ext4: replace open coded nofail allocation in ext4_free_blocks()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 ext4_grpblk_t i = 0;
727 ext4_grpblk_t first;
728 ext4_grpblk_t len;
729 unsigned free = 0;
730 unsigned fragments = 0;
731 unsigned long long period = get_cycles();
732
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i = mb_find_next_zero_bit(bitmap, max, 0);
736 grp->bb_first_free = i;
737 while (i < max) {
738 fragments++;
739 first = i;
740 i = mb_find_next_bit(bitmap, max, i);
741 len = i - first;
742 free += len;
743 if (len > 1)
744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 else
746 grp->bb_counters[0]++;
747 if (i < max)
748 i = mb_find_next_zero_bit(bitmap, max, i);
749 }
750 grp->bb_fragments = fragments;
751
752 if (free != grp->bb_free) {
753 ext4_grp_locked_error(sb, group, 0, 0,
754 "%u clusters in bitmap, %u in gd",
755 free, grp->bb_free);
756 /*
757 * If we intent to continue, we consider group descritor
758 * corrupt and update bb_free using bitmap value
759 */
760 grp->bb_free = free;
761 }
762 mb_set_largest_free_order(sb, grp);
763
764 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
765
766 period = get_cycles() - period;
767 spin_lock(&EXT4_SB(sb)->s_bal_lock);
768 EXT4_SB(sb)->s_mb_buddies_generated++;
769 EXT4_SB(sb)->s_mb_generation_time += period;
770 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
771 }
772
773 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
774 {
775 int count;
776 int order = 1;
777 void *buddy;
778
779 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
780 ext4_set_bits(buddy, 0, count);
781 }
782 e4b->bd_info->bb_fragments = 0;
783 memset(e4b->bd_info->bb_counters, 0,
784 sizeof(*e4b->bd_info->bb_counters) *
785 (e4b->bd_sb->s_blocksize_bits + 2));
786
787 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
788 e4b->bd_bitmap, e4b->bd_group);
789 }
790
791 /* The buddy information is attached the buddy cache inode
792 * for convenience. The information regarding each group
793 * is loaded via ext4_mb_load_buddy. The information involve
794 * block bitmap and buddy information. The information are
795 * stored in the inode as
796 *
797 * { page }
798 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
799 *
800 *
801 * one block each for bitmap and buddy information.
802 * So for each group we take up 2 blocks. A page can
803 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
804 * So it can have information regarding groups_per_page which
805 * is blocks_per_page/2
806 *
807 * Locking note: This routine takes the block group lock of all groups
808 * for this page; do not hold this lock when calling this routine!
809 */
810
811 static int ext4_mb_init_cache(struct page *page, char *incore)
812 {
813 ext4_group_t ngroups;
814 int blocksize;
815 int blocks_per_page;
816 int groups_per_page;
817 int err = 0;
818 int i;
819 ext4_group_t first_group, group;
820 int first_block;
821 struct super_block *sb;
822 struct buffer_head *bhs;
823 struct buffer_head **bh = NULL;
824 struct inode *inode;
825 char *data;
826 char *bitmap;
827 struct ext4_group_info *grinfo;
828
829 mb_debug(1, "init page %lu\n", page->index);
830
831 inode = page->mapping->host;
832 sb = inode->i_sb;
833 ngroups = ext4_get_groups_count(sb);
834 blocksize = 1 << inode->i_blkbits;
835 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
836
837 groups_per_page = blocks_per_page >> 1;
838 if (groups_per_page == 0)
839 groups_per_page = 1;
840
841 /* allocate buffer_heads to read bitmaps */
842 if (groups_per_page > 1) {
843 i = sizeof(struct buffer_head *) * groups_per_page;
844 bh = kzalloc(i, GFP_NOFS);
845 if (bh == NULL) {
846 err = -ENOMEM;
847 goto out;
848 }
849 } else
850 bh = &bhs;
851
852 first_group = page->index * blocks_per_page / 2;
853
854 /* read all groups the page covers into the cache */
855 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
856 if (group >= ngroups)
857 break;
858
859 grinfo = ext4_get_group_info(sb, group);
860 /*
861 * If page is uptodate then we came here after online resize
862 * which added some new uninitialized group info structs, so
863 * we must skip all initialized uptodate buddies on the page,
864 * which may be currently in use by an allocating task.
865 */
866 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
867 bh[i] = NULL;
868 continue;
869 }
870 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
871 err = -ENOMEM;
872 goto out;
873 }
874 mb_debug(1, "read bitmap for group %u\n", group);
875 }
876
877 /* wait for I/O completion */
878 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
879 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
880 err = -EIO;
881 goto out;
882 }
883 }
884
885 first_block = page->index * blocks_per_page;
886 for (i = 0; i < blocks_per_page; i++) {
887 group = (first_block + i) >> 1;
888 if (group >= ngroups)
889 break;
890
891 if (!bh[group - first_group])
892 /* skip initialized uptodate buddy */
893 continue;
894
895 /*
896 * data carry information regarding this
897 * particular group in the format specified
898 * above
899 *
900 */
901 data = page_address(page) + (i * blocksize);
902 bitmap = bh[group - first_group]->b_data;
903
904 /*
905 * We place the buddy block and bitmap block
906 * close together
907 */
908 if ((first_block + i) & 1) {
909 /* this is block of buddy */
910 BUG_ON(incore == NULL);
911 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
912 group, page->index, i * blocksize);
913 trace_ext4_mb_buddy_bitmap_load(sb, group);
914 grinfo = ext4_get_group_info(sb, group);
915 grinfo->bb_fragments = 0;
916 memset(grinfo->bb_counters, 0,
917 sizeof(*grinfo->bb_counters) *
918 (sb->s_blocksize_bits+2));
919 /*
920 * incore got set to the group block bitmap below
921 */
922 ext4_lock_group(sb, group);
923 /* init the buddy */
924 memset(data, 0xff, blocksize);
925 ext4_mb_generate_buddy(sb, data, incore, group);
926 ext4_unlock_group(sb, group);
927 incore = NULL;
928 } else {
929 /* this is block of bitmap */
930 BUG_ON(incore != NULL);
931 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
932 group, page->index, i * blocksize);
933 trace_ext4_mb_bitmap_load(sb, group);
934
935 /* see comments in ext4_mb_put_pa() */
936 ext4_lock_group(sb, group);
937 memcpy(data, bitmap, blocksize);
938
939 /* mark all preallocated blks used in in-core bitmap */
940 ext4_mb_generate_from_pa(sb, data, group);
941 ext4_mb_generate_from_freelist(sb, data, group);
942 ext4_unlock_group(sb, group);
943
944 /* set incore so that the buddy information can be
945 * generated using this
946 */
947 incore = data;
948 }
949 }
950 SetPageUptodate(page);
951
952 out:
953 if (bh) {
954 for (i = 0; i < groups_per_page; i++)
955 brelse(bh[i]);
956 if (bh != &bhs)
957 kfree(bh);
958 }
959 return err;
960 }
961
962 /*
963 * Lock the buddy and bitmap pages. This make sure other parallel init_group
964 * on the same buddy page doesn't happen whild holding the buddy page lock.
965 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
966 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
967 */
968 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
969 ext4_group_t group, struct ext4_buddy *e4b)
970 {
971 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
972 int block, pnum, poff;
973 int blocks_per_page;
974 struct page *page;
975
976 e4b->bd_buddy_page = NULL;
977 e4b->bd_bitmap_page = NULL;
978
979 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
980 /*
981 * the buddy cache inode stores the block bitmap
982 * and buddy information in consecutive blocks.
983 * So for each group we need two blocks.
984 */
985 block = group * 2;
986 pnum = block / blocks_per_page;
987 poff = block % blocks_per_page;
988 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
989 if (!page)
990 return -EIO;
991 BUG_ON(page->mapping != inode->i_mapping);
992 e4b->bd_bitmap_page = page;
993 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
994
995 if (blocks_per_page >= 2) {
996 /* buddy and bitmap are on the same page */
997 return 0;
998 }
999
1000 block++;
1001 pnum = block / blocks_per_page;
1002 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1003 if (!page)
1004 return -EIO;
1005 BUG_ON(page->mapping != inode->i_mapping);
1006 e4b->bd_buddy_page = page;
1007 return 0;
1008 }
1009
1010 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1011 {
1012 if (e4b->bd_bitmap_page) {
1013 unlock_page(e4b->bd_bitmap_page);
1014 page_cache_release(e4b->bd_bitmap_page);
1015 }
1016 if (e4b->bd_buddy_page) {
1017 unlock_page(e4b->bd_buddy_page);
1018 page_cache_release(e4b->bd_buddy_page);
1019 }
1020 }
1021
1022 /*
1023 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1024 * block group lock of all groups for this page; do not hold the BG lock when
1025 * calling this routine!
1026 */
1027 static noinline_for_stack
1028 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1029 {
1030
1031 struct ext4_group_info *this_grp;
1032 struct ext4_buddy e4b;
1033 struct page *page;
1034 int ret = 0;
1035
1036 might_sleep();
1037 mb_debug(1, "init group %u\n", group);
1038 this_grp = ext4_get_group_info(sb, group);
1039 /*
1040 * This ensures that we don't reinit the buddy cache
1041 * page which map to the group from which we are already
1042 * allocating. If we are looking at the buddy cache we would
1043 * have taken a reference using ext4_mb_load_buddy and that
1044 * would have pinned buddy page to page cache.
1045 */
1046 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1047 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1048 /*
1049 * somebody initialized the group
1050 * return without doing anything
1051 */
1052 goto err;
1053 }
1054
1055 page = e4b.bd_bitmap_page;
1056 ret = ext4_mb_init_cache(page, NULL);
1057 if (ret)
1058 goto err;
1059 if (!PageUptodate(page)) {
1060 ret = -EIO;
1061 goto err;
1062 }
1063 mark_page_accessed(page);
1064
1065 if (e4b.bd_buddy_page == NULL) {
1066 /*
1067 * If both the bitmap and buddy are in
1068 * the same page we don't need to force
1069 * init the buddy
1070 */
1071 ret = 0;
1072 goto err;
1073 }
1074 /* init buddy cache */
1075 page = e4b.bd_buddy_page;
1076 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1077 if (ret)
1078 goto err;
1079 if (!PageUptodate(page)) {
1080 ret = -EIO;
1081 goto err;
1082 }
1083 mark_page_accessed(page);
1084 err:
1085 ext4_mb_put_buddy_page_lock(&e4b);
1086 return ret;
1087 }
1088
1089 /*
1090 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1091 * block group lock of all groups for this page; do not hold the BG lock when
1092 * calling this routine!
1093 */
1094 static noinline_for_stack int
1095 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1096 struct ext4_buddy *e4b)
1097 {
1098 int blocks_per_page;
1099 int block;
1100 int pnum;
1101 int poff;
1102 struct page *page;
1103 int ret;
1104 struct ext4_group_info *grp;
1105 struct ext4_sb_info *sbi = EXT4_SB(sb);
1106 struct inode *inode = sbi->s_buddy_cache;
1107
1108 might_sleep();
1109 mb_debug(1, "load group %u\n", group);
1110
1111 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1112 grp = ext4_get_group_info(sb, group);
1113
1114 e4b->bd_blkbits = sb->s_blocksize_bits;
1115 e4b->bd_info = grp;
1116 e4b->bd_sb = sb;
1117 e4b->bd_group = group;
1118 e4b->bd_buddy_page = NULL;
1119 e4b->bd_bitmap_page = NULL;
1120
1121 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1122 /*
1123 * we need full data about the group
1124 * to make a good selection
1125 */
1126 ret = ext4_mb_init_group(sb, group);
1127 if (ret)
1128 return ret;
1129 }
1130
1131 /*
1132 * the buddy cache inode stores the block bitmap
1133 * and buddy information in consecutive blocks.
1134 * So for each group we need two blocks.
1135 */
1136 block = group * 2;
1137 pnum = block / blocks_per_page;
1138 poff = block % blocks_per_page;
1139
1140 /* we could use find_or_create_page(), but it locks page
1141 * what we'd like to avoid in fast path ... */
1142 page = find_get_page(inode->i_mapping, pnum);
1143 if (page == NULL || !PageUptodate(page)) {
1144 if (page)
1145 /*
1146 * drop the page reference and try
1147 * to get the page with lock. If we
1148 * are not uptodate that implies
1149 * somebody just created the page but
1150 * is yet to initialize the same. So
1151 * wait for it to initialize.
1152 */
1153 page_cache_release(page);
1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155 if (page) {
1156 BUG_ON(page->mapping != inode->i_mapping);
1157 if (!PageUptodate(page)) {
1158 ret = ext4_mb_init_cache(page, NULL);
1159 if (ret) {
1160 unlock_page(page);
1161 goto err;
1162 }
1163 mb_cmp_bitmaps(e4b, page_address(page) +
1164 (poff * sb->s_blocksize));
1165 }
1166 unlock_page(page);
1167 }
1168 }
1169 if (page == NULL || !PageUptodate(page)) {
1170 ret = -EIO;
1171 goto err;
1172 }
1173 e4b->bd_bitmap_page = page;
1174 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1175 mark_page_accessed(page);
1176
1177 block++;
1178 pnum = block / blocks_per_page;
1179 poff = block % blocks_per_page;
1180
1181 page = find_get_page(inode->i_mapping, pnum);
1182 if (page == NULL || !PageUptodate(page)) {
1183 if (page)
1184 page_cache_release(page);
1185 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1186 if (page) {
1187 BUG_ON(page->mapping != inode->i_mapping);
1188 if (!PageUptodate(page)) {
1189 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1190 if (ret) {
1191 unlock_page(page);
1192 goto err;
1193 }
1194 }
1195 unlock_page(page);
1196 }
1197 }
1198 if (page == NULL || !PageUptodate(page)) {
1199 ret = -EIO;
1200 goto err;
1201 }
1202 e4b->bd_buddy_page = page;
1203 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1204 mark_page_accessed(page);
1205
1206 BUG_ON(e4b->bd_bitmap_page == NULL);
1207 BUG_ON(e4b->bd_buddy_page == NULL);
1208
1209 return 0;
1210
1211 err:
1212 if (page)
1213 page_cache_release(page);
1214 if (e4b->bd_bitmap_page)
1215 page_cache_release(e4b->bd_bitmap_page);
1216 if (e4b->bd_buddy_page)
1217 page_cache_release(e4b->bd_buddy_page);
1218 e4b->bd_buddy = NULL;
1219 e4b->bd_bitmap = NULL;
1220 return ret;
1221 }
1222
1223 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1224 {
1225 if (e4b->bd_bitmap_page)
1226 page_cache_release(e4b->bd_bitmap_page);
1227 if (e4b->bd_buddy_page)
1228 page_cache_release(e4b->bd_buddy_page);
1229 }
1230
1231
1232 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1233 {
1234 int order = 1;
1235 void *bb;
1236
1237 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1238 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1239
1240 bb = e4b->bd_buddy;
1241 while (order <= e4b->bd_blkbits + 1) {
1242 block = block >> 1;
1243 if (!mb_test_bit(block, bb)) {
1244 /* this block is part of buddy of order 'order' */
1245 return order;
1246 }
1247 bb += 1 << (e4b->bd_blkbits - order);
1248 order++;
1249 }
1250 return 0;
1251 }
1252
1253 static void mb_clear_bits(void *bm, int cur, int len)
1254 {
1255 __u32 *addr;
1256
1257 len = cur + len;
1258 while (cur < len) {
1259 if ((cur & 31) == 0 && (len - cur) >= 32) {
1260 /* fast path: clear whole word at once */
1261 addr = bm + (cur >> 3);
1262 *addr = 0;
1263 cur += 32;
1264 continue;
1265 }
1266 mb_clear_bit(cur, bm);
1267 cur++;
1268 }
1269 }
1270
1271 /* clear bits in given range
1272 * will return first found zero bit if any, -1 otherwise
1273 */
1274 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1275 {
1276 __u32 *addr;
1277 int zero_bit = -1;
1278
1279 len = cur + len;
1280 while (cur < len) {
1281 if ((cur & 31) == 0 && (len - cur) >= 32) {
1282 /* fast path: clear whole word at once */
1283 addr = bm + (cur >> 3);
1284 if (*addr != (__u32)(-1) && zero_bit == -1)
1285 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1286 *addr = 0;
1287 cur += 32;
1288 continue;
1289 }
1290 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1291 zero_bit = cur;
1292 cur++;
1293 }
1294
1295 return zero_bit;
1296 }
1297
1298 void ext4_set_bits(void *bm, int cur, int len)
1299 {
1300 __u32 *addr;
1301
1302 len = cur + len;
1303 while (cur < len) {
1304 if ((cur & 31) == 0 && (len - cur) >= 32) {
1305 /* fast path: set whole word at once */
1306 addr = bm + (cur >> 3);
1307 *addr = 0xffffffff;
1308 cur += 32;
1309 continue;
1310 }
1311 mb_set_bit(cur, bm);
1312 cur++;
1313 }
1314 }
1315
1316 /*
1317 * _________________________________________________________________ */
1318
1319 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1320 {
1321 if (mb_test_bit(*bit + side, bitmap)) {
1322 mb_clear_bit(*bit, bitmap);
1323 (*bit) -= side;
1324 return 1;
1325 }
1326 else {
1327 (*bit) += side;
1328 mb_set_bit(*bit, bitmap);
1329 return -1;
1330 }
1331 }
1332
1333 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1334 {
1335 int max;
1336 int order = 1;
1337 void *buddy = mb_find_buddy(e4b, order, &max);
1338
1339 while (buddy) {
1340 void *buddy2;
1341
1342 /* Bits in range [first; last] are known to be set since
1343 * corresponding blocks were allocated. Bits in range
1344 * (first; last) will stay set because they form buddies on
1345 * upper layer. We just deal with borders if they don't
1346 * align with upper layer and then go up.
