Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned int border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 ext4_grpblk_t i = 0;
727 ext4_grpblk_t first;
728 ext4_grpblk_t len;
729 unsigned free = 0;
730 unsigned fragments = 0;
731 unsigned long long period = get_cycles();
732
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i = mb_find_next_zero_bit(bitmap, max, 0);
736 grp->bb_first_free = i;
737 while (i < max) {
738 fragments++;
739 first = i;
740 i = mb_find_next_bit(bitmap, max, i);
741 len = i - first;
742 free += len;
743 if (len > 1)
744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 else
746 grp->bb_counters[0]++;
747 if (i < max)
748 i = mb_find_next_zero_bit(bitmap, max, i);
749 }
750 grp->bb_fragments = fragments;
751
752 if (free != grp->bb_free) {
753 ext4_grp_locked_error(sb, group, 0, 0,
754 "%u clusters in bitmap, %u in gd",
755 free, grp->bb_free);
756 /*
757 * If we intent to continue, we consider group descritor
758 * corrupt and update bb_free using bitmap value
759 */
760 grp->bb_free = free;
761 }
762 mb_set_largest_free_order(sb, grp);
763
764 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
765
766 period = get_cycles() - period;
767 spin_lock(&EXT4_SB(sb)->s_bal_lock);
768 EXT4_SB(sb)->s_mb_buddies_generated++;
769 EXT4_SB(sb)->s_mb_generation_time += period;
770 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
771 }
772
773 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
774 {
775 int count;
776 int order = 1;
777 void *buddy;
778
779 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
780 ext4_set_bits(buddy, 0, count);
781 }
782 e4b->bd_info->bb_fragments = 0;
783 memset(e4b->bd_info->bb_counters, 0,
784 sizeof(*e4b->bd_info->bb_counters) *
785 (e4b->bd_sb->s_blocksize_bits + 2));
786
787 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
788 e4b->bd_bitmap, e4b->bd_group);
789 }
790
791 /* The buddy information is attached the buddy cache inode
792 * for convenience. The information regarding each group
793 * is loaded via ext4_mb_load_buddy. The information involve
794 * block bitmap and buddy information. The information are
795 * stored in the inode as
796 *
797 * { page }
798 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
799 *
800 *
801 * one block each for bitmap and buddy information.
802 * So for each group we take up 2 blocks. A page can
803 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
804 * So it can have information regarding groups_per_page which
805 * is blocks_per_page/2
806 *
807 * Locking note: This routine takes the block group lock of all groups
808 * for this page; do not hold this lock when calling this routine!
809 */
810
811 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
812 {
813 ext4_group_t ngroups;
814 int blocksize;
815 int blocks_per_page;
816 int groups_per_page;
817 int err = 0;
818 int i;
819 ext4_group_t first_group, group;
820 int first_block;
821 struct super_block *sb;
822 struct buffer_head *bhs;
823 struct buffer_head **bh = NULL;
824 struct inode *inode;
825 char *data;
826 char *bitmap;
827 struct ext4_group_info *grinfo;
828
829 mb_debug(1, "init page %lu\n", page->index);
830
831 inode = page->mapping->host;
832 sb = inode->i_sb;
833 ngroups = ext4_get_groups_count(sb);
834 blocksize = 1 << inode->i_blkbits;
835 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
836
837 groups_per_page = blocks_per_page >> 1;
838 if (groups_per_page == 0)
839 groups_per_page = 1;
840
841 /* allocate buffer_heads to read bitmaps */
842 if (groups_per_page > 1) {
843 i = sizeof(struct buffer_head *) * groups_per_page;
844 bh = kzalloc(i, gfp);
845 if (bh == NULL) {
846 err = -ENOMEM;
847 goto out;
848 }
849 } else
850 bh = &bhs;
851
852 first_group = page->index * blocks_per_page / 2;
853
854 /* read all groups the page covers into the cache */
855 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
856 if (group >= ngroups)
857 break;
858
859 grinfo = ext4_get_group_info(sb, group);
860 /*
861 * If page is uptodate then we came here after online resize
862 * which added some new uninitialized group info structs, so
863 * we must skip all initialized uptodate buddies on the page,
864 * which may be currently in use by an allocating task.
865 */
866 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
867 bh[i] = NULL;
868 continue;
869 }
870 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
871 err = -ENOMEM;
872 goto out;
873 }
874 mb_debug(1, "read bitmap for group %u\n", group);
875 }
876
877 /* wait for I/O completion */
878 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
879 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
880 err = -EIO;
881 goto out;
882 }
883 }
884
885 first_block = page->index * blocks_per_page;
886 for (i = 0; i < blocks_per_page; i++) {
887 group = (first_block + i) >> 1;
888 if (group >= ngroups)
889 break;
890
891 if (!bh[group - first_group])
892 /* skip initialized uptodate buddy */
893 continue;
894
895 /*
896 * data carry information regarding this
897 * particular group in the format specified
898 * above
899 *
900 */
901 data = page_address(page) + (i * blocksize);
902 bitmap = bh[group - first_group]->b_data;
903
904 /*
905 * We place the buddy block and bitmap block
906 * close together
907 */
908 if ((first_block + i) & 1) {
909 /* this is block of buddy */
910 BUG_ON(incore == NULL);
911 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
912 group, page->index, i * blocksize);
913 trace_ext4_mb_buddy_bitmap_load(sb, group);
914 grinfo = ext4_get_group_info(sb, group);
915 grinfo->bb_fragments = 0;
916 memset(grinfo->bb_counters, 0,
917 sizeof(*grinfo->bb_counters) *
918 (sb->s_blocksize_bits+2));
919 /*
920 * incore got set to the group block bitmap below
921 */
922 ext4_lock_group(sb, group);
923 /* init the buddy */
924 memset(data, 0xff, blocksize);
925 ext4_mb_generate_buddy(sb, data, incore, group);
926 ext4_unlock_group(sb, group);
927 incore = NULL;
928 } else {
929 /* this is block of bitmap */
930 BUG_ON(incore != NULL);
931 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
932 group, page->index, i * blocksize);
933 trace_ext4_mb_bitmap_load(sb, group);
934
935 /* see comments in ext4_mb_put_pa() */
936 ext4_lock_group(sb, group);
937 memcpy(data, bitmap, blocksize);
938
939 /* mark all preallocated blks used in in-core bitmap */
940 ext4_mb_generate_from_pa(sb, data, group);
941 ext4_mb_generate_from_freelist(sb, data, group);
942 ext4_unlock_group(sb, group);
943
944 /* set incore so that the buddy information can be
945 * generated using this
946 */
947 incore = data;
948 }
949 }
950 SetPageUptodate(page);
951
952 out:
953 if (bh) {
954 for (i = 0; i < groups_per_page; i++)
955 brelse(bh[i]);
956 if (bh != &bhs)
957 kfree(bh);
958 }
959 return err;
960 }
961
962 /*
963 * Lock the buddy and bitmap pages. This make sure other parallel init_group
964 * on the same buddy page doesn't happen whild holding the buddy page lock.
965 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
966 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
967 */
968 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
969 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
970 {
971 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
972 int block, pnum, poff;
973 int blocks_per_page;
974 struct page *page;
975
976 e4b->bd_buddy_page = NULL;
977 e4b->bd_bitmap_page = NULL;
978
979 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
980 /*
981 * the buddy cache inode stores the block bitmap
982 * and buddy information in consecutive blocks.
983 * So for each group we need two blocks.
984 */
985 block = group * 2;
986 pnum = block / blocks_per_page;
987 poff = block % blocks_per_page;
988 page = find_or_create_page(inode->i_mapping, pnum, gfp);
989 if (!page)
990 return -EIO;
991 BUG_ON(page->mapping != inode->i_mapping);
992 e4b->bd_bitmap_page = page;
993 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
994
995 if (blocks_per_page >= 2) {
996 /* buddy and bitmap are on the same page */
997 return 0;
998 }
999
1000 block++;
1001 pnum = block / blocks_per_page;
1002 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1003 if (!page)
1004 return -EIO;
1005 BUG_ON(page->mapping != inode->i_mapping);
1006 e4b->bd_buddy_page = page;
1007 return 0;
1008 }
1009
1010 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1011 {
1012 if (e4b->bd_bitmap_page) {
1013 unlock_page(e4b->bd_bitmap_page);
1014 page_cache_release(e4b->bd_bitmap_page);
1015 }
1016 if (e4b->bd_buddy_page) {
1017 unlock_page(e4b->bd_buddy_page);
1018 page_cache_release(e4b->bd_buddy_page);
1019 }
1020 }
1021
1022 /*
1023 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1024 * block group lock of all groups for this page; do not hold the BG lock when
1025 * calling this routine!
1026 */
1027 static noinline_for_stack
1028 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1029 {
1030
1031 struct ext4_group_info *this_grp;
1032 struct ext4_buddy e4b;
1033 struct page *page;
1034 int ret = 0;
1035
1036 might_sleep();
1037 mb_debug(1, "init group %u\n", group);
1038 this_grp = ext4_get_group_info(sb, group);
1039 /*
1040 * This ensures that we don't reinit the buddy cache
1041 * page which map to the group from which we are already
1042 * allocating. If we are looking at the buddy cache we would
1043 * have taken a reference using ext4_mb_load_buddy and that
1044 * would have pinned buddy page to page cache.
