ext4: fix mballoc breakage with 64k block size
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned int border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 ext4_grpblk_t i = 0;
727 ext4_grpblk_t first;
728 ext4_grpblk_t len;
729 unsigned free = 0;
730 unsigned fragments = 0;
731 unsigned long long period = get_cycles();
732
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i = mb_find_next_zero_bit(bitmap, max, 0);
736 grp->bb_first_free = i;
737 while (i < max) {
738 fragments++;
739 first = i;
740 i = mb_find_next_bit(bitmap, max, i);
741 len = i - first;
742 free += len;
743 if (len > 1)
744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 else
746 grp->bb_counters[0]++;
747 if (i < max)
748 i = mb_find_next_zero_bit(bitmap, max, i);
749 }
750 grp->bb_fragments = fragments;
751
752 if (free != grp->bb_free) {
753 ext4_grp_locked_error(sb, group, 0, 0,
754 "%u clusters in bitmap, %u in gd",
755 free, grp->bb_free);
756 /*
757 * If we intent to continue, we consider group descritor
758 * corrupt and update bb_free using bitmap value
759 */
760 grp->bb_free = free;
761 }
762 mb_set_largest_free_order(sb, grp);
763
764 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
765
766 period = get_cycles() - period;
767 spin_lock(&EXT4_SB(sb)->s_bal_lock);
768 EXT4_SB(sb)->s_mb_buddies_generated++;
769 EXT4_SB(sb)->s_mb_generation_time += period;
770 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
771 }
772
773 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
774 {
775 int count;
776 int order = 1;
777 void *buddy;
778
779 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
780 ext4_set_bits(buddy, 0, count);
781 }
782 e4b->bd_info->bb_fragments = 0;
783 memset(e4b->bd_info->bb_counters, 0,
784 sizeof(*e4b->bd_info->bb_counters) *
785 (e4b->bd_sb->s_blocksize_bits + 2));
786
787 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
788 e4b->bd_bitmap, e4b->bd_group);
789 }
790
791 /* The buddy information is attached the buddy cache inode
792 * for convenience. The information regarding each group
793 * is loaded via ext4_mb_load_buddy. The information involve
794 * block bitmap and buddy information. The information are
795 * stored in the inode as
796 *
797 * { page }
798 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
799 *
800 *
801 * one block each for bitmap and buddy information.
802 * So for each group we take up 2 blocks. A page can
803 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
804 * So it can have information regarding groups_per_page which
805 * is blocks_per_page/2
806 *
807 * Locking note: This routine takes the block group lock of all groups
808 * for this page; do not hold this lock when calling this routine!
809 */
810
811 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
812 {
813 ext4_group_t ngroups;
814 int blocksize;
815 int blocks_per_page;
816 int groups_per_page;
817 int err = 0;
818 int i;
819 ext4_group_t first_group, group;
820 int first_block;
821 struct super_block *sb;
822 struct buffer_head *bhs;
823 struct buffer_head **bh = NULL;
824 struct inode *inode;
825 char *data;
826 char *bitmap;
827 struct ext4_group_info *grinfo;
828
829 mb_debug(1, "init page %lu\n", page->index);
830
831 inode = page->mapping->host;
832 sb = inode->i_sb;
833 ngroups = ext4_get_groups_count(sb);
834 blocksize = 1 << inode->i_blkbits;
835 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
836
837 groups_per_page = blocks_per_page >> 1;
838 if (groups_per_page == 0)
839 groups_per_page = 1;
840
841 /* allocate buffer_heads to read bitmaps */
842 if (groups_per_page > 1) {
843 i = sizeof(struct buffer_head *) * groups_per_page;
844 bh = kzalloc(i, gfp);
845 if (bh == NULL) {
846 err = -ENOMEM;
847 goto out;
848 }
849 } else
850 bh = &bhs;
851
852 first_group = page->index * blocks_per_page / 2;
853
854 /* read all groups the page covers into the cache */
855 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
856 if (group >= ngroups)
857 break;
858
859 grinfo = ext4_get_group_info(sb, group);
860 /*
861 * If page is uptodate then we came here after online resize
862 * which added some new uninitialized group info structs, so
863 * we must skip all initialized uptodate buddies on the page,
864 * which may be currently in use by an allocating task.
865 */
866 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
867 bh[i] = NULL;
868 continue;
869 }
870 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
871 err = -ENOMEM;
872 goto out;
873 }
874 mb_debug(1, "read bitmap for group %u\n", group);
875 }
876
877 /* wait for I/O completion */
878 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
879 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
880 err = -EIO;
881 goto out;
882 }
883 }
884
885 first_block = page->index * blocks_per_page;
886 for (i = 0; i < blocks_per_page; i++) {
887 group = (first_block + i) >> 1;
888 if (group >= ngroups)
889 break;
890
891 if (!bh[group - first_group])
892 /* skip initialized uptodate buddy */
893 continue;
894
895 /*
896 * data carry information regarding this
897 * particular group in the format specified
898 * above
899 *
900 */
901 data = page_address(page) + (i * blocksize);
902 bitmap = bh[group - first_group]->b_data;
903
904 /*
905 * We place the buddy block and bitmap block
906 * close together
907 */
908 if ((first_block + i) & 1) {
909 /* this is block of buddy */
910 BUG_ON(incore == NULL);
911 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
912 group, page->index, i * blocksize);
913 trace_ext4_mb_buddy_bitmap_load(sb, group);
914 grinfo = ext4_get_group_info(sb, group);
915 grinfo->bb_fragments = 0;
916 memset(grinfo->bb_counters, 0,
917 sizeof(*grinfo->bb_counters) *
918 (sb->s_blocksize_bits+2));
919 /*
920 * incore got set to the group block bitmap below
921 */
922 ext4_lock_group(sb, group);
923 /* init the buddy */
924 memset(data, 0xff, blocksize);
925 ext4_mb_generate_buddy(sb, data, incore, group);
926 ext4_unlock_group(sb, group);
927 incore = NULL;
928 } else {
929 /* this is block of bitmap */
930 BUG_ON(incore != NULL);
931 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
932 group, page->index, i * blocksize);
933 trace_ext4_mb_bitmap_load(sb, group);
934
935 /* see comments in ext4_mb_put_pa() */
936 ext4_lock_group(sb, group);
937 memcpy(data, bitmap, blocksize);
938
939 /* mark all preallocated blks used in in-core bitmap */
940 ext4_mb_generate_from_pa(sb, data, group);
941 ext4_mb_generate_from_freelist(sb, data, group);
942 ext4_unlock_group(sb, group);
943
944 /* set incore so that the buddy information can be
945 * generated using this
946 */
947 incore = data;
948 }
949 }
950 SetPageUptodate(page);
951
952 out:
953 if (bh) {
954 for (i = 0; i < groups_per_page; i++)
955 brelse(bh[i]);
956 if (bh != &bhs)
957 kfree(bh);
958 }
959 return err;
960 }
961
962 /*
963 * Lock the buddy and bitmap pages. This make sure other parallel init_group
964 * on the same buddy page doesn't happen whild holding the buddy page lock.
965 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
966 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
967 */
968 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
969 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
970 {
971 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
972 int block, pnum, poff;
973 int blocks_per_page;
974 struct page *page;
975
976 e4b->bd_buddy_page = NULL;
977 e4b->bd_bitmap_page = NULL;
978
979 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
980 /*
981 * the buddy cache inode stores the block bitmap
982 * and buddy information in consecutive blocks.
983 * So for each group we need two blocks.
984 */
985 block = group * 2;
986 pnum = block / blocks_per_page;
987 poff = block % blocks_per_page;
988 page = find_or_create_page(inode->i_mapping, pnum, gfp);
989 if (!page)
990 return -EIO;
991 BUG_ON(page->mapping != inode->i_mapping);
992 e4b->bd_bitmap_page = page;
993 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
994
995 if (blocks_per_page >= 2) {
996 /* buddy and bitmap are on the same page */
997 return 0;
998 }
999
1000 block++;
1001 pnum = block / blocks_per_page;
1002 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1003 if (!page)
1004 return -EIO;
1005 BUG_ON(page->mapping != inode->i_mapping);
1006 e4b->bd_buddy_page = page;
1007 return 0;
1008 }
1009
1010 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1011 {
1012 if (e4b->bd_bitmap_page) {
1013 unlock_page(e4b->bd_bitmap_page);
1014 page_cache_release(e4b->bd_bitmap_page);
1015 }
1016 if (e4b->bd_buddy_page) {
1017 unlock_page(e4b->bd_buddy_page);
1018 page_cache_release(e4b->bd_buddy_page);
1019 }
1020 }
1021
1022 /*
1023 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1024 * block group lock of all groups for this page; do not hold the BG lock when
1025 * calling this routine!
1026 */
1027 static noinline_for_stack
1028 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1029 {
1030
1031 struct ext4_group_info *this_grp;
1032 struct ext4_buddy e4b;
1033 struct page *page;
1034 int ret = 0;
1035
1036 might_sleep();
1037 mb_debug(1, "init group %u\n", group);
1038 this_grp = ext4_get_group_info(sb, group);
1039 /*
1040 * This ensures that we don't reinit the buddy cache
1041 * page which map to the group from which we are already
1042 * allocating. If we are looking at the buddy cache we would
1043 * have taken a reference using ext4_mb_load_buddy and that
1044 * would have pinned buddy page to page cache.
1045 */
1046 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1047 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1048 /*
1049 * somebody initialized the group
1050 * return without doing anything
1051 */
1052 goto err;
1053 }
1054
1055 page = e4b.bd_bitmap_page;
1056 ret = ext4_mb_init_cache(page, NULL, gfp);
1057 if (ret)
1058 goto err;
1059 if (!PageUptodate(page)) {
1060 ret = -EIO;
1061 goto err;
1062 }
1063 mark_page_accessed(page);
1064
1065 if (e4b.bd_buddy_page == NULL) {
1066 /*
1067 * If both the bitmap and buddy are in
1068 * the same page we don't need to force
1069 * init the buddy
1070 */
1071 ret = 0;
1072 goto err;
1073 }
1074 /* init buddy cache */
1075 page = e4b.bd_buddy_page;
1076 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1077 if (ret)
1078 goto err;
1079 if (!PageUptodate(page)) {
1080 ret = -EIO;
1081 goto err;
1082 }
1083 mark_page_accessed(page);
1084 err:
1085 ext4_mb_put_buddy_page_lock(&e4b);
1086 return ret;
1087 }
1088
1089 /*
1090 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1091 * block group lock of all groups for this page; do not hold the BG lock when
1092 * calling this routine!
1093 */
1094 static noinline_for_stack int
1095 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1096 struct ext4_buddy *e4b, gfp_t gfp)
1097 {
1098 int blocks_per_page;
1099 int block;
1100 int pnum;
1101 int poff;
1102 struct page *page;
1103 int ret;
1104 struct ext4_group_info *grp;
1105 struct ext4_sb_info *sbi = EXT4_SB(sb);
1106 struct inode *inode = sbi->s_buddy_cache;
1107
1108 might_sleep();
1109 mb_debug(1, "load group %u\n", group);
1110
1111 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1112 grp = ext4_get_group_info(sb, group);
1113
1114 e4b->bd_blkbits = sb->s_blocksize_bits;
1115 e4b->bd_info = grp;
1116 e4b->bd_sb = sb;
1117 e4b->bd_group = group;
1118 e4b->bd_buddy_page = NULL;
1119 e4b->bd_bitmap_page = NULL;
1120
1121 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1122 /*
1123 * we need full data about the group
1124 * to make a good selection
1125 */
1126 ret = ext4_mb_init_group(sb, group, gfp);
1127 if (ret)
1128 return ret;
1129 }
1130
1131 /*
1132 * the buddy cache inode stores the block bitmap
1133 * and buddy information in consecutive blocks.
1134 * So for each group we need two blocks.
1135 */
1136 block = group * 2;
1137 pnum = block / blocks_per_page;
1138 poff = block % blocks_per_page;
1139
1140 /* we could use find_or_create_page(), but it locks page
1141 * what we'd like to avoid in fast path ... */
1142 page = find_get_page(inode->i_mapping, pnum);
1143 if (page == NULL || !PageUptodate(page)) {
1144 if (page)
1145 /*
1146 * drop the page reference and try
1147 * to get the page with lock. If we
1148 * are not uptodate that implies
1149 * somebody just created the page but
1150 * is yet to initialize the same. So
1151 * wait for it to initialize.
1152 */
1153 page_cache_release(page);
1154 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1155 if (page) {
1156 BUG_ON(page->mapping != inode->i_mapping);
1157 if (!PageUptodate(page)) {
1158 ret = ext4_mb_init_cache(page, NULL, gfp);
1159 if (ret) {
1160 unlock_page(page);
1161 goto err;
1162 }
1163 mb_cmp_bitmaps(e4b, page_address(page) +
1164 (poff * sb->s_blocksize));
1165 }
1166 unlock_page(page);
1167 }
1168 }
1169 if (page == NULL || !PageUptodate(page)) {
1170 ret = -EIO;
1171 goto err;
1172 }
1173 e4b->bd_bitmap_page = page;
1174 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1175 mark_page_accessed(page);
1176
1177 block++;
1178 pnum = block / blocks_per_page;
1179 poff = block % blocks_per_page;
1180
1181 page = find_get_page(inode->i_mapping, pnum);
1182 if (page == NULL || !PageUptodate(page)) {
1183 if (page)
1184 page_cache_release(page);
1185 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1186 if (page) {
1187 BUG_ON(page->mapping != inode->i_mapping);
1188 if (!PageUptodate(page)) {
1189 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1190 gfp);
1191 if (ret) {
1192 unlock_page(page);
1193 goto err;
1194 }
1195 }
1196 unlock_page(page);
1197 }
1198 }
1199 if (page == NULL || !PageUptodate(page)) {
1200 ret = -EIO;
1201 goto err;
1202 }
1203 e4b->bd_buddy_page = page;
1204 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1205 mark_page_accessed(page);
1206
1207 BUG_ON(e4b->bd_bitmap_page == NULL);
1208 BUG_ON(e4b->bd_buddy_page == NULL);
1209
1210 return 0;
1211
1212 err:
1213 if (page)
1214 page_cache_release(page);
1215 if (e4b->bd_bitmap_page)
1216 page_cache_release(e4b->bd_bitmap_page);
1217 if (e4b->bd_buddy_page)
1218 page_cache_release(e4b->bd_buddy_page);
1219 e4b->bd_buddy = NULL;
1220 e4b->bd_bitmap = NULL;
1221 return ret;
1222 }
1223
1224 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1225 struct ext4_buddy *e4b)
1226 {
1227 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1228 }
1229
1230 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1231 {
1232 if (e4b->bd_bitmap_page)
1233 page_cache_release(e4b->bd_bitmap_page);
1234 if (e4b->bd_buddy_page)
1235 page_cache_release(e4b->bd_buddy_page);
1236 }
1237
1238
1239 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1240 {
1241 int order = 1;
1242 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1243 void *bb;
1244
1245 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1246 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1247
1248 bb = e4b->bd_buddy;
1249 while (order <= e4b->bd_blkbits + 1) {
1250 block = block >> 1;
1251 if (!mb_test_bit(block, bb)) {
1252 /* this block is part of buddy of order 'order' */
1253 return order;
1254 }
1255 bb += bb_incr;
1256 bb_incr >>= 1;
1257 order++;
1258 }
1259 return 0;
1260 }
1261
1262 static void mb_clear_bits(void *bm, int cur, int len)
1263 {
1264 __u32 *addr;
1265
1266 len = cur + len;
1267 while (cur < len) {
1268 if ((cur & 31) == 0 && (len - cur) >= 32) {
1269 /* fast path: clear whole word at once */
1270 addr = bm + (cur >> 3);
1271 *addr = 0;
1272 cur += 32;
1273 continue;
1274 }
1275 mb_clear_bit(cur, bm);
1276 cur++;
1277 }
1278 }
1279
1280 /* clear bits in given range
1281 * will return first found zero bit if any, -1 otherwise
1282 */
1283 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1284 {
1285 __u32 *addr;
1286 int zero_bit = -1;
1287
1288 len = cur + len;
1289 while (cur < len) {
1290 if ((cur & 31) == 0 && (len - cur) >= 32) {
1291 /* fast path: clear whole word at once */
1292 addr = bm + (cur >> 3);
1293 if (*addr != (__u32)(-1) && zero_bit == -1)
1294 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1295 *addr = 0;
1296 cur += 32;
1297 continue;
1298 }
1299 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1300 zero_bit = cur;
1301 cur++;
1302 }
1303
1304 return zero_bit;
1305 }
1306
1307 void ext4_set_bits(void *bm, int cur, int len)
1308 {
1309 __u32 *addr;
1310
1311 len = cur + len;
1312 while (cur < len) {
1313 if ((cur & 31) == 0 && (len - cur) >= 32) {
1314 /* fast path: set whole word at once */
1315 addr = bm + (cur >> 3);
1316 *addr = 0xffffffff;
1317 cur += 32;
1318 continue;
1319 }
1320 mb_set_bit(cur, bm);
1321 cur++;
1322 }
1323 }
1324
1325 /*
1326 * _________________________________________________________________ */
1327
1328 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1329 {
1330 if (mb_test_bit(*bit + side, bitmap)) {
1331 mb_clear_bit(*bit, bitmap);
1332 (*bit) -= side;
1333 return 1;
1334 }
1335 else {
1336 (*bit) += side;
1337 mb_set_bit(*bit, bitmap);
1338 return -1;
1339 }
1340 }
1341
1342 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1343 {
1344 int max;
1345 int order = 1;
1346 void *buddy = mb_find_buddy(e4b, order, &max);
1347
1348 while (buddy) {
1349 void *buddy2;
1350
1351 /* Bits in range [first; last] are known to be set since
1352 * corresponding blocks were allocated. Bits in range
1353 * (first; last) will stay set because they form buddies on
1354 * upper layer. We just deal with borders if they don't
1355 * align with upper layer and then go up.