1347 * Releasing entire group is all about clearing
1348 * single bit of highest order buddy.
1349 */
1350
1351 /* Example:
1352 * ---------------------------------
1353 * | 1 | 1 | 1 | 1 |
1354 * ---------------------------------
1355 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1356 * ---------------------------------
1357 * 0 1 2 3 4 5 6 7
1358 * \_____________________/
1359 *
1360 * Neither [1] nor [6] is aligned to above layer.
1361 * Left neighbour [0] is free, so mark it busy,
1362 * decrease bb_counters and extend range to
1363 * [0; 6]
1364 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1365 * mark [6] free, increase bb_counters and shrink range to
1366 * [0; 5].
1367 * Then shift range to [0; 2], go up and do the same.
1368 */
1369
1370
1371 if (first & 1)
1372 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1373 if (!(last & 1))
1374 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1375 if (first > last)
1376 break;
1377 order++;
1378
1379 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1380 mb_clear_bits(buddy, first, last - first + 1);
1381 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1382 break;
1383 }
1384 first >>= 1;
1385 last >>= 1;
1386 buddy = buddy2;
1387 }
1388 }
1389
1390 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1391 int first, int count)
1392 {
1393 int left_is_free = 0;
1394 int right_is_free = 0;
1395 int block;
1396 int last = first + count - 1;
1397 struct super_block *sb = e4b->bd_sb;
1398
1399 if (WARN_ON(count == 0))
1400 return;
1401 BUG_ON(last >= (sb->s_blocksize << 3));
1402 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1403 mb_check_buddy(e4b);
1404 mb_free_blocks_double(inode, e4b, first, count);
1405
1406 e4b->bd_info->bb_free += count;
1407 if (first < e4b->bd_info->bb_first_free)
1408 e4b->bd_info->bb_first_free = first;
1409
1410 /* access memory sequentially: check left neighbour,
1411 * clear range and then check right neighbour
1412 */
1413 if (first != 0)
1414 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1415 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1416 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1417 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1418
1419 if (unlikely(block != -1)) {
1420 ext4_fsblk_t blocknr;
1421
1422 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1423 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1424 ext4_grp_locked_error(sb, e4b->bd_group,
1425 inode ? inode->i_ino : 0,
1426 blocknr,
1427 "freeing already freed block "
1428 "(bit %u)", block);
1429 mb_regenerate_buddy(e4b);
1430 goto done;
1431 }
1432
1433 /* let's maintain fragments counter */
1434 if (left_is_free && right_is_free)
1435 e4b->bd_info->bb_fragments--;
1436 else if (!left_is_free && !right_is_free)
1437 e4b->bd_info->bb_fragments++;
1438
1439 /* buddy[0] == bd_bitmap is a special case, so handle
1440 * it right away and let mb_buddy_mark_free stay free of
1441 * zero order checks.
1442 * Check if neighbours are to be coaleasced,
1443 * adjust bitmap bb_counters and borders appropriately.
1444 */
1445 if (first & 1) {
1446 first += !left_is_free;
1447 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1448 }
1449 if (!(last & 1)) {
1450 last -= !right_is_free;
1451 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1452 }
1453
1454 if (first <= last)
1455 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1456
1457 done:
1458 mb_set_largest_free_order(sb, e4b->bd_info);
1459 mb_check_buddy(e4b);
1460 }
1461
1462 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1463 int needed, struct ext4_free_extent *ex)
1464 {
1465 int next = block;
1466 int max, order;
1467 void *buddy;
1468
1469 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1470 BUG_ON(ex == NULL);
1471
1472 buddy = mb_find_buddy(e4b, 0, &max);
1473 BUG_ON(buddy == NULL);
1474 BUG_ON(block >= max);
1475 if (mb_test_bit(block, buddy)) {
1476 ex->fe_len = 0;
1477 ex->fe_start = 0;
1478 ex->fe_group = 0;
1479 return 0;
1480 }
1481
1482 /* find actual order */
1483 order = mb_find_order_for_block(e4b, block);
1484 block = block >> order;
1485
1486 ex->fe_len = 1 << order;
1487 ex->fe_start = block << order;
1488 ex->fe_group = e4b->bd_group;
1489
1490 /* calc difference from given start */
1491 next = next - ex->fe_start;
1492 ex->fe_len -= next;
1493 ex->fe_start += next;
1494
1495 while (needed > ex->fe_len &&
1496 mb_find_buddy(e4b, order, &max)) {
1497
1498 if (block + 1 >= max)
1499 break;
1500
1501 next = (block + 1) * (1 << order);
1502 if (mb_test_bit(next, e4b->bd_bitmap))
1503 break;
1504
1505 order = mb_find_order_for_block(e4b, next);
1506
1507 block = next >> order;
1508 ex->fe_len += 1 << order;
1509 }
1510
1511 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1512 return ex->fe_len;
1513 }
1514
1515 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1516 {
1517 int ord;
1518 int mlen = 0;
1519 int max = 0;
1520 int cur;
1521 int start = ex->fe_start;
1522 int len = ex->fe_len;
1523 unsigned ret = 0;
1524 int len0 = len;
1525 void *buddy;
1526
1527 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1528 BUG_ON(e4b->bd_group != ex->fe_group);
1529 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1530 mb_check_buddy(e4b);
1531 mb_mark_used_double(e4b, start, len);
1532
1533 e4b->bd_info->bb_free -= len;
1534 if (e4b->bd_info->bb_first_free == start)
1535 e4b->bd_info->bb_first_free += len;
1536
1537 /* let's maintain fragments counter */
1538 if (start != 0)
1539 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1540 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1541 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1542 if (mlen && max)
1543 e4b->bd_info->bb_fragments++;
1544 else if (!mlen && !max)
1545 e4b->bd_info->bb_fragments--;
1546
1547 /* let's maintain buddy itself */
1548 while (len) {
1549 ord = mb_find_order_for_block(e4b, start);
1550
1551 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1552 /* the whole chunk may be allocated at once! */
1553 mlen = 1 << ord;
1554 buddy = mb_find_buddy(e4b, ord, &max);
1555 BUG_ON((start >> ord) >= max);
1556 mb_set_bit(start >> ord, buddy);
1557 e4b->bd_info->bb_counters[ord]--;
1558 start += mlen;
1559 len -= mlen;
1560 BUG_ON(len < 0);
1561 continue;
1562 }
1563
1564 /* store for history */
1565 if (ret == 0)
1566 ret = len | (ord << 16);
1567
1568 /* we have to split large buddy */
1569 BUG_ON(ord <= 0);
1570 buddy = mb_find_buddy(e4b, ord, &max);
1571 mb_set_bit(start >> ord, buddy);
1572 e4b->bd_info->bb_counters[ord]--;
1573
1574 ord--;
1575 cur = (start >> ord) & ~1U;
1576 buddy = mb_find_buddy(e4b, ord, &max);
1577 mb_clear_bit(cur, buddy);
1578 mb_clear_bit(cur + 1, buddy);
1579 e4b->bd_info->bb_counters[ord]++;
1580 e4b->bd_info->bb_counters[ord]++;
1581 }
1582 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1583
1584 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1585 mb_check_buddy(e4b);
1586
1587 return ret;
1588 }
1589
1590 /*
1591 * Must be called under group lock!
1592 */
1593 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1594 struct ext4_buddy *e4b)
1595 {
1596 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1597 int ret;
1598
1599 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1600 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1601
1602 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1603 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1604 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1605
1606 /* preallocation can change ac_b_ex, thus we store actually
1607 * allocated blocks for history */
1608 ac->ac_f_ex = ac->ac_b_ex;
1609
1610 ac->ac_status = AC_STATUS_FOUND;
1611 ac->ac_tail = ret & 0xffff;
1612 ac->ac_buddy = ret >> 16;
1613
1614 /*
1615 * take the page reference. We want the page to be pinned
1616 * so that we don't get a ext4_mb_init_cache_call for this
1617 * group until we update the bitmap. That would mean we
1618 * double allocate blocks. The reference is dropped
1619 * in ext4_mb_release_context
1620 */
1621 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1622 get_page(ac->ac_bitmap_page);
1623 ac->ac_buddy_page = e4b->bd_buddy_page;
1624 get_page(ac->ac_buddy_page);
1625 /* store last allocated for subsequent stream allocation */
1626 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1627 spin_lock(&sbi->s_md_lock);
1628 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1629 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1630 spin_unlock(&sbi->s_md_lock);
1631 }
1632 }
1633
1634 /*
1635 * regular allocator, for general purposes allocation
1636 */
1637
1638 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1639 struct ext4_buddy *e4b,
1640 int finish_group)
1641 {
1642 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1643 struct ext4_free_extent *bex = &ac->ac_b_ex;
1644 struct ext4_free_extent *gex = &ac->ac_g_ex;
1645 struct ext4_free_extent ex;
1646 int max;
1647
1648 if (ac->ac_status == AC_STATUS_FOUND)
1649 return;
1650 /*
1651 * We don't want to scan for a whole year
1652 */
1653 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1654 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1655 ac->ac_status = AC_STATUS_BREAK;
1656 return;
1657 }
1658
1659 /*
1660 * Haven't found good chunk so far, let's continue
1661 */
1662 if (bex->fe_len < gex->fe_len)
1663 return;
1664
1665 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1666 && bex->fe_group == e4b->bd_group) {
1667 /* recheck chunk's availability - we don't know
1668 * when it was found (within this lock-unlock
1669 * period or not) */
1670 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1671 if (max >= gex->fe_len) {
1672 ext4_mb_use_best_found(ac, e4b);
1673 return;
1674 }
1675 }
1676 }
1677
1678 /*
1679 * The routine checks whether found extent is good enough. If it is,
1680 * then the extent gets marked used and flag is set to the context
1681 * to stop scanning. Otherwise, the extent is compared with the
1682 * previous found extent and if new one is better, then it's stored
1683 * in the context. Later, the best found extent will be used, if
1684 * mballoc can't find good enough extent.
1685 *
1686 * FIXME: real allocation policy is to be designed yet!
1687 */
1688 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1689 struct ext4_free_extent *ex,
1690 struct ext4_buddy *e4b)
1691 {
1692 struct ext4_free_extent *bex = &ac->ac_b_ex;
1693 struct ext4_free_extent *gex = &ac->ac_g_ex;
1694
1695 BUG_ON(ex->fe_len <= 0);
1696 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1697 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1698 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1699
1700 ac->ac_found++;
1701
1702 /*
1703 * The special case - take what you catch first
1704 */
1705 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1706 *bex = *ex;
1707 ext4_mb_use_best_found(ac, e4b);
1708 return;
1709 }
1710
1711 /*
1712 * Let's check whether the chuck is good enough
1713 */
1714 if (ex->fe_len == gex->fe_len) {
1715 *bex = *ex;
1716 ext4_mb_use_best_found(ac, e4b);
1717 return;
1718 }
1719
1720 /*
1721 * If this is first found extent, just store it in the context
1722 */
1723 if (bex->fe_len == 0) {
1724 *bex = *ex;
1725 return;
1726 }
1727
1728 /*
1729 * If new found extent is better, store it in the context
1730 */
1731 if (bex->fe_len < gex->fe_len) {
1732 /* if the request isn't satisfied, any found extent
1733 * larger than previous best one is better */
1734 if (ex->fe_len > bex->fe_len)
1735 *bex = *ex;
1736 } else if (ex->fe_len > gex->fe_len) {
1737 /* if the request is satisfied, then we try to find
1738 * an extent that still satisfy the request, but is
1739 * smaller than previous one */
1740 if (ex->fe_len < bex->fe_len)
1741 *bex = *ex;
1742 }
1743
1744 ext4_mb_check_limits(ac, e4b, 0);
1745 }
1746
1747 static noinline_for_stack
1748 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1749 struct ext4_buddy *e4b)
1750 {
1751 struct ext4_free_extent ex = ac->ac_b_ex;
1752 ext4_group_t group = ex.fe_group;
1753 int max;
1754 int err;
1755
1756 BUG_ON(ex.fe_len <= 0);
1757 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1758 if (err)
1759 return err;
1760
1761 ext4_lock_group(ac->ac_sb, group);
1762 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1763
1764 if (max > 0) {
1765 ac->ac_b_ex = ex;
1766 ext4_mb_use_best_found(ac, e4b);
1767 }
1768
1769 ext4_unlock_group(ac->ac_sb, group);
1770 ext4_mb_unload_buddy(e4b);
1771
1772 return 0;
1773 }
1774
1775 static noinline_for_stack
1776 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1777 struct ext4_buddy *e4b)
1778 {
1779 ext4_group_t group = ac->ac_g_ex.fe_group;
1780 int max;
1781 int err;
1782 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1783 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1784 struct ext4_free_extent ex;
1785
1786 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1787 return 0;
1788 if (grp->bb_free == 0)
1789 return 0;
1790
1791 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1792 if (err)
1793 return err;
1794
1795 ext4_lock_group(ac->ac_sb, group);
1796 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1797 ac->ac_g_ex.fe_len, &ex);
1798
1799 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1800 ext4_fsblk_t start;
1801
1802 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1803 ex.fe_start;
1804 /* use do_div to get remainder (would be 64-bit modulo) */
1805 if (do_div(start, sbi->s_stripe) == 0) {
1806 ac->ac_found++;
1807 ac->ac_b_ex = ex;
1808 ext4_mb_use_best_found(ac, e4b);
1809 }
1810 } else if (max >= ac->ac_g_ex.fe_len) {
1811 BUG_ON(ex.fe_len <= 0);
1812 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1813 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1814 ac->ac_found++;
1815 ac->ac_b_ex = ex;
1816 ext4_mb_use_best_found(ac, e4b);
1817 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1818 /* Sometimes, caller may want to merge even small
1819 * number of blocks to an existing extent */
1820 BUG_ON(ex.fe_len <= 0);
1821 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1822 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1823 ac->ac_found++;
1824 ac->ac_b_ex = ex;
1825 ext4_mb_use_best_found(ac, e4b);
1826 }
1827 ext4_unlock_group(ac->ac_sb, group);
1828 ext4_mb_unload_buddy(e4b);
1829
1830 return 0;
1831 }
1832
1833 /*
1834 * The routine scans buddy structures (not bitmap!) from given order
1835 * to max order and tries to find big enough chunk to satisfy the req
1836 */
1837 static noinline_for_stack
1838 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1839 struct ext4_buddy *e4b)
1840 {
1841 struct super_block *sb = ac->ac_sb;
1842 struct ext4_group_info *grp = e4b->bd_info;
1843 void *buddy;
1844 int i;
1845 int k;
1846 int max;
1847
1848 BUG_ON(ac->ac_2order <= 0);
1849 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1850 if (grp->bb_counters[i] == 0)
1851 continue;
1852
1853 buddy = mb_find_buddy(e4b, i, &max);
1854 BUG_ON(buddy == NULL);
1855
1856 k = mb_find_next_zero_bit(buddy, max, 0);
1857 BUG_ON(k >= max);
1858
1859 ac->ac_found++;
1860
1861 ac->ac_b_ex.fe_len = 1 << i;
1862 ac->ac_b_ex.fe_start = k << i;
1863 ac->ac_b_ex.fe_group = e4b->bd_group;
1864
1865 ext4_mb_use_best_found(ac, e4b);
1866
1867 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1868
1869 if (EXT4_SB(sb)->s_mb_stats)
1870 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1871
1872 break;
1873 }
1874 }
1875
1876 /*
1877 * The routine scans the group and measures all found extents.
1878 * In order to optimize scanning, caller must pass number of
1879 * free blocks in the group, so the routine can know upper limit.
