Merge tag 'v3.10.85' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
119 {
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
123
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
129 {
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
133
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136 return cpu_to_le32(csum);
137 }
138
139 int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
143 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
154 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
155 return;
156
157 es->s_checksum = ext4_superblock_csum(sb, es);
158 }
159
160 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 {
162 void *ret;
163
164 ret = kmalloc(size, flags);
165 if (!ret)
166 ret = __vmalloc(size, flags, PAGE_KERNEL);
167 return ret;
168 }
169
170 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 {
172 void *ret;
173
174 ret = kzalloc(size, flags);
175 if (!ret)
176 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177 return ret;
178 }
179
180 void ext4_kvfree(void *ptr)
181 {
182 if (is_vmalloc_addr(ptr))
183 vfree(ptr);
184 else
185 kfree(ptr);
186
187 }
188
189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
190 struct ext4_group_desc *bg)
191 {
192 return le32_to_cpu(bg->bg_block_bitmap_lo) |
193 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
194 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
195 }
196
197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
198 struct ext4_group_desc *bg)
199 {
200 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
201 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
202 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
203 }
204
205 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
206 struct ext4_group_desc *bg)
207 {
208 return le32_to_cpu(bg->bg_inode_table_lo) |
209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
211 }
212
213 __u32 ext4_free_group_clusters(struct super_block *sb,
214 struct ext4_group_desc *bg)
215 {
216 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
219 }
220
221 __u32 ext4_free_inodes_count(struct super_block *sb,
222 struct ext4_group_desc *bg)
223 {
224 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
227 }
228
229 __u32 ext4_used_dirs_count(struct super_block *sb,
230 struct ext4_group_desc *bg)
231 {
232 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
235 }
236
237 __u32 ext4_itable_unused_count(struct super_block *sb,
238 struct ext4_group_desc *bg)
239 {
240 return le16_to_cpu(bg->bg_itable_unused_lo) |
241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
243 }
244
245 void ext4_block_bitmap_set(struct super_block *sb,
246 struct ext4_group_desc *bg, ext4_fsblk_t blk)
247 {
248 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
249 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
250 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
251 }
252
253 void ext4_inode_bitmap_set(struct super_block *sb,
254 struct ext4_group_desc *bg, ext4_fsblk_t blk)
255 {
256 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
257 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
258 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
259 }
260
261 void ext4_inode_table_set(struct super_block *sb,
262 struct ext4_group_desc *bg, ext4_fsblk_t blk)
263 {
264 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
267 }
268
269 void ext4_free_group_clusters_set(struct super_block *sb,
270 struct ext4_group_desc *bg, __u32 count)
271 {
272 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
275 }
276
277 void ext4_free_inodes_set(struct super_block *sb,
278 struct ext4_group_desc *bg, __u32 count)
279 {
280 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
283 }
284
285 void ext4_used_dirs_set(struct super_block *sb,
286 struct ext4_group_desc *bg, __u32 count)
287 {
288 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
291 }
292
293 void ext4_itable_unused_set(struct super_block *sb,
294 struct ext4_group_desc *bg, __u32 count)
295 {
296 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 }
300
301
302 static void __save_error_info(struct super_block *sb, const char *func,
303 unsigned int line)
304 {
305 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306
307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
309 es->s_last_error_time = cpu_to_le32(get_seconds());
310 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
311 es->s_last_error_line = cpu_to_le32(line);
312 if (!es->s_first_error_time) {
313 es->s_first_error_time = es->s_last_error_time;
314 strncpy(es->s_first_error_func, func,
315 sizeof(es->s_first_error_func));
316 es->s_first_error_line = cpu_to_le32(line);
317 es->s_first_error_ino = es->s_last_error_ino;
318 es->s_first_error_block = es->s_last_error_block;
319 }
320 /*
321 * Start the daily error reporting function if it hasn't been
322 * started already
323 */
324 if (!es->s_error_count)
325 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
326 le32_add_cpu(&es->s_error_count, 1);
327 }
328
329 static void save_error_info(struct super_block *sb, const char *func,
330 unsigned int line)
331 {
332 __save_error_info(sb, func, line);
333 ext4_commit_super(sb, 1);
334 }
335
336 /*
337 * The del_gendisk() function uninitializes the disk-specific data
338 * structures, including the bdi structure, without telling anyone
339 * else. Once this happens, any attempt to call mark_buffer_dirty()
340 * (for example, by ext4_commit_super), will cause a kernel OOPS.
341 * This is a kludge to prevent these oops until we can put in a proper
342 * hook in del_gendisk() to inform the VFS and file system layers.
343 */
344 static int block_device_ejected(struct super_block *sb)
345 {
346 struct inode *bd_inode = sb->s_bdev->bd_inode;
347 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
348
349 return bdi->dev == NULL;
350 }
351
352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
353 {
354 struct super_block *sb = journal->j_private;
355 struct ext4_sb_info *sbi = EXT4_SB(sb);
356 int error = is_journal_aborted(journal);
357 struct ext4_journal_cb_entry *jce;
358
359 BUG_ON(txn->t_state == T_FINISHED);
360 spin_lock(&sbi->s_md_lock);
361 while (!list_empty(&txn->t_private_list)) {
362 jce = list_entry(txn->t_private_list.next,
363 struct ext4_journal_cb_entry, jce_list);
364 list_del_init(&jce->jce_list);
365 spin_unlock(&sbi->s_md_lock);
366 jce->jce_func(sb, jce, error);
367 spin_lock(&sbi->s_md_lock);
368 }
369 spin_unlock(&sbi->s_md_lock);
370 }
371
372 /* Deal with the reporting of failure conditions on a filesystem such as
373 * inconsistencies detected or read IO failures.
374 *
375 * On ext2, we can store the error state of the filesystem in the
376 * superblock. That is not possible on ext4, because we may have other
377 * write ordering constraints on the superblock which prevent us from
378 * writing it out straight away; and given that the journal is about to
379 * be aborted, we can't rely on the current, or future, transactions to
380 * write out the superblock safely.
381 *
382 * We'll just use the jbd2_journal_abort() error code to record an error in
383 * the journal instead. On recovery, the journal will complain about
384 * that error until we've noted it down and cleared it.
385 */
386
387 static void ext4_handle_error(struct super_block *sb)
388 {
389 if (sb->s_flags & MS_RDONLY)
390 return;
391
392 if (!test_opt(sb, ERRORS_CONT)) {
393 journal_t *journal = EXT4_SB(sb)->s_journal;
394
395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
396 if (journal)
397 jbd2_journal_abort(journal, -EIO);
398 }
399 if (test_opt(sb, ERRORS_RO)) {
400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
401 sb->s_flags |= MS_RDONLY;
402 }
403 if (test_opt(sb, ERRORS_PANIC))
404 panic("EXT4-fs (device %s): panic forced after error\n",
405 sb->s_id);
406 }
407
408 void __ext4_error(struct super_block *sb, const char *function,
409 unsigned int line, const char *fmt, ...)
410 {
411 struct va_format vaf;
412 va_list args;
413
414 va_start(args, fmt);
415 vaf.fmt = fmt;
416 vaf.va = &args;
417 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
418 sb->s_id, function, line, current->comm, &vaf);
419 va_end(args);
420 save_error_info(sb, function, line);
421
422 ext4_handle_error(sb);
423 }
424
425 void ext4_error_inode(struct inode *inode, const char *function,
426 unsigned int line, ext4_fsblk_t block,
427 const char *fmt, ...)
428 {
429 va_list args;
430 struct va_format vaf;
431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
432
433 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
434 es->s_last_error_block = cpu_to_le64(block);
435 save_error_info(inode->i_sb, function, line);
436 va_start(args, fmt);
437 vaf.fmt = fmt;
438 vaf.va = &args;
439 if (block)
440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
441 "inode #%lu: block %llu: comm %s: %pV\n",
442 inode->i_sb->s_id, function, line, inode->i_ino,
443 block, current->comm, &vaf);
444 else
445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
446 "inode #%lu: comm %s: %pV\n",
447 inode->i_sb->s_id, function, line, inode->i_ino,
448 current->comm, &vaf);
449 va_end(args);
450
451 ext4_handle_error(inode->i_sb);
452 }
453
454 void ext4_error_file(struct file *file, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457 {
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es;
461 struct inode *inode = file_inode(file);
462 char pathname[80], *path;
463
464 es = EXT4_SB(inode->i_sb)->s_es;
465 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
466 save_error_info(inode->i_sb, function, line);
467 path = d_path(&(file->f_path), pathname, sizeof(pathname));
468 if (IS_ERR(path))
469 path = "(unknown)";
470 va_start(args, fmt);
471 vaf.fmt = fmt;
472 vaf.va = &args;
473 if (block)
474 printk(KERN_CRIT
475 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476 "block %llu: comm %s: path %s: %pV\n",
477 inode->i_sb->s_id, function, line, inode->i_ino,
478 block, current->comm, path, &vaf);
479 else
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 "comm %s: path %s: %pV\n",
483 inode->i_sb->s_id, function, line, inode->i_ino,
484 current->comm, path, &vaf);
485 va_end(args);
486
487 ext4_handle_error(inode->i_sb);
488 }
489
490 const char *ext4_decode_error(struct super_block *sb, int errno,
491 char nbuf[16])
492 {
493 char *errstr = NULL;
494
495 switch (errno) {
496 case -EIO:
497 errstr = "IO failure";
498 break;
499 case -ENOMEM:
500 errstr = "Out of memory";
501 break;
502 case -EROFS:
503 if (!sb || (EXT4_SB(sb)->s_journal &&
504 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
505 errstr = "Journal has aborted";
506 else
507 errstr = "Readonly filesystem";
508 break;
509 default:
510 /* If the caller passed in an extra buffer for unknown
511 * errors, textualise them now. Else we just return
512 * NULL. */
513 if (nbuf) {
514 /* Check for truncated error codes... */
515 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
516 errstr = nbuf;
517 }
518 break;
519 }
520
521 return errstr;
522 }
523
524 /* __ext4_std_error decodes expected errors from journaling functions
525 * automatically and invokes the appropriate error response. */
526
527 void __ext4_std_error(struct super_block *sb, const char *function,
528 unsigned int line, int errno)
529 {
530 char nbuf[16];
531 const char *errstr;
532
533 /* Special case: if the error is EROFS, and we're not already
534 * inside a transaction, then there's really no point in logging
535 * an error. */
536 if (errno == -EROFS && journal_current_handle() == NULL &&
537 (sb->s_flags & MS_RDONLY))
538 return;
539
540 errstr = ext4_decode_error(sb, errno, nbuf);
541 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
542 sb->s_id, function, line, errstr);
543 save_error_info(sb, function, line);
544
545 ext4_handle_error(sb);
546 }
547
548 /*
549 * ext4_abort is a much stronger failure handler than ext4_error. The
550 * abort function may be used to deal with unrecoverable failures such
551 * as journal IO errors or ENOMEM at a critical moment in log management.
552 *
553 * We unconditionally force the filesystem into an ABORT|READONLY state,
554 * unless the error response on the fs has been set to panic in which
555 * case we take the easy way out and panic immediately.
556 */
557
558 void __ext4_abort(struct super_block *sb, const char *function,
559 unsigned int line, const char *fmt, ...)
560 {
561 va_list args;
562
563 save_error_info(sb, function, line);
564 va_start(args, fmt);
565 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
566 function, line);
567 vprintk(fmt, args);
568 printk("\n");
569 va_end(args);
570
571 if ((sb->s_flags & MS_RDONLY) == 0) {
572 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
573 sb->s_flags |= MS_RDONLY;
574 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
575 if (EXT4_SB(sb)->s_journal)
576 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
577 save_error_info(sb, function, line);
578 }
579 if (test_opt(sb, ERRORS_PANIC))
580 panic("EXT4-fs panic from previous error\n");
581 }
582
583 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
584 {
585 struct va_format vaf;
586 va_list args;
587
588 va_start(args, fmt);
589 vaf.fmt = fmt;
590 vaf.va = &args;
591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
592 va_end(args);
593 }
594
595 void __ext4_warning(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 struct va_format vaf;
599 va_list args;
600
601 va_start(args, fmt);
602 vaf.fmt = fmt;
603 vaf.va = &args;
604 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
605 sb->s_id, function, line, &vaf);
606 va_end(args);
607 }
608
609 void __ext4_grp_locked_error(const char *function, unsigned int line,
610 struct super_block *sb, ext4_group_t grp,
611 unsigned long ino, ext4_fsblk_t block,
612 const char *fmt, ...)
613 __releases(bitlock)
614 __acquires(bitlock)
615 {
616 struct va_format vaf;
617 va_list args;
618 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
619
620 es->s_last_error_ino = cpu_to_le32(ino);
621 es->s_last_error_block = cpu_to_le64(block);
622 __save_error_info(sb, function, line);
623
624 va_start(args, fmt);
625
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
629 sb->s_id, function, line, grp);
630 if (ino)
631 printk(KERN_CONT "inode %lu: ", ino);
632 if (block)
633 printk(KERN_CONT "block %llu:", (unsigned long long) block);
634 printk(KERN_CONT "%pV\n", &vaf);
635 va_end(args);
636
637 if (test_opt(sb, ERRORS_CONT)) {
638 ext4_commit_super(sb, 0);
639 return;
640 }
641
642 ext4_unlock_group(sb, grp);
643 ext4_handle_error(sb);
644 /*
645 * We only get here in the ERRORS_RO case; relocking the group
646 * may be dangerous, but nothing bad will happen since the
647 * filesystem will have already been marked read/only and the
648 * journal has been aborted. We return 1 as a hint to callers
649 * who might what to use the return value from
650 * ext4_grp_locked_error() to distinguish between the
651 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
652 * aggressively from the ext4 function in question, with a
653 * more appropriate error code.
654 */
655 ext4_lock_group(sb, grp);
656 return;
657 }
658
659 void ext4_update_dynamic_rev(struct super_block *sb)
660 {
661 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
662
663 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
664 return;
665
666 ext4_warning(sb,
667 "updating to rev %d because of new feature flag, "
668 "running e2fsck is recommended",
669 EXT4_DYNAMIC_REV);
670
671 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
672 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
673 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
674 /* leave es->s_feature_*compat flags alone */
675 /* es->s_uuid will be set by e2fsck if empty */
676
677 /*
678 * The rest of the superblock fields should be zero, and if not it
679 * means they are likely already in use, so leave them alone. We
680 * can leave it up to e2fsck to clean up any inconsistencies there.
681 */
682 }
683
684 /*
685 * Open the external journal device
686 */
687 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
688 {
689 struct block_device *bdev;
690 char b[BDEVNAME_SIZE];
691
692 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
693 if (IS_ERR(bdev))
694 goto fail;
695 return bdev;
696
697 fail:
698 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
699 __bdevname(dev, b), PTR_ERR(bdev));
700 return NULL;
701 }
702
703 /*
704 * Release the journal device
705 */
706 static void ext4_blkdev_put(struct block_device *bdev)
707 {
708 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
709 }
710
711 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
712 {
713 struct block_device *bdev;
714 bdev = sbi->journal_bdev;
715 if (bdev) {
716 ext4_blkdev_put(bdev);
717 sbi->journal_bdev = NULL;
718 }
719 }
720
721 static inline struct inode *orphan_list_entry(struct list_head *l)
722 {
723 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
724 }
725
726 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
727 {
728 struct list_head *l;
729
730 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
731 le32_to_cpu(sbi->s_es->s_last_orphan));
732
733 printk(KERN_ERR "sb_info orphan list:\n");
734 list_for_each(l, &sbi->s_orphan) {
735 struct inode *inode = orphan_list_entry(l);
736 printk(KERN_ERR " "
737 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
738 inode->i_sb->s_id, inode->i_ino, inode,
739 inode->i_mode, inode->i_nlink,
740 NEXT_ORPHAN(inode));
741 }
742 }
743
744 static void ext4_put_super(struct super_block *sb)
745 {
746 struct ext4_sb_info *sbi = EXT4_SB(sb);
747 struct ext4_super_block *es = sbi->s_es;
748 int i, err;
749
750 ext4_unregister_li_request(sb);
751 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
752
753 flush_workqueue(sbi->dio_unwritten_wq);
754 destroy_workqueue(sbi->dio_unwritten_wq);
755
756 if (sbi->s_journal) {
757 err = jbd2_journal_destroy(sbi->s_journal);
758 sbi->s_journal = NULL;
759 if (err < 0)
760 ext4_abort(sb, "Couldn't clean up the journal");
761 }
762
763 ext4_es_unregister_shrinker(sb);
764 del_timer(&sbi->s_err_report);
765 ext4_release_system_zone(sb);
766 ext4_mb_release(sb);
767 ext4_ext_release(sb);
768 ext4_xattr_put_super(sb);
769
770 if (!(sb->s_flags & MS_RDONLY)) {
771 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
772 es->s_state = cpu_to_le16(sbi->s_mount_state);
773 }
774 if (!(sb->s_flags & MS_RDONLY))
775 ext4_commit_super(sb, 1);
776
777 if (sbi->s_proc) {
778 remove_proc_entry("options", sbi->s_proc);
779 remove_proc_entry(sb->s_id, ext4_proc_root);
780 }
781 kobject_del(&sbi->s_kobj);
782
783 for (i = 0; i < sbi->s_gdb_count; i++)
784 brelse(sbi->s_group_desc[i]);
785 ext4_kvfree(sbi->s_group_desc);
786 ext4_kvfree(sbi->s_flex_groups);
787 percpu_counter_destroy(&sbi->s_freeclusters_counter);
788 percpu_counter_destroy(&sbi->s_freeinodes_counter);
789 percpu_counter_destroy(&sbi->s_dirs_counter);
790 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
791 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
792 brelse(sbi->s_sbh);
793 #ifdef CONFIG_QUOTA
794 for (i = 0; i < MAXQUOTAS; i++)
795 kfree(sbi->s_qf_names[i]);
796 #endif
797
798 /* Debugging code just in case the in-memory inode orphan list
799 * isn't empty. The on-disk one can be non-empty if we've
800 * detected an error and taken the fs readonly, but the
801 * in-memory list had better be clean by this point. */
802 if (!list_empty(&sbi->s_orphan))
803 dump_orphan_list(sb, sbi);
804 J_ASSERT(list_empty(&sbi->s_orphan));
805
806 sync_blockdev(sb->s_bdev);
807 invalidate_bdev(sb->s_bdev);
808 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
809 /*
810 * Invalidate the journal device's buffers. We don't want them
811 * floating about in memory - the physical journal device may
812 * hotswapped, and it breaks the `ro-after' testing code.
813 */
814 sync_blockdev(sbi->journal_bdev);
815 invalidate_bdev(sbi->journal_bdev);
816 ext4_blkdev_remove(sbi);
817 }
818 if (sbi->s_mmp_tsk)
819 kthread_stop(sbi->s_mmp_tsk);
820 sb->s_fs_info = NULL;
821 /*
822 * Now that we are completely done shutting down the
823 * superblock, we need to actually destroy the kobject.
