Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
96 #else
97 #define IS_EXT2_SB(sb) (0)
98 #endif
99
100
101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
102 static struct file_system_type ext3_fs_type = {
103 .owner = THIS_MODULE,
104 .name = "ext3",
105 .mount = ext4_mount,
106 .kill_sb = kill_block_super,
107 .fs_flags = FS_REQUIRES_DEV,
108 };
109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
110 #else
111 #define IS_EXT3_SB(sb) (0)
112 #endif
113
114 static int ext4_verify_csum_type(struct super_block *sb,
115 struct ext4_super_block *es)
116 {
117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
119 return 1;
120
121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
122 }
123
124 static __le32 ext4_superblock_csum(struct super_block *sb,
125 struct ext4_super_block *es)
126 {
127 struct ext4_sb_info *sbi = EXT4_SB(sb);
128 int offset = offsetof(struct ext4_super_block, s_checksum);
129 __u32 csum;
130
131 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
132
133 return cpu_to_le32(csum);
134 }
135
136 int ext4_superblock_csum_verify(struct super_block *sb,
137 struct ext4_super_block *es)
138 {
139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
141 return 1;
142
143 return es->s_checksum == ext4_superblock_csum(sb, es);
144 }
145
146 void ext4_superblock_csum_set(struct super_block *sb)
147 {
148 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
149
150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
151 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
152 return;
153
154 es->s_checksum = ext4_superblock_csum(sb, es);
155 }
156
157 void *ext4_kvmalloc(size_t size, gfp_t flags)
158 {
159 void *ret;
160
161 ret = kmalloc(size, flags);
162 if (!ret)
163 ret = __vmalloc(size, flags, PAGE_KERNEL);
164 return ret;
165 }
166
167 void *ext4_kvzalloc(size_t size, gfp_t flags)
168 {
169 void *ret;
170
171 ret = kzalloc(size, flags);
172 if (!ret)
173 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
174 return ret;
175 }
176
177 void ext4_kvfree(void *ptr)
178 {
179 if (is_vmalloc_addr(ptr))
180 vfree(ptr);
181 else
182 kfree(ptr);
183
184 }
185
186 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
187 struct ext4_group_desc *bg)
188 {
189 return le32_to_cpu(bg->bg_block_bitmap_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
192 }
193
194 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
195 struct ext4_group_desc *bg)
196 {
197 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
200 }
201
202 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
203 struct ext4_group_desc *bg)
204 {
205 return le32_to_cpu(bg->bg_inode_table_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
208 }
209
210 __u32 ext4_free_group_clusters(struct super_block *sb,
211 struct ext4_group_desc *bg)
212 {
213 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
216 }
217
218 __u32 ext4_free_inodes_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
220 {
221 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
224 }
225
226 __u32 ext4_used_dirs_count(struct super_block *sb,
227 struct ext4_group_desc *bg)
228 {
229 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
232 }
233
234 __u32 ext4_itable_unused_count(struct super_block *sb,
235 struct ext4_group_desc *bg)
236 {
237 return le16_to_cpu(bg->bg_itable_unused_lo) |
238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
240 }
241
242 void ext4_block_bitmap_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249
250 void ext4_inode_bitmap_set(struct super_block *sb,
251 struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 {
253 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
256 }
257
258 void ext4_inode_table_set(struct super_block *sb,
259 struct ext4_group_desc *bg, ext4_fsblk_t blk)
260 {
261 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
264 }
265
266 void ext4_free_group_clusters_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
268 {
269 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
272 }
273
274 void ext4_free_inodes_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
276 {
277 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
280 }
281
282 void ext4_used_dirs_set(struct super_block *sb,
283 struct ext4_group_desc *bg, __u32 count)
284 {
285 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
288 }
289
290 void ext4_itable_unused_set(struct super_block *sb,
291 struct ext4_group_desc *bg, __u32 count)
292 {
293 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
296 }
297
298
299 /* Just increment the non-pointer handle value */
300 static handle_t *ext4_get_nojournal(void)
301 {
302 handle_t *handle = current->journal_info;
303 unsigned long ref_cnt = (unsigned long)handle;
304
305 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
306
307 ref_cnt++;
308 handle = (handle_t *)ref_cnt;
309
310 current->journal_info = handle;
311 return handle;
312 }
313
314
315 /* Decrement the non-pointer handle value */
316 static void ext4_put_nojournal(handle_t *handle)
317 {
318 unsigned long ref_cnt = (unsigned long)handle;
319
320 BUG_ON(ref_cnt == 0);
321
322 ref_cnt--;
323 handle = (handle_t *)ref_cnt;
324
325 current->journal_info = handle;
326 }
327
328 /*
329 * Wrappers for jbd2_journal_start/end.
330 */
331 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
332 {
333 journal_t *journal;
334
335 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
336 if (sb->s_flags & MS_RDONLY)
337 return ERR_PTR(-EROFS);
338
339 WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE);
340 journal = EXT4_SB(sb)->s_journal;
341 if (!journal)
342 return ext4_get_nojournal();
343 /*
344 * Special case here: if the journal has aborted behind our
345 * backs (eg. EIO in the commit thread), then we still need to
346 * take the FS itself readonly cleanly.
347 */
348 if (is_journal_aborted(journal)) {
349 ext4_abort(sb, "Detected aborted journal");
350 return ERR_PTR(-EROFS);
351 }
352 return jbd2_journal_start(journal, nblocks);
353 }
354
355 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
356 {
357 struct super_block *sb;
358 int err;
359 int rc;
360
361 if (!ext4_handle_valid(handle)) {
362 ext4_put_nojournal(handle);
363 return 0;
364 }
365 sb = handle->h_transaction->t_journal->j_private;
366 err = handle->h_err;
367 rc = jbd2_journal_stop(handle);
368
369 if (!err)
370 err = rc;
371 if (err)
372 __ext4_std_error(sb, where, line, err);
373 return err;
374 }
375
376 void ext4_journal_abort_handle(const char *caller, unsigned int line,
377 const char *err_fn, struct buffer_head *bh,
378 handle_t *handle, int err)
379 {
380 char nbuf[16];
381 const char *errstr = ext4_decode_error(NULL, err, nbuf);
382
383 BUG_ON(!ext4_handle_valid(handle));
384
385 if (bh)
386 BUFFER_TRACE(bh, "abort");
387
388 if (!handle->h_err)
389 handle->h_err = err;
390
391 if (is_handle_aborted(handle))
392 return;
393
394 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
395 caller, line, errstr, err_fn);
396
397 jbd2_journal_abort_handle(handle);
398 }
399
400 static void __save_error_info(struct super_block *sb, const char *func,
401 unsigned int line)
402 {
403 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
404
405 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
406 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
407 es->s_last_error_time = cpu_to_le32(get_seconds());
408 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
409 es->s_last_error_line = cpu_to_le32(line);
410 if (!es->s_first_error_time) {
411 es->s_first_error_time = es->s_last_error_time;
412 strncpy(es->s_first_error_func, func,
413 sizeof(es->s_first_error_func));
414 es->s_first_error_line = cpu_to_le32(line);
415 es->s_first_error_ino = es->s_last_error_ino;
416 es->s_first_error_block = es->s_last_error_block;
417 }
418 /*
419 * Start the daily error reporting function if it hasn't been
420 * started already
421 */
422 if (!es->s_error_count)
423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
424 le32_add_cpu(&es->s_error_count, 1);
425 }
426
427 static void save_error_info(struct super_block *sb, const char *func,
428 unsigned int line)
429 {
430 __save_error_info(sb, func, line);
431 ext4_commit_super(sb, 1);
432 }
433
434 /*
435 * The del_gendisk() function uninitializes the disk-specific data
436 * structures, including the bdi structure, without telling anyone
437 * else. Once this happens, any attempt to call mark_buffer_dirty()
438 * (for example, by ext4_commit_super), will cause a kernel OOPS.
439 * This is a kludge to prevent these oops until we can put in a proper
440 * hook in del_gendisk() to inform the VFS and file system layers.
441 */
442 static int block_device_ejected(struct super_block *sb)
443 {
444 struct inode *bd_inode = sb->s_bdev->bd_inode;
445 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
446
447 return bdi->dev == NULL;
448 }
449
450 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
451 {
452 struct super_block *sb = journal->j_private;
453 struct ext4_sb_info *sbi = EXT4_SB(sb);
454 int error = is_journal_aborted(journal);
455 struct ext4_journal_cb_entry *jce, *tmp;
456
457 spin_lock(&sbi->s_md_lock);
458 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
459 list_del_init(&jce->jce_list);
460 spin_unlock(&sbi->s_md_lock);
461 jce->jce_func(sb, jce, error);
462 spin_lock(&sbi->s_md_lock);
463 }
464 spin_unlock(&sbi->s_md_lock);
465 }
466
467 /* Deal with the reporting of failure conditions on a filesystem such as
468 * inconsistencies detected or read IO failures.
469 *
470 * On ext2, we can store the error state of the filesystem in the
471 * superblock. That is not possible on ext4, because we may have other
472 * write ordering constraints on the superblock which prevent us from
473 * writing it out straight away; and given that the journal is about to
474 * be aborted, we can't rely on the current, or future, transactions to
475 * write out the superblock safely.
476 *
477 * We'll just use the jbd2_journal_abort() error code to record an error in
478 * the journal instead. On recovery, the journal will complain about
479 * that error until we've noted it down and cleared it.
480 */
481
482 static void ext4_handle_error(struct super_block *sb)
483 {
484 if (sb->s_flags & MS_RDONLY)
485 return;
486
487 if (!test_opt(sb, ERRORS_CONT)) {
488 journal_t *journal = EXT4_SB(sb)->s_journal;
489
490 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
491 if (journal)
492 jbd2_journal_abort(journal, -EIO);
493 }
494 if (test_opt(sb, ERRORS_RO)) {
495 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
496 sb->s_flags |= MS_RDONLY;
497 }
498 if (test_opt(sb, ERRORS_PANIC))
499 panic("EXT4-fs (device %s): panic forced after error\n",
500 sb->s_id);
501 }
502
503 void __ext4_error(struct super_block *sb, const char *function,
504 unsigned int line, const char *fmt, ...)
505 {
506 struct va_format vaf;
507 va_list args;
508
509 va_start(args, fmt);
510 vaf.fmt = fmt;
511 vaf.va = &args;
512 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
513 sb->s_id, function, line, current->comm, &vaf);
514 va_end(args);
515 save_error_info(sb, function, line);
516
517 ext4_handle_error(sb);
518 }
519
520 void ext4_error_inode(struct inode *inode, const char *function,
521 unsigned int line, ext4_fsblk_t block,
522 const char *fmt, ...)
523 {
524 va_list args;
525 struct va_format vaf;
526 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
527
528 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
529 es->s_last_error_block = cpu_to_le64(block);
530 save_error_info(inode->i_sb, function, line);
531 va_start(args, fmt);
532 vaf.fmt = fmt;
533 vaf.va = &args;
534 if (block)
535 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
536 "inode #%lu: block %llu: comm %s: %pV\n",
537 inode->i_sb->s_id, function, line, inode->i_ino,
538 block, current->comm, &vaf);
539 else
540 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
541 "inode #%lu: comm %s: %pV\n",
542 inode->i_sb->s_id, function, line, inode->i_ino,
543 current->comm, &vaf);
544 va_end(args);
545
546 ext4_handle_error(inode->i_sb);
547 }
548
549 void ext4_error_file(struct file *file, const char *function,
550 unsigned int line, ext4_fsblk_t block,
551 const char *fmt, ...)
552 {
553 va_list args;
554 struct va_format vaf;
555 struct ext4_super_block *es;
556 struct inode *inode = file->f_dentry->d_inode;
557 char pathname[80], *path;
558
559 es = EXT4_SB(inode->i_sb)->s_es;
560 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
561 save_error_info(inode->i_sb, function, line);
562 path = d_path(&(file->f_path), pathname, sizeof(pathname));
563 if (IS_ERR(path))
564 path = "(unknown)";
565 va_start(args, fmt);
566 vaf.fmt = fmt;
567 vaf.va = &args;
568 if (block)
569 printk(KERN_CRIT
570 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
571 "block %llu: comm %s: path %s: %pV\n",
572 inode->i_sb->s_id, function, line, inode->i_ino,
573 block, current->comm, path, &vaf);
574 else
575 printk(KERN_CRIT
576 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
577 "comm %s: path %s: %pV\n",
578 inode->i_sb->s_id, function, line, inode->i_ino,
579 current->comm, path, &vaf);
580 va_end(args);
581
582 ext4_handle_error(inode->i_sb);
583 }
584
585 static const char *ext4_decode_error(struct super_block *sb, int errno,
586 char nbuf[16])
587 {
588 char *errstr = NULL;
589
590 switch (errno) {
591 case -EIO:
592 errstr = "IO failure";
593 break;
594 case -ENOMEM:
595 errstr = "Out of memory";
596 break;
597 case -EROFS:
598 if (!sb || (EXT4_SB(sb)->s_journal &&
599 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
600 errstr = "Journal has aborted";
601 else
602 errstr = "Readonly filesystem";
603 break;
604 default:
605 /* If the caller passed in an extra buffer for unknown
606 * errors, textualise them now. Else we just return
607 * NULL. */
608 if (nbuf) {
609 /* Check for truncated error codes... */
610 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
611 errstr = nbuf;
612 }
613 break;
614 }
615
616 return errstr;
617 }
618
619 /* __ext4_std_error decodes expected errors from journaling functions
620 * automatically and invokes the appropriate error response. */
621
622 void __ext4_std_error(struct super_block *sb, const char *function,
623 unsigned int line, int errno)
624 {
625 char nbuf[16];
626 const char *errstr;
627
628 /* Special case: if the error is EROFS, and we're not already
629 * inside a transaction, then there's really no point in logging
630 * an error. */
631 if (errno == -EROFS && journal_current_handle() == NULL &&
632 (sb->s_flags & MS_RDONLY))
633 return;
634
635 errstr = ext4_decode_error(sb, errno, nbuf);
636 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
637 sb->s_id, function, line, errstr);
638 save_error_info(sb, function, line);
639
640 ext4_handle_error(sb);
641 }
642
643 /*
644 * ext4_abort is a much stronger failure handler than ext4_error. The
645 * abort function may be used to deal with unrecoverable failures such
646 * as journal IO errors or ENOMEM at a critical moment in log management.
647 *
648 * We unconditionally force the filesystem into an ABORT|READONLY state,
649 * unless the error response on the fs has been set to panic in which
650 * case we take the easy way out and panic immediately.
651 */
652
653 void __ext4_abort(struct super_block *sb, const char *function,
654 unsigned int line, const char *fmt, ...)
655 {
656 va_list args;
657
658 save_error_info(sb, function, line);
659 va_start(args, fmt);
660 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
661 function, line);
662 vprintk(fmt, args);
663 printk("\n");
664 va_end(args);
665
666 if ((sb->s_flags & MS_RDONLY) == 0) {
667 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
668 sb->s_flags |= MS_RDONLY;
669 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
670 if (EXT4_SB(sb)->s_journal)
671 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
672 save_error_info(sb, function, line);
673 }
674 if (test_opt(sb, ERRORS_PANIC))
675 panic("EXT4-fs panic from previous error\n");
676 }
677
678 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
679 {
680 struct va_format vaf;
681 va_list args;
682
683 va_start(args, fmt);
684 vaf.fmt = fmt;
685 vaf.va = &args;
686 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
687 va_end(args);
688 }
689
690 void __ext4_warning(struct super_block *sb, const char *function,
691 unsigned int line, const char *fmt, ...)
692 {
693 struct va_format vaf;
694 va_list args;
695
696 va_start(args, fmt);
697 vaf.fmt = fmt;
698 vaf.va = &args;
699 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
700 sb->s_id, function, line, &vaf);
701 va_end(args);
702 }
703
704 void __ext4_grp_locked_error(const char *function, unsigned int line,
705 struct super_block *sb, ext4_group_t grp,
706 unsigned long ino, ext4_fsblk_t block,
707 const char *fmt, ...)
708 __releases(bitlock)
709 __acquires(bitlock)
710 {
711 struct va_format vaf;
712 va_list args;
713 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
714
715 es->s_last_error_ino = cpu_to_le32(ino);
716 es->s_last_error_block = cpu_to_le64(block);
717 __save_error_info(sb, function, line);
718
719 va_start(args, fmt);
720
721 vaf.fmt = fmt;
722 vaf.va = &args;
723 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
724 sb->s_id, function, line, grp);
725 if (ino)
726 printk(KERN_CONT "inode %lu: ", ino);
727 if (block)
728 printk(KERN_CONT "block %llu:", (unsigned long long) block);
729 printk(KERN_CONT "%pV\n", &vaf);
730 va_end(args);
731
732 if (test_opt(sb, ERRORS_CONT)) {
733 ext4_commit_super(sb, 0);
734 return;
735 }
736
737 ext4_unlock_group(sb, grp);
738 ext4_handle_error(sb);
739 /*
740 * We only get here in the ERRORS_RO case; relocking the group
741 * may be dangerous, but nothing bad will happen since the
742 * filesystem will have already been marked read/only and the
743 * journal has been aborted. We return 1 as a hint to callers
744 * who might what to use the return value from
745 * ext4_grp_locked_error() to distinguish between the
746 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
747 * aggressively from the ext4 function in question, with a
748 * more appropriate error code.
749 */
750 ext4_lock_group(sb, grp);
751 return;
752 }
753
754 void ext4_update_dynamic_rev(struct super_block *sb)
755 {
756 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
757
758 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
759 return;
760
761 ext4_warning(sb,
762 "updating to rev %d because of new feature flag, "
763 "running e2fsck is recommended",
764 EXT4_DYNAMIC_REV);
765
766 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
767 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
768 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
769 /* leave es->s_feature_*compat flags alone */
770 /* es->s_uuid will be set by e2fsck if empty */
771
772 /*
773 * The rest of the superblock fields should be zero, and if not it
774 * means they are likely already in use, so leave them alone. We
775 * can leave it up to e2fsck to clean up any inconsistencies there.