1045 */
1046 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1047 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1048 /*
1049 * somebody initialized the group
1050 * return without doing anything
1051 */
1052 goto err;
1053 }
1054
1055 page = e4b.bd_bitmap_page;
1056 ret = ext4_mb_init_cache(page, NULL, gfp);
1057 if (ret)
1058 goto err;
1059 if (!PageUptodate(page)) {
1060 ret = -EIO;
1061 goto err;
1062 }
1063 mark_page_accessed(page);
1064
1065 if (e4b.bd_buddy_page == NULL) {
1066 /*
1067 * If both the bitmap and buddy are in
1068 * the same page we don't need to force
1069 * init the buddy
1070 */
1071 ret = 0;
1072 goto err;
1073 }
1074 /* init buddy cache */
1075 page = e4b.bd_buddy_page;
1076 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1077 if (ret)
1078 goto err;
1079 if (!PageUptodate(page)) {
1080 ret = -EIO;
1081 goto err;
1082 }
1083 mark_page_accessed(page);
1084 err:
1085 ext4_mb_put_buddy_page_lock(&e4b);
1086 return ret;
1087 }
1088
1089 /*
1090 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1091 * block group lock of all groups for this page; do not hold the BG lock when
1092 * calling this routine!
1093 */
1094 static noinline_for_stack int
1095 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1096 struct ext4_buddy *e4b, gfp_t gfp)
1097 {
1098 int blocks_per_page;
1099 int block;
1100 int pnum;
1101 int poff;
1102 struct page *page;
1103 int ret;
1104 struct ext4_group_info *grp;
1105 struct ext4_sb_info *sbi = EXT4_SB(sb);
1106 struct inode *inode = sbi->s_buddy_cache;
1107
1108 might_sleep();
1109 mb_debug(1, "load group %u\n", group);
1110
1111 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1112 grp = ext4_get_group_info(sb, group);
1113
1114 e4b->bd_blkbits = sb->s_blocksize_bits;
1115 e4b->bd_info = grp;
1116 e4b->bd_sb = sb;
1117 e4b->bd_group = group;
1118 e4b->bd_buddy_page = NULL;
1119 e4b->bd_bitmap_page = NULL;
1120
1121 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1122 /*
1123 * we need full data about the group
1124 * to make a good selection
1125 */
1126 ret = ext4_mb_init_group(sb, group, gfp);
1127 if (ret)
1128 return ret;
1129 }
1130
1131 /*
1132 * the buddy cache inode stores the block bitmap
1133 * and buddy information in consecutive blocks.
1134 * So for each group we need two blocks.
1135 */
1136 block = group * 2;
1137 pnum = block / blocks_per_page;
1138 poff = block % blocks_per_page;
1139
1140 /* we could use find_or_create_page(), but it locks page
1141 * what we'd like to avoid in fast path ... */
1142 page = find_get_page(inode->i_mapping, pnum);
1143 if (page == NULL || !PageUptodate(page)) {
1144 if (page)
1145 /*
1146 * drop the page reference and try
1147 * to get the page with lock. If we
1148 * are not uptodate that implies
1149 * somebody just created the page but
1150 * is yet to initialize the same. So
1151 * wait for it to initialize.
1152 */
1153 page_cache_release(page);
1154 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1155 if (page) {
1156 BUG_ON(page->mapping != inode->i_mapping);
1157 if (!PageUptodate(page)) {
1158 ret = ext4_mb_init_cache(page, NULL, gfp);
1159 if (ret) {
1160 unlock_page(page);
1161 goto err;
1162 }
1163 mb_cmp_bitmaps(e4b, page_address(page) +
1164 (poff * sb->s_blocksize));
1165 }
1166 unlock_page(page);
1167 }
1168 }
1169 if (page == NULL || !PageUptodate(page)) {
1170 ret = -EIO;
1171 goto err;
1172 }
1173 e4b->bd_bitmap_page = page;
1174 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1175 mark_page_accessed(page);
1176
1177 block++;
1178 pnum = block / blocks_per_page;
1179 poff = block % blocks_per_page;
1180
1181 page = find_get_page(inode->i_mapping, pnum);
1182 if (page == NULL || !PageUptodate(page)) {
1183 if (page)
1184 page_cache_release(page);
1185 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1186 if (page) {
1187 BUG_ON(page->mapping != inode->i_mapping);
1188 if (!PageUptodate(page)) {
1189 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1190 gfp);
1191 if (ret) {
1192 unlock_page(page);
1193 goto err;
1194 }
1195 }
1196 unlock_page(page);
1197 }
1198 }
1199 if (page == NULL || !PageUptodate(page)) {
1200 ret = -EIO;
1201 goto err;
1202 }
1203 e4b->bd_buddy_page = page;
1204 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1205 mark_page_accessed(page);
1206
1207 BUG_ON(e4b->bd_bitmap_page == NULL);
1208 BUG_ON(e4b->bd_buddy_page == NULL);
1209
1210 return 0;
1211
1212 err:
1213 if (page)
1214 page_cache_release(page);
1215 if (e4b->bd_bitmap_page)
1216 page_cache_release(e4b->bd_bitmap_page);
1217 if (e4b->bd_buddy_page)
1218 page_cache_release(e4b->bd_buddy_page);
1219 e4b->bd_buddy = NULL;
1220 e4b->bd_bitmap = NULL;
1221 return ret;
1222 }
1223
1224 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1225 struct ext4_buddy *e4b)
1226 {
1227 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1228 }
1229
1230 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1231 {
1232 if (e4b->bd_bitmap_page)
1233 page_cache_release(e4b->bd_bitmap_page);
1234 if (e4b->bd_buddy_page)
1235 page_cache_release(e4b->bd_buddy_page);
1236 }
1237
1238
1239 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1240 {
1241 int order = 1;
1242 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1243 void *bb;
1244
1245 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1246 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1247
1248 bb = e4b->bd_buddy;
1249 while (order <= e4b->bd_blkbits + 1) {
1250 block = block >> 1;
1251 if (!mb_test_bit(block, bb)) {
1252 /* this block is part of buddy of order 'order' */
1253 return order;
1254 }
1255 bb += bb_incr;
1256 bb_incr >>= 1;
1257 order++;
1258 }
1259 return 0;
1260 }
1261
1262 static void mb_clear_bits(void *bm, int cur, int len)
1263 {
1264 __u32 *addr;
1265
1266 len = cur + len;
1267 while (cur < len) {
1268 if ((cur & 31) == 0 && (len - cur) >= 32) {
1269 /* fast path: clear whole word at once */
1270 addr = bm + (cur >> 3);
1271 *addr = 0;
1272 cur += 32;
1273 continue;
1274 }
1275 mb_clear_bit(cur, bm);
1276 cur++;
1277 }
1278 }
1279
1280 /* clear bits in given range
1281 * will return first found zero bit if any, -1 otherwise
1282 */
1283 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1284 {
1285 __u32 *addr;
1286 int zero_bit = -1;
1287
1288 len = cur + len;
1289 while (cur < len) {
1290 if ((cur & 31) == 0 && (len - cur) >= 32) {
1291 /* fast path: clear whole word at once */
1292 addr = bm + (cur >> 3);
1293 if (*addr != (__u32)(-1) && zero_bit == -1)
1294 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1295 *addr = 0;
1296 cur += 32;
1297 continue;
1298 }
1299 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1300 zero_bit = cur;
1301 cur++;
1302 }
1303
1304 return zero_bit;
1305 }
1306
1307 void ext4_set_bits(void *bm, int cur, int len)
1308 {
1309 __u32 *addr;
1310
1311 len = cur + len;
1312 while (cur < len) {
1313 if ((cur & 31) == 0 && (len - cur) >= 32) {
1314 /* fast path: set whole word at once */
1315 addr = bm + (cur >> 3);
1316 *addr = 0xffffffff;
1317 cur += 32;
1318 continue;
1319 }
1320 mb_set_bit(cur, bm);
1321 cur++;
1322 }
1323 }
1324
1325 /*
1326 * _________________________________________________________________ */
1327
1328 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1329 {
1330 if (mb_test_bit(*bit + side, bitmap)) {
1331 mb_clear_bit(*bit, bitmap);
1332 (*bit) -= side;
1333 return 1;
1334 }
1335 else {
1336 (*bit) += side;
1337 mb_set_bit(*bit, bitmap);
1338 return -1;
1339 }
1340 }
1341
1342 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1343 {
1344 int max;
1345 int order = 1;
1346 void *buddy = mb_find_buddy(e4b, order, &max);
1347
1348 while (buddy) {
1349 void *buddy2;
1350
1351 /* Bits in range [first; last] are known to be set since
1352 * corresponding blocks were allocated. Bits in range
1353 * (first; last) will stay set because they form buddies on
1354 * upper layer. We just deal with borders if they don't
1355 * align with upper layer and then go up.