824 */
825 kobject_put(&sbi->s_kobj);
826 wait_for_completion(&sbi->s_kobj_unregister);
827 if (sbi->s_chksum_driver)
828 crypto_free_shash(sbi->s_chksum_driver);
829 kfree(sbi->s_blockgroup_lock);
830 kfree(sbi);
831 }
832
833 static struct kmem_cache *ext4_inode_cachep;
834
835 /*
836 * Called inside transaction, so use GFP_NOFS
837 */
838 static struct inode *ext4_alloc_inode(struct super_block *sb)
839 {
840 struct ext4_inode_info *ei;
841
842 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
843 if (!ei)
844 return NULL;
845
846 ei->vfs_inode.i_version = 1;
847 INIT_LIST_HEAD(&ei->i_prealloc_list);
848 spin_lock_init(&ei->i_prealloc_lock);
849 ext4_es_init_tree(&ei->i_es_tree);
850 rwlock_init(&ei->i_es_lock);
851 INIT_LIST_HEAD(&ei->i_es_lru);
852 ei->i_es_lru_nr = 0;
853 ei->i_reserved_data_blocks = 0;
854 ei->i_reserved_meta_blocks = 0;
855 ei->i_allocated_meta_blocks = 0;
856 ei->i_da_metadata_calc_len = 0;
857 ei->i_da_metadata_calc_last_lblock = 0;
858 spin_lock_init(&(ei->i_block_reservation_lock));
859 #ifdef CONFIG_QUOTA
860 ei->i_reserved_quota = 0;
861 #endif
862 ei->jinode = NULL;
863 INIT_LIST_HEAD(&ei->i_completed_io_list);
864 spin_lock_init(&ei->i_completed_io_lock);
865 ei->i_sync_tid = 0;
866 ei->i_datasync_tid = 0;
867 atomic_set(&ei->i_ioend_count, 0);
868 atomic_set(&ei->i_unwritten, 0);
869 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
870
871 return &ei->vfs_inode;
872 }
873
874 static int ext4_drop_inode(struct inode *inode)
875 {
876 int drop = generic_drop_inode(inode);
877
878 trace_ext4_drop_inode(inode, drop);
879 return drop;
880 }
881
882 static void ext4_i_callback(struct rcu_head *head)
883 {
884 struct inode *inode = container_of(head, struct inode, i_rcu);
885 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
886 }
887
888 static void ext4_destroy_inode(struct inode *inode)
889 {
890 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
891 ext4_msg(inode->i_sb, KERN_ERR,
892 "Inode %lu (%p): orphan list check failed!",
893 inode->i_ino, EXT4_I(inode));
894 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
895 EXT4_I(inode), sizeof(struct ext4_inode_info),
896 true);
897 dump_stack();
898 }
899 call_rcu(&inode->i_rcu, ext4_i_callback);
900 }
901
902 static void init_once(void *foo)
903 {
904 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
905
906 INIT_LIST_HEAD(&ei->i_orphan);
907 init_rwsem(&ei->xattr_sem);
908 init_rwsem(&ei->i_data_sem);
909 inode_init_once(&ei->vfs_inode);
910 }
911
912 static int init_inodecache(void)
913 {
914 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
915 sizeof(struct ext4_inode_info),
916 0, (SLAB_RECLAIM_ACCOUNT|
917 SLAB_MEM_SPREAD),
918 init_once);
919 if (ext4_inode_cachep == NULL)
920 return -ENOMEM;
921 return 0;
922 }
923
924 static void destroy_inodecache(void)
925 {
926 /*
927 * Make sure all delayed rcu free inodes are flushed before we
928 * destroy cache.
929 */
930 rcu_barrier();
931 kmem_cache_destroy(ext4_inode_cachep);
932 }
933
934 void ext4_clear_inode(struct inode *inode)
935 {
936 invalidate_inode_buffers(inode);
937 clear_inode(inode);
938 dquot_drop(inode);
939 ext4_discard_preallocations(inode);
940 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
941 ext4_es_lru_del(inode);
942 if (EXT4_I(inode)->jinode) {
943 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
944 EXT4_I(inode)->jinode);
945 jbd2_free_inode(EXT4_I(inode)->jinode);
946 EXT4_I(inode)->jinode = NULL;
947 }
948 }
949
950 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
951 u64 ino, u32 generation)
952 {
953 struct inode *inode;
954
955 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
956 return ERR_PTR(-ESTALE);
957 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
958 return ERR_PTR(-ESTALE);
959
960 /* iget isn't really right if the inode is currently unallocated!!
961 *
962 * ext4_read_inode will return a bad_inode if the inode had been
963 * deleted, so we should be safe.
964 *
965 * Currently we don't know the generation for parent directory, so
966 * a generation of 0 means "accept any"
967 */
968 inode = ext4_iget_normal(sb, ino);
969 if (IS_ERR(inode))
970 return ERR_CAST(inode);
971 if (generation && inode->i_generation != generation) {
972 iput(inode);
973 return ERR_PTR(-ESTALE);
974 }
975
976 return inode;
977 }
978
979 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
980 int fh_len, int fh_type)
981 {
982 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
983 ext4_nfs_get_inode);
984 }
985
986 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
987 int fh_len, int fh_type)
988 {
989 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
990 ext4_nfs_get_inode);
991 }
992
993 /*
994 * Try to release metadata pages (indirect blocks, directories) which are
995 * mapped via the block device. Since these pages could have journal heads
996 * which would prevent try_to_free_buffers() from freeing them, we must use
997 * jbd2 layer's try_to_free_buffers() function to release them.
998 */
999 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1000 gfp_t wait)
1001 {
1002 journal_t *journal = EXT4_SB(sb)->s_journal;
1003
1004 WARN_ON(PageChecked(page));
1005 if (!page_has_buffers(page))
1006 return 0;
1007 if (journal)
1008 return jbd2_journal_try_to_free_buffers(journal, page,
1009 wait & ~__GFP_WAIT);
1010 return try_to_free_buffers(page);
1011 }
1012
1013 #ifdef CONFIG_QUOTA
1014 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1015 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1016
1017 static int ext4_write_dquot(struct dquot *dquot);
1018 static int ext4_acquire_dquot(struct dquot *dquot);
1019 static int ext4_release_dquot(struct dquot *dquot);
1020 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1021 static int ext4_write_info(struct super_block *sb, int type);
1022 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1023 struct path *path);
1024 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1025 int format_id);
1026 static int ext4_quota_off(struct super_block *sb, int type);
1027 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1028 static int ext4_quota_on_mount(struct super_block *sb, int type);
1029 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1030 size_t len, loff_t off);
1031 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1032 const char *data, size_t len, loff_t off);
1033 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1034 unsigned int flags);
1035 static int ext4_enable_quotas(struct super_block *sb);
1036
1037 static const struct dquot_operations ext4_quota_operations = {
1038 .get_reserved_space = ext4_get_reserved_space,
1039 .write_dquot = ext4_write_dquot,
1040 .acquire_dquot = ext4_acquire_dquot,
1041 .release_dquot = ext4_release_dquot,
1042 .mark_dirty = ext4_mark_dquot_dirty,
1043 .write_info = ext4_write_info,
1044 .alloc_dquot = dquot_alloc,
1045 .destroy_dquot = dquot_destroy,
1046 };
1047
1048 static const struct quotactl_ops ext4_qctl_operations = {
1049 .quota_on = ext4_quota_on,
1050 .quota_off = ext4_quota_off,
1051 .quota_sync = dquot_quota_sync,
1052 .get_info = dquot_get_dqinfo,
1053 .set_info = dquot_set_dqinfo,
1054 .get_dqblk = dquot_get_dqblk,
1055 .set_dqblk = dquot_set_dqblk
1056 };
1057
1058 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1059 .quota_on_meta = ext4_quota_on_sysfile,
1060 .quota_off = ext4_quota_off_sysfile,
1061 .quota_sync = dquot_quota_sync,
1062 .get_info = dquot_get_dqinfo,
1063 .set_info = dquot_set_dqinfo,
1064 .get_dqblk = dquot_get_dqblk,
1065 .set_dqblk = dquot_set_dqblk
1066 };
1067 #endif
1068
1069 static const struct super_operations ext4_sops = {
1070 .alloc_inode = ext4_alloc_inode,
1071 .destroy_inode = ext4_destroy_inode,
1072 .write_inode = ext4_write_inode,
1073 .dirty_inode = ext4_dirty_inode,
1074 .drop_inode = ext4_drop_inode,
1075 .evict_inode = ext4_evict_inode,
1076 .put_super = ext4_put_super,
1077 .sync_fs = ext4_sync_fs,
1078 .freeze_fs = ext4_freeze,
1079 .unfreeze_fs = ext4_unfreeze,
1080 .statfs = ext4_statfs,
1081 .remount_fs = ext4_remount,
1082 .show_options = ext4_show_options,
1083 #ifdef CONFIG_QUOTA
1084 .quota_read = ext4_quota_read,
1085 .quota_write = ext4_quota_write,
1086 #endif
1087 .bdev_try_to_free_page = bdev_try_to_free_page,
1088 };
1089
1090 static const struct super_operations ext4_nojournal_sops = {
1091 .alloc_inode = ext4_alloc_inode,
1092 .destroy_inode = ext4_destroy_inode,
1093 .write_inode = ext4_write_inode,
1094 .dirty_inode = ext4_dirty_inode,
1095 .drop_inode = ext4_drop_inode,
1096 .evict_inode = ext4_evict_inode,
1097 .put_super = ext4_put_super,
1098 .statfs = ext4_statfs,
1099 .remount_fs = ext4_remount,
1100 .show_options = ext4_show_options,
1101 #ifdef CONFIG_QUOTA
1102 .quota_read = ext4_quota_read,
1103 .quota_write = ext4_quota_write,
1104 #endif
1105 .bdev_try_to_free_page = bdev_try_to_free_page,
1106 };
1107
1108 static const struct export_operations ext4_export_ops = {
1109 .fh_to_dentry = ext4_fh_to_dentry,
1110 .fh_to_parent = ext4_fh_to_parent,
1111 .get_parent = ext4_get_parent,
1112 };
1113
1114 enum {
1115 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1116 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1117 Opt_nouid32, Opt_debug, Opt_removed,
1118 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1119 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1120 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1121 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1122 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1123 Opt_data_err_abort, Opt_data_err_ignore,
1124 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1125 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1126 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1127 Opt_usrquota, Opt_grpquota, Opt_i_version,
1128 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1129 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1130 Opt_inode_readahead_blks, Opt_journal_ioprio,
1131 Opt_dioread_nolock, Opt_dioread_lock,
1132 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1133 Opt_max_dir_size_kb,
1134 };
1135
1136 static const match_table_t tokens = {
1137 {Opt_bsd_df, "bsddf"},
1138 {Opt_minix_df, "minixdf"},
1139 {Opt_grpid, "grpid"},
1140 {Opt_grpid, "bsdgroups"},
1141 {Opt_nogrpid, "nogrpid"},
1142 {Opt_nogrpid, "sysvgroups"},
1143 {Opt_resgid, "resgid=%u"},
1144 {Opt_resuid, "resuid=%u"},
1145 {Opt_sb, "sb=%u"},
1146 {Opt_err_cont, "errors=continue"},
1147 {Opt_err_panic, "errors=panic"},
1148 {Opt_err_ro, "errors=remount-ro"},
1149 {Opt_nouid32, "nouid32"},
1150 {Opt_debug, "debug"},
1151 {Opt_removed, "oldalloc"},
1152 {Opt_removed, "orlov"},
1153 {Opt_user_xattr, "user_xattr"},
1154 {Opt_nouser_xattr, "nouser_xattr"},
1155 {Opt_acl, "acl"},
1156 {Opt_noacl, "noacl"},
1157 {Opt_noload, "norecovery"},
1158 {Opt_noload, "noload"},
1159 {Opt_removed, "nobh"},
1160 {Opt_removed, "bh"},
1161 {Opt_commit, "commit=%u"},
1162 {Opt_min_batch_time, "min_batch_time=%u"},
1163 {Opt_max_batch_time, "max_batch_time=%u"},
1164 {Opt_journal_dev, "journal_dev=%u"},
1165 {Opt_journal_checksum, "journal_checksum"},
1166 {Opt_journal_async_commit, "journal_async_commit"},
1167 {Opt_abort, "abort"},
1168 {Opt_data_journal, "data=journal"},
1169 {Opt_data_ordered, "data=ordered"},
1170 {Opt_data_writeback, "data=writeback"},
1171 {Opt_data_err_abort, "data_err=abort"},
1172 {Opt_data_err_ignore, "data_err=ignore"},
1173 {Opt_offusrjquota, "usrjquota="},
1174 {Opt_usrjquota, "usrjquota=%s"},
1175 {Opt_offgrpjquota, "grpjquota="},
1176 {Opt_grpjquota, "grpjquota=%s"},
1177 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1178 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1179 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1180 {Opt_grpquota, "grpquota"},
1181 {Opt_noquota, "noquota"},
1182 {Opt_quota, "quota"},
1183 {Opt_usrquota, "usrquota"},
1184 {Opt_barrier, "barrier=%u"},
1185 {Opt_barrier, "barrier"},
1186 {Opt_nobarrier, "nobarrier"},
1187 {Opt_i_version, "i_version"},
1188 {Opt_stripe, "stripe=%u"},
1189 {Opt_delalloc, "delalloc"},
1190 {Opt_nodelalloc, "nodelalloc"},
1191 {Opt_removed, "mblk_io_submit"},
1192 {Opt_removed, "nomblk_io_submit"},
1193 {Opt_block_validity, "block_validity"},
1194 {Opt_noblock_validity, "noblock_validity"},
1195 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1196 {Opt_journal_ioprio, "journal_ioprio=%u"},
1197 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1198 {Opt_auto_da_alloc, "auto_da_alloc"},
1199 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1200 {Opt_dioread_nolock, "dioread_nolock"},
1201 {Opt_dioread_lock, "dioread_lock"},
1202 {Opt_discard, "discard"},
1203 {Opt_nodiscard, "nodiscard"},
1204 {Opt_init_itable, "init_itable=%u"},
1205 {Opt_init_itable, "init_itable"},
1206 {Opt_noinit_itable, "noinit_itable"},
1207 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1208 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1209 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1210 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1211 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1212 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1213 {Opt_err, NULL},
1214 };
1215
1216 static ext4_fsblk_t get_sb_block(void **data)
1217 {
1218 ext4_fsblk_t sb_block;
1219 char *options = (char *) *data;
1220
1221 if (!options || strncmp(options, "sb=", 3) != 0)
1222 return 1; /* Default location */
1223
1224 options += 3;
1225 /* TODO: use simple_strtoll with >32bit ext4 */
1226 sb_block = simple_strtoul(options, &options, 0);
1227 if (*options && *options != ',') {
1228 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1229 (char *) *data);
1230 return 1;
1231 }
1232 if (*options == ',')
1233 options++;
1234 *data = (void *) options;
1235
1236 return sb_block;
1237 }
1238
1239 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1240 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1241 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1242
1243 #ifdef CONFIG_QUOTA
1244 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1245 {
1246 struct ext4_sb_info *sbi = EXT4_SB(sb);
1247 char *qname;
1248 int ret = -1;
1249
1250 if (sb_any_quota_loaded(sb) &&
1251 !sbi->s_qf_names[qtype]) {
1252 ext4_msg(sb, KERN_ERR,
1253 "Cannot change journaled "
1254 "quota options when quota turned on");
1255 return -1;
1256 }
1257 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1258 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1259 "when QUOTA feature is enabled");
1260 return -1;
1261 }
1262 qname = match_strdup(args);
1263 if (!qname) {
1264 ext4_msg(sb, KERN_ERR,
1265 "Not enough memory for storing quotafile name");
1266 return -1;
1267 }
1268 if (sbi->s_qf_names[qtype]) {
1269 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1270 ret = 1;
1271 else
1272 ext4_msg(sb, KERN_ERR,
1273 "%s quota file already specified",
1274 QTYPE2NAME(qtype));
1275 goto errout;
1276 }
1277 if (strchr(qname, '/')) {
1278 ext4_msg(sb, KERN_ERR,
1279 "quotafile must be on filesystem root");
1280 goto errout;
1281 }
1282 sbi->s_qf_names[qtype] = qname;
1283 set_opt(sb, QUOTA);
1284 return 1;
1285 errout:
1286 kfree(qname);
1287 return ret;
1288 }
1289
1290 static int clear_qf_name(struct super_block *sb, int qtype)
1291 {
1292
1293 struct ext4_sb_info *sbi = EXT4_SB(sb);
1294
1295 if (sb_any_quota_loaded(sb) &&
1296 sbi->s_qf_names[qtype]) {
1297 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1298 " when quota turned on");
1299 return -1;
1300 }
1301 kfree(sbi->s_qf_names[qtype]);
1302 sbi->s_qf_names[qtype] = NULL;
1303 return 1;
1304 }
1305 #endif
1306
1307 #define MOPT_SET 0x0001
1308 #define MOPT_CLEAR 0x0002
1309 #define MOPT_NOSUPPORT 0x0004
1310 #define MOPT_EXPLICIT 0x0008
1311 #define MOPT_CLEAR_ERR 0x0010
1312 #define MOPT_GTE0 0x0020
1313 #ifdef CONFIG_QUOTA
1314 #define MOPT_Q 0
1315 #define MOPT_QFMT 0x0040
1316 #else
1317 #define MOPT_Q MOPT_NOSUPPORT
1318 #define MOPT_QFMT MOPT_NOSUPPORT
1319 #endif
1320 #define MOPT_DATAJ 0x0080
1321 #define MOPT_NO_EXT2 0x0100
1322 #define MOPT_NO_EXT3 0x0200
1323 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1324
1325 static const struct mount_opts {
1326 int token;
1327 int mount_opt;
1328 int flags;
1329 } ext4_mount_opts[] = {
1330 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1331 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1332 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1333 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1334 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1335 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1336 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1337 MOPT_EXT4_ONLY | MOPT_SET},
1338 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1339 MOPT_EXT4_ONLY | MOPT_CLEAR},
1340 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1341 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1342 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1343 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1344 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1345 MOPT_EXT4_ONLY | MOPT_CLEAR},
1346 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1347 MOPT_EXT4_ONLY | MOPT_SET},
1348 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1349 EXT4_MOUNT_JOURNAL_CHECKSUM),
1350 MOPT_EXT4_ONLY | MOPT_SET},
1351 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1352 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1353 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1354 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1355 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1356 MOPT_NO_EXT2 | MOPT_SET},
1357 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1358 MOPT_NO_EXT2 | MOPT_CLEAR},
1359 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1360 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1361 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1362 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1363 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1364 {Opt_commit, 0, MOPT_GTE0},
1365 {Opt_max_batch_time, 0, MOPT_GTE0},
1366 {Opt_min_batch_time, 0, MOPT_GTE0},
1367 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1368 {Opt_init_itable, 0, MOPT_GTE0},
1369 {Opt_stripe, 0, MOPT_GTE0},
1370 {Opt_resuid, 0, MOPT_GTE0},
1371 {Opt_resgid, 0, MOPT_GTE0},
1372 {Opt_journal_dev, 0, MOPT_GTE0},
1373 {Opt_journal_ioprio, 0, MOPT_GTE0},
1374 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1375 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1376 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1377 MOPT_NO_EXT2 | MOPT_DATAJ},
1378 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1379 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1380 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1381 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1382 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1383 #else
1384 {Opt_acl, 0, MOPT_NOSUPPORT},
1385 {Opt_noacl, 0, MOPT_NOSUPPORT},
1386 #endif
1387 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1388 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1389 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1390 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1391 MOPT_SET | MOPT_Q},
1392 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1393 MOPT_SET | MOPT_Q},
1394 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1395 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1396 {Opt_usrjquota, 0, MOPT_Q},
1397 {Opt_grpjquota, 0, MOPT_Q},
1398 {Opt_offusrjquota, 0, MOPT_Q},
1399 {Opt_offgrpjquota, 0, MOPT_Q},
1400 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1401 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1402 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1403 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1404 {Opt_err, 0, 0}
1405 };
1406
1407 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1408 substring_t *args, unsigned long *journal_devnum,
1409 unsigned int *journal_ioprio, int is_remount)
1410 {
1411 struct ext4_sb_info *sbi = EXT4_SB(sb);
1412 const struct mount_opts *m;
1413 kuid_t uid;
1414 kgid_t gid;
1415 int arg = 0;
1416
1417 #ifdef CONFIG_QUOTA
1418 if (token == Opt_usrjquota)
1419 return set_qf_name(sb, USRQUOTA, &args[0]);
1420 else if (token == Opt_grpjquota)
1421 return set_qf_name(sb, GRPQUOTA, &args[0]);
1422 else if (token == Opt_offusrjquota)
1423 return clear_qf_name(sb, USRQUOTA);
1424 else if (token == Opt_offgrpjquota)
1425 return clear_qf_name(sb, GRPQUOTA);
1426 #endif
1427 switch (token) {
1428 case Opt_noacl:
1429 case Opt_nouser_xattr:
1430 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1431 break;
1432 case Opt_sb:
1433 return 1; /* handled by get_sb_block() */
1434 case Opt_removed:
1435 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1436 return 1;
1437 case Opt_abort:
1438 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1439 return 1;
1440 case Opt_i_version:
1441 sb->s_flags |= MS_I_VERSION;
1442 return 1;
1443 }
1444
1445 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1446 if (token == m->token)
1447 break;
1448
1449 if (m->token == Opt_err) {
1450 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1451 "or missing value", opt);
1452 return -1;
1453 }
1454
1455 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1456 ext4_msg(sb, KERN_ERR,
1457 "Mount option \"%s\" incompatible with ext2", opt);
1458 return -1;
1459 }
1460 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1461 ext4_msg(sb, KERN_ERR,
1462 "Mount option \"%s\" incompatible with ext3", opt);
1463 return -1;
1464 }
1465
1466 if (args->from && match_int(args, &arg))
1467 return -1;
1468 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1469 return -1;
1470 if (m->flags & MOPT_EXPLICIT)
1471 set_opt2(sb, EXPLICIT_DELALLOC);
1472 if (m->flags & MOPT_CLEAR_ERR)
1473 clear_opt(sb, ERRORS_MASK);
1474 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1475 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1476 "options when quota turned on");
1477 return -1;
1478 }
1479
1480 if (m->flags & MOPT_NOSUPPORT) {
1481 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1482 } else if (token == Opt_commit) {
1483 if (arg == 0)
1484 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1485 sbi->s_commit_interval = HZ * arg;
1486 } else if (token == Opt_max_batch_time) {
1487 sbi->s_max_batch_time = arg;
1488 } else if (token == Opt_min_batch_time) {
1489 sbi->s_min_batch_time = arg;
1490 } else if (token == Opt_inode_readahead_blks) {
1491 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1492 ext4_msg(sb, KERN_ERR,
1493 "EXT4-fs: inode_readahead_blks must be "
1494 "0 or a power of 2 smaller than 2^31");
1495 return -1;
1496 }
1497 sbi->s_inode_readahead_blks = arg;
1498 } else if (token == Opt_init_itable) {
1499 set_opt(sb, INIT_INODE_TABLE);
1500 if (!args->from)
1501 arg = EXT4_DEF_LI_WAIT_MULT;
1502 sbi->s_li_wait_mult = arg;
1503 } else if (token == Opt_max_dir_size_kb) {
1504 sbi->s_max_dir_size_kb = arg;
1505 } else if (token == Opt_stripe) {
1506 sbi->s_stripe = arg;
1507 } else if (token == Opt_resuid) {
1508 uid = make_kuid(current_user_ns(), arg);
1509 if (!uid_valid(uid)) {
1510 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1511 return -1;
1512 }
1513 sbi->s_resuid = uid;
1514 } else if (token == Opt_resgid) {
1515 gid = make_kgid(current_user_ns(), arg);
1516 if (!gid_valid(gid)) {
1517 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1518 return -1;
1519 }
1520 sbi->s_resgid = gid;
1521 } else if (token == Opt_journal_dev) {
1522 if (is_remount) {
1523 ext4_msg(sb, KERN_ERR,
1524 "Cannot specify journal on remount");
1525 return -1;
1526 }
1527 *journal_devnum = arg;
1528 } else if (token == Opt_journal_ioprio) {
1529 if (arg > 7) {
1530 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1531 " (must be 0-7)");
1532 return -1;
1533 }
1534 *journal_ioprio =
1535 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1536 } else if (m->flags & MOPT_DATAJ) {
1537 if (is_remount) {
1538 if (!sbi->s_journal)
1539 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1540 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1541 ext4_msg(sb, KERN_ERR,
1542 "Cannot change data mode on remount");
1543 return -1;
1544 }
1545 } else {
1546 clear_opt(sb, DATA_FLAGS);
1547 sbi->s_mount_opt |= m->mount_opt;
1548 }
1549 #ifdef CONFIG_QUOTA
1550 } else if (m->flags & MOPT_QFMT) {
1551 if (sb_any_quota_loaded(sb) &&
1552 sbi->s_jquota_fmt != m->mount_opt) {
1553 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1554 "quota options when quota turned on");
1555 return -1;
1556 }
1557 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1558 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1559 ext4_msg(sb, KERN_ERR,
1560 "Cannot set journaled quota options "
1561 "when QUOTA feature is enabled");
1562 return -1;
1563 }
1564 sbi->s_jquota_fmt = m->mount_opt;
1565 #endif
1566 } else {
1567 if (!args->from)
1568 arg = 1;
1569 if (m->flags & MOPT_CLEAR)
1570 arg = !arg;
1571 else if (unlikely(!(m->flags & MOPT_SET))) {
1572 ext4_msg(sb, KERN_WARNING,
1573 "buggy handling of option %s", opt);
1574 WARN_ON(1);
1575 return -1;
1576 }
1577 if (arg != 0)
1578 sbi->s_mount_opt |= m->mount_opt;
1579 else
1580 sbi->s_mount_opt &= ~m->mount_opt;
1581 }
1582 return 1;
1583 }
1584
1585 static int parse_options(char *options, struct super_block *sb,
1586 unsigned long *journal_devnum,
1587 unsigned int *journal_ioprio,
1588 int is_remount)
1589 {
1590 struct ext4_sb_info *sbi = EXT4_SB(sb);
1591 char *p;
1592 substring_t args[MAX_OPT_ARGS];
1593 int token;
1594
1595 if (!options)
1596 return 1;
1597
1598 while ((p = strsep(&options, ",")) != NULL) {
1599 if (!*p)
1600 continue;
1601 /*
1602 * Initialize args struct so we know whether arg was
1603 * found; some options take optional arguments.