776 */
777 }
778
779 /*
780 * Open the external journal device
781 */
782 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
783 {
784 struct block_device *bdev;
785 char b[BDEVNAME_SIZE];
786
787 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
788 if (IS_ERR(bdev))
789 goto fail;
790 return bdev;
791
792 fail:
793 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
794 __bdevname(dev, b), PTR_ERR(bdev));
795 return NULL;
796 }
797
798 /*
799 * Release the journal device
800 */
801 static int ext4_blkdev_put(struct block_device *bdev)
802 {
803 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
804 }
805
806 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
807 {
808 struct block_device *bdev;
809 int ret = -ENODEV;
810
811 bdev = sbi->journal_bdev;
812 if (bdev) {
813 ret = ext4_blkdev_put(bdev);
814 sbi->journal_bdev = NULL;
815 }
816 return ret;
817 }
818
819 static inline struct inode *orphan_list_entry(struct list_head *l)
820 {
821 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
822 }
823
824 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
825 {
826 struct list_head *l;
827
828 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
829 le32_to_cpu(sbi->s_es->s_last_orphan));
830
831 printk(KERN_ERR "sb_info orphan list:\n");
832 list_for_each(l, &sbi->s_orphan) {
833 struct inode *inode = orphan_list_entry(l);
834 printk(KERN_ERR " "
835 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
836 inode->i_sb->s_id, inode->i_ino, inode,
837 inode->i_mode, inode->i_nlink,
838 NEXT_ORPHAN(inode));
839 }
840 }
841
842 static void ext4_put_super(struct super_block *sb)
843 {
844 struct ext4_sb_info *sbi = EXT4_SB(sb);
845 struct ext4_super_block *es = sbi->s_es;
846 int i, err;
847
848 ext4_unregister_li_request(sb);
849 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
850
851 flush_workqueue(sbi->dio_unwritten_wq);
852 destroy_workqueue(sbi->dio_unwritten_wq);
853
854 if (sbi->s_journal) {
855 err = jbd2_journal_destroy(sbi->s_journal);
856 sbi->s_journal = NULL;
857 if (err < 0)
858 ext4_abort(sb, "Couldn't clean up the journal");
859 }
860
861 del_timer(&sbi->s_err_report);
862 ext4_release_system_zone(sb);
863 ext4_mb_release(sb);
864 ext4_ext_release(sb);
865 ext4_xattr_put_super(sb);
866
867 if (!(sb->s_flags & MS_RDONLY)) {
868 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
869 es->s_state = cpu_to_le16(sbi->s_mount_state);
870 }
871 if (!(sb->s_flags & MS_RDONLY))
872 ext4_commit_super(sb, 1);
873
874 if (sbi->s_proc) {
875 remove_proc_entry("options", sbi->s_proc);
876 remove_proc_entry(sb->s_id, ext4_proc_root);
877 }
878 kobject_del(&sbi->s_kobj);
879
880 for (i = 0; i < sbi->s_gdb_count; i++)
881 brelse(sbi->s_group_desc[i]);
882 ext4_kvfree(sbi->s_group_desc);
883 ext4_kvfree(sbi->s_flex_groups);
884 percpu_counter_destroy(&sbi->s_freeclusters_counter);
885 percpu_counter_destroy(&sbi->s_freeinodes_counter);
886 percpu_counter_destroy(&sbi->s_dirs_counter);
887 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
888 brelse(sbi->s_sbh);
889 #ifdef CONFIG_QUOTA
890 for (i = 0; i < MAXQUOTAS; i++)
891 kfree(sbi->s_qf_names[i]);
892 #endif
893
894 /* Debugging code just in case the in-memory inode orphan list
895 * isn't empty. The on-disk one can be non-empty if we've
896 * detected an error and taken the fs readonly, but the
897 * in-memory list had better be clean by this point. */
898 if (!list_empty(&sbi->s_orphan))
899 dump_orphan_list(sb, sbi);
900 J_ASSERT(list_empty(&sbi->s_orphan));
901
902 invalidate_bdev(sb->s_bdev);
903 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
904 /*
905 * Invalidate the journal device's buffers. We don't want them
906 * floating about in memory - the physical journal device may
907 * hotswapped, and it breaks the `ro-after' testing code.
908 */
909 sync_blockdev(sbi->journal_bdev);
910 invalidate_bdev(sbi->journal_bdev);
911 ext4_blkdev_remove(sbi);
912 }
913 if (sbi->s_mmp_tsk)
914 kthread_stop(sbi->s_mmp_tsk);
915 sb->s_fs_info = NULL;
916 /*
917 * Now that we are completely done shutting down the
918 * superblock, we need to actually destroy the kobject.
919 */
920 kobject_put(&sbi->s_kobj);
921 wait_for_completion(&sbi->s_kobj_unregister);
922 if (sbi->s_chksum_driver)
923 crypto_free_shash(sbi->s_chksum_driver);
924 kfree(sbi->s_blockgroup_lock);
925 kfree(sbi);
926 }
927
928 static struct kmem_cache *ext4_inode_cachep;
929
930 /*
931 * Called inside transaction, so use GFP_NOFS
932 */
933 static struct inode *ext4_alloc_inode(struct super_block *sb)
934 {
935 struct ext4_inode_info *ei;
936
937 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
938 if (!ei)
939 return NULL;
940
941 ei->vfs_inode.i_version = 1;
942 ei->vfs_inode.i_data.writeback_index = 0;
943 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
944 INIT_LIST_HEAD(&ei->i_prealloc_list);
945 spin_lock_init(&ei->i_prealloc_lock);
946 ei->i_reserved_data_blocks = 0;
947 ei->i_reserved_meta_blocks = 0;
948 ei->i_allocated_meta_blocks = 0;
949 ei->i_da_metadata_calc_len = 0;
950 ei->i_da_metadata_calc_last_lblock = 0;
951 spin_lock_init(&(ei->i_block_reservation_lock));
952 #ifdef CONFIG_QUOTA
953 ei->i_reserved_quota = 0;
954 #endif
955 ei->jinode = NULL;
956 INIT_LIST_HEAD(&ei->i_completed_io_list);
957 spin_lock_init(&ei->i_completed_io_lock);
958 ei->i_sync_tid = 0;
959 ei->i_datasync_tid = 0;
960 atomic_set(&ei->i_ioend_count, 0);
961 atomic_set(&ei->i_unwritten, 0);
962
963 return &ei->vfs_inode;
964 }
965
966 static int ext4_drop_inode(struct inode *inode)
967 {
968 int drop = generic_drop_inode(inode);
969
970 trace_ext4_drop_inode(inode, drop);
971 return drop;
972 }
973
974 static void ext4_i_callback(struct rcu_head *head)
975 {
976 struct inode *inode = container_of(head, struct inode, i_rcu);
977 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
978 }
979
980 static void ext4_destroy_inode(struct inode *inode)
981 {
982 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
983 ext4_msg(inode->i_sb, KERN_ERR,
984 "Inode %lu (%p): orphan list check failed!",
985 inode->i_ino, EXT4_I(inode));
986 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
987 EXT4_I(inode), sizeof(struct ext4_inode_info),
988 true);
989 dump_stack();
990 }
991 call_rcu(&inode->i_rcu, ext4_i_callback);
992 }
993
994 static void init_once(void *foo)
995 {
996 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
997
998 INIT_LIST_HEAD(&ei->i_orphan);
999 #ifdef CONFIG_EXT4_FS_XATTR
1000 init_rwsem(&ei->xattr_sem);
1001 #endif
1002 init_rwsem(&ei->i_data_sem);
1003 inode_init_once(&ei->vfs_inode);
1004 }
1005
1006 static int init_inodecache(void)
1007 {
1008 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1009 sizeof(struct ext4_inode_info),
1010 0, (SLAB_RECLAIM_ACCOUNT|
1011 SLAB_MEM_SPREAD),
1012 init_once);
1013 if (ext4_inode_cachep == NULL)
1014 return -ENOMEM;
1015 return 0;
1016 }
1017
1018 static void destroy_inodecache(void)
1019 {
1020 /*
1021 * Make sure all delayed rcu free inodes are flushed before we
1022 * destroy cache.
1023 */
1024 rcu_barrier();
1025 kmem_cache_destroy(ext4_inode_cachep);
1026 }
1027
1028 void ext4_clear_inode(struct inode *inode)
1029 {
1030 invalidate_inode_buffers(inode);
1031 clear_inode(inode);
1032 dquot_drop(inode);
1033 ext4_discard_preallocations(inode);
1034 if (EXT4_I(inode)->jinode) {
1035 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1036 EXT4_I(inode)->jinode);
1037 jbd2_free_inode(EXT4_I(inode)->jinode);
1038 EXT4_I(inode)->jinode = NULL;
1039 }
1040 }
1041
1042 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1043 u64 ino, u32 generation)
1044 {
1045 struct inode *inode;
1046
1047 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1048 return ERR_PTR(-ESTALE);
1049 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1050 return ERR_PTR(-ESTALE);
1051
1052 /* iget isn't really right if the inode is currently unallocated!!
1053 *
1054 * ext4_read_inode will return a bad_inode if the inode had been
1055 * deleted, so we should be safe.
1056 *
1057 * Currently we don't know the generation for parent directory, so
1058 * a generation of 0 means "accept any"
1059 */
1060 inode = ext4_iget(sb, ino);
1061 if (IS_ERR(inode))
1062 return ERR_CAST(inode);
1063 if (generation && inode->i_generation != generation) {
1064 iput(inode);
1065 return ERR_PTR(-ESTALE);
1066 }
1067
1068 return inode;
1069 }
1070
1071 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1072 int fh_len, int fh_type)
1073 {
1074 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1075 ext4_nfs_get_inode);
1076 }
1077
1078 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1079 int fh_len, int fh_type)
1080 {
1081 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1082 ext4_nfs_get_inode);
1083 }
1084
1085 /*
1086 * Try to release metadata pages (indirect blocks, directories) which are
1087 * mapped via the block device. Since these pages could have journal heads
1088 * which would prevent try_to_free_buffers() from freeing them, we must use
1089 * jbd2 layer's try_to_free_buffers() function to release them.
1090 */
1091 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1092 gfp_t wait)
1093 {
1094 journal_t *journal = EXT4_SB(sb)->s_journal;
1095
1096 WARN_ON(PageChecked(page));
1097 if (!page_has_buffers(page))
1098 return 0;
1099 if (journal)
1100 return jbd2_journal_try_to_free_buffers(journal, page,
1101 wait & ~__GFP_WAIT);
1102 return try_to_free_buffers(page);
1103 }
1104
1105 #ifdef CONFIG_QUOTA
1106 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1107 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1108
1109 static int ext4_write_dquot(struct dquot *dquot);
1110 static int ext4_acquire_dquot(struct dquot *dquot);
1111 static int ext4_release_dquot(struct dquot *dquot);
1112 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1113 static int ext4_write_info(struct super_block *sb, int type);
1114 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1115 struct path *path);
1116 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1117 int format_id);
1118 static int ext4_quota_off(struct super_block *sb, int type);
1119 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1120 static int ext4_quota_on_mount(struct super_block *sb, int type);
1121 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1122 size_t len, loff_t off);
1123 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1124 const char *data, size_t len, loff_t off);
1125 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1126 unsigned int flags);
1127 static int ext4_enable_quotas(struct super_block *sb);
1128
1129 static const struct dquot_operations ext4_quota_operations = {
1130 .get_reserved_space = ext4_get_reserved_space,
1131 .write_dquot = ext4_write_dquot,
1132 .acquire_dquot = ext4_acquire_dquot,
1133 .release_dquot = ext4_release_dquot,
1134 .mark_dirty = ext4_mark_dquot_dirty,
1135 .write_info = ext4_write_info,
1136 .alloc_dquot = dquot_alloc,
1137 .destroy_dquot = dquot_destroy,
1138 };
1139
1140 static const struct quotactl_ops ext4_qctl_operations = {
1141 .quota_on = ext4_quota_on,
1142 .quota_off = ext4_quota_off,
1143 .quota_sync = dquot_quota_sync,
1144 .get_info = dquot_get_dqinfo,
1145 .set_info = dquot_set_dqinfo,
1146 .get_dqblk = dquot_get_dqblk,
1147 .set_dqblk = dquot_set_dqblk
1148 };
1149
1150 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1151 .quota_on_meta = ext4_quota_on_sysfile,
1152 .quota_off = ext4_quota_off_sysfile,
1153 .quota_sync = dquot_quota_sync,
1154 .get_info = dquot_get_dqinfo,
1155 .set_info = dquot_set_dqinfo,
1156 .get_dqblk = dquot_get_dqblk,
1157 .set_dqblk = dquot_set_dqblk
1158 };
1159 #endif
1160
1161 static const struct super_operations ext4_sops = {
1162 .alloc_inode = ext4_alloc_inode,
1163 .destroy_inode = ext4_destroy_inode,
1164 .write_inode = ext4_write_inode,
1165 .dirty_inode = ext4_dirty_inode,
1166 .drop_inode = ext4_drop_inode,
1167 .evict_inode = ext4_evict_inode,
1168 .put_super = ext4_put_super,
1169 .sync_fs = ext4_sync_fs,
1170 .freeze_fs = ext4_freeze,
1171 .unfreeze_fs = ext4_unfreeze,
1172 .statfs = ext4_statfs,
1173 .remount_fs = ext4_remount,
1174 .show_options = ext4_show_options,
1175 #ifdef CONFIG_QUOTA
1176 .quota_read = ext4_quota_read,
1177 .quota_write = ext4_quota_write,
1178 #endif
1179 .bdev_try_to_free_page = bdev_try_to_free_page,
1180 };
1181
1182 static const struct super_operations ext4_nojournal_sops = {
1183 .alloc_inode = ext4_alloc_inode,
1184 .destroy_inode = ext4_destroy_inode,
1185 .write_inode = ext4_write_inode,
1186 .dirty_inode = ext4_dirty_inode,
1187 .drop_inode = ext4_drop_inode,
1188 .evict_inode = ext4_evict_inode,
1189 .put_super = ext4_put_super,
1190 .statfs = ext4_statfs,
1191 .remount_fs = ext4_remount,
1192 .show_options = ext4_show_options,
1193 #ifdef CONFIG_QUOTA
1194 .quota_read = ext4_quota_read,
1195 .quota_write = ext4_quota_write,
1196 #endif
1197 .bdev_try_to_free_page = bdev_try_to_free_page,
1198 };
1199
1200 static const struct export_operations ext4_export_ops = {
1201 .fh_to_dentry = ext4_fh_to_dentry,
1202 .fh_to_parent = ext4_fh_to_parent,
1203 .get_parent = ext4_get_parent,
1204 };
1205
1206 enum {
1207 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1208 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1209 Opt_nouid32, Opt_debug, Opt_removed,
1210 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1211 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1212 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1213 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1214 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1215 Opt_data_err_abort, Opt_data_err_ignore,
1216 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1217 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1218 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1219 Opt_usrquota, Opt_grpquota, Opt_i_version,
1220 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1221 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1222 Opt_inode_readahead_blks, Opt_journal_ioprio,
1223 Opt_dioread_nolock, Opt_dioread_lock,
1224 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1225 Opt_max_dir_size_kb,
1226 };
1227
1228 static const match_table_t tokens = {
1229 {Opt_bsd_df, "bsddf"},
1230 {Opt_minix_df, "minixdf"},
1231 {Opt_grpid, "grpid"},
1232 {Opt_grpid, "bsdgroups"},
1233 {Opt_nogrpid, "nogrpid"},
1234 {Opt_nogrpid, "sysvgroups"},
1235 {Opt_resgid, "resgid=%u"},
1236 {Opt_resuid, "resuid=%u"},
1237 {Opt_sb, "sb=%u"},
1238 {Opt_err_cont, "errors=continue"},
1239 {Opt_err_panic, "errors=panic"},
1240 {Opt_err_ro, "errors=remount-ro"},
1241 {Opt_nouid32, "nouid32"},
1242 {Opt_debug, "debug"},
1243 {Opt_removed, "oldalloc"},
1244 {Opt_removed, "orlov"},
1245 {Opt_user_xattr, "user_xattr"},
1246 {Opt_nouser_xattr, "nouser_xattr"},
1247 {Opt_acl, "acl"},
1248 {Opt_noacl, "noacl"},
1249 {Opt_noload, "norecovery"},
1250 {Opt_noload, "noload"},
1251 {Opt_removed, "nobh"},
1252 {Opt_removed, "bh"},
1253 {Opt_commit, "commit=%u"},
1254 {Opt_min_batch_time, "min_batch_time=%u"},
1255 {Opt_max_batch_time, "max_batch_time=%u"},
1256 {Opt_journal_dev, "journal_dev=%u"},
1257 {Opt_journal_checksum, "journal_checksum"},
1258 {Opt_journal_async_commit, "journal_async_commit"},
1259 {Opt_abort, "abort"},
1260 {Opt_data_journal, "data=journal"},
1261 {Opt_data_ordered, "data=ordered"},
1262 {Opt_data_writeback, "data=writeback"},
1263 {Opt_data_err_abort, "data_err=abort"},
1264 {Opt_data_err_ignore, "data_err=ignore"},
1265 {Opt_offusrjquota, "usrjquota="},
1266 {Opt_usrjquota, "usrjquota=%s"},
1267 {Opt_offgrpjquota, "grpjquota="},
1268 {Opt_grpjquota, "grpjquota=%s"},
1269 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1270 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1271 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1272 {Opt_grpquota, "grpquota"},
1273 {Opt_noquota, "noquota"},
1274 {Opt_quota, "quota"},
1275 {Opt_usrquota, "usrquota"},
1276 {Opt_barrier, "barrier=%u"},
1277 {Opt_barrier, "barrier"},
1278 {Opt_nobarrier, "nobarrier"},
1279 {Opt_i_version, "i_version"},
1280 {Opt_stripe, "stripe=%u"},
1281 {Opt_delalloc, "delalloc"},
1282 {Opt_nodelalloc, "nodelalloc"},
1283 {Opt_mblk_io_submit, "mblk_io_submit"},
1284 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1285 {Opt_block_validity, "block_validity"},
1286 {Opt_noblock_validity, "noblock_validity"},
1287 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1288 {Opt_journal_ioprio, "journal_ioprio=%u"},
1289 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1290 {Opt_auto_da_alloc, "auto_da_alloc"},
1291 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1292 {Opt_dioread_nolock, "dioread_nolock"},
1293 {Opt_dioread_lock, "dioread_lock"},
1294 {Opt_discard, "discard"},
1295 {Opt_nodiscard, "nodiscard"},
1296 {Opt_init_itable, "init_itable=%u"},
1297 {Opt_init_itable, "init_itable"},
1298 {Opt_noinit_itable, "noinit_itable"},
1299 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1300 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1301 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1302 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1303 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1304 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1305 {Opt_err, NULL},
1306 };
1307
1308 static ext4_fsblk_t get_sb_block(void **data)
1309 {
1310 ext4_fsblk_t sb_block;
1311 char *options = (char *) *data;
1312
1313 if (!options || strncmp(options, "sb=", 3) != 0)
1314 return 1; /* Default location */
1315
1316 options += 3;
1317 /* TODO: use simple_strtoll with >32bit ext4 */
1318 sb_block = simple_strtoul(options, &options, 0);
1319 if (*options && *options != ',') {
1320 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1321 (char *) *data);
1322 return 1;
1323 }
1324 if (*options == ',')
1325 options++;
1326 *data = (void *) options;
1327
1328 return sb_block;
1329 }
1330
1331 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1332 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1333 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1334
1335 #ifdef CONFIG_QUOTA
1336 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1337 {
1338 struct ext4_sb_info *sbi = EXT4_SB(sb);
1339 char *qname;
1340
1341 if (sb_any_quota_loaded(sb) &&
1342 !sbi->s_qf_names[qtype]) {
1343 ext4_msg(sb, KERN_ERR,
1344 "Cannot change journaled "
1345 "quota options when quota turned on");
1346 return -1;
1347 }
1348 qname = match_strdup(args);
1349 if (!qname) {
1350 ext4_msg(sb, KERN_ERR,
1351 "Not enough memory for storing quotafile name");
1352 return -1;
1353 }
1354 if (sbi->s_qf_names[qtype] &&
1355 strcmp(sbi->s_qf_names[qtype], qname)) {
1356 ext4_msg(sb, KERN_ERR,
1357 "%s quota file already specified", QTYPE2NAME(qtype));
1358 kfree(qname);
1359 return -1;
1360 }
1361 sbi->s_qf_names[qtype] = qname;
1362 if (strchr(sbi->s_qf_names[qtype], '/')) {
1363 ext4_msg(sb, KERN_ERR,
1364 "quotafile must be on filesystem root");
1365 kfree(sbi->s_qf_names[qtype]);
1366 sbi->s_qf_names[qtype] = NULL;
1367 return -1;
1368 }
1369 set_opt(sb, QUOTA);
1370 return 1;
1371 }
1372
1373 static int clear_qf_name(struct super_block *sb, int qtype)
1374 {
1375
1376 struct ext4_sb_info *sbi = EXT4_SB(sb);
1377
1378 if (sb_any_quota_loaded(sb) &&
1379 sbi->s_qf_names[qtype]) {
1380 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1381 " when quota turned on");
1382 return -1;
1383 }
1384 /*
1385 * The space will be released later when all options are confirmed
1386 * to be correct
1387 */
1388 sbi->s_qf_names[qtype] = NULL;
1389 return 1;
1390 }
1391 #endif
1392
1393 #define MOPT_SET 0x0001
1394 #define MOPT_CLEAR 0x0002
1395 #define MOPT_NOSUPPORT 0x0004
1396 #define MOPT_EXPLICIT 0x0008
1397 #define MOPT_CLEAR_ERR 0x0010
1398 #define MOPT_GTE0 0x0020
1399 #ifdef CONFIG_QUOTA
1400 #define MOPT_Q 0
1401 #define MOPT_QFMT 0x0040
1402 #else
1403 #define MOPT_Q MOPT_NOSUPPORT
1404 #define MOPT_QFMT MOPT_NOSUPPORT
1405 #endif
1406 #define MOPT_DATAJ 0x0080
1407
1408 static const struct mount_opts {
1409 int token;
1410 int mount_opt;
1411 int flags;
1412 } ext4_mount_opts[] = {
1413 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1414 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1415 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1416 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1417 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1418 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1419 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1420 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1421 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1422 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1423 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1424 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1425 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1426 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1427 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1428 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1429 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1430 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1431 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1432 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1433 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1434 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1435 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1436 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1437 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1438 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1439 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1440 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1441 {Opt_commit, 0, MOPT_GTE0},
1442 {Opt_max_batch_time, 0, MOPT_GTE0},
1443 {Opt_min_batch_time, 0, MOPT_GTE0},
1444 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1445 {Opt_init_itable, 0, MOPT_GTE0},
1446 {Opt_stripe, 0, MOPT_GTE0},