1356 * Releasing entire group is all about clearing
1357 * single bit of highest order buddy.
1358 */
1359
1360 /* Example:
1361 * ---------------------------------
1362 * | 1 | 1 | 1 | 1 |
1363 * ---------------------------------
1364 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1365 * ---------------------------------
1366 * 0 1 2 3 4 5 6 7
1367 * \_____________________/
1368 *
1369 * Neither [1] nor [6] is aligned to above layer.
1370 * Left neighbour [0] is free, so mark it busy,
1371 * decrease bb_counters and extend range to
1372 * [0; 6]
1373 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1374 * mark [6] free, increase bb_counters and shrink range to
1375 * [0; 5].
1376 * Then shift range to [0; 2], go up and do the same.
1377 */
1378
1379
1380 if (first & 1)
1381 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1382 if (!(last & 1))
1383 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1384 if (first > last)
1385 break;
1386 order++;
1387
1388 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1389 mb_clear_bits(buddy, first, last - first + 1);
1390 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1391 break;
1392 }
1393 first >>= 1;
1394 last >>= 1;
1395 buddy = buddy2;
1396 }
1397 }
1398
1399 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1400 int first, int count)
1401 {
1402 int left_is_free = 0;
1403 int right_is_free = 0;
1404 int block;
1405 int last = first + count - 1;
1406 struct super_block *sb = e4b->bd_sb;
1407
1408 if (WARN_ON(count == 0))
1409 return;
1410 BUG_ON(last >= (sb->s_blocksize << 3));
1411 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1412 mb_check_buddy(e4b);
1413 mb_free_blocks_double(inode, e4b, first, count);
1414
1415 e4b->bd_info->bb_free += count;
1416 if (first < e4b->bd_info->bb_first_free)
1417 e4b->bd_info->bb_first_free = first;
1418
1419 /* access memory sequentially: check left neighbour,
1420 * clear range and then check right neighbour
1421 */
1422 if (first != 0)
1423 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1424 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1425 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1426 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1427
1428 if (unlikely(block != -1)) {
1429 ext4_fsblk_t blocknr;
1430
1431 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1432 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1433 ext4_grp_locked_error(sb, e4b->bd_group,
1434 inode ? inode->i_ino : 0,
1435 blocknr,
1436 "freeing already freed block "
1437 "(bit %u)", block);
1438 mb_regenerate_buddy(e4b);
1439 goto done;
1440 }
1441
1442 /* let's maintain fragments counter */
1443 if (left_is_free && right_is_free)
1444 e4b->bd_info->bb_fragments--;
1445 else if (!left_is_free && !right_is_free)
1446 e4b->bd_info->bb_fragments++;
1447
1448 /* buddy[0] == bd_bitmap is a special case, so handle
1449 * it right away and let mb_buddy_mark_free stay free of
1450 * zero order checks.
1451 * Check if neighbours are to be coaleasced,
1452 * adjust bitmap bb_counters and borders appropriately.
1453 */
1454 if (first & 1) {
1455 first += !left_is_free;
1456 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1457 }
1458 if (!(last & 1)) {
1459 last -= !right_is_free;
1460 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1461 }
1462
1463 if (first <= last)
1464 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1465
1466 done:
1467 mb_set_largest_free_order(sb, e4b->bd_info);
1468 mb_check_buddy(e4b);
1469 }
1470
1471 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1472 int needed, struct ext4_free_extent *ex)
1473 {
1474 int next = block;
1475 int max, order;
1476 void *buddy;
1477
1478 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1479 BUG_ON(ex == NULL);
1480
1481 buddy = mb_find_buddy(e4b, 0, &max);
1482 BUG_ON(buddy == NULL);
1483 BUG_ON(block >= max);
1484 if (mb_test_bit(block, buddy)) {
1485 ex->fe_len = 0;
1486 ex->fe_start = 0;
1487 ex->fe_group = 0;
1488 return 0;
1489 }
1490
1491 /* find actual order */
1492 order = mb_find_order_for_block(e4b, block);
1493 block = block >> order;
1494
1495 ex->fe_len = 1 << order;
1496 ex->fe_start = block << order;
1497 ex->fe_group = e4b->bd_group;
1498
1499 /* calc difference from given start */
1500 next = next - ex->fe_start;
1501 ex->fe_len -= next;
1502 ex->fe_start += next;
1503
1504 while (needed > ex->fe_len &&
1505 mb_find_buddy(e4b, order, &max)) {
1506
1507 if (block + 1 >= max)
1508 break;
1509
1510 next = (block + 1) * (1 << order);
1511 if (mb_test_bit(next, e4b->bd_bitmap))
1512 break;
1513
1514 order = mb_find_order_for_block(e4b, next);
1515
1516 block = next >> order;
1517 ex->fe_len += 1 << order;
1518 }
1519
1520 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1521 return ex->fe_len;
1522 }
1523
1524 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1525 {
1526 int ord;
1527 int mlen = 0;
1528 int max = 0;
1529 int cur;
1530 int start = ex->fe_start;
1531 int len = ex->fe_len;
1532 unsigned ret = 0;
1533 int len0 = len;
1534 void *buddy;
1535
1536 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1537 BUG_ON(e4b->bd_group != ex->fe_group);
1538 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1539 mb_check_buddy(e4b);
1540 mb_mark_used_double(e4b, start, len);
1541
1542 e4b->bd_info->bb_free -= len;
1543 if (e4b->bd_info->bb_first_free == start)
1544 e4b->bd_info->bb_first_free += len;
1545
1546 /* let's maintain fragments counter */
1547 if (start != 0)
1548 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1549 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1550 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1551 if (mlen && max)
1552 e4b->bd_info->bb_fragments++;
1553 else if (!mlen && !max)
1554 e4b->bd_info->bb_fragments--;
1555
1556 /* let's maintain buddy itself */
1557 while (len) {
1558 ord = mb_find_order_for_block(e4b, start);
1559
1560 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1561 /* the whole chunk may be allocated at once! */
1562 mlen = 1 << ord;
1563 buddy = mb_find_buddy(e4b, ord, &max);
1564 BUG_ON((start >> ord) >= max);
1565 mb_set_bit(start >> ord, buddy);
1566 e4b->bd_info->bb_counters[ord]--;
1567 start += mlen;
1568 len -= mlen;
1569 BUG_ON(len < 0);
1570 continue;
1571 }
1572
1573 /* store for history */
1574 if (ret == 0)
1575 ret = len | (ord << 16);
1576
1577 /* we have to split large buddy */
1578 BUG_ON(ord <= 0);
1579 buddy = mb_find_buddy(e4b, ord, &max);
1580 mb_set_bit(start >> ord, buddy);
1581 e4b->bd_info->bb_counters[ord]--;
1582
1583 ord--;
1584 cur = (start >> ord) & ~1U;
1585 buddy = mb_find_buddy(e4b, ord, &max);
1586 mb_clear_bit(cur, buddy);
1587 mb_clear_bit(cur + 1, buddy);
1588 e4b->bd_info->bb_counters[ord]++;
1589 e4b->bd_info->bb_counters[ord]++;
1590 }
1591 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1592
1593 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1594 mb_check_buddy(e4b);
1595
1596 return ret;
1597 }
1598
1599 /*
1600 * Must be called under group lock!
1601 */
1602 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1603 struct ext4_buddy *e4b)
1604 {
1605 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1606 int ret;
1607
1608 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1609 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1610
1611 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1612 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1613 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1614
1615 /* preallocation can change ac_b_ex, thus we store actually
1616 * allocated blocks for history */
1617 ac->ac_f_ex = ac->ac_b_ex;
1618
1619 ac->ac_status = AC_STATUS_FOUND;
1620 ac->ac_tail = ret & 0xffff;
1621 ac->ac_buddy = ret >> 16;
1622
1623 /*
1624 * take the page reference. We want the page to be pinned
1625 * so that we don't get a ext4_mb_init_cache_call for this
1626 * group until we update the bitmap. That would mean we
1627 * double allocate blocks. The reference is dropped
1628 * in ext4_mb_release_context
1629 */
1630 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1631 get_page(ac->ac_bitmap_page);
1632 ac->ac_buddy_page = e4b->bd_buddy_page;
1633 get_page(ac->ac_buddy_page);
1634 /* store last allocated for subsequent stream allocation */
1635 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1636 spin_lock(&sbi->s_md_lock);
1637 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1638 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1639 spin_unlock(&sbi->s_md_lock);
1640 }
1641 }
1642
1643 /*
1644 * regular allocator, for general purposes allocation
1645 */
1646
1647 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1648 struct ext4_buddy *e4b,
1649 int finish_group)
1650 {
1651 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1652 struct ext4_free_extent *bex = &ac->ac_b_ex;
1653 struct ext4_free_extent *gex = &ac->ac_g_ex;
1654 struct ext4_free_extent ex;
1655 int max;
1656
1657 if (ac->ac_status == AC_STATUS_FOUND)
1658 return;
1659 /*
1660 * We don't want to scan for a whole year
1661 */
1662 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1663 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1664 ac->ac_status = AC_STATUS_BREAK;
1665 return;
1666 }
1667
1668 /*
1669 * Haven't found good chunk so far, let's continue
1670 */
1671 if (bex->fe_len < gex->fe_len)
1672 return;
1673
1674 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1675 && bex->fe_group == e4b->bd_group) {
1676 /* recheck chunk's availability - we don't know
1677 * when it was found (within this lock-unlock
1678 * period or not) */
1679 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1680 if (max >= gex->fe_len) {
1681 ext4_mb_use_best_found(ac, e4b);
1682 return;
1683 }
1684 }
1685 }
1686
1687 /*
1688 * The routine checks whether found extent is good enough. If it is,
1689 * then the extent gets marked used and flag is set to the context
1690 * to stop scanning. Otherwise, the extent is compared with the
1691 * previous found extent and if new one is better, then it's stored
1692 * in the context. Later, the best found extent will be used, if
1693 * mballoc can't find good enough extent.
