt(sb, DISCARD)) {
4045 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4046 if (!blk_queue_discard(q))
4047 ext4_msg(sb, KERN_WARNING,
4048 "mounting with \"discard\" option, but "
4049 "the device does not support discard");
4050 }
4051
4052 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4053 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4054 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4055
4056 if (es->s_error_count)
4057 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4058
4059 kfree(orig_data);
4060 return 0;
4061
4062 cantfind_ext4:
4063 if (!silent)
4064 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4065 goto failed_mount;
4066
4067 #ifdef CONFIG_QUOTA
4068 failed_mount8:
4069 kobject_del(&sbi->s_kobj);
4070 #endif
4071 failed_mount7:
4072 ext4_unregister_li_request(sb);
4073 failed_mount6:
4074 ext4_mb_release(sb);
4075 failed_mount5:
4076 ext4_ext_release(sb);
4077 ext4_release_system_zone(sb);
4078 failed_mount4a:
4079 dput(sb->s_root);
4080 sb->s_root = NULL;
4081 failed_mount4:
4082 ext4_msg(sb, KERN_ERR, "mount failed");
4083 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4084 failed_mount_wq:
4085 if (sbi->s_journal) {
4086 jbd2_journal_destroy(sbi->s_journal);
4087 sbi->s_journal = NULL;
4088 }
4089 failed_mount3:
4090 ext4_es_unregister_shrinker(sb);
4091 del_timer(&sbi->s_err_report);
4092 if (sbi->s_flex_groups)
4093 ext4_kvfree(sbi->s_flex_groups);
4094 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4095 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4096 percpu_counter_destroy(&sbi->s_dirs_counter);
4097 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4098 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4099 if (sbi->s_mmp_tsk)
4100 kthread_stop(sbi->s_mmp_tsk);
4101 failed_mount2:
4102 for (i = 0; i < db_count; i++)
4103 brelse(sbi->s_group_desc[i]);
4104 ext4_kvfree(sbi->s_group_desc);
4105 failed_mount:
4106 if (sbi->s_chksum_driver)
4107 crypto_free_shash(sbi->s_chksum_driver);
4108 if (sbi->s_proc) {
4109 remove_proc_entry("options", sbi->s_proc);
4110 remove_proc_entry(sb->s_id, ext4_proc_root);
4111 }
4112 #ifdef CONFIG_QUOTA
4113 for (i = 0; i < MAXQUOTAS; i++)
4114 kfree(sbi->s_qf_names[i]);
4115 #endif
4116 ext4_blkdev_remove(sbi);
4117 brelse(bh);
4118 out_fail:
4119 sb->s_fs_info = NULL;
4120 kfree(sbi->s_blockgroup_lock);
4121 kfree(sbi);
4122 out_free_orig:
4123 kfree(orig_data);
4124 return err ? err : ret;
4125 }
4126
4127 /*
4128 * Setup any per-fs journal parameters now. We'll do this both on
4129 * initial mount, once the journal has been initialised but before we've
4130 * done any recovery; and again on any subsequent remount.
4131 */
4132 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4133 {
4134 struct ext4_sb_info *sbi = EXT4_SB(sb);
4135
4136 journal->j_commit_interval = sbi->s_commit_interval;
4137 journal->j_min_batch_time = sbi->s_min_batch_time;
4138 journal->j_max_batch_time = sbi->s_max_batch_time;
4139
4140 write_lock(&journal->j_state_lock);
4141 if (test_opt(sb, BARRIER))
4142 journal->j_flags |= JBD2_BARRIER;
4143 else
4144 journal->j_flags &= ~JBD2_BARRIER;
4145 if (test_opt(sb, DATA_ERR_ABORT))
4146 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4147 else
4148 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4149 write_unlock(&journal->j_state_lock);
4150 }
4151
4152 static journal_t *ext4_get_journal(struct super_block *sb,
4153 unsigned int journal_inum)
4154 {
4155 struct inode *journal_inode;
4156 journal_t *journal;
4157
4158 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4159
4160 /* First, test for the existence of a valid inode on disk. Bad
4161 * things happen if we iget() an unused inode, as the subsequent
4162 * iput() will try to delete it. */
4163
4164 journal_inode = ext4_iget(sb, journal_inum);
4165 if (IS_ERR(journal_inode)) {
4166 ext4_msg(sb, KERN_ERR, "no journal found");
4167 return NULL;
4168 }
4169 if (!journal_inode->i_nlink) {
4170 make_bad_inode(journal_inode);
4171 iput(journal_inode);
4172 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4173 return NULL;
4174 }
4175
4176 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4177 journal_inode, journal_inode->i_size);
4178 if (!S_ISREG(journal_inode->i_mode)) {
4179 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4180 iput(journal_inode);
4181 return NULL;
4182 }
4183
4184 journal = jbd2_journal_init_inode(journal_inode);
4185 if (!journal) {
4186 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4187 iput(journal_inode);
4188 return NULL;
4189 }
4190 journal->j_private = sb;
4191 ext4_init_journal_params(sb, journal);
4192 return journal;
4193 }
4194
4195 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4196 dev_t j_dev)
4197 {
4198 struct buffer_head *bh;
4199 journal_t *journal;
4200 ext4_fsblk_t start;
4201 ext4_fsblk_t len;
4202 int hblock, blocksize;
4203 ext4_fsblk_t sb_block;
4204 unsigned long offset;
4205 struct ext4_super_block *es;
4206 struct block_device *bdev;
4207
4208 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4209
4210 bdev = ext4_blkdev_get(j_dev, sb);
4211 if (bdev == NULL)
4212 return NULL;
4213
4214 blocksize = sb->s_blocksize;
4215 hblock = bdev_logical_block_size(bdev);
4216 if (blocksize < hblock) {
4217 ext4_msg(sb, KERN_ERR,
4218 "blocksize too small for journal device");