1447 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1448 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1449 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1450 #ifdef CONFIG_EXT4_FS_XATTR
1451 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1452 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1453 #else
1454 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1455 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1456 #endif
1457 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1458 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1459 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1460 #else
1461 {Opt_acl, 0, MOPT_NOSUPPORT},
1462 {Opt_noacl, 0, MOPT_NOSUPPORT},
1463 #endif
1464 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1465 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1466 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1467 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1468 MOPT_SET | MOPT_Q},
1469 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1470 MOPT_SET | MOPT_Q},
1471 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1472 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1473 {Opt_usrjquota, 0, MOPT_Q},
1474 {Opt_grpjquota, 0, MOPT_Q},
1475 {Opt_offusrjquota, 0, MOPT_Q},
1476 {Opt_offgrpjquota, 0, MOPT_Q},
1477 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1478 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1479 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1480 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1481 {Opt_err, 0, 0}
1482 };
1483
1484 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1485 substring_t *args, unsigned long *journal_devnum,
1486 unsigned int *journal_ioprio, int is_remount)
1487 {
1488 struct ext4_sb_info *sbi = EXT4_SB(sb);
1489 const struct mount_opts *m;
1490 kuid_t uid;
1491 kgid_t gid;
1492 int arg = 0;
1493
1494 #ifdef CONFIG_QUOTA
1495 if (token == Opt_usrjquota)
1496 return set_qf_name(sb, USRQUOTA, &args[0]);
1497 else if (token == Opt_grpjquota)
1498 return set_qf_name(sb, GRPQUOTA, &args[0]);
1499 else if (token == Opt_offusrjquota)
1500 return clear_qf_name(sb, USRQUOTA);
1501 else if (token == Opt_offgrpjquota)
1502 return clear_qf_name(sb, GRPQUOTA);
1503 #endif
1504 if (args->from && match_int(args, &arg))
1505 return -1;
1506 switch (token) {
1507 case Opt_noacl:
1508 case Opt_nouser_xattr:
1509 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1510 break;
1511 case Opt_sb:
1512 return 1; /* handled by get_sb_block() */
1513 case Opt_removed:
1514 ext4_msg(sb, KERN_WARNING,
1515 "Ignoring removed %s option", opt);
1516 return 1;
1517 case Opt_resuid:
1518 uid = make_kuid(current_user_ns(), arg);
1519 if (!uid_valid(uid)) {
1520 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1521 return -1;
1522 }
1523 sbi->s_resuid = uid;
1524 return 1;
1525 case Opt_resgid:
1526 gid = make_kgid(current_user_ns(), arg);
1527 if (!gid_valid(gid)) {
1528 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1529 return -1;
1530 }
1531 sbi->s_resgid = gid;
1532 return 1;
1533 case Opt_abort:
1534 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1535 return 1;
1536 case Opt_i_version:
1537 sb->s_flags |= MS_I_VERSION;
1538 return 1;
1539 case Opt_journal_dev:
1540 if (is_remount) {
1541 ext4_msg(sb, KERN_ERR,
1542 "Cannot specify journal on remount");
1543 return -1;
1544 }
1545 *journal_devnum = arg;
1546 return 1;
1547 case Opt_journal_ioprio:
1548 if (arg < 0 || arg > 7)
1549 return -1;
1550 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1551 return 1;
1552 }
1553
1554 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1555 if (token != m->token)
1556 continue;
1557 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1558 return -1;
1559 if (m->flags & MOPT_EXPLICIT)
1560 set_opt2(sb, EXPLICIT_DELALLOC);
1561 if (m->flags & MOPT_CLEAR_ERR)
1562 clear_opt(sb, ERRORS_MASK);
1563 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1564 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1565 "options when quota turned on");
1566 return -1;
1567 }
1568
1569 if (m->flags & MOPT_NOSUPPORT) {
1570 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1571 } else if (token == Opt_commit) {
1572 if (arg == 0)
1573 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1574 sbi->s_commit_interval = HZ * arg;
1575 } else if (token == Opt_max_batch_time) {
1576 if (arg == 0)
1577 arg = EXT4_DEF_MAX_BATCH_TIME;
1578 sbi->s_max_batch_time = arg;
1579 } else if (token == Opt_min_batch_time) {
1580 sbi->s_min_batch_time = arg;
1581 } else if (token == Opt_inode_readahead_blks) {
1582 if (arg > (1 << 30))
1583 return -1;
1584 if (arg && !is_power_of_2(arg)) {
1585 ext4_msg(sb, KERN_ERR,
1586 "EXT4-fs: inode_readahead_blks"
1587 " must be a power of 2");
1588 return -1;
1589 }
1590 sbi->s_inode_readahead_blks = arg;
1591 } else if (token == Opt_init_itable) {
1592 set_opt(sb, INIT_INODE_TABLE);
1593 if (!args->from)
1594 arg = EXT4_DEF_LI_WAIT_MULT;
1595 sbi->s_li_wait_mult = arg;
1596 } else if (token == Opt_max_dir_size_kb) {
1597 sbi->s_max_dir_size_kb = arg;
1598 } else if (token == Opt_stripe) {
1599 sbi->s_stripe = arg;
1600 } else if (m->flags & MOPT_DATAJ) {
1601 if (is_remount) {
1602 if (!sbi->s_journal)
1603 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1604 else if (test_opt(sb, DATA_FLAGS) !=
1605 m->mount_opt) {
1606 ext4_msg(sb, KERN_ERR,
1607 "Cannot change data mode on remount");
1608 return -1;
1609 }
1610 } else {
1611 clear_opt(sb, DATA_FLAGS);
1612 sbi->s_mount_opt |= m->mount_opt;
1613 }
1614 #ifdef CONFIG_QUOTA
1615 } else if (m->flags & MOPT_QFMT) {
1616 if (sb_any_quota_loaded(sb) &&
1617 sbi->s_jquota_fmt != m->mount_opt) {
1618 ext4_msg(sb, KERN_ERR, "Cannot "
1619 "change journaled quota options "
1620 "when quota turned on");
1621 return -1;
1622 }
1623 sbi->s_jquota_fmt = m->mount_opt;
1624 #endif
1625 } else {
1626 if (!args->from)
1627 arg = 1;
1628 if (m->flags & MOPT_CLEAR)
1629 arg = !arg;
1630 else if (unlikely(!(m->flags & MOPT_SET))) {
1631 ext4_msg(sb, KERN_WARNING,
1632 "buggy handling of option %s", opt);
1633 WARN_ON(1);
1634 return -1;
1635 }
1636 if (arg != 0)
1637 sbi->s_mount_opt |= m->mount_opt;
1638 else
1639 sbi->s_mount_opt &= ~m->mount_opt;
1640 }
1641 return 1;
1642 }
1643 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1644 "or missing value", opt);
1645 return -1;
1646 }
1647
1648 static int parse_options(char *options, struct super_block *sb,
1649 unsigned long *journal_devnum,
1650 unsigned int *journal_ioprio,
1651 int is_remount)
1652 {
1653 #ifdef CONFIG_QUOTA
1654 struct ext4_sb_info *sbi = EXT4_SB(sb);
1655 #endif
1656 char *p;
1657 substring_t args[MAX_OPT_ARGS];
1658 int token;
1659
1660 if (!options)
1661 return 1;
1662
1663 while ((p = strsep(&options, ",")) != NULL) {
1664 if (!*p)
1665 continue;
1666 /*
1667 * Initialize args struct so we know whether arg was
1668 * found; some options take optional arguments.
1669 */
1670 args[0].to = args[0].from = NULL;
1671 token = match_token(p, tokens, args);
1672 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1673 journal_ioprio, is_remount) < 0)
1674 return 0;
1675 }
1676 #ifdef CONFIG_QUOTA
1677 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1678 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1679 clear_opt(sb, USRQUOTA);
1680
1681 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1682 clear_opt(sb, GRPQUOTA);
1683
1684 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1685 ext4_msg(sb, KERN_ERR, "old and new quota "
1686 "format mixing");
1687 return 0;
1688 }
1689
1690 if (!sbi->s_jquota_fmt) {
1691 ext4_msg(sb, KERN_ERR, "journaled quota format "
1692 "not specified");
1693 return 0;
1694 }
1695 } else {
1696 if (sbi->s_jquota_fmt) {
1697 ext4_msg(sb, KERN_ERR, "journaled quota format "
1698 "specified with no journaling "
1699 "enabled");
1700 return 0;
1701 }
1702 }
1703 #endif
1704 return 1;
1705 }
1706
1707 static inline void ext4_show_quota_options(struct seq_file *seq,
1708 struct super_block *sb)
1709 {
1710 #if defined(CONFIG_QUOTA)
1711 struct ext4_sb_info *sbi = EXT4_SB(sb);
1712
1713 if (sbi->s_jquota_fmt) {
1714 char *fmtname = "";
1715
1716 switch (sbi->s_jquota_fmt) {
1717 case QFMT_VFS_OLD:
1718 fmtname = "vfsold";
1719 break;
1720 case QFMT_VFS_V0:
1721 fmtname = "vfsv0";
1722 break;
1723 case QFMT_VFS_V1:
1724 fmtname = "vfsv1";
1725 break;
1726 }
1727 seq_printf(seq, ",jqfmt=%s", fmtname);
1728 }
1729
1730 if (sbi->s_qf_names[USRQUOTA])
1731 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1732
1733 if (sbi->s_qf_names[GRPQUOTA])
1734 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1735
1736 if (test_opt(sb, USRQUOTA))
1737 seq_puts(seq, ",usrquota");
1738
1739 if (test_opt(sb, GRPQUOTA))
1740 seq_puts(seq, ",grpquota");
1741 #endif
1742 }
1743
1744 static const char *token2str(int token)
1745 {
1746 const struct match_token *t;
1747
1748 for (t = tokens; t->token != Opt_err; t++)
1749 if (t->token == token && !strchr(t->pattern, '='))
1750 break;
1751 return t->pattern;
1752 }
1753
1754 /*
1755 * Show an option if
1756 * - it's set to a non-default value OR
1757 * - if the per-sb default is different from the global default
1758 */
1759 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1760 int nodefs)
1761 {
1762 struct ext4_sb_info *sbi = EXT4_SB(sb);
1763 struct ext4_super_block *es = sbi->s_es;
1764 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1765 const struct mount_opts *m;
1766 char sep = nodefs ? '\n' : ',';
1767
1768 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1769 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1770
1771 if (sbi->s_sb_block != 1)
1772 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1773
1774 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1775 int want_set = m->flags & MOPT_SET;
1776 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1777 (m->flags & MOPT_CLEAR_ERR))
1778 continue;
1779 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1780 continue; /* skip if same as the default */
1781 if ((want_set &&
1782 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1783 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1784 continue; /* select Opt_noFoo vs Opt_Foo */
1785 SEQ_OPTS_PRINT("%s", token2str(m->token));
1786 }
1787
1788 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1789 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1790 SEQ_OPTS_PRINT("resuid=%u",
1791 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1792 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1793 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1794 SEQ_OPTS_PRINT("resgid=%u",
1795 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1796 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1797 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1798 SEQ_OPTS_PUTS("errors=remount-ro");
1799 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1800 SEQ_OPTS_PUTS("errors=continue");
1801 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1802 SEQ_OPTS_PUTS("errors=panic");
1803 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1804 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1805 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1806 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1807 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1808 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1809 if (sb->s_flags & MS_I_VERSION)
1810 SEQ_OPTS_PUTS("i_version");
1811 if (nodefs || sbi->s_stripe)
1812 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1813 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1814 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1815 SEQ_OPTS_PUTS("data=journal");
1816 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1817 SEQ_OPTS_PUTS("data=ordered");
1818 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1819 SEQ_OPTS_PUTS("data=writeback");
1820 }
1821 if (nodefs ||
1822 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1823 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1824 sbi->s_inode_readahead_blks);
1825
1826 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1827 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1828 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1829 if (nodefs || sbi->s_max_dir_size_kb)
1830 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1831
1832 ext4_show_quota_options(seq, sb);
1833 return 0;
1834 }
1835
1836 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1837 {
1838 return _ext4_show_options(seq, root->d_sb, 0);
1839 }
1840
1841 static int options_seq_show(struct seq_file *seq, void *offset)
1842 {
1843 struct super_block *sb = seq->private;
1844 int rc;
1845
1846 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1847 rc = _ext4_show_options(seq, sb, 1);
1848 seq_puts(seq, "\n");
1849 return rc;
1850 }
1851
1852 static int options_open_fs(struct inode *inode, struct file *file)
1853 {
1854 return single_open(file, options_seq_show, PDE(inode)->data);
1855 }
1856
1857 static const struct file_operations ext4_seq_options_fops = {
1858 .owner = THIS_MODULE,
1859 .open = options_open_fs,
1860 .read = seq_read,
1861 .llseek = seq_lseek,
1862 .release = single_release,
1863 };
1864
1865 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1866 int read_only)
1867 {
1868 struct ext4_sb_info *sbi = EXT4_SB(sb);
1869 int res = 0;
1870
1871 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1872 ext4_msg(sb, KERN_ERR, "revision level too high, "
1873 "forcing read-only mode");
1874 res = MS_RDONLY;
1875 }
1876 if (read_only)
1877 goto done;
1878 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1879 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1880 "running e2fsck is recommended");
1881 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1882 ext4_msg(sb, KERN_WARNING,
1883 "warning: mounting fs with errors, "
1884 "running e2fsck is recommended");
1885 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1886 le16_to_cpu(es->s_mnt_count) >=
1887 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1888 ext4_msg(sb, KERN_WARNING,
1889 "warning: maximal mount count reached, "
1890 "running e2fsck is recommended");
1891 else if (le32_to_cpu(es->s_checkinterval) &&
1892 (le32_to_cpu(es->s_lastcheck) +
1893 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1894 ext4_msg(sb, KERN_WARNING,
1895 "warning: checktime reached, "
1896 "running e2fsck is recommended");
1897 if (!sbi->s_journal)
1898 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1899 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1900 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1901 le16_add_cpu(&es->s_mnt_count, 1);
1902 es->s_mtime = cpu_to_le32(get_seconds());
1903 ext4_update_dynamic_rev(sb);
1904 if (sbi->s_journal)
1905 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1906
1907 ext4_commit_super(sb, 1);
1908 done:
1909 if (test_opt(sb, DEBUG))
1910 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1911 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1912 sb->s_blocksize,
1913 sbi->s_groups_count,
1914 EXT4_BLOCKS_PER_GROUP(sb),
1915 EXT4_INODES_PER_GROUP(sb),
1916 sbi->s_mount_opt, sbi->s_mount_opt2);
1917
1918 cleancache_init_fs(sb);
1919 return res;
1920 }
1921
1922 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1923 {
1924 struct ext4_sb_info *sbi = EXT4_SB(sb);
1925 struct flex_groups *new_groups;
1926 int size;
1927
1928 if (!sbi->s_log_groups_per_flex)
1929 return 0;
1930
1931 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1932 if (size <= sbi->s_flex_groups_allocated)
1933 return 0;
1934
1935 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1936 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1937 if (!new_groups) {
1938 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1939 size / (int) sizeof(struct flex_groups));
1940 return -ENOMEM;
1941 }
1942
1943 if (sbi->s_flex_groups) {
1944 memcpy(new_groups, sbi->s_flex_groups,
1945 (sbi->s_flex_groups_allocated *
1946 sizeof(struct flex_groups)));
1947 ext4_kvfree(sbi->s_flex_groups);
1948 }
1949 sbi->s_flex_groups = new_groups;
1950 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1951 return 0;
1952 }
1953
1954 static int ext4_fill_flex_info(struct super_block *sb)
1955 {
1956 struct ext4_sb_info *sbi = EXT4_SB(sb);
1957 struct ext4_group_desc *gdp = NULL;
1958 ext4_group_t flex_group;
1959 unsigned int groups_per_flex = 0;
1960 int i, err;
1961
1962 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1963 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1964 sbi->s_log_groups_per_flex = 0;
1965 return 1;
1966 }
1967 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1968
1969 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1970 if (err)
1971 goto failed;
1972
1973 for (i = 0; i < sbi->s_groups_count; i++) {
1974 gdp = ext4_get_group_desc(sb, i, NULL);
1975
1976 flex_group = ext4_flex_group(sbi, i);
1977 atomic_add(ext4_free_inodes_count(sb, gdp),
1978 &sbi->s_flex_groups[flex_group].free_inodes);
1979 atomic_add(ext4_free_group_clusters(sb, gdp),
1980 &sbi->s_flex_groups[flex_group].free_clusters);
1981 atomic_add(ext4_used_dirs_count(sb, gdp),
1982 &sbi->s_flex_groups[flex_group].used_dirs);
1983 }
1984
1985 return 1;
1986 failed:
1987 return 0;
1988 }
1989
1990 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1991 struct ext4_group_desc *gdp)
1992 {
1993 int offset;
1994 __u16 crc = 0;
1995 __le32 le_group = cpu_to_le32(block_group);
1996
1997 if ((sbi->s_es->s_feature_ro_compat &
1998 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1999 /* Use new metadata_csum algorithm */
2000 __u16 old_csum;
2001 __u32 csum32;
2002
2003 old_csum = gdp->bg_checksum;
2004 gdp->bg_checksum = 0;
2005 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2006 sizeof(le_group));
2007 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2008 sbi->s_desc_size);
2009 gdp->bg_checksum = old_csum;
2010
2011 crc = csum32 & 0xFFFF;
2012 goto out;
2013 }
2014
2015 /* old crc16 code */
2016 offset = offsetof(struct ext4_group_desc, bg_checksum);
2017
2018 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2019 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2020 crc = crc16(crc, (__u8 *)gdp, offset);
2021 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2022 /* for checksum of struct ext4_group_desc do the rest...*/
2023 if ((sbi->s_es->s_feature_incompat &
2024 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2025 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2026 crc = crc16(crc, (__u8 *)gdp + offset,
2027 le16_to_cpu(sbi->s_es->s_desc_size) -
2028 offset);
2029
2030 out:
2031 return cpu_to_le16(crc);
2032 }
2033
2034 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2035 struct ext4_group_desc *gdp)
2036 {
2037 if (ext4_has_group_desc_csum(sb) &&
2038 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2039 block_group, gdp)))
2040 return 0;
2041
2042 return 1;
2043 }
2044
2045 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2046 struct ext4_group_desc *gdp)
2047 {
2048 if (!ext4_has_group_desc_csum(sb))
2049 return;
2050 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2051 }
2052
2053 /* Called at mount-time, super-block is locked */
2054 static int ext4_check_descriptors(struct super_block *sb,
2055 ext4_group_t *first_not_zeroed)
2056 {
2057 struct ext4_sb_info *sbi = EXT4_SB(sb);
2058 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2059 ext4_fsblk_t last_block;
2060 ext4_fsblk_t block_bitmap;
2061 ext4_fsblk_t inode_bitmap;
2062 ext4_fsblk_t inode_table;
2063 int flexbg_flag = 0;
2064 ext4_group_t i, grp = sbi->s_groups_count;
2065
2066 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2067 flexbg_flag = 1;
2068
2069 ext4_debug("Checking group descriptors");
2070
2071 for (i = 0; i < sbi->s_groups_count; i++) {
2072 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2073
2074 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2075 last_block = ext4_blocks_count(sbi->s_es) - 1;
2076 else
2077 last_block = first_block +
2078 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2079
2080 if ((grp == sbi->s_groups_count) &&
2081 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2082 grp = i;
2083
2084 block_bitmap = ext4_block_bitmap(sb, gdp);
2085 if (block_bitmap < first_block || block_bitmap > last_block) {
2086 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2087 "Block bitmap for group %u not in group "
2088 "(block %llu)!", i, block_bitmap);
2089 return 0;
2090 }
2091 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2092 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2093 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2094 "Inode bitmap for group %u not in group "
2095 "(block %llu)!", i, inode_bitmap);
2096 return 0;
2097 }
2098 inode_table = ext4_inode_table(sb, gdp);
2099 if (inode_table < first_block ||
2100 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2101 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2102 "Inode table for group %u not in group "
2103 "(block %llu)!", i, inode_table);
2104 return 0;
2105 }
2106 ext4_lock_group(sb, i);
2107 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2108 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2109 "Checksum for group %u failed (%u!=%u)",
2110 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2111 gdp)), le16_to_cpu(gdp->bg_checksum));
2112 if (!(sb->s_flags & MS_RDONLY)) {
2113 ext4_unlock_group(sb, i);
2114 return 0;
2115 }
2116 }
2117 ext4_unlock_group(sb, i);
2118 if (!flexbg_flag)
2119 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2120 }
2121 if (NULL != first_not_zeroed)
2122 *first_not_zeroed = grp;
2123
2124 ext4_free_blocks_count_set(sbi->s_es,
2125 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2126 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2127 return 1;
2128 }
2129
2130 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2131 * the superblock) which were deleted from all directories, but held open by
2132 * a process at the time of a crash. We walk the list and try to delete these
2133 * inodes at recovery time (only with a read-write filesystem).