1694 *
1695 * FIXME: real allocation policy is to be designed yet!
1696 */
1697 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1698 struct ext4_free_extent *ex,
1699 struct ext4_buddy *e4b)
1700 {
1701 struct ext4_free_extent *bex = &ac->ac_b_ex;
1702 struct ext4_free_extent *gex = &ac->ac_g_ex;
1703
1704 BUG_ON(ex->fe_len <= 0);
1705 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1706 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1707 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1708
1709 ac->ac_found++;
1710
1711 /*
1712 * The special case - take what you catch first
1713 */
1714 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1715 *bex = *ex;
1716 ext4_mb_use_best_found(ac, e4b);
1717 return;
1718 }
1719
1720 /*
1721 * Let's check whether the chuck is good enough
1722 */
1723 if (ex->fe_len == gex->fe_len) {
1724 *bex = *ex;
1725 ext4_mb_use_best_found(ac, e4b);
1726 return;
1727 }
1728
1729 /*
1730 * If this is first found extent, just store it in the context
1731 */
1732 if (bex->fe_len == 0) {
1733 *bex = *ex;
1734 return;
1735 }
1736
1737 /*
1738 * If new found extent is better, store it in the context
1739 */
1740 if (bex->fe_len < gex->fe_len) {
1741 /* if the request isn't satisfied, any found extent
1742 * larger than previous best one is better */
1743 if (ex->fe_len > bex->fe_len)
1744 *bex = *ex;
1745 } else if (ex->fe_len > gex->fe_len) {
1746 /* if the request is satisfied, then we try to find
1747 * an extent that still satisfy the request, but is
1748 * smaller than previous one */
1749 if (ex->fe_len < bex->fe_len)
1750 *bex = *ex;
1751 }
1752
1753 ext4_mb_check_limits(ac, e4b, 0);
1754 }
1755
1756 static noinline_for_stack
1757 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1758 struct ext4_buddy *e4b)
1759 {
1760 struct ext4_free_extent ex = ac->ac_b_ex;
1761 ext4_group_t group = ex.fe_group;
1762 int max;
1763 int err;
1764
1765 BUG_ON(ex.fe_len <= 0);
1766 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1767 if (err)
1768 return err;
1769
1770 ext4_lock_group(ac->ac_sb, group);
1771 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1772
1773 if (max > 0) {
1774 ac->ac_b_ex = ex;
1775 ext4_mb_use_best_found(ac, e4b);
1776 }
1777
1778 ext4_unlock_group(ac->ac_sb, group);
1779 ext4_mb_unload_buddy(e4b);
1780
1781 return 0;
1782 }
1783
1784 static noinline_for_stack
1785 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1786 struct ext4_buddy *e4b)
1787 {
1788 ext4_group_t group = ac->ac_g_ex.fe_group;
1789 int max;
1790 int err;
1791 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1792 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1793 struct ext4_free_extent ex;
1794
1795 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1796 return 0;
1797 if (grp->bb_free == 0)
1798 return 0;
1799
1800 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1801 if (err)
1802 return err;
1803
1804 ext4_lock_group(ac->ac_sb, group);
1805 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1806 ac->ac_g_ex.fe_len, &ex);
1807
1808 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1809 ext4_fsblk_t start;
1810
1811 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1812 ex.fe_start;
1813 /* use do_div to get remainder (would be 64-bit modulo) */
1814 if (do_div(start, sbi->s_stripe) == 0) {
1815 ac->ac_found++;
1816 ac->ac_b_ex = ex;
1817 ext4_mb_use_best_found(ac, e4b);
1818 }
1819 } else if (max >= ac->ac_g_ex.fe_len) {
1820 BUG_ON(ex.fe_len <= 0);
1821 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1822 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1823 ac->ac_found++;
1824 ac->ac_b_ex = ex;
1825 ext4_mb_use_best_found(ac, e4b);
1826 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1827 /* Sometimes, caller may want to merge even small
1828 * number of blocks to an existing extent */
1829 BUG_ON(ex.fe_len <= 0);
1830 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1831 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1832 ac->ac_found++;
1833 ac->ac_b_ex = ex;
1834 ext4_mb_use_best_found(ac, e4b);
1835 }
1836 ext4_unlock_group(ac->ac_sb, group);
1837 ext4_mb_unload_buddy(e4b);
1838
1839 return 0;
1840 }
1841
1842 /*
1843 * The routine scans buddy structures (not bitmap!) from given order
1844 * to max order and tries to find big enough chunk to satisfy the req
1845 */
1846 static noinline_for_stack
1847 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1848 struct ext4_buddy *e4b)
1849 {
1850 struct super_block *sb = ac->ac_sb;
1851 struct ext4_group_info *grp = e4b->bd_info;
1852 void *buddy;
1853 int i;
1854 int k;
1855 int max;
1856
1857 BUG_ON(ac->ac_2order <= 0);
1858 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1859 if (grp->bb_counters[i] == 0)
1860 continue;
1861
1862 buddy = mb_find_buddy(e4b, i, &max);
1863 BUG_ON(buddy == NULL);
1864
1865 k = mb_find_next_zero_bit(buddy, max, 0);
1866 BUG_ON(k >= max);
1867
1868 ac->ac_found++;
1869
1870 ac->ac_b_ex.fe_len = 1 << i;
1871 ac->ac_b_ex.fe_start = k << i;
1872 ac->ac_b_ex.fe_group = e4b->bd_group;
1873
1874 ext4_mb_use_best_found(ac, e4b);
1875
1876 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1877
1878 if (EXT4_SB(sb)->s_mb_stats)
1879 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1880
1881 break;
1882 }
1883 }
1884
1885 /*
1886 * The routine scans the group and measures all found extents.
1887 * In order to optimize scanning, caller must pass number of
1888 * free blocks in the group, so the routine can know upper limit.
1889 */
1890 static noinline_for_stack
1891 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1892 struct ext4_buddy *e4b)
1893 {
1894 struct super_block *sb = ac->ac_sb;
1895 void *bitmap = e4b->bd_bitmap;
1896 struct ext4_free_extent ex;
1897 int i;
1898 int free;
1899
1900 free = e4b->bd_info->bb_free;
1901 BUG_ON(free <= 0);
1902
1903 i = e4b->bd_info->bb_first_free;
1904
1905 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1906 i = mb_find_next_zero_bit(bitmap,
1907 EXT4_CLUSTERS_PER_GROUP(sb), i);
1908 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1909 /*
1910 * IF we have corrupt bitmap, we won't find any
1911 * free blocks even though group info says we
1912 * we have free blocks
1913 */
1914 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1915 "%d free clusters as per "
1916 "group info. But bitmap says 0",
1917 free);
1918 break;
1919 }
1920
1921 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1922 BUG_ON(ex.fe_len <= 0);
1923 if (free < ex.fe_len) {
1924 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1925 "%d free clusters as per "
1926 "group info. But got %d blocks",
1927 free, ex.fe_len);
1928 /*
1929 * The number of free blocks differs. This mostly
1930 * indicate that the bitmap is corrupt. So exit
1931 * without claiming the space.