4219 goto out_bdev;
4220 }
4221
4222 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4223 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4224 set_blocksize(bdev, blocksize);
4225 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4226 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4227 "external journal");
4228 goto out_bdev;
4229 }
4230
4231 es = (struct ext4_super_block *) (bh->b_data + offset);
4232 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4233 !(le32_to_cpu(es->s_feature_incompat) &
4234 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4235 ext4_msg(sb, KERN_ERR, "external journal has "
4236 "bad superblock");
4237 brelse(bh);
4238 goto out_bdev;
4239 }
4240
4241 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4242 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4243 brelse(bh);
4244 goto out_bdev;
4245 }
4246
4247 len = ext4_blocks_count(es);
4248 start = sb_block + 1;
4249 brelse(bh); /* we're done with the superblock */
4250
4251 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4252 start, len, blocksize);
4253 if (!journal) {
4254 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4255 goto out_bdev;
4256 }
4257 journal->j_private = sb;
4258 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4259 wait_on_buffer(journal->j_sb_buffer);
4260 if (!buffer_uptodate(journal->j_sb_buffer)) {
4261 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4262 goto out_journal;
4263 }
4264 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4265 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4266 "user (unsupported) - %d",
4267 be32_to_cpu(journal->j_superblock->s_nr_users));
4268 goto out_journal;
4269 }
4270 EXT4_SB(sb)->journal_bdev = bdev;
4271 ext4_init_journal_params(sb, journal);
4272 return journal;
4273
4274 out_journal:
4275 jbd2_journal_destroy(journal);
4276 out_bdev:
4277 ext4_blkdev_put(bdev);
4278 return NULL;
4279 }
4280
4281 static int ext4_load_journal(struct super_block *sb,
4282 struct ext4_super_block *es,
4283 unsigned long journal_devnum)
4284 {
4285 journal_t *journal;
4286 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4287 dev_t journal_dev;
4288 int err = 0;
4289 int really_read_only;
4290
4291 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4292
4293 if (journal_devnum &&
4294 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4295 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4296 "numbers have changed");
4297 journal_dev = new_decode_dev(journal_devnum);
4298 } else
4299 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4300
4301 really_read_only = bdev_read_only(sb->s_bdev);
4302
4303 /*
4304 * Are we loading a blank journal or performing recovery after a
4305 * crash? For recovery, we need to check in advance whether we
4306 * can get read-write access to the device.
4307 */
4308 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4309 if (sb->s_flags & MS_RDONLY) {
4310 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4311 "required on readonly filesystem");
4312 if (really_read_only) {
4313 ext4_msg(sb, KERN_ERR, "write access "
4314 "unavailable, cannot proceed");
4315 return -EROFS;
4316 }
4317 ext4_msg(sb, KERN_INFO, "write access will "
4318 "be enabled during recovery");
4319 }
4320 }
4321
4322 if (journal_inum && journal_dev) {
4323 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4324 "and inode journals!");
4325 return -EINVAL;
4326 }
4327
4328 if (journal_inum) {
4329 if (!(journal = ext4_get_journal(sb, journal_inum)))
4330 return -EINVAL;
4331 } else {
4332 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4333 return -EINVAL;
4334 }
4335
4336 if (!(journal->j_flags & JBD2_BARRIER))
4337 ext4_msg(sb, KERN_INFO, "barriers disabled");
4338
4339 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4340 err = jbd2_journal_wipe(journal, !really_read_only);
4341 if (!err) {
4342 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4343 if (save)
4344 memcpy(save, ((char *) es) +
4345 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4346 err = jbd2_journal_load(journal);
4347 if (save)
4348 memcpy(((char *) es) + EXT4_S_ERR_START,
4349 save, EXT4_S_ERR_LEN);
4350 kfree(save);
4351 }
4352
4353 if (err) {
4354 ext4_msg(sb, KERN_ERR, "error loading journal");
4355 jbd2_journal_destroy(journal);
4356 return err;
4357 }
4358
4359 EXT4_SB(sb)->s_journal = journal;
4360 ext4_clear_journal_err(sb, es);
4361
4362 if (!really_read_only && journal_devnum &&
4363 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4364 es->s_journal_dev = cpu_to_le32(journal_devnum);
4365
4366 /* Make sure we flush the recovery flag to disk. */
4367 ext4_commit_super(sb, 1);
4368 }
4369
4370 return 0;
4371 }
4372
4373 static int ext4_commit_super(struct super_block *sb, int sync)
4374 {
4375 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4376 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4377 int error = 0;
4378
4379 if (!sbh || block_device_ejected(sb))
4380 return error;
4381 if (buffer_write_io_error(sbh)) {
4382 /*
4383 * Oh, dear. A previous attempt to write the
4384 * superblock failed. This could happen because the
4385 * USB device was yanked out. Or it could happen to
4386 * be a transient write error and maybe the block will
4387 * be remapped. Nothing we can do but to retry the
4388 * write and hope for the best.