1880 */
1881 static noinline_for_stack
1882 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1883 struct ext4_buddy *e4b)
1884 {
1885 struct super_block *sb = ac->ac_sb;
1886 void *bitmap = e4b->bd_bitmap;
1887 struct ext4_free_extent ex;
1888 int i;
1889 int free;
1890
1891 free = e4b->bd_info->bb_free;
1892 BUG_ON(free <= 0);
1893
1894 i = e4b->bd_info->bb_first_free;
1895
1896 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1897 i = mb_find_next_zero_bit(bitmap,
1898 EXT4_CLUSTERS_PER_GROUP(sb), i);
1899 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1900 /*
1901 * IF we have corrupt bitmap, we won't find any
1902 * free blocks even though group info says we
1903 * we have free blocks
1904 */
1905 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1906 "%d free clusters as per "
1907 "group info. But bitmap says 0",
1908 free);
1909 break;
1910 }
1911
1912 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1913 BUG_ON(ex.fe_len <= 0);
1914 if (free < ex.fe_len) {
1915 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1916 "%d free clusters as per "
1917 "group info. But got %d blocks",
1918 free, ex.fe_len);
1919 /*
1920 * The number of free blocks differs. This mostly
1921 * indicate that the bitmap is corrupt. So exit
1922 * without claiming the space.
1923 */
1924 break;
1925 }
1926
1927 ext4_mb_measure_extent(ac, &ex, e4b);
1928
1929 i += ex.fe_len;
1930 free -= ex.fe_len;
1931 }
1932
1933 ext4_mb_check_limits(ac, e4b, 1);
1934 }
1935
1936 /*
1937 * This is a special case for storages like raid5
1938 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1939 */
1940 static noinline_for_stack
1941 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1942 struct ext4_buddy *e4b)
1943 {
1944 struct super_block *sb = ac->ac_sb;
1945 struct ext4_sb_info *sbi = EXT4_SB(sb);
1946 void *bitmap = e4b->bd_bitmap;
1947 struct ext4_free_extent ex;
1948 ext4_fsblk_t first_group_block;
1949 ext4_fsblk_t a;
1950 ext4_grpblk_t i;
1951 int max;
1952
1953 BUG_ON(sbi->s_stripe == 0);
1954
1955 /* find first stripe-aligned block in group */
1956 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1957
1958 a = first_group_block + sbi->s_stripe - 1;
1959 do_div(a, sbi->s_stripe);
1960 i = (a * sbi->s_stripe) - first_group_block;
1961
1962 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1963 if (!mb_test_bit(i, bitmap)) {
1964 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1965 if (max >= sbi->s_stripe) {
1966 ac->ac_found++;
1967 ac->ac_b_ex = ex;
1968 ext4_mb_use_best_found(ac, e4b);
1969 break;
1970 }
1971 }
1972 i += sbi->s_stripe;
1973 }
1974 }
1975
1976 /* This is now called BEFORE we load the buddy bitmap. */
1977 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1978 ext4_group_t group, int cr)
1979 {
1980 unsigned free, fragments;
1981 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1982 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1983
1984 BUG_ON(cr < 0 || cr >= 4);
1985
1986 free = grp->bb_free;
1987 if (free == 0)
1988 return 0;
1989 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
1990 return 0;
1991
1992 /* We only do this if the grp has never been initialized */
1993 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1994 int ret = ext4_mb_init_group(ac->ac_sb, group);
1995 if (ret)
1996 return 0;
1997 }
1998
1999 fragments = grp->bb_fragments;
2000 if (fragments == 0)
2001 return 0;
2002
2003 switch (cr) {
2004 case 0:
2005 BUG_ON(ac->ac_2order == 0);
2006
2007 /* Avoid using the first bg of a flexgroup for data files */
2008 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2009 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2010 ((group % flex_size) == 0))
2011 return 0;
2012
2013 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2014 (free / fragments) >= ac->ac_g_ex.fe_len)
2015 return 1;
2016
2017 if (grp->bb_largest_free_order < ac->ac_2order)
2018 return 0;
2019
2020 return 1;
2021 case 1:
2022 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2023 return 1;
2024 break;
2025 case 2:
2026 if (free >= ac->ac_g_ex.fe_len)
2027 return 1;
2028 break;
2029 case 3:
2030 return 1;
2031 default:
2032 BUG();
2033 }
2034
2035 return 0;
2036 }
2037
2038 static noinline_for_stack int
2039 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2040 {
2041 ext4_group_t ngroups, group, i;
2042 int cr;
2043 int err = 0;
2044 struct ext4_sb_info *sbi;
2045 struct super_block *sb;
2046 struct ext4_buddy e4b;
2047
2048 sb = ac->ac_sb;
2049 sbi = EXT4_SB(sb);
2050 ngroups = ext4_get_groups_count(sb);
2051 /* non-extent files are limited to low blocks/groups */
2052 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2053 ngroups = sbi->s_blockfile_groups;
2054
2055 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2056
2057 /* first, try the goal */
2058 err = ext4_mb_find_by_goal(ac, &e4b);
2059 if (err || ac->ac_status == AC_STATUS_FOUND)
2060 goto out;
2061
2062 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2063 goto out;
2064
2065 /*
2066 * ac->ac2_order is set only if the fe_len is a power of 2
2067 * if ac2_order is set we also set criteria to 0 so that we
2068 * try exact allocation using buddy.
2069 */
2070 i = fls(ac->ac_g_ex.fe_len);
2071 ac->ac_2order = 0;
2072 /*
2073 * We search using buddy data only if the order of the request
2074 * is greater than equal to the sbi_s_mb_order2_reqs
2075 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2076 */
2077 if (i >= sbi->s_mb_order2_reqs) {
2078 /*
2079 * This should tell if fe_len is exactly power of 2
2080 */
2081 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2082 ac->ac_2order = i - 1;
2083 }
2084
2085 /* if stream allocation is enabled, use global goal */
2086 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2087 /* TBD: may be hot point */
2088 spin_lock(&sbi->s_md_lock);
2089 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2090 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2091 spin_unlock(&sbi->s_md_lock);
2092 }
2093
2094 /* Let's just scan groups to find more-less suitable blocks */
2095 cr = ac->ac_2order ? 0 : 1;
2096 /*
2097 * cr == 0 try to get exact allocation,
2098 * cr == 3 try to get anything
2099 */
2100 repeat:
2101 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2102 ac->ac_criteria = cr;
2103 /*
2104 * searching for the right group start
2105 * from the goal value specified
2106 */
2107 group = ac->ac_g_ex.fe_group;
2108
2109 for (i = 0; i < ngroups; group++, i++) {
2110 /*
2111 * Artificially restricted ngroups for non-extent
2112 * files makes group > ngroups possible on first loop.
2113 */
2114 if (group >= ngroups)
2115 group = 0;
2116
2117 /* This now checks without needing the buddy page */
2118 if (!ext4_mb_good_group(ac, group, cr))
2119 continue;
2120
2121 err = ext4_mb_load_buddy(sb, group, &e4b);
2122 if (err)
2123 goto out;
2124
2125 ext4_lock_group(sb, group);
2126
2127 /*
2128 * We need to check again after locking the
2129 * block group
2130 */
2131 if (!ext4_mb_good_group(ac, group, cr)) {
2132 ext4_unlock_group(sb, group);
2133 ext4_mb_unload_buddy(&e4b);
2134 continue;
2135 }
2136
2137 ac->ac_groups_scanned++;
2138 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2139 ext4_mb_simple_scan_group(ac, &e4b);
2140 else if (cr == 1 && sbi->s_stripe &&
2141 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2142 ext4_mb_scan_aligned(ac, &e4b);
2143 else
2144 ext4_mb_complex_scan_group(ac, &e4b);
2145
2146 ext4_unlock_group(sb, group);
2147 ext4_mb_unload_buddy(&e4b);
2148
2149 if (ac->ac_status != AC_STATUS_CONTINUE)
2150 break;
2151 }
2152 }
2153
2154 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2155 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2156 /*
2157 * We've been searching too long. Let's try to allocate
2158 * the best chunk we've found so far
2159 */
2160
2161 ext4_mb_try_best_found(ac, &e4b);
2162 if (ac->ac_status != AC_STATUS_FOUND) {
2163 /*
2164 * Someone more lucky has already allocated it.
2165 * The only thing we can do is just take first
2166 * found block(s)
2167 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2168 */
2169 ac->ac_b_ex.fe_group = 0;
2170 ac->ac_b_ex.fe_start = 0;
2171 ac->ac_b_ex.fe_len = 0;
2172 ac->ac_status = AC_STATUS_CONTINUE;
2173 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2174 cr = 3;
2175 atomic_inc(&sbi->s_mb_lost_chunks);
2176 goto repeat;
2177 }
2178 }
2179 out:
2180 return err;
2181 }
2182
2183 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2184 {
2185 struct super_block *sb = seq->private;
2186 ext4_group_t group;
2187
2188 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2189 return NULL;
2190 group = *pos + 1;
2191 return (void *) ((unsigned long) group);
2192 }
2193
2194 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2195 {
2196 struct super_block *sb = seq->private;
2197 ext4_group_t group;
2198
2199 ++*pos;
2200 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2201 return NULL;
2202 group = *pos + 1;
2203 return (void *) ((unsigned long) group);
2204 }
2205
2206 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2207 {
2208 struct super_block *sb = seq->private;
2209 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2210 int i;
2211 int err, buddy_loaded = 0;
2212 struct ext4_buddy e4b;
2213 struct ext4_group_info *grinfo;
2214 struct sg {
2215 struct ext4_group_info info;
2216 ext4_grpblk_t counters[16];
2217 } sg;
2218
2219 group--;
2220 if (group == 0)
2221 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2222 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2223 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2224 "group", "free", "frags", "first",
2225 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2226 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2227
2228 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2229 sizeof(struct ext4_group_info);
2230 grinfo = ext4_get_group_info(sb, group);
2231 /* Load the group info in memory only if not already loaded. */
2232 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2233 err = ext4_mb_load_buddy(sb, group, &e4b);
2234 if (err) {
2235 seq_printf(seq, "#%-5u: I/O error\n", group);
2236 return 0;
2237 }
2238 buddy_loaded = 1;
2239 }
2240
2241 memcpy(&sg, ext4_get_group_info(sb, group), i);
2242
2243 if (buddy_loaded)
2244 ext4_mb_unload_buddy(&e4b);
2245
2246 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2247 sg.info.bb_fragments, sg.info.bb_first_free);
2248 for (i = 0; i <= 13; i++)
2249 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2250 sg.info.bb_counters[i] : 0);
2251 seq_printf(seq, " ]\n");
2252
2253 return 0;
2254 }
2255
2256 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2257 {
2258 }
2259
2260 static const struct seq_operations ext4_mb_seq_groups_ops = {
2261 .start = ext4_mb_seq_groups_start,
2262 .next = ext4_mb_seq_groups_next,
2263 .stop = ext4_mb_seq_groups_stop,
2264 .show = ext4_mb_seq_groups_show,
2265 };
2266
2267 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2268 {
2269 struct super_block *sb = PDE_DATA(inode);
2270 int rc;
2271
2272 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2273 if (rc == 0) {
2274 struct seq_file *m = file->private_data;
2275 m->private = sb;
2276 }
2277 return rc;
2278
2279 }
2280
2281 static const struct file_operations ext4_mb_seq_groups_fops = {
2282 .owner = THIS_MODULE,
2283 .open = ext4_mb_seq_groups_open,
2284 .read = seq_read,
2285 .llseek = seq_lseek,
2286 .release = seq_release,
2287 };
2288
2289 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2290 {
2291 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2292 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2293
2294 BUG_ON(!cachep);
2295 return cachep;
2296 }
2297
2298 /*
2299 * Allocate the top-level s_group_info array for the specified number
2300 * of groups
2301 */
2302 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2303 {
2304 struct ext4_sb_info *sbi = EXT4_SB(sb);
2305 unsigned size;
2306 struct ext4_group_info ***new_groupinfo;
2307
2308 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2309 EXT4_DESC_PER_BLOCK_BITS(sb);
2310 if (size <= sbi->s_group_info_size)
2311 return 0;
2312
2313 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2314 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2315 if (!new_groupinfo) {
2316 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2317 return -ENOMEM;
2318 }
2319 if (sbi->s_group_info) {
2320 memcpy(new_groupinfo, sbi->s_group_info,
2321 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2322 ext4_kvfree(sbi->s_group_info);
2323 }
2324 sbi->s_group_info = new_groupinfo;
2325 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2326 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2327 sbi->s_group_info_size);
2328 return 0;
2329 }
2330
2331 /* Create and initialize ext4_group_info data for the given group. */
2332 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2333 struct ext4_group_desc *desc)
2334 {
2335 int i;
2336 int metalen = 0;
2337 struct ext4_sb_info *sbi = EXT4_SB(sb);
2338 struct ext4_group_info **meta_group_info;
2339 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2340
2341 /*
2342 * First check if this group is the first of a reserved block.
2343 * If it's true, we have to allocate a new table of pointers
2344 * to ext4_group_info structures
2345 */
2346 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2347 metalen = sizeof(*meta_group_info) <<
2348 EXT4_DESC_PER_BLOCK_BITS(sb);
2349 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2350 if (meta_group_info == NULL) {
2351 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2352 "for a buddy group");
2353 goto exit_meta_group_info;
2354 }
2355 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2356 meta_group_info;
2357 }
2358
2359 meta_group_info =
2360 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2361 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2362
2363 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2364 if (meta_group_info[i] == NULL) {
2365 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2366 goto exit_group_info;
2367 }
2368 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2369 &(meta_group_info[i]->bb_state));
2370
2371 /*
2372 * initialize bb_free to be able to skip
2373 * empty groups without initialization
2374 */
2375 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2376 meta_group_info[i]->bb_free =
2377 ext4_free_clusters_after_init(sb, group, desc);
2378 } else {
2379 meta_group_info[i]->bb_free =
2380 ext4_free_group_clusters(sb, desc);
2381 }
2382
2383 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2384 init_rwsem(&meta_group_info[i]->alloc_sem);
2385 meta_group_info[i]->bb_free_root = RB_ROOT;
2386 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2387
2388 #ifdef DOUBLE_CHECK
2389 {
2390 struct buffer_head *bh;
2391 meta_group_info[i]->bb_bitmap =
2392 kmalloc(sb->s_blocksize, GFP_KERNEL);
2393 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2394 bh = ext4_read_block_bitmap(sb, group);
2395 BUG_ON(bh == NULL);
2396 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2397 sb->s_blocksize);
2398 put_bh(bh);
2399 }
2400 #endif
2401
2402 return 0;
2403
2404 exit_group_info:
2405 /* If a meta_group_info table has been allocated, release it now */
2406 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2407 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2408 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2409 }
2410 exit_meta_group_info:
2411 return -ENOMEM;
2412 } /* ext4_mb_add_groupinfo */
2413
2414 static int ext4_mb_init_backend(struct super_block *sb)
2415 {
2416 ext4_group_t ngroups = ext4_get_groups_count(sb);
2417 ext4_group_t i;
2418 struct ext4_sb_info *sbi = EXT4_SB(sb);
2419 int err;
2420 struct ext4_group_desc *desc;
2421 struct kmem_cache *cachep;
2422
2423 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2424 if (err)
2425 return err;
2426
2427 sbi->s_buddy_cache = new_inode(sb);
2428 if (sbi->s_buddy_cache == NULL) {
2429 ext4_msg(sb, KERN_ERR, "can't get new inode");
2430 goto err_freesgi;
2431 }
2432 /* To avoid potentially colliding with an valid on-disk inode number,
2433 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2434 * not in the inode hash, so it should never be found by iget(), but
2435 * this will avoid confusion if it ever shows up during debugging. */
2436 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2437 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2438 for (i = 0; i < ngroups; i++) {
2439 desc = ext4_get_group_desc(sb, i, NULL);
2440 if (desc == NULL) {
2441 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2442 goto err_freebuddy;
2443 }
2444 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2445 goto err_freebuddy;
2446 }
2447
2448 return 0;
2449
2450 err_freebuddy:
2451 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2452 while (i-- > 0)
2453 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2454 i = sbi->s_group_info_size;
2455 while (i-- > 0)
2456 kfree(sbi->s_group_info[i]);
2457 iput(sbi->s_buddy_cache);
2458 err_freesgi:
2459 ext4_kvfree(sbi->s_group_info);
2460 return -ENOMEM;
2461 }
2462
2463 static void ext4_groupinfo_destroy_slabs(void)
2464 {
2465 int i;
2466
2467 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2468 if (ext4_groupinfo_caches[i])
2469 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2470 ext4_groupinfo_caches[i] = NULL;
2471 }
2472 }
2473
2474 static int ext4_groupinfo_create_slab(size_t size)
2475 {
2476 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2477 int slab_size;
2478 int blocksize_bits = order_base_2(size);
2479 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2480 struct kmem_cache *cachep;
2481
2482 if (cache_index >= NR_GRPINFO_CACHES)
2483 return -EINVAL;
2484
2485 if (unlikely(cache_index < 0))
2486 cache_index = 0;
2487
2488 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2489 if (ext4_groupinfo_caches[cache_index]) {
2490 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2491 return 0; /* Already created */
2492 }
2493
2494 slab_size = offsetof(struct ext4_group_info,
2495 bb_counters[blocksize_bits + 2]);
2496
2497 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2498 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2499 NULL);
2500
2501 ext4_groupinfo_caches[cache_index] = cachep;
2502
2503 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2504 if (!cachep) {
2505 printk(KERN_EMERG
2506 "EXT4-fs: no memory for groupinfo slab cache\n");
2507 return -ENOMEM;
2508 }
2509
2510 return 0;
2511 }
2512
2513 int ext4_mb_init(struct super_block *sb)
2514 {
2515 struct ext4_sb_info *sbi = EXT4_SB(sb);
2516 unsigned i, j;
2517 unsigned offset;
2518 unsigned max;
2519 int ret;
2520
2521 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2522
2523 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2524 if (sbi->s_mb_offsets == NULL) {
2525 ret = -ENOMEM;
2526 goto out;
2527 }
2528
2529 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2530 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2531 if (sbi->s_mb_maxs == NULL) {
2532 ret = -ENOMEM;
2533 goto out;
2534 }
2535
2536 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2537 if (ret < 0)
2538 goto out;
2539
2540 /* order 0 is regular bitmap */
2541 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2542 sbi->s_mb_offsets[0] = 0;
2543
2544 i = 1;
2545 offset = 0;
2546 max = sb->s_blocksize << 2;
2547 do {
2548 sbi->s_mb_offsets[i] = offset;
2549 sbi->s_mb_maxs[i] = max;
2550 offset += 1 << (sb->s_blocksize_bits - i);
2551 max = max >> 1;
2552 i++;
2553 } while (i <= sb->s_blocksize_bits + 1);
2554
2555 spin_lock_init(&sbi->s_md_lock);
2556 spin_lock_init(&sbi->s_bal_lock);
2557
2558 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2559 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2560 sbi->s_mb_stats = MB_DEFAULT_STATS;
2561 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2562 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2563 /*
2564 * The default group preallocation is 512, which for 4k block
2565 * sizes translates to 2 megabytes. However for bigalloc file
2566 * systems, this is probably too big (i.e, if the cluster size
2567 * is 1 megabyte, then group preallocation size becomes half a
2568 * gigabyte!). As a default, we will keep a two megabyte
2569 * group pralloc size for cluster sizes up to 64k, and after
2570 * that, we will force a minimum group preallocation size of
2571 * 32 clusters. This translates to 8 megs when the cluster
2572 * size is 256k, and 32 megs when the cluster size is 1 meg,
2573 * which seems reasonable as a default.