1356 * Releasing entire group is all about clearing
1357 * single bit of highest order buddy.
1358 */
1359
1360 /* Example:
1361 * ---------------------------------
1362 * | 1 | 1 | 1 | 1 |
1363 * ---------------------------------
1364 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1365 * ---------------------------------
1366 * 0 1 2 3 4 5 6 7
1367 * \_____________________/
1368 *
1369 * Neither [1] nor [6] is aligned to above layer.
1370 * Left neighbour [0] is free, so mark it busy,
1371 * decrease bb_counters and extend range to
1372 * [0; 6]
1373 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1374 * mark [6] free, increase bb_counters and shrink range to
1375 * [0; 5].
1376 * Then shift range to [0; 2], go up and do the same.
1377 */
1378
1379
1380 if (first & 1)
1381 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1382 if (!(last & 1))
1383 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1384 if (first > last)
1385 break;
1386 order++;
1387
1388 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1389 mb_clear_bits(buddy, first, last - first + 1);
1390 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1391 break;
1392 }
1393 first >>= 1;
1394 last >>= 1;
1395 buddy = buddy2;
1396 }
1397 }
1398
1399 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1400 int first, int count)
1401 {
1402 int left_is_free = 0;
1403 int right_is_free = 0;
1404 int block;
1405 int last = first + count - 1;
1406 struct super_block *sb = e4b->bd_sb;
1407
1408 if (WARN_ON(count == 0))
1409 return;
1410 BUG_ON(last >= (sb->s_blocksize << 3));
1411 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1412 mb_check_buddy(e4b);
1413 mb_free_blocks_double(inode, e4b, first, count);
1414
1415 e4b->bd_info->bb_free += count;
1416 if (first < e4b->bd_info->bb_first_free)
1417 e4b->bd_info->bb_first_free = first;
1418
1419 /* access memory sequentially: check left neighbour,
1420 * clear range and then check right neighbour
1421 */
1422 if (first != 0)
1423 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1424 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1425 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1426 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1427
1428 if (unlikely(block != -1)) {
1429 ext4_fsblk_t blocknr;
1430
1431 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1432 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1433 ext4_grp_locked_error(sb, e4b->bd_group,
1434 inode ? inode->i_ino : 0,
1435 blocknr,
1436 "freeing already freed block "
1437 "(bit %u)", block);
1438 mb_regenerate_buddy(e4b);
1439 goto done;
1440 }
1441
1442 /* let's maintain fragments counter */
1443 if (left_is_free && right_is_free)
1444 e4b->bd_info->bb_fragments--;
1445 else if (!left_is_free && !right_is_free)
1446 e4b->bd_info->bb_fragments++;
1447
1448 /* buddy[0] == bd_bitmap is a special case, so handle
1449 * it right away and let mb_buddy_mark_free stay free of
1450 * zero order checks.
1451 * Check if neighbours are to be coaleasced,
1452 * adjust bitmap bb_counters and borders appropriately.
1453 */
1454 if (first & 1) {
1455 first += !left_is_free;
1456 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1457 }
1458 if (!(last & 1)) {
1459 last -= !right_is_free;
1460 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1461 }
1462
1463 if (first <= last)
1464 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1465
1466 done:
1467 mb_set_largest_free_order(sb, e4b->bd_info);
1468 mb_check_buddy(e4b);
1469 }
1470
1471 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1472 int needed, struct ext4_free_extent *ex)
1473 {
1474 int next = block;
1475 int max, order;
1476 void *buddy;
1477
1478 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1479 BUG_ON(ex == NULL);
1480
1481 buddy = mb_find_buddy(e4b, 0, &max);
1482 BUG_ON(buddy == NULL);
1483 BUG_ON(block >= max);
1484 if (mb_test_bit(block, buddy)) {
1485 ex->fe_len = 0;
1486 ex->fe_start = 0;
1487 ex->fe_group = 0;
1488 return 0;
1489 }
1490
1491 /* find actual order */
1492 order = mb_find_order_for_block(e4b, block);
1493 block = block >> order;
1494
1495 ex->fe_len = 1 << order;
1496 ex->fe_start = block << order;
1497 ex->fe_group = e4b->bd_group;
1498
1499 /* calc difference from given start */
1500 next = next - ex->fe_start;
1501 ex->fe_len -= next;
1502 ex->fe_start += next;
1503
1504 while (needed > ex->fe_len &&
1505 mb_find_buddy(e4b, order, &max)) {
1506
1507 if (block + 1 >= max)
1508 break;
1509
1510 next = (block + 1) * (1 << order);
1511 if (mb_test_bit(next, e4b->bd_bitmap))
1512 break;
1513
1514 order = mb_find_order_for_block(e4b, next);
1515
1516 block = next >> order;
1517 ex->fe_len += 1 << order;
1518 }
1519
1520 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1521 return ex->fe_len;
1522 }
1523
1524 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1525 {
1526 int ord;
1527 int mlen = 0;
1528 int max = 0;
1529 int cur;
1530 int start = ex->fe_start;
1531 int len = ex->fe_len;
1532 unsigned ret = 0;
1533 int len0 = len;
1534 void *buddy;
1535
1536 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1537 BUG_ON(e4b->bd_group != ex->fe_group);
1538 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1539 mb_check_buddy(e4b);
1540 mb_mark_used_double(e4b, start, len);
1541
1542 e4b->bd_info->bb_free -= len;
1543 if (e4b->bd_info->bb_first_free == start)
1544 e4b->bd_info->bb_first_free += len;
1545
1546 /* let's maintain fragments counter */
1547 if (start != 0)
1548 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1549 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1550 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1551 if (mlen && max)
1552 e4b->bd_info->bb_fragments++;
1553 else if (!mlen && !max)
1554 e4b->bd_info->bb_fragments--;
1555
1556 /* let's maintain buddy itself */
1557 while (len) {
1558 ord = mb_find_order_for_block(e4b, start);
1559
1560 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1561 /* the whole chunk may be allocated at once! */
1562 mlen = 1 << ord;
1563 buddy = mb_find_buddy(e4b, ord, &max);
1564 BUG_ON((start >> ord) >= max);
1565 mb_set_bit(start >> ord, buddy);
1566 e4b->bd_info->bb_counters[ord]--;
1567 start += mlen;
1568 len -= mlen;
1569 BUG_ON(len < 0);
1570 continue;
1571 }
1572
1573 /* store for history */
1574 if (ret == 0)
1575 ret = len | (ord << 16);
1576
1577 /* we have to split large buddy */
1578 BUG_ON(ord <= 0);
1579 buddy = mb_find_buddy(e4b, ord, &max);
1580 mb_set_bit(start >> ord, buddy);
1581 e4b->bd_info->bb_counters[ord]--;
1582
1583 ord--;
1584 cur = (start >> ord) & ~1U;
1585 buddy = mb_find_buddy(e4b, ord, &max);
1586 mb_clear_bit(cur, buddy);
1587 mb_clear_bit(cur + 1, buddy);
1588 e4b->bd_info->bb_counters[ord]++;
1589 e4b->bd_info->bb_counters[ord]++;
1590 }
1591 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1592
1593 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1594 mb_check_buddy(e4b);
1595
1596 return ret;
1597 }
1598
1599 /*
1600 * Must be called under group lock!
1601 */
1602 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1603 struct ext4_buddy *e4b)
1604 {
1605 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1606 int ret;
1607
1608 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1609 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1610
1611 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1612 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1613 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1614
1615 /* preallocation can change ac_b_ex, thus we store actually
1616 * allocated blocks for history */
1617 ac->ac_f_ex = ac->ac_b_ex;
1618
1619 ac->ac_status = AC_STATUS_FOUND;
1620 ac->ac_tail = ret & 0xffff;
1621 ac->ac_buddy = ret >> 16;
1622
1623 /*
1624 * take the page reference. We want the page to be pinned
1625 * so that we don't get a ext4_mb_init_cache_call for this
1626 * group until we update the bitmap. That would mean we
1627 * double allocate blocks. The reference is dropped
1628 * in ext4_mb_release_context
1629 */
1630 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1631 get_page(ac->ac_bitmap_page);
1632 ac->ac_buddy_page = e4b->bd_buddy_page;
1633 get_page(ac->ac_buddy_page);
1634 /* store last allocated for subsequent stream allocation */
1635 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1636 spin_lock(&sbi->s_md_lock);
1637 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1638 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1639 spin_unlock(&sbi->s_md_lock);
1640 }
1641 }
1642
1643 /*
1644 * regular allocator, for general purposes allocation
1645 */
1646
1647 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1648 struct ext4_buddy *e4b,
1649 int finish_group)
1650 {
1651 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1652 struct ext4_free_extent *bex = &ac->ac_b_ex;
1653 struct ext4_free_extent *gex = &ac->ac_g_ex;
1654 struct ext4_free_extent ex;
1655 int max;
1656
1657 if (ac->ac_status == AC_STATUS_FOUND)
1658 return;
1659 /*
1660 * We don't want to scan for a whole year
1661 */
1662 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1663 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1664 ac->ac_status = AC_STATUS_BREAK;
1665 return;
1666 }
1667
1668 /*
1669 * Haven't found good chunk so far, let's continue
1670 */
1671 if (bex->fe_len < gex->fe_len)
1672 return;
1673
1674 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1675 && bex->fe_group == e4b->bd_group) {
1676 /* recheck chunk's availability - we don't know
1677 * when it was found (within this lock-unlock
1678 * period or not) */
1679 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1680 if (max >= gex->fe_len) {
1681 ext4_mb_use_best_found(ac, e4b);
1682 return;
1683 }
1684 }
1685 }
1686
1687 /*
1688 * The routine checks whether found extent is good enough. If it is,
1689 * then the extent gets marked used and flag is set to the context
1690 * to stop scanning. Otherwise, the extent is compared with the
1691 * previous found extent and if new one is better, then it's stored
1692 * in the context. Later, the best found extent will be used, if
1693 * mballoc can't find good enough extent.
1694 *
1695 * FIXME: real allocation policy is to be designed yet!
1696 */
1697 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1698 struct ext4_free_extent *ex,
1699 struct ext4_buddy *e4b)
1700 {
1701 struct ext4_free_extent *bex = &ac->ac_b_ex;
1702 struct ext4_free_extent *gex = &ac->ac_g_ex;
1703
1704 BUG_ON(ex->fe_len <= 0);
1705 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1706 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1707 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1708
1709 ac->ac_found++;
1710
1711 /*
1712 * The special case - take what you catch first
1713 */
1714 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1715 *bex = *ex;
1716 ext4_mb_use_best_found(ac, e4b);
1717 return;
1718 }
1719
1720 /*
1721 * Let's check whether the chuck is good enough
1722 */
1723 if (ex->fe_len == gex->fe_len) {
1724 *bex = *ex;
1725 ext4_mb_use_best_found(ac, e4b);
1726 return;
1727 }
1728
1729 /*
1730 * If this is first found extent, just store it in the context
1731 */
1732 if (bex->fe_len == 0) {
1733 *bex = *ex;
1734 return;
1735 }
1736
1737 /*
1738 * If new found extent is better, store it in the context
1739 */
1740 if (bex->fe_len < gex->fe_len) {
1741 /* if the request isn't satisfied, any found extent
1742 * larger than previous best one is better */
1743 if (ex->fe_len > bex->fe_len)
1744 *bex = *ex;
1745 } else if (ex->fe_len > gex->fe_len) {
1746 /* if the request is satisfied, then we try to find
1747 * an extent that still satisfy the request, but is
1748 * smaller than previous one */
1749 if (ex->fe_len < bex->fe_len)
1750 *bex = *ex;
1751 }
1752
1753 ext4_mb_check_limits(ac, e4b, 0);
1754 }
1755
1756 static noinline_for_stack
1757 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1758 struct ext4_buddy *e4b)
1759 {
1760 struct ext4_free_extent ex = ac->ac_b_ex;
1761 ext4_group_t group = ex.fe_group;
1762 int max;
1763 int err;
1764
1765 BUG_ON(ex.fe_len <= 0);
1766 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1767 if (err)
1768 return err;
1769
1770 ext4_lock_group(ac->ac_sb, group);
1771 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1772
1773 if (max > 0) {
1774 ac->ac_b_ex = ex;
1775 ext4_mb_use_best_found(ac, e4b);
1776 }
1777
1778 ext4_unlock_group(ac->ac_sb, group);
1779 ext4_mb_unload_buddy(e4b);
1780
1781 return 0;
1782 }
1783
1784 static noinline_for_stack
1785 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1786 struct ext4_buddy *e4b)
1787 {
1788 ext4_group_t group = ac->ac_g_ex.fe_group;
1789 int max;
1790 int err;
1791 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1792 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1793 struct ext4_free_extent ex;
1794
1795 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1796 return 0;
1797 if (grp->bb_free == 0)
1798 return 0;
1799
1800 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1801 if (err)
1802 return err;
1803
1804 ext4_lock_group(ac->ac_sb, group);
1805 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1806 ac->ac_g_ex.fe_len, &ex);
1807
1808 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1809 ext4_fsblk_t start;
1810
1811 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1812 ex.fe_start;
1813 /* use do_div to get remainder (would be 64-bit modulo) */
1814 if (do_div(start, sbi->s_stripe) == 0) {
1815 ac->ac_found++;
1816 ac->ac_b_ex = ex;
1817 ext4_mb_use_best_found(ac, e4b);
1818 }
1819 } else if (max >= ac->ac_g_ex.fe_len) {
1820 BUG_ON(ex.fe_len <= 0);
1821 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1822 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1823 ac->ac_found++;
1824 ac->ac_b_ex = ex;
1825 ext4_mb_use_best_found(ac, e4b);
1826 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1827 /* Sometimes, caller may want to merge even small
1828 * number of blocks to an existing extent */
1829 BUG_ON(ex.fe_len <= 0);
1830 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1831 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1832 ac->ac_found++;
1833 ac->ac_b_ex = ex;
1834 ext4_mb_use_best_found(ac, e4b);
1835 }
1836 ext4_unlock_group(ac->ac_sb, group);
1837 ext4_mb_unload_buddy(e4b);
1838
1839 return 0;
1840 }
1841
1842 /*
1843 * The routine scans buddy structures (not bitmap!) from given order
1844 * to max order and tries to find big enough chunk to satisfy the req
1845 */
1846 static noinline_for_stack
1847 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1848 struct ext4_buddy *e4b)
1849 {
1850 struct super_block *sb = ac->ac_sb;
1851 struct ext4_group_info *grp = e4b->bd_info;
1852 void *buddy;
1853 int i;
1854 int k;
1855 int max;
1856
1857 BUG_ON(ac->ac_2order <= 0);
1858 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1859 if (grp->bb_counters[i] == 0)
1860 continue;
1861
1862 buddy = mb_find_buddy(e4b, i, &max);
1863 BUG_ON(buddy == NULL);
1864
1865 k = mb_find_next_zero_bit(buddy, max, 0);
1866 BUG_ON(k >= max);
1867
1868 ac->ac_found++;
1869
1870 ac->ac_b_ex.fe_len = 1 << i;
1871 ac->ac_b_ex.fe_start = k << i;
1872 ac->ac_b_ex.fe_group = e4b->bd_group;
1873
1874 ext4_mb_use_best_found(ac, e4b);
1875
1876 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1877
1878 if (EXT4_SB(sb)->s_mb_stats)
1879 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1880
1881 break;
1882 }
1883 }
1884
1885 /*
1886 * The routine scans the group and measures all found extents.
1887 * In order to optimize scanning, caller must pass number of
1888 * free blocks in the group, so the routine can know upper limit.