1932 */
1933 break;
1934 }
1935
1936 ext4_mb_measure_extent(ac, &ex, e4b);
1937
1938 i += ex.fe_len;
1939 free -= ex.fe_len;
1940 }
1941
1942 ext4_mb_check_limits(ac, e4b, 1);
1943 }
1944
1945 /*
1946 * This is a special case for storages like raid5
1947 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1948 */
1949 static noinline_for_stack
1950 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1951 struct ext4_buddy *e4b)
1952 {
1953 struct super_block *sb = ac->ac_sb;
1954 struct ext4_sb_info *sbi = EXT4_SB(sb);
1955 void *bitmap = e4b->bd_bitmap;
1956 struct ext4_free_extent ex;
1957 ext4_fsblk_t first_group_block;
1958 ext4_fsblk_t a;
1959 ext4_grpblk_t i;
1960 int max;
1961
1962 BUG_ON(sbi->s_stripe == 0);
1963
1964 /* find first stripe-aligned block in group */
1965 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1966
1967 a = first_group_block + sbi->s_stripe - 1;
1968 do_div(a, sbi->s_stripe);
1969 i = (a * sbi->s_stripe) - first_group_block;
1970
1971 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1972 if (!mb_test_bit(i, bitmap)) {
1973 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1974 if (max >= sbi->s_stripe) {
1975 ac->ac_found++;
1976 ac->ac_b_ex = ex;
1977 ext4_mb_use_best_found(ac, e4b);
1978 break;
1979 }
1980 }
1981 i += sbi->s_stripe;
1982 }
1983 }
1984
1985 /* This is now called BEFORE we load the buddy bitmap. */
1986 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1987 ext4_group_t group, int cr)
1988 {
1989 unsigned free, fragments;
1990 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1991 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1992
1993 BUG_ON(cr < 0 || cr >= 4);
1994
1995 free = grp->bb_free;
1996 if (free == 0)
1997 return 0;
1998 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
1999 return 0;
2000
2001 /* We only do this if the grp has never been initialized */
2002 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2003 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2004 if (ret)
2005 return 0;
2006 }
2007
2008 fragments = grp->bb_fragments;
2009 if (fragments == 0)
2010 return 0;
2011
2012 switch (cr) {
2013 case 0:
2014 BUG_ON(ac->ac_2order == 0);
2015
2016 /* Avoid using the first bg of a flexgroup for data files */
2017 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2018 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2019 ((group % flex_size) == 0))
2020 return 0;
2021
2022 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2023 (free / fragments) >= ac->ac_g_ex.fe_len)
2024 return 1;
2025
2026 if (grp->bb_largest_free_order < ac->ac_2order)
2027 return 0;
2028
2029 return 1;
2030 case 1:
2031 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2032 return 1;
2033 break;
2034 case 2:
2035 if (free >= ac->ac_g_ex.fe_len)
2036 return 1;
2037 break;
2038 case 3:
2039 return 1;
2040 default:
2041 BUG();
2042 }
2043
2044 return 0;
2045 }
2046
2047 static noinline_for_stack int
2048 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2049 {
2050 ext4_group_t ngroups, group, i;
2051 int cr;
2052 int err = 0;
2053 struct ext4_sb_info *sbi;
2054 struct super_block *sb;
2055 struct ext4_buddy e4b;
2056
2057 sb = ac->ac_sb;
2058 sbi = EXT4_SB(sb);
2059 ngroups = ext4_get_groups_count(sb);
2060 /* non-extent files are limited to low blocks/groups */
2061 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2062 ngroups = sbi->s_blockfile_groups;
2063
2064 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2065
2066 /* first, try the goal */
2067 err = ext4_mb_find_by_goal(ac, &e4b);
2068 if (err || ac->ac_status == AC_STATUS_FOUND)
2069 goto out;
2070
2071 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2072 goto out;
2073
2074 /*
2075 * ac->ac2_order is set only if the fe_len is a power of 2
2076 * if ac2_order is set we also set criteria to 0 so that we
2077 * try exact allocation using buddy.
2078 */
2079 i = fls(ac->ac_g_ex.fe_len);
2080 ac->ac_2order = 0;
2081 /*
2082 * We search using buddy data only if the order of the request
2083 * is greater than equal to the sbi_s_mb_order2_reqs
2084 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2085 */
2086 if (i >= sbi->s_mb_order2_reqs) {
2087 /*
2088 * This should tell if fe_len is exactly power of 2
2089 */
2090 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2091 ac->ac_2order = i - 1;
2092 }
2093
2094 /* if stream allocation is enabled, use global goal */
2095 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2096 /* TBD: may be hot point */
2097 spin_lock(&sbi->s_md_lock);
2098 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2099 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2100 spin_unlock(&sbi->s_md_lock);
2101 }
2102
2103 /* Let's just scan groups to find more-less suitable blocks */
2104 cr = ac->ac_2order ? 0 : 1;
2105 /*
2106 * cr == 0 try to get exact allocation,
2107 * cr == 3 try to get anything
2108 */
2109 repeat:
2110 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2111 ac->ac_criteria = cr;
2112 /*
2113 * searching for the right group start
2114 * from the goal value specified
2115 */
2116 group = ac->ac_g_ex.fe_group;
2117
2118 for (i = 0; i < ngroups; group++, i++) {
2119 /*
2120 * Artificially restricted ngroups for non-extent
2121 * files makes group > ngroups possible on first loop.
2122 */
2123 if (group >= ngroups)
2124 group = 0;
2125
2126 /* This now checks without needing the buddy page */
2127 if (!ext4_mb_good_group(ac, group, cr))
2128 continue;
2129
2130 err = ext4_mb_load_buddy(sb, group, &e4b);
2131 if (err)
2132 goto out;
2133
2134 ext4_lock_group(sb, group);
2135
2136 /*
2137 * We need to check again after locking the
2138 * block group
2139 */
2140 if (!ext4_mb_good_group(ac, group, cr)) {
2141 ext4_unlock_group(sb, group);
2142 ext4_mb_unload_buddy(&e4b);
2143 continue;
2144 }
2145
2146 ac->ac_groups_scanned++;
2147 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2148 ext4_mb_simple_scan_group(ac, &e4b);
2149 else if (cr == 1 && sbi->s_stripe &&
2150 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2151 ext4_mb_scan_aligned(ac, &e4b);
2152 else
2153 ext4_mb_complex_scan_group(ac, &e4b);
2154
2155 ext4_unlock_group(sb, group);
2156 ext4_mb_unload_buddy(&e4b);
2157
2158 if (ac->ac_status != AC_STATUS_CONTINUE)
2159 break;
2160 }
2161 }
2162
2163 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2164 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2165 /*
2166 * We've been searching too long. Let's try to allocate
2167 * the best chunk we've found so far
2168 */
2169
2170 ext4_mb_try_best_found(ac, &e4b);
2171 if (ac->ac_status != AC_STATUS_FOUND) {
2172 /*
2173 * Someone more lucky has already allocated it.
2174 * The only thing we can do is just take first
2175 * found block(s)
2176 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2177 */
2178 ac->ac_b_ex.fe_group = 0;
2179 ac->ac_b_ex.fe_start = 0;
2180 ac->ac_b_ex.fe_len = 0;
2181 ac->ac_status = AC_STATUS_CONTINUE;
2182 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2183 cr = 3;
2184 atomic_inc(&sbi->s_mb_lost_chunks);
2185 goto repeat;
2186 }
2187 }
2188 out:
2189 return err;
2190 }
2191
2192 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2193 {
2194 struct super_block *sb = seq->private;
2195 ext4_group_t group;
2196
2197 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2198 return NULL;
2199 group = *pos + 1;
2200 return (void *) ((unsigned long) group);
2201 }
2202
2203 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2204 {
2205 struct super_block *sb = seq->private;
2206 ext4_group_t group;
2207
2208 ++*pos;
2209 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2210 return NULL;
2211 group = *pos + 1;
2212 return (void *) ((unsigned long) group);
2213 }
2214
2215 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2216 {
2217 struct super_block *sb = seq->private;
2218 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2219 int i;
2220 int err, buddy_loaded = 0;
2221 struct ext4_buddy e4b;
2222 struct ext4_group_info *grinfo;
2223 struct sg {
2224 struct ext4_group_info info;
2225 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2226 } sg;
2227
2228 group--;
2229 if (group == 0)
2230 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2231 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2232 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2233 "group", "free", "frags", "first",
2234 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2235 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2236
2237 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2238 sizeof(struct ext4_group_info);
2239 grinfo = ext4_get_group_info(sb, group);
2240 /* Load the group info in memory only if not already loaded. */
2241 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2242 err = ext4_mb_load_buddy(sb, group, &e4b);
2243 if (err) {
2244 seq_printf(seq, "#%-5u: I/O error\n", group);
2245 return 0;
2246 }
2247 buddy_loaded = 1;
2248 }
2249
2250 memcpy(&sg, ext4_get_group_info(sb, group), i);
2251
2252 if (buddy_loaded)
2253 ext4_mb_unload_buddy(&e4b);
2254
2255 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2256 sg.info.bb_fragments, sg.info.bb_first_free);
2257 for (i = 0; i <= 13; i++)
2258 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2259 sg.info.bb_counters[i] : 0);
2260 seq_printf(seq, " ]\n");
2261
2262 return 0;
2263 }
2264
2265 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2266 {
2267 }
2268
2269 static const struct seq_operations ext4_mb_seq_groups_ops = {
2270 .start = ext4_mb_seq_groups_start,
2271 .next = ext4_mb_seq_groups_next,
2272 .stop = ext4_mb_seq_groups_stop,
2273 .show = ext4_mb_seq_groups_show,
2274 };
2275
2276 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2277 {
2278 struct super_block *sb = PDE_DATA(inode);
2279 int rc;
2280
2281 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2282 if (rc == 0) {
2283 struct seq_file *m = file->private_data;
2284 m->private = sb;
2285 }
2286 return rc;
2287
2288 }
2289
2290 static const struct file_operations ext4_mb_seq_groups_fops = {
2291 .owner = THIS_MODULE,
2292 .open = ext4_mb_seq_groups_open,
2293 .read = seq_read,
2294 .llseek = seq_lseek,
2295 .release = seq_release,
2296 };
2297
2298 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2299 {
2300 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2301 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2302
2303 BUG_ON(!cachep);
2304 return cachep;
2305 }
2306
2307 /*
2308 * Allocate the top-level s_group_info array for the specified number
2309 * of groups
2310 */
2311 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2312 {
2313 struct ext4_sb_info *sbi = EXT4_SB(sb);
2314 unsigned size;
2315 struct ext4_group_info ***new_groupinfo;
2316
2317 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2318 EXT4_DESC_PER_BLOCK_BITS(sb);
2319 if (size <= sbi->s_group_info_size)
2320 return 0;
2321
2322 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2323 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2324 if (!new_groupinfo) {
2325 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2326 return -ENOMEM;
2327 }
2328 if (sbi->s_group_info) {
2329 memcpy(new_groupinfo, sbi->s_group_info,
2330 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2331 ext4_kvfree(sbi->s_group_info);
2332 }
2333 sbi->s_group_info = new_groupinfo;
2334 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2335 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2336 sbi->s_group_info_size);
2337 return 0;
2338 }
2339
2340 /* Create and initialize ext4_group_info data for the given group. */
2341 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2342 struct ext4_group_desc *desc)
2343 {
2344 int i;
2345 int metalen = 0;
2346 struct ext4_sb_info *sbi = EXT4_SB(sb);
2347 struct ext4_group_info **meta_group_info;
2348 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2349
2350 /*
2351 * First check if this group is the first of a reserved block.