1604 */
1605 args[0].to = args[0].from = NULL;
1606 token = match_token(p, tokens, args);
1607 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1608 journal_ioprio, is_remount) < 0)
1609 return 0;
1610 }
1611 #ifdef CONFIG_QUOTA
1612 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1613 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1614 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1615 "feature is enabled");
1616 return 0;
1617 }
1618 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1619 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1620 clear_opt(sb, USRQUOTA);
1621
1622 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1623 clear_opt(sb, GRPQUOTA);
1624
1625 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1626 ext4_msg(sb, KERN_ERR, "old and new quota "
1627 "format mixing");
1628 return 0;
1629 }
1630
1631 if (!sbi->s_jquota_fmt) {
1632 ext4_msg(sb, KERN_ERR, "journaled quota format "
1633 "not specified");
1634 return 0;
1635 }
1636 }
1637 #endif
1638 if (test_opt(sb, DIOREAD_NOLOCK)) {
1639 int blocksize =
1640 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1641
1642 if (blocksize < PAGE_CACHE_SIZE) {
1643 ext4_msg(sb, KERN_ERR, "can't mount with "
1644 "dioread_nolock if block size != PAGE_SIZE");
1645 return 0;
1646 }
1647 }
1648 return 1;
1649 }
1650
1651 static inline void ext4_show_quota_options(struct seq_file *seq,
1652 struct super_block *sb)
1653 {
1654 #if defined(CONFIG_QUOTA)
1655 struct ext4_sb_info *sbi = EXT4_SB(sb);
1656
1657 if (sbi->s_jquota_fmt) {
1658 char *fmtname = "";
1659
1660 switch (sbi->s_jquota_fmt) {
1661 case QFMT_VFS_OLD:
1662 fmtname = "vfsold";
1663 break;
1664 case QFMT_VFS_V0:
1665 fmtname = "vfsv0";
1666 break;
1667 case QFMT_VFS_V1:
1668 fmtname = "vfsv1";
1669 break;
1670 }
1671 seq_printf(seq, ",jqfmt=%s", fmtname);
1672 }
1673
1674 if (sbi->s_qf_names[USRQUOTA])
1675 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1676
1677 if (sbi->s_qf_names[GRPQUOTA])
1678 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1679 #endif
1680 }
1681
1682 static const char *token2str(int token)
1683 {
1684 const struct match_token *t;
1685
1686 for (t = tokens; t->token != Opt_err; t++)
1687 if (t->token == token && !strchr(t->pattern, '='))
1688 break;
1689 return t->pattern;
1690 }
1691
1692 /*
1693 * Show an option if
1694 * - it's set to a non-default value OR
1695 * - if the per-sb default is different from the global default
1696 */
1697 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1698 int nodefs)
1699 {
1700 struct ext4_sb_info *sbi = EXT4_SB(sb);
1701 struct ext4_super_block *es = sbi->s_es;
1702 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1703 const struct mount_opts *m;
1704 char sep = nodefs ? '\n' : ',';
1705
1706 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1707 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1708
1709 if (sbi->s_sb_block != 1)
1710 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1711
1712 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1713 int want_set = m->flags & MOPT_SET;
1714 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1715 (m->flags & MOPT_CLEAR_ERR))
1716 continue;
1717 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1718 continue; /* skip if same as the default */
1719 if ((want_set &&
1720 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1721 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1722 continue; /* select Opt_noFoo vs Opt_Foo */
1723 SEQ_OPTS_PRINT("%s", token2str(m->token));
1724 }
1725
1726 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1727 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1728 SEQ_OPTS_PRINT("resuid=%u",
1729 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1730 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1731 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1732 SEQ_OPTS_PRINT("resgid=%u",
1733 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1734 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1735 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1736 SEQ_OPTS_PUTS("errors=remount-ro");
1737 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1738 SEQ_OPTS_PUTS("errors=continue");
1739 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1740 SEQ_OPTS_PUTS("errors=panic");
1741 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1742 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1743 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1744 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1745 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1746 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1747 if (sb->s_flags & MS_I_VERSION)
1748 SEQ_OPTS_PUTS("i_version");
1749 if (nodefs || sbi->s_stripe)
1750 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1751 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1752 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1753 SEQ_OPTS_PUTS("data=journal");
1754 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1755 SEQ_OPTS_PUTS("data=ordered");
1756 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1757 SEQ_OPTS_PUTS("data=writeback");
1758 }
1759 if (nodefs ||
1760 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1761 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1762 sbi->s_inode_readahead_blks);
1763
1764 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1765 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1766 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1767 if (nodefs || sbi->s_max_dir_size_kb)
1768 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1769
1770 ext4_show_quota_options(seq, sb);
1771 return 0;
1772 }
1773
1774 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1775 {
1776 return _ext4_show_options(seq, root->d_sb, 0);
1777 }
1778
1779 static int options_seq_show(struct seq_file *seq, void *offset)
1780 {
1781 struct super_block *sb = seq->private;
1782 int rc;
1783
1784 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1785 rc = _ext4_show_options(seq, sb, 1);
1786 seq_puts(seq, "\n");
1787 return rc;
1788 }
1789
1790 static int options_open_fs(struct inode *inode, struct file *file)
1791 {
1792 return single_open(file, options_seq_show, PDE_DATA(inode));
1793 }
1794
1795 static const struct file_operations ext4_seq_options_fops = {
1796 .owner = THIS_MODULE,
1797 .open = options_open_fs,
1798 .read = seq_read,
1799 .llseek = seq_lseek,
1800 .release = single_release,
1801 };
1802
1803 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1804 int read_only)
1805 {
1806 struct ext4_sb_info *sbi = EXT4_SB(sb);
1807 int res = 0;
1808
1809 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1810 ext4_msg(sb, KERN_ERR, "revision level too high, "
1811 "forcing read-only mode");
1812 res = MS_RDONLY;
1813 }
1814 if (read_only)
1815 goto done;
1816 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1817 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1818 "running e2fsck is recommended");
1819 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1820 ext4_msg(sb, KERN_WARNING,
1821 "warning: mounting fs with errors, "
1822 "running e2fsck is recommended");
1823 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1824 le16_to_cpu(es->s_mnt_count) >=
1825 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1826 ext4_msg(sb, KERN_WARNING,
1827 "warning: maximal mount count reached, "
1828 "running e2fsck is recommended");
1829 else if (le32_to_cpu(es->s_checkinterval) &&
1830 (le32_to_cpu(es->s_lastcheck) +
1831 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1832 ext4_msg(sb, KERN_WARNING,
1833 "warning: checktime reached, "
1834 "running e2fsck is recommended");
1835 if (!sbi->s_journal)
1836 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1837 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1838 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1839 le16_add_cpu(&es->s_mnt_count, 1);
1840 es->s_mtime = cpu_to_le32(get_seconds());
1841 ext4_update_dynamic_rev(sb);
1842 if (sbi->s_journal)
1843 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1844
1845 ext4_commit_super(sb, 1);
1846 done:
1847 if (test_opt(sb, DEBUG))
1848 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1849 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1850 sb->s_blocksize,
1851 sbi->s_groups_count,
1852 EXT4_BLOCKS_PER_GROUP(sb),
1853 EXT4_INODES_PER_GROUP(sb),
1854 sbi->s_mount_opt, sbi->s_mount_opt2);
1855
1856 cleancache_init_fs(sb);
1857 return res;
1858 }
1859
1860 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1861 {
1862 struct ext4_sb_info *sbi = EXT4_SB(sb);
1863 struct flex_groups *new_groups;
1864 int size;
1865
1866 if (!sbi->s_log_groups_per_flex)
1867 return 0;
1868
1869 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1870 if (size <= sbi->s_flex_groups_allocated)
1871 return 0;
1872
1873 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1874 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1875 if (!new_groups) {
1876 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1877 size / (int) sizeof(struct flex_groups));
1878 return -ENOMEM;
1879 }
1880
1881 if (sbi->s_flex_groups) {
1882 memcpy(new_groups, sbi->s_flex_groups,
1883 (sbi->s_flex_groups_allocated *
1884 sizeof(struct flex_groups)));
1885 ext4_kvfree(sbi->s_flex_groups);
1886 }
1887 sbi->s_flex_groups = new_groups;
1888 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1889 return 0;
1890 }
1891
1892 static int ext4_fill_flex_info(struct super_block *sb)
1893 {
1894 struct ext4_sb_info *sbi = EXT4_SB(sb);
1895 struct ext4_group_desc *gdp = NULL;
1896 ext4_group_t flex_group;
1897 unsigned int groups_per_flex = 0;
1898 int i, err;
1899
1900 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1901 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1902 sbi->s_log_groups_per_flex = 0;
1903 return 1;
1904 }
1905 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1906
1907 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1908 if (err)
1909 goto failed;
1910
1911 for (i = 0; i < sbi->s_groups_count; i++) {
1912 gdp = ext4_get_group_desc(sb, i, NULL);
1913
1914 flex_group = ext4_flex_group(sbi, i);
1915 atomic_add(ext4_free_inodes_count(sb, gdp),
1916 &sbi->s_flex_groups[flex_group].free_inodes);
1917 atomic64_add(ext4_free_group_clusters(sb, gdp),
1918 &sbi->s_flex_groups[flex_group].free_clusters);
1919 atomic_add(ext4_used_dirs_count(sb, gdp),
1920 &sbi->s_flex_groups[flex_group].used_dirs);
1921 }
1922
1923 return 1;
1924 failed:
1925 return 0;
1926 }
1927
1928 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1929 struct ext4_group_desc *gdp)
1930 {
1931 int offset;
1932 __u16 crc = 0;
1933 __le32 le_group = cpu_to_le32(block_group);
1934
1935 if ((sbi->s_es->s_feature_ro_compat &
1936 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1937 /* Use new metadata_csum algorithm */
1938 __le16 save_csum;
1939 __u32 csum32;
1940
1941 save_csum = gdp->bg_checksum;
1942 gdp->bg_checksum = 0;
1943 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1944 sizeof(le_group));
1945 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1946 sbi->s_desc_size);
1947 gdp->bg_checksum = save_csum;
1948
1949 crc = csum32 & 0xFFFF;
1950 goto out;
1951 }
1952
1953 /* old crc16 code */
1954 if (!(sbi->s_es->s_feature_ro_compat &
1955 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
1956 return 0;
1957
1958 offset = offsetof(struct ext4_group_desc, bg_checksum);
1959
1960 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1961 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1962 crc = crc16(crc, (__u8 *)gdp, offset);
1963 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1964 /* for checksum of struct ext4_group_desc do the rest...*/
1965 if ((sbi->s_es->s_feature_incompat &
1966 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1967 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1968 crc = crc16(crc, (__u8 *)gdp + offset,
1969 le16_to_cpu(sbi->s_es->s_desc_size) -
1970 offset);
1971
1972 out:
1973 return cpu_to_le16(crc);
1974 }
1975
1976 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1977 struct ext4_group_desc *gdp)
1978 {
1979 if (ext4_has_group_desc_csum(sb) &&
1980 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1981 block_group, gdp)))
1982 return 0;
1983
1984 return 1;
1985 }
1986
1987 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1988 struct ext4_group_desc *gdp)
1989 {
1990 if (!ext4_has_group_desc_csum(sb))
1991 return;
1992 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
1993 }
1994
1995 /* Called at mount-time, super-block is locked */
1996 static int ext4_check_descriptors(struct super_block *sb,
1997 ext4_group_t *first_not_zeroed)
1998 {
1999 struct ext4_sb_info *sbi = EXT4_SB(sb);
2000 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2001 ext4_fsblk_t last_block;
2002 ext4_fsblk_t block_bitmap;
2003 ext4_fsblk_t inode_bitmap;
2004 ext4_fsblk_t inode_table;
2005 int flexbg_flag = 0;
2006 ext4_group_t i, grp = sbi->s_groups_count;
2007
2008 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2009 flexbg_flag = 1;
2010
2011 ext4_debug("Checking group descriptors");
2012
2013 for (i = 0; i < sbi->s_groups_count; i++) {
2014 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2015
2016 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2017 last_block = ext4_blocks_count(sbi->s_es) - 1;
2018 else
2019 last_block = first_block +
2020 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2021
2022 if ((grp == sbi->s_groups_count) &&
2023 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2024 grp = i;
2025
2026 block_bitmap = ext4_block_bitmap(sb, gdp);
2027 if (block_bitmap < first_block || block_bitmap > last_block) {
2028 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2029 "Block bitmap for group %u not in group "
2030 "(block %llu)!", i, block_bitmap);
2031 return 0;
2032 }
2033 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2034 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2035 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2036 "Inode bitmap for group %u not in group "
2037 "(block %llu)!", i, inode_bitmap);
2038 return 0;
2039 }
2040 inode_table = ext4_inode_table(sb, gdp);
2041 if (inode_table < first_block ||
2042 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2043 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2044 "Inode table for group %u not in group "
2045 "(block %llu)!", i, inode_table);
2046 return 0;
2047 }
2048 ext4_lock_group(sb, i);
2049 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2050 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2051 "Checksum for group %u failed (%u!=%u)",
2052 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2053 gdp)), le16_to_cpu(gdp->bg_checksum));
2054 if (!(sb->s_flags & MS_RDONLY)) {
2055 ext4_unlock_group(sb, i);
2056 return 0;
2057 }
2058 }
2059 ext4_unlock_group(sb, i);
2060 if (!flexbg_flag)
2061 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2062 }
2063 if (NULL != first_not_zeroed)
2064 *first_not_zeroed = grp;
2065
2066 ext4_free_blocks_count_set(sbi->s_es,
2067 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2068 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2069 return 1;
2070 }
2071
2072 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2073 * the superblock) which were deleted from all directories, but held open by
2074 * a process at the time of a crash. We walk the list and try to delete these
2075 * inodes at recovery time (only with a read-write filesystem).
2076 *
2077 * In order to keep the orphan inode chain consistent during traversal (in
2078 * case of crash during recovery), we link each inode into the superblock
2079 * orphan list_head and handle it the same way as an inode deletion during
2080 * normal operation (which journals the operations for us).
2081 *
2082 * We only do an iget() and an iput() on each inode, which is very safe if we
2083 * accidentally point at an in-use or already deleted inode. The worst that
2084 * can happen in this case is that we get a "bit already cleared" message from
2085 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2086 * e2fsck was run on this filesystem, and it must have already done the orphan
2087 * inode cleanup for us, so we can safely abort without any further action.