2134 *
2135 * In order to keep the orphan inode chain consistent during traversal (in
2136 * case of crash during recovery), we link each inode into the superblock
2137 * orphan list_head and handle it the same way as an inode deletion during
2138 * normal operation (which journals the operations for us).
2139 *
2140 * We only do an iget() and an iput() on each inode, which is very safe if we
2141 * accidentally point at an in-use or already deleted inode. The worst that
2142 * can happen in this case is that we get a "bit already cleared" message from
2143 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2144 * e2fsck was run on this filesystem, and it must have already done the orphan
2145 * inode cleanup for us, so we can safely abort without any further action.
2146 */
2147 static void ext4_orphan_cleanup(struct super_block *sb,
2148 struct ext4_super_block *es)
2149 {
2150 unsigned int s_flags = sb->s_flags;
2151 int nr_orphans = 0, nr_truncates = 0;
2152 #ifdef CONFIG_QUOTA
2153 int i;
2154 #endif
2155 if (!es->s_last_orphan) {
2156 jbd_debug(4, "no orphan inodes to clean up\n");
2157 return;
2158 }
2159
2160 if (bdev_read_only(sb->s_bdev)) {
2161 ext4_msg(sb, KERN_ERR, "write access "
2162 "unavailable, skipping orphan cleanup");
2163 return;
2164 }
2165
2166 /* Check if feature set would not allow a r/w mount */
2167 if (!ext4_feature_set_ok(sb, 0)) {
2168 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2169 "unknown ROCOMPAT features");
2170 return;
2171 }
2172
2173 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2174 /* don't clear list on RO mount w/ errors */
2175 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2176 jbd_debug(1, "Errors on filesystem, "
2177 "clearing orphan list.\n");
2178 es->s_last_orphan = 0;
2179 }
2180 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2181 return;
2182 }
2183
2184 if (s_flags & MS_RDONLY) {
2185 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2186 sb->s_flags &= ~MS_RDONLY;
2187 }
2188 #ifdef CONFIG_QUOTA
2189 /* Needed for iput() to work correctly and not trash data */
2190 sb->s_flags |= MS_ACTIVE;
2191 /* Turn on quotas so that they are updated correctly */
2192 for (i = 0; i < MAXQUOTAS; i++) {
2193 if (EXT4_SB(sb)->s_qf_names[i]) {
2194 int ret = ext4_quota_on_mount(sb, i);
2195 if (ret < 0)
2196 ext4_msg(sb, KERN_ERR,
2197 "Cannot turn on journaled "
2198 "quota: error %d", ret);
2199 }
2200 }
2201 #endif
2202
2203 while (es->s_last_orphan) {
2204 struct inode *inode;
2205
2206 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2207 if (IS_ERR(inode)) {
2208 es->s_last_orphan = 0;
2209 break;
2210 }
2211
2212 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2213 dquot_initialize(inode);
2214 if (inode->i_nlink) {
2215 ext4_msg(sb, KERN_DEBUG,
2216 "%s: truncating inode %lu to %lld bytes",
2217 __func__, inode->i_ino, inode->i_size);
2218 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2219 inode->i_ino, inode->i_size);
2220 ext4_truncate(inode);
2221 nr_truncates++;
2222 } else {
2223 ext4_msg(sb, KERN_DEBUG,
2224 "%s: deleting unreferenced inode %lu",
2225 __func__, inode->i_ino);
2226 jbd_debug(2, "deleting unreferenced inode %lu\n",
2227 inode->i_ino);
2228 nr_orphans++;
2229 }
2230 iput(inode); /* The delete magic happens here! */
2231 }
2232
2233 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2234
2235 if (nr_orphans)
2236 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2237 PLURAL(nr_orphans));
2238 if (nr_truncates)
2239 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2240 PLURAL(nr_truncates));
2241 #ifdef CONFIG_QUOTA
2242 /* Turn quotas off */
2243 for (i = 0; i < MAXQUOTAS; i++) {
2244 if (sb_dqopt(sb)->files[i])
2245 dquot_quota_off(sb, i);
2246 }
2247 #endif
2248 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2249 }
2250
2251 /*
2252 * Maximal extent format file size.
2253 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2254 * extent format containers, within a sector_t, and within i_blocks
2255 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2256 * so that won't be a limiting factor.
2257 *
2258 * However there is other limiting factor. We do store extents in the form
2259 * of starting block and length, hence the resulting length of the extent
2260 * covering maximum file size must fit into on-disk format containers as
2261 * well. Given that length is always by 1 unit bigger than max unit (because
2262 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2263 *
2264 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2265 */
2266 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2267 {
2268 loff_t res;
2269 loff_t upper_limit = MAX_LFS_FILESIZE;
2270
2271 /* small i_blocks in vfs inode? */
2272 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2273 /*
2274 * CONFIG_LBDAF is not enabled implies the inode
2275 * i_block represent total blocks in 512 bytes
2276 * 32 == size of vfs inode i_blocks * 8
2277 */
2278 upper_limit = (1LL << 32) - 1;
2279
2280 /* total blocks in file system block size */
2281 upper_limit >>= (blkbits - 9);
2282 upper_limit <<= blkbits;
2283 }
2284
2285 /*
2286 * 32-bit extent-start container, ee_block. We lower the maxbytes
2287 * by one fs block, so ee_len can cover the extent of maximum file
2288 * size
2289 */
2290 res = (1LL << 32) - 1;
2291 res <<= blkbits;
2292
2293 /* Sanity check against vm- & vfs- imposed limits */
2294 if (res > upper_limit)
2295 res = upper_limit;
2296
2297 return res;
2298 }
2299
2300 /*
2301 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2302 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2303 * We need to be 1 filesystem block less than the 2^48 sector limit.
2304 */
2305 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2306 {
2307 loff_t res = EXT4_NDIR_BLOCKS;
2308 int meta_blocks;
2309 loff_t upper_limit;
2310 /* This is calculated to be the largest file size for a dense, block
2311 * mapped file such that the file's total number of 512-byte sectors,
2312 * including data and all indirect blocks, does not exceed (2^48 - 1).
2313 *
2314 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2315 * number of 512-byte sectors of the file.
2316 */
2317
2318 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2319 /*
2320 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2321 * the inode i_block field represents total file blocks in
2322 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2323 */
2324 upper_limit = (1LL << 32) - 1;
2325
2326 /* total blocks in file system block size */
2327 upper_limit >>= (bits - 9);
2328
2329 } else {
2330 /*
2331 * We use 48 bit ext4_inode i_blocks
2332 * With EXT4_HUGE_FILE_FL set the i_blocks
2333 * represent total number of blocks in
2334 * file system block size
2335 */
2336 upper_limit = (1LL << 48) - 1;
2337
2338 }
2339
2340 /* indirect blocks */
2341 meta_blocks = 1;
2342 /* double indirect blocks */
2343 meta_blocks += 1 + (1LL << (bits-2));
2344 /* tripple indirect blocks */
2345 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2346
2347 upper_limit -= meta_blocks;
2348 upper_limit <<= bits;
2349
2350 res += 1LL << (bits-2);
2351 res += 1LL << (2*(bits-2));
2352 res += 1LL << (3*(bits-2));
2353 res <<= bits;
2354 if (res > upper_limit)
2355 res = upper_limit;
2356
2357 if (res > MAX_LFS_FILESIZE)
2358 res = MAX_LFS_FILESIZE;
2359
2360 return res;
2361 }
2362
2363 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2364 ext4_fsblk_t logical_sb_block, int nr)
2365 {
2366 struct ext4_sb_info *sbi = EXT4_SB(sb);
2367 ext4_group_t bg, first_meta_bg;
2368 int has_super = 0;
2369
2370 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2371
2372 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2373 nr < first_meta_bg)
2374 return logical_sb_block + nr + 1;
2375 bg = sbi->s_desc_per_block * nr;
2376 if (ext4_bg_has_super(sb, bg))
2377 has_super = 1;
2378
2379 return (has_super + ext4_group_first_block_no(sb, bg));
2380 }
2381
2382 /**
2383 * ext4_get_stripe_size: Get the stripe size.
2384 * @sbi: In memory super block info
2385 *
2386 * If we have specified it via mount option, then
2387 * use the mount option value. If the value specified at mount time is
2388 * greater than the blocks per group use the super block value.
2389 * If the super block value is greater than blocks per group return 0.
2390 * Allocator needs it be less than blocks per group.
2391 *
2392 */
2393 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2394 {
2395 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2396 unsigned long stripe_width =
2397 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2398 int ret;
2399
2400 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2401 ret = sbi->s_stripe;
2402 else if (stripe_width <= sbi->s_blocks_per_group)
2403 ret = stripe_width;
2404 else if (stride <= sbi->s_blocks_per_group)
2405 ret = stride;
2406 else
2407 ret = 0;
2408
2409 /*
2410 * If the stripe width is 1, this makes no sense and
2411 * we set it to 0 to turn off stripe handling code.
2412 */
2413 if (ret <= 1)
2414 ret = 0;
2415
2416 return ret;
2417 }
2418
2419 /* sysfs supprt */
2420
2421 struct ext4_attr {
2422 struct attribute attr;
2423 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2424 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2425 const char *, size_t);
2426 int offset;
2427 };
2428
2429 static int parse_strtoul(const char *buf,
2430 unsigned long max, unsigned long *value)
2431 {
2432 char *endp;
2433
2434 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2435 endp = skip_spaces(endp);
2436 if (*endp || *value > max)
2437 return -EINVAL;
2438
2439 return 0;
2440 }
2441
2442 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2443 struct ext4_sb_info *sbi,
2444 char *buf)
2445 {
2446 return snprintf(buf, PAGE_SIZE, "%llu\n",
2447 (s64) EXT4_C2B(sbi,
2448 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2449 }
2450
2451 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2452 struct ext4_sb_info *sbi, char *buf)
2453 {
2454 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2455
2456 if (!sb->s_bdev->bd_part)
2457 return snprintf(buf, PAGE_SIZE, "0\n");
2458 return snprintf(buf, PAGE_SIZE, "%lu\n",
2459 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2460 sbi->s_sectors_written_start) >> 1);
2461 }
2462
2463 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2464 struct ext4_sb_info *sbi, char *buf)
2465 {
2466 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2467
2468 if (!sb->s_bdev->bd_part)
2469 return snprintf(buf, PAGE_SIZE, "0\n");
2470 return snprintf(buf, PAGE_SIZE, "%llu\n",
2471 (unsigned long long)(sbi->s_kbytes_written +
2472 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2473 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2474 }
2475
2476 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2477 struct ext4_sb_info *sbi,
2478 const char *buf, size_t count)
2479 {
2480 unsigned long t;
2481
2482 if (parse_strtoul(buf, 0x40000000, &t))
2483 return -EINVAL;
2484
2485 if (t && !is_power_of_2(t))
2486 return -EINVAL;
2487
2488 sbi->s_inode_readahead_blks = t;
2489 return count;
2490 }
2491
2492 static ssize_t sbi_ui_show(struct ext4_attr *a,
2493 struct ext4_sb_info *sbi, char *buf)
2494 {
2495 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2496
2497 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2498 }
2499
2500 static ssize_t sbi_ui_store(struct ext4_attr *a,
2501 struct ext4_sb_info *sbi,
2502 const char *buf, size_t count)
2503 {
2504 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2505 unsigned long t;
2506
2507 if (parse_strtoul(buf, 0xffffffff, &t))
2508 return -EINVAL;
2509 *ui = t;
2510 return count;
2511 }
2512
2513 static ssize_t trigger_test_error(struct ext4_attr *a,
2514 struct ext4_sb_info *sbi,
2515 const char *buf, size_t count)
2516 {
2517 int len = count;
2518
2519 if (!capable(CAP_SYS_ADMIN))
2520 return -EPERM;
2521
2522 if (len && buf[len-1] == '\n')
2523 len--;
2524
2525 if (len)
2526 ext4_error(sbi->s_sb, "%.*s", len, buf);
2527 return count;
2528 }
2529
2530 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2531 static struct ext4_attr ext4_attr_##_name = { \
2532 .attr = {.name = __stringify(_name), .mode = _mode }, \
2533 .show = _show, \
2534 .store = _store, \
2535 .offset = offsetof(struct ext4_sb_info, _elname), \
2536 }
2537 #define EXT4_ATTR(name, mode, show, store) \
2538 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2539
2540 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2541 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2542 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2543 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2544 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2545 #define ATTR_LIST(name) &ext4_attr_##name.attr
2546
2547 EXT4_RO_ATTR(delayed_allocation_blocks);
2548 EXT4_RO_ATTR(session_write_kbytes);
2549 EXT4_RO_ATTR(lifetime_write_kbytes);
2550 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2551 inode_readahead_blks_store, s_inode_readahead_blks);
2552 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2553 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2554 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2555 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2556 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2557 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2558 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2559 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2560 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2561 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2562
2563 static struct attribute *ext4_attrs[] = {
2564 ATTR_LIST(delayed_allocation_blocks),
2565 ATTR_LIST(session_write_kbytes),
2566 ATTR_LIST(lifetime_write_kbytes),
2567 ATTR_LIST(inode_readahead_blks),
2568 ATTR_LIST(inode_goal),
2569 ATTR_LIST(mb_stats),
2570 ATTR_LIST(mb_max_to_scan),
2571 ATTR_LIST(mb_min_to_scan),
2572 ATTR_LIST(mb_order2_req),
2573 ATTR_LIST(mb_stream_req),
2574 ATTR_LIST(mb_group_prealloc),
2575 ATTR_LIST(max_writeback_mb_bump),
2576 ATTR_LIST(extent_max_zeroout_kb),
2577 ATTR_LIST(trigger_fs_error),
2578 NULL,
2579 };
2580
2581 /* Features this copy of ext4 supports */
2582 EXT4_INFO_ATTR(lazy_itable_init);
2583 EXT4_INFO_ATTR(batched_discard);
2584 EXT4_INFO_ATTR(meta_bg_resize);
2585
2586 static struct attribute *ext4_feat_attrs[] = {
2587 ATTR_LIST(lazy_itable_init),
2588 ATTR_LIST(batched_discard),
2589 ATTR_LIST(meta_bg_resize),
2590 NULL,
2591 };
2592
2593 static ssize_t ext4_attr_show(struct kobject *kobj,
2594 struct attribute *attr, char *buf)
2595 {
2596 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2597 s_kobj);
2598 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2599
2600 return a->show ? a->show(a, sbi, buf) : 0;
2601 }
2602
2603 static ssize_t ext4_attr_store(struct kobject *kobj,
2604 struct attribute *attr,
2605 const char *buf, size_t len)
2606 {
2607 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2608 s_kobj);
2609 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2610
2611 return a->store ? a->store(a, sbi, buf, len) : 0;
2612 }
2613
2614 static void ext4_sb_release(struct kobject *kobj)
2615 {
2616 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2617 s_kobj);
2618 complete(&sbi->s_kobj_unregister);
2619 }
2620
2621 static const struct sysfs_ops ext4_attr_ops = {
2622 .show = ext4_attr_show,
2623 .store = ext4_attr_store,
2624 };
2625
2626 static struct kobj_type ext4_ktype = {
2627 .default_attrs = ext4_attrs,
2628 .sysfs_ops = &ext4_attr_ops,
2629 .release = ext4_sb_release,
2630 };
2631
2632 static void ext4_feat_release(struct kobject *kobj)
2633 {
2634 complete(&ext4_feat->f_kobj_unregister);
2635 }
2636
2637 static struct kobj_type ext4_feat_ktype = {
2638 .default_attrs = ext4_feat_attrs,
2639 .sysfs_ops = &ext4_attr_ops,
2640 .release = ext4_feat_release,
2641 };
2642
2643 /*
2644 * Check whether this filesystem can be mounted based on
2645 * the features present and the RDONLY/RDWR mount requested.
2646 * Returns 1 if this filesystem can be mounted as requested,
2647 * 0 if it cannot be.