2352 * If it's true, we have to allocate a new table of pointers
2353 * to ext4_group_info structures
2354 */
2355 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2356 metalen = sizeof(*meta_group_info) <<
2357 EXT4_DESC_PER_BLOCK_BITS(sb);
2358 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2359 if (meta_group_info == NULL) {
2360 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2361 "for a buddy group");
2362 goto exit_meta_group_info;
2363 }
2364 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2365 meta_group_info;
2366 }
2367
2368 meta_group_info =
2369 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2370 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2371
2372 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2373 if (meta_group_info[i] == NULL) {
2374 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2375 goto exit_group_info;
2376 }
2377 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2378 &(meta_group_info[i]->bb_state));
2379
2380 /*
2381 * initialize bb_free to be able to skip
2382 * empty groups without initialization
2383 */
2384 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2385 meta_group_info[i]->bb_free =
2386 ext4_free_clusters_after_init(sb, group, desc);
2387 } else {
2388 meta_group_info[i]->bb_free =
2389 ext4_free_group_clusters(sb, desc);
2390 }
2391
2392 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2393 init_rwsem(&meta_group_info[i]->alloc_sem);
2394 meta_group_info[i]->bb_free_root = RB_ROOT;
2395 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2396
2397 #ifdef DOUBLE_CHECK
2398 {
2399 struct buffer_head *bh;
2400 meta_group_info[i]->bb_bitmap =
2401 kmalloc(sb->s_blocksize, GFP_KERNEL);
2402 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2403 bh = ext4_read_block_bitmap(sb, group);
2404 BUG_ON(bh == NULL);
2405 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2406 sb->s_blocksize);
2407 put_bh(bh);
2408 }
2409 #endif
2410
2411 return 0;
2412
2413 exit_group_info:
2414 /* If a meta_group_info table has been allocated, release it now */
2415 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2416 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2417 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2418 }
2419 exit_meta_group_info:
2420 return -ENOMEM;
2421 } /* ext4_mb_add_groupinfo */
2422
2423 static int ext4_mb_init_backend(struct super_block *sb)
2424 {
2425 ext4_group_t ngroups = ext4_get_groups_count(sb);
2426 ext4_group_t i;
2427 struct ext4_sb_info *sbi = EXT4_SB(sb);
2428 int err;
2429 struct ext4_group_desc *desc;
2430 struct kmem_cache *cachep;
2431
2432 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2433 if (err)
2434 return err;
2435
2436 sbi->s_buddy_cache = new_inode(sb);
2437 if (sbi->s_buddy_cache == NULL) {
2438 ext4_msg(sb, KERN_ERR, "can't get new inode");
2439 goto err_freesgi;
2440 }
2441 /* To avoid potentially colliding with an valid on-disk inode number,
2442 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2443 * not in the inode hash, so it should never be found by iget(), but
2444 * this will avoid confusion if it ever shows up during debugging. */
2445 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2446 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2447 for (i = 0; i < ngroups; i++) {
2448 desc = ext4_get_group_desc(sb, i, NULL);
2449 if (desc == NULL) {
2450 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2451 goto err_freebuddy;
2452 }
2453 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2454 goto err_freebuddy;
2455 }
2456
2457 return 0;
2458
2459 err_freebuddy:
2460 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2461 while (i-- > 0)
2462 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2463 i = sbi->s_group_info_size;
2464 while (i-- > 0)
2465 kfree(sbi->s_group_info[i]);
2466 iput(sbi->s_buddy_cache);
2467 err_freesgi:
2468 ext4_kvfree(sbi->s_group_info);
2469 return -ENOMEM;
2470 }
2471
2472 static void ext4_groupinfo_destroy_slabs(void)
2473 {
2474 int i;
2475
2476 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2477 if (ext4_groupinfo_caches[i])
2478 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2479 ext4_groupinfo_caches[i] = NULL;
2480 }
2481 }
2482
2483 static int ext4_groupinfo_create_slab(size_t size)
2484 {
2485 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2486 int slab_size;
2487 int blocksize_bits = order_base_2(size);
2488 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2489 struct kmem_cache *cachep;
2490
2491 if (cache_index >= NR_GRPINFO_CACHES)
2492 return -EINVAL;
2493
2494 if (unlikely(cache_index < 0))
2495 cache_index = 0;
2496
2497 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2498 if (ext4_groupinfo_caches[cache_index]) {
2499 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2500 return 0; /* Already created */
2501 }
2502
2503 slab_size = offsetof(struct ext4_group_info,
2504 bb_counters[blocksize_bits + 2]);
2505
2506 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2507 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2508 NULL);
2509
2510 ext4_groupinfo_caches[cache_index] = cachep;
2511
2512 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2513 if (!cachep) {
2514 printk(KERN_EMERG
2515 "EXT4-fs: no memory for groupinfo slab cache\n");
2516 return -ENOMEM;
2517 }
2518
2519 return 0;
2520 }
2521
2522 int ext4_mb_init(struct super_block *sb)
2523 {
2524 struct ext4_sb_info *sbi = EXT4_SB(sb);
2525 unsigned i, j;
2526 unsigned offset, offset_incr;
2527 unsigned max;
2528 int ret;
2529
2530 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2531
2532 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2533 if (sbi->s_mb_offsets == NULL) {
2534 ret = -ENOMEM;
2535 goto out;
2536 }
2537
2538 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2539 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2540 if (sbi->s_mb_maxs == NULL) {
2541 ret = -ENOMEM;
2542 goto out;
2543 }
2544
2545 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2546 if (ret < 0)
2547 goto out;
2548
2549 /* order 0 is regular bitmap */
2550 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2551 sbi->s_mb_offsets[0] = 0;
2552
2553 i = 1;
2554 offset = 0;
2555 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2556 max = sb->s_blocksize << 2;
2557 do {
2558 sbi->s_mb_offsets[i] = offset;
2559 sbi->s_mb_maxs[i] = max;
2560 offset += offset_incr;
2561 offset_incr = offset_incr >> 1;
2562 max = max >> 1;
2563 i++;
2564 } while (i <= sb->s_blocksize_bits + 1);
2565
2566 spin_lock_init(&sbi->s_md_lock);
2567 spin_lock_init(&sbi->s_bal_lock);
2568
2569 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2570 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2571 sbi->s_mb_stats = MB_DEFAULT_STATS;
2572 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2573 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2574 /*
2575 * The default group preallocation is 512, which for 4k block
2576 * sizes translates to 2 megabytes. However for bigalloc file
2577 * systems, this is probably too big (i.e, if the cluster size
2578 * is 1 megabyte, then group preallocation size becomes half a
2579 * gigabyte!). As a default, we will keep a two megabyte
2580 * group pralloc size for cluster sizes up to 64k, and after
2581 * that, we will force a minimum group preallocation size of
2582 * 32 clusters. This translates to 8 megs when the cluster
2583 * size is 256k, and 32 megs when the cluster size is 1 meg,
2584 * which seems reasonable as a default.
2585 */
2586 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2587 sbi->s_cluster_bits, 32);
2588 /*
2589 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2590 * to the lowest multiple of s_stripe which is bigger than
2591 * the s_mb_group_prealloc as determined above. We want
2592 * the preallocation size to be an exact multiple of the
2593 * RAID stripe size so that preallocations don't fragment
2594 * the stripes.