1889 */
1890 static noinline_for_stack
1891 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1892 struct ext4_buddy *e4b)
1893 {
1894 struct super_block *sb = ac->ac_sb;
1895 void *bitmap = e4b->bd_bitmap;
1896 struct ext4_free_extent ex;
1897 int i;
1898 int free;
1899
1900 free = e4b->bd_info->bb_free;
1901 BUG_ON(free <= 0);
1902
1903 i = e4b->bd_info->bb_first_free;
1904
1905 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1906 i = mb_find_next_zero_bit(bitmap,
1907 EXT4_CLUSTERS_PER_GROUP(sb), i);
1908 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1909 /*
1910 * IF we have corrupt bitmap, we won't find any
1911 * free blocks even though group info says we
1912 * we have free blocks
1913 */
1914 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1915 "%d free clusters as per "
1916 "group info. But bitmap says 0",
1917 free);
1918 break;
1919 }
1920
1921 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1922 BUG_ON(ex.fe_len <= 0);
1923 if (free < ex.fe_len) {
1924 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1925 "%d free clusters as per "
1926 "group info. But got %d blocks",
1927 free, ex.fe_len);
1928 /*
1929 * The number of free blocks differs. This mostly
1930 * indicate that the bitmap is corrupt. So exit
1931 * without claiming the space.
1932 */
1933 break;
1934 }
1935
1936 ext4_mb_measure_extent(ac, &ex, e4b);
1937
1938 i += ex.fe_len;
1939 free -= ex.fe_len;
1940 }
1941
1942 ext4_mb_check_limits(ac, e4b, 1);
1943 }
1944
1945 /*
1946 * This is a special case for storages like raid5
1947 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1948 */
1949 static noinline_for_stack
1950 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1951 struct ext4_buddy *e4b)
1952 {
1953 struct super_block *sb = ac->ac_sb;
1954 struct ext4_sb_info *sbi = EXT4_SB(sb);
1955 void *bitmap = e4b->bd_bitmap;
1956 struct ext4_free_extent ex;
1957 ext4_fsblk_t first_group_block;
1958 ext4_fsblk_t a;
1959 ext4_grpblk_t i;
1960 int max;
1961
1962 BUG_ON(sbi->s_stripe == 0);
1963
1964 /* find first stripe-aligned block in group */
1965 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1966
1967 a = first_group_block + sbi->s_stripe - 1;
1968 do_div(a, sbi->s_stripe);
1969 i = (a * sbi->s_stripe) - first_group_block;
1970
1971 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1972 if (!mb_test_bit(i, bitmap)) {
1973 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1974 if (max >= sbi->s_stripe) {
1975 ac->ac_found++;
1976 ac->ac_b_ex = ex;
1977 ext4_mb_use_best_found(ac, e4b);
1978 break;
1979 }
1980 }
1981 i += sbi->s_stripe;
1982 }
1983 }
1984
1985 /* This is now called BEFORE we load the buddy bitmap. */
1986 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1987 ext4_group_t group, int cr)
1988 {
1989 unsigned free, fragments;
1990 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1991 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1992
1993 BUG_ON(cr < 0 || cr >= 4);
1994
1995 free = grp->bb_free;
1996 if (free == 0)
1997 return 0;
1998 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
1999 return 0;
2000
2001 /* We only do this if the grp has never been initialized */
2002 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2003 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2004 if (ret)
2005 return 0;
2006 }
2007
2008 fragments = grp->bb_fragments;
2009 if (fragments == 0)
2010 return 0;
2011
2012 switch (cr) {
2013 case 0:
2014 BUG_ON(ac->ac_2order == 0);
2015
2016 /* Avoid using the first bg of a flexgroup for data files */
2017 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2018 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2019 ((group % flex_size) == 0))
2020 return 0;
2021
2022 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2023 (free / fragments) >= ac->ac_g_ex.fe_len)
2024 return 1;
2025
2026 if (grp->bb_largest_free_order < ac->ac_2order)
2027 return 0;
2028
2029 return 1;
2030 case 1:
2031 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2032 return 1;
2033 break;
2034 case 2:
2035 if (free >= ac->ac_g_ex.fe_len)
2036 return 1;
2037 break;
2038 case 3:
2039 return 1;
2040 default:
2041 BUG();
2042 }
2043
2044 return 0;
2045 }
2046
2047 static noinline_for_stack int
2048 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2049 {
2050 ext4_group_t ngroups, group, i;
2051 int cr;
2052 int err = 0;
2053 struct ext4_sb_info *sbi;
2054 struct super_block *sb;
2055 struct ext4_buddy e4b;
2056
2057 sb = ac->ac_sb;
2058 sbi = EXT4_SB(sb);
2059 ngroups = ext4_get_groups_count(sb);
2060 /* non-extent files are limited to low blocks/groups */
2061 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2062 ngroups = sbi->s_blockfile_groups;
2063
2064 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2065
2066 /* first, try the goal */
2067 err = ext4_mb_find_by_goal(ac, &e4b);
2068 if (err || ac->ac_status == AC_STATUS_FOUND)
2069 goto out;
2070
2071 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2072 goto out;
2073
2074 /*
2075 * ac->ac2_order is set only if the fe_len is a power of 2
2076 * if ac2_order is set we also set criteria to 0 so that we
2077 * try exact allocation using buddy.
2078 */
2079 i = fls(ac->ac_g_ex.fe_len);
2080 ac->ac_2order = 0;
2081 /*
2082 * We search using buddy data only if the order of the request
2083 * is greater than equal to the sbi_s_mb_order2_reqs
2084 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2085 */
2086 if (i >= sbi->s_mb_order2_reqs) {
2087 /*
2088 * This should tell if fe_len is exactly power of 2
2089 */
2090 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2091 ac->ac_2order = i - 1;
2092 }
2093
2094 /* if stream allocation is enabled, use global goal */
2095 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2096 /* TBD: may be hot point */
2097 spin_lock(&sbi->s_md_lock);
2098 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2099 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2100 spin_unlock(&sbi->s_md_lock);
2101 }
2102
2103 /* Let's just scan groups to find more-less suitable blocks */
2104 cr = ac->ac_2order ? 0 : 1;
2105 /*
2106 * cr == 0 try to get exact allocation,
2107 * cr == 3 try to get anything
2108 */
2109 repeat:
2110 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2111 ac->ac_criteria = cr;
2112 /*
2113 * searching for the right group start
2114 * from the goal value specified
2115 */
2116 group = ac->ac_g_ex.fe_group;
2117
2118 for (i = 0; i < ngroups; group++, i++) {
2119 /*
2120 * Artificially restricted ngroups for non-extent
2121 * files makes group > ngroups possible on first loop.
2122 */
2123 if (group >= ngroups)
2124 group = 0;
2125
2126 /* This now checks without needing the buddy page */
2127 if (!ext4_mb_good_group(ac, group, cr))
2128 continue;
2129
2130 err = ext4_mb_load_buddy(sb, group, &e4b);
2131 if (err)
2132 goto out;
2133
2134 ext4_lock_group(sb, group);
2135
2136 /*
2137 * We need to check again after locking the
2138 * block group
2139 */
2140 if (!ext4_mb_good_group(ac, group, cr)) {
2141 ext4_unlock_group(sb, group);
2142 ext4_mb_unload_buddy(&e4b);
2143 continue;
2144 }
2145
2146 ac->ac_groups_scanned++;
2147 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2148 ext4_mb_simple_scan_group(ac, &e4b);
2149 else if (cr == 1 && sbi->s_stripe &&
2150 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2151 ext4_mb_scan_aligned(ac, &e4b);
2152 else
2153 ext4_mb_complex_scan_group(ac, &e4b);
2154
2155 ext4_unlock_group(sb, group);
2156 ext4_mb_unload_buddy(&e4b);
2157
2158 if (ac->ac_status != AC_STATUS_CONTINUE)
2159 break;
2160 }
2161 }
2162
2163 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2164 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2165 /*
2166 * We've been searching too long. Let's try to allocate
2167 * the best chunk we've found so far
2168 */
2169
2170 ext4_mb_try_best_found(ac, &e4b);
2171 if (ac->ac_status != AC_STATUS_FOUND) {
2172 /*
2173 * Someone more lucky has already allocated it.
2174 * The only thing we can do is just take first
2175 * found block(s)
2176 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2177 */
2178 ac->ac_b_ex.fe_group = 0;
2179 ac->ac_b_ex.fe_start = 0;
2180 ac->ac_b_ex.fe_len = 0;
2181 ac->ac_status = AC_STATUS_CONTINUE;
2182 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2183 cr = 3;
2184 atomic_inc(&sbi->s_mb_lost_chunks);
2185 goto repeat;
2186 }
2187 }
2188 out:
2189 return err;
2190 }
2191
2192 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2193 {
2194 struct super_block *sb = seq->private;
2195 ext4_group_t group;
2196
2197 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2198 return NULL;
2199 group = *pos + 1;
2200 return (void *) ((unsigned long) group);
2201 }
2202
2203 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2204 {
2205 struct super_block *sb = seq->private;
2206 ext4_group_t group;
2207
2208 ++*pos;
2209 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2210 return NULL;
2211 group = *pos + 1;
2212 return (void *) ((unsigned long) group);
2213 }
2214
2215 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2216 {
2217 struct super_block *sb = seq->private;
2218 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2219 int i;
2220 int err, buddy_loaded = 0;
2221 struct ext4_buddy e4b;
2222 struct ext4_group_info *grinfo;
2223 struct sg {
2224 struct ext4_group_info info;
2225 ext4_grpblk_t counters[16];
2226 } sg;
2227
2228 group--;
2229 if (group == 0)
2230 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2231 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2232 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2233 "group", "free", "frags", "first",
2234 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2235 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2236
2237 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2238 sizeof(struct ext4_group_info);
2239 grinfo = ext4_get_group_info(sb, group);
2240 /* Load the group info in memory only if not already loaded. */
2241 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2242 err = ext4_mb_load_buddy(sb, group, &e4b);
2243 if (err) {
2244 seq_printf(seq, "#%-5u: I/O error\n", group);
2245 return 0;
2246 }
2247 buddy_loaded = 1;
2248 }
2249
2250 memcpy(&sg, ext4_get_group_info(sb, group), i);
2251
2252 if (buddy_loaded)
2253 ext4_mb_unload_buddy(&e4b);
2254
2255 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2256 sg.info.bb_fragments, sg.info.bb_first_free);
2257 for (i = 0; i <= 13; i++)
2258 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2259 sg.info.bb_counters[i] : 0);
2260 seq_printf(seq, " ]\n");
2261
2262 return 0;
2263 }
2264
2265 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2266 {
2267 }
2268
2269 static const struct seq_operations ext4_mb_seq_groups_ops = {
2270 .start = ext4_mb_seq_groups_start,
2271 .next = ext4_mb_seq_groups_next,
2272 .stop = ext4_mb_seq_groups_stop,
2273 .show = ext4_mb_seq_groups_show,
2274 };
2275
2276 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2277 {
2278 struct super_block *sb = PDE_DATA(inode);
2279 int rc;
2280
2281 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2282 if (rc == 0) {
2283 struct seq_file *m = file->private_data;
2284 m->private = sb;
2285 }
2286 return rc;
2287
2288 }
2289
2290 static const struct file_operations ext4_mb_seq_groups_fops = {
2291 .owner = THIS_MODULE,
2292 .open = ext4_mb_seq_groups_open,
2293 .read = seq_read,
2294 .llseek = seq_lseek,
2295 .release = seq_release,
2296 };
2297
2298 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2299 {
2300 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2301 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2302
2303 BUG_ON(!cachep);
2304 return cachep;
2305 }
2306
2307 /*
2308 * Allocate the top-level s_group_info array for the specified number
2309 * of groups
2310 */
2311 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2312 {
2313 struct ext4_sb_info *sbi = EXT4_SB(sb);
2314 unsigned size;
2315 struct ext4_group_info ***new_groupinfo;
2316
2317 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2318 EXT4_DESC_PER_BLOCK_BITS(sb);
2319 if (size <= sbi->s_group_info_size)
2320 return 0;
2321
2322 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2323 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2324 if (!new_groupinfo) {
2325 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2326 return -ENOMEM;
2327 }
2328 if (sbi->s_group_info) {
2329 memcpy(new_groupinfo, sbi->s_group_info,
2330 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2331 ext4_kvfree(sbi->s_group_info);
2332 }
2333 sbi->s_group_info = new_groupinfo;
2334 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2335 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2336 sbi->s_group_info_size);
2337 return 0;
2338 }
2339
2340 /* Create and initialize ext4_group_info data for the given group. */
2341 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2342 struct ext4_group_desc *desc)
2343 {
2344 int i;
2345 int metalen = 0;
2346 struct ext4_sb_info *sbi = EXT4_SB(sb);
2347 struct ext4_group_info **meta_group_info;
2348 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2349
2350 /*
2351 * First check if this group is the first of a reserved block.
2352 * If it's true, we have to allocate a new table of pointers
2353 * to ext4_group_info structures
2354 */
2355 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2356 metalen = sizeof(*meta_group_info) <<
2357 EXT4_DESC_PER_BLOCK_BITS(sb);
2358 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2359 if (meta_group_info == NULL) {
2360 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2361 "for a buddy group");
2362 goto exit_meta_group_info;
2363 }
2364 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2365 meta_group_info;
2366 }
2367
2368 meta_group_info =
2369 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2370 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2371
2372 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2373 if (meta_group_info[i] == NULL) {
2374 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2375 goto exit_group_info;
2376 }
2377 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2378 &(meta_group_info[i]->bb_state));
2379
2380 /*
2381 * initialize bb_free to be able to skip
2382 * empty groups without initialization
2383 */
2384 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2385 meta_group_info[i]->bb_free =
2386 ext4_free_clusters_after_init(sb, group, desc);
2387 } else {
2388 meta_group_info[i]->bb_free =
2389 ext4_free_group_clusters(sb, desc);
2390 }
2391
2392 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2393 init_rwsem(&meta_group_info[i]->alloc_sem);
2394 meta_group_info[i]->bb_free_root = RB_ROOT;
2395 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2396
2397 #ifdef DOUBLE_CHECK
2398 {
2399 struct buffer_head *bh;
2400 meta_group_info[i]->bb_bitmap =
2401 kmalloc(sb->s_blocksize, GFP_KERNEL);
2402 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2403 bh = ext4_read_block_bitmap(sb, group);
2404 BUG_ON(bh == NULL);
2405 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2406 sb->s_blocksize);
2407 put_bh(bh);
2408 }
2409 #endif
2410
2411 return 0;
2412
2413 exit_group_info:
2414 /* If a meta_group_info table has been allocated, release it now */
2415 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2416 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2417 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2418 }
2419 exit_meta_group_info:
2420 return -ENOMEM;
2421 } /* ext4_mb_add_groupinfo */
2422
2423 static int ext4_mb_init_backend(struct super_block *sb)
2424 {
2425 ext4_group_t ngroups = ext4_get_groups_count(sb);
2426 ext4_group_t i;
2427 struct ext4_sb_info *sbi = EXT4_SB(sb);
2428 int err;
2429 struct ext4_group_desc *desc;
2430 struct kmem_cache *cachep;
2431
2432 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2433 if (err)
2434 return err;
2435
2436 sbi->s_buddy_cache = new_inode(sb);
2437 if (sbi->s_buddy_cache == NULL) {
2438 ext4_msg(sb, KERN_ERR, "can't get new inode");
2439 goto err_freesgi;
2440 }
2441 /* To avoid potentially colliding with an valid on-disk inode number,
2442 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2443 * not in the inode hash, so it should never be found by iget(), but
2444 * this will avoid confusion if it ever shows up during debugging. */
2445 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2446 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2447 for (i = 0; i < ngroups; i++) {
2448 desc = ext4_get_group_desc(sb, i, NULL);
2449 if (desc == NULL) {
2450 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2451 goto err_freebuddy;
2452 }
2453 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2454 goto err_freebuddy;
2455 }
2456
2457 return 0;
2458
2459 err_freebuddy:
2460 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2461 while (i-- > 0)
2462 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2463 i = sbi->s_group_info_size;
2464 while (i-- > 0)
2465 kfree(sbi->s_group_info[i]);
2466 iput(sbi->s_buddy_cache);
2467 err_freesgi:
2468 ext4_kvfree(sbi->s_group_info);
2469 return -ENOMEM;
2470 }
2471
2472 static void ext4_groupinfo_destroy_slabs(void)
2473 {
2474 int i;
2475
2476 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2477 if (ext4_groupinfo_caches[i])
2478 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2479 ext4_groupinfo_caches[i] = NULL;
2480 }
2481 }
2482
2483 static int ext4_groupinfo_create_slab(size_t size)
2484 {
2485 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2486 int slab_size;
2487 int blocksize_bits = order_base_2(size);
2488 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2489 struct kmem_cache *cachep;
2490
2491 if (cache_index >= NR_GRPINFO_CACHES)
2492 return -EINVAL;
2493
2494 if (unlikely(cache_index < 0))
2495 cache_index = 0;
2496
2497 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2498 if (ext4_groupinfo_caches[cache_index]) {
2499 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2500 return 0; /* Already created */
2501 }
2502
2503 slab_size = offsetof(struct ext4_group_info,
2504 bb_counters[blocksize_bits + 2]);
2505
2506 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2507 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2508 NULL);
2509
2510 ext4_groupinfo_caches[cache_index] = cachep;
2511
2512 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2513 if (!cachep) {
2514 printk(KERN_EMERG
2515 "EXT4-fs: no memory for groupinfo slab cache\n");
2516 return -ENOMEM;
2517 }
2518
2519 return 0;
2520 }
2521
2522 int ext4_mb_init(struct super_block *sb)
2523 {
2524 struct ext4_sb_info *sbi = EXT4_SB(sb);
2525 unsigned i, j;
2526 unsigned offset, offset_incr;
2527 unsigned max;
2528 int ret;
2529
2530 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2531
2532 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2533 if (sbi->s_mb_offsets == NULL) {
2534 ret = -ENOMEM;
2535 goto out;
2536 }
2537
2538 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2539 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2540 if (sbi->s_mb_maxs == NULL) {
2541 ret = -ENOMEM;
2542 goto out;
2543 }
2544
2545 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2546 if (ret < 0)
2547 goto out;
2548
2549 /* order 0 is regular bitmap */
2550 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2551 sbi->s_mb_offsets[0] = 0;
2552
2553 i = 1;
2554 offset = 0;
2555 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2556 max = sb->s_blocksize << 2;
2557 do {
2558 sbi->s_mb_offsets[i] = offset;
2559 sbi->s_mb_maxs[i] = max;
2560 offset += offset_incr;
2561 offset_incr = offset_incr >> 1;
2562 max = max >> 1;
2563 i++;
2564 } while (i <= sb->s_blocksize_bits + 1);
2565
2566 spin_lock_init(&sbi->s_md_lock);
2567 spin_lock_init(&sbi->s_bal_lock);
2568
2569 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2570 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2571 sbi->s_mb_stats = MB_DEFAULT_STATS;
2572 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2573 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2574 /*
2575 * The default group preallocation is 512, which for 4k block
2576 * sizes translates to 2 megabytes. However for bigalloc file
2577 * systems, this is probably too big (i.e, if the cluster size
2578 * is 1 megabyte, then group preallocation size becomes half a
2579 * gigabyte!). As a default, we will keep a two megabyte
2580 * group pralloc size for cluster sizes up to 64k, and after
2581 * that, we will force a minimum group preallocation size of
2582 * 32 clusters. This translates to 8 megs when the cluster
2583 * size is 256k, and 32 megs when the cluster size is 1 meg,
2584 * which seems reasonable as a default.