2088 */
2089 static void ext4_orphan_cleanup(struct super_block *sb,
2090 struct ext4_super_block *es)
2091 {
2092 unsigned int s_flags = sb->s_flags;
2093 int nr_orphans = 0, nr_truncates = 0;
2094 #ifdef CONFIG_QUOTA
2095 int i;
2096 #endif
2097 if (!es->s_last_orphan) {
2098 jbd_debug(4, "no orphan inodes to clean up\n");
2099 return;
2100 }
2101
2102 if (bdev_read_only(sb->s_bdev)) {
2103 ext4_msg(sb, KERN_ERR, "write access "
2104 "unavailable, skipping orphan cleanup");
2105 return;
2106 }
2107
2108 /* Check if feature set would not allow a r/w mount */
2109 if (!ext4_feature_set_ok(sb, 0)) {
2110 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2111 "unknown ROCOMPAT features");
2112 return;
2113 }
2114
2115 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2116 /* don't clear list on RO mount w/ errors */
2117 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2118 jbd_debug(1, "Errors on filesystem, "
2119 "clearing orphan list.\n");
2120 es->s_last_orphan = 0;
2121 }
2122 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2123 return;
2124 }
2125
2126 if (s_flags & MS_RDONLY) {
2127 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2128 sb->s_flags &= ~MS_RDONLY;
2129 }
2130 #ifdef CONFIG_QUOTA
2131 /* Needed for iput() to work correctly and not trash data */
2132 sb->s_flags |= MS_ACTIVE;
2133 /* Turn on quotas so that they are updated correctly */
2134 for (i = 0; i < MAXQUOTAS; i++) {
2135 if (EXT4_SB(sb)->s_qf_names[i]) {
2136 int ret = ext4_quota_on_mount(sb, i);
2137 if (ret < 0)
2138 ext4_msg(sb, KERN_ERR,
2139 "Cannot turn on journaled "
2140 "quota: error %d", ret);
2141 }
2142 }
2143 #endif
2144
2145 while (es->s_last_orphan) {
2146 struct inode *inode;
2147
2148 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2149 if (IS_ERR(inode)) {
2150 es->s_last_orphan = 0;
2151 break;
2152 }
2153
2154 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2155 dquot_initialize(inode);
2156 if (inode->i_nlink) {
2157 ext4_msg(sb, KERN_DEBUG,
2158 "%s: truncating inode %lu to %lld bytes",
2159 __func__, inode->i_ino, inode->i_size);
2160 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2161 inode->i_ino, inode->i_size);
2162 mutex_lock(&inode->i_mutex);
2163 ext4_truncate(inode);
2164 mutex_unlock(&inode->i_mutex);
2165 nr_truncates++;
2166 } else {
2167 ext4_msg(sb, KERN_DEBUG,
2168 "%s: deleting unreferenced inode %lu",
2169 __func__, inode->i_ino);
2170 jbd_debug(2, "deleting unreferenced inode %lu\n",
2171 inode->i_ino);
2172 nr_orphans++;
2173 }
2174 iput(inode); /* The delete magic happens here! */
2175 }
2176
2177 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2178
2179 if (nr_orphans)
2180 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2181 PLURAL(nr_orphans));
2182 if (nr_truncates)
2183 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2184 PLURAL(nr_truncates));
2185 #ifdef CONFIG_QUOTA
2186 /* Turn quotas off */
2187 for (i = 0; i < MAXQUOTAS; i++) {
2188 if (sb_dqopt(sb)->files[i])
2189 dquot_quota_off(sb, i);
2190 }
2191 #endif
2192 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2193 }
2194
2195 /*
2196 * Maximal extent format file size.
2197 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2198 * extent format containers, within a sector_t, and within i_blocks
2199 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2200 * so that won't be a limiting factor.
2201 *
2202 * However there is other limiting factor. We do store extents in the form
2203 * of starting block and length, hence the resulting length of the extent
2204 * covering maximum file size must fit into on-disk format containers as
2205 * well. Given that length is always by 1 unit bigger than max unit (because
2206 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2207 *
2208 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2209 */
2210 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2211 {
2212 loff_t res;
2213 loff_t upper_limit = MAX_LFS_FILESIZE;
2214
2215 /* small i_blocks in vfs inode? */
2216 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2217 /*
2218 * CONFIG_LBDAF is not enabled implies the inode
2219 * i_block represent total blocks in 512 bytes
2220 * 32 == size of vfs inode i_blocks * 8
2221 */
2222 upper_limit = (1LL << 32) - 1;
2223
2224 /* total blocks in file system block size */
2225 upper_limit >>= (blkbits - 9);
2226 upper_limit <<= blkbits;
2227 }
2228
2229 /*
2230 * 32-bit extent-start container, ee_block. We lower the maxbytes
2231 * by one fs block, so ee_len can cover the extent of maximum file
2232 * size
2233 */
2234 res = (1LL << 32) - 1;
2235 res <<= blkbits;
2236
2237 /* Sanity check against vm- & vfs- imposed limits */
2238 if (res > upper_limit)
2239 res = upper_limit;
2240
2241 return res;
2242 }
2243
2244 /*
2245 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2246 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2247 * We need to be 1 filesystem block less than the 2^48 sector limit.
2248 */
2249 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2250 {
2251 loff_t res = EXT4_NDIR_BLOCKS;
2252 int meta_blocks;
2253 loff_t upper_limit;
2254 /* This is calculated to be the largest file size for a dense, block
2255 * mapped file such that the file's total number of 512-byte sectors,
2256 * including data and all indirect blocks, does not exceed (2^48 - 1).
2257 *
2258 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2259 * number of 512-byte sectors of the file.
2260 */
2261
2262 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2263 /*
2264 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2265 * the inode i_block field represents total file blocks in
2266 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2267 */
2268 upper_limit = (1LL << 32) - 1;
2269
2270 /* total blocks in file system block size */
2271 upper_limit >>= (bits - 9);
2272
2273 } else {
2274 /*
2275 * We use 48 bit ext4_inode i_blocks
2276 * With EXT4_HUGE_FILE_FL set the i_blocks
2277 * represent total number of blocks in
2278 * file system block size
2279 */
2280 upper_limit = (1LL << 48) - 1;
2281
2282 }
2283
2284 /* indirect blocks */
2285 meta_blocks = 1;
2286 /* double indirect blocks */
2287 meta_blocks += 1 + (1LL << (bits-2));
2288 /* tripple indirect blocks */
2289 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2290
2291 upper_limit -= meta_blocks;
2292 upper_limit <<= bits;
2293
2294 res += 1LL << (bits-2);
2295 res += 1LL << (2*(bits-2));
2296 res += 1LL << (3*(bits-2));
2297 res <<= bits;
2298 if (res > upper_limit)
2299 res = upper_limit;
2300
2301 if (res > MAX_LFS_FILESIZE)
2302 res = MAX_LFS_FILESIZE;
2303
2304 return res;
2305 }
2306
2307 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2308 ext4_fsblk_t logical_sb_block, int nr)
2309 {
2310 struct ext4_sb_info *sbi = EXT4_SB(sb);
2311 ext4_group_t bg, first_meta_bg;
2312 int has_super = 0;
2313
2314 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2315
2316 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2317 nr < first_meta_bg)
2318 return logical_sb_block + nr + 1;
2319 bg = sbi->s_desc_per_block * nr;
2320 if (ext4_bg_has_super(sb, bg))
2321 has_super = 1;
2322
2323 return (has_super + ext4_group_first_block_no(sb, bg));
2324 }
2325
2326 /**
2327 * ext4_get_stripe_size: Get the stripe size.
2328 * @sbi: In memory super block info
2329 *
2330 * If we have specified it via mount option, then
2331 * use the mount option value. If the value specified at mount time is
2332 * greater than the blocks per group use the super block value.
2333 * If the super block value is greater than blocks per group return 0.
2334 * Allocator needs it be less than blocks per group.
2335 *
2336 */
2337 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2338 {
2339 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2340 unsigned long stripe_width =
2341 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2342 int ret;
2343
2344 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2345 ret = sbi->s_stripe;
2346 else if (stripe_width <= sbi->s_blocks_per_group)
2347 ret = stripe_width;
2348 else if (stride <= sbi->s_blocks_per_group)
2349 ret = stride;
2350 else
2351 ret = 0;
2352
2353 /*
2354 * If the stripe width is 1, this makes no sense and
2355 * we set it to 0 to turn off stripe handling code.
2356 */
2357 if (ret <= 1)
2358 ret = 0;
2359
2360 return ret;
2361 }
2362
2363 /* sysfs supprt */
2364
2365 struct ext4_attr {
2366 struct attribute attr;
2367 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2368 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2369 const char *, size_t);
2370 int offset;
2371 };
2372
2373 static int parse_strtoull(const char *buf,
2374 unsigned long long max, unsigned long long *value)
2375 {
2376 int ret;
2377
2378 ret = kstrtoull(skip_spaces(buf), 0, value);
2379 if (!ret && *value > max)
2380 ret = -EINVAL;
2381 return ret;
2382 }
2383
2384 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2385 struct ext4_sb_info *sbi,
2386 char *buf)
2387 {
2388 return snprintf(buf, PAGE_SIZE, "%llu\n",
2389 (s64) EXT4_C2B(sbi,
2390 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2391 }
2392
2393 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2394 struct ext4_sb_info *sbi, char *buf)
2395 {
2396 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2397
2398 if (!sb->s_bdev->bd_part)
2399 return snprintf(buf, PAGE_SIZE, "0\n");
2400 return snprintf(buf, PAGE_SIZE, "%lu\n",
2401 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2402 sbi->s_sectors_written_start) >> 1);
2403 }
2404
2405 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2406 struct ext4_sb_info *sbi, char *buf)
2407 {
2408 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2409
2410 if (!sb->s_bdev->bd_part)
2411 return snprintf(buf, PAGE_SIZE, "0\n");
2412 return snprintf(buf, PAGE_SIZE, "%llu\n",
2413 (unsigned long long)(sbi->s_kbytes_written +
2414 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2415 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2416 }
2417
2418 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2419 struct ext4_sb_info *sbi,
2420 const char *buf, size_t count)
2421 {
2422 unsigned long t;
2423 int ret;
2424
2425 ret = kstrtoul(skip_spaces(buf), 0, &t);
2426 if (ret)
2427 return ret;
2428
2429 if (t && (!is_power_of_2(t) || t > 0x40000000))
2430 return -EINVAL;
2431
2432 sbi->s_inode_readahead_blks = t;
2433 return count;
2434 }
2435
2436 static ssize_t sbi_ui_show(struct ext4_attr *a,
2437 struct ext4_sb_info *sbi, char *buf)
2438 {
2439 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2440
2441 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2442 }
2443
2444 static ssize_t sbi_ui_store(struct ext4_attr *a,
2445 struct ext4_sb_info *sbi,
2446 const char *buf, size_t count)
2447 {
2448 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2449 unsigned long t;
2450 int ret;
2451
2452 ret = kstrtoul(skip_spaces(buf), 0, &t);
2453 if (ret)
2454 return ret;
2455 *ui = t;
2456 return count;
2457 }
2458
2459 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2460 struct ext4_sb_info *sbi, char *buf)
2461 {
2462 return snprintf(buf, PAGE_SIZE, "%llu\n",
2463 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2464 }
2465
2466 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2467 struct ext4_sb_info *sbi,
2468 const char *buf, size_t count)
2469 {
2470 unsigned long long val;
2471 int ret;
2472
2473 if (parse_strtoull(buf, -1ULL, &val))
2474 return -EINVAL;
2475 ret = ext4_reserve_clusters(sbi, val);
2476
2477 return ret ? ret : count;
2478 }
2479
2480 static ssize_t trigger_test_error(struct ext4_attr *a,
2481 struct ext4_sb_info *sbi,
2482 const char *buf, size_t count)
2483 {
2484 int len = count;
2485
2486 if (!capable(CAP_SYS_ADMIN))
2487 return -EPERM;
2488
2489 if (len && buf[len-1] == '\n')
2490 len--;
2491
2492 if (len)
2493 ext4_error(sbi->s_sb, "%.*s", len, buf);
2494 return count;
2495 }
2496
2497 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2498 static struct ext4_attr ext4_attr_##_name = { \
2499 .attr = {.name = __stringify(_name), .mode = _mode }, \
2500 .show = _show, \
2501 .store = _store, \
2502 .offset = offsetof(struct ext4_sb_info, _elname), \
2503 }
2504 #define EXT4_ATTR(name, mode, show, store) \
2505 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2506
2507 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2508 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2509 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2510 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2511 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2512 #define ATTR_LIST(name) &ext4_attr_##name.attr
2513
2514 EXT4_RO_ATTR(delayed_allocation_blocks);
2515 EXT4_RO_ATTR(session_write_kbytes);
2516 EXT4_RO_ATTR(lifetime_write_kbytes);
2517 EXT4_RW_ATTR(reserved_clusters);
2518 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2519 inode_readahead_blks_store, s_inode_readahead_blks);
2520 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2521 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2522 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2523 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2524 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2525 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2526 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2527 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2528 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2529 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2530
2531 static struct attribute *ext4_attrs[] = {
2532 ATTR_LIST(delayed_allocation_blocks),
2533 ATTR_LIST(session_write_kbytes),
2534 ATTR_LIST(lifetime_write_kbytes),
2535 ATTR_LIST(reserved_clusters),
2536 ATTR_LIST(inode_readahead_blks),
2537 ATTR_LIST(inode_goal),
2538 ATTR_LIST(mb_stats),
2539 ATTR_LIST(mb_max_to_scan),
2540 ATTR_LIST(mb_min_to_scan),
2541 ATTR_LIST(mb_order2_req),
2542 ATTR_LIST(mb_stream_req),
2543 ATTR_LIST(mb_group_prealloc),
2544 ATTR_LIST(max_writeback_mb_bump),
2545 ATTR_LIST(extent_max_zeroout_kb),
2546 ATTR_LIST(trigger_fs_error),
2547 NULL,
2548 };
2549
2550 /* Features this copy of ext4 supports */
2551 EXT4_INFO_ATTR(lazy_itable_init);
2552 EXT4_INFO_ATTR(batched_discard);
2553 EXT4_INFO_ATTR(meta_bg_resize);
2554
2555 static struct attribute *ext4_feat_attrs[] = {
2556 ATTR_LIST(lazy_itable_init),
2557 ATTR_LIST(batched_discard),
2558 ATTR_LIST(meta_bg_resize),
2559 NULL,
2560 };
2561
2562 static ssize_t ext4_attr_show(struct kobject *kobj,
2563 struct attribute *attr, char *buf)
2564 {
2565 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2566 s_kobj);
2567 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2568
2569 return a->show ? a->show(a, sbi, buf) : 0;
2570 }
2571
2572 static ssize_t ext4_attr_store(struct kobject *kobj,
2573 struct attribute *attr,
2574 const char *buf, size_t len)
2575 {
2576 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2577 s_kobj);
2578 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2579
2580 return a->store ? a->store(a, sbi, buf, len) : 0;
2581 }
2582
2583 static void ext4_sb_release(struct kobject *kobj)
2584 {
2585 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2586 s_kobj);
2587 complete(&sbi->s_kobj_unregister);
2588 }
2589
2590 static const struct sysfs_ops ext4_attr_ops = {
2591 .show = ext4_attr_show,
2592 .store = ext4_attr_store,
2593 };
2594
2595 static struct kobj_type ext4_ktype = {
2596 .default_attrs = ext4_attrs,
2597 .sysfs_ops = &ext4_attr_ops,
2598 .release = ext4_sb_release,
2599 };
2600
2601 static void ext4_feat_release(struct kobject *kobj)
2602 {
2603 complete(&ext4_feat->f_kobj_unregister);
2604 }
2605
2606 static struct kobj_type ext4_feat_ktype = {
2607 .default_attrs = ext4_feat_attrs,
2608 .sysfs_ops = &ext4_attr_ops,
2609 .release = ext4_feat_release,
2610 };
2611
2612 /*
2613 * Check whether this filesystem can be mounted based on
2614 * the features present and the RDONLY/RDWR mount requested.
2615 * Returns 1 if this filesystem can be mounted as requested,
2616 * 0 if it cannot be.
2617 */
2618 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2619 {
2620 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2621 ext4_msg(sb, KERN_ERR,
2622 "Couldn't mount because of "
2623 "unsupported optional features (%x)",
2624 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2625 ~EXT4_FEATURE_INCOMPAT_SUPP));
2626 return 0;
2627 }
2628
2629 if (readonly)
2630 return 1;
2631
2632 /* Check that feature set is OK for a read-write mount */
2633 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2634 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2635 "unsupported optional features (%x)",
2636 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2637 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2638 return 0;
2639 }
2640 /*
2641 * Large file size enabled file system can only be mounted
2642 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2643 */
2644 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2645 if (sizeof(blkcnt_t) < sizeof(u64)) {
2646 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2647 "cannot be mounted RDWR without "
2648 "CONFIG_LBDAF");
2649 return 0;
2650 }
2651 }
2652 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2653 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2654 ext4_msg(sb, KERN_ERR,
2655 "Can't support bigalloc feature without "
2656 "extents feature\n");
2657 return 0;
2658 }
2659
2660 #ifndef CONFIG_QUOTA
2661 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2662 !readonly) {
2663 ext4_msg(sb, KERN_ERR,
2664 "Filesystem with quota feature cannot be mounted RDWR "
2665 "without CONFIG_QUOTA");
2666 return 0;
2667 }
2668 #endif /* CONFIG_QUOTA */
2669 return 1;
2670 }
2671
2672 /*
2673 * This function is called once a day if we have errors logged
2674 * on the file system
2675 */
2676 static void print_daily_error_info(unsigned long arg)
2677 {
2678 struct super_block *sb = (struct super_block *) arg;
2679 struct ext4_sb_info *sbi;
2680 struct ext4_super_block *es;
2681
2682 sbi = EXT4_SB(sb);
2683 es = sbi->s_es;
2684
2685 if (es->s_error_count)
2686 /* fsck newer than v1.41.13 is needed to clean this condition. */
2687 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2688 le32_to_cpu(es->s_error_count));
2689 if (es->s_first_error_time) {
2690 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2691 sb->s_id, le32_to_cpu(es->s_first_error_time),
2692 (int) sizeof(es->s_first_error_func),
2693 es->s_first_error_func,
2694 le32_to_cpu(es->s_first_error_line));
2695 if (es->s_first_error_ino)
2696 printk(": inode %u",
2697 le32_to_cpu(es->s_first_error_ino));
2698 if (es->s_first_error_block)
2699 printk(": block %llu", (unsigned long long)
2700 le64_to_cpu(es->s_first_error_block));
2701 printk("\n");
2702 }
2703 if (es->s_last_error_time) {
2704 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2705 sb->s_id, le32_to_cpu(es->s_last_error_time),
2706 (int) sizeof(es->s_last_error_func),
2707 es->s_last_error_func,
2708 le32_to_cpu(es->s_last_error_line));
2709 if (es->s_last_error_ino)
2710 printk(": inode %u",
2711 le32_to_cpu(es->s_last_error_ino));
2712 if (es->s_last_error_block)
2713 printk(": block %llu", (unsigned long long)
2714 le64_to_cpu(es->s_last_error_block));
2715 printk("\n");
2716 }
2717 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2718 }
2719
2720 /* Find next suitable group and run ext4_init_inode_table */
2721 static int ext4_run_li_request(struct ext4_li_request *elr)
2722 {
2723 struct ext4_group_desc *gdp = NULL;
2724 ext4_group_t group, ngroups;
2725 struct super_block *sb;
2726 unsigned long timeout = 0;
2727 int ret = 0;
2728
2729 sb = elr->lr_super;
2730 ngroups = EXT4_SB(sb)->s_groups_count;
2731
2732 sb_start_write(sb);
2733 for (group = elr->lr_next_group; group < ngroups; group++) {
2734 gdp = ext4_get_group_desc(sb, group, NULL);
2735 if (!gdp) {
2736 ret = 1;
2737 break;
2738 }
2739
2740 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2741 break;
2742 }
2743
2744 if (group >= ngroups)
2745 ret = 1;
2746
2747 if (!ret) {
2748 timeout = jiffies;
2749 ret = ext4_init_inode_table(sb, group,
2750 elr->lr_timeout ? 0 : 1);
2751 if (elr->lr_timeout == 0) {
2752 timeout = (jiffies - timeout) *
2753 elr->lr_sbi->s_li_wait_mult;
2754 elr->lr_timeout = timeout;
2755 }
2756 elr->lr_next_sched = jiffies + elr->lr_timeout;
2757 elr->lr_next_group = group + 1;
2758 }
2759 sb_end_write(sb);
2760
2761 return ret;
2762 }
2763
2764 /*
2765 * Remove lr_request from the list_request and free the
2766 * request structure. Should be called with li_list_mtx held
2767 */
2768 static void ext4_remove_li_request(struct ext4_li_request *elr)
2769 {
2770 struct ext4_sb_info *sbi;
2771
2772 if (!elr)
2773 return;
2774
2775 sbi = elr->lr_sbi;
2776
2777 list_del(&elr->lr_request);
2778 sbi->s_li_request = NULL;
2779 kfree(elr);
2780 }
2781
2782 static void ext4_unregister_li_request(struct super_block *sb)
2783 {
2784 mutex_lock(&ext4_li_mtx);
2785 if (!ext4_li_info) {
2786 mutex_unlock(&ext4_li_mtx);
2787 return;
2788 }
2789
2790 mutex_lock(&ext4_li_info->li_list_mtx);
2791 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2792 mutex_unlock(&ext4_li_info->li_list_mtx);
2793 mutex_unlock(&ext4_li_mtx);
2794 }
2795
2796 static struct task_struct *ext4_lazyinit_task;
2797
2798 /*
2799 * This is the function where ext4lazyinit thread lives. It walks
2800 * through the request list searching for next scheduled filesystem.