2648 */
2649 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2650 {
2651 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2652 ext4_msg(sb, KERN_ERR,
2653 "Couldn't mount because of "
2654 "unsupported optional features (%x)",
2655 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2656 ~EXT4_FEATURE_INCOMPAT_SUPP));
2657 return 0;
2658 }
2659
2660 if (readonly)
2661 return 1;
2662
2663 /* Check that feature set is OK for a read-write mount */
2664 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2665 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2666 "unsupported optional features (%x)",
2667 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2668 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2669 return 0;
2670 }
2671 /*
2672 * Large file size enabled file system can only be mounted
2673 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2674 */
2675 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2676 if (sizeof(blkcnt_t) < sizeof(u64)) {
2677 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2678 "cannot be mounted RDWR without "
2679 "CONFIG_LBDAF");
2680 return 0;
2681 }
2682 }
2683 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2684 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2685 ext4_msg(sb, KERN_ERR,
2686 "Can't support bigalloc feature without "
2687 "extents feature\n");
2688 return 0;
2689 }
2690
2691 #ifndef CONFIG_QUOTA
2692 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2693 !readonly) {
2694 ext4_msg(sb, KERN_ERR,
2695 "Filesystem with quota feature cannot be mounted RDWR "
2696 "without CONFIG_QUOTA");
2697 return 0;
2698 }
2699 #endif /* CONFIG_QUOTA */
2700 return 1;
2701 }
2702
2703 /*
2704 * This function is called once a day if we have errors logged
2705 * on the file system
2706 */
2707 static void print_daily_error_info(unsigned long arg)
2708 {
2709 struct super_block *sb = (struct super_block *) arg;
2710 struct ext4_sb_info *sbi;
2711 struct ext4_super_block *es;
2712
2713 sbi = EXT4_SB(sb);
2714 es = sbi->s_es;
2715
2716 if (es->s_error_count)
2717 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2718 le32_to_cpu(es->s_error_count));
2719 if (es->s_first_error_time) {
2720 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2721 sb->s_id, le32_to_cpu(es->s_first_error_time),
2722 (int) sizeof(es->s_first_error_func),
2723 es->s_first_error_func,
2724 le32_to_cpu(es->s_first_error_line));
2725 if (es->s_first_error_ino)
2726 printk(": inode %u",
2727 le32_to_cpu(es->s_first_error_ino));
2728 if (es->s_first_error_block)
2729 printk(": block %llu", (unsigned long long)
2730 le64_to_cpu(es->s_first_error_block));
2731 printk("\n");
2732 }
2733 if (es->s_last_error_time) {
2734 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2735 sb->s_id, le32_to_cpu(es->s_last_error_time),
2736 (int) sizeof(es->s_last_error_func),
2737 es->s_last_error_func,
2738 le32_to_cpu(es->s_last_error_line));
2739 if (es->s_last_error_ino)
2740 printk(": inode %u",
2741 le32_to_cpu(es->s_last_error_ino));
2742 if (es->s_last_error_block)
2743 printk(": block %llu", (unsigned long long)
2744 le64_to_cpu(es->s_last_error_block));
2745 printk("\n");
2746 }
2747 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2748 }
2749
2750 /* Find next suitable group and run ext4_init_inode_table */
2751 static int ext4_run_li_request(struct ext4_li_request *elr)
2752 {
2753 struct ext4_group_desc *gdp = NULL;
2754 ext4_group_t group, ngroups;
2755 struct super_block *sb;
2756 unsigned long timeout = 0;
2757 int ret = 0;
2758
2759 sb = elr->lr_super;
2760 ngroups = EXT4_SB(sb)->s_groups_count;
2761
2762 sb_start_write(sb);
2763 for (group = elr->lr_next_group; group < ngroups; group++) {
2764 gdp = ext4_get_group_desc(sb, group, NULL);
2765 if (!gdp) {
2766 ret = 1;
2767 break;
2768 }
2769
2770 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2771 break;
2772 }
2773
2774 if (group == ngroups)
2775 ret = 1;
2776
2777 if (!ret) {
2778 timeout = jiffies;
2779 ret = ext4_init_inode_table(sb, group,
2780 elr->lr_timeout ? 0 : 1);
2781 if (elr->lr_timeout == 0) {
2782 timeout = (jiffies - timeout) *
2783 elr->lr_sbi->s_li_wait_mult;
2784 elr->lr_timeout = timeout;
2785 }
2786 elr->lr_next_sched = jiffies + elr->lr_timeout;
2787 elr->lr_next_group = group + 1;
2788 }
2789 sb_end_write(sb);
2790
2791 return ret;
2792 }
2793
2794 /*
2795 * Remove lr_request from the list_request and free the
2796 * request structure. Should be called with li_list_mtx held
2797 */
2798 static void ext4_remove_li_request(struct ext4_li_request *elr)
2799 {
2800 struct ext4_sb_info *sbi;
2801
2802 if (!elr)
2803 return;
2804
2805 sbi = elr->lr_sbi;
2806
2807 list_del(&elr->lr_request);
2808 sbi->s_li_request = NULL;
2809 kfree(elr);
2810 }
2811
2812 static void ext4_unregister_li_request(struct super_block *sb)
2813 {
2814 mutex_lock(&ext4_li_mtx);
2815 if (!ext4_li_info) {
2816 mutex_unlock(&ext4_li_mtx);
2817 return;
2818 }
2819
2820 mutex_lock(&ext4_li_info->li_list_mtx);
2821 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2822 mutex_unlock(&ext4_li_info->li_list_mtx);
2823 mutex_unlock(&ext4_li_mtx);
2824 }
2825
2826 static struct task_struct *ext4_lazyinit_task;
2827
2828 /*
2829 * This is the function where ext4lazyinit thread lives. It walks
2830 * through the request list searching for next scheduled filesystem.
2831 * When such a fs is found, run the lazy initialization request
2832 * (ext4_rn_li_request) and keep track of the time spend in this
2833 * function. Based on that time we compute next schedule time of
2834 * the request. When walking through the list is complete, compute
2835 * next waking time and put itself into sleep.
2836 */
2837 static int ext4_lazyinit_thread(void *arg)
2838 {
2839 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2840 struct list_head *pos, *n;
2841 struct ext4_li_request *elr;
2842 unsigned long next_wakeup, cur;
2843
2844 BUG_ON(NULL == eli);
2845
2846 cont_thread:
2847 while (true) {
2848 next_wakeup = MAX_JIFFY_OFFSET;
2849
2850 mutex_lock(&eli->li_list_mtx);
2851 if (list_empty(&eli->li_request_list)) {
2852 mutex_unlock(&eli->li_list_mtx);
2853 goto exit_thread;
2854 }
2855
2856 list_for_each_safe(pos, n, &eli->li_request_list) {
2857 elr = list_entry(pos, struct ext4_li_request,
2858 lr_request);
2859
2860 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2861 if (ext4_run_li_request(elr) != 0) {
2862 /* error, remove the lazy_init job */
2863 ext4_remove_li_request(elr);
2864 continue;
2865 }
2866 }
2867
2868 if (time_before(elr->lr_next_sched, next_wakeup))
2869 next_wakeup = elr->lr_next_sched;
2870 }
2871 mutex_unlock(&eli->li_list_mtx);
2872
2873 try_to_freeze();
2874
2875 cur = jiffies;
2876 if ((time_after_eq(cur, next_wakeup)) ||
2877 (MAX_JIFFY_OFFSET == next_wakeup)) {
2878 cond_resched();
2879 continue;
2880 }
2881
2882 schedule_timeout_interruptible(next_wakeup - cur);
2883
2884 if (kthread_should_stop()) {
2885 ext4_clear_request_list();
2886 goto exit_thread;
2887 }
2888 }
2889
2890 exit_thread:
2891 /*
2892 * It looks like the request list is empty, but we need
2893 * to check it under the li_list_mtx lock, to prevent any
2894 * additions into it, and of course we should lock ext4_li_mtx
2895 * to atomically free the list and ext4_li_info, because at
2896 * this point another ext4 filesystem could be registering
2897 * new one.
2898 */
2899 mutex_lock(&ext4_li_mtx);
2900 mutex_lock(&eli->li_list_mtx);
2901 if (!list_empty(&eli->li_request_list)) {
2902 mutex_unlock(&eli->li_list_mtx);
2903 mutex_unlock(&ext4_li_mtx);
2904 goto cont_thread;
2905 }
2906 mutex_unlock(&eli->li_list_mtx);
2907 kfree(ext4_li_info);
2908 ext4_li_info = NULL;
2909 mutex_unlock(&ext4_li_mtx);
2910
2911 return 0;
2912 }
2913
2914 static void ext4_clear_request_list(void)
2915 {
2916 struct list_head *pos, *n;
2917 struct ext4_li_request *elr;
2918
2919 mutex_lock(&ext4_li_info->li_list_mtx);
2920 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2921 elr = list_entry(pos, struct ext4_li_request,
2922 lr_request);
2923 ext4_remove_li_request(elr);
2924 }
2925 mutex_unlock(&ext4_li_info->li_list_mtx);
2926 }
2927
2928 static int ext4_run_lazyinit_thread(void)
2929 {
2930 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2931 ext4_li_info, "ext4lazyinit");
2932 if (IS_ERR(ext4_lazyinit_task)) {
2933 int err = PTR_ERR(ext4_lazyinit_task);
2934 ext4_clear_request_list();
2935 kfree(ext4_li_info);
2936 ext4_li_info = NULL;
2937 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2938 "initialization thread\n",
2939 err);
2940 return err;
2941 }
2942 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2943 return 0;
2944 }
2945
2946 /*
2947 * Check whether it make sense to run itable init. thread or not.
2948 * If there is at least one uninitialized inode table, return
2949 * corresponding group number, else the loop goes through all
2950 * groups and return total number of groups.
2951 */
2952 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2953 {
2954 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2955 struct ext4_group_desc *gdp = NULL;
2956
2957 for (group = 0; group < ngroups; group++) {
2958 gdp = ext4_get_group_desc(sb, group, NULL);
2959 if (!gdp)
2960 continue;
2961
2962 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2963 break;
2964 }
2965
2966 return group;
2967 }
2968
2969 static int ext4_li_info_new(void)
2970 {
2971 struct ext4_lazy_init *eli = NULL;
2972
2973 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2974 if (!eli)
2975 return -ENOMEM;
2976
2977 INIT_LIST_HEAD(&eli->li_request_list);
2978 mutex_init(&eli->li_list_mtx);
2979
2980 eli->li_state |= EXT4_LAZYINIT_QUIT;
2981
2982 ext4_li_info = eli;
2983
2984 return 0;
2985 }
2986
2987 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2988 ext4_group_t start)
2989 {
2990 struct ext4_sb_info *sbi = EXT4_SB(sb);
2991 struct ext4_li_request *elr;
2992 unsigned long rnd;
2993
2994 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2995 if (!elr)
2996 return NULL;
2997
2998 elr->lr_super = sb;
2999 elr->lr_sbi = sbi;
3000 elr->lr_next_group = start;
3001
3002 /*
3003 * Randomize first schedule time of the request to
3004 * spread the inode table initialization requests
3005 * better.
3006 */
3007 get_random_bytes(&rnd, sizeof(rnd));
3008 elr->lr_next_sched = jiffies + (unsigned long)rnd %
3009 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3010
3011 return elr;
3012 }
3013
3014 static int ext4_register_li_request(struct super_block *sb,
3015 ext4_group_t first_not_zeroed)
3016 {
3017 struct ext4_sb_info *sbi = EXT4_SB(sb);
3018 struct ext4_li_request *elr;
3019 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3020 int ret = 0;
3021
3022 if (sbi->s_li_request != NULL) {
3023 /*
3024 * Reset timeout so it can be computed again, because
3025 * s_li_wait_mult might have changed.
3026 */
3027 sbi->s_li_request->lr_timeout = 0;
3028 return 0;
3029 }
3030
3031 if (first_not_zeroed == ngroups ||
3032 (sb->s_flags & MS_RDONLY) ||
3033 !test_opt(sb, INIT_INODE_TABLE))
3034 return 0;
3035
3036 elr = ext4_li_request_new(sb, first_not_zeroed);
3037 if (!elr)
3038 return -ENOMEM;
3039
3040 mutex_lock(&ext4_li_mtx);
3041
3042 if (NULL == ext4_li_info) {
3043 ret = ext4_li_info_new();
3044 if (ret)
3045 goto out;
3046 }
3047
3048 mutex_lock(&ext4_li_info->li_list_mtx);
3049 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3050 mutex_unlock(&ext4_li_info->li_list_mtx);
3051
3052 sbi->s_li_request = elr;
3053 /*
3054 * set elr to NULL here since it has been inserted to
3055 * the request_list and the removal and free of it is
3056 * handled by ext4_clear_request_list from now on.
3057 */
3058 elr = NULL;
3059
3060 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3061 ret = ext4_run_lazyinit_thread();
3062 if (ret)
3063 goto out;
3064 }
3065 out:
3066 mutex_unlock(&ext4_li_mtx);
3067 if (ret)
3068 kfree(elr);
3069 return ret;
3070 }
3071
3072 /*
3073 * We do not need to lock anything since this is called on
3074 * module unload.
3075 */
3076 static void ext4_destroy_lazyinit_thread(void)
3077 {
3078 /*
3079 * If thread exited earlier
3080 * there's nothing to be done.
3081 */
3082 if (!ext4_li_info || !ext4_lazyinit_task)
3083 return;
3084
3085 kthread_stop(ext4_lazyinit_task);
3086 }
3087
3088 static int set_journal_csum_feature_set(struct super_block *sb)
3089 {
3090 int ret = 1;
3091 int compat, incompat;
3092 struct ext4_sb_info *sbi = EXT4_SB(sb);
3093
3094 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3095 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3096 /* journal checksum v2 */
3097 compat = 0;
3098 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3099 } else {
3100 /* journal checksum v1 */
3101 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3102 incompat = 0;
3103 }
3104
3105 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3106 ret = jbd2_journal_set_features(sbi->s_journal,
3107 compat, 0,
3108 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3109 incompat);
3110 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3111 ret = jbd2_journal_set_features(sbi->s_journal,
3112 compat, 0,
3113 incompat);
3114 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3115 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3116 } else {
3117 jbd2_journal_clear_features(sbi->s_journal,
3118 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3119 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3120 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3121 }
3122
3123 return ret;
3124 }
3125
3126 /*
3127 * Note: calculating the overhead so we can be compatible with
3128 * historical BSD practice is quite difficult in the face of
3129 * clusters/bigalloc. This is because multiple metadata blocks from
3130 * different block group can end up in the same allocation cluster.
3131 * Calculating the exact overhead in the face of clustered allocation
3132 * requires either O(all block bitmaps) in memory or O(number of block
3133 * groups**2) in time. We will still calculate the superblock for
3134 * older file systems --- and if we come across with a bigalloc file
3135 * system with zero in s_overhead_clusters the estimate will be close to
3136 * correct especially for very large cluster sizes --- but for newer
3137 * file systems, it's better to calculate this figure once at mkfs
3138 * time, and store it in the superblock. If the superblock value is
3139 * present (even for non-bigalloc file systems), we will use it.
3140 */
3141 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3142 char *buf)
3143 {
3144 struct ext4_sb_info *sbi = EXT4_SB(sb);
3145 struct ext4_group_desc *gdp;
3146 ext4_fsblk_t first_block, last_block, b;
3147 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3148 int s, j, count = 0;
3149
3150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3151 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3152 sbi->s_itb_per_group + 2);
3153
3154 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3155 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3156 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3157 for (i = 0; i < ngroups; i++) {
3158 gdp = ext4_get_group_desc(sb, i, NULL);
3159 b = ext4_block_bitmap(sb, gdp);
3160 if (b >= first_block && b <= last_block) {
3161 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3162 count++;
3163 }
3164 b = ext4_inode_bitmap(sb, gdp);
3165 if (b >= first_block && b <= last_block) {
3166 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3167 count++;
3168 }
3169 b = ext4_inode_table(sb, gdp);
3170 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3171 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3172 int c = EXT4_B2C(sbi, b - first_block);
3173 ext4_set_bit(c, buf);
3174 count++;
3175 }
3176 if (i != grp)
3177 continue;
3178 s = 0;
3179 if (ext4_bg_has_super(sb, grp)) {
3180 ext4_set_bit(s++, buf);
3181 count++;
3182 }
3183 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3184 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3185 count++;
3186 }
3187 }
3188 if (!count)
3189 return 0;
3190 return EXT4_CLUSTERS_PER_GROUP(sb) -
3191 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3192 }
3193
3194 /*
3195 * Compute the overhead and stash it in sbi->s_overhead
3196 */
3197 int ext4_calculate_overhead(struct super_block *sb)
3198 {
3199 struct ext4_sb_info *sbi = EXT4_SB(sb);
3200 struct ext4_super_block *es = sbi->s_es;
3201 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3202 ext4_fsblk_t overhead = 0;
3203 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3204
3205 memset(buf, 0, PAGE_SIZE);
3206 if (!buf)
3207 return -ENOMEM;
3208
3209 /*
3210 * Compute the overhead (FS structures). This is constant
3211 * for a given filesystem unless the number of block groups
3212 * changes so we cache the previous value until it does.
3213 */
3214
3215 /*
3216 * All of the blocks before first_data_block are overhead
3217 */
3218 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3219
3220 /*
3221 * Add the overhead found in each block group
3222 */
3223 for (i = 0; i < ngroups; i++) {
3224 int blks;
3225
3226 blks = count_overhead(sb, i, buf);
3227 overhead += blks;
3228 if (blks)
3229 memset(buf, 0, PAGE_SIZE);
3230 cond_resched();
3231 }
3232 sbi->s_overhead = overhead;
3233 smp_wmb();
3234 free_page((unsigned long) buf);
3235 return 0;
3236 }
3237
3238 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3239 {
3240 char *orig_data = kstrdup(data, GFP_KERNEL);
3241 struct buffer_head *bh;
3242 struct ext4_super_block *es = NULL;
3243 struct ext4_sb_info *sbi;
3244 ext4_fsblk_t block;
3245 ext4_fsblk_t sb_block = get_sb_block(&data);
3246 ext4_fsblk_t logical_sb_block;
3247 unsigned long offset = 0;
3248 unsigned long journal_devnum = 0;
3249 unsigned long def_mount_opts;
3250 struct inode *root;
3251 char *cp;
3252 const char *descr;
3253 int ret = -ENOMEM;
3254 int blocksize, clustersize;
3255 unsigned int db_count;
3256 unsigned int i;
3257 int needs_recovery, has_huge_files, has_bigalloc;
3258 __u64 blocks_count;
3259 int err;
3260 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3261 ext4_group_t first_not_zeroed;
3262
3263 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3264 if (!sbi)
3265 goto out_free_orig;
3266
3267 sbi->s_blockgroup_lock =
3268 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3269 if (!sbi->s_blockgroup_lock) {
3270 kfree(sbi);
3271 goto out_free_orig;
3272 }
3273 sb->s_fs_info = sbi;
3274 sbi->s_sb = sb;
3275 sbi->s_mount_opt = 0;
3276 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID);
3277 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID);
3278 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3279 sbi->s_sb_block = sb_block;
3280 if (sb->s_bdev->bd_part)
3281 sbi->s_sectors_written_start =
3282 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3283
3284 /* Cleanup superblock name */
3285 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3286 *cp = '!';
3287
3288 ret = -EINVAL;
3289 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3290 if (!blocksize) {
3291 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3292 goto out_fail;
3293 }
3294
3295 /*
3296 * The ext4 superblock will not be buffer aligned for other than 1kB
3297 * block sizes. We need to calculate the offset from buffer start.
3298 */
3299 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3300 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3301 offset = do_div(logical_sb_block, blocksize);
3302 } else {
3303 logical_sb_block = sb_block;
3304 }
3305
3306 if (!(bh = sb_bread(sb, logical_sb_block))) {
3307 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3308 goto out_fail;
3309 }
3310 /*
3311 * Note: s_es must be initialized as soon as possible because
3312 * some ext4 macro-instructions depend on its value
3313 */
3314 es = (struct ext4_super_block *) (bh->b_data + offset);
3315 sbi->s_es = es;
3316 sb->s_magic = le16_to_cpu(es->s_magic);
3317 if (sb->s_magic != EXT4_SUPER_MAGIC)
3318 goto cantfind_ext4;
3319 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3320
3321 /* Warn if metadata_csum and gdt_csum are both set. */
3322 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3323 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3324 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3325 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3326 "redundant flags; please run fsck.");
3327
3328 /* Check for a known checksum algorithm */
3329 if (!ext4_verify_csum_type(sb, es)) {
3330 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3331 "unknown checksum algorithm.");
3332 silent = 1;
3333 goto cantfind_ext4;
3334 }
3335
3336 /* Load the checksum driver */
3337 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3338 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3339 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3340 if (IS_ERR(sbi->s_chksum_driver)) {
3341 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3342 ret = PTR_ERR(sbi->s_chksum_driver);
3343 sbi->s_chksum_driver = NULL;
3344 goto failed_mount;
3345 }
3346 }
3347
3348 /* Check superblock checksum */
3349 if (!ext4_superblock_csum_verify(sb, es)) {
3350 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3351 "invalid superblock checksum. Run e2fsck?");
3352 silent = 1;
3353 goto cantfind_ext4;
3354 }
3355
3356 /* Precompute checksum seed for all metadata */
3357 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3358 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3359 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3360 sizeof(es->s_uuid));
3361
3362 /* Set defaults before we parse the mount options */
3363 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3364 set_opt(sb, INIT_INODE_TABLE);
3365 if (def_mount_opts & EXT4_DEFM_DEBUG)
3366 set_opt(sb, DEBUG);
3367 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3368 set_opt(sb, GRPID);
3369 if (def_mount_opts & EXT4_DEFM_UID16)
3370 set_opt(sb, NO_UID32);
3371 /* xattr user namespace & acls are now defaulted on */
3372 #ifdef CONFIG_EXT4_FS_XATTR
3373 set_opt(sb, XATTR_USER);
3374 #endif
3375 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3376 set_opt(sb, POSIX_ACL);
3377 #endif
3378 set_opt(sb, MBLK_IO_SUBMIT);
3379 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3380 set_opt(sb, JOURNAL_DATA);
3381 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3382 set_opt(sb, ORDERED_DATA);
3383 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3384 set_opt(sb, WRITEBACK_DATA);
3385
3386 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3387 set_opt(sb, ERRORS_PANIC);
3388 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3389 set_opt(sb, ERRORS_CONT);
3390 else
3391 set_opt(sb, ERRORS_RO);
3392 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3393 set_opt(sb, BLOCK_VALIDITY);
3394 if (def_mount_opts & EXT4_DEFM_DISCARD)
3395 set_opt(sb, DISCARD);
3396
3397 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3398 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3399 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3400 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3401 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3402
3403 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3404 set_opt(sb, BARRIER);
3405
3406 /*
3407 * enable delayed allocation by default
3408 * Use -o nodelalloc to turn it off
3409 */
3410 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3411 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3412 set_opt(sb, DELALLOC);
3413
3414 /*
3415 * set default s_li_wait_mult for lazyinit, for the case there is
3416 * no mount option specified.