2595 */
2596 if (sbi->s_stripe > 1) {
2597 sbi->s_mb_group_prealloc = roundup(
2598 sbi->s_mb_group_prealloc, sbi->s_stripe);
2599 }
2600
2601 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2602 if (sbi->s_locality_groups == NULL) {
2603 ret = -ENOMEM;
2604 goto out_free_groupinfo_slab;
2605 }
2606 for_each_possible_cpu(i) {
2607 struct ext4_locality_group *lg;
2608 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2609 mutex_init(&lg->lg_mutex);
2610 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2611 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2612 spin_lock_init(&lg->lg_prealloc_lock);
2613 }
2614
2615 /* init file for buddy data */
2616 ret = ext4_mb_init_backend(sb);
2617 if (ret != 0)
2618 goto out_free_locality_groups;
2619
2620 if (sbi->s_proc)
2621 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2622 &ext4_mb_seq_groups_fops, sb);
2623
2624 return 0;
2625
2626 out_free_locality_groups:
2627 free_percpu(sbi->s_locality_groups);
2628 sbi->s_locality_groups = NULL;
2629 out_free_groupinfo_slab:
2630 ext4_groupinfo_destroy_slabs();
2631 out:
2632 kfree(sbi->s_mb_offsets);
2633 sbi->s_mb_offsets = NULL;
2634 kfree(sbi->s_mb_maxs);
2635 sbi->s_mb_maxs = NULL;
2636 return ret;
2637 }
2638
2639 /* need to called with the ext4 group lock held */
2640 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2641 {
2642 struct ext4_prealloc_space *pa;
2643 struct list_head *cur, *tmp;
2644 int count = 0;
2645
2646 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2647 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2648 list_del(&pa->pa_group_list);
2649 count++;
2650 kmem_cache_free(ext4_pspace_cachep, pa);
2651 }
2652 if (count)
2653 mb_debug(1, "mballoc: %u PAs left\n", count);
2654
2655 }
2656
2657 int ext4_mb_release(struct super_block *sb)
2658 {
2659 ext4_group_t ngroups = ext4_get_groups_count(sb);
2660 ext4_group_t i;
2661 int num_meta_group_infos;
2662 struct ext4_group_info *grinfo;
2663 struct ext4_sb_info *sbi = EXT4_SB(sb);
2664 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2665
2666 if (sbi->s_proc)
2667 remove_proc_entry("mb_groups", sbi->s_proc);
2668
2669 if (sbi->s_group_info) {
2670 for (i = 0; i < ngroups; i++) {
2671 grinfo = ext4_get_group_info(sb, i);
2672 #ifdef DOUBLE_CHECK
2673 kfree(grinfo->bb_bitmap);
2674 #endif
2675 ext4_lock_group(sb, i);
2676 ext4_mb_cleanup_pa(grinfo);
2677 ext4_unlock_group(sb, i);
2678 kmem_cache_free(cachep, grinfo);
2679 }
2680 num_meta_group_infos = (ngroups +
2681 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2682 EXT4_DESC_PER_BLOCK_BITS(sb);
2683 for (i = 0; i < num_meta_group_infos; i++)
2684 kfree(sbi->s_group_info[i]);
2685 ext4_kvfree(sbi->s_group_info);
2686 }
2687 kfree(sbi->s_mb_offsets);
2688 kfree(sbi->s_mb_maxs);
2689 if (sbi->s_buddy_cache)
2690 iput(sbi->s_buddy_cache);
2691 if (sbi->s_mb_stats) {
2692 ext4_msg(sb, KERN_INFO,
2693 "mballoc: %u blocks %u reqs (%u success)",
2694 atomic_read(&sbi->s_bal_allocated),
2695 atomic_read(&sbi->s_bal_reqs),
2696 atomic_read(&sbi->s_bal_success));
2697 ext4_msg(sb, KERN_INFO,
2698 "mballoc: %u extents scanned, %u goal hits, "
2699 "%u 2^N hits, %u breaks, %u lost",
2700 atomic_read(&sbi->s_bal_ex_scanned),
2701 atomic_read(&sbi->s_bal_goals),
2702 atomic_read(&sbi->s_bal_2orders),
2703 atomic_read(&sbi->s_bal_breaks),
2704 atomic_read(&sbi->s_mb_lost_chunks));
2705 ext4_msg(sb, KERN_INFO,
2706 "mballoc: %lu generated and it took %Lu",
2707 sbi->s_mb_buddies_generated,
2708 sbi->s_mb_generation_time);
2709 ext4_msg(sb, KERN_INFO,
2710 "mballoc: %u preallocated, %u discarded",
2711 atomic_read(&sbi->s_mb_preallocated),
2712 atomic_read(&sbi->s_mb_discarded));
2713 }
2714
2715 free_percpu(sbi->s_locality_groups);
2716
2717 return 0;
2718 }
2719
2720 static inline int ext4_issue_discard(struct super_block *sb,
2721 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2722 unsigned long flags)
2723 {
2724 ext4_fsblk_t discard_block;
2725
2726 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2727 ext4_group_first_block_no(sb, block_group));
2728 count = EXT4_C2B(EXT4_SB(sb), count);
2729 trace_ext4_discard_blocks(sb,
2730 (unsigned long long) discard_block, count);
2731 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, flags);
2732 }
2733
2734 /*
2735 * This function is called by the jbd2 layer once the commit has finished,
2736 * so we know we can free the blocks that were released with that commit.
2737 */
2738 static void ext4_free_data_callback(struct super_block *sb,
2739 struct ext4_journal_cb_entry *jce,
2740 int rc)
2741 {
2742 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2743 struct ext4_buddy e4b;
2744 struct ext4_group_info *db;
2745 int err, count = 0, count2 = 0;
2746
2747 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2748 entry->efd_count, entry->efd_group, entry);
2749
2750 if (test_opt(sb, DISCARD)) {
2751 err = ext4_issue_discard(sb, entry->efd_group,
2752 entry->efd_start_cluster,
2753 entry->efd_count, 0);
2754 if (err && err != -EOPNOTSUPP)
2755 ext4_msg(sb, KERN_WARNING, "discard request in"
2756 " group:%d block:%d count:%d failed"
2757 " with %d", entry->efd_group,
2758 entry->efd_start_cluster,
2759 entry->efd_count, err);
2760 }
2761
2762 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2763 /* we expect to find existing buddy because it's pinned */
2764 BUG_ON(err != 0);
2765
2766
2767 db = e4b.bd_info;
2768 /* there are blocks to put in buddy to make them really free */
2769 count += entry->efd_count;
2770 count2++;
2771 ext4_lock_group(sb, entry->efd_group);
2772 /* Take it out of per group rb tree */
2773 rb_erase(&entry->efd_node, &(db->bb_free_root));
2774 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2775
2776 /*
2777 * Clear the trimmed flag for the group so that the next
2778 * ext4_trim_fs can trim it.
2779 * If the volume is mounted with -o discard, online discard
2780 * is supported and the free blocks will be trimmed online.
2781 */
2782 if (!test_opt(sb, DISCARD))
2783 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2784
2785 if (!db->bb_free_root.rb_node) {
2786 /* No more items in the per group rb tree
2787 * balance refcounts from ext4_mb_free_metadata()
2788 */
2789 page_cache_release(e4b.bd_buddy_page);
2790 page_cache_release(e4b.bd_bitmap_page);
2791 }
2792 ext4_unlock_group(sb, entry->efd_group);
2793 kmem_cache_free(ext4_free_data_cachep, entry);
2794 ext4_mb_unload_buddy(&e4b);
2795
2796 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2797 }
2798
2799 int __init ext4_init_mballoc(void)
2800 {
2801 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2802 SLAB_RECLAIM_ACCOUNT);
2803 if (ext4_pspace_cachep == NULL)
2804 return -ENOMEM;
2805
2806 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2807 SLAB_RECLAIM_ACCOUNT);
2808 if (ext4_ac_cachep == NULL) {
2809 kmem_cache_destroy(ext4_pspace_cachep);
2810 return -ENOMEM;
2811 }
2812
2813 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2814 SLAB_RECLAIM_ACCOUNT);
2815 if (ext4_free_data_cachep == NULL) {
2816 kmem_cache_destroy(ext4_pspace_cachep);
2817 kmem_cache_destroy(ext4_ac_cachep);
2818 return -ENOMEM;
2819 }
2820 return 0;
2821 }
2822
2823 void ext4_exit_mballoc(void)
2824 {
2825 /*
2826 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2827 * before destroying the slab cache.