2801 * When such a fs is found, run the lazy initialization request
2802 * (ext4_rn_li_request) and keep track of the time spend in this
2803 * function. Based on that time we compute next schedule time of
2804 * the request. When walking through the list is complete, compute
2805 * next waking time and put itself into sleep.
2806 */
2807 static int ext4_lazyinit_thread(void *arg)
2808 {
2809 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2810 struct list_head *pos, *n;
2811 struct ext4_li_request *elr;
2812 unsigned long next_wakeup, cur;
2813
2814 BUG_ON(NULL == eli);
2815 set_freezable();
2816
2817 cont_thread:
2818 while (true) {
2819 next_wakeup = MAX_JIFFY_OFFSET;
2820
2821 mutex_lock(&eli->li_list_mtx);
2822 if (list_empty(&eli->li_request_list)) {
2823 mutex_unlock(&eli->li_list_mtx);
2824 goto exit_thread;
2825 }
2826
2827 list_for_each_safe(pos, n, &eli->li_request_list) {
2828 elr = list_entry(pos, struct ext4_li_request,
2829 lr_request);
2830
2831 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2832 if (ext4_run_li_request(elr) != 0) {
2833 /* error, remove the lazy_init job */
2834 ext4_remove_li_request(elr);
2835 continue;
2836 }
2837 }
2838
2839 if (time_before(elr->lr_next_sched, next_wakeup))
2840 next_wakeup = elr->lr_next_sched;
2841 }
2842 mutex_unlock(&eli->li_list_mtx);
2843
2844 try_to_freeze();
2845
2846 cur = jiffies;
2847 if ((time_after_eq(cur, next_wakeup)) ||
2848 (MAX_JIFFY_OFFSET == next_wakeup)) {
2849 cond_resched();
2850 continue;
2851 }
2852
2853 schedule_timeout_interruptible(next_wakeup - cur);
2854
2855 if (kthread_freezable_should_stop(NULL)) {
2856 ext4_clear_request_list();
2857 goto exit_thread;
2858 }
2859 }
2860
2861 exit_thread:
2862 /*
2863 * It looks like the request list is empty, but we need
2864 * to check it under the li_list_mtx lock, to prevent any
2865 * additions into it, and of course we should lock ext4_li_mtx
2866 * to atomically free the list and ext4_li_info, because at
2867 * this point another ext4 filesystem could be registering
2868 * new one.
2869 */
2870 mutex_lock(&ext4_li_mtx);
2871 mutex_lock(&eli->li_list_mtx);
2872 if (!list_empty(&eli->li_request_list)) {
2873 mutex_unlock(&eli->li_list_mtx);
2874 mutex_unlock(&ext4_li_mtx);
2875 goto cont_thread;
2876 }
2877 mutex_unlock(&eli->li_list_mtx);
2878 kfree(ext4_li_info);
2879 ext4_li_info = NULL;
2880 mutex_unlock(&ext4_li_mtx);
2881
2882 return 0;
2883 }
2884
2885 static void ext4_clear_request_list(void)
2886 {
2887 struct list_head *pos, *n;
2888 struct ext4_li_request *elr;
2889
2890 mutex_lock(&ext4_li_info->li_list_mtx);
2891 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2892 elr = list_entry(pos, struct ext4_li_request,
2893 lr_request);
2894 ext4_remove_li_request(elr);
2895 }
2896 mutex_unlock(&ext4_li_info->li_list_mtx);
2897 }
2898
2899 static int ext4_run_lazyinit_thread(void)
2900 {
2901 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2902 ext4_li_info, "ext4lazyinit");
2903 if (IS_ERR(ext4_lazyinit_task)) {
2904 int err = PTR_ERR(ext4_lazyinit_task);
2905 ext4_clear_request_list();
2906 kfree(ext4_li_info);
2907 ext4_li_info = NULL;
2908 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2909 "initialization thread\n",
2910 err);
2911 return err;
2912 }
2913 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2914 return 0;
2915 }
2916
2917 /*
2918 * Check whether it make sense to run itable init. thread or not.
2919 * If there is at least one uninitialized inode table, return
2920 * corresponding group number, else the loop goes through all
2921 * groups and return total number of groups.
2922 */
2923 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2924 {
2925 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2926 struct ext4_group_desc *gdp = NULL;
2927
2928 for (group = 0; group < ngroups; group++) {
2929 gdp = ext4_get_group_desc(sb, group, NULL);
2930 if (!gdp)
2931 continue;
2932
2933 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2934 break;
2935 }
2936
2937 return group;
2938 }
2939
2940 static int ext4_li_info_new(void)
2941 {
2942 struct ext4_lazy_init *eli = NULL;
2943
2944 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2945 if (!eli)
2946 return -ENOMEM;
2947
2948 INIT_LIST_HEAD(&eli->li_request_list);
2949 mutex_init(&eli->li_list_mtx);
2950
2951 eli->li_state |= EXT4_LAZYINIT_QUIT;
2952
2953 ext4_li_info = eli;
2954
2955 return 0;
2956 }
2957
2958 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2959 ext4_group_t start)
2960 {
2961 struct ext4_sb_info *sbi = EXT4_SB(sb);
2962 struct ext4_li_request *elr;
2963 unsigned long rnd;
2964
2965 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2966 if (!elr)
2967 return NULL;
2968
2969 elr->lr_super = sb;
2970 elr->lr_sbi = sbi;
2971 elr->lr_next_group = start;
2972
2973 /*
2974 * Randomize first schedule time of the request to
2975 * spread the inode table initialization requests
2976 * better.
2977 */
2978 get_random_bytes(&rnd, sizeof(rnd));
2979 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2980 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2981
2982 return elr;
2983 }
2984
2985 int ext4_register_li_request(struct super_block *sb,
2986 ext4_group_t first_not_zeroed)
2987 {
2988 struct ext4_sb_info *sbi = EXT4_SB(sb);
2989 struct ext4_li_request *elr = NULL;
2990 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2991 int ret = 0;
2992
2993 mutex_lock(&ext4_li_mtx);
2994 if (sbi->s_li_request != NULL) {
2995 /*
2996 * Reset timeout so it can be computed again, because
2997 * s_li_wait_mult might have changed.
2998 */
2999 sbi->s_li_request->lr_timeout = 0;
3000 goto out;
3001 }
3002
3003 if (first_not_zeroed == ngroups ||
3004 (sb->s_flags & MS_RDONLY) ||
3005 !test_opt(sb, INIT_INODE_TABLE))
3006 goto out;
3007
3008 elr = ext4_li_request_new(sb, first_not_zeroed);
3009 if (!elr) {
3010 ret = -ENOMEM;
3011 goto out;
3012 }
3013
3014 if (NULL == ext4_li_info) {
3015 ret = ext4_li_info_new();
3016 if (ret)
3017 goto out;
3018 }
3019
3020 mutex_lock(&ext4_li_info->li_list_mtx);
3021 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3022 mutex_unlock(&ext4_li_info->li_list_mtx);
3023
3024 sbi->s_li_request = elr;
3025 /*
3026 * set elr to NULL here since it has been inserted to
3027 * the request_list and the removal and free of it is
3028 * handled by ext4_clear_request_list from now on.
3029 */
3030 elr = NULL;
3031
3032 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3033 ret = ext4_run_lazyinit_thread();
3034 if (ret)
3035 goto out;
3036 }
3037 out:
3038 mutex_unlock(&ext4_li_mtx);
3039 if (ret)
3040 kfree(elr);
3041 return ret;
3042 }
3043
3044 /*
3045 * We do not need to lock anything since this is called on
3046 * module unload.
3047 */
3048 static void ext4_destroy_lazyinit_thread(void)
3049 {
3050 /*
3051 * If thread exited earlier
3052 * there's nothing to be done.
3053 */
3054 if (!ext4_li_info || !ext4_lazyinit_task)
3055 return;
3056
3057 kthread_stop(ext4_lazyinit_task);
3058 }
3059
3060 static int set_journal_csum_feature_set(struct super_block *sb)
3061 {
3062 int ret = 1;
3063 int compat, incompat;
3064 struct ext4_sb_info *sbi = EXT4_SB(sb);
3065
3066 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3067 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3068 /* journal checksum v2 */
3069 compat = 0;
3070 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3071 } else {
3072 /* journal checksum v1 */
3073 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3074 incompat = 0;
3075 }
3076
3077 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3078 ret = jbd2_journal_set_features(sbi->s_journal,
3079 compat, 0,
3080 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3081 incompat);
3082 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3083 ret = jbd2_journal_set_features(sbi->s_journal,
3084 compat, 0,
3085 incompat);
3086 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3087 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3088 } else {
3089 jbd2_journal_clear_features(sbi->s_journal,
3090 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3091 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3092 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3093 }
3094
3095 return ret;
3096 }
3097
3098 /*
3099 * Note: calculating the overhead so we can be compatible with
3100 * historical BSD practice is quite difficult in the face of
3101 * clusters/bigalloc. This is because multiple metadata blocks from
3102 * different block group can end up in the same allocation cluster.
3103 * Calculating the exact overhead in the face of clustered allocation
3104 * requires either O(all block bitmaps) in memory or O(number of block
3105 * groups**2) in time. We will still calculate the superblock for
3106 * older file systems --- and if we come across with a bigalloc file
3107 * system with zero in s_overhead_clusters the estimate will be close to
3108 * correct especially for very large cluster sizes --- but for newer
3109 * file systems, it's better to calculate this figure once at mkfs
3110 * time, and store it in the superblock. If the superblock value is
3111 * present (even for non-bigalloc file systems), we will use it.
3112 */
3113 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3114 char *buf)
3115 {
3116 struct ext4_sb_info *sbi = EXT4_SB(sb);
3117 struct ext4_group_desc *gdp;
3118 ext4_fsblk_t first_block, last_block, b;
3119 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3120 int s, j, count = 0;
3121
3122 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3123 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3124 sbi->s_itb_per_group + 2);
3125
3126 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3127 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3128 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3129 for (i = 0; i < ngroups; i++) {
3130 gdp = ext4_get_group_desc(sb, i, NULL);
3131 b = ext4_block_bitmap(sb, gdp);
3132 if (b >= first_block && b <= last_block) {
3133 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3134 count++;
3135 }
3136 b = ext4_inode_bitmap(sb, gdp);
3137 if (b >= first_block && b <= last_block) {
3138 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3139 count++;
3140 }
3141 b = ext4_inode_table(sb, gdp);
3142 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3143 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3144 int c = EXT4_B2C(sbi, b - first_block);
3145 ext4_set_bit(c, buf);
3146 count++;
3147 }
3148 if (i != grp)
3149 continue;
3150 s = 0;
3151 if (ext4_bg_has_super(sb, grp)) {
3152 ext4_set_bit(s++, buf);
3153 count++;
3154 }
3155 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3156 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3157 count++;
3158 }
3159 }
3160 if (!count)
3161 return 0;
3162 return EXT4_CLUSTERS_PER_GROUP(sb) -
3163 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3164 }
3165
3166 /*
3167 * Compute the overhead and stash it in sbi->s_overhead
3168 */
3169 int ext4_calculate_overhead(struct super_block *sb)
3170 {
3171 struct ext4_sb_info *sbi = EXT4_SB(sb);
3172 struct ext4_super_block *es = sbi->s_es;
3173 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3174 ext4_fsblk_t overhead = 0;
3175 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3176
3177 if (!buf)
3178 return -ENOMEM;
3179
3180 /*
3181 * Compute the overhead (FS structures). This is constant
3182 * for a given filesystem unless the number of block groups
3183 * changes so we cache the previous value until it does.
3184 */
3185
3186 /*
3187 * All of the blocks before first_data_block are overhead
3188 */
3189 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3190
3191 /*
3192 * Add the overhead found in each block group
3193 */
3194 for (i = 0; i < ngroups; i++) {
3195 int blks;
3196
3197 blks = count_overhead(sb, i, buf);
3198 overhead += blks;
3199 if (blks)
3200 memset(buf, 0, PAGE_SIZE);
3201 cond_resched();
3202 }
3203 /* Add the journal blocks as well */
3204 if (sbi->s_journal)
3205 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3206
3207 sbi->s_overhead = overhead;
3208 smp_wmb();
3209 free_page((unsigned long) buf);
3210 return 0;
3211 }
3212
3213
3214 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3215 {
3216 ext4_fsblk_t resv_clusters;
3217
3218 /*
3219 * There's no need to reserve anything when we aren't using extents.
3220 * The space estimates are exact, there are no unwritten extents,
3221 * hole punching doesn't need new metadata... This is needed especially
3222 * to keep ext2/3 backward compatibility.
3223 */
3224 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3225 return 0;
3226 /*
3227 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3228 * This should cover the situations where we can not afford to run
3229 * out of space like for example punch hole, or converting
3230 * uninitialized extents in delalloc path. In most cases such
3231 * allocation would require 1, or 2 blocks, higher numbers are
3232 * very rare.
3233 */
3234 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3235 EXT4_SB(sb)->s_cluster_bits;
3236
3237 do_div(resv_clusters, 50);
3238 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3239
3240 return resv_clusters;
3241 }
3242
3243
3244 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3245 {
3246 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3247 sbi->s_cluster_bits;
3248
3249 if (count >= clusters)
3250 return -EINVAL;
3251
3252 atomic64_set(&sbi->s_resv_clusters, count);
3253 return 0;
3254 }
3255
3256 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3257 {
3258 char *orig_data = kstrdup(data, GFP_KERNEL);
3259 struct buffer_head *bh;
3260 struct ext4_super_block *es = NULL;
3261 struct ext4_sb_info *sbi;
3262 ext4_fsblk_t block;
3263 ext4_fsblk_t sb_block = get_sb_block(&data);
3264 ext4_fsblk_t logical_sb_block;
3265 unsigned long offset = 0;
3266 unsigned long journal_devnum = 0;
3267 unsigned long def_mount_opts;
3268 struct inode *root;
3269 char *cp;
3270 const char *descr;
3271 int ret = -ENOMEM;
3272 int blocksize, clustersize;
3273 unsigned int db_count;
3274 unsigned int i;
3275 int needs_recovery, has_huge_files, has_bigalloc;
3276 __u64 blocks_count;
3277 int err = 0;
3278 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3279 ext4_group_t first_not_zeroed;
3280
3281 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3282 if (!sbi)
3283 goto out_free_orig;
3284
3285 sbi->s_blockgroup_lock =
3286 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3287 if (!sbi->s_blockgroup_lock) {
3288 kfree(sbi);
3289 goto out_free_orig;
3290 }
3291 sb->s_fs_info = sbi;
3292 sbi->s_sb = sb;
3293 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3294 sbi->s_sb_block = sb_block;
3295 if (sb->s_bdev->bd_part)
3296 sbi->s_sectors_written_start =
3297 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3298
3299 /* Cleanup superblock name */
3300 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3301 *cp = '!';
3302
3303 /* -EINVAL is default */
3304 ret = -EINVAL;
3305 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3306 if (!blocksize) {
3307 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3308 goto out_fail;
3309 }
3310
3311 /*
3312 * The ext4 superblock will not be buffer aligned for other than 1kB
3313 * block sizes. We need to calculate the offset from buffer start.
3314 */
3315 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3316 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3317 offset = do_div(logical_sb_block, blocksize);
3318 } else {
3319 logical_sb_block = sb_block;
3320 }
3321
3322 if (!(bh = sb_bread(sb, logical_sb_block))) {
3323 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3324 goto out_fail;
3325 }
3326 /*
3327 * Note: s_es must be initialized as soon as possible because
3328 * some ext4 macro-instructions depend on its value
3329 */
3330 es = (struct ext4_super_block *) (bh->b_data + offset);
3331 sbi->s_es = es;
3332 sb->s_magic = le16_to_cpu(es->s_magic);
3333 if (sb->s_magic != EXT4_SUPER_MAGIC)
3334 goto cantfind_ext4;
3335 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3336
3337 /* Warn if metadata_csum and gdt_csum are both set. */
3338 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3339 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3340 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3341 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3342 "redundant flags; please run fsck.");
3343
3344 /* Check for a known checksum algorithm */
3345 if (!ext4_verify_csum_type(sb, es)) {
3346 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3347 "unknown checksum algorithm.");
3348 silent = 1;
3349 goto cantfind_ext4;
3350 }
3351
3352 /* Load the checksum driver */
3353 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3354 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3355 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3356 if (IS_ERR(sbi->s_chksum_driver)) {
3357 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3358 ret = PTR_ERR(sbi->s_chksum_driver);
3359 sbi->s_chksum_driver = NULL;
3360 goto failed_mount;
3361 }
3362 }
3363
3364 /* Check superblock checksum */
3365 if (!ext4_superblock_csum_verify(sb, es)) {
3366 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3367 "invalid superblock checksum. Run e2fsck?");
3368 silent = 1;
3369 goto cantfind_ext4;
3370 }
3371
3372 /* Precompute checksum seed for all metadata */
3373 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3374 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3375 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3376 sizeof(es->s_uuid));
3377
3378 /* Set defaults before we parse the mount options */
3379 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3380 set_opt(sb, INIT_INODE_TABLE);
3381 if (def_mount_opts & EXT4_DEFM_DEBUG)
3382 set_opt(sb, DEBUG);
3383 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3384 set_opt(sb, GRPID);
3385 if (def_mount_opts & EXT4_DEFM_UID16)
3386 set_opt(sb, NO_UID32);
3387 /* xattr user namespace & acls are now defaulted on */
3388 set_opt(sb, XATTR_USER);
3389 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3390 set_opt(sb, POSIX_ACL);
3391 #endif
3392 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3393 set_opt(sb, JOURNAL_DATA);
3394 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3395 set_opt(sb, ORDERED_DATA);
3396 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3397 set_opt(sb, WRITEBACK_DATA);
3398
3399 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3400 set_opt(sb, ERRORS_PANIC);
3401 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3402 set_opt(sb, ERRORS_CONT);
3403 else
3404 set_opt(sb, ERRORS_RO);
3405 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3406 set_opt(sb, BLOCK_VALIDITY);
3407 if (def_mount_opts & EXT4_DEFM_DISCARD)
3408 set_opt(sb, DISCARD);
3409
3410 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3411 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3412 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3413 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3414 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3415
3416 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3417 set_opt(sb, BARRIER);
3418
3419 /*
3420 * enable delayed allocation by default
3421 * Use -o nodelalloc to turn it off
3422 */
3423 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3424 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3425 set_opt(sb, DELALLOC);
3426
3427 /*
3428 * set default s_li_wait_mult for lazyinit, for the case there is
3429 * no mount option specified.