2574 */
2575 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2576 sbi->s_cluster_bits, 32);
2577 /*
2578 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2579 * to the lowest multiple of s_stripe which is bigger than
2580 * the s_mb_group_prealloc as determined above. We want
2581 * the preallocation size to be an exact multiple of the
2582 * RAID stripe size so that preallocations don't fragment
2583 * the stripes.
2584 */
2585 if (sbi->s_stripe > 1) {
2586 sbi->s_mb_group_prealloc = roundup(
2587 sbi->s_mb_group_prealloc, sbi->s_stripe);
2588 }
2589
2590 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2591 if (sbi->s_locality_groups == NULL) {
2592 ret = -ENOMEM;
2593 goto out_free_groupinfo_slab;
2594 }
2595 for_each_possible_cpu(i) {
2596 struct ext4_locality_group *lg;
2597 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2598 mutex_init(&lg->lg_mutex);
2599 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2600 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2601 spin_lock_init(&lg->lg_prealloc_lock);
2602 }
2603
2604 /* init file for buddy data */
2605 ret = ext4_mb_init_backend(sb);
2606 if (ret != 0)
2607 goto out_free_locality_groups;
2608
2609 if (sbi->s_proc)
2610 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2611 &ext4_mb_seq_groups_fops, sb);
2612
2613 return 0;
2614
2615 out_free_locality_groups:
2616 free_percpu(sbi->s_locality_groups);
2617 sbi->s_locality_groups = NULL;
2618 out_free_groupinfo_slab:
2619 ext4_groupinfo_destroy_slabs();
2620 out:
2621 kfree(sbi->s_mb_offsets);
2622 sbi->s_mb_offsets = NULL;
2623 kfree(sbi->s_mb_maxs);
2624 sbi->s_mb_maxs = NULL;
2625 return ret;
2626 }
2627
2628 /* need to called with the ext4 group lock held */
2629 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2630 {
2631 struct ext4_prealloc_space *pa;
2632 struct list_head *cur, *tmp;
2633 int count = 0;
2634
2635 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2636 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2637 list_del(&pa->pa_group_list);
2638 count++;
2639 kmem_cache_free(ext4_pspace_cachep, pa);
2640 }
2641 if (count)
2642 mb_debug(1, "mballoc: %u PAs left\n", count);
2643
2644 }
2645
2646 int ext4_mb_release(struct super_block *sb)
2647 {
2648 ext4_group_t ngroups = ext4_get_groups_count(sb);
2649 ext4_group_t i;
2650 int num_meta_group_infos;
2651 struct ext4_group_info *grinfo;
2652 struct ext4_sb_info *sbi = EXT4_SB(sb);
2653 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2654
2655 if (sbi->s_proc)
2656 remove_proc_entry("mb_groups", sbi->s_proc);
2657
2658 if (sbi->s_group_info) {
2659 for (i = 0; i < ngroups; i++) {
2660 grinfo = ext4_get_group_info(sb, i);
2661 #ifdef DOUBLE_CHECK
2662 kfree(grinfo->bb_bitmap);
2663 #endif
2664 ext4_lock_group(sb, i);
2665 ext4_mb_cleanup_pa(grinfo);
2666 ext4_unlock_group(sb, i);
2667 kmem_cache_free(cachep, grinfo);
2668 }
2669 num_meta_group_infos = (ngroups +
2670 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2671 EXT4_DESC_PER_BLOCK_BITS(sb);
2672 for (i = 0; i < num_meta_group_infos; i++)
2673 kfree(sbi->s_group_info[i]);
2674 ext4_kvfree(sbi->s_group_info);
2675 }
2676 kfree(sbi->s_mb_offsets);
2677 kfree(sbi->s_mb_maxs);
2678 if (sbi->s_buddy_cache)
2679 iput(sbi->s_buddy_cache);
2680 if (sbi->s_mb_stats) {
2681 ext4_msg(sb, KERN_INFO,
2682 "mballoc: %u blocks %u reqs (%u success)",
2683 atomic_read(&sbi->s_bal_allocated),
2684 atomic_read(&sbi->s_bal_reqs),
2685 atomic_read(&sbi->s_bal_success));
2686 ext4_msg(sb, KERN_INFO,
2687 "mballoc: %u extents scanned, %u goal hits, "
2688 "%u 2^N hits, %u breaks, %u lost",
2689 atomic_read(&sbi->s_bal_ex_scanned),
2690 atomic_read(&sbi->s_bal_goals),
2691 atomic_read(&sbi->s_bal_2orders),
2692 atomic_read(&sbi->s_bal_breaks),
2693 atomic_read(&sbi->s_mb_lost_chunks));
2694 ext4_msg(sb, KERN_INFO,
2695 "mballoc: %lu generated and it took %Lu",
2696 sbi->s_mb_buddies_generated,
2697 sbi->s_mb_generation_time);
2698 ext4_msg(sb, KERN_INFO,
2699 "mballoc: %u preallocated, %u discarded",
2700 atomic_read(&sbi->s_mb_preallocated),
2701 atomic_read(&sbi->s_mb_discarded));
2702 }
2703
2704 free_percpu(sbi->s_locality_groups);
2705
2706 return 0;
2707 }
2708
2709 static inline int ext4_issue_discard(struct super_block *sb,
2710 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2711 {
2712 ext4_fsblk_t discard_block;
2713
2714 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2715 ext4_group_first_block_no(sb, block_group));
2716 count = EXT4_C2B(EXT4_SB(sb), count);
2717 trace_ext4_discard_blocks(sb,
2718 (unsigned long long) discard_block, count);
2719 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2720 }
2721
2722 /*
2723 * This function is called by the jbd2 layer once the commit has finished,
2724 * so we know we can free the blocks that were released with that commit.
2725 */
2726 static void ext4_free_data_callback(struct super_block *sb,
2727 struct ext4_journal_cb_entry *jce,
2728 int rc)
2729 {
2730 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2731 struct ext4_buddy e4b;
2732 struct ext4_group_info *db;
2733 int err, count = 0, count2 = 0;
2734
2735 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2736 entry->efd_count, entry->efd_group, entry);
2737
2738 if (test_opt(sb, DISCARD)) {
2739 err = ext4_issue_discard(sb, entry->efd_group,
2740 entry->efd_start_cluster,
2741 entry->efd_count);
2742 if (err && err != -EOPNOTSUPP)
2743 ext4_msg(sb, KERN_WARNING, "discard request in"
2744 " group:%d block:%d count:%d failed"
2745 " with %d", entry->efd_group,
2746 entry->efd_start_cluster,
2747 entry->efd_count, err);
2748 }
2749
2750 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2751 /* we expect to find existing buddy because it's pinned */
2752 BUG_ON(err != 0);
2753
2754
2755 db = e4b.bd_info;
2756 /* there are blocks to put in buddy to make them really free */
2757 count += entry->efd_count;
2758 count2++;
2759 ext4_lock_group(sb, entry->efd_group);
2760 /* Take it out of per group rb tree */
2761 rb_erase(&entry->efd_node, &(db->bb_free_root));
2762 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2763
2764 /*
2765 * Clear the trimmed flag for the group so that the next
2766 * ext4_trim_fs can trim it.
2767 * If the volume is mounted with -o discard, online discard
2768 * is supported and the free blocks will be trimmed online.
2769 */
2770 if (!test_opt(sb, DISCARD))
2771 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2772
2773 if (!db->bb_free_root.rb_node) {
2774 /* No more items in the per group rb tree
2775 * balance refcounts from ext4_mb_free_metadata()
2776 */
2777 page_cache_release(e4b.bd_buddy_page);
2778 page_cache_release(e4b.bd_bitmap_page);
2779 }
2780 ext4_unlock_group(sb, entry->efd_group);
2781 kmem_cache_free(ext4_free_data_cachep, entry);
2782 ext4_mb_unload_buddy(&e4b);
2783
2784 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2785 }
2786
2787 int __init ext4_init_mballoc(void)
2788 {
2789 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2790 SLAB_RECLAIM_ACCOUNT);
2791 if (ext4_pspace_cachep == NULL)
2792 return -ENOMEM;
2793
2794 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2795 SLAB_RECLAIM_ACCOUNT);
2796 if (ext4_ac_cachep == NULL) {
2797 kmem_cache_destroy(ext4_pspace_cachep);
2798 return -ENOMEM;
2799 }
2800
2801 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2802 SLAB_RECLAIM_ACCOUNT);
2803 if (ext4_free_data_cachep == NULL) {
2804 kmem_cache_destroy(ext4_pspace_cachep);
2805 kmem_cache_destroy(ext4_ac_cachep);
2806 return -ENOMEM;
2807 }
2808 return 0;
2809 }
2810
2811 void ext4_exit_mballoc(void)
2812 {
2813 /*
2814 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2815 * before destroying the slab cache.
2816 */
2817 rcu_barrier();
2818 kmem_cache_destroy(ext4_pspace_cachep);
2819 kmem_cache_destroy(ext4_ac_cachep);
2820 kmem_cache_destroy(ext4_free_data_cachep);
2821 ext4_groupinfo_destroy_slabs();
2822 }
2823
2824
2825 /*
2826 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2827 * Returns 0 if success or error code
2828 */
2829 static noinline_for_stack int
2830 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2831 handle_t *handle, unsigned int reserv_clstrs)
2832 {
2833 struct buffer_head *bitmap_bh = NULL;
2834 struct ext4_group_desc *gdp;
2835 struct buffer_head *gdp_bh;
2836 struct ext4_sb_info *sbi;
2837 struct super_block *sb;
2838 ext4_fsblk_t block;
2839 int err, len;
2840
2841 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2842 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2843
2844 sb = ac->ac_sb;
2845 sbi = EXT4_SB(sb);
2846
2847 err = -EIO;
2848 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2849 if (!bitmap_bh)
2850 goto out_err;
2851
2852 err = ext4_journal_get_write_access(handle, bitmap_bh);
2853 if (err)
2854 goto out_err;
2855
2856 err = -EIO;
2857 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2858 if (!gdp)
2859 goto out_err;
2860
2861 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2862 ext4_free_group_clusters(sb, gdp));
2863
2864 err = ext4_journal_get_write_access(handle, gdp_bh);
2865 if (err)
2866 goto out_err;
2867
2868 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2869
2870 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2871 if (!ext4_data_block_valid(sbi, block, len)) {
2872 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2873 "fs metadata", block, block+len);
2874 /* File system mounted not to panic on error
2875 * Fix the bitmap and repeat the block allocation
2876 * We leak some of the blocks here.
2877 */
2878 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2879 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2880 ac->ac_b_ex.fe_len);
2881 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2882 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2883 if (!err)
2884 err = -EAGAIN;
2885 goto out_err;
2886 }
2887
2888 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2889 #ifdef AGGRESSIVE_CHECK
2890 {
2891 int i;
2892 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2893 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2894 bitmap_bh->b_data));
2895 }
2896 }
2897 #endif
2898 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2899 ac->ac_b_ex.fe_len);
2900 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2901 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2902 ext4_free_group_clusters_set(sb, gdp,
2903 ext4_free_clusters_after_init(sb,
2904 ac->ac_b_ex.fe_group, gdp));
2905 }
2906 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2907 ext4_free_group_clusters_set(sb, gdp, len);
2908 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2909 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2910
2911 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2912 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2913 /*
2914 * Now reduce the dirty block count also. Should not go negative
2915 */
2916 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2917 /* release all the reserved blocks if non delalloc */
2918 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2919 reserv_clstrs);
2920
2921 if (sbi->s_log_groups_per_flex) {
2922 ext4_group_t flex_group = ext4_flex_group(sbi,
2923 ac->ac_b_ex.fe_group);
2924 atomic64_sub(ac->ac_b_ex.fe_len,
2925 &sbi->s_flex_groups[flex_group].free_clusters);
2926 }
2927
2928 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2929 if (err)
2930 goto out_err;
2931 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2932
2933 out_err:
2934 brelse(bitmap_bh);
2935 return err;
2936 }
2937
2938 /*
2939 * here we normalize request for locality group
2940 * Group request are normalized to s_mb_group_prealloc, which goes to
2941 * s_strip if we set the same via mount option.
2942 * s_mb_group_prealloc can be configured via
2943 * /sys/fs/ext4/<partition>/mb_group_prealloc
2944 *
2945 * XXX: should we try to preallocate more than the group has now?