3417 */
3418 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3419
3420 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3421 &journal_devnum, &journal_ioprio, 0)) {
3422 ext4_msg(sb, KERN_WARNING,
3423 "failed to parse options in superblock: %s",
3424 sbi->s_es->s_mount_opts);
3425 }
3426 sbi->s_def_mount_opt = sbi->s_mount_opt;
3427 if (!parse_options((char *) data, sb, &journal_devnum,
3428 &journal_ioprio, 0))
3429 goto failed_mount;
3430
3431 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3432 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3433 "with data=journal disables delayed "
3434 "allocation and O_DIRECT support!\n");
3435 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3436 ext4_msg(sb, KERN_ERR, "can't mount with "
3437 "both data=journal and delalloc");
3438 goto failed_mount;
3439 }
3440 if (test_opt(sb, DIOREAD_NOLOCK)) {
3441 ext4_msg(sb, KERN_ERR, "can't mount with "
3442 "both data=journal and delalloc");
3443 goto failed_mount;
3444 }
3445 if (test_opt(sb, DELALLOC))
3446 clear_opt(sb, DELALLOC);
3447 }
3448
3449 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3450 if (test_opt(sb, DIOREAD_NOLOCK)) {
3451 if (blocksize < PAGE_SIZE) {
3452 ext4_msg(sb, KERN_ERR, "can't mount with "
3453 "dioread_nolock if block size != PAGE_SIZE");
3454 goto failed_mount;
3455 }
3456 }
3457
3458 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3459 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3460
3461 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3462 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3463 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3464 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3465 ext4_msg(sb, KERN_WARNING,
3466 "feature flags set on rev 0 fs, "
3467 "running e2fsck is recommended");
3468
3469 if (IS_EXT2_SB(sb)) {
3470 if (ext2_feature_set_ok(sb))
3471 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3472 "using the ext4 subsystem");
3473 else {
3474 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3475 "to feature incompatibilities");
3476 goto failed_mount;
3477 }
3478 }
3479
3480 if (IS_EXT3_SB(sb)) {
3481 if (ext3_feature_set_ok(sb))
3482 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3483 "using the ext4 subsystem");
3484 else {
3485 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3486 "to feature incompatibilities");
3487 goto failed_mount;
3488 }
3489 }
3490
3491 /*
3492 * Check feature flags regardless of the revision level, since we
3493 * previously didn't change the revision level when setting the flags,
3494 * so there is a chance incompat flags are set on a rev 0 filesystem.
3495 */
3496 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3497 goto failed_mount;
3498
3499 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3500 blocksize > EXT4_MAX_BLOCK_SIZE) {
3501 ext4_msg(sb, KERN_ERR,
3502 "Unsupported filesystem blocksize %d", blocksize);
3503 goto failed_mount;
3504 }
3505
3506 if (sb->s_blocksize != blocksize) {
3507 /* Validate the filesystem blocksize */
3508 if (!sb_set_blocksize(sb, blocksize)) {
3509 ext4_msg(sb, KERN_ERR, "bad block size %d",
3510 blocksize);
3511 goto failed_mount;
3512 }
3513
3514 brelse(bh);
3515 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3516 offset = do_div(logical_sb_block, blocksize);
3517 bh = sb_bread(sb, logical_sb_block);
3518 if (!bh) {
3519 ext4_msg(sb, KERN_ERR,
3520 "Can't read superblock on 2nd try");
3521 goto failed_mount;
3522 }
3523 es = (struct ext4_super_block *)(bh->b_data + offset);
3524 sbi->s_es = es;
3525 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3526 ext4_msg(sb, KERN_ERR,
3527 "Magic mismatch, very weird!");
3528 goto failed_mount;
3529 }
3530 }
3531
3532 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3533 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3534 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3535 has_huge_files);
3536 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3537
3538 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3539 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3540 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3541 } else {
3542 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3543 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3544 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3545 (!is_power_of_2(sbi->s_inode_size)) ||
3546 (sbi->s_inode_size > blocksize)) {
3547 ext4_msg(sb, KERN_ERR,
3548 "unsupported inode size: %d",
3549 sbi->s_inode_size);
3550 goto failed_mount;
3551 }
3552 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3553 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3554 }
3555
3556 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3557 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3558 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3559 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3560 !is_power_of_2(sbi->s_desc_size)) {
3561 ext4_msg(sb, KERN_ERR,
3562 "unsupported descriptor size %lu",
3563 sbi->s_desc_size);
3564 goto failed_mount;
3565 }
3566 } else
3567 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3568
3569 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3570 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3571 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3572 goto cantfind_ext4;
3573
3574 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3575 if (sbi->s_inodes_per_block == 0)
3576 goto cantfind_ext4;
3577 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3578 sbi->s_inodes_per_block;
3579 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3580 sbi->s_sbh = bh;
3581 sbi->s_mount_state = le16_to_cpu(es->s_state);
3582 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3583 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3584
3585 for (i = 0; i < 4; i++)
3586 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3587 sbi->s_def_hash_version = es->s_def_hash_version;
3588 i = le32_to_cpu(es->s_flags);
3589 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3590 sbi->s_hash_unsigned = 3;
3591 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3592 #ifdef __CHAR_UNSIGNED__
3593 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3594 sbi->s_hash_unsigned = 3;
3595 #else
3596 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3597 #endif
3598 }
3599
3600 /* Handle clustersize */
3601 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3602 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3603 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3604 if (has_bigalloc) {
3605 if (clustersize < blocksize) {
3606 ext4_msg(sb, KERN_ERR,
3607 "cluster size (%d) smaller than "
3608 "block size (%d)", clustersize, blocksize);
3609 goto failed_mount;
3610 }
3611 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3612 le32_to_cpu(es->s_log_block_size);
3613 sbi->s_clusters_per_group =
3614 le32_to_cpu(es->s_clusters_per_group);
3615 if (sbi->s_clusters_per_group > blocksize * 8) {
3616 ext4_msg(sb, KERN_ERR,
3617 "#clusters per group too big: %lu",
3618 sbi->s_clusters_per_group);
3619 goto failed_mount;
3620 }
3621 if (sbi->s_blocks_per_group !=
3622 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3623 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3624 "clusters per group (%lu) inconsistent",
3625 sbi->s_blocks_per_group,
3626 sbi->s_clusters_per_group);
3627 goto failed_mount;
3628 }
3629 } else {
3630 if (clustersize != blocksize) {
3631 ext4_warning(sb, "fragment/cluster size (%d) != "
3632 "block size (%d)", clustersize,
3633 blocksize);
3634 clustersize = blocksize;
3635 }
3636 if (sbi->s_blocks_per_group > blocksize * 8) {
3637 ext4_msg(sb, KERN_ERR,
3638 "#blocks per group too big: %lu",
3639 sbi->s_blocks_per_group);
3640 goto failed_mount;
3641 }
3642 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3643 sbi->s_cluster_bits = 0;
3644 }
3645 sbi->s_cluster_ratio = clustersize / blocksize;
3646
3647 if (sbi->s_inodes_per_group > blocksize * 8) {
3648 ext4_msg(sb, KERN_ERR,
3649 "#inodes per group too big: %lu",
3650 sbi->s_inodes_per_group);
3651 goto failed_mount;
3652 }
3653
3654 /*
3655 * Test whether we have more sectors than will fit in sector_t,
3656 * and whether the max offset is addressable by the page cache.
3657 */
3658 err = generic_check_addressable(sb->s_blocksize_bits,
3659 ext4_blocks_count(es));
3660 if (err) {
3661 ext4_msg(sb, KERN_ERR, "filesystem"
3662 " too large to mount safely on this system");
3663 if (sizeof(sector_t) < 8)
3664 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3665 ret = err;
3666 goto failed_mount;
3667 }
3668
3669 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3670 goto cantfind_ext4;
3671
3672 /* check blocks count against device size */
3673 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3674 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3675 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3676 "exceeds size of device (%llu blocks)",
3677 ext4_blocks_count(es), blocks_count);
3678 goto failed_mount;
3679 }
3680
3681 /*
3682 * It makes no sense for the first data block to be beyond the end
3683 * of the filesystem.
3684 */
3685 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3686 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3687 "block %u is beyond end of filesystem (%llu)",
3688 le32_to_cpu(es->s_first_data_block),
3689 ext4_blocks_count(es));
3690 goto failed_mount;
3691 }
3692 blocks_count = (ext4_blocks_count(es) -
3693 le32_to_cpu(es->s_first_data_block) +
3694 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3695 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3696 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3697 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3698 "(block count %llu, first data block %u, "
3699 "blocks per group %lu)", sbi->s_groups_count,
3700 ext4_blocks_count(es),
3701 le32_to_cpu(es->s_first_data_block),
3702 EXT4_BLOCKS_PER_GROUP(sb));
3703 goto failed_mount;
3704 }
3705 sbi->s_groups_count = blocks_count;
3706 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3707 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3708 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3709 EXT4_DESC_PER_BLOCK(sb);
3710 sbi->s_group_desc = ext4_kvmalloc(db_count *
3711 sizeof(struct buffer_head *),
3712 GFP_KERNEL);
3713 if (sbi->s_group_desc == NULL) {
3714 ext4_msg(sb, KERN_ERR, "not enough memory");
3715 ret = -ENOMEM;
3716 goto failed_mount;
3717 }
3718
3719 if (ext4_proc_root)
3720 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3721
3722 if (sbi->s_proc)
3723 proc_create_data("options", S_IRUGO, sbi->s_proc,
3724 &ext4_seq_options_fops, sb);
3725
3726 bgl_lock_init(sbi->s_blockgroup_lock);
3727
3728 for (i = 0; i < db_count; i++) {
3729 block = descriptor_loc(sb, logical_sb_block, i);
3730 sbi->s_group_desc[i] = sb_bread(sb, block);
3731 if (!sbi->s_group_desc[i]) {
3732 ext4_msg(sb, KERN_ERR,
3733 "can't read group descriptor %d", i);
3734 db_count = i;
3735 goto failed_mount2;
3736 }
3737 }
3738 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3739 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3740 goto failed_mount2;
3741 }
3742 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3743 if (!ext4_fill_flex_info(sb)) {
3744 ext4_msg(sb, KERN_ERR,
3745 "unable to initialize "
3746 "flex_bg meta info!");
3747 goto failed_mount2;
3748 }
3749
3750 sbi->s_gdb_count = db_count;
3751 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3752 spin_lock_init(&sbi->s_next_gen_lock);
3753
3754 init_timer(&sbi->s_err_report);
3755 sbi->s_err_report.function = print_daily_error_info;
3756 sbi->s_err_report.data = (unsigned long) sb;
3757
3758 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3759 ext4_count_free_clusters(sb));
3760 if (!err) {
3761 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3762 ext4_count_free_inodes(sb));
3763 }
3764 if (!err) {
3765 err = percpu_counter_init(&sbi->s_dirs_counter,
3766 ext4_count_dirs(sb));
3767 }
3768 if (!err) {
3769 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3770 }
3771 if (err) {
3772 ext4_msg(sb, KERN_ERR, "insufficient memory");
3773 ret = err;
3774 goto failed_mount3;
3775 }
3776
3777 sbi->s_stripe = ext4_get_stripe_size(sbi);
3778 sbi->s_max_writeback_mb_bump = 128;
3779 sbi->s_extent_max_zeroout_kb = 32;
3780
3781 /*
3782 * set up enough so that it can read an inode
3783 */
3784 if (!test_opt(sb, NOLOAD) &&
3785 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3786 sb->s_op = &ext4_sops;
3787 else
3788 sb->s_op = &ext4_nojournal_sops;
3789 sb->s_export_op = &ext4_export_ops;
3790 sb->s_xattr = ext4_xattr_handlers;
3791 #ifdef CONFIG_QUOTA
3792 sb->s_qcop = &ext4_qctl_operations;
3793 sb->dq_op = &ext4_quota_operations;
3794
3795 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
3796 /* Use qctl operations for hidden quota files. */
3797 sb->s_qcop = &ext4_qctl_sysfile_operations;
3798 }
3799 #endif
3800 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3801
3802 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3803 mutex_init(&sbi->s_orphan_lock);
3804 sbi->s_resize_flags = 0;
3805
3806 sb->s_root = NULL;
3807
3808 needs_recovery = (es->s_last_orphan != 0 ||
3809 EXT4_HAS_INCOMPAT_FEATURE(sb,
3810 EXT4_FEATURE_INCOMPAT_RECOVER));
3811
3812 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3813 !(sb->s_flags & MS_RDONLY))
3814 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3815 goto failed_mount3;
3816
3817 /*
3818 * The first inode we look at is the journal inode. Don't try
3819 * root first: it may be modified in the journal!
3820 */
3821 if (!test_opt(sb, NOLOAD) &&
3822 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3823 if (ext4_load_journal(sb, es, journal_devnum))
3824 goto failed_mount3;
3825 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3826 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3827 ext4_msg(sb, KERN_ERR, "required journal recovery "
3828 "suppressed and not mounted read-only");
3829 goto failed_mount_wq;
3830 } else {
3831 clear_opt(sb, DATA_FLAGS);
3832 sbi->s_journal = NULL;
3833 needs_recovery = 0;
3834 goto no_journal;
3835 }
3836
3837 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3838 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3839 JBD2_FEATURE_INCOMPAT_64BIT)) {
3840 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3841 goto failed_mount_wq;
3842 }
3843
3844 if (!set_journal_csum_feature_set(sb)) {
3845 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3846 "feature set");
3847 goto failed_mount_wq;
3848 }
3849
3850 /* We have now updated the journal if required, so we can
3851 * validate the data journaling mode. */
3852 switch (test_opt(sb, DATA_FLAGS)) {
3853 case 0:
3854 /* No mode set, assume a default based on the journal
3855 * capabilities: ORDERED_DATA if the journal can
3856 * cope, else JOURNAL_DATA
3857 */
3858 if (jbd2_journal_check_available_features
3859 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3860 set_opt(sb, ORDERED_DATA);
3861 else
3862 set_opt(sb, JOURNAL_DATA);
3863 break;
3864
3865 case EXT4_MOUNT_ORDERED_DATA:
3866 case EXT4_MOUNT_WRITEBACK_DATA:
3867 if (!jbd2_journal_check_available_features
3868 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3869 ext4_msg(sb, KERN_ERR, "Journal does not support "
3870 "requested data journaling mode");
3871 goto failed_mount_wq;
3872 }
3873 default:
3874 break;
3875 }
3876 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3877
3878 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3879
3880 /*
3881 * The journal may have updated the bg summary counts, so we
3882 * need to update the global counters.
3883 */
3884 percpu_counter_set(&sbi->s_freeclusters_counter,
3885 ext4_count_free_clusters(sb));
3886 percpu_counter_set(&sbi->s_freeinodes_counter,
3887 ext4_count_free_inodes(sb));
3888 percpu_counter_set(&sbi->s_dirs_counter,
3889 ext4_count_dirs(sb));
3890 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3891
3892 no_journal:
3893 /*
3894 * Get the # of file system overhead blocks from the
3895 * superblock if present.
3896 */
3897 if (es->s_overhead_clusters)
3898 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3899 else {
3900 ret = ext4_calculate_overhead(sb);
3901 if (ret)
3902 goto failed_mount_wq;
3903 }
3904
3905 /*
3906 * The maximum number of concurrent works can be high and
3907 * concurrency isn't really necessary. Limit it to 1.
3908 */
3909 EXT4_SB(sb)->dio_unwritten_wq =
3910 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3911 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3912 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3913 goto failed_mount_wq;
3914 }
3915
3916 /*
3917 * The jbd2_journal_load will have done any necessary log recovery,
3918 * so we can safely mount the rest of the filesystem now.
3919 */
3920
3921 root = ext4_iget(sb, EXT4_ROOT_INO);
3922 if (IS_ERR(root)) {
3923 ext4_msg(sb, KERN_ERR, "get root inode failed");
3924 ret = PTR_ERR(root);
3925 root = NULL;
3926 goto failed_mount4;
3927 }
3928 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3929 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3930 iput(root);
3931 goto failed_mount4;
3932 }
3933 sb->s_root = d_make_root(root);
3934 if (!sb->s_root) {
3935 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3936 ret = -ENOMEM;
3937 goto failed_mount4;
3938 }
3939
3940 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3941 sb->s_flags |= MS_RDONLY;
3942
3943 /* determine the minimum size of new large inodes, if present */
3944 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3945 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3946 EXT4_GOOD_OLD_INODE_SIZE;
3947 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3948 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3949 if (sbi->s_want_extra_isize <
3950 le16_to_cpu(es->s_want_extra_isize))
3951 sbi->s_want_extra_isize =
3952 le16_to_cpu(es->s_want_extra_isize);
3953 if (sbi->s_want_extra_isize <
3954 le16_to_cpu(es->s_min_extra_isize))
3955 sbi->s_want_extra_isize =
3956 le16_to_cpu(es->s_min_extra_isize);
3957 }
3958 }
3959 /* Check if enough inode space is available */
3960 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3961 sbi->s_inode_size) {
3962 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3963 EXT4_GOOD_OLD_INODE_SIZE;
3964 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3965 "available");
3966 }
3967
3968 err = ext4_setup_system_zone(sb);
3969 if (err) {
3970 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3971 "zone (%d)", err);
3972 goto failed_mount4a;
3973 }
3974
3975 ext4_ext_init(sb);
3976 err = ext4_mb_init(sb);
3977 if (err) {
3978 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3979 err);
3980 goto failed_mount5;
3981 }
3982
3983 err = ext4_register_li_request(sb, first_not_zeroed);
3984 if (err)
3985 goto failed_mount6;
3986
3987 sbi->s_kobj.kset = ext4_kset;
3988 init_completion(&sbi->s_kobj_unregister);
3989 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3990 "%s", sb->s_id);
3991 if (err)
3992 goto failed_mount7;
3993
3994 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3995 ext4_orphan_cleanup(sb, es);
3996 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3997 if (needs_recovery) {
3998 ext4_msg(sb, KERN_INFO, "recovery complete");
3999 ext4_mark_recovery_complete(sb, es);
4000 }
4001 if (EXT4_SB(sb)->s_journal) {
4002 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4003 descr = " journalled data mode";
4004 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4005 descr = " ordered data mode";
4006 else
4007 descr = " writeback data mode";
4008 } else
4009 descr = "out journal";
4010
4011 #ifdef CONFIG_QUOTA
4012 /* Enable quota usage during mount. */
4013 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4014 !(sb->s_flags & MS_RDONLY)) {
4015 ret = ext4_enable_quotas(sb);
4016 if (ret)
4017 goto failed_mount7;
4018 }
4019 #endif /* CONFIG_QUOTA */
4020
4021 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4022 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4023 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4024
4025 if (es->s_error_count)
4026 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4027
4028 kfree(orig_data);
4029 return 0;
4030
4031 cantfind_ext4:
4032 if (!silent)
4033 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4034 goto failed_mount;
4035
4036 failed_mount7:
4037 ext4_unregister_li_request(sb);
4038 failed_mount6:
4039 ext4_mb_release(sb);
4040 failed_mount5:
4041 ext4_ext_release(sb);
4042 ext4_release_system_zone(sb);
4043 failed_mount4a:
4044 dput(sb->s_root);
4045 sb->s_root = NULL;
4046 failed_mount4:
4047 ext4_msg(sb, KERN_ERR, "mount failed");
4048 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4049 failed_mount_wq:
4050 if (sbi->s_journal) {
4051 jbd2_journal_destroy(sbi->s_journal);
4052 sbi->s_journal = NULL;
4053 }
4054 failed_mount3:
4055 del_timer(&sbi->s_err_report);
4056 if (sbi->s_flex_groups)
4057 ext4_kvfree(sbi->s_flex_groups);
4058 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4059 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4060 percpu_counter_destroy(&sbi->s_dirs_counter);
4061 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4062 if (sbi->s_mmp_tsk)
4063 kthread_stop(sbi->s_mmp_tsk);
4064 failed_mount2:
4065 for (i = 0; i < db_count; i++)
4066 brelse(sbi->s_group_desc[i]);
4067 ext4_kvfree(sbi->s_group_desc);
4068 failed_mount:
4069 if (sbi->s_chksum_driver)
4070 crypto_free_shash(sbi->s_chksum_driver);
4071 if (sbi->s_proc) {
4072 remove_proc_entry("options", sbi->s_proc);
4073 remove_proc_entry(sb->s_id, ext4_proc_root);
4074 }
4075 #ifdef CONFIG_QUOTA
4076 for (i = 0; i < MAXQUOTAS; i++)
4077 kfree(sbi->s_qf_names[i]);
4078 #endif
4079 ext4_blkdev_remove(sbi);
4080 brelse(bh);
4081 out_fail:
4082 sb->s_fs_info = NULL;
4083 kfree(sbi->s_blockgroup_lock);
4084 kfree(sbi);
4085 out_free_orig:
4086 kfree(orig_data);
4087 return ret;
4088 }
4089
4090 /*
4091 * Setup any per-fs journal parameters now. We'll do this both on
4092 * initial mount, once the journal has been initialised but before we've
4093 * done any recovery; and again on any subsequent remount.