3430 */
3431 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3432
3433 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3434 &journal_devnum, &journal_ioprio, 0)) {
3435 ext4_msg(sb, KERN_WARNING,
3436 "failed to parse options in superblock: %s",
3437 sbi->s_es->s_mount_opts);
3438 }
3439 sbi->s_def_mount_opt = sbi->s_mount_opt;
3440 if (!parse_options((char *) data, sb, &journal_devnum,
3441 &journal_ioprio, 0))
3442 goto failed_mount;
3443
3444 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3445 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3446 "with data=journal disables delayed "
3447 "allocation and O_DIRECT support!\n");
3448 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3449 ext4_msg(sb, KERN_ERR, "can't mount with "
3450 "both data=journal and delalloc");
3451 goto failed_mount;
3452 }
3453 if (test_opt(sb, DIOREAD_NOLOCK)) {
3454 ext4_msg(sb, KERN_ERR, "can't mount with "
3455 "both data=journal and dioread_nolock");
3456 goto failed_mount;
3457 }
3458 if (test_opt(sb, DELALLOC))
3459 clear_opt(sb, DELALLOC);
3460 }
3461
3462 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3463 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3464
3465 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3466 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3467 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3468 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3469 ext4_msg(sb, KERN_WARNING,
3470 "feature flags set on rev 0 fs, "
3471 "running e2fsck is recommended");
3472
3473 if (IS_EXT2_SB(sb)) {
3474 if (ext2_feature_set_ok(sb))
3475 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3476 "using the ext4 subsystem");
3477 else {
3478 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3479 "to feature incompatibilities");
3480 goto failed_mount;
3481 }
3482 }
3483
3484 if (IS_EXT3_SB(sb)) {
3485 if (ext3_feature_set_ok(sb))
3486 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3487 "using the ext4 subsystem");
3488 else {
3489 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3490 "to feature incompatibilities");
3491 goto failed_mount;
3492 }
3493 }
3494
3495 /*
3496 * Check feature flags regardless of the revision level, since we
3497 * previously didn't change the revision level when setting the flags,
3498 * so there is a chance incompat flags are set on a rev 0 filesystem.
3499 */
3500 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3501 goto failed_mount;
3502
3503 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3504 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3505 blocksize > EXT4_MAX_BLOCK_SIZE) {
3506 ext4_msg(sb, KERN_ERR,
3507 "Unsupported filesystem blocksize %d", blocksize);
3508 goto failed_mount;
3509 }
3510
3511 if (sb->s_blocksize != blocksize) {
3512 /* Validate the filesystem blocksize */
3513 if (!sb_set_blocksize(sb, blocksize)) {
3514 ext4_msg(sb, KERN_ERR, "bad block size %d",
3515 blocksize);
3516 goto failed_mount;
3517 }
3518
3519 brelse(bh);
3520 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3521 offset = do_div(logical_sb_block, blocksize);
3522 bh = sb_bread(sb, logical_sb_block);
3523 if (!bh) {
3524 ext4_msg(sb, KERN_ERR,
3525 "Can't read superblock on 2nd try");
3526 goto failed_mount;
3527 }
3528 es = (struct ext4_super_block *)(bh->b_data + offset);
3529 sbi->s_es = es;
3530 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3531 ext4_msg(sb, KERN_ERR,
3532 "Magic mismatch, very weird!");
3533 goto failed_mount;
3534 }
3535 }
3536
3537 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3538 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3539 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3540 has_huge_files);
3541 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3542
3543 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3544 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3545 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3546 } else {
3547 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3548 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3549 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3550 (!is_power_of_2(sbi->s_inode_size)) ||
3551 (sbi->s_inode_size > blocksize)) {
3552 ext4_msg(sb, KERN_ERR,
3553 "unsupported inode size: %d",
3554 sbi->s_inode_size);
3555 goto failed_mount;
3556 }
3557 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3558 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3559 }
3560
3561 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3562 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3563 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3564 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3565 !is_power_of_2(sbi->s_desc_size)) {
3566 ext4_msg(sb, KERN_ERR,
3567 "unsupported descriptor size %lu",
3568 sbi->s_desc_size);
3569 goto failed_mount;
3570 }
3571 } else
3572 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3573
3574 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3575 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3576 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3577 goto cantfind_ext4;
3578
3579 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3580 if (sbi->s_inodes_per_block == 0)
3581 goto cantfind_ext4;
3582 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3583 sbi->s_inodes_per_block;
3584 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3585 sbi->s_sbh = bh;
3586 sbi->s_mount_state = le16_to_cpu(es->s_state);
3587 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3588 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3589
3590 for (i = 0; i < 4; i++)
3591 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3592 sbi->s_def_hash_version = es->s_def_hash_version;
3593 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3594 i = le32_to_cpu(es->s_flags);
3595 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3596 sbi->s_hash_unsigned = 3;
3597 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3598 #ifdef __CHAR_UNSIGNED__
3599 if (!(sb->s_flags & MS_RDONLY))
3600 es->s_flags |=
3601 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3602 sbi->s_hash_unsigned = 3;
3603 #else
3604 if (!(sb->s_flags & MS_RDONLY))
3605 es->s_flags |=
3606 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3607 #endif
3608 }
3609 }
3610
3611 /* Handle clustersize */
3612 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3613 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3614 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3615 if (has_bigalloc) {
3616 if (clustersize < blocksize) {
3617 ext4_msg(sb, KERN_ERR,
3618 "cluster size (%d) smaller than "
3619 "block size (%d)", clustersize, blocksize);
3620 goto failed_mount;
3621 }
3622 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3623 le32_to_cpu(es->s_log_block_size);
3624 sbi->s_clusters_per_group =
3625 le32_to_cpu(es->s_clusters_per_group);
3626 if (sbi->s_clusters_per_group > blocksize * 8) {
3627 ext4_msg(sb, KERN_ERR,
3628 "#clusters per group too big: %lu",
3629 sbi->s_clusters_per_group);
3630 goto failed_mount;
3631 }
3632 if (sbi->s_blocks_per_group !=
3633 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3634 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3635 "clusters per group (%lu) inconsistent",
3636 sbi->s_blocks_per_group,
3637 sbi->s_clusters_per_group);
3638 goto failed_mount;
3639 }
3640 } else {
3641 if (clustersize != blocksize) {
3642 ext4_warning(sb, "fragment/cluster size (%d) != "
3643 "block size (%d)", clustersize,
3644 blocksize);
3645 clustersize = blocksize;
3646 }
3647 if (sbi->s_blocks_per_group > blocksize * 8) {
3648 ext4_msg(sb, KERN_ERR,
3649 "#blocks per group too big: %lu",
3650 sbi->s_blocks_per_group);
3651 goto failed_mount;
3652 }
3653 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3654 sbi->s_cluster_bits = 0;
3655 }
3656 sbi->s_cluster_ratio = clustersize / blocksize;
3657
3658 if (sbi->s_inodes_per_group > blocksize * 8) {
3659 ext4_msg(sb, KERN_ERR,
3660 "#inodes per group too big: %lu",
3661 sbi->s_inodes_per_group);
3662 goto failed_mount;
3663 }
3664
3665 /* Do we have standard group size of clustersize * 8 blocks ? */
3666 if (sbi->s_blocks_per_group == clustersize << 3)
3667 set_opt2(sb, STD_GROUP_SIZE);
3668
3669 /*
3670 * Test whether we have more sectors than will fit in sector_t,
3671 * and whether the max offset is addressable by the page cache.
3672 */
3673 err = generic_check_addressable(sb->s_blocksize_bits,
3674 ext4_blocks_count(es));
3675 if (err) {
3676 ext4_msg(sb, KERN_ERR, "filesystem"
3677 " too large to mount safely on this system");
3678 if (sizeof(sector_t) < 8)
3679 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3680 goto failed_mount;
3681 }
3682
3683 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3684 goto cantfind_ext4;
3685
3686 /* check blocks count against device size */
3687 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3688 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3689 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3690 "exceeds size of device (%llu blocks)",
3691 ext4_blocks_count(es), blocks_count);
3692 goto failed_mount;
3693 }
3694
3695 /*
3696 * It makes no sense for the first data block to be beyond the end
3697 * of the filesystem.
3698 */
3699 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3700 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3701 "block %u is beyond end of filesystem (%llu)",
3702 le32_to_cpu(es->s_first_data_block),
3703 ext4_blocks_count(es));
3704 goto failed_mount;
3705 }
3706 blocks_count = (ext4_blocks_count(es) -
3707 le32_to_cpu(es->s_first_data_block) +
3708 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3709 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3710 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3711 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3712 "(block count %llu, first data block %u, "
3713 "blocks per group %lu)", sbi->s_groups_count,
3714 ext4_blocks_count(es),
3715 le32_to_cpu(es->s_first_data_block),
3716 EXT4_BLOCKS_PER_GROUP(sb));
3717 goto failed_mount;
3718 }
3719 sbi->s_groups_count = blocks_count;
3720 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3721 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3722 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3723 EXT4_DESC_PER_BLOCK(sb);
3724 sbi->s_group_desc = ext4_kvmalloc(db_count *
3725 sizeof(struct buffer_head *),
3726 GFP_KERNEL);
3727 if (sbi->s_group_desc == NULL) {
3728 ext4_msg(sb, KERN_ERR, "not enough memory");
3729 ret = -ENOMEM;
3730 goto failed_mount;
3731 }
3732
3733 if (ext4_proc_root)
3734 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3735
3736 if (sbi->s_proc)
3737 proc_create_data("options", S_IRUGO, sbi->s_proc,
3738 &ext4_seq_options_fops, sb);
3739
3740 bgl_lock_init(sbi->s_blockgroup_lock);
3741
3742 for (i = 0; i < db_count; i++) {
3743 block = descriptor_loc(sb, logical_sb_block, i);
3744 sbi->s_group_desc[i] = sb_bread(sb, block);
3745 if (!sbi->s_group_desc[i]) {
3746 ext4_msg(sb, KERN_ERR,
3747 "can't read group descriptor %d", i);
3748 db_count = i;
3749 goto failed_mount2;
3750 }
3751 }
3752 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3753 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3754 goto failed_mount2;
3755 }
3756 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3757 if (!ext4_fill_flex_info(sb)) {
3758 ext4_msg(sb, KERN_ERR,
3759 "unable to initialize "
3760 "flex_bg meta info!");
3761 goto failed_mount2;
3762 }
3763
3764 sbi->s_gdb_count = db_count;
3765 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3766 spin_lock_init(&sbi->s_next_gen_lock);
3767
3768 init_timer(&sbi->s_err_report);
3769 sbi->s_err_report.function = print_daily_error_info;
3770 sbi->s_err_report.data = (unsigned long) sb;
3771
3772 /* Register extent status tree shrinker */
3773 ext4_es_register_shrinker(sb);
3774
3775 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3776 ext4_count_free_clusters(sb));
3777 if (!err) {
3778 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3779 ext4_count_free_inodes(sb));
3780 }
3781 if (!err) {
3782 err = percpu_counter_init(&sbi->s_dirs_counter,
3783 ext4_count_dirs(sb));
3784 }
3785 if (!err) {
3786 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3787 }
3788 if (!err) {
3789 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3790 }
3791 if (err) {
3792 ext4_msg(sb, KERN_ERR, "insufficient memory");
3793 goto failed_mount3;
3794 }
3795
3796 sbi->s_stripe = ext4_get_stripe_size(sbi);
3797 sbi->s_max_writeback_mb_bump = 128;
3798 sbi->s_extent_max_zeroout_kb = 32;
3799
3800 /*
3801 * set up enough so that it can read an inode
3802 */
3803 if (!test_opt(sb, NOLOAD) &&
3804 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3805 sb->s_op = &ext4_sops;
3806 else
3807 sb->s_op = &ext4_nojournal_sops;
3808 sb->s_export_op = &ext4_export_ops;
3809 sb->s_xattr = ext4_xattr_handlers;
3810 #ifdef CONFIG_QUOTA
3811 sb->dq_op = &ext4_quota_operations;
3812 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3813 sb->s_qcop = &ext4_qctl_sysfile_operations;
3814 else
3815 sb->s_qcop = &ext4_qctl_operations;
3816 #endif
3817 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3818
3819 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3820 mutex_init(&sbi->s_orphan_lock);
3821
3822 sb->s_root = NULL;
3823
3824 needs_recovery = (es->s_last_orphan != 0 ||
3825 EXT4_HAS_INCOMPAT_FEATURE(sb,
3826 EXT4_FEATURE_INCOMPAT_RECOVER));
3827
3828 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3829 !(sb->s_flags & MS_RDONLY))
3830 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3831 goto failed_mount3;
3832
3833 /*
3834 * The first inode we look at is the journal inode. Don't try
3835 * root first: it may be modified in the journal!
3836 */
3837 if (!test_opt(sb, NOLOAD) &&
3838 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3839 if (ext4_load_journal(sb, es, journal_devnum))
3840 goto failed_mount3;
3841 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3842 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3843 ext4_msg(sb, KERN_ERR, "required journal recovery "
3844 "suppressed and not mounted read-only");
3845 goto failed_mount_wq;
3846 } else {
3847 clear_opt(sb, DATA_FLAGS);
3848 sbi->s_journal = NULL;
3849 needs_recovery = 0;
3850 goto no_journal;
3851 }
3852
3853 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3854 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3855 JBD2_FEATURE_INCOMPAT_64BIT)) {
3856 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3857 goto failed_mount_wq;
3858 }
3859
3860 if (!set_journal_csum_feature_set(sb)) {
3861 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3862 "feature set");
3863 goto failed_mount_wq;
3864 }
3865
3866 /* We have now updated the journal if required, so we can
3867 * validate the data journaling mode. */
3868 switch (test_opt(sb, DATA_FLAGS)) {
3869 case 0:
3870 /* No mode set, assume a default based on the journal
3871 * capabilities: ORDERED_DATA if the journal can
3872 * cope, else JOURNAL_DATA
3873 */
3874 if (jbd2_journal_check_available_features
3875 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3876 set_opt(sb, ORDERED_DATA);
3877 else
3878 set_opt(sb, JOURNAL_DATA);
3879 break;
3880
3881 case EXT4_MOUNT_ORDERED_DATA:
3882 case EXT4_MOUNT_WRITEBACK_DATA:
3883 if (!jbd2_journal_check_available_features
3884 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3885 ext4_msg(sb, KERN_ERR, "Journal does not support "
3886 "requested data journaling mode");
3887 goto failed_mount_wq;
3888 }
3889 default:
3890 break;
3891 }
3892 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3893
3894 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3895
3896 /*
3897 * The journal may have updated the bg summary counts, so we
3898 * need to update the global counters.
3899 */
3900 percpu_counter_set(&sbi->s_freeclusters_counter,
3901 ext4_count_free_clusters(sb));
3902 percpu_counter_set(&sbi->s_freeinodes_counter,
3903 ext4_count_free_inodes(sb));
3904 percpu_counter_set(&sbi->s_dirs_counter,
3905 ext4_count_dirs(sb));
3906 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3907
3908 no_journal:
3909 /*
3910 * Get the # of file system overhead blocks from the
3911 * superblock if present.
3912 */
3913 if (es->s_overhead_clusters)
3914 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3915 else {
3916 err = ext4_calculate_overhead(sb);
3917 if (err)
3918 goto failed_mount_wq;
3919 }
3920
3921 /*
3922 * The maximum number of concurrent works can be high and
3923 * concurrency isn't really necessary. Limit it to 1.
3924 */
3925 EXT4_SB(sb)->dio_unwritten_wq =
3926 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3927 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3928 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3929 ret = -ENOMEM;
3930 goto failed_mount_wq;
3931 }
3932
3933 /*
3934 * The jbd2_journal_load will have done any necessary log recovery,
3935 * so we can safely mount the rest of the filesystem now.
3936 */
3937
3938 root = ext4_iget(sb, EXT4_ROOT_INO);
3939 if (IS_ERR(root)) {
3940 ext4_msg(sb, KERN_ERR, "get root inode failed");
3941 ret = PTR_ERR(root);
3942 root = NULL;
3943 goto failed_mount4;
3944 }
3945 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3946 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3947 iput(root);
3948 goto failed_mount4;
3949 }
3950 sb->s_root = d_make_root(root);
3951 if (!sb->s_root) {
3952 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3953 ret = -ENOMEM;
3954 goto failed_mount4;
3955 }
3956
3957 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3958 sb->s_flags |= MS_RDONLY;
3959
3960 /* determine the minimum size of new large inodes, if present */
3961 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3962 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3963 EXT4_GOOD_OLD_INODE_SIZE;
3964 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3965 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3966 if (sbi->s_want_extra_isize <
3967 le16_to_cpu(es->s_want_extra_isize))
3968 sbi->s_want_extra_isize =
3969 le16_to_cpu(es->s_want_extra_isize);
3970 if (sbi->s_want_extra_isize <
3971 le16_to_cpu(es->s_min_extra_isize))
3972 sbi->s_want_extra_isize =
3973 le16_to_cpu(es->s_min_extra_isize);
3974 }
3975 }
3976 /* Check if enough inode space is available */
3977 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3978 sbi->s_inode_size) {
3979 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3980 EXT4_GOOD_OLD_INODE_SIZE;
3981 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3982 "available");
3983 }
3984
3985 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
3986 if (err) {
3987 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
3988 "reserved pool", ext4_calculate_resv_clusters(sb));
3989 goto failed_mount4a;
3990 }
3991
3992 err = ext4_setup_system_zone(sb);
3993 if (err) {
3994 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3995 "zone (%d)", err);
3996 goto failed_mount4a;
3997 }
3998
3999 ext4_ext_init(sb);
4000 err = ext4_mb_init(sb);
4001 if (err) {
4002 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4003 err);
4004 goto failed_mount5;
4005 }
4006
4007 err = ext4_register_li_request(sb, first_not_zeroed);
4008 if (err)
4009 goto failed_mount6;
4010
4011 sbi->s_kobj.kset = ext4_kset;
4012 init_completion(&sbi->s_kobj_unregister);
4013 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4014 "%s", sb->s_id);
4015 if (err)
4016 goto failed_mount7;
4017
4018 #ifdef CONFIG_QUOTA
4019 /* Enable quota usage during mount. */
4020 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4021 !(sb->s_flags & MS_RDONLY)) {
4022 err = ext4_enable_quotas(sb);
4023 if (err)
4024 goto failed_mount8;
4025 }
4026 #endif /* CONFIG_QUOTA */
4027
4028 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4029 ext4_orphan_cleanup(sb, es);
4030 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4031 if (needs_recovery) {
4032 ext4_msg(sb, KERN_INFO, "recovery complete");
4033 ext4_mark_recovery_complete(sb, es);
4034 }
4035 if (EXT4_SB(sb)->s_journal) {
4036 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4037 descr = " journalled data mode";
4038 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4039 descr = " ordered data mode";
4040 else
4041 descr = " writeback data mode";
4042 } else
4043 descr = "out journal";
4044
4045 if (test_opt(sb, DISCARD)) {
4046 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4047 if (!blk_queue_discard(q))
4048 ext4_msg(sb, KERN_WARNING,
4049 "mounting with \"discard\" option, but "
4050 "the device does not support discard");
4051 }
4052
4053 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4054 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4055 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4056
4057 if (es->s_error_count)
4058 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4059
4060 kfree(orig_data);
4061 return 0;
4062
4063 cantfind_ext4:
4064 if (!silent)
4065 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4066 goto failed_mount;
4067
4068 #ifdef CONFIG_QUOTA
4069 failed_mount8:
4070 kobject_del(&sbi->s_kobj);
4071 #endif
4072 failed_mount7:
4073 ext4_unregister_li_request(sb);
4074 failed_mount6:
4075 ext4_mb_release(sb);
4076 failed_mount5:
4077 ext4_ext_release(sb);
4078 ext4_release_system_zone(sb);
4079 failed_mount4a:
4080 dput(sb->s_root);
4081 sb->s_root = NULL;
4082 failed_mount4:
4083 ext4_msg(sb, KERN_ERR, "mount failed");
4084 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4085 failed_mount_wq:
4086 if (sbi->s_journal) {
4087 jbd2_journal_destroy(sbi->s_journal);
4088 sbi->s_journal = NULL;
4089 }
4090 failed_mount3:
4091 ext4_es_unregister_shrinker(sb);
4092 del_timer(&sbi->s_err_report);
4093 if (sbi->s_flex_groups)
4094 ext4_kvfree(sbi->s_flex_groups);
4095 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4096 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4097 percpu_counter_destroy(&sbi->s_dirs_counter);
4098 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4099 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4100 if (sbi->s_mmp_tsk)
4101 kthread_stop(sbi->s_mmp_tsk);
4102 failed_mount2:
4103 for (i = 0; i < db_count; i++)
4104 brelse(sbi->s_group_desc[i]);
4105 ext4_kvfree(sbi->s_group_desc);
4106 failed_mount:
4107 if (sbi->s_chksum_driver)
4108 crypto_free_shash(sbi->s_chksum_driver);
4109 if (sbi->s_proc) {
4110 remove_proc_entry("options", sbi->s_proc);
4111 remove_proc_entry(sb->s_id, ext4_proc_root);
4112 }
4113 #ifdef CONFIG_QUOTA
4114 for (i = 0; i < MAXQUOTAS; i++)
4115 kfree(sbi->s_qf_names[i]);
4116 #endif
4117 ext4_blkdev_remove(sbi);
4118 brelse(bh);
4119 out_fail:
4120 sb->s_fs_info = NULL;
4121 kfree(sbi->s_blockgroup_lock);
4122 kfree(sbi);
4123 out_free_orig:
4124 kfree(orig_data);
4125 return err ? err : ret;
4126 }
4127
4128 /*
4129 * Setup any per-fs journal parameters now. We'll do this both on
4130 * initial mount, once the journal has been initialised but before we've
4131 * done any recovery; and again on any subsequent remount.