2946 */
2947 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2948 {
2949 struct super_block *sb = ac->ac_sb;
2950 struct ext4_locality_group *lg = ac->ac_lg;
2951
2952 BUG_ON(lg == NULL);
2953 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2954 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2955 current->pid, ac->ac_g_ex.fe_len);
2956 }
2957
2958 /*
2959 * Normalization means making request better in terms of
2960 * size and alignment
2961 */
2962 static noinline_for_stack void
2963 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2964 struct ext4_allocation_request *ar)
2965 {
2966 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2967 int bsbits, max;
2968 ext4_lblk_t end;
2969 loff_t size, start_off;
2970 loff_t orig_size __maybe_unused;
2971 ext4_lblk_t start;
2972 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2973 struct ext4_prealloc_space *pa;
2974
2975 /* do normalize only data requests, metadata requests
2976 do not need preallocation */
2977 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2978 return;
2979
2980 /* sometime caller may want exact blocks */
2981 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2982 return;
2983
2984 /* caller may indicate that preallocation isn't
2985 * required (it's a tail, for example) */
2986 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2987 return;
2988
2989 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2990 ext4_mb_normalize_group_request(ac);
2991 return ;
2992 }
2993
2994 bsbits = ac->ac_sb->s_blocksize_bits;
2995
2996 /* first, let's learn actual file size
2997 * given current request is allocated */
2998 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2999 size = size << bsbits;
3000 if (size < i_size_read(ac->ac_inode))
3001 size = i_size_read(ac->ac_inode);
3002 orig_size = size;
3003
3004 /* max size of free chunks */
3005 max = 2 << bsbits;
3006
3007 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3008 (req <= (size) || max <= (chunk_size))
3009
3010 /* first, try to predict filesize */
3011 /* XXX: should this table be tunable? */
3012 start_off = 0;
3013 if (size <= 16 * 1024) {
3014 size = 16 * 1024;
3015 } else if (size <= 32 * 1024) {
3016 size = 32 * 1024;
3017 } else if (size <= 64 * 1024) {
3018 size = 64 * 1024;
3019 } else if (size <= 128 * 1024) {
3020 size = 128 * 1024;
3021 } else if (size <= 256 * 1024) {
3022 size = 256 * 1024;
3023 } else if (size <= 512 * 1024) {
3024 size = 512 * 1024;
3025 } else if (size <= 1024 * 1024) {
3026 size = 1024 * 1024;
3027 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3028 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3029 (21 - bsbits)) << 21;
3030 size = 2 * 1024 * 1024;
3031 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3032 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3033 (22 - bsbits)) << 22;
3034 size = 4 * 1024 * 1024;
3035 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3036 (8<<20)>>bsbits, max, 8 * 1024)) {
3037 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3038 (23 - bsbits)) << 23;
3039 size = 8 * 1024 * 1024;
3040 } else {
3041 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3042 size = ac->ac_o_ex.fe_len << bsbits;
3043 }
3044 size = size >> bsbits;
3045 start = start_off >> bsbits;
3046
3047 /* don't cover already allocated blocks in selected range */
3048 if (ar->pleft && start <= ar->lleft) {
3049 size -= ar->lleft + 1 - start;
3050 start = ar->lleft + 1;
3051 }
3052 if (ar->pright && start + size - 1 >= ar->lright)
3053 size -= start + size - ar->lright;
3054
3055 end = start + size;
3056
3057 /* check we don't cross already preallocated blocks */
3058 rcu_read_lock();
3059 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3060 ext4_lblk_t pa_end;
3061
3062 if (pa->pa_deleted)
3063 continue;
3064 spin_lock(&pa->pa_lock);
3065 if (pa->pa_deleted) {
3066 spin_unlock(&pa->pa_lock);
3067 continue;
3068 }
3069
3070 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3071 pa->pa_len);
3072
3073 /* PA must not overlap original request */
3074 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3075 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3076
3077 /* skip PAs this normalized request doesn't overlap with */
3078 if (pa->pa_lstart >= end || pa_end <= start) {
3079 spin_unlock(&pa->pa_lock);
3080 continue;
3081 }
3082 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3083
3084 /* adjust start or end to be adjacent to this pa */
3085 if (pa_end <= ac->ac_o_ex.fe_logical) {
3086 BUG_ON(pa_end < start);
3087 start = pa_end;
3088 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3089 BUG_ON(pa->pa_lstart > end);
3090 end = pa->pa_lstart;
3091 }
3092 spin_unlock(&pa->pa_lock);
3093 }
3094 rcu_read_unlock();
3095 size = end - start;
3096
3097 /* XXX: extra loop to check we really don't overlap preallocations */
3098 rcu_read_lock();
3099 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3100 ext4_lblk_t pa_end;
3101
3102 spin_lock(&pa->pa_lock);
3103 if (pa->pa_deleted == 0) {
3104 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3105 pa->pa_len);
3106 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3107 }
3108 spin_unlock(&pa->pa_lock);
3109 }
3110 rcu_read_unlock();
3111
3112 if (start + size <= ac->ac_o_ex.fe_logical &&
3113 start > ac->ac_o_ex.fe_logical) {
3114 ext4_msg(ac->ac_sb, KERN_ERR,
3115 "start %lu, size %lu, fe_logical %lu",
3116 (unsigned long) start, (unsigned long) size,
3117 (unsigned long) ac->ac_o_ex.fe_logical);
3118 }
3119 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3120 start > ac->ac_o_ex.fe_logical);
3121 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3122
3123 /* now prepare goal request */
3124
3125 /* XXX: is it better to align blocks WRT to logical
3126 * placement or satisfy big request as is */
3127 ac->ac_g_ex.fe_logical = start;
3128 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3129
3130 /* define goal start in order to merge */
3131 if (ar->pright && (ar->lright == (start + size))) {
3132 /* merge to the right */
3133 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3134 &ac->ac_f_ex.fe_group,
3135 &ac->ac_f_ex.fe_start);
3136 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3137 }
3138 if (ar->pleft && (ar->lleft + 1 == start)) {
3139 /* merge to the left */
3140 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3141 &ac->ac_f_ex.fe_group,
3142 &ac->ac_f_ex.fe_start);
3143 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3144 }
3145
3146 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3147 (unsigned) orig_size, (unsigned) start);
3148 }
3149
3150 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3151 {
3152 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3153
3154 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3155 atomic_inc(&sbi->s_bal_reqs);
3156 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3157 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3158 atomic_inc(&sbi->s_bal_success);
3159 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3160 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3161 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3162 atomic_inc(&sbi->s_bal_goals);
3163 if (ac->ac_found > sbi->s_mb_max_to_scan)
3164 atomic_inc(&sbi->s_bal_breaks);
3165 }
3166
3167 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3168 trace_ext4_mballoc_alloc(ac);
3169 else
3170 trace_ext4_mballoc_prealloc(ac);
3171 }
3172
3173 /*
3174 * Called on failure; free up any blocks from the inode PA for this
3175 * context. We don't need this for MB_GROUP_PA because we only change
3176 * pa_free in ext4_mb_release_context(), but on failure, we've already
3177 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3178 */
3179 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3180 {
3181 struct ext4_prealloc_space *pa = ac->ac_pa;
3182 struct ext4_buddy e4b;
3183 int err;
3184
3185 if (pa == NULL) {
3186 if (ac->ac_f_ex.fe_len == 0)
3187 return;
3188 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3189 if (err) {
3190 /*
3191 * This should never happen since we pin the
3192 * pages in the ext4_allocation_context so
3193 * ext4_mb_load_buddy() should never fail.
3194 */
3195 WARN(1, "mb_load_buddy failed (%d)", err);
3196 return;
3197 }
3198 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3199 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3200 ac->ac_f_ex.fe_len);
3201 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3202 ext4_mb_unload_buddy(&e4b);
3203 return;
3204 }
3205 if (pa->pa_type == MB_INODE_PA)
3206 pa->pa_free += ac->ac_b_ex.fe_len;
3207 }
3208
3209 /*
3210 * use blocks preallocated to inode
3211 */
3212 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3213 struct ext4_prealloc_space *pa)
3214 {
3215 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3216 ext4_fsblk_t start;
3217 ext4_fsblk_t end;
3218 int len;
3219
3220 /* found preallocated blocks, use them */
3221 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3222 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3223 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3224 len = EXT4_NUM_B2C(sbi, end - start);
3225 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3226 &ac->ac_b_ex.fe_start);
3227 ac->ac_b_ex.fe_len = len;
3228 ac->ac_status = AC_STATUS_FOUND;
3229 ac->ac_pa = pa;
3230
3231 BUG_ON(start < pa->pa_pstart);
3232 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3233 BUG_ON(pa->pa_free < len);
3234 pa->pa_free -= len;
3235
3236 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3237 }
3238
3239 /*
3240 * use blocks preallocated to locality group
3241 */
3242 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3243 struct ext4_prealloc_space *pa)
3244 {
3245 unsigned int len = ac->ac_o_ex.fe_len;
3246
3247 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3248 &ac->ac_b_ex.fe_group,
3249 &ac->ac_b_ex.fe_start);
3250 ac->ac_b_ex.fe_len = len;
3251 ac->ac_status = AC_STATUS_FOUND;
3252 ac->ac_pa = pa;
3253
3254 /* we don't correct pa_pstart or pa_plen here to avoid
3255 * possible race when the group is being loaded concurrently
3256 * instead we correct pa later, after blocks are marked
3257 * in on-disk bitmap -- see ext4_mb_release_context()
3258 * Other CPUs are prevented from allocating from this pa by lg_mutex
3259 */
3260 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3261 }
3262
3263 /*
3264 * Return the prealloc space that have minimal distance
3265 * from the goal block. @cpa is the prealloc
3266 * space that is having currently known minimal distance
3267 * from the goal block.
3268 */
3269 static struct ext4_prealloc_space *
3270 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3271 struct ext4_prealloc_space *pa,
3272 struct ext4_prealloc_space *cpa)
3273 {
3274 ext4_fsblk_t cur_distance, new_distance;
3275
3276 if (cpa == NULL) {
3277 atomic_inc(&pa->pa_count);
3278 return pa;
3279 }
3280 cur_distance = abs(goal_block - cpa->pa_pstart);
3281 new_distance = abs(goal_block - pa->pa_pstart);
3282
3283 if (cur_distance <= new_distance)
3284 return cpa;
3285
3286 /* drop the previous reference */
3287 atomic_dec(&cpa->pa_count);
3288 atomic_inc(&pa->pa_count);
3289 return pa;
3290 }
3291
3292 /*
3293 * search goal blocks in preallocated space
3294 */
3295 static noinline_for_stack int
3296 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3297 {
3298 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3299 int order, i;
3300 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3301 struct ext4_locality_group *lg;
3302 struct ext4_prealloc_space *pa, *cpa = NULL;
3303 ext4_fsblk_t goal_block;
3304
3305 /* only data can be preallocated */
3306 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3307 return 0;
3308
3309 /* first, try per-file preallocation */
3310 rcu_read_lock();
3311 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3312
3313 /* all fields in this condition don't change,
3314 * so we can skip locking for them */
3315 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3316 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3317 EXT4_C2B(sbi, pa->pa_len)))
3318 continue;
3319
3320 /* non-extent files can't have physical blocks past 2^32 */
3321 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3322 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3323 EXT4_MAX_BLOCK_FILE_PHYS))
3324 continue;
3325
3326 /* found preallocated blocks, use them */
3327 spin_lock(&pa->pa_lock);
3328 if (pa->pa_deleted == 0 && pa->pa_free) {
3329 atomic_inc(&pa->pa_count);
3330 ext4_mb_use_inode_pa(ac, pa);
3331 spin_unlock(&pa->pa_lock);
3332 ac->ac_criteria = 10;
3333 rcu_read_unlock();
3334 return 1;
3335 }
3336 spin_unlock(&pa->pa_lock);
3337 }
3338 rcu_read_unlock();
3339
3340 /* can we use group allocation? */
3341 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3342 return 0;
3343
3344 /* inode may have no locality group for some reason */
3345 lg = ac->ac_lg;
3346 if (lg == NULL)
3347 return 0;
3348 order = fls(ac->ac_o_ex.fe_len) - 1;
3349 if (order > PREALLOC_TB_SIZE - 1)
3350 /* The max size of hash table is PREALLOC_TB_SIZE */
3351 order = PREALLOC_TB_SIZE - 1;
3352
3353 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3354 /*
3355 * search for the prealloc space that is having
3356 * minimal distance from the goal block.
3357 */
3358 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3359 rcu_read_lock();
3360 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3361 pa_inode_list) {
3362 spin_lock(&pa->pa_lock);
3363 if (pa->pa_deleted == 0 &&
3364 pa->pa_free >= ac->ac_o_ex.fe_len) {
3365
3366 cpa = ext4_mb_check_group_pa(goal_block,
3367 pa, cpa);
3368 }
3369 spin_unlock(&pa->pa_lock);
3370 }
3371 rcu_read_unlock();
3372 }
3373 if (cpa) {
3374 ext4_mb_use_group_pa(ac, cpa);
3375 ac->ac_criteria = 20;
3376 return 1;
3377 }
3378 return 0;
3379 }
3380
3381 /*
3382 * the function goes through all block freed in the group
3383 * but not yet committed and marks them used in in-core bitmap.
3384 * buddy must be generated from this bitmap
3385 * Need to be called with the ext4 group lock held
3386 */
3387 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3388 ext4_group_t group)
3389 {
3390 struct rb_node *n;
3391 struct ext4_group_info *grp;
3392 struct ext4_free_data *entry;
3393
3394 grp = ext4_get_group_info(sb, group);
3395 n = rb_first(&(grp->bb_free_root));
3396
3397 while (n) {
3398 entry = rb_entry(n, struct ext4_free_data, efd_node);
3399 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3400 n = rb_next(n);
3401 }
3402 return;
3403 }
3404
3405 /*
3406 * the function goes through all preallocation in this group and marks them
3407 * used in in-core bitmap. buddy must be generated from this bitmap
3408 * Need to be called with ext4 group lock held
3409 */
3410 static noinline_for_stack
3411 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3412 ext4_group_t group)
3413 {
3414 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3415 struct ext4_prealloc_space *pa;
3416 struct list_head *cur;
3417 ext4_group_t groupnr;
3418 ext4_grpblk_t start;
3419 int preallocated = 0;
3420 int len;
3421
3422 /* all form of preallocation discards first load group,
3423 * so the only competing code is preallocation use.
3424 * we don't need any locking here
3425 * notice we do NOT ignore preallocations with pa_deleted
3426 * otherwise we could leave used blocks available for
3427 * allocation in buddy when concurrent ext4_mb_put_pa()
3428 * is dropping preallocation
3429 */
3430 list_for_each(cur, &grp->bb_prealloc_list) {
3431 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3432 spin_lock(&pa->pa_lock);
3433 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3434 &groupnr, &start);
3435 len = pa->pa_len;
3436 spin_unlock(&pa->pa_lock);
3437 if (unlikely(len == 0))
3438 continue;
3439 BUG_ON(groupnr != group);
3440 ext4_set_bits(bitmap, start, len);
3441 preallocated += len;
3442 }
3443 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3444 }
3445
3446 static void ext4_mb_pa_callback(struct rcu_head *head)
3447 {
3448 struct ext4_prealloc_space *pa;
3449 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3450
3451 BUG_ON(atomic_read(&pa->pa_count));
3452 BUG_ON(pa->pa_deleted == 0);
3453 kmem_cache_free(ext4_pspace_cachep, pa);
3454 }
3455
3456 /*
3457 * drops a reference to preallocated space descriptor
3458 * if this was the last reference and the space is consumed
3459 */
3460 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3461 struct super_block *sb, struct ext4_prealloc_space *pa)
3462 {
3463 ext4_group_t grp;
3464 ext4_fsblk_t grp_blk;
3465
3466 /* in this short window concurrent discard can set pa_deleted */
3467 spin_lock(&pa->pa_lock);
3468 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3469 spin_unlock(&pa->pa_lock);
3470 return;
3471 }
3472
3473 if (pa->pa_deleted == 1) {
3474 spin_unlock(&pa->pa_lock);
3475 return;
3476 }
3477
3478 pa->pa_deleted = 1;
3479 spin_unlock(&pa->pa_lock);
3480
3481 grp_blk = pa->pa_pstart;
3482 /*
3483 * If doing group-based preallocation, pa_pstart may be in the
3484 * next group when pa is used up
3485 */
3486 if (pa->pa_type == MB_GROUP_PA)
3487 grp_blk--;
3488
3489 grp = ext4_get_group_number(sb, grp_blk);
3490
3491 /*
3492 * possible race:
3493 *
3494 * P1 (buddy init) P2 (regular allocation)
3495 * find block B in PA
3496 * copy on-disk bitmap to buddy
3497 * mark B in on-disk bitmap
3498 * drop PA from group
3499 * mark all PAs in buddy
3500 *
3501 * thus, P1 initializes buddy with B available. to prevent this
3502 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3503 * against that pair
3504 */
3505 ext4_lock_group(sb, grp);
3506 list_del(&pa->pa_group_list);
3507 ext4_unlock_group(sb, grp);
3508
3509 spin_lock(pa->pa_obj_lock);
3510 list_del_rcu(&pa->pa_inode_list);
3511 spin_unlock(pa->pa_obj_lock);
3512
3513 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3514 }
3515
3516 /*
3517 * creates new preallocated space for given inode
3518 */
3519 static noinline_for_stack int
3520 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3521 {
3522 struct super_block *sb = ac->ac_sb;
3523 struct ext4_sb_info *sbi = EXT4_SB(sb);
3524 struct ext4_prealloc_space *pa;
3525 struct ext4_group_info *grp;
3526 struct ext4_inode_info *ei;
3527
3528 /* preallocate only when found space is larger then requested */
3529 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3530 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3531 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3532
3533 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3534 if (pa == NULL)
3535 return -ENOMEM;
3536
3537 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3538 int winl;
3539 int wins;
3540 int win;
3541 int offs;
3542
3543 /* we can't allocate as much as normalizer wants.