2585 */
2586 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2587 sbi->s_cluster_bits, 32);
2588 /*
2589 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2590 * to the lowest multiple of s_stripe which is bigger than
2591 * the s_mb_group_prealloc as determined above. We want
2592 * the preallocation size to be an exact multiple of the
2593 * RAID stripe size so that preallocations don't fragment
2594 * the stripes.
2595 */
2596 if (sbi->s_stripe > 1) {
2597 sbi->s_mb_group_prealloc = roundup(
2598 sbi->s_mb_group_prealloc, sbi->s_stripe);
2599 }
2600
2601 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2602 if (sbi->s_locality_groups == NULL) {
2603 ret = -ENOMEM;
2604 goto out_free_groupinfo_slab;
2605 }
2606 for_each_possible_cpu(i) {
2607 struct ext4_locality_group *lg;
2608 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2609 mutex_init(&lg->lg_mutex);
2610 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2611 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2612 spin_lock_init(&lg->lg_prealloc_lock);
2613 }
2614
2615 /* init file for buddy data */
2616 ret = ext4_mb_init_backend(sb);
2617 if (ret != 0)
2618 goto out_free_locality_groups;
2619
2620 if (sbi->s_proc)
2621 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2622 &ext4_mb_seq_groups_fops, sb);
2623
2624 return 0;
2625
2626 out_free_locality_groups:
2627 free_percpu(sbi->s_locality_groups);
2628 sbi->s_locality_groups = NULL;
2629 out_free_groupinfo_slab:
2630 ext4_groupinfo_destroy_slabs();
2631 out:
2632 kfree(sbi->s_mb_offsets);
2633 sbi->s_mb_offsets = NULL;
2634 kfree(sbi->s_mb_maxs);
2635 sbi->s_mb_maxs = NULL;
2636 return ret;
2637 }
2638
2639 /* need to called with the ext4 group lock held */
2640 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2641 {
2642 struct ext4_prealloc_space *pa;
2643 struct list_head *cur, *tmp;
2644 int count = 0;
2645
2646 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2647 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2648 list_del(&pa->pa_group_list);
2649 count++;
2650 kmem_cache_free(ext4_pspace_cachep, pa);
2651 }
2652 if (count)
2653 mb_debug(1, "mballoc: %u PAs left\n", count);
2654
2655 }
2656
2657 int ext4_mb_release(struct super_block *sb)
2658 {
2659 ext4_group_t ngroups = ext4_get_groups_count(sb);
2660 ext4_group_t i;
2661 int num_meta_group_infos;
2662 struct ext4_group_info *grinfo;
2663 struct ext4_sb_info *sbi = EXT4_SB(sb);
2664 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2665
2666 if (sbi->s_proc)
2667 remove_proc_entry("mb_groups", sbi->s_proc);
2668
2669 if (sbi->s_group_info) {
2670 for (i = 0; i < ngroups; i++) {
2671 grinfo = ext4_get_group_info(sb, i);
2672 #ifdef DOUBLE_CHECK
2673 kfree(grinfo->bb_bitmap);
2674 #endif
2675 ext4_lock_group(sb, i);
2676 ext4_mb_cleanup_pa(grinfo);
2677 ext4_unlock_group(sb, i);
2678 kmem_cache_free(cachep, grinfo);
2679 }
2680 num_meta_group_infos = (ngroups +
2681 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2682 EXT4_DESC_PER_BLOCK_BITS(sb);
2683 for (i = 0; i < num_meta_group_infos; i++)
2684 kfree(sbi->s_group_info[i]);
2685 ext4_kvfree(sbi->s_group_info);
2686 }
2687 kfree(sbi->s_mb_offsets);
2688 kfree(sbi->s_mb_maxs);
2689 if (sbi->s_buddy_cache)
2690 iput(sbi->s_buddy_cache);
2691 if (sbi->s_mb_stats) {
2692 ext4_msg(sb, KERN_INFO,
2693 "mballoc: %u blocks %u reqs (%u success)",
2694 atomic_read(&sbi->s_bal_allocated),
2695 atomic_read(&sbi->s_bal_reqs),
2696 atomic_read(&sbi->s_bal_success));
2697 ext4_msg(sb, KERN_INFO,
2698 "mballoc: %u extents scanned, %u goal hits, "
2699 "%u 2^N hits, %u breaks, %u lost",
2700 atomic_read(&sbi->s_bal_ex_scanned),
2701 atomic_read(&sbi->s_bal_goals),
2702 atomic_read(&sbi->s_bal_2orders),
2703 atomic_read(&sbi->s_bal_breaks),
2704 atomic_read(&sbi->s_mb_lost_chunks));
2705 ext4_msg(sb, KERN_INFO,
2706 "mballoc: %lu generated and it took %Lu",
2707 sbi->s_mb_buddies_generated,
2708 sbi->s_mb_generation_time);
2709 ext4_msg(sb, KERN_INFO,
2710 "mballoc: %u preallocated, %u discarded",
2711 atomic_read(&sbi->s_mb_preallocated),
2712 atomic_read(&sbi->s_mb_discarded));
2713 }
2714
2715 free_percpu(sbi->s_locality_groups);
2716
2717 return 0;
2718 }
2719
2720 static inline int ext4_issue_discard(struct super_block *sb,
2721 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2722 {
2723 ext4_fsblk_t discard_block;
2724
2725 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2726 ext4_group_first_block_no(sb, block_group));
2727 count = EXT4_C2B(EXT4_SB(sb), count);
2728 trace_ext4_discard_blocks(sb,
2729 (unsigned long long) discard_block, count);
2730 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2731 }
2732
2733 /*
2734 * This function is called by the jbd2 layer once the commit has finished,
2735 * so we know we can free the blocks that were released with that commit.
2736 */
2737 static void ext4_free_data_callback(struct super_block *sb,
2738 struct ext4_journal_cb_entry *jce,
2739 int rc)
2740 {
2741 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2742 struct ext4_buddy e4b;
2743 struct ext4_group_info *db;
2744 int err, count = 0, count2 = 0;
2745
2746 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2747 entry->efd_count, entry->efd_group, entry);
2748
2749 if (test_opt(sb, DISCARD)) {
2750 err = ext4_issue_discard(sb, entry->efd_group,
2751 entry->efd_start_cluster,
2752 entry->efd_count);
2753 if (err && err != -EOPNOTSUPP)
2754 ext4_msg(sb, KERN_WARNING, "discard request in"
2755 " group:%d block:%d count:%d failed"
2756 " with %d", entry->efd_group,
2757 entry->efd_start_cluster,
2758 entry->efd_count, err);
2759 }
2760
2761 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2762 /* we expect to find existing buddy because it's pinned */
2763 BUG_ON(err != 0);
2764
2765
2766 db = e4b.bd_info;
2767 /* there are blocks to put in buddy to make them really free */
2768 count += entry->efd_count;
2769 count2++;
2770 ext4_lock_group(sb, entry->efd_group);
2771 /* Take it out of per group rb tree */
2772 rb_erase(&entry->efd_node, &(db->bb_free_root));
2773 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2774
2775 /*
2776 * Clear the trimmed flag for the group so that the next
2777 * ext4_trim_fs can trim it.
2778 * If the volume is mounted with -o discard, online discard
2779 * is supported and the free blocks will be trimmed online.
2780 */
2781 if (!test_opt(sb, DISCARD))
2782 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2783
2784 if (!db->bb_free_root.rb_node) {
2785 /* No more items in the per group rb tree
2786 * balance refcounts from ext4_mb_free_metadata()
2787 */
2788 page_cache_release(e4b.bd_buddy_page);
2789 page_cache_release(e4b.bd_bitmap_page);
2790 }
2791 ext4_unlock_group(sb, entry->efd_group);
2792 kmem_cache_free(ext4_free_data_cachep, entry);
2793 ext4_mb_unload_buddy(&e4b);
2794
2795 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2796 }
2797
2798 int __init ext4_init_mballoc(void)
2799 {
2800 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2801 SLAB_RECLAIM_ACCOUNT);
2802 if (ext4_pspace_cachep == NULL)
2803 return -ENOMEM;
2804
2805 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2806 SLAB_RECLAIM_ACCOUNT);
2807 if (ext4_ac_cachep == NULL) {
2808 kmem_cache_destroy(ext4_pspace_cachep);
2809 return -ENOMEM;
2810 }
2811
2812 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2813 SLAB_RECLAIM_ACCOUNT);
2814 if (ext4_free_data_cachep == NULL) {
2815 kmem_cache_destroy(ext4_pspace_cachep);
2816 kmem_cache_destroy(ext4_ac_cachep);
2817 return -ENOMEM;
2818 }
2819 return 0;
2820 }
2821
2822 void ext4_exit_mballoc(void)
2823 {
2824 /*
2825 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2826 * before destroying the slab cache.
2827 */
2828 rcu_barrier();
2829 kmem_cache_destroy(ext4_pspace_cachep);
2830 kmem_cache_destroy(ext4_ac_cachep);
2831 kmem_cache_destroy(ext4_free_data_cachep);
2832 ext4_groupinfo_destroy_slabs();
2833 }
2834
2835
2836 /*
2837 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2838 * Returns 0 if success or error code
2839 */
2840 static noinline_for_stack int
2841 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2842 handle_t *handle, unsigned int reserv_clstrs)
2843 {
2844 struct buffer_head *bitmap_bh = NULL;
2845 struct ext4_group_desc *gdp;
2846 struct buffer_head *gdp_bh;
2847 struct ext4_sb_info *sbi;
2848 struct super_block *sb;
2849 ext4_fsblk_t block;
2850 int err, len;
2851
2852 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2853 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2854
2855 sb = ac->ac_sb;
2856 sbi = EXT4_SB(sb);
2857
2858 err = -EIO;
2859 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2860 if (!bitmap_bh)
2861 goto out_err;
2862
2863 err = ext4_journal_get_write_access(handle, bitmap_bh);
2864 if (err)
2865 goto out_err;
2866
2867 err = -EIO;
2868 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2869 if (!gdp)
2870 goto out_err;
2871
2872 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2873 ext4_free_group_clusters(sb, gdp));
2874
2875 err = ext4_journal_get_write_access(handle, gdp_bh);
2876 if (err)
2877 goto out_err;
2878
2879 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2880
2881 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2882 if (!ext4_data_block_valid(sbi, block, len)) {
2883 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2884 "fs metadata", block, block+len);
2885 /* File system mounted not to panic on error
2886 * Fix the bitmap and return EUCLEAN
2887 * We leak some of the blocks here.
2888 */
2889 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2890 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2891 ac->ac_b_ex.fe_len);
2892 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2893 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2894 if (!err)
2895 err = -EUCLEAN;
2896 goto out_err;
2897 }
2898
2899 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2900 #ifdef AGGRESSIVE_CHECK
2901 {
2902 int i;
2903 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2904 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2905 bitmap_bh->b_data));
2906 }
2907 }
2908 #endif
2909 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2910 ac->ac_b_ex.fe_len);
2911 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2912 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2913 ext4_free_group_clusters_set(sb, gdp,
2914 ext4_free_clusters_after_init(sb,
2915 ac->ac_b_ex.fe_group, gdp));
2916 }
2917 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2918 ext4_free_group_clusters_set(sb, gdp, len);
2919 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2920 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2921
2922 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2923 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2924 /*
2925 * Now reduce the dirty block count also. Should not go negative
2926 */
2927 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2928 /* release all the reserved blocks if non delalloc */
2929 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2930 reserv_clstrs);
2931
2932 if (sbi->s_log_groups_per_flex) {
2933 ext4_group_t flex_group = ext4_flex_group(sbi,
2934 ac->ac_b_ex.fe_group);
2935 atomic64_sub(ac->ac_b_ex.fe_len,
2936 &sbi->s_flex_groups[flex_group].free_clusters);
2937 }
2938
2939 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2940 if (err)
2941 goto out_err;
2942 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2943
2944 out_err:
2945 brelse(bitmap_bh);
2946 return err;
2947 }
2948
2949 /*
2950 * here we normalize request for locality group
2951 * Group request are normalized to s_mb_group_prealloc, which goes to
2952 * s_strip if we set the same via mount option.
2953 * s_mb_group_prealloc can be configured via
2954 * /sys/fs/ext4/<partition>/mb_group_prealloc
2955 *
2956 * XXX: should we try to preallocate more than the group has now?