4389 */
4390 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4391 "superblock detected");
4392 clear_buffer_write_io_error(sbh);
4393 set_buffer_uptodate(sbh);
4394 }
4395 /*
4396 * If the file system is mounted read-only, don't update the
4397 * superblock write time. This avoids updating the superblock
4398 * write time when we are mounting the root file system
4399 * read/only but we need to replay the journal; at that point,
4400 * for people who are east of GMT and who make their clock
4401 * tick in localtime for Windows bug-for-bug compatibility,
4402 * the clock is set in the future, and this will cause e2fsck
4403 * to complain and force a full file system check.
4404 */
4405 if (!(sb->s_flags & MS_RDONLY))
4406 es->s_wtime = cpu_to_le32(get_seconds());
4407 if (sb->s_bdev->bd_part)
4408 es->s_kbytes_written =
4409 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4410 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4411 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4412 else
4413 es->s_kbytes_written =
4414 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4415 ext4_free_blocks_count_set(es,
4416 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4417 &EXT4_SB(sb)->s_freeclusters_counter)));
4418 es->s_free_inodes_count =
4419 cpu_to_le32(percpu_counter_sum_positive(
4420 &EXT4_SB(sb)->s_freeinodes_counter));
4421 BUFFER_TRACE(sbh, "marking dirty");
4422 ext4_superblock_csum_set(sb);
4423 mark_buffer_dirty(sbh);
4424 if (sync) {
4425 error = sync_dirty_buffer(sbh);
4426 if (error)
4427 return error;
4428
4429 error = buffer_write_io_error(sbh);
4430 if (error) {
4431 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4432 "superblock");
4433 clear_buffer_write_io_error(sbh);
4434 set_buffer_uptodate(sbh);
4435 }
4436 }
4437 return error;
4438 }
4439
4440 /*
4441 * Have we just finished recovery? If so, and if we are mounting (or
4442 * remounting) the filesystem readonly, then we will end up with a
4443 * consistent fs on disk. Record that fact.
4444 */
4445 static void ext4_mark_recovery_complete(struct super_block *sb,
4446 struct ext4_super_block *es)
4447 {
4448 journal_t *journal = EXT4_SB(sb)->s_journal;
4449
4450 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4451 BUG_ON(journal != NULL);
4452 return;
4453 }
4454 jbd2_journal_lock_updates(journal);
4455 if (jbd2_journal_flush(journal) < 0)
4456 goto out;
4457
4458 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4459 sb->s_flags & MS_RDONLY) {
4460 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4461 ext4_commit_super(sb, 1);
4462 }
4463
4464 out:
4465 jbd2_journal_unlock_updates(journal);
4466 }
4467
4468 /*
4469 * If we are mounting (or read-write remounting) a filesystem whose journal
4470 * has recorded an error from a previous lifetime, move that error to the
4471 * main filesystem now.
4472 */
4473 static void ext4_clear_journal_err(struct super_block *sb,
4474 struct ext4_super_block *es)
4475 {
4476 journal_t *journal;
4477 int j_errno;
4478 const char *errstr;
4479
4480 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4481
4482 journal = EXT4_SB(sb)->s_journal;
4483
4484 /*
4485 * Now check for any error status which may have been recorded in the
4486 * journal by a prior ext4_error() or ext4_abort()
4487 */
4488
4489 j_errno = jbd2_journal_errno(journal);
4490 if (j_errno) {
4491 char nbuf[16];
4492
4493 errstr = ext4_decode_error(sb, j_errno, nbuf);
4494 ext4_warning(sb, "Filesystem error recorded "
4495 "from previous mount: %s", errstr);
4496 ext4_warning(sb, "Marking fs in need of filesystem check.");
4497
4498 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4499 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4500 ext4_commit_super(sb, 1);
4501
4502 jbd2_journal_clear_err(journal);
4503 jbd2_journal_update_sb_errno(journal);
4504 }
4505 }
4506
4507 /*
4508 * Force the running and committing transactions to commit,
4509 * and wait on the commit.
4510 */
4511 int ext4_force_commit(struct super_block *sb)
4512 {
4513 journal_t *journal;
4514
4515 if (sb->s_flags & MS_RDONLY)
4516 return 0;
4517
4518 journal = EXT4_SB(sb)->s_journal;
4519 return ext4_journal_force_commit(journal);
4520 }
4521
4522 static int ext4_sync_fs(struct super_block *sb, int wait)
4523 {
4524 int ret = 0;
4525 tid_t target;
4526 struct ext4_sb_info *sbi = EXT4_SB(sb);
4527
4528 trace_ext4_sync_fs(sb, wait);
4529 flush_workqueue(sbi->dio_unwritten_wq);
4530 /*
4531 * Writeback quota in non-journalled quota case - journalled quota has
4532 * no dirty dquots
4533 */
4534 dquot_writeback_dquots(sb, -1);
4535 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4536 if (wait)
4537 jbd2_log_wait_commit(sbi->s_journal, target);
4538 }
4539 return ret;
4540 }
4541
4542 /*
4543 * LVM calls this function before a (read-only) snapshot is created. This
4544 * gives us a chance to flush the journal completely and mark the fs clean.