3544 * so, found space must get proper lstart
3545 * to cover original request */
3546 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3547 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3548
3549 /* we're limited by original request in that
3550 * logical block must be covered any way
3551 * winl is window we can move our chunk within */
3552 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3553
3554 /* also, we should cover whole original request */
3555 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3556
3557 /* the smallest one defines real window */
3558 win = min(winl, wins);
3559
3560 offs = ac->ac_o_ex.fe_logical %
3561 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3562 if (offs && offs < win)
3563 win = offs;
3564
3565 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3566 EXT4_NUM_B2C(sbi, win);
3567 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3568 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3569 }
3570
3571 /* preallocation can change ac_b_ex, thus we store actually
3572 * allocated blocks for history */
3573 ac->ac_f_ex = ac->ac_b_ex;
3574
3575 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3576 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3577 pa->pa_len = ac->ac_b_ex.fe_len;
3578 pa->pa_free = pa->pa_len;
3579 atomic_set(&pa->pa_count, 1);
3580 spin_lock_init(&pa->pa_lock);
3581 INIT_LIST_HEAD(&pa->pa_inode_list);
3582 INIT_LIST_HEAD(&pa->pa_group_list);
3583 pa->pa_deleted = 0;
3584 pa->pa_type = MB_INODE_PA;
3585
3586 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3587 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3588 trace_ext4_mb_new_inode_pa(ac, pa);
3589
3590 ext4_mb_use_inode_pa(ac, pa);
3591 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3592
3593 ei = EXT4_I(ac->ac_inode);
3594 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3595
3596 pa->pa_obj_lock = &ei->i_prealloc_lock;
3597 pa->pa_inode = ac->ac_inode;
3598
3599 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3600 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3601 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3602
3603 spin_lock(pa->pa_obj_lock);
3604 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3605 spin_unlock(pa->pa_obj_lock);
3606
3607 return 0;
3608 }
3609
3610 /*
3611 * creates new preallocated space for locality group inodes belongs to
3612 */
3613 static noinline_for_stack int
3614 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3615 {
3616 struct super_block *sb = ac->ac_sb;
3617 struct ext4_locality_group *lg;
3618 struct ext4_prealloc_space *pa;
3619 struct ext4_group_info *grp;
3620
3621 /* preallocate only when found space is larger then requested */
3622 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3623 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3624 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3625
3626 BUG_ON(ext4_pspace_cachep == NULL);
3627 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3628 if (pa == NULL)
3629 return -ENOMEM;
3630
3631 /* preallocation can change ac_b_ex, thus we store actually
3632 * allocated blocks for history */
3633 ac->ac_f_ex = ac->ac_b_ex;
3634
3635 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3636 pa->pa_lstart = pa->pa_pstart;
3637 pa->pa_len = ac->ac_b_ex.fe_len;
3638 pa->pa_free = pa->pa_len;
3639 atomic_set(&pa->pa_count, 1);
3640 spin_lock_init(&pa->pa_lock);
3641 INIT_LIST_HEAD(&pa->pa_inode_list);
3642 INIT_LIST_HEAD(&pa->pa_group_list);
3643 pa->pa_deleted = 0;
3644 pa->pa_type = MB_GROUP_PA;
3645
3646 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3647 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3648 trace_ext4_mb_new_group_pa(ac, pa);
3649
3650 ext4_mb_use_group_pa(ac, pa);
3651 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3652
3653 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3654 lg = ac->ac_lg;
3655 BUG_ON(lg == NULL);
3656
3657 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3658 pa->pa_inode = NULL;
3659
3660 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3661 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3662 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3663
3664 /*
3665 * We will later add the new pa to the right bucket
3666 * after updating the pa_free in ext4_mb_release_context
3667 */
3668 return 0;
3669 }
3670
3671 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3672 {
3673 int err;
3674
3675 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3676 err = ext4_mb_new_group_pa(ac);
3677 else
3678 err = ext4_mb_new_inode_pa(ac);
3679 return err;
3680 }
3681
3682 /*
3683 * finds all unused blocks in on-disk bitmap, frees them in
3684 * in-core bitmap and buddy.
3685 * @pa must be unlinked from inode and group lists, so that
3686 * nobody else can find/use it.
3687 * the caller MUST hold group/inode locks.
3688 * TODO: optimize the case when there are no in-core structures yet
3689 */
3690 static noinline_for_stack int
3691 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3692 struct ext4_prealloc_space *pa)
3693 {
3694 struct super_block *sb = e4b->bd_sb;
3695 struct ext4_sb_info *sbi = EXT4_SB(sb);
3696 unsigned int end;
3697 unsigned int next;
3698 ext4_group_t group;
3699 ext4_grpblk_t bit;
3700 unsigned long long grp_blk_start;
3701 int err = 0;
3702 int free = 0;
3703
3704 BUG_ON(pa->pa_deleted == 0);
3705 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3706 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3707 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3708 end = bit + pa->pa_len;
3709
3710 while (bit < end) {
3711 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3712 if (bit >= end)
3713 break;
3714 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3715 mb_debug(1, " free preallocated %u/%u in group %u\n",
3716 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3717 (unsigned) next - bit, (unsigned) group);
3718 free += next - bit;
3719
3720 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3721 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3722 EXT4_C2B(sbi, bit)),
3723 next - bit);
3724 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3725 bit = next + 1;
3726 }
3727 if (free != pa->pa_free) {
3728 ext4_msg(e4b->bd_sb, KERN_CRIT,
3729 "pa %p: logic %lu, phys. %lu, len %lu",
3730 pa, (unsigned long) pa->pa_lstart,
3731 (unsigned long) pa->pa_pstart,
3732 (unsigned long) pa->pa_len);
3733 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3734 free, pa->pa_free);
3735 /*
3736 * pa is already deleted so we use the value obtained
3737 * from the bitmap and continue.
3738 */
3739 }
3740 atomic_add(free, &sbi->s_mb_discarded);
3741
3742 return err;
3743 }
3744
3745 static noinline_for_stack int
3746 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3747 struct ext4_prealloc_space *pa)
3748 {
3749 struct super_block *sb = e4b->bd_sb;
3750 ext4_group_t group;
3751 ext4_grpblk_t bit;
3752
3753 trace_ext4_mb_release_group_pa(sb, pa);
3754 BUG_ON(pa->pa_deleted == 0);
3755 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3756 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3757 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3758 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3759 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3760
3761 return 0;
3762 }
3763
3764 /*
3765 * releases all preallocations in given group
3766 *
3767 * first, we need to decide discard policy:
3768 * - when do we discard
3769 * 1) ENOSPC
3770 * - how many do we discard
3771 * 1) how many requested
3772 */
3773 static noinline_for_stack int
3774 ext4_mb_discard_group_preallocations(struct super_block *sb,
3775 ext4_group_t group, int needed)
3776 {
3777 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3778 struct buffer_head *bitmap_bh = NULL;
3779 struct ext4_prealloc_space *pa, *tmp;
3780 struct list_head list;
3781 struct ext4_buddy e4b;
3782 int err;
3783 int busy = 0;
3784 int free = 0;
3785
3786 mb_debug(1, "discard preallocation for group %u\n", group);
3787
3788 if (list_empty(&grp->bb_prealloc_list))
3789 return 0;
3790
3791 bitmap_bh = ext4_read_block_bitmap(sb, group);
3792 if (bitmap_bh == NULL) {
3793 ext4_error(sb, "Error reading block bitmap for %u", group);
3794 return 0;
3795 }
3796
3797 err = ext4_mb_load_buddy(sb, group, &e4b);
3798 if (err) {
3799 ext4_error(sb, "Error loading buddy information for %u", group);
3800 put_bh(bitmap_bh);
3801 return 0;
3802 }
3803
3804 if (needed == 0)
3805 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3806
3807 INIT_LIST_HEAD(&list);
3808 repeat:
3809 ext4_lock_group(sb, group);
3810 list_for_each_entry_safe(pa, tmp,
3811 &grp->bb_prealloc_list, pa_group_list) {
3812 spin_lock(&pa->pa_lock);
3813 if (atomic_read(&pa->pa_count)) {
3814 spin_unlock(&pa->pa_lock);
3815 busy = 1;
3816 continue;
3817 }
3818 if (pa->pa_deleted) {
3819 spin_unlock(&pa->pa_lock);
3820 continue;
3821 }
3822
3823 /* seems this one can be freed ... */
3824 pa->pa_deleted = 1;
3825
3826 /* we can trust pa_free ... */
3827 free += pa->pa_free;
3828
3829 spin_unlock(&pa->pa_lock);
3830
3831 list_del(&pa->pa_group_list);
3832 list_add(&pa->u.pa_tmp_list, &list);
3833 }
3834
3835 /* if we still need more blocks and some PAs were used, try again */
3836 if (free < needed && busy) {
3837 busy = 0;
3838 ext4_unlock_group(sb, group);
3839 cond_resched();
3840 goto repeat;
3841 }
3842
3843 /* found anything to free? */
3844 if (list_empty(&list)) {
3845 BUG_ON(free != 0);
3846 goto out;
3847 }
3848
3849 /* now free all selected PAs */
3850 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3851
3852 /* remove from object (inode or locality group) */
3853 spin_lock(pa->pa_obj_lock);
3854 list_del_rcu(&pa->pa_inode_list);
3855 spin_unlock(pa->pa_obj_lock);
3856
3857 if (pa->pa_type == MB_GROUP_PA)
3858 ext4_mb_release_group_pa(&e4b, pa);
3859 else
3860 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3861
3862 list_del(&pa->u.pa_tmp_list);
3863 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3864 }
3865
3866 out:
3867 ext4_unlock_group(sb, group);
3868 ext4_mb_unload_buddy(&e4b);
3869 put_bh(bitmap_bh);
3870 return free;
3871 }
3872
3873 /*
3874 * releases all non-used preallocated blocks for given inode
3875 *
3876 * It's important to discard preallocations under i_data_sem
3877 * We don't want another block to be served from the prealloc
3878 * space when we are discarding the inode prealloc space.
3879 *
3880 * FIXME!! Make sure it is valid at all the call sites
3881 */
3882 void ext4_discard_preallocations(struct inode *inode)
3883 {
3884 struct ext4_inode_info *ei = EXT4_I(inode);
3885 struct super_block *sb = inode->i_sb;
3886 struct buffer_head *bitmap_bh = NULL;
3887 struct ext4_prealloc_space *pa, *tmp;
3888 ext4_group_t group = 0;
3889 struct list_head list;
3890 struct ext4_buddy e4b;
3891 int err;
3892
3893 if (!S_ISREG(inode->i_mode)) {
3894 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3895 return;
3896 }
3897
3898 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3899 trace_ext4_discard_preallocations(inode);
3900
3901 INIT_LIST_HEAD(&list);
3902
3903 repeat:
3904 /* first, collect all pa's in the inode */
3905 spin_lock(&ei->i_prealloc_lock);
3906 while (!list_empty(&ei->i_prealloc_list)) {
3907 pa = list_entry(ei->i_prealloc_list.next,
3908 struct ext4_prealloc_space, pa_inode_list);
3909 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3910 spin_lock(&pa->pa_lock);
3911 if (atomic_read(&pa->pa_count)) {
3912 /* this shouldn't happen often - nobody should
3913 * use preallocation while we're discarding it */
3914 spin_unlock(&pa->pa_lock);
3915 spin_unlock(&ei->i_prealloc_lock);
3916 ext4_msg(sb, KERN_ERR,
3917 "uh-oh! used pa while discarding");
3918 WARN_ON(1);
3919 schedule_timeout_uninterruptible(HZ);
3920 goto repeat;
3921
3922 }
3923 if (pa->pa_deleted == 0) {
3924 pa->pa_deleted = 1;
3925 spin_unlock(&pa->pa_lock);
3926 list_del_rcu(&pa->pa_inode_list);
3927 list_add(&pa->u.pa_tmp_list, &list);
3928 continue;
3929 }
3930
3931 /* someone is deleting pa right now */
3932 spin_unlock(&pa->pa_lock);
3933 spin_unlock(&ei->i_prealloc_lock);
3934
3935 /* we have to wait here because pa_deleted
3936 * doesn't mean pa is already unlinked from
3937 * the list. as we might be called from
3938 * ->clear_inode() the inode will get freed
3939 * and concurrent thread which is unlinking
3940 * pa from inode's list may access already
3941 * freed memory, bad-bad-bad */
3942
3943 /* XXX: if this happens too often, we can
3944 * add a flag to force wait only in case
3945 * of ->clear_inode(), but not in case of
3946 * regular truncate */
3947 schedule_timeout_uninterruptible(HZ);
3948 goto repeat;
3949 }
3950 spin_unlock(&ei->i_prealloc_lock);
3951
3952 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3953 BUG_ON(pa->pa_type != MB_INODE_PA);
3954 group = ext4_get_group_number(sb, pa->pa_pstart);
3955
3956 err = ext4_mb_load_buddy(sb, group, &e4b);
3957 if (err) {
3958 ext4_error(sb, "Error loading buddy information for %u",
3959 group);
3960 continue;
3961 }
3962
3963 bitmap_bh = ext4_read_block_bitmap(sb, group);
3964 if (bitmap_bh == NULL) {
3965 ext4_error(sb, "Error reading block bitmap for %u",
3966 group);
3967 ext4_mb_unload_buddy(&e4b);
3968 continue;
3969 }
3970
3971 ext4_lock_group(sb, group);
3972 list_del(&pa->pa_group_list);
3973 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3974 ext4_unlock_group(sb, group);
3975
3976 ext4_mb_unload_buddy(&e4b);
3977 put_bh(bitmap_bh);
3978
3979 list_del(&pa->u.pa_tmp_list);
3980 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3981 }
3982 }
3983
3984 #ifdef CONFIG_EXT4_DEBUG
3985 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3986 {
3987 struct super_block *sb = ac->ac_sb;
3988 ext4_group_t ngroups, i;
3989
3990 if (!ext4_mballoc_debug ||
3991 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3992 return;
3993
3994 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3995 " Allocation context details:");
3996 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3997 ac->ac_status, ac->ac_flags);
3998 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3999 "goal %lu/%lu/%lu@%lu, "
4000 "best %lu/%lu/%lu@%lu cr %d",
4001 (unsigned long)ac->ac_o_ex.fe_group,
4002 (unsigned long)ac->ac_o_ex.fe_start,
4003 (unsigned long)ac->ac_o_ex.fe_len,
4004 (unsigned long)ac->ac_o_ex.fe_logical,
4005 (unsigned long)ac->ac_g_ex.fe_group,
4006 (unsigned long)ac->ac_g_ex.fe_start,
4007 (unsigned long)ac->ac_g_ex.fe_len,
4008 (unsigned long)ac->ac_g_ex.fe_logical,
4009 (unsigned long)ac->ac_b_ex.fe_group,
4010 (unsigned long)ac->ac_b_ex.fe_start,
4011 (unsigned long)ac->ac_b_ex.fe_len,
4012 (unsigned long)ac->ac_b_ex.fe_logical,
4013 (int)ac->ac_criteria);
4014 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
4015 ac->ac_ex_scanned, ac->ac_found);
4016 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4017 ngroups = ext4_get_groups_count(sb);
4018 for (i = 0; i < ngroups; i++) {
4019 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4020 struct ext4_prealloc_space *pa;
4021 ext4_grpblk_t start;
4022 struct list_head *cur;
4023 ext4_lock_group(sb, i);
4024 list_for_each(cur, &grp->bb_prealloc_list) {
4025 pa = list_entry(cur, struct ext4_prealloc_space,
4026 pa_group_list);
4027 spin_lock(&pa->pa_lock);
4028 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4029 NULL, &start);
4030 spin_unlock(&pa->pa_lock);
4031 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4032 start, pa->pa_len);
4033 }
4034 ext4_unlock_group(sb, i);
4035
4036 if (grp->bb_free == 0)
4037 continue;
4038 printk(KERN_ERR "%u: %d/%d \n",
4039 i, grp->bb_free, grp->bb_fragments);
4040 }
4041 printk(KERN_ERR "\n");
4042 }
4043 #else
4044 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4045 {
4046 return;
4047 }
4048 #endif
4049
4050 /*
4051 * We use locality group preallocation for small size file. The size of the
4052 * file is determined by the current size or the resulting size after
4053 * allocation which ever is larger
4054 *
4055 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4056 */
4057 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4058 {
4059 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4060 int bsbits = ac->ac_sb->s_blocksize_bits;
4061 loff_t size, isize;
4062
4063 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4064 return;
4065
4066 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4067 return;
4068
4069 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4070 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4071 >> bsbits;
4072
4073 if ((size == isize) &&
4074 !ext4_fs_is_busy(sbi) &&
4075 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4076 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4077 return;
4078 }
4079
4080 if (sbi->s_mb_group_prealloc <= 0) {
4081 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4082 return;
4083 }
4084
4085 /* don't use group allocation for large files */
4086 size = max(size, isize);
4087 if (size > sbi->s_mb_stream_request) {
4088 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4089 return;
4090 }
4091
4092 BUG_ON(ac->ac_lg != NULL);
4093 /*
4094 * locality group prealloc space are per cpu. The reason for having
4095 * per cpu locality group is to reduce the contention between block
4096 * request from multiple CPUs.