2957 */
2958 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2959 {
2960 struct super_block *sb = ac->ac_sb;
2961 struct ext4_locality_group *lg = ac->ac_lg;
2962
2963 BUG_ON(lg == NULL);
2964 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2965 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2966 current->pid, ac->ac_g_ex.fe_len);
2967 }
2968
2969 /*
2970 * Normalization means making request better in terms of
2971 * size and alignment
2972 */
2973 static noinline_for_stack void
2974 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2975 struct ext4_allocation_request *ar)
2976 {
2977 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2978 int bsbits, max;
2979 ext4_lblk_t end;
2980 loff_t size, start_off;
2981 loff_t orig_size __maybe_unused;
2982 ext4_lblk_t start;
2983 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2984 struct ext4_prealloc_space *pa;
2985
2986 /* do normalize only data requests, metadata requests
2987 do not need preallocation */
2988 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2989 return;
2990
2991 /* sometime caller may want exact blocks */
2992 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2993 return;
2994
2995 /* caller may indicate that preallocation isn't
2996 * required (it's a tail, for example) */
2997 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2998 return;
2999
3000 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3001 ext4_mb_normalize_group_request(ac);
3002 return ;
3003 }
3004
3005 bsbits = ac->ac_sb->s_blocksize_bits;
3006
3007 /* first, let's learn actual file size
3008 * given current request is allocated */
3009 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3010 size = size << bsbits;
3011 if (size < i_size_read(ac->ac_inode))
3012 size = i_size_read(ac->ac_inode);
3013 orig_size = size;
3014
3015 /* max size of free chunks */
3016 max = 2 << bsbits;
3017
3018 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3019 (req <= (size) || max <= (chunk_size))
3020
3021 /* first, try to predict filesize */
3022 /* XXX: should this table be tunable? */
3023 start_off = 0;
3024 if (size <= 16 * 1024) {
3025 size = 16 * 1024;
3026 } else if (size <= 32 * 1024) {
3027 size = 32 * 1024;
3028 } else if (size <= 64 * 1024) {
3029 size = 64 * 1024;
3030 } else if (size <= 128 * 1024) {
3031 size = 128 * 1024;
3032 } else if (size <= 256 * 1024) {
3033 size = 256 * 1024;
3034 } else if (size <= 512 * 1024) {
3035 size = 512 * 1024;
3036 } else if (size <= 1024 * 1024) {
3037 size = 1024 * 1024;
3038 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3039 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3040 (21 - bsbits)) << 21;
3041 size = 2 * 1024 * 1024;
3042 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3043 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3044 (22 - bsbits)) << 22;
3045 size = 4 * 1024 * 1024;
3046 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3047 (8<<20)>>bsbits, max, 8 * 1024)) {
3048 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3049 (23 - bsbits)) << 23;
3050 size = 8 * 1024 * 1024;
3051 } else {
3052 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3053 size = ac->ac_o_ex.fe_len << bsbits;
3054 }
3055 size = size >> bsbits;
3056 start = start_off >> bsbits;
3057
3058 /* don't cover already allocated blocks in selected range */
3059 if (ar->pleft && start <= ar->lleft) {
3060 size -= ar->lleft + 1 - start;
3061 start = ar->lleft + 1;
3062 }
3063 if (ar->pright && start + size - 1 >= ar->lright)
3064 size -= start + size - ar->lright;
3065
3066 end = start + size;
3067
3068 /* check we don't cross already preallocated blocks */
3069 rcu_read_lock();
3070 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3071 ext4_lblk_t pa_end;
3072
3073 if (pa->pa_deleted)
3074 continue;
3075 spin_lock(&pa->pa_lock);
3076 if (pa->pa_deleted) {
3077 spin_unlock(&pa->pa_lock);
3078 continue;
3079 }
3080
3081 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3082 pa->pa_len);
3083
3084 /* PA must not overlap original request */
3085 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3086 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3087
3088 /* skip PAs this normalized request doesn't overlap with */
3089 if (pa->pa_lstart >= end || pa_end <= start) {
3090 spin_unlock(&pa->pa_lock);
3091 continue;
3092 }
3093 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3094
3095 /* adjust start or end to be adjacent to this pa */
3096 if (pa_end <= ac->ac_o_ex.fe_logical) {
3097 BUG_ON(pa_end < start);
3098 start = pa_end;
3099 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3100 BUG_ON(pa->pa_lstart > end);
3101 end = pa->pa_lstart;
3102 }
3103 spin_unlock(&pa->pa_lock);
3104 }
3105 rcu_read_unlock();
3106 size = end - start;
3107
3108 /* XXX: extra loop to check we really don't overlap preallocations */
3109 rcu_read_lock();
3110 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3111 ext4_lblk_t pa_end;
3112
3113 spin_lock(&pa->pa_lock);
3114 if (pa->pa_deleted == 0) {
3115 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3116 pa->pa_len);
3117 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3118 }
3119 spin_unlock(&pa->pa_lock);
3120 }
3121 rcu_read_unlock();
3122
3123 if (start + size <= ac->ac_o_ex.fe_logical &&
3124 start > ac->ac_o_ex.fe_logical) {
3125 ext4_msg(ac->ac_sb, KERN_ERR,
3126 "start %lu, size %lu, fe_logical %lu",
3127 (unsigned long) start, (unsigned long) size,
3128 (unsigned long) ac->ac_o_ex.fe_logical);
3129 }
3130 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3131 start > ac->ac_o_ex.fe_logical);
3132 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3133
3134 /* now prepare goal request */
3135
3136 /* XXX: is it better to align blocks WRT to logical
3137 * placement or satisfy big request as is */
3138 ac->ac_g_ex.fe_logical = start;
3139 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3140
3141 /* define goal start in order to merge */
3142 if (ar->pright && (ar->lright == (start + size))) {
3143 /* merge to the right */
3144 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3145 &ac->ac_f_ex.fe_group,
3146 &ac->ac_f_ex.fe_start);
3147 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3148 }
3149 if (ar->pleft && (ar->lleft + 1 == start)) {
3150 /* merge to the left */
3151 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3152 &ac->ac_f_ex.fe_group,
3153 &ac->ac_f_ex.fe_start);
3154 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3155 }
3156
3157 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3158 (unsigned) orig_size, (unsigned) start);
3159 }
3160
3161 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3162 {
3163 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3164
3165 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3166 atomic_inc(&sbi->s_bal_reqs);
3167 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3168 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3169 atomic_inc(&sbi->s_bal_success);
3170 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3171 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3172 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3173 atomic_inc(&sbi->s_bal_goals);
3174 if (ac->ac_found > sbi->s_mb_max_to_scan)
3175 atomic_inc(&sbi->s_bal_breaks);
3176 }
3177
3178 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3179 trace_ext4_mballoc_alloc(ac);
3180 else
3181 trace_ext4_mballoc_prealloc(ac);
3182 }
3183
3184 /*
3185 * Called on failure; free up any blocks from the inode PA for this
3186 * context. We don't need this for MB_GROUP_PA because we only change
3187 * pa_free in ext4_mb_release_context(), but on failure, we've already
3188 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3189 */
3190 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3191 {
3192 struct ext4_prealloc_space *pa = ac->ac_pa;
3193 struct ext4_buddy e4b;
3194 int err;
3195
3196 if (pa == NULL) {
3197 if (ac->ac_f_ex.fe_len == 0)
3198 return;
3199 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3200 if (err) {
3201 /*
3202 * This should never happen since we pin the
3203 * pages in the ext4_allocation_context so
3204 * ext4_mb_load_buddy() should never fail.
3205 */
3206 WARN(1, "mb_load_buddy failed (%d)", err);
3207 return;
3208 }
3209 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3210 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3211 ac->ac_f_ex.fe_len);
3212 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3213 ext4_mb_unload_buddy(&e4b);
3214 return;
3215 }
3216 if (pa->pa_type == MB_INODE_PA)
3217 pa->pa_free += ac->ac_b_ex.fe_len;
3218 }
3219
3220 /*
3221 * use blocks preallocated to inode
3222 */
3223 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3224 struct ext4_prealloc_space *pa)
3225 {
3226 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3227 ext4_fsblk_t start;
3228 ext4_fsblk_t end;
3229 int len;
3230
3231 /* found preallocated blocks, use them */
3232 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3233 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3234 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3235 len = EXT4_NUM_B2C(sbi, end - start);
3236 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3237 &ac->ac_b_ex.fe_start);
3238 ac->ac_b_ex.fe_len = len;
3239 ac->ac_status = AC_STATUS_FOUND;
3240 ac->ac_pa = pa;
3241
3242 BUG_ON(start < pa->pa_pstart);
3243 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3244 BUG_ON(pa->pa_free < len);
3245 pa->pa_free -= len;
3246
3247 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3248 }
3249
3250 /*
3251 * use blocks preallocated to locality group
3252 */
3253 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3254 struct ext4_prealloc_space *pa)
3255 {
3256 unsigned int len = ac->ac_o_ex.fe_len;
3257
3258 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3259 &ac->ac_b_ex.fe_group,
3260 &ac->ac_b_ex.fe_start);
3261 ac->ac_b_ex.fe_len = len;
3262 ac->ac_status = AC_STATUS_FOUND;
3263 ac->ac_pa = pa;
3264
3265 /* we don't correct pa_pstart or pa_plen here to avoid
3266 * possible race when the group is being loaded concurrently
3267 * instead we correct pa later, after blocks are marked
3268 * in on-disk bitmap -- see ext4_mb_release_context()
3269 * Other CPUs are prevented from allocating from this pa by lg_mutex
3270 */
3271 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3272 }
3273
3274 /*
3275 * Return the prealloc space that have minimal distance
3276 * from the goal block. @cpa is the prealloc
3277 * space that is having currently known minimal distance
3278 * from the goal block.
3279 */
3280 static struct ext4_prealloc_space *
3281 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3282 struct ext4_prealloc_space *pa,
3283 struct ext4_prealloc_space *cpa)
3284 {
3285 ext4_fsblk_t cur_distance, new_distance;
3286
3287 if (cpa == NULL) {
3288 atomic_inc(&pa->pa_count);
3289 return pa;
3290 }
3291 cur_distance = abs(goal_block - cpa->pa_pstart);
3292 new_distance = abs(goal_block - pa->pa_pstart);
3293
3294 if (cur_distance <= new_distance)
3295 return cpa;
3296
3297 /* drop the previous reference */
3298 atomic_dec(&cpa->pa_count);
3299 atomic_inc(&pa->pa_count);
3300 return pa;
3301 }
3302
3303 /*
3304 * search goal blocks in preallocated space
3305 */
3306 static noinline_for_stack int
3307 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3308 {
3309 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3310 int order, i;
3311 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3312 struct ext4_locality_group *lg;
3313 struct ext4_prealloc_space *pa, *cpa = NULL;
3314 ext4_fsblk_t goal_block;
3315
3316 /* only data can be preallocated */
3317 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3318 return 0;
3319
3320 /* first, try per-file preallocation */
3321 rcu_read_lock();
3322 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3323
3324 /* all fields in this condition don't change,
3325 * so we can skip locking for them */
3326 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3327 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3328 EXT4_C2B(sbi, pa->pa_len)))
3329 continue;
3330
3331 /* non-extent files can't have physical blocks past 2^32 */
3332 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3333 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3334 EXT4_MAX_BLOCK_FILE_PHYS))
3335 continue;
3336
3337 /* found preallocated blocks, use them */
3338 spin_lock(&pa->pa_lock);
3339 if (pa->pa_deleted == 0 && pa->pa_free) {
3340 atomic_inc(&pa->pa_count);
3341 ext4_mb_use_inode_pa(ac, pa);
3342 spin_unlock(&pa->pa_lock);
3343 ac->ac_criteria = 10;
3344 rcu_read_unlock();
3345 return 1;
3346 }
3347 spin_unlock(&pa->pa_lock);
3348 }
3349 rcu_read_unlock();
3350
3351 /* can we use group allocation? */
3352 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3353 return 0;
3354
3355 /* inode may have no locality group for some reason */
3356 lg = ac->ac_lg;
3357 if (lg == NULL)
3358 return 0;
3359 order = fls(ac->ac_o_ex.fe_len) - 1;
3360 if (order > PREALLOC_TB_SIZE - 1)
3361 /* The max size of hash table is PREALLOC_TB_SIZE */
3362 order = PREALLOC_TB_SIZE - 1;
3363
3364 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3365 /*
3366 * search for the prealloc space that is having
3367 * minimal distance from the goal block.
3368 */
3369 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3370 rcu_read_lock();
3371 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3372 pa_inode_list) {
3373 spin_lock(&pa->pa_lock);
3374 if (pa->pa_deleted == 0 &&
3375 pa->pa_free >= ac->ac_o_ex.fe_len) {
3376
3377 cpa = ext4_mb_check_group_pa(goal_block,
3378 pa, cpa);
3379 }
3380 spin_unlock(&pa->pa_lock);
3381 }
3382 rcu_read_unlock();
3383 }
3384 if (cpa) {
3385 ext4_mb_use_group_pa(ac, cpa);
3386 ac->ac_criteria = 20;
3387 return 1;
3388 }
3389 return 0;
3390 }
3391
3392 /*
3393 * the function goes through all block freed in the group
3394 * but not yet committed and marks them used in in-core bitmap.
3395 * buddy must be generated from this bitmap
3396 * Need to be called with the ext4 group lock held
3397 */
3398 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3399 ext4_group_t group)
3400 {
3401 struct rb_node *n;
3402 struct ext4_group_info *grp;
3403 struct ext4_free_data *entry;
3404
3405 grp = ext4_get_group_info(sb, group);
3406 n = rb_first(&(grp->bb_free_root));
3407
3408 while (n) {
3409 entry = rb_entry(n, struct ext4_free_data, efd_node);
3410 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3411 n = rb_next(n);
3412 }
3413 return;
3414 }
3415
3416 /*
3417 * the function goes through all preallocation in this group and marks them
3418 * used in in-core bitmap. buddy must be generated from this bitmap
3419 * Need to be called with ext4 group lock held
3420 */
3421 static noinline_for_stack
3422 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3423 ext4_group_t group)
3424 {
3425 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3426 struct ext4_prealloc_space *pa;
3427 struct list_head *cur;
3428 ext4_group_t groupnr;
3429 ext4_grpblk_t start;
3430 int preallocated = 0;
3431 int len;
3432
3433 /* all form of preallocation discards first load group,
3434 * so the only competing code is preallocation use.
3435 * we don't need any locking here
3436 * notice we do NOT ignore preallocations with pa_deleted
3437 * otherwise we could leave used blocks available for
3438 * allocation in buddy when concurrent ext4_mb_put_pa()
3439 * is dropping preallocation
3440 */
3441 list_for_each(cur, &grp->bb_prealloc_list) {
3442 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3443 spin_lock(&pa->pa_lock);
3444 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3445 &groupnr, &start);
3446 len = pa->pa_len;
3447 spin_unlock(&pa->pa_lock);
3448 if (unlikely(len == 0))
3449 continue;
3450 BUG_ON(groupnr != group);
3451 ext4_set_bits(bitmap, start, len);
3452 preallocated += len;
3453 }
3454 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3455 }
3456
3457 static void ext4_mb_pa_callback(struct rcu_head *head)
3458 {
3459 struct ext4_prealloc_space *pa;
3460 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3461
3462 BUG_ON(atomic_read(&pa->pa_count));
3463 BUG_ON(pa->pa_deleted == 0);
3464 kmem_cache_free(ext4_pspace_cachep, pa);
3465 }
3466
3467 /*
3468 * drops a reference to preallocated space descriptor
3469 * if this was the last reference and the space is consumed
3470 */
3471 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3472 struct super_block *sb, struct ext4_prealloc_space *pa)
3473 {
3474 ext4_group_t grp;
3475 ext4_fsblk_t grp_blk;
3476
3477 /* in this short window concurrent discard can set pa_deleted */
3478 spin_lock(&pa->pa_lock);
3479 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3480 spin_unlock(&pa->pa_lock);
3481 return;
3482 }
3483
3484 if (pa->pa_deleted == 1) {
3485 spin_unlock(&pa->pa_lock);
3486 return;
3487 }
3488
3489 pa->pa_deleted = 1;
3490 spin_unlock(&pa->pa_lock);
3491
3492 grp_blk = pa->pa_pstart;
3493 /*
3494 * If doing group-based preallocation, pa_pstart may be in the
3495 * next group when pa is used up
3496 */
3497 if (pa->pa_type == MB_GROUP_PA)
3498 grp_blk--;
3499
3500 grp = ext4_get_group_number(sb, grp_blk);
3501
3502 /*
3503 * possible race:
3504 *
3505 * P1 (buddy init) P2 (regular allocation)
3506 * find block B in PA
3507 * copy on-disk bitmap to buddy
3508 * mark B in on-disk bitmap
3509 * drop PA from group
3510 * mark all PAs in buddy
3511 *
3512 * thus, P1 initializes buddy with B available. to prevent this
3513 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3514 * against that pair
3515 */
3516 ext4_lock_group(sb, grp);
3517 list_del(&pa->pa_group_list);
3518 ext4_unlock_group(sb, grp);
3519
3520 spin_lock(pa->pa_obj_lock);
3521 list_del_rcu(&pa->pa_inode_list);
3522 spin_unlock(pa->pa_obj_lock);
3523
3524 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3525 }
3526
3527 /*
3528 * creates new preallocated space for given inode
3529 */
3530 static noinline_for_stack int
3531 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3532 {
3533 struct super_block *sb = ac->ac_sb;
3534 struct ext4_sb_info *sbi = EXT4_SB(sb);
3535 struct ext4_prealloc_space *pa;
3536 struct ext4_group_info *grp;
3537 struct ext4_inode_info *ei;
3538
3539 /* preallocate only when found space is larger then requested */
3540 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3541 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3542 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3543
3544 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3545 if (pa == NULL)
3546 return -ENOMEM;
3547
3548 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3549 int winl;
3550 int wins;
3551 int win;
3552 int offs;
3553
3554 /* we can't allocate as much as normalizer wants.