4094 */
4095 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4096 {
4097 struct ext4_sb_info *sbi = EXT4_SB(sb);
4098
4099 journal->j_commit_interval = sbi->s_commit_interval;
4100 journal->j_min_batch_time = sbi->s_min_batch_time;
4101 journal->j_max_batch_time = sbi->s_max_batch_time;
4102
4103 write_lock(&journal->j_state_lock);
4104 if (test_opt(sb, BARRIER))
4105 journal->j_flags |= JBD2_BARRIER;
4106 else
4107 journal->j_flags &= ~JBD2_BARRIER;
4108 if (test_opt(sb, DATA_ERR_ABORT))
4109 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4110 else
4111 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4112 write_unlock(&journal->j_state_lock);
4113 }
4114
4115 static journal_t *ext4_get_journal(struct super_block *sb,
4116 unsigned int journal_inum)
4117 {
4118 struct inode *journal_inode;
4119 journal_t *journal;
4120
4121 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4122
4123 /* First, test for the existence of a valid inode on disk. Bad
4124 * things happen if we iget() an unused inode, as the subsequent
4125 * iput() will try to delete it. */
4126
4127 journal_inode = ext4_iget(sb, journal_inum);
4128 if (IS_ERR(journal_inode)) {
4129 ext4_msg(sb, KERN_ERR, "no journal found");
4130 return NULL;
4131 }
4132 if (!journal_inode->i_nlink) {
4133 make_bad_inode(journal_inode);
4134 iput(journal_inode);
4135 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4136 return NULL;
4137 }
4138
4139 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4140 journal_inode, journal_inode->i_size);
4141 if (!S_ISREG(journal_inode->i_mode)) {
4142 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4143 iput(journal_inode);
4144 return NULL;
4145 }
4146
4147 journal = jbd2_journal_init_inode(journal_inode);
4148 if (!journal) {
4149 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4150 iput(journal_inode);
4151 return NULL;
4152 }
4153 journal->j_private = sb;
4154 ext4_init_journal_params(sb, journal);
4155 return journal;
4156 }
4157
4158 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4159 dev_t j_dev)
4160 {
4161 struct buffer_head *bh;
4162 journal_t *journal;
4163 ext4_fsblk_t start;
4164 ext4_fsblk_t len;
4165 int hblock, blocksize;
4166 ext4_fsblk_t sb_block;
4167 unsigned long offset;
4168 struct ext4_super_block *es;
4169 struct block_device *bdev;
4170
4171 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4172
4173 bdev = ext4_blkdev_get(j_dev, sb);
4174 if (bdev == NULL)
4175 return NULL;
4176
4177 blocksize = sb->s_blocksize;
4178 hblock = bdev_logical_block_size(bdev);
4179 if (blocksize < hblock) {
4180 ext4_msg(sb, KERN_ERR,
4181 "blocksize too small for journal device");
4182 goto out_bdev;
4183 }
4184
4185 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4186 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4187 set_blocksize(bdev, blocksize);
4188 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4189 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4190 "external journal");
4191 goto out_bdev;
4192 }
4193
4194 es = (struct ext4_super_block *) (bh->b_data + offset);
4195 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4196 !(le32_to_cpu(es->s_feature_incompat) &
4197 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4198 ext4_msg(sb, KERN_ERR, "external journal has "
4199 "bad superblock");
4200 brelse(bh);
4201 goto out_bdev;
4202 }
4203
4204 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4205 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4206 brelse(bh);
4207 goto out_bdev;
4208 }
4209
4210 len = ext4_blocks_count(es);
4211 start = sb_block + 1;
4212 brelse(bh); /* we're done with the superblock */
4213
4214 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4215 start, len, blocksize);
4216 if (!journal) {
4217 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4218 goto out_bdev;
4219 }
4220 journal->j_private = sb;
4221 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4222 wait_on_buffer(journal->j_sb_buffer);
4223 if (!buffer_uptodate(journal->j_sb_buffer)) {
4224 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4225 goto out_journal;
4226 }
4227 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4228 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4229 "user (unsupported) - %d",
4230 be32_to_cpu(journal->j_superblock->s_nr_users));
4231 goto out_journal;
4232 }
4233 EXT4_SB(sb)->journal_bdev = bdev;
4234 ext4_init_journal_params(sb, journal);
4235 return journal;
4236
4237 out_journal:
4238 jbd2_journal_destroy(journal);
4239 out_bdev:
4240 ext4_blkdev_put(bdev);
4241 return NULL;
4242 }
4243
4244 static int ext4_load_journal(struct super_block *sb,
4245 struct ext4_super_block *es,
4246 unsigned long journal_devnum)
4247 {
4248 journal_t *journal;
4249 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4250 dev_t journal_dev;
4251 int err = 0;
4252 int really_read_only;
4253
4254 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4255
4256 if (journal_devnum &&
4257 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4258 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4259 "numbers have changed");
4260 journal_dev = new_decode_dev(journal_devnum);
4261 } else
4262 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4263
4264 really_read_only = bdev_read_only(sb->s_bdev);
4265
4266 /*
4267 * Are we loading a blank journal or performing recovery after a
4268 * crash? For recovery, we need to check in advance whether we
4269 * can get read-write access to the device.
4270 */
4271 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4272 if (sb->s_flags & MS_RDONLY) {
4273 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4274 "required on readonly filesystem");
4275 if (really_read_only) {
4276 ext4_msg(sb, KERN_ERR, "write access "
4277 "unavailable, cannot proceed");
4278 return -EROFS;
4279 }
4280 ext4_msg(sb, KERN_INFO, "write access will "
4281 "be enabled during recovery");
4282 }
4283 }
4284
4285 if (journal_inum && journal_dev) {
4286 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4287 "and inode journals!");
4288 return -EINVAL;
4289 }
4290
4291 if (journal_inum) {
4292 if (!(journal = ext4_get_journal(sb, journal_inum)))
4293 return -EINVAL;
4294 } else {
4295 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4296 return -EINVAL;
4297 }
4298
4299 if (!(journal->j_flags & JBD2_BARRIER))
4300 ext4_msg(sb, KERN_INFO, "barriers disabled");
4301
4302 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4303 err = jbd2_journal_wipe(journal, !really_read_only);
4304 if (!err) {
4305 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4306 if (save)
4307 memcpy(save, ((char *) es) +
4308 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4309 err = jbd2_journal_load(journal);
4310 if (save)
4311 memcpy(((char *) es) + EXT4_S_ERR_START,
4312 save, EXT4_S_ERR_LEN);
4313 kfree(save);
4314 }
4315
4316 if (err) {
4317 ext4_msg(sb, KERN_ERR, "error loading journal");
4318 jbd2_journal_destroy(journal);
4319 return err;
4320 }
4321
4322 EXT4_SB(sb)->s_journal = journal;
4323 ext4_clear_journal_err(sb, es);
4324
4325 if (!really_read_only && journal_devnum &&
4326 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4327 es->s_journal_dev = cpu_to_le32(journal_devnum);
4328
4329 /* Make sure we flush the recovery flag to disk. */
4330 ext4_commit_super(sb, 1);
4331 }
4332
4333 return 0;
4334 }
4335
4336 static int ext4_commit_super(struct super_block *sb, int sync)
4337 {
4338 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4339 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4340 int error = 0;
4341
4342 if (!sbh || block_device_ejected(sb))
4343 return error;
4344 if (buffer_write_io_error(sbh)) {
4345 /*
4346 * Oh, dear. A previous attempt to write the
4347 * superblock failed. This could happen because the
4348 * USB device was yanked out. Or it could happen to
4349 * be a transient write error and maybe the block will
4350 * be remapped. Nothing we can do but to retry the
4351 * write and hope for the best.
4352 */
4353 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4354 "superblock detected");
4355 clear_buffer_write_io_error(sbh);
4356 set_buffer_uptodate(sbh);
4357 }
4358 /*
4359 * If the file system is mounted read-only, don't update the
4360 * superblock write time. This avoids updating the superblock
4361 * write time when we are mounting the root file system
4362 * read/only but we need to replay the journal; at that point,
4363 * for people who are east of GMT and who make their clock
4364 * tick in localtime for Windows bug-for-bug compatibility,
4365 * the clock is set in the future, and this will cause e2fsck
4366 * to complain and force a full file system check.
4367 */
4368 if (!(sb->s_flags & MS_RDONLY))
4369 es->s_wtime = cpu_to_le32(get_seconds());
4370 if (sb->s_bdev->bd_part)
4371 es->s_kbytes_written =
4372 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4373 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4374 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4375 else
4376 es->s_kbytes_written =
4377 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4378 ext4_free_blocks_count_set(es,
4379 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4380 &EXT4_SB(sb)->s_freeclusters_counter)));
4381 es->s_free_inodes_count =
4382 cpu_to_le32(percpu_counter_sum_positive(
4383 &EXT4_SB(sb)->s_freeinodes_counter));
4384 BUFFER_TRACE(sbh, "marking dirty");
4385 ext4_superblock_csum_set(sb);
4386 mark_buffer_dirty(sbh);
4387 if (sync) {
4388 error = sync_dirty_buffer(sbh);
4389 if (error)
4390 return error;
4391
4392 error = buffer_write_io_error(sbh);
4393 if (error) {
4394 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4395 "superblock");
4396 clear_buffer_write_io_error(sbh);
4397 set_buffer_uptodate(sbh);
4398 }
4399 }
4400 return error;
4401 }
4402
4403 /*
4404 * Have we just finished recovery? If so, and if we are mounting (or
4405 * remounting) the filesystem readonly, then we will end up with a
4406 * consistent fs on disk. Record that fact.
4407 */
4408 static void ext4_mark_recovery_complete(struct super_block *sb,
4409 struct ext4_super_block *es)
4410 {
4411 journal_t *journal = EXT4_SB(sb)->s_journal;
4412
4413 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4414 BUG_ON(journal != NULL);
4415 return;
4416 }
4417 jbd2_journal_lock_updates(journal);
4418 if (jbd2_journal_flush(journal) < 0)
4419 goto out;
4420
4421 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4422 sb->s_flags & MS_RDONLY) {
4423 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4424 ext4_commit_super(sb, 1);
4425 }
4426
4427 out:
4428 jbd2_journal_unlock_updates(journal);
4429 }
4430
4431 /*
4432 * If we are mounting (or read-write remounting) a filesystem whose journal
4433 * has recorded an error from a previous lifetime, move that error to the
4434 * main filesystem now.
4435 */
4436 static void ext4_clear_journal_err(struct super_block *sb,
4437 struct ext4_super_block *es)
4438 {
4439 journal_t *journal;
4440 int j_errno;
4441 const char *errstr;
4442
4443 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4444
4445 journal = EXT4_SB(sb)->s_journal;
4446
4447 /*
4448 * Now check for any error status which may have been recorded in the
4449 * journal by a prior ext4_error() or ext4_abort()
4450 */
4451
4452 j_errno = jbd2_journal_errno(journal);
4453 if (j_errno) {
4454 char nbuf[16];
4455
4456 errstr = ext4_decode_error(sb, j_errno, nbuf);
4457 ext4_warning(sb, "Filesystem error recorded "
4458 "from previous mount: %s", errstr);
4459 ext4_warning(sb, "Marking fs in need of filesystem check.");
4460
4461 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4462 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4463 ext4_commit_super(sb, 1);
4464
4465 jbd2_journal_clear_err(journal);
4466 jbd2_journal_update_sb_errno(journal);
4467 }
4468 }
4469
4470 /*
4471 * Force the running and committing transactions to commit,
4472 * and wait on the commit.
4473 */
4474 int ext4_force_commit(struct super_block *sb)
4475 {
4476 journal_t *journal;
4477 int ret = 0;
4478
4479 if (sb->s_flags & MS_RDONLY)
4480 return 0;
4481
4482 journal = EXT4_SB(sb)->s_journal;
4483 if (journal)
4484 ret = ext4_journal_force_commit(journal);
4485
4486 return ret;
4487 }
4488
4489 static int ext4_sync_fs(struct super_block *sb, int wait)
4490 {
4491 int ret = 0;
4492 tid_t target;
4493 struct ext4_sb_info *sbi = EXT4_SB(sb);
4494
4495 trace_ext4_sync_fs(sb, wait);
4496 flush_workqueue(sbi->dio_unwritten_wq);
4497 /*
4498 * Writeback quota in non-journalled quota case - journalled quota has
4499 * no dirty dquots
4500 */
4501 dquot_writeback_dquots(sb, -1);
4502 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4503 if (wait)
4504 jbd2_log_wait_commit(sbi->s_journal, target);
4505 }
4506 return ret;
4507 }
4508
4509 /*
4510 * LVM calls this function before a (read-only) snapshot is created. This
4511 * gives us a chance to flush the journal completely and mark the fs clean.
4512 *
4513 * Note that only this function cannot bring a filesystem to be in a clean
4514 * state independently. It relies on upper layer to stop all data & metadata
4515 * modifications.
4516 */
4517 static int ext4_freeze(struct super_block *sb)
4518 {
4519 int error = 0;
4520 journal_t *journal;
4521
4522 if (sb->s_flags & MS_RDONLY)
4523 return 0;
4524
4525 journal = EXT4_SB(sb)->s_journal;
4526
4527 /* Now we set up the journal barrier. */
4528 jbd2_journal_lock_updates(journal);
4529
4530 /*
4531 * Don't clear the needs_recovery flag if we failed to flush
4532 * the journal.
4533 */
4534 error = jbd2_journal_flush(journal);
4535 if (error < 0)
4536 goto out;
4537
4538 /* Journal blocked and flushed, clear needs_recovery flag. */
4539 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4540 error = ext4_commit_super(sb, 1);
4541 out:
4542 /* we rely on upper layer to stop further updates */
4543 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4544 return error;
4545 }
4546
4547 /*
4548 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4549 * flag here, even though the filesystem is not technically dirty yet.
4550 */
4551 static int ext4_unfreeze(struct super_block *sb)
4552 {
4553 if (sb->s_flags & MS_RDONLY)
4554 return 0;
4555
4556 /* Reset the needs_recovery flag before the fs is unlocked. */
4557 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4558 ext4_commit_super(sb, 1);
4559 return 0;
4560 }
4561
4562 /*
4563 * Structure to save mount options for ext4_remount's benefit
4564 */
4565 struct ext4_mount_options {
4566 unsigned long s_mount_opt;
4567 unsigned long s_mount_opt2;
4568 kuid_t s_resuid;
4569 kgid_t s_resgid;
4570 unsigned long s_commit_interval;
4571 u32 s_min_batch_time, s_max_batch_time;
4572 #ifdef CONFIG_QUOTA
4573 int s_jquota_fmt;
4574 char *s_qf_names[MAXQUOTAS];
4575 #endif
4576 };
4577
4578 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4579 {
4580 struct ext4_super_block *es;
4581 struct ext4_sb_info *sbi = EXT4_SB(sb);
4582 unsigned long old_sb_flags;
4583 struct ext4_mount_options old_opts;
4584 int enable_quota = 0;
4585 ext4_group_t g;
4586 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4587 int err = 0;
4588 #ifdef CONFIG_QUOTA
4589 int i;
4590 #endif
4591 char *orig_data = kstrdup(data, GFP_KERNEL);
4592
4593 /* Store the original options */
4594 old_sb_flags = sb->s_flags;
4595 old_opts.s_mount_opt = sbi->s_mount_opt;
4596 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4597 old_opts.s_resuid = sbi->s_resuid;
4598 old_opts.s_resgid = sbi->s_resgid;
4599 old_opts.s_commit_interval = sbi->s_commit_interval;
4600 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4601 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4602 #ifdef CONFIG_QUOTA
4603 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4604 for (i = 0; i < MAXQUOTAS; i++)
4605 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4606 #endif
4607 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4608 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4609
4610 /*
4611 * Allow the "check" option to be passed as a remount option.
4612 */
4613 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4614 err = -EINVAL;
4615 goto restore_opts;
4616 }
4617
4618 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4619 ext4_abort(sb, "Abort forced by user");
4620
4621 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4622 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4623
4624 es = sbi->s_es;
4625
4626 if (sbi->s_journal) {
4627 ext4_init_journal_params(sb, sbi->s_journal);
4628 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4629 }
4630
4631 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4632 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4633 err = -EROFS;
4634 goto restore_opts;
4635 }
4636
4637 if (*flags & MS_RDONLY) {
4638 err = dquot_suspend(sb, -1);
4639 if (err < 0)
4640 goto restore_opts;
4641
4642 /*
4643 * First of all, the unconditional stuff we have to do
4644 * to disable replay of the journal when we next remount
4645 */
4646 sb->s_flags |= MS_RDONLY;
4647
4648 /*
4649 * OK, test if we are remounting a valid rw partition
4650 * readonly, and if so set the rdonly flag and then
4651 * mark the partition as valid again.
4652 */
4653 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4654 (sbi->s_mount_state & EXT4_VALID_FS))
4655 es->s_state = cpu_to_le16(sbi->s_mount_state);
4656
4657 if (sbi->s_journal)
4658 ext4_mark_recovery_complete(sb, es);
4659 } else {
4660 /* Make sure we can mount this feature set readwrite */
4661 if (!ext4_feature_set_ok(sb, 0)) {
4662 err = -EROFS;
4663 goto restore_opts;
4664 }
4665 /*
4666 * Make sure the group descriptor checksums
4667 * are sane. If they aren't, refuse to remount r/w.