4097 */
4098 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4099
4100 /* we're going to use group allocation */
4101 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4102
4103 /* serialize all allocations in the group */
4104 mutex_lock(&ac->ac_lg->lg_mutex);
4105 }
4106
4107 static noinline_for_stack int
4108 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4109 struct ext4_allocation_request *ar)
4110 {
4111 struct super_block *sb = ar->inode->i_sb;
4112 struct ext4_sb_info *sbi = EXT4_SB(sb);
4113 struct ext4_super_block *es = sbi->s_es;
4114 ext4_group_t group;
4115 unsigned int len;
4116 ext4_fsblk_t goal;
4117 ext4_grpblk_t block;
4118
4119 /* we can't allocate > group size */
4120 len = ar->len;
4121
4122 /* just a dirty hack to filter too big requests */
4123 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4124 len = EXT4_CLUSTERS_PER_GROUP(sb);
4125
4126 /* start searching from the goal */
4127 goal = ar->goal;
4128 if (goal < le32_to_cpu(es->s_first_data_block) ||
4129 goal >= ext4_blocks_count(es))
4130 goal = le32_to_cpu(es->s_first_data_block);
4131 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4132
4133 /* set up allocation goals */
4134 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4135 ac->ac_status = AC_STATUS_CONTINUE;
4136 ac->ac_sb = sb;
4137 ac->ac_inode = ar->inode;
4138 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4139 ac->ac_o_ex.fe_group = group;
4140 ac->ac_o_ex.fe_start = block;
4141 ac->ac_o_ex.fe_len = len;
4142 ac->ac_g_ex = ac->ac_o_ex;
4143 ac->ac_flags = ar->flags;
4144
4145 /* we have to define context: we'll we work with a file or
4146 * locality group. this is a policy, actually */
4147 ext4_mb_group_or_file(ac);
4148
4149 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4150 "left: %u/%u, right %u/%u to %swritable\n",
4151 (unsigned) ar->len, (unsigned) ar->logical,
4152 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4153 (unsigned) ar->lleft, (unsigned) ar->pleft,
4154 (unsigned) ar->lright, (unsigned) ar->pright,
4155 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4156 return 0;
4157
4158 }
4159
4160 static noinline_for_stack void
4161 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4162 struct ext4_locality_group *lg,
4163 int order, int total_entries)
4164 {
4165 ext4_group_t group = 0;
4166 struct ext4_buddy e4b;
4167 struct list_head discard_list;
4168 struct ext4_prealloc_space *pa, *tmp;
4169
4170 mb_debug(1, "discard locality group preallocation\n");
4171
4172 INIT_LIST_HEAD(&discard_list);
4173
4174 spin_lock(&lg->lg_prealloc_lock);
4175 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4176 pa_inode_list) {
4177 spin_lock(&pa->pa_lock);
4178 if (atomic_read(&pa->pa_count)) {
4179 /*
4180 * This is the pa that we just used
4181 * for block allocation. So don't
4182 * free that
4183 */
4184 spin_unlock(&pa->pa_lock);
4185 continue;
4186 }
4187 if (pa->pa_deleted) {
4188 spin_unlock(&pa->pa_lock);
4189 continue;
4190 }
4191 /* only lg prealloc space */
4192 BUG_ON(pa->pa_type != MB_GROUP_PA);
4193
4194 /* seems this one can be freed ... */
4195 pa->pa_deleted = 1;
4196 spin_unlock(&pa->pa_lock);
4197
4198 list_del_rcu(&pa->pa_inode_list);
4199 list_add(&pa->u.pa_tmp_list, &discard_list);
4200
4201 total_entries--;
4202 if (total_entries <= 5) {
4203 /*
4204 * we want to keep only 5 entries
4205 * allowing it to grow to 8. This
4206 * mak sure we don't call discard
4207 * soon for this list.
4208 */
4209 break;
4210 }
4211 }
4212 spin_unlock(&lg->lg_prealloc_lock);
4213
4214 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4215
4216 group = ext4_get_group_number(sb, pa->pa_pstart);
4217 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4218 ext4_error(sb, "Error loading buddy information for %u",
4219 group);
4220 continue;
4221 }
4222 ext4_lock_group(sb, group);
4223 list_del(&pa->pa_group_list);
4224 ext4_mb_release_group_pa(&e4b, pa);
4225 ext4_unlock_group(sb, group);
4226
4227 ext4_mb_unload_buddy(&e4b);
4228 list_del(&pa->u.pa_tmp_list);
4229 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4230 }
4231 }
4232
4233 /*
4234 * We have incremented pa_count. So it cannot be freed at this
4235 * point. Also we hold lg_mutex. So no parallel allocation is
4236 * possible from this lg. That means pa_free cannot be updated.
4237 *
4238 * A parallel ext4_mb_discard_group_preallocations is possible.
4239 * which can cause the lg_prealloc_list to be updated.
4240 */
4241
4242 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4243 {
4244 int order, added = 0, lg_prealloc_count = 1;
4245 struct super_block *sb = ac->ac_sb;
4246 struct ext4_locality_group *lg = ac->ac_lg;
4247 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4248
4249 order = fls(pa->pa_free) - 1;
4250 if (order > PREALLOC_TB_SIZE - 1)
4251 /* The max size of hash table is PREALLOC_TB_SIZE */
4252 order = PREALLOC_TB_SIZE - 1;
4253 /* Add the prealloc space to lg */
4254 spin_lock(&lg->lg_prealloc_lock);
4255 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4256 pa_inode_list) {
4257 spin_lock(&tmp_pa->pa_lock);
4258 if (tmp_pa->pa_deleted) {
4259 spin_unlock(&tmp_pa->pa_lock);
4260 continue;
4261 }
4262 if (!added && pa->pa_free < tmp_pa->pa_free) {
4263 /* Add to the tail of the previous entry */
4264 list_add_tail_rcu(&pa->pa_inode_list,
4265 &tmp_pa->pa_inode_list);
4266 added = 1;
4267 /*
4268 * we want to count the total
4269 * number of entries in the list
4270 */
4271 }
4272 spin_unlock(&tmp_pa->pa_lock);
4273 lg_prealloc_count++;
4274 }
4275 if (!added)
4276 list_add_tail_rcu(&pa->pa_inode_list,
4277 &lg->lg_prealloc_list[order]);
4278 spin_unlock(&lg->lg_prealloc_lock);
4279
4280 /* Now trim the list to be not more than 8 elements */
4281 if (lg_prealloc_count > 8) {
4282 ext4_mb_discard_lg_preallocations(sb, lg,
4283 order, lg_prealloc_count);
4284 return;
4285 }
4286 return ;
4287 }
4288
4289 /*
4290 * release all resource we used in allocation
4291 */
4292 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4293 {
4294 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4295 struct ext4_prealloc_space *pa = ac->ac_pa;
4296 if (pa) {
4297 if (pa->pa_type == MB_GROUP_PA) {
4298 /* see comment in ext4_mb_use_group_pa() */
4299 spin_lock(&pa->pa_lock);
4300 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4301 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4302 pa->pa_free -= ac->ac_b_ex.fe_len;
4303 pa->pa_len -= ac->ac_b_ex.fe_len;
4304 spin_unlock(&pa->pa_lock);
4305 }
4306 }
4307 if (pa) {
4308 /*
4309 * We want to add the pa to the right bucket.
4310 * Remove it from the list and while adding
4311 * make sure the list to which we are adding
4312 * doesn't grow big.
4313 */
4314 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4315 spin_lock(pa->pa_obj_lock);
4316 list_del_rcu(&pa->pa_inode_list);
4317 spin_unlock(pa->pa_obj_lock);
4318 ext4_mb_add_n_trim(ac);
4319 }
4320 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4321 }
4322 if (ac->ac_bitmap_page)
4323 page_cache_release(ac->ac_bitmap_page);
4324 if (ac->ac_buddy_page)
4325 page_cache_release(ac->ac_buddy_page);
4326 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4327 mutex_unlock(&ac->ac_lg->lg_mutex);
4328 ext4_mb_collect_stats(ac);
4329 return 0;
4330 }
4331
4332 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4333 {
4334 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4335 int ret;
4336 int freed = 0;
4337
4338 trace_ext4_mb_discard_preallocations(sb, needed);
4339 for (i = 0; i < ngroups && needed > 0; i++) {
4340 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4341 freed += ret;
4342 needed -= ret;
4343 }
4344
4345 return freed;
4346 }
4347
4348 /*
4349 * Main entry point into mballoc to allocate blocks
4350 * it tries to use preallocation first, then falls back
4351 * to usual allocation
4352 */
4353 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4354 struct ext4_allocation_request *ar, int *errp)
4355 {
4356 int freed;
4357 struct ext4_allocation_context *ac = NULL;
4358 struct ext4_sb_info *sbi;
4359 struct super_block *sb;
4360 ext4_fsblk_t block = 0;
4361 unsigned int inquota = 0;
4362 unsigned int reserv_clstrs = 0;
4363
4364 might_sleep();
4365 sb = ar->inode->i_sb;
4366 sbi = EXT4_SB(sb);
4367
4368 trace_ext4_request_blocks(ar);
4369
4370 /* Allow to use superuser reservation for quota file */
4371 if (IS_NOQUOTA(ar->inode))
4372 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4373
4374 /*
4375 * For delayed allocation, we could skip the ENOSPC and
4376 * EDQUOT check, as blocks and quotas have been already
4377 * reserved when data being copied into pagecache.
4378 */
4379 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4380 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4381 else {
4382 /* Without delayed allocation we need to verify
4383 * there is enough free blocks to do block allocation
4384 * and verify allocation doesn't exceed the quota limits.
4385 */
4386 while (ar->len &&
4387 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4388
4389 /* let others to free the space */
4390 cond_resched();
4391 ar->len = ar->len >> 1;
4392 }
4393 if (!ar->len) {
4394 *errp = -ENOSPC;
4395 return 0;
4396 }
4397 reserv_clstrs = ar->len;
4398 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4399 dquot_alloc_block_nofail(ar->inode,
4400 EXT4_C2B(sbi, ar->len));
4401 } else {
4402 while (ar->len &&
4403 dquot_alloc_block(ar->inode,
4404 EXT4_C2B(sbi, ar->len))) {
4405
4406 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4407 ar->len--;
4408 }
4409 }
4410 inquota = ar->len;
4411 if (ar->len == 0) {
4412 *errp = -EDQUOT;
4413 goto out;
4414 }
4415 }
4416
4417 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4418 if (!ac) {
4419 ar->len = 0;
4420 *errp = -ENOMEM;
4421 goto out;
4422 }
4423
4424 *errp = ext4_mb_initialize_context(ac, ar);
4425 if (*errp) {
4426 ar->len = 0;
4427 goto out;
4428 }
4429
4430 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4431 if (!ext4_mb_use_preallocated(ac)) {
4432 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4433 ext4_mb_normalize_request(ac, ar);
4434 repeat:
4435 /* allocate space in core */
4436 *errp = ext4_mb_regular_allocator(ac);
4437 if (*errp) {
4438 ext4_discard_allocated_blocks(ac);
4439 goto errout;
4440 }
4441
4442 /* as we've just preallocated more space than
4443 * user requested orinally, we store allocated
4444 * space in a special descriptor */
4445 if (ac->ac_status == AC_STATUS_FOUND &&
4446 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4447 ext4_mb_new_preallocation(ac);
4448 }
4449 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4450 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4451 if (*errp == -EAGAIN) {
4452 /*
4453 * drop the reference that we took
4454 * in ext4_mb_use_best_found
4455 */
4456 ext4_mb_release_context(ac);
4457 ac->ac_b_ex.fe_group = 0;
4458 ac->ac_b_ex.fe_start = 0;
4459 ac->ac_b_ex.fe_len = 0;
4460 ac->ac_status = AC_STATUS_CONTINUE;
4461 goto repeat;
4462 } else if (*errp) {
4463 ext4_discard_allocated_blocks(ac);
4464 goto errout;
4465 } else {
4466 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4467 ar->len = ac->ac_b_ex.fe_len;
4468 }
4469 } else {
4470 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4471 if (freed)
4472 goto repeat;
4473 *errp = -ENOSPC;
4474 }
4475
4476 errout:
4477 if (*errp) {
4478 ac->ac_b_ex.fe_len = 0;
4479 ar->len = 0;
4480 ext4_mb_show_ac(ac);
4481 }
4482 ext4_mb_release_context(ac);
4483 out:
4484 if (ac)
4485 kmem_cache_free(ext4_ac_cachep, ac);
4486 if (inquota && ar->len < inquota)
4487 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4488 if (!ar->len) {
4489 if (!ext4_test_inode_state(ar->inode,
4490 EXT4_STATE_DELALLOC_RESERVED))
4491 /* release all the reserved blocks if non delalloc */
4492 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4493 reserv_clstrs);
4494 }
4495
4496 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4497
4498 return block;
4499 }
4500
4501 /*
4502 * We can merge two free data extents only if the physical blocks
4503 * are contiguous, AND the extents were freed by the same transaction,
4504 * AND the blocks are associated with the same group.
4505 */
4506 static int can_merge(struct ext4_free_data *entry1,
4507 struct ext4_free_data *entry2)
4508 {
4509 if ((entry1->efd_tid == entry2->efd_tid) &&
4510 (entry1->efd_group == entry2->efd_group) &&
4511 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4512 return 1;
4513 return 0;
4514 }
4515
4516 static noinline_for_stack int
4517 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4518 struct ext4_free_data *new_entry)
4519 {
4520 ext4_group_t group = e4b->bd_group;
4521 ext4_grpblk_t cluster;
4522 struct ext4_free_data *entry;
4523 struct ext4_group_info *db = e4b->bd_info;
4524 struct super_block *sb = e4b->bd_sb;
4525 struct ext4_sb_info *sbi = EXT4_SB(sb);
4526 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4527 struct rb_node *parent = NULL, *new_node;
4528
4529 BUG_ON(!ext4_handle_valid(handle));
4530 BUG_ON(e4b->bd_bitmap_page == NULL);
4531 BUG_ON(e4b->bd_buddy_page == NULL);
4532
4533 new_node = &new_entry->efd_node;
4534 cluster = new_entry->efd_start_cluster;
4535
4536 if (!*n) {
4537 /* first free block exent. We need to
4538 protect buddy cache from being freed,
4539 * otherwise we'll refresh it from
4540 * on-disk bitmap and lose not-yet-available
4541 * blocks */
4542 page_cache_get(e4b->bd_buddy_page);
4543 page_cache_get(e4b->bd_bitmap_page);
4544 }
4545 while (*n) {
4546 parent = *n;
4547 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4548 if (cluster < entry->efd_start_cluster)
4549 n = &(*n)->rb_left;
4550 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4551 n = &(*n)->rb_right;
4552 else {
4553 ext4_grp_locked_error(sb, group, 0,
4554 ext4_group_first_block_no(sb, group) +
4555 EXT4_C2B(sbi, cluster),
4556 "Block already on to-be-freed list");
4557 return 0;
4558 }
4559 }
4560
4561 rb_link_node(new_node, parent, n);
4562 rb_insert_color(new_node, &db->bb_free_root);
4563
4564 /* Now try to see the extent can be merged to left and right */
4565 node = rb_prev(new_node);
4566 if (node) {
4567 entry = rb_entry(node, struct ext4_free_data, efd_node);
4568 if (can_merge(entry, new_entry) &&
4569 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4570 new_entry->efd_start_cluster = entry->efd_start_cluster;
4571 new_entry->efd_count += entry->efd_count;
4572 rb_erase(node, &(db->bb_free_root));
4573 kmem_cache_free(ext4_free_data_cachep, entry);
4574 }
4575 }
4576
4577 node = rb_next(new_node);
4578 if (node) {
4579 entry = rb_entry(node, struct ext4_free_data, efd_node);
4580 if (can_merge(new_entry, entry) &&
4581 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4582 new_entry->efd_count += entry->efd_count;
4583 rb_erase(node, &(db->bb_free_root));
4584 kmem_cache_free(ext4_free_data_cachep, entry);
4585 }
4586 }
4587 /* Add the extent to transaction's private list */
4588 ext4_journal_callback_add(handle, ext4_free_data_callback,
4589 &new_entry->efd_jce);
4590 return 0;
4591 }
4592
4593 /**
4594 * ext4_free_blocks() -- Free given blocks and update quota
4595 * @handle: handle for this transaction
4596 * @inode: inode
4597 * @block: start physical block to free
4598 * @count: number of blocks to count
4599 * @flags: flags used by ext4_free_blocks
4600 */
4601 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4602 struct buffer_head *bh, ext4_fsblk_t block,
4603 unsigned long count, int flags)
4604 {
4605 struct buffer_head *bitmap_bh = NULL;
4606 struct super_block *sb = inode->i_sb;
4607 struct ext4_group_desc *gdp;
4608 unsigned int overflow;
4609 ext4_grpblk_t bit;
4610 struct buffer_head *gd_bh;
4611 ext4_group_t block_group;
4612 struct ext4_sb_info *sbi;
4613 struct ext4_inode_info *ei = EXT4_I(inode);
4614 struct ext4_buddy e4b;
4615 unsigned int count_clusters;
4616 int err = 0;
4617 int ret;
4618
4619 might_sleep();
4620 if (bh) {
4621 if (block)
4622 BUG_ON(block != bh->b_blocknr);
4623 else
4624 block = bh->b_blocknr;
4625 }
4626
4627 sbi = EXT4_SB(sb);
4628 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4629 !ext4_data_block_valid(sbi, block, count)) {
4630 ext4_error(sb, "Freeing blocks not in datazone - "
4631 "block = %llu, count = %lu", block, count);
4632 goto error_return;
4633 }
4634
4635 ext4_debug("freeing block %llu\n", block);
4636 trace_ext4_free_blocks(inode, block, count, flags);
4637
4638 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4639 struct buffer_head *tbh = bh;
4640 int i;
4641
4642 BUG_ON(bh && (count > 1));
4643
4644 for (i = 0; i < count; i++) {
4645 if (!bh)
4646 tbh = sb_find_get_block(inode->i_sb,
4647 block + i);
4648 if (unlikely(!tbh))
4649 continue;
4650 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4651 inode, tbh, block + i);
4652 }
4653 }
4654
4655 /*
4656 * We need to make sure we don't reuse the freed block until
4657 * after the transaction is committed, which we can do by
4658 * treating the block as metadata, below. We make an
4659 * exception if the inode is to be written in writeback mode
4660 * since writeback mode has weak data consistency guarantees.