4545 *
4546 * Note that only this function cannot bring a filesystem to be in a clean
4547 * state independently. It relies on upper layer to stop all data & metadata
4548 * modifications.
4549 */
4550 static int ext4_freeze(struct super_block *sb)
4551 {
4552 int error = 0;
4553 journal_t *journal;
4554
4555 if (sb->s_flags & MS_RDONLY)
4556 return 0;
4557
4558 journal = EXT4_SB(sb)->s_journal;
4559
4560 /* Now we set up the journal barrier. */
4561 jbd2_journal_lock_updates(journal);
4562
4563 /*
4564 * Don't clear the needs_recovery flag if we failed to flush
4565 * the journal.
4566 */
4567 error = jbd2_journal_flush(journal);
4568 if (error < 0)
4569 goto out;
4570
4571 /* Journal blocked and flushed, clear needs_recovery flag. */
4572 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4573 error = ext4_commit_super(sb, 1);
4574 out:
4575 /* we rely on upper layer to stop further updates */
4576 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4577 return error;
4578 }
4579
4580 /*
4581 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4582 * flag here, even though the filesystem is not technically dirty yet.
4583 */
4584 static int ext4_unfreeze(struct super_block *sb)
4585 {
4586 if (sb->s_flags & MS_RDONLY)
4587 return 0;
4588
4589 /* Reset the needs_recovery flag before the fs is unlocked. */
4590 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4591 ext4_commit_super(sb, 1);
4592 return 0;
4593 }
4594
4595 /*
4596 * Structure to save mount options for ext4_remount's benefit
4597 */
4598 struct ext4_mount_options {
4599 unsigned long s_mount_opt;
4600 unsigned long s_mount_opt2;
4601 kuid_t s_resuid;
4602 kgid_t s_resgid;
4603 unsigned long s_commit_interval;
4604 u32 s_min_batch_time, s_max_batch_time;
4605 #ifdef CONFIG_QUOTA
4606 int s_jquota_fmt;
4607 char *s_qf_names[MAXQUOTAS];
4608 #endif
4609 };
4610
4611 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4612 {
4613 struct ext4_super_block *es;
4614 struct ext4_sb_info *sbi = EXT4_SB(sb);
4615 unsigned long old_sb_flags;
4616 struct ext4_mount_options old_opts;
4617 int enable_quota = 0;
4618 ext4_group_t g;
4619 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4620 int err = 0;
4621 #ifdef CONFIG_QUOTA
4622 int i, j;
4623 #endif
4624 char *orig_data = kstrdup(data, GFP_KERNEL);
4625
4626 /* Store the original options */
4627 old_sb_flags = sb->s_flags;
4628 old_opts.s_mount_opt = sbi->s_mount_opt;
4629 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4630 old_opts.s_resuid = sbi->s_resuid;
4631 old_opts.s_resgid = sbi->s_resgid;
4632 old_opts.s_commit_interval = sbi->s_commit_interval;
4633 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4634 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4635 #ifdef CONFIG_QUOTA
4636 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4637 for (i = 0; i < MAXQUOTAS; i++)
4638 if (sbi->s_qf_names[i]) {
4639 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4640 GFP_KERNEL);
4641 if (!old_opts.s_qf_names[i]) {
4642 for (j = 0; j < i; j++)
4643 kfree(old_opts.s_qf_names[j]);
4644 kfree(orig_data);
4645 return -ENOMEM;
4646 }
4647 } else
4648 old_opts.s_qf_names[i] = NULL;
4649 #endif
4650 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4651 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4652
4653 /*
4654 * Allow the "check" option to be passed as a remount option.
4655 */
4656 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4657 err = -EINVAL;
4658 goto restore_opts;
4659 }
4660
4661 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4662 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4663 ext4_msg(sb, KERN_ERR, "can't mount with "
4664 "both data=journal and delalloc");
4665 err = -EINVAL;
4666 goto restore_opts;
4667 }
4668 if (test_opt(sb, DIOREAD_NOLOCK)) {
4669 ext4_msg(sb, KERN_ERR, "can't mount with "
4670 "both data=journal and dioread_nolock");
4671 err = -EINVAL;
4672 goto restore_opts;
4673 }
4674 }
4675
4676 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4677 ext4_abort(sb, "Abort forced by user");
4678
4679 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4680 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4681
4682 es = sbi->s_es;
4683
4684 if (sbi->s_journal) {
4685 ext4_init_journal_params(sb, sbi->s_journal);
4686 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4687 }
4688
4689 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4690 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4691 err = -EROFS;
4692 goto restore_opts;
4693 }
4694
4695 if (*flags & MS_RDONLY) {
4696 err = dquot_suspend(sb, -1);
4697 if (err < 0)
4698 goto restore_opts;
4699
4700 /*
4701 * First of all, the unconditional stuff we have to do
4702 * to disable replay of the journal when we next remount
4703 */
4704 sb->s_flags |= MS_RDONLY;
4705
4706 /*
4707 * OK, test if we are remounting a valid rw partition
4708 * readonly, and if so set the rdonly flag and then
4709 * mark the partition as valid again.