3555 * so, found space must get proper lstart
3556 * to cover original request */
3557 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3558 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3559
3560 /* we're limited by original request in that
3561 * logical block must be covered any way
3562 * winl is window we can move our chunk within */
3563 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3564
3565 /* also, we should cover whole original request */
3566 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3567
3568 /* the smallest one defines real window */
3569 win = min(winl, wins);
3570
3571 offs = ac->ac_o_ex.fe_logical %
3572 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3573 if (offs && offs < win)
3574 win = offs;
3575
3576 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3577 EXT4_NUM_B2C(sbi, win);
3578 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3579 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3580 }
3581
3582 /* preallocation can change ac_b_ex, thus we store actually
3583 * allocated blocks for history */
3584 ac->ac_f_ex = ac->ac_b_ex;
3585
3586 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3587 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3588 pa->pa_len = ac->ac_b_ex.fe_len;
3589 pa->pa_free = pa->pa_len;
3590 atomic_set(&pa->pa_count, 1);
3591 spin_lock_init(&pa->pa_lock);
3592 INIT_LIST_HEAD(&pa->pa_inode_list);
3593 INIT_LIST_HEAD(&pa->pa_group_list);
3594 pa->pa_deleted = 0;
3595 pa->pa_type = MB_INODE_PA;
3596
3597 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3598 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3599 trace_ext4_mb_new_inode_pa(ac, pa);
3600
3601 ext4_mb_use_inode_pa(ac, pa);
3602 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3603
3604 ei = EXT4_I(ac->ac_inode);
3605 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3606
3607 pa->pa_obj_lock = &ei->i_prealloc_lock;
3608 pa->pa_inode = ac->ac_inode;
3609
3610 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3611 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3612 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3613
3614 spin_lock(pa->pa_obj_lock);
3615 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3616 spin_unlock(pa->pa_obj_lock);
3617
3618 return 0;
3619 }
3620
3621 /*
3622 * creates new preallocated space for locality group inodes belongs to
3623 */
3624 static noinline_for_stack int
3625 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3626 {
3627 struct super_block *sb = ac->ac_sb;
3628 struct ext4_locality_group *lg;
3629 struct ext4_prealloc_space *pa;
3630 struct ext4_group_info *grp;
3631
3632 /* preallocate only when found space is larger then requested */
3633 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3634 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3635 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3636
3637 BUG_ON(ext4_pspace_cachep == NULL);
3638 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3639 if (pa == NULL)
3640 return -ENOMEM;
3641
3642 /* preallocation can change ac_b_ex, thus we store actually
3643 * allocated blocks for history */
3644 ac->ac_f_ex = ac->ac_b_ex;
3645
3646 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3647 pa->pa_lstart = pa->pa_pstart;
3648 pa->pa_len = ac->ac_b_ex.fe_len;
3649 pa->pa_free = pa->pa_len;
3650 atomic_set(&pa->pa_count, 1);
3651 spin_lock_init(&pa->pa_lock);
3652 INIT_LIST_HEAD(&pa->pa_inode_list);
3653 INIT_LIST_HEAD(&pa->pa_group_list);
3654 pa->pa_deleted = 0;
3655 pa->pa_type = MB_GROUP_PA;
3656
3657 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3658 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3659 trace_ext4_mb_new_group_pa(ac, pa);
3660
3661 ext4_mb_use_group_pa(ac, pa);
3662 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3663
3664 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3665 lg = ac->ac_lg;
3666 BUG_ON(lg == NULL);
3667
3668 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3669 pa->pa_inode = NULL;
3670
3671 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3672 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3673 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3674
3675 /*
3676 * We will later add the new pa to the right bucket
3677 * after updating the pa_free in ext4_mb_release_context
3678 */
3679 return 0;
3680 }
3681
3682 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3683 {
3684 int err;
3685
3686 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3687 err = ext4_mb_new_group_pa(ac);
3688 else
3689 err = ext4_mb_new_inode_pa(ac);
3690 return err;
3691 }
3692
3693 /*
3694 * finds all unused blocks in on-disk bitmap, frees them in
3695 * in-core bitmap and buddy.
3696 * @pa must be unlinked from inode and group lists, so that
3697 * nobody else can find/use it.
3698 * the caller MUST hold group/inode locks.
3699 * TODO: optimize the case when there are no in-core structures yet
3700 */
3701 static noinline_for_stack int
3702 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3703 struct ext4_prealloc_space *pa)
3704 {
3705 struct super_block *sb = e4b->bd_sb;
3706 struct ext4_sb_info *sbi = EXT4_SB(sb);
3707 unsigned int end;
3708 unsigned int next;
3709 ext4_group_t group;
3710 ext4_grpblk_t bit;
3711 unsigned long long grp_blk_start;
3712 int err = 0;
3713 int free = 0;
3714
3715 BUG_ON(pa->pa_deleted == 0);
3716 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3717 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3718 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3719 end = bit + pa->pa_len;
3720
3721 while (bit < end) {
3722 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3723 if (bit >= end)
3724 break;
3725 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3726 mb_debug(1, " free preallocated %u/%u in group %u\n",
3727 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3728 (unsigned) next - bit, (unsigned) group);
3729 free += next - bit;
3730
3731 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3732 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3733 EXT4_C2B(sbi, bit)),
3734 next - bit);
3735 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3736 bit = next + 1;
3737 }
3738 if (free != pa->pa_free) {
3739 ext4_msg(e4b->bd_sb, KERN_CRIT,
3740 "pa %p: logic %lu, phys. %lu, len %lu",
3741 pa, (unsigned long) pa->pa_lstart,
3742 (unsigned long) pa->pa_pstart,
3743 (unsigned long) pa->pa_len);
3744 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3745 free, pa->pa_free);
3746 /*
3747 * pa is already deleted so we use the value obtained
3748 * from the bitmap and continue.
3749 */
3750 }
3751 atomic_add(free, &sbi->s_mb_discarded);
3752
3753 return err;
3754 }
3755
3756 static noinline_for_stack int
3757 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3758 struct ext4_prealloc_space *pa)
3759 {
3760 struct super_block *sb = e4b->bd_sb;
3761 ext4_group_t group;
3762 ext4_grpblk_t bit;
3763
3764 trace_ext4_mb_release_group_pa(sb, pa);
3765 BUG_ON(pa->pa_deleted == 0);
3766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3767 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3768 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3769 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3770 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3771
3772 return 0;
3773 }
3774
3775 /*
3776 * releases all preallocations in given group
3777 *
3778 * first, we need to decide discard policy:
3779 * - when do we discard
3780 * 1) ENOSPC
3781 * - how many do we discard
3782 * 1) how many requested
3783 */
3784 static noinline_for_stack int
3785 ext4_mb_discard_group_preallocations(struct super_block *sb,
3786 ext4_group_t group, int needed)
3787 {
3788 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3789 struct buffer_head *bitmap_bh = NULL;
3790 struct ext4_prealloc_space *pa, *tmp;
3791 struct list_head list;
3792 struct ext4_buddy e4b;
3793 int err;
3794 int busy = 0;
3795 int free = 0;
3796
3797 mb_debug(1, "discard preallocation for group %u\n", group);
3798
3799 if (list_empty(&grp->bb_prealloc_list))
3800 return 0;
3801
3802 bitmap_bh = ext4_read_block_bitmap(sb, group);
3803 if (bitmap_bh == NULL) {
3804 ext4_error(sb, "Error reading block bitmap for %u", group);
3805 return 0;
3806 }
3807
3808 err = ext4_mb_load_buddy(sb, group, &e4b);
3809 if (err) {
3810 ext4_error(sb, "Error loading buddy information for %u", group);
3811 put_bh(bitmap_bh);
3812 return 0;
3813 }
3814
3815 if (needed == 0)
3816 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3817
3818 INIT_LIST_HEAD(&list);
3819 repeat:
3820 ext4_lock_group(sb, group);
3821 list_for_each_entry_safe(pa, tmp,
3822 &grp->bb_prealloc_list, pa_group_list) {
3823 spin_lock(&pa->pa_lock);
3824 if (atomic_read(&pa->pa_count)) {
3825 spin_unlock(&pa->pa_lock);
3826 busy = 1;
3827 continue;
3828 }
3829 if (pa->pa_deleted) {
3830 spin_unlock(&pa->pa_lock);
3831 continue;
3832 }
3833
3834 /* seems this one can be freed ... */
3835 pa->pa_deleted = 1;
3836
3837 /* we can trust pa_free ... */
3838 free += pa->pa_free;
3839
3840 spin_unlock(&pa->pa_lock);
3841
3842 list_del(&pa->pa_group_list);
3843 list_add(&pa->u.pa_tmp_list, &list);
3844 }
3845
3846 /* if we still need more blocks and some PAs were used, try again */
3847 if (free < needed && busy) {
3848 busy = 0;
3849 ext4_unlock_group(sb, group);
3850 cond_resched();
3851 goto repeat;
3852 }
3853
3854 /* found anything to free? */
3855 if (list_empty(&list)) {
3856 BUG_ON(free != 0);
3857 goto out;
3858 }
3859
3860 /* now free all selected PAs */
3861 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3862
3863 /* remove from object (inode or locality group) */
3864 spin_lock(pa->pa_obj_lock);
3865 list_del_rcu(&pa->pa_inode_list);
3866 spin_unlock(pa->pa_obj_lock);
3867
3868 if (pa->pa_type == MB_GROUP_PA)
3869 ext4_mb_release_group_pa(&e4b, pa);
3870 else
3871 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3872
3873 list_del(&pa->u.pa_tmp_list);
3874 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3875 }
3876
3877 out:
3878 ext4_unlock_group(sb, group);
3879 ext4_mb_unload_buddy(&e4b);
3880 put_bh(bitmap_bh);
3881 return free;
3882 }
3883
3884 /*
3885 * releases all non-used preallocated blocks for given inode
3886 *
3887 * It's important to discard preallocations under i_data_sem
3888 * We don't want another block to be served from the prealloc
3889 * space when we are discarding the inode prealloc space.
3890 *
3891 * FIXME!! Make sure it is valid at all the call sites
3892 */
3893 void ext4_discard_preallocations(struct inode *inode)
3894 {
3895 struct ext4_inode_info *ei = EXT4_I(inode);
3896 struct super_block *sb = inode->i_sb;
3897 struct buffer_head *bitmap_bh = NULL;
3898 struct ext4_prealloc_space *pa, *tmp;
3899 ext4_group_t group = 0;
3900 struct list_head list;
3901 struct ext4_buddy e4b;
3902 int err;
3903
3904 if (!S_ISREG(inode->i_mode)) {
3905 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3906 return;
3907 }
3908
3909 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3910 trace_ext4_discard_preallocations(inode);
3911
3912 INIT_LIST_HEAD(&list);
3913
3914 repeat:
3915 /* first, collect all pa's in the inode */
3916 spin_lock(&ei->i_prealloc_lock);
3917 while (!list_empty(&ei->i_prealloc_list)) {
3918 pa = list_entry(ei->i_prealloc_list.next,
3919 struct ext4_prealloc_space, pa_inode_list);
3920 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3921 spin_lock(&pa->pa_lock);
3922 if (atomic_read(&pa->pa_count)) {
3923 /* this shouldn't happen often - nobody should
3924 * use preallocation while we're discarding it */
3925 spin_unlock(&pa->pa_lock);
3926 spin_unlock(&ei->i_prealloc_lock);
3927 ext4_msg(sb, KERN_ERR,
3928 "uh-oh! used pa while discarding");
3929 WARN_ON(1);
3930 schedule_timeout_uninterruptible(HZ);
3931 goto repeat;
3932
3933 }
3934 if (pa->pa_deleted == 0) {
3935 pa->pa_deleted = 1;
3936 spin_unlock(&pa->pa_lock);
3937 list_del_rcu(&pa->pa_inode_list);
3938 list_add(&pa->u.pa_tmp_list, &list);
3939 continue;
3940 }
3941
3942 /* someone is deleting pa right now */
3943 spin_unlock(&pa->pa_lock);
3944 spin_unlock(&ei->i_prealloc_lock);
3945
3946 /* we have to wait here because pa_deleted
3947 * doesn't mean pa is already unlinked from
3948 * the list. as we might be called from
3949 * ->clear_inode() the inode will get freed
3950 * and concurrent thread which is unlinking
3951 * pa from inode's list may access already
3952 * freed memory, bad-bad-bad */
3953
3954 /* XXX: if this happens too often, we can
3955 * add a flag to force wait only in case
3956 * of ->clear_inode(), but not in case of
3957 * regular truncate */
3958 schedule_timeout_uninterruptible(HZ);
3959 goto repeat;
3960 }
3961 spin_unlock(&ei->i_prealloc_lock);
3962
3963 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3964 BUG_ON(pa->pa_type != MB_INODE_PA);
3965 group = ext4_get_group_number(sb, pa->pa_pstart);
3966
3967 err = ext4_mb_load_buddy(sb, group, &e4b);
3968 if (err) {
3969 ext4_error(sb, "Error loading buddy information for %u",
3970 group);
3971 continue;
3972 }
3973
3974 bitmap_bh = ext4_read_block_bitmap(sb, group);
3975 if (bitmap_bh == NULL) {
3976 ext4_error(sb, "Error reading block bitmap for %u",
3977 group);
3978 ext4_mb_unload_buddy(&e4b);
3979 continue;
3980 }
3981
3982 ext4_lock_group(sb, group);
3983 list_del(&pa->pa_group_list);
3984 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3985 ext4_unlock_group(sb, group);
3986
3987 ext4_mb_unload_buddy(&e4b);
3988 put_bh(bitmap_bh);
3989
3990 list_del(&pa->u.pa_tmp_list);
3991 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3992 }
3993 }
3994
3995 #ifdef CONFIG_EXT4_DEBUG
3996 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3997 {
3998 struct super_block *sb = ac->ac_sb;
3999 ext4_group_t ngroups, i;
4000
4001 if (!ext4_mballoc_debug ||
4002 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4003 return;
4004
4005 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4006 " Allocation context details:");
4007 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4008 ac->ac_status, ac->ac_flags);
4009 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4010 "goal %lu/%lu/%lu@%lu, "
4011 "best %lu/%lu/%lu@%lu cr %d",
4012 (unsigned long)ac->ac_o_ex.fe_group,
4013 (unsigned long)ac->ac_o_ex.fe_start,
4014 (unsigned long)ac->ac_o_ex.fe_len,
4015 (unsigned long)ac->ac_o_ex.fe_logical,
4016 (unsigned long)ac->ac_g_ex.fe_group,
4017 (unsigned long)ac->ac_g_ex.fe_start,
4018 (unsigned long)ac->ac_g_ex.fe_len,
4019 (unsigned long)ac->ac_g_ex.fe_logical,
4020 (unsigned long)ac->ac_b_ex.fe_group,
4021 (unsigned long)ac->ac_b_ex.fe_start,
4022 (unsigned long)ac->ac_b_ex.fe_len,
4023 (unsigned long)ac->ac_b_ex.fe_logical,
4024 (int)ac->ac_criteria);
4025 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
4026 ac->ac_ex_scanned, ac->ac_found);
4027 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4028 ngroups = ext4_get_groups_count(sb);
4029 for (i = 0; i < ngroups; i++) {
4030 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4031 struct ext4_prealloc_space *pa;
4032 ext4_grpblk_t start;
4033 struct list_head *cur;
4034 ext4_lock_group(sb, i);
4035 list_for_each(cur, &grp->bb_prealloc_list) {
4036 pa = list_entry(cur, struct ext4_prealloc_space,
4037 pa_group_list);
4038 spin_lock(&pa->pa_lock);
4039 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4040 NULL, &start);
4041 spin_unlock(&pa->pa_lock);
4042 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4043 start, pa->pa_len);
4044 }
4045 ext4_unlock_group(sb, i);
4046
4047 if (grp->bb_free == 0)
4048 continue;
4049 printk(KERN_ERR "%u: %d/%d \n",
4050 i, grp->bb_free, grp->bb_fragments);
4051 }
4052 printk(KERN_ERR "\n");
4053 }
4054 #else
4055 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4056 {
4057 return;
4058 }
4059 #endif
4060
4061 /*
4062 * We use locality group preallocation for small size file. The size of the
4063 * file is determined by the current size or the resulting size after
4064 * allocation which ever is larger
4065 *
4066 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4067 */
4068 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4069 {
4070 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4071 int bsbits = ac->ac_sb->s_blocksize_bits;
4072 loff_t size, isize;
4073
4074 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4075 return;
4076
4077 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4078 return;
4079
4080 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4081 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4082 >> bsbits;
4083
4084 if ((size == isize) &&
4085 !ext4_fs_is_busy(sbi) &&
4086 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4087 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4088 return;
4089 }
4090
4091 if (sbi->s_mb_group_prealloc <= 0) {
4092 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4093 return;
4094 }
4095
4096 /* don't use group allocation for large files */
4097 size = max(size, isize);
4098 if (size > sbi->s_mb_stream_request) {
4099 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4100 return;
4101 }
4102
4103 BUG_ON(ac->ac_lg != NULL);
4104 /*
4105 * locality group prealloc space are per cpu. The reason for having
4106 * per cpu locality group is to reduce the contention between block
4107 * request from multiple CPUs.