4132 */
4133 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4134 {
4135 struct ext4_sb_info *sbi = EXT4_SB(sb);
4136
4137 journal->j_commit_interval = sbi->s_commit_interval;
4138 journal->j_min_batch_time = sbi->s_min_batch_time;
4139 journal->j_max_batch_time = sbi->s_max_batch_time;
4140
4141 write_lock(&journal->j_state_lock);
4142 if (test_opt(sb, BARRIER))
4143 journal->j_flags |= JBD2_BARRIER;
4144 else
4145 journal->j_flags &= ~JBD2_BARRIER;
4146 if (test_opt(sb, DATA_ERR_ABORT))
4147 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4148 else
4149 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4150 write_unlock(&journal->j_state_lock);
4151 }
4152
4153 static journal_t *ext4_get_journal(struct super_block *sb,
4154 unsigned int journal_inum)
4155 {
4156 struct inode *journal_inode;
4157 journal_t *journal;
4158
4159 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4160
4161 /* First, test for the existence of a valid inode on disk. Bad
4162 * things happen if we iget() an unused inode, as the subsequent
4163 * iput() will try to delete it. */
4164
4165 journal_inode = ext4_iget(sb, journal_inum);
4166 if (IS_ERR(journal_inode)) {
4167 ext4_msg(sb, KERN_ERR, "no journal found");
4168 return NULL;
4169 }
4170 if (!journal_inode->i_nlink) {
4171 make_bad_inode(journal_inode);
4172 iput(journal_inode);
4173 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4174 return NULL;
4175 }
4176
4177 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4178 journal_inode, journal_inode->i_size);
4179 if (!S_ISREG(journal_inode->i_mode)) {
4180 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4181 iput(journal_inode);
4182 return NULL;
4183 }
4184
4185 journal = jbd2_journal_init_inode(journal_inode);
4186 if (!journal) {
4187 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4188 iput(journal_inode);
4189 return NULL;
4190 }
4191 journal->j_private = sb;
4192 ext4_init_journal_params(sb, journal);
4193 return journal;
4194 }
4195
4196 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4197 dev_t j_dev)
4198 {
4199 struct buffer_head *bh;
4200 journal_t *journal;
4201 ext4_fsblk_t start;
4202 ext4_fsblk_t len;
4203 int hblock, blocksize;
4204 ext4_fsblk_t sb_block;
4205 unsigned long offset;
4206 struct ext4_super_block *es;
4207 struct block_device *bdev;
4208
4209 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4210
4211 bdev = ext4_blkdev_get(j_dev, sb);
4212 if (bdev == NULL)
4213 return NULL;
4214
4215 blocksize = sb->s_blocksize;
4216 hblock = bdev_logical_block_size(bdev);
4217 if (blocksize < hblock) {
4218 ext4_msg(sb, KERN_ERR,
4219 "blocksize too small for journal device");
4220 goto out_bdev;
4221 }
4222
4223 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4224 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4225 set_blocksize(bdev, blocksize);
4226 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4227 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4228 "external journal");
4229 goto out_bdev;
4230 }
4231
4232 es = (struct ext4_super_block *) (bh->b_data + offset);
4233 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4234 !(le32_to_cpu(es->s_feature_incompat) &
4235 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4236 ext4_msg(sb, KERN_ERR, "external journal has "
4237 "bad superblock");
4238 brelse(bh);
4239 goto out_bdev;
4240 }
4241
4242 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4243 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4244 brelse(bh);
4245 goto out_bdev;
4246 }
4247
4248 len = ext4_blocks_count(es);
4249 start = sb_block + 1;
4250 brelse(bh); /* we're done with the superblock */
4251
4252 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4253 start, len, blocksize);
4254 if (!journal) {
4255 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4256 goto out_bdev;
4257 }
4258 journal->j_private = sb;
4259 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4260 wait_on_buffer(journal->j_sb_buffer);
4261 if (!buffer_uptodate(journal->j_sb_buffer)) {
4262 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4263 goto out_journal;
4264 }
4265 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4266 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4267 "user (unsupported) - %d",
4268 be32_to_cpu(journal->j_superblock->s_nr_users));
4269 goto out_journal;
4270 }
4271 EXT4_SB(sb)->journal_bdev = bdev;
4272 ext4_init_journal_params(sb, journal);
4273 return journal;
4274
4275 out_journal:
4276 jbd2_journal_destroy(journal);
4277 out_bdev:
4278 ext4_blkdev_put(bdev);
4279 return NULL;
4280 }
4281
4282 static int ext4_load_journal(struct super_block *sb,
4283 struct ext4_super_block *es,
4284 unsigned long journal_devnum)
4285 {
4286 journal_t *journal;
4287 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4288 dev_t journal_dev;
4289 int err = 0;
4290 int really_read_only;
4291
4292 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4293
4294 if (journal_devnum &&
4295 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4296 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4297 "numbers have changed");
4298 journal_dev = new_decode_dev(journal_devnum);
4299 } else
4300 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4301
4302 really_read_only = bdev_read_only(sb->s_bdev);
4303
4304 /*
4305 * Are we loading a blank journal or performing recovery after a
4306 * crash? For recovery, we need to check in advance whether we
4307 * can get read-write access to the device.
4308 */
4309 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4310 if (sb->s_flags & MS_RDONLY) {
4311 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4312 "required on readonly filesystem");
4313 if (really_read_only) {
4314 ext4_msg(sb, KERN_ERR, "write access "
4315 "unavailable, cannot proceed");
4316 return -EROFS;
4317 }
4318 ext4_msg(sb, KERN_INFO, "write access will "
4319 "be enabled during recovery");
4320 }
4321 }
4322
4323 if (journal_inum && journal_dev) {
4324 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4325 "and inode journals!");
4326 return -EINVAL;
4327 }
4328
4329 if (journal_inum) {
4330 if (!(journal = ext4_get_journal(sb, journal_inum)))
4331 return -EINVAL;
4332 } else {
4333 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4334 return -EINVAL;
4335 }
4336
4337 if (!(journal->j_flags & JBD2_BARRIER))
4338 ext4_msg(sb, KERN_INFO, "barriers disabled");
4339
4340 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4341 err = jbd2_journal_wipe(journal, !really_read_only);
4342 if (!err) {
4343 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4344 if (save)
4345 memcpy(save, ((char *) es) +
4346 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4347 err = jbd2_journal_load(journal);
4348 if (save)
4349 memcpy(((char *) es) + EXT4_S_ERR_START,
4350 save, EXT4_S_ERR_LEN);
4351 kfree(save);
4352 }
4353
4354 if (err) {
4355 ext4_msg(sb, KERN_ERR, "error loading journal");
4356 jbd2_journal_destroy(journal);
4357 return err;
4358 }
4359
4360 EXT4_SB(sb)->s_journal = journal;
4361 ext4_clear_journal_err(sb, es);
4362
4363 if (!really_read_only && journal_devnum &&
4364 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4365 es->s_journal_dev = cpu_to_le32(journal_devnum);
4366
4367 /* Make sure we flush the recovery flag to disk. */
4368 ext4_commit_super(sb, 1);
4369 }
4370
4371 return 0;
4372 }
4373
4374 static int ext4_commit_super(struct super_block *sb, int sync)
4375 {
4376 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4377 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4378 int error = 0;
4379
4380 if (!sbh || block_device_ejected(sb))
4381 return error;
4382 if (buffer_write_io_error(sbh)) {
4383 /*
4384 * Oh, dear. A previous attempt to write the
4385 * superblock failed. This could happen because the
4386 * USB device was yanked out. Or it could happen to
4387 * be a transient write error and maybe the block will
4388 * be remapped. Nothing we can do but to retry the
4389 * write and hope for the best.
4390 */
4391 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4392 "superblock detected");
4393 clear_buffer_write_io_error(sbh);
4394 set_buffer_uptodate(sbh);
4395 }
4396 /*
4397 * If the file system is mounted read-only, don't update the
4398 * superblock write time. This avoids updating the superblock
4399 * write time when we are mounting the root file system
4400 * read/only but we need to replay the journal; at that point,
4401 * for people who are east of GMT and who make their clock
4402 * tick in localtime for Windows bug-for-bug compatibility,
4403 * the clock is set in the future, and this will cause e2fsck
4404 * to complain and force a full file system check.
4405 */
4406 if (!(sb->s_flags & MS_RDONLY))
4407 es->s_wtime = cpu_to_le32(get_seconds());
4408 if (sb->s_bdev->bd_part)
4409 es->s_kbytes_written =
4410 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4411 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4412 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4413 else
4414 es->s_kbytes_written =
4415 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4416 ext4_free_blocks_count_set(es,
4417 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4418 &EXT4_SB(sb)->s_freeclusters_counter)));
4419 es->s_free_inodes_count =
4420 cpu_to_le32(percpu_counter_sum_positive(
4421 &EXT4_SB(sb)->s_freeinodes_counter));
4422 BUFFER_TRACE(sbh, "marking dirty");
4423 ext4_superblock_csum_set(sb);
4424 mark_buffer_dirty(sbh);
4425 if (sync) {
4426 error = sync_dirty_buffer(sbh);
4427 if (error)
4428 return error;
4429
4430 error = buffer_write_io_error(sbh);
4431 if (error) {
4432 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4433 "superblock");
4434 clear_buffer_write_io_error(sbh);
4435 set_buffer_uptodate(sbh);
4436 }
4437 }
4438 return error;
4439 }
4440
4441 /*
4442 * Have we just finished recovery? If so, and if we are mounting (or
4443 * remounting) the filesystem readonly, then we will end up with a
4444 * consistent fs on disk. Record that fact.
4445 */
4446 static void ext4_mark_recovery_complete(struct super_block *sb,
4447 struct ext4_super_block *es)
4448 {
4449 journal_t *journal = EXT4_SB(sb)->s_journal;
4450
4451 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4452 BUG_ON(journal != NULL);
4453 return;
4454 }
4455 jbd2_journal_lock_updates(journal);
4456 if (jbd2_journal_flush(journal) < 0)
4457 goto out;
4458
4459 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4460 sb->s_flags & MS_RDONLY) {
4461 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4462 ext4_commit_super(sb, 1);
4463 }
4464
4465 out:
4466 jbd2_journal_unlock_updates(journal);
4467 }
4468
4469 /*
4470 * If we are mounting (or read-write remounting) a filesystem whose journal
4471 * has recorded an error from a previous lifetime, move that error to the
4472 * main filesystem now.
4473 */
4474 static void ext4_clear_journal_err(struct super_block *sb,
4475 struct ext4_super_block *es)
4476 {
4477 journal_t *journal;
4478 int j_errno;
4479 const char *errstr;
4480
4481 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4482
4483 journal = EXT4_SB(sb)->s_journal;
4484
4485 /*
4486 * Now check for any error status which may have been recorded in the
4487 * journal by a prior ext4_error() or ext4_abort()
4488 */
4489
4490 j_errno = jbd2_journal_errno(journal);
4491 if (j_errno) {
4492 char nbuf[16];
4493
4494 errstr = ext4_decode_error(sb, j_errno, nbuf);
4495 ext4_warning(sb, "Filesystem error recorded "
4496 "from previous mount: %s", errstr);
4497 ext4_warning(sb, "Marking fs in need of filesystem check.");
4498
4499 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4500 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4501 ext4_commit_super(sb, 1);
4502
4503 jbd2_journal_clear_err(journal);
4504 jbd2_journal_update_sb_errno(journal);
4505 }
4506 }
4507
4508 /*
4509 * Force the running and committing transactions to commit,
4510 * and wait on the commit.
4511 */
4512 int ext4_force_commit(struct super_block *sb)
4513 {
4514 journal_t *journal;
4515
4516 if (sb->s_flags & MS_RDONLY)
4517 return 0;
4518
4519 journal = EXT4_SB(sb)->s_journal;
4520 return ext4_journal_force_commit(journal);
4521 }
4522
4523 static int ext4_sync_fs(struct super_block *sb, int wait)
4524 {
4525 int ret = 0;
4526 tid_t target;
4527 struct ext4_sb_info *sbi = EXT4_SB(sb);
4528
4529 trace_ext4_sync_fs(sb, wait);
4530 flush_workqueue(sbi->dio_unwritten_wq);
4531 /*
4532 * Writeback quota in non-journalled quota case - journalled quota has
4533 * no dirty dquots
4534 */
4535 dquot_writeback_dquots(sb, -1);
4536 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4537 if (wait)
4538 jbd2_log_wait_commit(sbi->s_journal, target);
4539 }
4540 return ret;
4541 }
4542
4543 /*
4544 * LVM calls this function before a (read-only) snapshot is created. This
4545 * gives us a chance to flush the journal completely and mark the fs clean.
4546 *
4547 * Note that only this function cannot bring a filesystem to be in a clean
4548 * state independently. It relies on upper layer to stop all data & metadata
4549 * modifications.
4550 */
4551 static int ext4_freeze(struct super_block *sb)
4552 {
4553 int error = 0;
4554 journal_t *journal;
4555
4556 if (sb->s_flags & MS_RDONLY)
4557 return 0;
4558
4559 journal = EXT4_SB(sb)->s_journal;
4560
4561 /* Now we set up the journal barrier. */
4562 jbd2_journal_lock_updates(journal);
4563
4564 /*
4565 * Don't clear the needs_recovery flag if we failed to flush
4566 * the journal.
4567 */
4568 error = jbd2_journal_flush(journal);
4569 if (error < 0)
4570 goto out;
4571
4572 /* Journal blocked and flushed, clear needs_recovery flag. */
4573 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4574 error = ext4_commit_super(sb, 1);
4575 out:
4576 /* we rely on upper layer to stop further updates */
4577 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4578 return error;
4579 }
4580
4581 /*
4582 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4583 * flag here, even though the filesystem is not technically dirty yet.
4584 */
4585 static int ext4_unfreeze(struct super_block *sb)
4586 {
4587 if (sb->s_flags & MS_RDONLY)
4588 return 0;
4589
4590 /* Reset the needs_recovery flag before the fs is unlocked. */
4591 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4592 ext4_commit_super(sb, 1);
4593 return 0;
4594 }
4595
4596 /*
4597 * Structure to save mount options for ext4_remount's benefit
4598 */
4599 struct ext4_mount_options {
4600 unsigned long s_mount_opt;
4601 unsigned long s_mount_opt2;
4602 kuid_t s_resuid;
4603 kgid_t s_resgid;
4604 unsigned long s_commit_interval;
4605 u32 s_min_batch_time, s_max_batch_time;
4606 #ifdef CONFIG_QUOTA
4607 int s_jquota_fmt;
4608 char *s_qf_names[MAXQUOTAS];
4609 #endif
4610 };
4611
4612 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4613 {
4614 struct ext4_super_block *es;
4615 struct ext4_sb_info *sbi = EXT4_SB(sb);
4616 unsigned long old_sb_flags;
4617 struct ext4_mount_options old_opts;
4618 int enable_quota = 0;
4619 ext4_group_t g;
4620 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4621 int err = 0;
4622 #ifdef CONFIG_QUOTA
4623 int i, j;
4624 #endif
4625 char *orig_data = kstrdup(data, GFP_KERNEL);
4626
4627 /* Store the original options */
4628 old_sb_flags = sb->s_flags;
4629 old_opts.s_mount_opt = sbi->s_mount_opt;
4630 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4631 old_opts.s_resuid = sbi->s_resuid;
4632 old_opts.s_resgid = sbi->s_resgid;
4633 old_opts.s_commit_interval = sbi->s_commit_interval;
4634 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4635 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4636 #ifdef CONFIG_QUOTA
4637 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4638 for (i = 0; i < MAXQUOTAS; i++)
4639 if (sbi->s_qf_names[i]) {
4640 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4641 GFP_KERNEL);
4642 if (!old_opts.s_qf_names[i]) {
4643 for (j = 0; j < i; j++)
4644 kfree(old_opts.s_qf_names[j]);
4645 kfree(orig_data);
4646 return -ENOMEM;
4647 }
4648 } else
4649 old_opts.s_qf_names[i] = NULL;
4650 #endif
4651 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4652 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4653
4654 /*
4655 * Allow the "check" option to be passed as a remount option.
4656 */
4657 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4658 err = -EINVAL;
4659 goto restore_opts;
4660 }
4661
4662 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4663 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4664 ext4_msg(sb, KERN_ERR, "can't mount with "
4665 "both data=journal and delalloc");
4666 err = -EINVAL;
4667 goto restore_opts;
4668 }
4669 if (test_opt(sb, DIOREAD_NOLOCK)) {
4670 ext4_msg(sb, KERN_ERR, "can't mount with "
4671 "both data=journal and dioread_nolock");
4672 err = -EINVAL;
4673 goto restore_opts;
4674 }
4675 }
4676
4677 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4678 ext4_abort(sb, "Abort forced by user");
4679
4680 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4681 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4682
4683 es = sbi->s_es;
4684
4685 if (sbi->s_journal) {
4686 ext4_init_journal_params(sb, sbi->s_journal);
4687 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4688 }
4689
4690 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4691 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4692 err = -EROFS;
4693 goto restore_opts;
4694 }
4695
4696 if (*flags & MS_RDONLY) {
4697 err = dquot_suspend(sb, -1);
4698 if (err < 0)
4699 goto restore_opts;
4700
4701 /*
4702 * First of all, the unconditional stuff we have to do
4703 * to disable replay of the journal when we next remount
4704 */
4705 sb->s_flags |= MS_RDONLY;
4706
4707 /*
4708 * OK, test if we are remounting a valid rw partition
4709 * readonly, and if so set the rdonly flag and then
4710 * mark the partition as valid again.
4711 */
4712 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4713 (sbi->s_mount_state & EXT4_VALID_FS))
4714 es->s_state = cpu_to_le16(sbi->s_mount_state);
4715
4716 if (sbi->s_journal)
4717 ext4_mark_recovery_complete(sb, es);
4718 } else {
4719 /* Make sure we can mount this feature set readwrite */
4720 if (!ext4_feature_set_ok(sb, 0)) {
4721 err = -EROFS;
4722 goto restore_opts;
4723 }
4724 /*
4725 * Make sure the group descriptor checksums
4726 * are sane. If they aren't, refuse to remount r/w.