4710 */
4711 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4712 (sbi->s_mount_state & EXT4_VALID_FS))
4713 es->s_state = cpu_to_le16(sbi->s_mount_state);
4714
4715 if (sbi->s_journal)
4716 ext4_mark_recovery_complete(sb, es);
4717 } else {
4718 /* Make sure we can mount this feature set readwrite */
4719 if (!ext4_feature_set_ok(sb, 0)) {
4720 err = -EROFS;
4721 goto restore_opts;
4722 }
4723 /*
4724 * Make sure the group descriptor checksums
4725 * are sane. If they aren't, refuse to remount r/w.
4726 */
4727 for (g = 0; g < sbi->s_groups_count; g++) {
4728 struct ext4_group_desc *gdp =
4729 ext4_get_group_desc(sb, g, NULL);
4730
4731 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4732 ext4_msg(sb, KERN_ERR,
4733 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4734 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4735 le16_to_cpu(gdp->bg_checksum));
4736 err = -EINVAL;
4737 goto restore_opts;
4738 }
4739 }
4740
4741 /*
4742 * If we have an unprocessed orphan list hanging
4743 * around from a previously readonly bdev mount,
4744 * require a full umount/remount for now.
4745 */
4746 if (es->s_last_orphan) {
4747 ext4_msg(sb, KERN_WARNING, "Couldn't "
4748 "remount RDWR because of unprocessed "
4749 "orphan inode list. Please "
4750 "umount/remount instead");
4751 err = -EINVAL;
4752 goto restore_opts;
4753 }
4754
4755 /*
4756 * Mounting a RDONLY partition read-write, so reread
4757 * and store the current valid flag. (It may have
4758 * been changed by e2fsck since we originally mounted
4759 * the partition.)
4760 */
4761 if (sbi->s_journal)
4762 ext4_clear_journal_err(sb, es);
4763 sbi->s_mount_state = le16_to_cpu(es->s_state);
4764 if (!ext4_setup_super(sb, es, 0))
4765 sb->s_flags &= ~MS_RDONLY;
4766 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4767 EXT4_FEATURE_INCOMPAT_MMP))
4768 if (ext4_multi_mount_protect(sb,
4769 le64_to_cpu(es->s_mmp_block))) {
4770 err = -EROFS;
4771 goto restore_opts;
4772 }
4773 enable_quota = 1;
4774 }
4775 }
4776
4777 /*
4778 * Reinitialize lazy itable initialization thread based on
4779 * current settings
4780 */
4781 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4782 ext4_unregister_li_request(sb);
4783 else {
4784 ext4_group_t first_not_zeroed;
4785 first_not_zeroed = ext4_has_uninit_itable(sb);
4786 ext4_register_li_request(sb, first_not_zeroed);
4787 }
4788
4789 ext4_setup_system_zone(sb);
4790 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4791 ext4_commit_super(sb, 1);
4792
4793 #ifdef CONFIG_QUOTA
4794 /* Release old quota file names */
4795 for (i = 0; i < MAXQUOTAS; i++)
4796 kfree(old_opts.s_qf_names[i]);
4797 if (enable_quota) {
4798 if (sb_any_quota_suspended(sb))
4799 dquot_resume(sb, -1);
4800 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4801 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4802 err = ext4_enable_quotas(sb);
4803 if (err)
4804 goto restore_opts;
4805 }
4806 }
4807 #endif
4808
4809 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4810 kfree(orig_data);
4811 return 0;
4812
4813 restore_opts:
4814 sb->s_flags = old_sb_flags;
4815 sbi->s_mount_opt = old_opts.s_mount_opt;
4816 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4817 sbi->s_resuid = old_opts.s_resuid;
4818 sbi->s_resgid = old_opts.s_resgid;
4819 sbi->s_commit_interval = old_opts.s_commit_interval;
4820 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4821 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4822 #ifdef CONFIG_QUOTA
4823 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4824 for (i = 0; i < MAXQUOTAS; i++) {
4825 kfree(sbi->s_qf_names[i]);
4826 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4827 }
4828 #endif
4829 kfree(orig_data);
4830 return err;
4831 }
4832
4833 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4834 {
4835 struct super_block *sb = dentry->d_sb;
4836 struct ext4_sb_info *sbi = EXT4_SB(sb);
4837 struct ext4_super_block *es = sbi->s_es;
4838 ext4_fsblk_t overhead = 0, resv_blocks;
4839 u64 fsid;
4840 s64 bfree;
4841 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4842
4843 if (!test_opt(sb, MINIX_DF))
4844 overhead = sbi->s_overhead;
4845
4846 buf->f_type = EXT4_SUPER_MAGIC;
4847 buf->f_bsize = sb->s_blocksize;
4848 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4849 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4850 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4851 /* prevent underflow in case that few free space is available */
4852 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4853 buf->f_bavail = buf->f_bfree -
4854 (ext4_r_blocks_count(es) + resv_blocks);
4855 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4856 buf->f_bavail = 0;
4857 buf->f_files = le32_to_cpu(es->s_inodes_count);
4858 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4859 buf->f_namelen = EXT4_NAME_LEN;
4860 fsid = le64_to_cpup((void *)es->s_uuid) ^
4861 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4862 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4863 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4864
4865 return 0;
4866 }
4867
4868 /* Helper function for writing quotas on sync - we need to start transaction
4869 * before quota file is locked for write. Otherwise the are possible deadlocks:
4870 * Process 1 Process 2
4871 * ext4_create() quota_sync()
4872 * jbd2_journal_start() write_dquot()
4873 * dquot_initialize() down(dqio_mutex)
4874 * down(dqio_mutex) jbd2_journal_start()
4875 *
4876 */
4877
4878 #ifdef CONFIG_QUOTA
4879
4880 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4881 {