4108 */
4109 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4110
4111 /* we're going to use group allocation */
4112 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4113
4114 /* serialize all allocations in the group */
4115 mutex_lock(&ac->ac_lg->lg_mutex);
4116 }
4117
4118 static noinline_for_stack int
4119 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4120 struct ext4_allocation_request *ar)
4121 {
4122 struct super_block *sb = ar->inode->i_sb;
4123 struct ext4_sb_info *sbi = EXT4_SB(sb);
4124 struct ext4_super_block *es = sbi->s_es;
4125 ext4_group_t group;
4126 unsigned int len;
4127 ext4_fsblk_t goal;
4128 ext4_grpblk_t block;
4129
4130 /* we can't allocate > group size */
4131 len = ar->len;
4132
4133 /* just a dirty hack to filter too big requests */
4134 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4135 len = EXT4_CLUSTERS_PER_GROUP(sb);
4136
4137 /* start searching from the goal */
4138 goal = ar->goal;
4139 if (goal < le32_to_cpu(es->s_first_data_block) ||
4140 goal >= ext4_blocks_count(es))
4141 goal = le32_to_cpu(es->s_first_data_block);
4142 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4143
4144 /* set up allocation goals */
4145 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4146 ac->ac_status = AC_STATUS_CONTINUE;
4147 ac->ac_sb = sb;
4148 ac->ac_inode = ar->inode;
4149 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4150 ac->ac_o_ex.fe_group = group;
4151 ac->ac_o_ex.fe_start = block;
4152 ac->ac_o_ex.fe_len = len;
4153 ac->ac_g_ex = ac->ac_o_ex;
4154 ac->ac_flags = ar->flags;
4155
4156 /* we have to define context: we'll we work with a file or
4157 * locality group. this is a policy, actually */
4158 ext4_mb_group_or_file(ac);
4159
4160 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4161 "left: %u/%u, right %u/%u to %swritable\n",
4162 (unsigned) ar->len, (unsigned) ar->logical,
4163 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4164 (unsigned) ar->lleft, (unsigned) ar->pleft,
4165 (unsigned) ar->lright, (unsigned) ar->pright,
4166 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4167 return 0;
4168
4169 }
4170
4171 static noinline_for_stack void
4172 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4173 struct ext4_locality_group *lg,
4174 int order, int total_entries)
4175 {
4176 ext4_group_t group = 0;
4177 struct ext4_buddy e4b;
4178 struct list_head discard_list;
4179 struct ext4_prealloc_space *pa, *tmp;
4180
4181 mb_debug(1, "discard locality group preallocation\n");
4182
4183 INIT_LIST_HEAD(&discard_list);
4184
4185 spin_lock(&lg->lg_prealloc_lock);
4186 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4187 pa_inode_list) {
4188 spin_lock(&pa->pa_lock);
4189 if (atomic_read(&pa->pa_count)) {
4190 /*
4191 * This is the pa that we just used
4192 * for block allocation. So don't
4193 * free that
4194 */
4195 spin_unlock(&pa->pa_lock);
4196 continue;
4197 }
4198 if (pa->pa_deleted) {
4199 spin_unlock(&pa->pa_lock);
4200 continue;
4201 }
4202 /* only lg prealloc space */
4203 BUG_ON(pa->pa_type != MB_GROUP_PA);
4204
4205 /* seems this one can be freed ... */
4206 pa->pa_deleted = 1;
4207 spin_unlock(&pa->pa_lock);
4208
4209 list_del_rcu(&pa->pa_inode_list);
4210 list_add(&pa->u.pa_tmp_list, &discard_list);
4211
4212 total_entries--;
4213 if (total_entries <= 5) {
4214 /*
4215 * we want to keep only 5 entries
4216 * allowing it to grow to 8. This
4217 * mak sure we don't call discard
4218 * soon for this list.
4219 */
4220 break;
4221 }
4222 }
4223 spin_unlock(&lg->lg_prealloc_lock);
4224
4225 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4226
4227 group = ext4_get_group_number(sb, pa->pa_pstart);
4228 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4229 ext4_error(sb, "Error loading buddy information for %u",
4230 group);
4231 continue;
4232 }
4233 ext4_lock_group(sb, group);
4234 list_del(&pa->pa_group_list);
4235 ext4_mb_release_group_pa(&e4b, pa);
4236 ext4_unlock_group(sb, group);
4237
4238 ext4_mb_unload_buddy(&e4b);
4239 list_del(&pa->u.pa_tmp_list);
4240 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4241 }
4242 }
4243
4244 /*
4245 * We have incremented pa_count. So it cannot be freed at this
4246 * point. Also we hold lg_mutex. So no parallel allocation is
4247 * possible from this lg. That means pa_free cannot be updated.
4248 *
4249 * A parallel ext4_mb_discard_group_preallocations is possible.
4250 * which can cause the lg_prealloc_list to be updated.
4251 */
4252
4253 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4254 {
4255 int order, added = 0, lg_prealloc_count = 1;
4256 struct super_block *sb = ac->ac_sb;
4257 struct ext4_locality_group *lg = ac->ac_lg;
4258 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4259
4260 order = fls(pa->pa_free) - 1;
4261 if (order > PREALLOC_TB_SIZE - 1)
4262 /* The max size of hash table is PREALLOC_TB_SIZE */
4263 order = PREALLOC_TB_SIZE - 1;
4264 /* Add the prealloc space to lg */
4265 spin_lock(&lg->lg_prealloc_lock);
4266 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4267 pa_inode_list) {
4268 spin_lock(&tmp_pa->pa_lock);
4269 if (tmp_pa->pa_deleted) {
4270 spin_unlock(&tmp_pa->pa_lock);
4271 continue;
4272 }
4273 if (!added && pa->pa_free < tmp_pa->pa_free) {
4274 /* Add to the tail of the previous entry */
4275 list_add_tail_rcu(&pa->pa_inode_list,
4276 &tmp_pa->pa_inode_list);
4277 added = 1;
4278 /*
4279 * we want to count the total
4280 * number of entries in the list
4281 */
4282 }
4283 spin_unlock(&tmp_pa->pa_lock);
4284 lg_prealloc_count++;
4285 }
4286 if (!added)
4287 list_add_tail_rcu(&pa->pa_inode_list,
4288 &lg->lg_prealloc_list[order]);
4289 spin_unlock(&lg->lg_prealloc_lock);
4290
4291 /* Now trim the list to be not more than 8 elements */
4292 if (lg_prealloc_count > 8) {
4293 ext4_mb_discard_lg_preallocations(sb, lg,
4294 order, lg_prealloc_count);
4295 return;
4296 }
4297 return ;
4298 }
4299
4300 /*
4301 * release all resource we used in allocation
4302 */
4303 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4304 {
4305 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4306 struct ext4_prealloc_space *pa = ac->ac_pa;
4307 if (pa) {
4308 if (pa->pa_type == MB_GROUP_PA) {
4309 /* see comment in ext4_mb_use_group_pa() */
4310 spin_lock(&pa->pa_lock);
4311 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4312 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4313 pa->pa_free -= ac->ac_b_ex.fe_len;
4314 pa->pa_len -= ac->ac_b_ex.fe_len;
4315 spin_unlock(&pa->pa_lock);
4316 }
4317 }
4318 if (pa) {
4319 /*
4320 * We want to add the pa to the right bucket.
4321 * Remove it from the list and while adding
4322 * make sure the list to which we are adding
4323 * doesn't grow big.
4324 */
4325 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4326 spin_lock(pa->pa_obj_lock);
4327 list_del_rcu(&pa->pa_inode_list);
4328 spin_unlock(pa->pa_obj_lock);
4329 ext4_mb_add_n_trim(ac);
4330 }
4331 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4332 }
4333 if (ac->ac_bitmap_page)
4334 page_cache_release(ac->ac_bitmap_page);
4335 if (ac->ac_buddy_page)
4336 page_cache_release(ac->ac_buddy_page);
4337 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4338 mutex_unlock(&ac->ac_lg->lg_mutex);
4339 ext4_mb_collect_stats(ac);
4340 return 0;
4341 }
4342
4343 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4344 {
4345 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4346 int ret;
4347 int freed = 0;
4348
4349 trace_ext4_mb_discard_preallocations(sb, needed);
4350 for (i = 0; i < ngroups && needed > 0; i++) {
4351 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4352 freed += ret;
4353 needed -= ret;
4354 }
4355
4356 return freed;
4357 }
4358
4359 /*
4360 * Main entry point into mballoc to allocate blocks
4361 * it tries to use preallocation first, then falls back
4362 * to usual allocation
4363 */
4364 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4365 struct ext4_allocation_request *ar, int *errp)
4366 {
4367 int freed;
4368 struct ext4_allocation_context *ac = NULL;
4369 struct ext4_sb_info *sbi;
4370 struct super_block *sb;
4371 ext4_fsblk_t block = 0;
4372 unsigned int inquota = 0;
4373 unsigned int reserv_clstrs = 0;
4374
4375 might_sleep();
4376 sb = ar->inode->i_sb;
4377 sbi = EXT4_SB(sb);
4378
4379 trace_ext4_request_blocks(ar);
4380
4381 /* Allow to use superuser reservation for quota file */
4382 if (IS_NOQUOTA(ar->inode))
4383 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4384
4385 /*
4386 * For delayed allocation, we could skip the ENOSPC and
4387 * EDQUOT check, as blocks and quotas have been already
4388 * reserved when data being copied into pagecache.
4389 */
4390 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4391 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4392 else {
4393 /* Without delayed allocation we need to verify
4394 * there is enough free blocks to do block allocation
4395 * and verify allocation doesn't exceed the quota limits.
4396 */
4397 while (ar->len &&
4398 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4399
4400 /* let others to free the space */
4401 cond_resched();
4402 ar->len = ar->len >> 1;
4403 }
4404 if (!ar->len) {
4405 *errp = -ENOSPC;
4406 return 0;
4407 }
4408 reserv_clstrs = ar->len;
4409 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4410 dquot_alloc_block_nofail(ar->inode,
4411 EXT4_C2B(sbi, ar->len));
4412 } else {
4413 while (ar->len &&
4414 dquot_alloc_block(ar->inode,
4415 EXT4_C2B(sbi, ar->len))) {
4416
4417 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4418 ar->len--;
4419 }
4420 }
4421 inquota = ar->len;
4422 if (ar->len == 0) {
4423 *errp = -EDQUOT;
4424 goto out;
4425 }
4426 }
4427
4428 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4429 if (!ac) {
4430 ar->len = 0;
4431 *errp = -ENOMEM;
4432 goto out;
4433 }
4434
4435 *errp = ext4_mb_initialize_context(ac, ar);
4436 if (*errp) {
4437 ar->len = 0;
4438 goto out;
4439 }
4440
4441 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4442 if (!ext4_mb_use_preallocated(ac)) {
4443 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4444 ext4_mb_normalize_request(ac, ar);
4445 repeat:
4446 /* allocate space in core */
4447 *errp = ext4_mb_regular_allocator(ac);
4448 if (*errp) {
4449 ext4_discard_allocated_blocks(ac);
4450 goto errout;
4451 }
4452
4453 /* as we've just preallocated more space than
4454 * user requested orinally, we store allocated
4455 * space in a special descriptor */
4456 if (ac->ac_status == AC_STATUS_FOUND &&
4457 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4458 ext4_mb_new_preallocation(ac);
4459 }
4460 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4461 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4462 if (*errp) {
4463 ext4_discard_allocated_blocks(ac);
4464 goto errout;
4465 } else {
4466 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4467 ar->len = ac->ac_b_ex.fe_len;
4468 }
4469 } else {
4470 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4471 if (freed)
4472 goto repeat;
4473 *errp = -ENOSPC;
4474 }
4475
4476 errout:
4477 if (*errp) {
4478 ac->ac_b_ex.fe_len = 0;
4479 ar->len = 0;
4480 ext4_mb_show_ac(ac);
4481 }
4482 ext4_mb_release_context(ac);
4483 out:
4484 if (ac)
4485 kmem_cache_free(ext4_ac_cachep, ac);
4486 if (inquota && ar->len < inquota)
4487 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4488 if (!ar->len) {
4489 if (!ext4_test_inode_state(ar->inode,
4490 EXT4_STATE_DELALLOC_RESERVED))
4491 /* release all the reserved blocks if non delalloc */
4492 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4493 reserv_clstrs);
4494 }
4495
4496 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4497
4498 return block;
4499 }
4500
4501 /*
4502 * We can merge two free data extents only if the physical blocks
4503 * are contiguous, AND the extents were freed by the same transaction,
4504 * AND the blocks are associated with the same group.
4505 */
4506 static int can_merge(struct ext4_free_data *entry1,
4507 struct ext4_free_data *entry2)
4508 {
4509 if ((entry1->efd_tid == entry2->efd_tid) &&
4510 (entry1->efd_group == entry2->efd_group) &&
4511 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4512 return 1;
4513 return 0;
4514 }
4515
4516 static noinline_for_stack int
4517 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4518 struct ext4_free_data *new_entry)
4519 {
4520 ext4_group_t group = e4b->bd_group;
4521 ext4_grpblk_t cluster;
4522 struct ext4_free_data *entry;
4523 struct ext4_group_info *db = e4b->bd_info;
4524 struct super_block *sb = e4b->bd_sb;
4525 struct ext4_sb_info *sbi = EXT4_SB(sb);
4526 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4527 struct rb_node *parent = NULL, *new_node;
4528
4529 BUG_ON(!ext4_handle_valid(handle));
4530 BUG_ON(e4b->bd_bitmap_page == NULL);
4531 BUG_ON(e4b->bd_buddy_page == NULL);
4532
4533 new_node = &new_entry->efd_node;
4534 cluster = new_entry->efd_start_cluster;
4535
4536 if (!*n) {
4537 /* first free block exent. We need to
4538 protect buddy cache from being freed,
4539 * otherwise we'll refresh it from
4540 * on-disk bitmap and lose not-yet-available
4541 * blocks */
4542 page_cache_get(e4b->bd_buddy_page);
4543 page_cache_get(e4b->bd_bitmap_page);
4544 }
4545 while (*n) {
4546 parent = *n;
4547 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4548 if (cluster < entry->efd_start_cluster)
4549 n = &(*n)->rb_left;
4550 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4551 n = &(*n)->rb_right;
4552 else {
4553 ext4_grp_locked_error(sb, group, 0,
4554 ext4_group_first_block_no(sb, group) +
4555 EXT4_C2B(sbi, cluster),
4556 "Block already on to-be-freed list");
4557 return 0;
4558 }
4559 }
4560
4561 rb_link_node(new_node, parent, n);
4562 rb_insert_color(new_node, &db->bb_free_root);
4563
4564 /* Now try to see the extent can be merged to left and right */
4565 node = rb_prev(new_node);
4566 if (node) {
4567 entry = rb_entry(node, struct ext4_free_data, efd_node);
4568 if (can_merge(entry, new_entry) &&
4569 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4570 new_entry->efd_start_cluster = entry->efd_start_cluster;
4571 new_entry->efd_count += entry->efd_count;
4572 rb_erase(node, &(db->bb_free_root));
4573 kmem_cache_free(ext4_free_data_cachep, entry);
4574 }
4575 }
4576
4577 node = rb_next(new_node);
4578 if (node) {
4579 entry = rb_entry(node, struct ext4_free_data, efd_node);
4580 if (can_merge(new_entry, entry) &&
4581 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4582 new_entry->efd_count += entry->efd_count;
4583 rb_erase(node, &(db->bb_free_root));
4584 kmem_cache_free(ext4_free_data_cachep, entry);
4585 }
4586 }
4587 /* Add the extent to transaction's private list */
4588 ext4_journal_callback_add(handle, ext4_free_data_callback,
4589 &new_entry->efd_jce);
4590 return 0;
4591 }
4592
4593 /**
4594 * ext4_free_blocks() -- Free given blocks and update quota
4595 * @handle: handle for this transaction
4596 * @inode: inode
4597 * @block: start physical block to free
4598 * @count: number of blocks to count
4599 * @flags: flags used by ext4_free_blocks
4600 */
4601 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4602 struct buffer_head *bh, ext4_fsblk_t block,
4603 unsigned long count, int flags)
4604 {
4605 struct buffer_head *bitmap_bh = NULL;
4606 struct super_block *sb = inode->i_sb;
4607 struct ext4_group_desc *gdp;
4608 unsigned int overflow;
4609 ext4_grpblk_t bit;
4610 struct buffer_head *gd_bh;
4611 ext4_group_t block_group;
4612 struct ext4_sb_info *sbi;
4613 struct ext4_inode_info *ei = EXT4_I(inode);
4614 struct ext4_buddy e4b;
4615 unsigned int count_clusters;
4616 int err = 0;
4617 int ret;
4618
4619 might_sleep();
4620 if (bh) {
4621 if (block)
4622 BUG_ON(block != bh->b_blocknr);
4623 else
4624 block = bh->b_blocknr;
4625 }
4626
4627 sbi = EXT4_SB(sb);
4628 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4629 !ext4_data_block_valid(sbi, block, count)) {
4630 ext4_error(sb, "Freeing blocks not in datazone - "
4631 "block = %llu, count = %lu", block, count);
4632 goto error_return;
4633 }
4634
4635 ext4_debug("freeing block %llu\n", block);
4636 trace_ext4_free_blocks(inode, block, count, flags);
4637
4638 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4639 struct buffer_head *tbh = bh;
4640 int i;
4641
4642 BUG_ON(bh && (count > 1));
4643
4644 for (i = 0; i < count; i++) {
4645 if (!bh)
4646 tbh = sb_find_get_block(inode->i_sb,
4647 block + i);
4648 if (unlikely(!tbh))
4649 continue;
4650 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4651 inode, tbh, block + i);
4652 }
4653 }
4654
4655 /*
4656 * We need to make sure we don't reuse the freed block until
4657 * after the transaction is committed, which we can do by
4658 * treating the block as metadata, below. We make an
4659 * exception if the inode is to be written in writeback mode
4660 * since writeback mode has weak data consistency guarantees.