4668 */
4669 for (g = 0; g < sbi->s_groups_count; g++) {
4670 struct ext4_group_desc *gdp =
4671 ext4_get_group_desc(sb, g, NULL);
4672
4673 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4674 ext4_msg(sb, KERN_ERR,
4675 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4676 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4677 le16_to_cpu(gdp->bg_checksum));
4678 err = -EINVAL;
4679 goto restore_opts;
4680 }
4681 }
4682
4683 /*
4684 * If we have an unprocessed orphan list hanging
4685 * around from a previously readonly bdev mount,
4686 * require a full umount/remount for now.
4687 */
4688 if (es->s_last_orphan) {
4689 ext4_msg(sb, KERN_WARNING, "Couldn't "
4690 "remount RDWR because of unprocessed "
4691 "orphan inode list. Please "
4692 "umount/remount instead");
4693 err = -EINVAL;
4694 goto restore_opts;
4695 }
4696
4697 /*
4698 * Mounting a RDONLY partition read-write, so reread
4699 * and store the current valid flag. (It may have
4700 * been changed by e2fsck since we originally mounted
4701 * the partition.)
4702 */
4703 if (sbi->s_journal)
4704 ext4_clear_journal_err(sb, es);
4705 sbi->s_mount_state = le16_to_cpu(es->s_state);
4706 if (!ext4_setup_super(sb, es, 0))
4707 sb->s_flags &= ~MS_RDONLY;
4708 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4709 EXT4_FEATURE_INCOMPAT_MMP))
4710 if (ext4_multi_mount_protect(sb,
4711 le64_to_cpu(es->s_mmp_block))) {
4712 err = -EROFS;
4713 goto restore_opts;
4714 }
4715 enable_quota = 1;
4716 }
4717 }
4718
4719 /*
4720 * Reinitialize lazy itable initialization thread based on
4721 * current settings
4722 */
4723 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4724 ext4_unregister_li_request(sb);
4725 else {
4726 ext4_group_t first_not_zeroed;
4727 first_not_zeroed = ext4_has_uninit_itable(sb);
4728 ext4_register_li_request(sb, first_not_zeroed);
4729 }
4730
4731 ext4_setup_system_zone(sb);
4732 if (sbi->s_journal == NULL)
4733 ext4_commit_super(sb, 1);
4734
4735 #ifdef CONFIG_QUOTA
4736 /* Release old quota file names */
4737 for (i = 0; i < MAXQUOTAS; i++)
4738 if (old_opts.s_qf_names[i] &&
4739 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4740 kfree(old_opts.s_qf_names[i]);
4741 if (enable_quota) {
4742 if (sb_any_quota_suspended(sb))
4743 dquot_resume(sb, -1);
4744 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4745 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4746 err = ext4_enable_quotas(sb);
4747 if (err)
4748 goto restore_opts;
4749 }
4750 }
4751 #endif
4752
4753 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4754 kfree(orig_data);
4755 return 0;
4756
4757 restore_opts:
4758 sb->s_flags = old_sb_flags;
4759 sbi->s_mount_opt = old_opts.s_mount_opt;
4760 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4761 sbi->s_resuid = old_opts.s_resuid;
4762 sbi->s_resgid = old_opts.s_resgid;
4763 sbi->s_commit_interval = old_opts.s_commit_interval;
4764 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4765 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4766 #ifdef CONFIG_QUOTA
4767 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4768 for (i = 0; i < MAXQUOTAS; i++) {
4769 if (sbi->s_qf_names[i] &&
4770 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4771 kfree(sbi->s_qf_names[i]);
4772 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4773 }
4774 #endif
4775 kfree(orig_data);
4776 return err;
4777 }
4778
4779 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4780 {
4781 struct super_block *sb = dentry->d_sb;
4782 struct ext4_sb_info *sbi = EXT4_SB(sb);
4783 struct ext4_super_block *es = sbi->s_es;
4784 ext4_fsblk_t overhead = 0;
4785 u64 fsid;
4786 s64 bfree;
4787
4788 if (!test_opt(sb, MINIX_DF))
4789 overhead = sbi->s_overhead;
4790
4791 buf->f_type = EXT4_SUPER_MAGIC;
4792 buf->f_bsize = sb->s_blocksize;
4793 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
4794 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4795 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4796 /* prevent underflow in case that few free space is available */
4797 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4798 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4799 if (buf->f_bfree < ext4_r_blocks_count(es))
4800 buf->f_bavail = 0;
4801 buf->f_files = le32_to_cpu(es->s_inodes_count);
4802 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4803 buf->f_namelen = EXT4_NAME_LEN;
4804 fsid = le64_to_cpup((void *)es->s_uuid) ^
4805 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4806 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4807 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4808
4809 return 0;
4810 }
4811
4812 /* Helper function for writing quotas on sync - we need to start transaction
4813 * before quota file is locked for write. Otherwise the are possible deadlocks:
4814 * Process 1 Process 2
4815 * ext4_create() quota_sync()
4816 * jbd2_journal_start() write_dquot()
4817 * dquot_initialize() down(dqio_mutex)
4818 * down(dqio_mutex) jbd2_journal_start()
4819 *
4820 */
4821
4822 #ifdef CONFIG_QUOTA
4823
4824 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4825 {
4826 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4827 }
4828
4829 static int ext4_write_dquot(struct dquot *dquot)
4830 {
4831 int ret, err;
4832 handle_t *handle;
4833 struct inode *inode;
4834
4835 inode = dquot_to_inode(dquot);
4836 handle = ext4_journal_start(inode,
4837 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4838 if (IS_ERR(handle))
4839 return PTR_ERR(handle);
4840 ret = dquot_commit(dquot);
4841 err = ext4_journal_stop(handle);
4842 if (!ret)
4843 ret = err;
4844 return ret;
4845 }
4846
4847 static int ext4_acquire_dquot(struct dquot *dquot)
4848 {
4849 int ret, err;
4850 handle_t *handle;
4851
4852 handle = ext4_journal_start(dquot_to_inode(dquot),
4853 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4854 if (IS_ERR(handle))
4855 return PTR_ERR(handle);
4856 ret = dquot_acquire(dquot);
4857 err = ext4_journal_stop(handle);
4858 if (!ret)
4859 ret = err;
4860 return ret;
4861 }
4862
4863 static int ext4_release_dquot(struct dquot *dquot)
4864 {
4865 int ret, err;
4866 handle_t *handle;
4867
4868 handle = ext4_journal_start(dquot_to_inode(dquot),
4869 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4870 if (IS_ERR(handle)) {
4871 /* Release dquot anyway to avoid endless cycle in dqput() */
4872 dquot_release(dquot);
4873 return PTR_ERR(handle);
4874 }
4875 ret = dquot_release(dquot);
4876 err = ext4_journal_stop(handle);
4877 if (!ret)
4878 ret = err;
4879 return ret;
4880 }
4881
4882 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4883 {
4884 /* Are we journaling quotas? */
4885 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4886 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4887 dquot_mark_dquot_dirty(dquot);
4888 return ext4_write_dquot(dquot);
4889 } else {
4890 return dquot_mark_dquot_dirty(dquot);
4891 }
4892 }
4893
4894 static int ext4_write_info(struct super_block *sb, int type)
4895 {
4896 int ret, err;
4897 handle_t *handle;
4898
4899 /* Data block + inode block */
4900 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4901 if (IS_ERR(handle))
4902 return PTR_ERR(handle);
4903 ret = dquot_commit_info(sb, type);
4904 err = ext4_journal_stop(handle);
4905 if (!ret)
4906 ret = err;
4907 return ret;
4908 }
4909
4910 /*
4911 * Turn on quotas during mount time - we need to find
4912 * the quota file and such...
4913 */
4914 static int ext4_quota_on_mount(struct super_block *sb, int type)
4915 {
4916 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4917 EXT4_SB(sb)->s_jquota_fmt, type);
4918 }
4919
4920 /*
4921 * Standard function to be called on quota_on
4922 */
4923 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4924 struct path *path)
4925 {
4926 int err;
4927
4928 if (!test_opt(sb, QUOTA))
4929 return -EINVAL;
4930
4931 /* Quotafile not on the same filesystem? */
4932 if (path->dentry->d_sb != sb)
4933 return -EXDEV;
4934 /* Journaling quota? */
4935 if (EXT4_SB(sb)->s_qf_names[type]) {
4936 /* Quotafile not in fs root? */
4937 if (path->dentry->d_parent != sb->s_root)
4938 ext4_msg(sb, KERN_WARNING,
4939 "Quota file not on filesystem root. "
4940 "Journaled quota will not work");
4941 }
4942
4943 /*
4944 * When we journal data on quota file, we have to flush journal to see
4945 * all updates to the file when we bypass pagecache...
4946 */
4947 if (EXT4_SB(sb)->s_journal &&
4948 ext4_should_journal_data(path->dentry->d_inode)) {
4949 /*
4950 * We don't need to lock updates but journal_flush() could
4951 * otherwise be livelocked...
4952 */
4953 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4954 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4955 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4956 if (err)
4957 return err;
4958 }
4959
4960 return dquot_quota_on(sb, type, format_id, path);
4961 }
4962
4963 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4964 unsigned int flags)
4965 {
4966 int err;
4967 struct inode *qf_inode;
4968 unsigned long qf_inums[MAXQUOTAS] = {
4969 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4970 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4971 };
4972
4973 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
4974
4975 if (!qf_inums[type])
4976 return -EPERM;
4977
4978 qf_inode = ext4_iget(sb, qf_inums[type]);
4979 if (IS_ERR(qf_inode)) {
4980 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
4981 return PTR_ERR(qf_inode);
4982 }
4983
4984 err = dquot_enable(qf_inode, type, format_id, flags);
4985 iput(qf_inode);
4986
4987 return err;
4988 }
4989
4990 /* Enable usage tracking for all quota types. */
4991 static int ext4_enable_quotas(struct super_block *sb)
4992 {
4993 int type, err = 0;
4994 unsigned long qf_inums[MAXQUOTAS] = {
4995 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4996 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4997 };
4998
4999 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5000 for (type = 0; type < MAXQUOTAS; type++) {
5001 if (qf_inums[type]) {
5002 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5003 DQUOT_USAGE_ENABLED);
5004 if (err) {
5005 ext4_warning(sb,
5006 "Failed to enable quota (type=%d) "
5007 "tracking. Please run e2fsck to fix.",
5008 type);
5009 return err;
5010 }
5011 }
5012 }
5013 return 0;
5014 }
5015
5016 /*
5017 * quota_on function that is used when QUOTA feature is set.
5018 */
5019 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5020 int format_id)
5021 {
5022 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5023 return -EINVAL;
5024
5025 /*
5026 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5027 */
5028 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5029 }
5030
5031 static int ext4_quota_off(struct super_block *sb, int type)
5032 {
5033 struct inode *inode = sb_dqopt(sb)->files[type];
5034 handle_t *handle;
5035
5036 /* Force all delayed allocation blocks to be allocated.
5037 * Caller already holds s_umount sem */
5038 if (test_opt(sb, DELALLOC))
5039 sync_filesystem(sb);
5040
5041 if (!inode)
5042 goto out;
5043
5044 /* Update modification times of quota files when userspace can
5045 * start looking at them */
5046 handle = ext4_journal_start(inode, 1);
5047 if (IS_ERR(handle))
5048 goto out;
5049 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5050 ext4_mark_inode_dirty(handle, inode);
5051 ext4_journal_stop(handle);
5052
5053 out:
5054 return dquot_quota_off(sb, type);
5055 }
5056
5057 /*
5058 * quota_off function that is used when QUOTA feature is set.
5059 */
5060 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5061 {
5062 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5063 return -EINVAL;
5064
5065 /* Disable only the limits. */
5066 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5067 }
5068
5069 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5070 * acquiring the locks... As quota files are never truncated and quota code
5071 * itself serializes the operations (and no one else should touch the files)
5072 * we don't have to be afraid of races */
5073 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5074 size_t len, loff_t off)
5075 {
5076 struct inode *inode = sb_dqopt(sb)->files[type];
5077 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5078 int err = 0;
5079 int offset = off & (sb->s_blocksize - 1);
5080 int tocopy;
5081 size_t toread;
5082 struct buffer_head *bh;
5083 loff_t i_size = i_size_read(inode);
5084
5085 if (off > i_size)
5086 return 0;
5087 if (off+len > i_size)
5088 len = i_size-off;
5089 toread = len;
5090 while (toread > 0) {
5091 tocopy = sb->s_blocksize - offset < toread ?
5092 sb->s_blocksize - offset : toread;
5093 bh = ext4_bread(NULL, inode, blk, 0, &err);
5094 if (err)
5095 return err;
5096 if (!bh) /* A hole? */
5097 memset(data, 0, tocopy);
5098 else
5099 memcpy(data, bh->b_data+offset, tocopy);
5100 brelse(bh);
5101 offset = 0;
5102 toread -= tocopy;
5103 data += tocopy;
5104 blk++;
5105 }
5106 return len;
5107 }
5108
5109 /* Write to quotafile (we know the transaction is already started and has
5110 * enough credits) */
5111 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5112 const char *data, size_t len, loff_t off)
5113 {
5114 struct inode *inode = sb_dqopt(sb)->files[type];
5115 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5116 int err = 0;
5117 int offset = off & (sb->s_blocksize - 1);
5118 struct buffer_head *bh;
5119 handle_t *handle = journal_current_handle();
5120
5121 if (EXT4_SB(sb)->s_journal && !handle) {
5122 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5123 " cancelled because transaction is not started",
5124 (unsigned long long)off, (unsigned long long)len);
5125 return -EIO;
5126 }
5127 /*
5128 * Since we account only one data block in transaction credits,
5129 * then it is impossible to cross a block boundary.
5130 */
5131 if (sb->s_blocksize - offset < len) {
5132 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5133 " cancelled because not block aligned",
5134 (unsigned long long)off, (unsigned long long)len);
5135 return -EIO;
5136 }
5137
5138 bh = ext4_bread(handle, inode, blk, 1, &err);
5139 if (!bh)
5140 goto out;
5141 err = ext4_journal_get_write_access(handle, bh);
5142 if (err) {
5143 brelse(bh);
5144 goto out;
5145 }
5146 lock_buffer(bh);
5147 memcpy(bh->b_data+offset, data, len);
5148 flush_dcache_page(bh->b_page);
5149 unlock_buffer(bh);
5150 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5151 brelse(bh);
5152 out:
5153 if (err)
5154 return err;
5155 if (inode->i_size < off + len) {
5156 i_size_write(inode, off + len);
5157 EXT4_I(inode)->i_disksize = inode->i_size;
5158 ext4_mark_inode_dirty(handle, inode);
5159 }
5160 return len;
5161 }
5162
5163 #endif
5164
5165 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5166 const char *dev_name, void *data)
5167 {
5168 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5169 }
5170
5171 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5172 static inline void register_as_ext2(void)
5173 {
5174 int err = register_filesystem(&ext2_fs_type);
5175 if (err)
5176 printk(KERN_WARNING
5177 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5178 }
5179
5180 static inline void unregister_as_ext2(void)
5181 {
5182 unregister_filesystem(&ext2_fs_type);
5183 }
5184
5185 static inline int ext2_feature_set_ok(struct super_block *sb)
5186 {
5187 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5188 return 0;
5189 if (sb->s_flags & MS_RDONLY)
5190 return 1;
5191 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5192 return 0;
5193 return 1;
5194 }
5195 MODULE_ALIAS("ext2");
5196 #else
5197 static inline void register_as_ext2(void) { }
5198 static inline void unregister_as_ext2(void) { }
5199 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5200 #endif
5201
5202 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5203 static inline void register_as_ext3(void)
5204 {
5205 int err = register_filesystem(&ext3_fs_type);
5206 if (err)
5207 printk(KERN_WARNING
5208 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5209 }
5210
5211 static inline void unregister_as_ext3(void)
5212 {
5213 unregister_filesystem(&ext3_fs_type);
5214 }
5215
5216 static inline int ext3_feature_set_ok(struct super_block *sb)
5217 {
5218 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5219 return 0;
5220 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5221 return 0;
5222 if (sb->s_flags & MS_RDONLY)
5223 return 1;
5224 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5225 return 0;
5226 return 1;
5227 }
5228 MODULE_ALIAS("ext3");
5229 #else
5230 static inline void register_as_ext3(void) { }
5231 static inline void unregister_as_ext3(void) { }
5232 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5233 #endif
5234
5235 static struct file_system_type ext4_fs_type = {
5236 .owner = THIS_MODULE,
5237 .name = "ext4",
5238 .mount = ext4_mount,
5239 .kill_sb = kill_block_super,
5240 .fs_flags = FS_REQUIRES_DEV,
5241 };
5242
5243 static int __init ext4_init_feat_adverts(void)
5244 {
5245 struct ext4_features *ef;
5246 int ret = -ENOMEM;
5247
5248 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5249 if (!ef)
5250 goto out;
5251
5252 ef->f_kobj.kset = ext4_kset;
5253 init_completion(&ef->f_kobj_unregister);
5254 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5255 "features");
5256 if (ret) {
5257 kfree(ef);
5258 goto out;
5259 }
5260
5261 ext4_feat = ef;
5262 ret = 0;
5263 out:
5264 return ret;
5265 }
5266
5267 static void ext4_exit_feat_adverts(void)
5268 {
5269 kobject_put(&ext4_feat->f_kobj);
5270 wait_for_completion(&ext4_feat->f_kobj_unregister);
5271 kfree(ext4_feat);
5272 }
5273
5274 /* Shared across all ext4 file systems */
5275 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5276 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5277
5278 static int __init ext4_init_fs(void)
5279 {
5280 int i, err;
5281
5282 ext4_li_info = NULL;
5283 mutex_init(&ext4_li_mtx);
5284
5285 ext4_check_flag_values();
5286
5287 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5288 mutex_init(&ext4__aio_mutex[i]);
5289 init_waitqueue_head(&ext4__ioend_wq[i]);
5290 }
5291
5292 err = ext4_init_pageio();
5293 if (err)
5294 return err;
5295 err = ext4_init_system_zone();
5296 if (err)
5297 goto out6;
5298 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5299 if (!ext4_kset) {
5300 err = -ENOMEM;
5301 goto out5;
5302 }
5303 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5304
5305 err = ext4_init_feat_adverts();
5306 if (err)
5307 goto out4;
5308
5309 err = ext4_init_mballoc();
5310 if (err)
5311 goto out3;
5312
5313 err = ext4_init_xattr();
5314 if (err)
5315 goto out2;
5316 err = init_inodecache();
5317 if (err)
5318 goto out1;
5319 register_as_ext3();
5320 register_as_ext2();
5321 err = register_filesystem(&ext4_fs_type);
5322 if (err)
5323 goto out;
5324
5325 return 0;
5326 out:
5327 unregister_as_ext2();
5328 unregister_as_ext3();
5329 destroy_inodecache();
5330 out1:
5331 ext4_exit_xattr();
5332 out2:
5333 ext4_exit_mballoc();
5334 out3:
5335 ext4_exit_feat_adverts();
5336 out4:
5337 if (ext4_proc_root)
5338 remove_proc_entry("fs/ext4", NULL);
5339 kset_unregister(ext4_kset);
5340 out5:
5341 ext4_exit_system_zone();
5342 out6:
5343 ext4_exit_pageio();
5344 return err;
5345 }
5346
5347 static void __exit ext4_exit_fs(void)
5348 {
5349 ext4_destroy_lazyinit_thread();
5350 unregister_as_ext2();
5351 unregister_as_ext3();
5352 unregister_filesystem(&ext4_fs_type);
5353 destroy_inodecache();
5354 ext4_exit_xattr();
5355 ext4_exit_mballoc();
5356 ext4_exit_feat_adverts();
5357 remove_proc_entry("fs/ext4", NULL);
5358 kset_unregister(ext4_kset);
5359 ext4_exit_system_zone();
5360 ext4_exit_pageio();
5361 }
5362
5363 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5364 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5365 MODULE_LICENSE("GPL");
5366 module_init(ext4_init_fs)
5367 module_exit(ext4_exit_fs)