4882 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4883 }
4884
4885 static int ext4_write_dquot(struct dquot *dquot)
4886 {
4887 int ret, err;
4888 handle_t *handle;
4889 struct inode *inode;
4890
4891 inode = dquot_to_inode(dquot);
4892 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4893 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4894 if (IS_ERR(handle))
4895 return PTR_ERR(handle);
4896 ret = dquot_commit(dquot);
4897 err = ext4_journal_stop(handle);
4898 if (!ret)
4899 ret = err;
4900 return ret;
4901 }
4902
4903 static int ext4_acquire_dquot(struct dquot *dquot)
4904 {
4905 int ret, err;
4906 handle_t *handle;
4907
4908 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4909 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4910 if (IS_ERR(handle))
4911 return PTR_ERR(handle);
4912 ret = dquot_acquire(dquot);
4913 err = ext4_journal_stop(handle);
4914 if (!ret)
4915 ret = err;
4916 return ret;
4917 }
4918
4919 static int ext4_release_dquot(struct dquot *dquot)
4920 {
4921 int ret, err;
4922 handle_t *handle;
4923
4924 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4925 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4926 if (IS_ERR(handle)) {
4927 /* Release dquot anyway to avoid endless cycle in dqput() */
4928 dquot_release(dquot);
4929 return PTR_ERR(handle);
4930 }
4931 ret = dquot_release(dquot);
4932 err = ext4_journal_stop(handle);
4933 if (!ret)
4934 ret = err;
4935 return ret;
4936 }
4937
4938 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4939 {
4940 struct super_block *sb = dquot->dq_sb;
4941 struct ext4_sb_info *sbi = EXT4_SB(sb);
4942
4943 /* Are we journaling quotas? */
4944 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4945 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4946 dquot_mark_dquot_dirty(dquot);
4947 return ext4_write_dquot(dquot);
4948 } else {
4949 return dquot_mark_dquot_dirty(dquot);
4950 }
4951 }
4952
4953 static int ext4_write_info(struct super_block *sb, int type)
4954 {
4955 int ret, err;
4956 handle_t *handle;
4957
4958 /* Data block + inode block */
4959 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4960 if (IS_ERR(handle))
4961 return PTR_ERR(handle);
4962 ret = dquot_commit_info(sb, type);
4963 err = ext4_journal_stop(handle);
4964 if (!ret)
4965 ret = err;
4966 return ret;
4967 }
4968
4969 /*
4970 * Turn on quotas during mount time - we need to find
4971 * the quota file and such...
4972 */
4973 static int ext4_quota_on_mount(struct super_block *sb, int type)
4974 {
4975 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4976 EXT4_SB(sb)->s_jquota_fmt, type);
4977 }
4978
4979 /*
4980 * Standard function to be called on quota_on
4981 */
4982 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4983 struct path *path)
4984 {
4985 int err;
4986
4987 if (!test_opt(sb, QUOTA))
4988 return -EINVAL;
4989
4990 /* Quotafile not on the same filesystem? */
4991 if (path->dentry->d_sb != sb)
4992 return -EXDEV;
4993 /* Journaling quota? */
4994 if (EXT4_SB(sb)->s_qf_names[type]) {
4995 /* Quotafile not in fs root? */
4996 if (path->dentry->d_parent != sb->s_root)
4997 ext4_msg(sb, KERN_WARNING,
4998 "Quota file not on filesystem root. "
4999 "Journaled quota will not work");
5000 }
5001
5002 /*
5003 * When we journal data on quota file, we have to flush journal to see
5004 * all updates to the file when we bypass pagecache...
5005 */
5006 if (EXT4_SB(sb)->s_journal &&
5007 ext4_should_journal_data(path->dentry->d_inode)) {
5008 /*
5009 * We don't need to lock updates but journal_flush() could
5010 * otherwise be livelocked...
5011 */
5012 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5013 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5014 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5015 if (err)
5016 return err;
5017 }
5018
5019 return dquot_quota_on(sb, type, format_id, path);
5020 }
5021
5022 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5023 unsigned int flags)
5024 {
5025 int err;
5026 struct inode *qf_inode;
5027 unsigned long qf_inums[MAXQUOTAS] = {
5028 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5029 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5030 };
5031
5032 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5033
5034 if (!qf_inums[type])
5035 return -EPERM;
5036
5037 qf_inode = ext4_iget(sb, qf_inums[type]);
5038 if (IS_ERR(qf_inode)) {
5039 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5040 return PTR_ERR(qf_inode);
5041 }
5042
5043 /* Don't account quota for quota files to avoid recursion */
5044 qf_inode->i_flags |= S_NOQUOTA;
5045 err = dquot_enable(qf_inode, type, format_id, flags);
5046 iput(qf_inode);
5047
5048 return err;
5049 }
5050
5051 /* Enable usage tracking for all quota types. */
5052 static int ext4_enable_quotas(struct super_block *sb)
5053 {
5054 int type, err = 0;
5055 unsigned long qf_inums[MAXQUOTAS] = {
5056 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5057 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5058 };
5059
5060 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5061 for (type = 0; type < MAXQUOTAS; type++) {
5062 if (qf_inums[type]) {
5063 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5064 DQUOT_USAGE_ENABLED);
5065 if (err) {
5066 ext4_warning(sb,
5067 "Failed to enable quota tracking "
5068 "(type=%d, err=%d). Please run "
5069 "e2fsck to fix.", type, err);
5070 return err;
5071 }
5072 }
5073 }
5074 return 0;
5075 }
5076
5077 /*
5078 * quota_on function that is used when QUOTA feature is set.