4661 */
4662 if (!ext4_should_writeback_data(inode))
4663 flags |= EXT4_FREE_BLOCKS_METADATA;
4664
4665 /*
4666 * If the extent to be freed does not begin on a cluster
4667 * boundary, we need to deal with partial clusters at the
4668 * beginning and end of the extent. Normally we will free
4669 * blocks at the beginning or the end unless we are explicitly
4670 * requested to avoid doing so.
4671 */
4672 overflow = EXT4_PBLK_COFF(sbi, block);
4673 if (overflow) {
4674 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4675 overflow = sbi->s_cluster_ratio - overflow;
4676 block += overflow;
4677 if (count > overflow)
4678 count -= overflow;
4679 else
4680 return;
4681 } else {
4682 block -= overflow;
4683 count += overflow;
4684 }
4685 }
4686 overflow = EXT4_LBLK_COFF(sbi, count);
4687 if (overflow) {
4688 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4689 if (count > overflow)
4690 count -= overflow;
4691 else
4692 return;
4693 } else
4694 count += sbi->s_cluster_ratio - overflow;
4695 }
4696
4697 do_more:
4698 overflow = 0;
4699 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4700
4701 /*
4702 * Check to see if we are freeing blocks across a group
4703 * boundary.
4704 */
4705 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4706 overflow = EXT4_C2B(sbi, bit) + count -
4707 EXT4_BLOCKS_PER_GROUP(sb);
4708 count -= overflow;
4709 }
4710 count_clusters = EXT4_NUM_B2C(sbi, count);
4711 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4712 if (!bitmap_bh) {
4713 err = -EIO;
4714 goto error_return;
4715 }
4716 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4717 if (!gdp) {
4718 err = -EIO;
4719 goto error_return;
4720 }
4721
4722 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4723 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4724 in_range(block, ext4_inode_table(sb, gdp),
4725 EXT4_SB(sb)->s_itb_per_group) ||
4726 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4727 EXT4_SB(sb)->s_itb_per_group)) {
4728
4729 ext4_error(sb, "Freeing blocks in system zone - "
4730 "Block = %llu, count = %lu", block, count);
4731 /* err = 0. ext4_std_error should be a no op */
4732 goto error_return;
4733 }
4734
4735 BUFFER_TRACE(bitmap_bh, "getting write access");
4736 err = ext4_journal_get_write_access(handle, bitmap_bh);
4737 if (err)
4738 goto error_return;
4739
4740 /*
4741 * We are about to modify some metadata. Call the journal APIs
4742 * to unshare ->b_data if a currently-committing transaction is
4743 * using it
4744 */
4745 BUFFER_TRACE(gd_bh, "get_write_access");
4746 err = ext4_journal_get_write_access(handle, gd_bh);
4747 if (err)
4748 goto error_return;
4749 #ifdef AGGRESSIVE_CHECK
4750 {
4751 int i;
4752 for (i = 0; i < count_clusters; i++)
4753 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4754 }
4755 #endif
4756 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4757
4758 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4759 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4760 GFP_NOFS|__GFP_NOFAIL);
4761 if (err)
4762 goto error_return;
4763
4764 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4765 struct ext4_free_data *new_entry;
4766 /*
4767 * blocks being freed are metadata. these blocks shouldn't
4768 * be used until this transaction is committed
4769 *
4770 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4771 * to fail.
4772 */
4773 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4774 GFP_NOFS|__GFP_NOFAIL);
4775 new_entry->efd_start_cluster = bit;
4776 new_entry->efd_group = block_group;
4777 new_entry->efd_count = count_clusters;
4778 new_entry->efd_tid = handle->h_transaction->t_tid;
4779
4780 ext4_lock_group(sb, block_group);
4781 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4782 ext4_mb_free_metadata(handle, &e4b, new_entry);
4783 } else {
4784 /* need to update group_info->bb_free and bitmap
4785 * with group lock held. generate_buddy look at
4786 * them with group lock_held
4787 */
4788 if (test_opt(sb, DISCARD)) {
4789 err = ext4_issue_discard(sb, block_group, bit, count);
4790 if (err && err != -EOPNOTSUPP)
4791 ext4_msg(sb, KERN_WARNING, "discard request in"
4792 " group:%d block:%d count:%lu failed"
4793 " with %d", block_group, bit, count,
4794 err);
4795 } else
4796 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4797
4798 ext4_lock_group(sb, block_group);
4799 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4800 mb_free_blocks(inode, &e4b, bit, count_clusters);
4801 }
4802
4803 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4804 ext4_free_group_clusters_set(sb, gdp, ret);
4805 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4806 ext4_group_desc_csum_set(sb, block_group, gdp);
4807 ext4_unlock_group(sb, block_group);
4808
4809 if (sbi->s_log_groups_per_flex) {
4810 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4811 atomic64_add(count_clusters,
4812 &sbi->s_flex_groups[flex_group].free_clusters);
4813 }
4814
4815 if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4816 percpu_counter_add(&sbi->s_dirtyclusters_counter,
4817 count_clusters);
4818 spin_lock(&ei->i_block_reservation_lock);
4819 if (flags & EXT4_FREE_BLOCKS_METADATA)
4820 ei->i_reserved_meta_blocks += count_clusters;
4821 else
4822 ei->i_reserved_data_blocks += count_clusters;
4823 spin_unlock(&ei->i_block_reservation_lock);
4824 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4825 dquot_reclaim_block(inode,
4826 EXT4_C2B(sbi, count_clusters));
4827 } else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4828 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4829 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4830
4831 ext4_mb_unload_buddy(&e4b);
4832
4833 /* We dirtied the bitmap block */
4834 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4835 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4836
4837 /* And the group descriptor block */
4838 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4839 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4840 if (!err)
4841 err = ret;
4842
4843 if (overflow && !err) {
4844 block += count;
4845 count = overflow;
4846 put_bh(bitmap_bh);
4847 goto do_more;
4848 }
4849 error_return:
4850 brelse(bitmap_bh);
4851 ext4_std_error(sb, err);
4852 return;
4853 }
4854
4855 /**
4856 * ext4_group_add_blocks() -- Add given blocks to an existing group
4857 * @handle: handle to this transaction
4858 * @sb: super block
4859 * @block: start physical block to add to the block group
4860 * @count: number of blocks to free
4861 *
4862 * This marks the blocks as free in the bitmap and buddy.
4863 */
4864 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4865 ext4_fsblk_t block, unsigned long count)
4866 {
4867 struct buffer_head *bitmap_bh = NULL;
4868 struct buffer_head *gd_bh;
4869 ext4_group_t block_group;
4870 ext4_grpblk_t bit;
4871 unsigned int i;
4872 struct ext4_group_desc *desc;
4873 struct ext4_sb_info *sbi = EXT4_SB(sb);
4874 struct ext4_buddy e4b;
4875 int err = 0, ret, blk_free_count;
4876 ext4_grpblk_t blocks_freed;
4877
4878 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4879
4880 if (count == 0)
4881 return 0;
4882
4883 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4884 /*
4885 * Check to see if we are freeing blocks across a group
4886 * boundary.
4887 */
4888 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4889 ext4_warning(sb, "too much blocks added to group %u\n",
4890 block_group);
4891 err = -EINVAL;
4892 goto error_return;
4893 }
4894
4895 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4896 if (!bitmap_bh) {
4897 err = -EIO;
4898 goto error_return;
4899 }
4900
4901 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4902 if (!desc) {
4903 err = -EIO;
4904 goto error_return;
4905 }
4906
4907 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4908 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4909 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4910 in_range(block + count - 1, ext4_inode_table(sb, desc),
4911 sbi->s_itb_per_group)) {
4912 ext4_error(sb, "Adding blocks in system zones - "
4913 "Block = %llu, count = %lu",
4914 block, count);
4915 err = -EINVAL;
4916 goto error_return;
4917 }
4918
4919 BUFFER_TRACE(bitmap_bh, "getting write access");
4920 err = ext4_journal_get_write_access(handle, bitmap_bh);
4921 if (err)
4922 goto error_return;
4923
4924 /*
4925 * We are about to modify some metadata. Call the journal APIs
4926 * to unshare ->b_data if a currently-committing transaction is
4927 * using it
4928 */
4929 BUFFER_TRACE(gd_bh, "get_write_access");
4930 err = ext4_journal_get_write_access(handle, gd_bh);
4931 if (err)
4932 goto error_return;
4933
4934 for (i = 0, blocks_freed = 0; i < count; i++) {
4935 BUFFER_TRACE(bitmap_bh, "clear bit");
4936 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4937 ext4_error(sb, "bit already cleared for block %llu",
4938 (ext4_fsblk_t)(block + i));
4939 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4940 } else {
4941 blocks_freed++;
4942 }
4943 }
4944
4945 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4946 if (err)
4947 goto error_return;
4948
4949 /*
4950 * need to update group_info->bb_free and bitmap
4951 * with group lock held. generate_buddy look at
4952 * them with group lock_held
4953 */
4954 ext4_lock_group(sb, block_group);
4955 mb_clear_bits(bitmap_bh->b_data, bit, count);
4956 mb_free_blocks(NULL, &e4b, bit, count);
4957 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4958 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4959 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4960 ext4_group_desc_csum_set(sb, block_group, desc);
4961 ext4_unlock_group(sb, block_group);
4962 percpu_counter_add(&sbi->s_freeclusters_counter,
4963 EXT4_NUM_B2C(sbi, blocks_freed));
4964
4965 if (sbi->s_log_groups_per_flex) {
4966 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4967 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4968 &sbi->s_flex_groups[flex_group].free_clusters);
4969 }
4970
4971 ext4_mb_unload_buddy(&e4b);
4972
4973 /* We dirtied the bitmap block */
4974 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4975 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4976
4977 /* And the group descriptor block */
4978 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4979 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4980 if (!err)
4981 err = ret;
4982
4983 error_return:
4984 brelse(bitmap_bh);
4985 ext4_std_error(sb, err);
4986 return err;
4987 }
4988
4989 /**
4990 * ext4_trim_extent -- function to TRIM one single free extent in the group
4991 * @sb: super block for the file system
4992 * @start: starting block of the free extent in the alloc. group
4993 * @count: number of blocks to TRIM
4994 * @group: alloc. group we are working with
4995 * @e4b: ext4 buddy for the group
4996 *
4997 * Trim "count" blocks starting at "start" in the "group". To assure that no
4998 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4999 * be called with under the group lock.
5000 */
5001 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5002 ext4_group_t group, struct ext4_buddy *e4b)
5003 {
5004 struct ext4_free_extent ex;
5005 int ret = 0;
5006
5007 trace_ext4_trim_extent(sb, group, start, count);
5008
5009 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5010
5011 ex.fe_start = start;
5012 ex.fe_group = group;
5013 ex.fe_len = count;
5014
5015 /*
5016 * Mark blocks used, so no one can reuse them while
5017 * being trimmed.
5018 */
5019 mb_mark_used(e4b, &ex);
5020 ext4_unlock_group(sb, group);
5021 ret = ext4_issue_discard(sb, group, start, count);
5022 ext4_lock_group(sb, group);
5023 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5024 return ret;
5025 }
5026
5027 /**
5028 * ext4_trim_all_free -- function to trim all free space in alloc. group
5029 * @sb: super block for file system
5030 * @group: group to be trimmed
5031 * @start: first group block to examine
5032 * @max: last group block to examine
5033 * @minblocks: minimum extent block count
5034 *
5035 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5036 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5037 * the extent.
5038 *
5039 *
5040 * ext4_trim_all_free walks through group's block bitmap searching for free
5041 * extents. When the free extent is found, mark it as used in group buddy
5042 * bitmap. Then issue a TRIM command on this extent and free the extent in
5043 * the group buddy bitmap. This is done until whole group is scanned.
5044 */
5045 static ext4_grpblk_t
5046 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5047 ext4_grpblk_t start, ext4_grpblk_t max,
5048 ext4_grpblk_t minblocks)
5049 {
5050 void *bitmap;
5051 ext4_grpblk_t next, count = 0, free_count = 0;
5052 struct ext4_buddy e4b;
5053 int ret = 0;
5054
5055 trace_ext4_trim_all_free(sb, group, start, max);
5056
5057 ret = ext4_mb_load_buddy(sb, group, &e4b);
5058 if (ret) {
5059 ext4_error(sb, "Error in loading buddy "
5060 "information for %u", group);
5061 return ret;
5062 }
5063 bitmap = e4b.bd_bitmap;
5064
5065 ext4_lock_group(sb, group);
5066 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5067 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5068 goto out;
5069
5070 start = (e4b.bd_info->bb_first_free > start) ?
5071 e4b.bd_info->bb_first_free : start;
5072
5073 while (start <= max) {
5074 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5075 if (start > max)
5076 break;
5077 next = mb_find_next_bit(bitmap, max + 1, start);
5078
5079 if ((next - start) >= minblocks) {
5080 ret = ext4_trim_extent(sb, start,
5081 next - start, group, &e4b);
5082 if (ret && ret != -EOPNOTSUPP)
5083 break;
5084 ret = 0;
5085 count += next - start;
5086 }
5087 free_count += next - start;
5088 start = next + 1;
5089
5090 if (fatal_signal_pending(current)) {
5091 count = -ERESTARTSYS;
5092 break;
5093 }
5094
5095 if (need_resched()) {
5096 ext4_unlock_group(sb, group);
5097 cond_resched();
5098 ext4_lock_group(sb, group);
5099 }
5100
5101 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5102 break;
5103 }
5104
5105 if (!ret) {
5106 ret = count;
5107 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5108 }
5109 out:
5110 ext4_unlock_group(sb, group);
5111 ext4_mb_unload_buddy(&e4b);
5112
5113 ext4_debug("trimmed %d blocks in the group %d\n",
5114 count, group);
5115
5116 return ret;
5117 }
5118
5119 /**
5120 * ext4_trim_fs() -- trim ioctl handle function
5121 * @sb: superblock for filesystem
5122 * @range: fstrim_range structure
5123 *
5124 * start: First Byte to trim
5125 * len: number of Bytes to trim from start
5126 * minlen: minimum extent length in Bytes
5127 * ext4_trim_fs goes through all allocation groups containing Bytes from
5128 * start to start+len. For each such a group ext4_trim_all_free function
5129 * is invoked to trim all free space.
5130 */
5131 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5132 {
5133 struct ext4_group_info *grp;
5134 ext4_group_t group, first_group, last_group;
5135 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5136 uint64_t start, end, minlen, trimmed = 0;
5137 ext4_fsblk_t first_data_blk =
5138 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5139 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5140 int ret = 0;
5141
5142 start = range->start >> sb->s_blocksize_bits;
5143 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5144 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5145 range->minlen >> sb->s_blocksize_bits);
5146
5147 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5148 start >= max_blks ||
5149 range->len < sb->s_blocksize)
5150 return -EINVAL;
5151 if (end >= max_blks)
5152 end = max_blks - 1;
5153 if (end <= first_data_blk)
5154 goto out;
5155 if (start < first_data_blk)
5156 start = first_data_blk;
5157
5158 /* Determine first and last group to examine based on start and end */
5159 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5160 &first_group, &first_cluster);
5161 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5162 &last_group, &last_cluster);
5163
5164 /* end now represents the last cluster to discard in this group */
5165 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5166
5167 for (group = first_group; group <= last_group; group++) {
5168 grp = ext4_get_group_info(sb, group);
5169 /* We only do this if the grp has never been initialized */
5170 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5171 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5172 if (ret)
5173 break;
5174 }
5175
5176 /*
5177 * For all the groups except the last one, last cluster will
5178 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5179 * change it for the last group, note that last_cluster is
5180 * already computed earlier by ext4_get_group_no_and_offset()
5181 */
5182 if (group == last_group)
5183 end = last_cluster;
5184
5185 if (grp->bb_free >= minlen) {
5186 cnt = ext4_trim_all_free(sb, group, first_cluster,
5187 end, minlen);
5188 if (cnt < 0) {
5189 ret = cnt;
5190 break;
5191 }
5192 trimmed += cnt;
5193 }
5194
5195 /*
5196 * For every group except the first one, we are sure
5197 * that the first cluster to discard will be cluster #0.
5198 */
5199 first_cluster = 0;
5200 }
5201
5202 if (!ret)
5203 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5204
5205 out:
5206 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5207 return ret;
5208 }