4661 */
4662 if (!ext4_should_writeback_data(inode))
4663 flags |= EXT4_FREE_BLOCKS_METADATA;
4664
4665 /*
4666 * If the extent to be freed does not begin on a cluster
4667 * boundary, we need to deal with partial clusters at the
4668 * beginning and end of the extent. Normally we will free
4669 * blocks at the beginning or the end unless we are explicitly
4670 * requested to avoid doing so.
4671 */
4672 overflow = EXT4_PBLK_COFF(sbi, block);
4673 if (overflow) {
4674 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4675 overflow = sbi->s_cluster_ratio - overflow;
4676 block += overflow;
4677 if (count > overflow)
4678 count -= overflow;
4679 else
4680 return;
4681 } else {
4682 block -= overflow;
4683 count += overflow;
4684 }
4685 }
4686 overflow = EXT4_LBLK_COFF(sbi, count);
4687 if (overflow) {
4688 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4689 if (count > overflow)
4690 count -= overflow;
4691 else
4692 return;
4693 } else
4694 count += sbi->s_cluster_ratio - overflow;
4695 }
4696
4697 do_more:
4698 overflow = 0;
4699 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4700
4701 /*
4702 * Check to see if we are freeing blocks across a group
4703 * boundary.
4704 */
4705 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4706 overflow = EXT4_C2B(sbi, bit) + count -
4707 EXT4_BLOCKS_PER_GROUP(sb);
4708 count -= overflow;
4709 }
4710 count_clusters = EXT4_NUM_B2C(sbi, count);
4711 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4712 if (!bitmap_bh) {
4713 err = -EIO;
4714 goto error_return;
4715 }
4716 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4717 if (!gdp) {
4718 err = -EIO;
4719 goto error_return;
4720 }
4721
4722 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4723 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4724 in_range(block, ext4_inode_table(sb, gdp),
4725 EXT4_SB(sb)->s_itb_per_group) ||
4726 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4727 EXT4_SB(sb)->s_itb_per_group)) {
4728
4729 ext4_error(sb, "Freeing blocks in system zone - "
4730 "Block = %llu, count = %lu", block, count);
4731 /* err = 0. ext4_std_error should be a no op */
4732 goto error_return;
4733 }
4734
4735 BUFFER_TRACE(bitmap_bh, "getting write access");
4736 err = ext4_journal_get_write_access(handle, bitmap_bh);
4737 if (err)
4738 goto error_return;
4739
4740 /*
4741 * We are about to modify some metadata. Call the journal APIs
4742 * to unshare ->b_data if a currently-committing transaction is
4743 * using it
4744 */
4745 BUFFER_TRACE(gd_bh, "get_write_access");
4746 err = ext4_journal_get_write_access(handle, gd_bh);
4747 if (err)
4748 goto error_return;
4749 #ifdef AGGRESSIVE_CHECK
4750 {
4751 int i;
4752 for (i = 0; i < count_clusters; i++)
4753 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4754 }
4755 #endif
4756 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4757
4758 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4759 if (err)
4760 goto error_return;
4761
4762 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4763 struct ext4_free_data *new_entry;
4764 /*
4765 * blocks being freed are metadata. these blocks shouldn't
4766 * be used until this transaction is committed
4767 *
4768 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4769 * to fail.
4770 */
4771 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4772 GFP_NOFS|__GFP_NOFAIL);
4773 new_entry->efd_start_cluster = bit;
4774 new_entry->efd_group = block_group;
4775 new_entry->efd_count = count_clusters;
4776 new_entry->efd_tid = handle->h_transaction->t_tid;
4777
4778 ext4_lock_group(sb, block_group);
4779 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4780 ext4_mb_free_metadata(handle, &e4b, new_entry);
4781 } else {
4782 /* need to update group_info->bb_free and bitmap
4783 * with group lock held. generate_buddy look at
4784 * them with group lock_held
4785 */
4786 if (test_opt(sb, DISCARD)) {
4787 err = ext4_issue_discard(sb, block_group, bit, count);
4788 if (err && err != -EOPNOTSUPP)
4789 ext4_msg(sb, KERN_WARNING, "discard request in"
4790 " group:%d block:%d count:%lu failed"
4791 " with %d", block_group, bit, count,
4792 err);
4793 } else
4794 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4795
4796 ext4_lock_group(sb, block_group);
4797 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4798 mb_free_blocks(inode, &e4b, bit, count_clusters);
4799 }
4800
4801 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4802 ext4_free_group_clusters_set(sb, gdp, ret);
4803 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4804 ext4_group_desc_csum_set(sb, block_group, gdp);
4805 ext4_unlock_group(sb, block_group);
4806
4807 if (sbi->s_log_groups_per_flex) {
4808 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4809 atomic64_add(count_clusters,
4810 &sbi->s_flex_groups[flex_group].free_clusters);
4811 }
4812
4813 if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4814 percpu_counter_add(&sbi->s_dirtyclusters_counter,
4815 count_clusters);
4816 spin_lock(&ei->i_block_reservation_lock);
4817 if (flags & EXT4_FREE_BLOCKS_METADATA)
4818 ei->i_reserved_meta_blocks += count_clusters;
4819 else
4820 ei->i_reserved_data_blocks += count_clusters;
4821 spin_unlock(&ei->i_block_reservation_lock);
4822 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4823 dquot_reclaim_block(inode,
4824 EXT4_C2B(sbi, count_clusters));
4825 } else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4826 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4827 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4828
4829 ext4_mb_unload_buddy(&e4b);
4830
4831 /* We dirtied the bitmap block */
4832 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4833 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4834
4835 /* And the group descriptor block */
4836 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4837 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4838 if (!err)
4839 err = ret;
4840
4841 if (overflow && !err) {
4842 block += count;
4843 count = overflow;
4844 put_bh(bitmap_bh);
4845 goto do_more;
4846 }
4847 error_return:
4848 brelse(bitmap_bh);
4849 ext4_std_error(sb, err);
4850 return;
4851 }
4852
4853 /**
4854 * ext4_group_add_blocks() -- Add given blocks to an existing group
4855 * @handle: handle to this transaction
4856 * @sb: super block
4857 * @block: start physical block to add to the block group
4858 * @count: number of blocks to free
4859 *
4860 * This marks the blocks as free in the bitmap and buddy.
4861 */
4862 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4863 ext4_fsblk_t block, unsigned long count)
4864 {
4865 struct buffer_head *bitmap_bh = NULL;
4866 struct buffer_head *gd_bh;
4867 ext4_group_t block_group;
4868 ext4_grpblk_t bit;
4869 unsigned int i;
4870 struct ext4_group_desc *desc;
4871 struct ext4_sb_info *sbi = EXT4_SB(sb);
4872 struct ext4_buddy e4b;
4873 int err = 0, ret, blk_free_count;
4874 ext4_grpblk_t blocks_freed;
4875
4876 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4877
4878 if (count == 0)
4879 return 0;
4880
4881 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4882 /*
4883 * Check to see if we are freeing blocks across a group
4884 * boundary.
4885 */
4886 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4887 ext4_warning(sb, "too much blocks added to group %u\n",
4888 block_group);
4889 err = -EINVAL;
4890 goto error_return;
4891 }
4892
4893 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4894 if (!bitmap_bh) {
4895 err = -EIO;
4896 goto error_return;
4897 }
4898
4899 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4900 if (!desc) {
4901 err = -EIO;
4902 goto error_return;
4903 }
4904
4905 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4906 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4907 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4908 in_range(block + count - 1, ext4_inode_table(sb, desc),
4909 sbi->s_itb_per_group)) {
4910 ext4_error(sb, "Adding blocks in system zones - "
4911 "Block = %llu, count = %lu",
4912 block, count);
4913 err = -EINVAL;
4914 goto error_return;
4915 }
4916
4917 BUFFER_TRACE(bitmap_bh, "getting write access");
4918 err = ext4_journal_get_write_access(handle, bitmap_bh);
4919 if (err)
4920 goto error_return;
4921
4922 /*
4923 * We are about to modify some metadata. Call the journal APIs
4924 * to unshare ->b_data if a currently-committing transaction is
4925 * using it
4926 */
4927 BUFFER_TRACE(gd_bh, "get_write_access");
4928 err = ext4_journal_get_write_access(handle, gd_bh);
4929 if (err)
4930 goto error_return;
4931
4932 for (i = 0, blocks_freed = 0; i < count; i++) {
4933 BUFFER_TRACE(bitmap_bh, "clear bit");
4934 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4935 ext4_error(sb, "bit already cleared for block %llu",
4936 (ext4_fsblk_t)(block + i));
4937 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4938 } else {
4939 blocks_freed++;
4940 }
4941 }
4942
4943 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4944 if (err)
4945 goto error_return;
4946
4947 /*
4948 * need to update group_info->bb_free and bitmap
4949 * with group lock held. generate_buddy look at
4950 * them with group lock_held
4951 */
4952 ext4_lock_group(sb, block_group);
4953 mb_clear_bits(bitmap_bh->b_data, bit, count);
4954 mb_free_blocks(NULL, &e4b, bit, count);
4955 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4956 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4957 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4958 ext4_group_desc_csum_set(sb, block_group, desc);
4959 ext4_unlock_group(sb, block_group);
4960 percpu_counter_add(&sbi->s_freeclusters_counter,
4961 EXT4_NUM_B2C(sbi, blocks_freed));
4962
4963 if (sbi->s_log_groups_per_flex) {
4964 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4965 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4966 &sbi->s_flex_groups[flex_group].free_clusters);
4967 }
4968
4969 ext4_mb_unload_buddy(&e4b);
4970
4971 /* We dirtied the bitmap block */
4972 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4973 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4974
4975 /* And the group descriptor block */
4976 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4977 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4978 if (!err)
4979 err = ret;
4980
4981 error_return:
4982 brelse(bitmap_bh);
4983 ext4_std_error(sb, err);
4984 return err;
4985 }
4986
4987 /**
4988 * ext4_trim_extent -- function to TRIM one single free extent in the group
4989 * @sb: super block for the file system
4990 * @start: starting block of the free extent in the alloc. group
4991 * @count: number of blocks to TRIM
4992 * @group: alloc. group we are working with
4993 * @e4b: ext4 buddy for the group
4994 *
4995 * Trim "count" blocks starting at "start" in the "group". To assure that no
4996 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4997 * be called with under the group lock.
4998 */
4999 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5000 ext4_group_t group, struct ext4_buddy *e4b)
5001 {
5002 struct ext4_free_extent ex;
5003 int ret = 0;
5004
5005 trace_ext4_trim_extent(sb, group, start, count);
5006
5007 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5008
5009 ex.fe_start = start;
5010 ex.fe_group = group;
5011 ex.fe_len = count;
5012
5013 /*
5014 * Mark blocks used, so no one can reuse them while
5015 * being trimmed.
5016 */
5017 mb_mark_used(e4b, &ex);
5018 ext4_unlock_group(sb, group);
5019 ret = ext4_issue_discard(sb, group, start, count);
5020 ext4_lock_group(sb, group);
5021 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5022 return ret;
5023 }
5024
5025 /**
5026 * ext4_trim_all_free -- function to trim all free space in alloc. group
5027 * @sb: super block for file system
5028 * @group: group to be trimmed
5029 * @start: first group block to examine
5030 * @max: last group block to examine
5031 * @minblocks: minimum extent block count
5032 *
5033 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5034 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5035 * the extent.
5036 *
5037 *
5038 * ext4_trim_all_free walks through group's block bitmap searching for free
5039 * extents. When the free extent is found, mark it as used in group buddy
5040 * bitmap. Then issue a TRIM command on this extent and free the extent in
5041 * the group buddy bitmap. This is done until whole group is scanned.
5042 */
5043 static ext4_grpblk_t
5044 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5045 ext4_grpblk_t start, ext4_grpblk_t max,
5046 ext4_grpblk_t minblocks)
5047 {
5048 void *bitmap;
5049 ext4_grpblk_t next, count = 0, free_count = 0;
5050 struct ext4_buddy e4b;
5051 int ret = 0;
5052
5053 trace_ext4_trim_all_free(sb, group, start, max);
5054
5055 ret = ext4_mb_load_buddy(sb, group, &e4b);
5056 if (ret) {
5057 ext4_error(sb, "Error in loading buddy "
5058 "information for %u", group);
5059 return ret;
5060 }
5061 bitmap = e4b.bd_bitmap;
5062
5063 ext4_lock_group(sb, group);
5064 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5065 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5066 goto out;
5067
5068 start = (e4b.bd_info->bb_first_free > start) ?
5069 e4b.bd_info->bb_first_free : start;
5070
5071 while (start <= max) {
5072 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5073 if (start > max)
5074 break;
5075 next = mb_find_next_bit(bitmap, max + 1, start);
5076
5077 if ((next - start) >= minblocks) {
5078 ret = ext4_trim_extent(sb, start,
5079 next - start, group, &e4b);
5080 if (ret && ret != -EOPNOTSUPP)
5081 break;
5082 ret = 0;
5083 count += next - start;
5084 }
5085 free_count += next - start;
5086 start = next + 1;
5087
5088 if (fatal_signal_pending(current)) {
5089 count = -ERESTARTSYS;
5090 break;
5091 }
5092
5093 if (need_resched()) {
5094 ext4_unlock_group(sb, group);
5095 cond_resched();
5096 ext4_lock_group(sb, group);
5097 }
5098
5099 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5100 break;
5101 }
5102
5103 if (!ret) {
5104 ret = count;
5105 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5106 }
5107 out:
5108 ext4_unlock_group(sb, group);
5109 ext4_mb_unload_buddy(&e4b);
5110
5111 ext4_debug("trimmed %d blocks in the group %d\n",
5112 count, group);
5113
5114 return ret;
5115 }
5116
5117 /**
5118 * ext4_trim_fs() -- trim ioctl handle function
5119 * @sb: superblock for filesystem
5120 * @range: fstrim_range structure
5121 *
5122 * start: First Byte to trim
5123 * len: number of Bytes to trim from start
5124 * minlen: minimum extent length in Bytes
5125 * ext4_trim_fs goes through all allocation groups containing Bytes from
5126 * start to start+len. For each such a group ext4_trim_all_free function
5127 * is invoked to trim all free space.
5128 */
5129 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5130 {
5131 struct ext4_group_info *grp;
5132 ext4_group_t group, first_group, last_group;
5133 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5134 uint64_t start, end, minlen, trimmed = 0;
5135 ext4_fsblk_t first_data_blk =
5136 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5137 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5138 int ret = 0;
5139
5140 start = range->start >> sb->s_blocksize_bits;
5141 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5142 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5143 range->minlen >> sb->s_blocksize_bits);
5144
5145 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5146 start >= max_blks ||
5147 range->len < sb->s_blocksize)
5148 return -EINVAL;
5149 if (end >= max_blks)
5150 end = max_blks - 1;
5151 if (end <= first_data_blk)
5152 goto out;
5153 if (start < first_data_blk)
5154 start = first_data_blk;
5155
5156 /* Determine first and last group to examine based on start and end */
5157 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5158 &first_group, &first_cluster);
5159 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5160 &last_group, &last_cluster);
5161
5162 /* end now represents the last cluster to discard in this group */
5163 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5164
5165 for (group = first_group; group <= last_group; group++) {
5166 grp = ext4_get_group_info(sb, group);
5167 /* We only do this if the grp has never been initialized */
5168 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5169 ret = ext4_mb_init_group(sb, group);
5170 if (ret)
5171 break;
5172 }
5173
5174 /*
5175 * For all the groups except the last one, last cluster will
5176 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5177 * change it for the last group, note that last_cluster is
5178 * already computed earlier by ext4_get_group_no_and_offset()
5179 */
5180 if (group == last_group)
5181 end = last_cluster;
5182
5183 if (grp->bb_free >= minlen) {
5184 cnt = ext4_trim_all_free(sb, group, first_cluster,
5185 end, minlen);
5186 if (cnt < 0) {
5187 ret = cnt;
5188 break;
5189 }
5190 trimmed += cnt;
5191 }
5192
5193 /*
5194 * For every group except the first one, we are sure
5195 * that the first cluster to discard will be cluster #0.
5196 */
5197 first_cluster = 0;
5198 }
5199
5200 if (!ret)
5201 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5202
5203 out:
5204 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5205 return ret;
5206 }