5079 */
5080 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5081 int format_id)
5082 {
5083 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5084 return -EINVAL;
5085
5086 /*
5087 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5088 */
5089 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5090 }
5091
5092 static int ext4_quota_off(struct super_block *sb, int type)
5093 {
5094 struct inode *inode = sb_dqopt(sb)->files[type];
5095 handle_t *handle;
5096
5097 /* Force all delayed allocation blocks to be allocated.
5098 * Caller already holds s_umount sem */
5099 if (test_opt(sb, DELALLOC))
5100 sync_filesystem(sb);
5101
5102 if (!inode)
5103 goto out;
5104
5105 /* Update modification times of quota files when userspace can
5106 * start looking at them */
5107 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5108 if (IS_ERR(handle))
5109 goto out;
5110 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5111 ext4_mark_inode_dirty(handle, inode);
5112 ext4_journal_stop(handle);
5113
5114 out:
5115 return dquot_quota_off(sb, type);
5116 }
5117
5118 /*
5119 * quota_off function that is used when QUOTA feature is set.
5120 */
5121 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5122 {
5123 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5124 return -EINVAL;
5125
5126 /* Disable only the limits. */
5127 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5128 }
5129
5130 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5131 * acquiring the locks... As quota files are never truncated and quota code
5132 * itself serializes the operations (and no one else should touch the files)
5133 * we don't have to be afraid of races */
5134 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5135 size_t len, loff_t off)
5136 {
5137 struct inode *inode = sb_dqopt(sb)->files[type];
5138 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5139 int err = 0;
5140 int offset = off & (sb->s_blocksize - 1);
5141 int tocopy;
5142 size_t toread;
5143 struct buffer_head *bh;
5144 loff_t i_size = i_size_read(inode);
5145
5146 if (off > i_size)
5147 return 0;
5148 if (off+len > i_size)
5149 len = i_size-off;
5150 toread = len;
5151 while (toread > 0) {
5152 tocopy = sb->s_blocksize - offset < toread ?
5153 sb->s_blocksize - offset : toread;
5154 bh = ext4_bread(NULL, inode, blk, 0, &err);
5155 if (err)
5156 return err;
5157 if (!bh) /* A hole? */
5158 memset(data, 0, tocopy);
5159 else
5160 memcpy(data, bh->b_data+offset, tocopy);
5161 brelse(bh);
5162 offset = 0;
5163 toread -= tocopy;
5164 data += tocopy;
5165 blk++;
5166 }
5167 return len;
5168 }
5169
5170 /* Write to quotafile (we know the transaction is already started and has
5171 * enough credits) */
5172 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5173 const char *data, size_t len, loff_t off)
5174 {
5175 struct inode *inode = sb_dqopt(sb)->files[type];
5176 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5177 int err = 0;
5178 int offset = off & (sb->s_blocksize - 1);
5179 struct buffer_head *bh;
5180 handle_t *handle = journal_current_handle();
5181
5182 if (EXT4_SB(sb)->s_journal && !handle) {
5183 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5184 " cancelled because transaction is not started",
5185 (unsigned long long)off, (unsigned long long)len);
5186 return -EIO;
5187 }
5188 /*
5189 * Since we account only one data block in transaction credits,
5190 * then it is impossible to cross a block boundary.