4727 */
4728 for (g = 0; g < sbi->s_groups_count; g++) {
4729 struct ext4_group_desc *gdp =
4730 ext4_get_group_desc(sb, g, NULL);
4731
4732 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4733 ext4_msg(sb, KERN_ERR,
4734 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4735 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4736 le16_to_cpu(gdp->bg_checksum));
4737 err = -EINVAL;
4738 goto restore_opts;
4739 }
4740 }
4741
4742 /*
4743 * If we have an unprocessed orphan list hanging
4744 * around from a previously readonly bdev mount,
4745 * require a full umount/remount for now.
4746 */
4747 if (es->s_last_orphan) {
4748 ext4_msg(sb, KERN_WARNING, "Couldn't "
4749 "remount RDWR because of unprocessed "
4750 "orphan inode list. Please "
4751 "umount/remount instead");
4752 err = -EINVAL;
4753 goto restore_opts;
4754 }
4755
4756 /*
4757 * Mounting a RDONLY partition read-write, so reread
4758 * and store the current valid flag. (It may have
4759 * been changed by e2fsck since we originally mounted
4760 * the partition.)
4761 */
4762 if (sbi->s_journal)
4763 ext4_clear_journal_err(sb, es);
4764 sbi->s_mount_state = le16_to_cpu(es->s_state);
4765 if (!ext4_setup_super(sb, es, 0))
4766 sb->s_flags &= ~MS_RDONLY;
4767 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4768 EXT4_FEATURE_INCOMPAT_MMP))
4769 if (ext4_multi_mount_protect(sb,
4770 le64_to_cpu(es->s_mmp_block))) {
4771 err = -EROFS;
4772 goto restore_opts;
4773 }
4774 enable_quota = 1;
4775 }
4776 }
4777
4778 /*
4779 * Reinitialize lazy itable initialization thread based on
4780 * current settings
4781 */
4782 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4783 ext4_unregister_li_request(sb);
4784 else {
4785 ext4_group_t first_not_zeroed;
4786 first_not_zeroed = ext4_has_uninit_itable(sb);
4787 ext4_register_li_request(sb, first_not_zeroed);
4788 }
4789
4790 ext4_setup_system_zone(sb);
4791 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4792 ext4_commit_super(sb, 1);
4793
4794 #ifdef CONFIG_QUOTA
4795 /* Release old quota file names */
4796 for (i = 0; i < MAXQUOTAS; i++)
4797 kfree(old_opts.s_qf_names[i]);
4798 if (enable_quota) {
4799 if (sb_any_quota_suspended(sb))
4800 dquot_resume(sb, -1);
4801 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4802 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4803 err = ext4_enable_quotas(sb);
4804 if (err)
4805 goto restore_opts;
4806 }
4807 }
4808 #endif
4809
4810 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4811 kfree(orig_data);
4812 return 0;
4813
4814 restore_opts:
4815 sb->s_flags = old_sb_flags;
4816 sbi->s_mount_opt = old_opts.s_mount_opt;
4817 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4818 sbi->s_resuid = old_opts.s_resuid;
4819 sbi->s_resgid = old_opts.s_resgid;
4820 sbi->s_commit_interval = old_opts.s_commit_interval;
4821 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4822 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4823 #ifdef CONFIG_QUOTA
4824 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4825 for (i = 0; i < MAXQUOTAS; i++) {
4826 kfree(sbi->s_qf_names[i]);
4827 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4828 }
4829 #endif
4830 kfree(orig_data);
4831 return err;
4832 }
4833
4834 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4835 {
4836 struct super_block *sb = dentry->d_sb;
4837 struct ext4_sb_info *sbi = EXT4_SB(sb);
4838 struct ext4_super_block *es = sbi->s_es;
4839 ext4_fsblk_t overhead = 0, resv_blocks;
4840 u64 fsid;
4841 s64 bfree;
4842 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4843
4844 if (!test_opt(sb, MINIX_DF))
4845 overhead = sbi->s_overhead;
4846
4847 buf->f_type = EXT4_SUPER_MAGIC;
4848 buf->f_bsize = sb->s_blocksize;
4849 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4850 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4851 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4852 /* prevent underflow in case that few free space is available */
4853 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4854 buf->f_bavail = buf->f_bfree -
4855 (ext4_r_blocks_count(es) + resv_blocks);
4856 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4857 buf->f_bavail = 0;
4858 buf->f_files = le32_to_cpu(es->s_inodes_count);
4859 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4860 buf->f_namelen = EXT4_NAME_LEN;
4861 fsid = le64_to_cpup((void *)es->s_uuid) ^
4862 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4863 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4864 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4865
4866 return 0;
4867 }
4868
4869 /* Helper function for writing quotas on sync - we need to start transaction
4870 * before quota file is locked for write. Otherwise the are possible deadlocks:
4871 * Process 1 Process 2
4872 * ext4_create() quota_sync()
4873 * jbd2_journal_start() write_dquot()
4874 * dquot_initialize() down(dqio_mutex)
4875 * down(dqio_mutex) jbd2_journal_start()
4876 *
4877 */
4878
4879 #ifdef CONFIG_QUOTA
4880
4881 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4882 {
4883 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4884 }
4885
4886 static int ext4_write_dquot(struct dquot *dquot)
4887 {
4888 int ret, err;
4889 handle_t *handle;
4890 struct inode *inode;
4891
4892 inode = dquot_to_inode(dquot);
4893 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4894 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4895 if (IS_ERR(handle))
4896 return PTR_ERR(handle);
4897 ret = dquot_commit(dquot);
4898 err = ext4_journal_stop(handle);
4899 if (!ret)
4900 ret = err;
4901 return ret;
4902 }
4903
4904 static int ext4_acquire_dquot(struct dquot *dquot)
4905 {
4906 int ret, err;
4907 handle_t *handle;
4908
4909 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4910 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4911 if (IS_ERR(handle))
4912 return PTR_ERR(handle);
4913 ret = dquot_acquire(dquot);
4914 err = ext4_journal_stop(handle);
4915 if (!ret)
4916 ret = err;
4917 return ret;
4918 }
4919
4920 static int ext4_release_dquot(struct dquot *dquot)
4921 {
4922 int ret, err;
4923 handle_t *handle;
4924
4925 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4926 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4927 if (IS_ERR(handle)) {
4928 /* Release dquot anyway to avoid endless cycle in dqput() */
4929 dquot_release(dquot);
4930 return PTR_ERR(handle);
4931 }
4932 ret = dquot_release(dquot);
4933 err = ext4_journal_stop(handle);
4934 if (!ret)
4935 ret = err;
4936 return ret;
4937 }
4938
4939 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4940 {
4941 struct super_block *sb = dquot->dq_sb;
4942 struct ext4_sb_info *sbi = EXT4_SB(sb);
4943
4944 /* Are we journaling quotas? */
4945 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4946 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4947 dquot_mark_dquot_dirty(dquot);
4948 return ext4_write_dquot(dquot);
4949 } else {
4950 return dquot_mark_dquot_dirty(dquot);
4951 }
4952 }
4953
4954 static int ext4_write_info(struct super_block *sb, int type)
4955 {
4956 int ret, err;
4957 handle_t *handle;
4958
4959 /* Data block + inode block */
4960 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4961 if (IS_ERR(handle))
4962 return PTR_ERR(handle);
4963 ret = dquot_commit_info(sb, type);
4964 err = ext4_journal_stop(handle);
4965 if (!ret)
4966 ret = err;
4967 return ret;
4968 }
4969
4970 /*
4971 * Turn on quotas during mount time - we need to find
4972 * the quota file and such...
4973 */
4974 static int ext4_quota_on_mount(struct super_block *sb, int type)
4975 {
4976 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4977 EXT4_SB(sb)->s_jquota_fmt, type);
4978 }
4979
4980 /*
4981 * Standard function to be called on quota_on
4982 */
4983 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4984 struct path *path)
4985 {
4986 int err;
4987
4988 if (!test_opt(sb, QUOTA))
4989 return -EINVAL;
4990
4991 /* Quotafile not on the same filesystem? */
4992 if (path->dentry->d_sb != sb)
4993 return -EXDEV;
4994 /* Journaling quota? */
4995 if (EXT4_SB(sb)->s_qf_names[type]) {
4996 /* Quotafile not in fs root? */
4997 if (path->dentry->d_parent != sb->s_root)
4998 ext4_msg(sb, KERN_WARNING,
4999 "Quota file not on filesystem root. "
5000 "Journaled quota will not work");
5001 }
5002
5003 /*
5004 * When we journal data on quota file, we have to flush journal to see
5005 * all updates to the file when we bypass pagecache...
5006 */
5007 if (EXT4_SB(sb)->s_journal &&
5008 ext4_should_journal_data(path->dentry->d_inode)) {
5009 /*
5010 * We don't need to lock updates but journal_flush() could
5011 * otherwise be livelocked...
5012 */
5013 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5014 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5015 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5016 if (err)
5017 return err;
5018 }
5019
5020 return dquot_quota_on(sb, type, format_id, path);
5021 }
5022
5023 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5024 unsigned int flags)
5025 {
5026 int err;
5027 struct inode *qf_inode;
5028 unsigned long qf_inums[MAXQUOTAS] = {
5029 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5030 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5031 };
5032
5033 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5034
5035 if (!qf_inums[type])
5036 return -EPERM;
5037
5038 qf_inode = ext4_iget(sb, qf_inums[type]);
5039 if (IS_ERR(qf_inode)) {
5040 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5041 return PTR_ERR(qf_inode);
5042 }
5043
5044 /* Don't account quota for quota files to avoid recursion */
5045 qf_inode->i_flags |= S_NOQUOTA;
5046 err = dquot_enable(qf_inode, type, format_id, flags);
5047 iput(qf_inode);
5048
5049 return err;
5050 }
5051
5052 /* Enable usage tracking for all quota types. */
5053 static int ext4_enable_quotas(struct super_block *sb)
5054 {
5055 int type, err = 0;
5056 unsigned long qf_inums[MAXQUOTAS] = {
5057 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5058 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5059 };
5060
5061 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5062 for (type = 0; type < MAXQUOTAS; type++) {
5063 if (qf_inums[type]) {
5064 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5065 DQUOT_USAGE_ENABLED);
5066 if (err) {
5067 ext4_warning(sb,
5068 "Failed to enable quota tracking "
5069 "(type=%d, err=%d). Please run "
5070 "e2fsck to fix.", type, err);
5071 return err;
5072 }
5073 }
5074 }
5075 return 0;
5076 }
5077
5078 /*
5079 * quota_on function that is used when QUOTA feature is set.
5080 */
5081 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5082 int format_id)
5083 {
5084 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5085 return -EINVAL;
5086
5087 /*
5088 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5089 */
5090 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5091 }
5092
5093 static int ext4_quota_off(struct super_block *sb, int type)
5094 {
5095 struct inode *inode = sb_dqopt(sb)->files[type];
5096 handle_t *handle;
5097
5098 /* Force all delayed allocation blocks to be allocated.
5099 * Caller already holds s_umount sem */
5100 if (test_opt(sb, DELALLOC))
5101 sync_filesystem(sb);
5102
5103 if (!inode)
5104 goto out;
5105
5106 /* Update modification times of quota files when userspace can
5107 * start looking at them */
5108 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5109 if (IS_ERR(handle))
5110 goto out;
5111 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5112 ext4_mark_inode_dirty(handle, inode);
5113 ext4_journal_stop(handle);
5114
5115 out:
5116 return dquot_quota_off(sb, type);
5117 }
5118
5119 /*
5120 * quota_off function that is used when QUOTA feature is set.
5121 */
5122 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5123 {
5124 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5125 return -EINVAL;
5126
5127 /* Disable only the limits. */
5128 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5129 }
5130
5131 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5132 * acquiring the locks... As quota files are never truncated and quota code
5133 * itself serializes the operations (and no one else should touch the files)
5134 * we don't have to be afraid of races */
5135 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5136 size_t len, loff_t off)
5137 {
5138 struct inode *inode = sb_dqopt(sb)->files[type];
5139 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5140 int err = 0;
5141 int offset = off & (sb->s_blocksize - 1);
5142 int tocopy;
5143 size_t toread;
5144 struct buffer_head *bh;
5145 loff_t i_size = i_size_read(inode);
5146
5147 if (off > i_size)
5148 return 0;
5149 if (off+len > i_size)
5150 len = i_size-off;
5151 toread = len;
5152 while (toread > 0) {
5153 tocopy = sb->s_blocksize - offset < toread ?
5154 sb->s_blocksize - offset : toread;
5155 bh = ext4_bread(NULL, inode, blk, 0, &err);
5156 if (err)
5157 return err;
5158 if (!bh) /* A hole? */
5159 memset(data, 0, tocopy);
5160 else
5161 memcpy(data, bh->b_data+offset, tocopy);
5162 brelse(bh);
5163 offset = 0;
5164 toread -= tocopy;
5165 data += tocopy;
5166 blk++;
5167 }
5168 return len;
5169 }
5170
5171 /* Write to quotafile (we know the transaction is already started and has
5172 * enough credits) */
5173 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5174 const char *data, size_t len, loff_t off)
5175 {
5176 struct inode *inode = sb_dqopt(sb)->files[type];
5177 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5178 int err = 0;
5179 int offset = off & (sb->s_blocksize - 1);
5180 struct buffer_head *bh;
5181 handle_t *handle = journal_current_handle();
5182
5183 if (EXT4_SB(sb)->s_journal && !handle) {
5184 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5185 " cancelled because transaction is not started",
5186 (unsigned long long)off, (unsigned long long)len);
5187 return -EIO;
5188 }
5189 /*
5190 * Since we account only one data block in transaction credits,
5191 * then it is impossible to cross a block boundary.
5192 */
5193 if (sb->s_blocksize - offset < len) {
5194 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5195 " cancelled because not block aligned",
5196 (unsigned long long)off, (unsigned long long)len);
5197 return -EIO;
5198 }
5199
5200 bh = ext4_bread(handle, inode, blk, 1, &err);
5201 if (!bh)
5202 goto out;
5203 err = ext4_journal_get_write_access(handle, bh);
5204 if (err) {
5205 brelse(bh);
5206 goto out;
5207 }
5208 lock_buffer(bh);
5209 memcpy(bh->b_data+offset, data, len);
5210 flush_dcache_page(bh->b_page);
5211 unlock_buffer(bh);
5212 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5213 brelse(bh);
5214 out:
5215 if (err)
5216 return err;
5217 if (inode->i_size < off + len) {
5218 i_size_write(inode, off + len);
5219 EXT4_I(inode)->i_disksize = inode->i_size;
5220 ext4_mark_inode_dirty(handle, inode);
5221 }
5222 return len;
5223 }
5224
5225 #endif
5226
5227 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5228 const char *dev_name, void *data)
5229 {
5230 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5231 }
5232
5233 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5234 static inline void register_as_ext2(void)
5235 {
5236 int err = register_filesystem(&ext2_fs_type);
5237 if (err)
5238 printk(KERN_WARNING
5239 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5240 }
5241
5242 static inline void unregister_as_ext2(void)
5243 {
5244 unregister_filesystem(&ext2_fs_type);
5245 }
5246
5247 static inline int ext2_feature_set_ok(struct super_block *sb)
5248 {
5249 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5250 return 0;
5251 if (sb->s_flags & MS_RDONLY)
5252 return 1;
5253 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5254 return 0;
5255 return 1;
5256 }
5257 #else
5258 static inline void register_as_ext2(void) { }
5259 static inline void unregister_as_ext2(void) { }
5260 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5261 #endif
5262
5263 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5264 static inline void register_as_ext3(void)
5265 {
5266 int err = register_filesystem(&ext3_fs_type);
5267 if (err)
5268 printk(KERN_WARNING
5269 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5270 }
5271
5272 static inline void unregister_as_ext3(void)
5273 {
5274 unregister_filesystem(&ext3_fs_type);
5275 }
5276
5277 static inline int ext3_feature_set_ok(struct super_block *sb)
5278 {
5279 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5280 return 0;
5281 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5282 return 0;
5283 if (sb->s_flags & MS_RDONLY)
5284 return 1;
5285 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5286 return 0;
5287 return 1;
5288 }
5289 #else
5290 static inline void register_as_ext3(void) { }
5291 static inline void unregister_as_ext3(void) { }
5292 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5293 #endif
5294
5295 static struct file_system_type ext4_fs_type = {
5296 .owner = THIS_MODULE,
5297 .name = "ext4",
5298 .mount = ext4_mount,
5299 .kill_sb = kill_block_super,
5300 .fs_flags = FS_REQUIRES_DEV,
5301 };
5302 MODULE_ALIAS_FS("ext4");
5303
5304 static int __init ext4_init_feat_adverts(void)
5305 {
5306 struct ext4_features *ef;
5307 int ret = -ENOMEM;
5308
5309 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5310 if (!ef)
5311 goto out;
5312
5313 ef->f_kobj.kset = ext4_kset;
5314 init_completion(&ef->f_kobj_unregister);
5315 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5316 "features");
5317 if (ret) {
5318 kfree(ef);
5319 goto out;
5320 }
5321
5322 ext4_feat = ef;
5323 ret = 0;
5324 out:
5325 return ret;
5326 }
5327
5328 static void ext4_exit_feat_adverts(void)
5329 {
5330 kobject_put(&ext4_feat->f_kobj);
5331 wait_for_completion(&ext4_feat->f_kobj_unregister);
5332 kfree(ext4_feat);
5333 }
5334
5335 /* Shared across all ext4 file systems */
5336 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5337 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5338
5339 static int __init ext4_init_fs(void)
5340 {
5341 int i, err;
5342
5343 ext4_li_info = NULL;
5344 mutex_init(&ext4_li_mtx);
5345
5346 /* Build-time check for flags consistency */
5347 ext4_check_flag_values();
5348
5349 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5350 mutex_init(&ext4__aio_mutex[i]);
5351 init_waitqueue_head(&ext4__ioend_wq[i]);
5352 }
5353
5354 err = ext4_init_es();
5355 if (err)
5356 return err;
5357
5358 err = ext4_init_pageio();
5359 if (err)
5360 goto out7;
5361
5362 err = ext4_init_system_zone();
5363 if (err)
5364 goto out6;
5365 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5366 if (!ext4_kset) {
5367 err = -ENOMEM;
5368 goto out5;
5369 }
5370 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5371
5372 err = ext4_init_feat_adverts();
5373 if (err)
5374 goto out4;
5375
5376 err = ext4_init_mballoc();
5377 if (err)
5378 goto out3;
5379
5380 err = ext4_init_xattr();
5381 if (err)
5382 goto out2;
5383 err = init_inodecache();
5384 if (err)
5385 goto out1;
5386 register_as_ext3();
5387 register_as_ext2();
5388 err = register_filesystem(&ext4_fs_type);
5389 if (err)
5390 goto out;
5391
5392 return 0;
5393 out:
5394 unregister_as_ext2();
5395 unregister_as_ext3();
5396 destroy_inodecache();
5397 out1:
5398 ext4_exit_xattr();
5399 out2:
5400 ext4_exit_mballoc();
5401 out3:
5402 ext4_exit_feat_adverts();
5403 out4:
5404 if (ext4_proc_root)
5405 remove_proc_entry("fs/ext4", NULL);
5406 kset_unregister(ext4_kset);
5407 out5:
5408 ext4_exit_system_zone();
5409 out6:
5410 ext4_exit_pageio();
5411 out7:
5412 ext4_exit_es();
5413
5414 return err;
5415 }
5416
5417 static void __exit ext4_exit_fs(void)
5418 {
5419 ext4_destroy_lazyinit_thread();
5420 unregister_as_ext2();
5421 unregister_as_ext3();
5422 unregister_filesystem(&ext4_fs_type);
5423 destroy_inodecache();
5424 ext4_exit_xattr();
5425 ext4_exit_mballoc();
5426 ext4_exit_feat_adverts();
5427 remove_proc_entry("fs/ext4", NULL);
5428 kset_unregister(ext4_kset);
5429 ext4_exit_system_zone();
5430 ext4_exit_pageio();
5431 ext4_exit_es();
5432 }
5433
5434 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5435 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5436 MODULE_LICENSE("GPL");
5437 module_init(ext4_init_fs)
5438 module_exit(ext4_exit_fs)