5191 */
5192 if (sb->s_blocksize - offset < len) {
5193 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5194 " cancelled because not block aligned",
5195 (unsigned long long)off, (unsigned long long)len);
5196 return -EIO;
5197 }
5198
5199 bh = ext4_bread(handle, inode, blk, 1, &err);
5200 if (!bh)
5201 goto out;
5202 err = ext4_journal_get_write_access(handle, bh);
5203 if (err) {
5204 brelse(bh);
5205 goto out;
5206 }
5207 lock_buffer(bh);
5208 memcpy(bh->b_data+offset, data, len);
5209 flush_dcache_page(bh->b_page);
5210 unlock_buffer(bh);
5211 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5212 brelse(bh);
5213 out:
5214 if (err)
5215 return err;
5216 if (inode->i_size < off + len) {
5217 i_size_write(inode, off + len);
5218 EXT4_I(inode)->i_disksize = inode->i_size;
5219 ext4_mark_inode_dirty(handle, inode);
5220 }
5221 return len;
5222 }
5223
5224 #endif
5225
5226 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5227 const char *dev_name, void *data)
5228 {
5229 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5230 }
5231
5232 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5233 static inline void register_as_ext2(void)
5234 {
5235 int err = register_filesystem(&ext2_fs_type);
5236 if (err)
5237 printk(KERN_WARNING
5238 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5239 }
5240
5241 static inline void unregister_as_ext2(void)
5242 {
5243 unregister_filesystem(&ext2_fs_type);
5244 }
5245
5246 static inline int ext2_feature_set_ok(struct super_block *sb)
5247 {
5248 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5249 return 0;
5250 if (sb->s_flags & MS_RDONLY)
5251 return 1;
5252 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5253 return 0;
5254 return 1;
5255 }
5256 #else
5257 static inline void register_as_ext2(void) { }
5258 static inline void unregister_as_ext2(void) { }
5259 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5260 #endif
5261
5262 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5263 static inline void register_as_ext3(void)
5264 {
5265 int err = register_filesystem(&ext3_fs_type);
5266 if (err)
5267 printk(KERN_WARNING
5268 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5269 }
5270
5271 static inline void unregister_as_ext3(void)
5272 {
5273 unregister_filesystem(&ext3_fs_type);
5274 }
5275
5276 static inline int ext3_feature_set_ok(struct super_block *sb)
5277 {
5278 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5279 return 0;
5280 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5281 return 0;
5282 if (sb->s_flags & MS_RDONLY)
5283 return 1;
5284 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5285 return 0;
5286 return 1;
5287 }
5288 #else
5289 static inline void register_as_ext3(void) { }
5290 static inline void unregister_as_ext3(void) { }
5291 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5292 #endif
5293
5294 static struct file_system_type ext4_fs_type = {
5295 .owner = THIS_MODULE,
5296 .name = "ext4",
5297 .mount = ext4_mount,
5298 .kill_sb = kill_block_super,
5299 .fs_flags = FS_REQUIRES_DEV,
5300 };
5301 MODULE_ALIAS_FS("ext4");
5302
5303 static int __init ext4_init_feat_adverts(void)
5304 {
5305 struct ext4_features *ef;
5306 int ret = -ENOMEM;
5307
5308 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5309 if (!ef)
5310 goto out;
5311
5312 ef->f_kobj.kset = ext4_kset;
5313 init_completion(&ef->f_kobj_unregister);
5314 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5315 "features");
5316 if (ret) {
5317 kfree(ef);
5318 goto out;
5319 }
5320
5321 ext4_feat = ef;
5322 ret = 0;
5323 out:
5324 return ret;
5325 }
5326
5327 static void ext4_exit_feat_adverts(void)
5328 {
5329 kobject_put(&ext4_feat->f_kobj);
5330 wait_for_completion(&ext4_feat->f_kobj_unregister);
5331 kfree(ext4_feat);
5332 }
5333
5334 /* Shared across all ext4 file systems */
5335 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5336 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5337
5338 static int __init ext4_init_fs(void)
5339 {
5340 int i, err;
5341
5342 ext4_li_info = NULL;
5343 mutex_init(&ext4_li_mtx);
5344
5345 /* Build-time check for flags consistency */
5346 ext4_check_flag_values();
5347
5348 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5349 mutex_init(&ext4__aio_mutex[i]);
5350 init_waitqueue_head(&ext4__ioend_wq[i]);
5351 }
5352
5353 err = ext4_init_es();
5354 if (err)
5355 return err;
5356
5357 err = ext4_init_pageio();
5358 if (err)
5359 goto out7;
5360
5361 err = ext4_init_system_zone();
5362 if (err)
5363 goto out6;
5364 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5365 if (!ext4_kset) {
5366 err = -ENOMEM;
5367 goto out5;
5368 }
5369 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5370
5371 err = ext4_init_feat_adverts();
5372 if (err)
5373 goto out4;
5374
5375 err = ext4_init_mballoc();
5376 if (err)
5377 goto out3;
5378
5379 err = ext4_init_xattr();
5380 if (err)
5381 goto out2;
5382 err = init_inodecache();
5383 if (err)
5384 goto out1;
5385 register_as_ext3();
5386 register_as_ext2();
5387 err = register_filesystem(&ext4_fs_type);
5388 if (err)
5389 goto out;
5390
5391 return 0;
5392 out:
5393 unregister_as_ext2();
5394 unregister_as_ext3();
5395 destroy_inodecache();
5396 out1:
5397 ext4_exit_xattr();
5398 out2:
5399 ext4_exit_mballoc();
5400 out3:
5401 ext4_exit_feat_adverts();
5402 out4:
5403 if (ext4_proc_root)
5404 remove_proc_entry("fs/ext4", NULL);
5405 kset_unregister(ext4_kset);
5406 out5:
5407 ext4_exit_system_zone();
5408 out6:
5409 ext4_exit_pageio();
5410 out7:
5411 ext4_exit_es();
5412
5413 return err;
5414 }
5415
5416 static void __exit ext4_exit_fs(void)
5417 {
5418 ext4_destroy_lazyinit_thread();
5419 unregister_as_ext2();
5420 unregister_as_ext3();
5421 unregister_filesystem(&ext4_fs_type);
5422 destroy_inodecache();
5423 ext4_exit_xattr();
5424 ext4_exit_mballoc();
5425 ext4_exit_feat_adverts();
5426 remove_proc_entry("fs/ext4", NULL);
5427 kset_unregister(ext4_kset);
5428 ext4_exit_system_zone();
5429 ext4_exit_pageio();
5430 ext4_exit_es();
5431 }
5432
5433 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5434 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5435 MODULE_LICENSE("GPL");
5436 module_init(ext4_init_fs)
5437 module_exit(ext4_exit_fs)