2828 */
2829 rcu_barrier();
2830 kmem_cache_destroy(ext4_pspace_cachep);
2831 kmem_cache_destroy(ext4_ac_cachep);
2832 kmem_cache_destroy(ext4_free_data_cachep);
2833 ext4_groupinfo_destroy_slabs();
2834 }
2835
2836
2837 /*
2838 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2839 * Returns 0 if success or error code
2840 */
2841 static noinline_for_stack int
2842 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2843 handle_t *handle, unsigned int reserv_clstrs)
2844 {
2845 struct buffer_head *bitmap_bh = NULL;
2846 struct ext4_group_desc *gdp;
2847 struct buffer_head *gdp_bh;
2848 struct ext4_sb_info *sbi;
2849 struct super_block *sb;
2850 ext4_fsblk_t block;
2851 int err, len;
2852
2853 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2854 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2855
2856 sb = ac->ac_sb;
2857 sbi = EXT4_SB(sb);
2858
2859 err = -EIO;
2860 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2861 if (!bitmap_bh)
2862 goto out_err;
2863
2864 err = ext4_journal_get_write_access(handle, bitmap_bh);
2865 if (err)
2866 goto out_err;
2867
2868 err = -EIO;
2869 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2870 if (!gdp)
2871 goto out_err;
2872
2873 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2874 ext4_free_group_clusters(sb, gdp));
2875
2876 err = ext4_journal_get_write_access(handle, gdp_bh);
2877 if (err)
2878 goto out_err;
2879
2880 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2881
2882 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2883 if (!ext4_data_block_valid(sbi, block, len)) {
2884 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2885 "fs metadata", block, block+len);
2886 /* File system mounted not to panic on error
2887 * Fix the bitmap and return EUCLEAN
2888 * We leak some of the blocks here.
2889 */
2890 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2891 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2892 ac->ac_b_ex.fe_len);
2893 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2894 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2895 if (!err)
2896 err = -EUCLEAN;
2897 goto out_err;
2898 }
2899
2900 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2901 #ifdef AGGRESSIVE_CHECK
2902 {
2903 int i;
2904 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2905 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2906 bitmap_bh->b_data));
2907 }
2908 }
2909 #endif
2910 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2911 ac->ac_b_ex.fe_len);
2912 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2913 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2914 ext4_free_group_clusters_set(sb, gdp,
2915 ext4_free_clusters_after_init(sb,
2916 ac->ac_b_ex.fe_group, gdp));
2917 }
2918 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2919 ext4_free_group_clusters_set(sb, gdp, len);
2920 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2921 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2922
2923 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2924 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2925 /*
2926 * Now reduce the dirty block count also. Should not go negative
2927 */
2928 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2929 /* release all the reserved blocks if non delalloc */
2930 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2931 reserv_clstrs);
2932
2933 if (sbi->s_log_groups_per_flex) {
2934 ext4_group_t flex_group = ext4_flex_group(sbi,
2935 ac->ac_b_ex.fe_group);
2936 atomic64_sub(ac->ac_b_ex.fe_len,
2937 &sbi->s_flex_groups[flex_group].free_clusters);
2938 }
2939
2940 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2941 if (err)
2942 goto out_err;
2943 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2944
2945 out_err:
2946 brelse(bitmap_bh);
2947 return err;
2948 }
2949
2950 /*
2951 * here we normalize request for locality group
2952 * Group request are normalized to s_mb_group_prealloc, which goes to
2953 * s_strip if we set the same via mount option.
2954 * s_mb_group_prealloc can be configured via
2955 * /sys/fs/ext4/<partition>/mb_group_prealloc
2956 *
2957 * XXX: should we try to preallocate more than the group has now?
2958 */
2959 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2960 {
2961 struct super_block *sb = ac->ac_sb;
2962 struct ext4_locality_group *lg = ac->ac_lg;
2963
2964 BUG_ON(lg == NULL);
2965 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2966 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2967 current->pid, ac->ac_g_ex.fe_len);
2968 }
2969
2970 /*
2971 * Normalization means making request better in terms of
2972 * size and alignment
2973 */
2974 static noinline_for_stack void
2975 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2976 struct ext4_allocation_request *ar)
2977 {
2978 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2979 int bsbits, max;
2980 ext4_lblk_t end;
2981 loff_t size, start_off;
2982 loff_t orig_size __maybe_unused;
2983 ext4_lblk_t start;
2984 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2985 struct ext4_prealloc_space *pa;
2986
2987 /* do normalize only data requests, metadata requests
2988 do not need preallocation */
2989 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2990 return;
2991
2992 /* sometime caller may want exact blocks */
2993 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2994 return;
2995
2996 /* caller may indicate that preallocation isn't
2997 * required (it's a tail, for example) */
2998 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2999 return;
3000
3001 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3002 ext4_mb_normalize_group_request(ac);
3003 return ;
3004 }
3005
3006 bsbits = ac->ac_sb->s_blocksize_bits;
3007
3008 /* first, let's learn actual file size
3009 * given current request is allocated */
3010 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3011 size = size << bsbits;
3012 if (size < i_size_read(ac->ac_inode))
3013 size = i_size_read(ac->ac_inode);
3014 orig_size = size;
3015
3016 /* max size of free chunks */
3017 max = 2 << bsbits;
3018
3019 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3020 (req <= (size) || max <= (chunk_size))
3021
3022 /* first, try to predict filesize */
3023 /* XXX: should this table be tunable? */
3024 start_off = 0;
3025 if (size <= 16 * 1024) {
3026 size = 16 * 1024;
3027 } else if (size <= 32 * 1024) {
3028 size = 32 * 1024;
3029 } else if (size <= 64 * 1024) {
3030 size = 64 * 1024;
3031 } else if (size <= 128 * 1024) {
3032 size = 128 * 1024;
3033 } else if (size <= 256 * 1024) {
3034 size = 256 * 1024;
3035 } else if (size <= 512 * 1024) {
3036 size = 512 * 1024;
3037 } else if (size <= 1024 * 1024) {
3038 size = 1024 * 1024;
3039 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3040 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3041 (21 - bsbits)) << 21;
3042 size = 2 * 1024 * 1024;
3043 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3044 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3045 (22 - bsbits)) << 22;
3046 size = 4 * 1024 * 1024;
3047 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3048 (8<<20)>>bsbits, max, 8 * 1024)) {
3049 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3050 (23 - bsbits)) << 23;
3051 size = 8 * 1024 * 1024;
3052 } else {
3053 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3054 size = ac->ac_o_ex.fe_len << bsbits;
3055 }
3056 size = size >> bsbits;
3057 start = start_off >> bsbits;
3058
3059 /* don't cover already allocated blocks in selected range */
3060 if (ar->pleft && start <= ar->lleft) {
3061 size -= ar->lleft + 1 - start;
3062 start = ar->lleft + 1;
3063 }
3064 if (ar->pright && start + size - 1 >= ar->lright)
3065 size -= start + size - ar->lright;
3066
3067 /*
3068 * Trim allocation request for filesystems with artificially small
3069 * groups.
3070 */
3071 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3072 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3073
3074 end = start + size;
3075
3076 /* check we don't cross already preallocated blocks */
3077 rcu_read_lock();
3078 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3079 ext4_lblk_t pa_end;
3080
3081 if (pa->pa_deleted)
3082 continue;
3083 spin_lock(&pa->pa_lock);
3084 if (pa->pa_deleted) {
3085 spin_unlock(&pa->pa_lock);
3086 continue;
3087 }
3088
3089 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3090 pa->pa_len);
3091
3092 /* PA must not overlap original request */
3093 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3094 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3095
3096 /* skip PAs this normalized request doesn't overlap with */
3097 if (pa->pa_lstart >= end || pa_end <= start) {
3098 spin_unlock(&pa->pa_lock);
3099 continue;
3100 }
3101 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3102
3103 /* adjust start or end to be adjacent to this pa */
3104 if (pa_end <= ac->ac_o_ex.fe_logical) {
3105 BUG_ON(pa_end < start);
3106 start = pa_end;
3107 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3108 BUG_ON(pa->pa_lstart > end);
3109 end = pa->pa_lstart;
3110 }
3111 spin_unlock(&pa->pa_lock);
3112 }
3113 rcu_read_unlock();
3114 size = end - start;
3115
3116 /* XXX: extra loop to check we really don't overlap preallocations */
3117 rcu_read_lock();
3118 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3119 ext4_lblk_t pa_end;
3120
3121 spin_lock(&pa->pa_lock);
3122 if (pa->pa_deleted == 0) {
3123 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3124 pa->pa_len);
3125 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3126 }
3127 spin_unlock(&pa->pa_lock);
3128 }
3129 rcu_read_unlock();
3130
3131 if (start + size <= ac->ac_o_ex.fe_logical &&
3132 start > ac->ac_o_ex.fe_logical) {
3133 ext4_msg(ac->ac_sb, KERN_ERR,
3134 "start %lu, size %lu, fe_logical %lu",
3135 (unsigned long) start, (unsigned long) size,
3136 (unsigned long) ac->ac_o_ex.fe_logical);
3137 }
3138 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3139 start > ac->ac_o_ex.fe_logical);
3140 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3141
3142 /* now prepare goal request */
3143
3144 /* XXX: is it better to align blocks WRT to logical
3145 * placement or satisfy big request as is */
3146 ac->ac_g_ex.fe_logical = start;
3147 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3148
3149 /* define goal start in order to merge */
3150 if (ar->pright && (ar->lright == (start + size))) {
3151 /* merge to the right */
3152 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3153 &ac->ac_f_ex.fe_group,
3154 &ac->ac_f_ex.fe_start);
3155 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3156 }
3157 if (ar->pleft && (ar->lleft + 1 == start)) {
3158 /* merge to the left */
3159 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3160 &ac->ac_f_ex.fe_group,
3161 &ac->ac_f_ex.fe_start);
3162 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3163 }
3164
3165 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3166 (unsigned) orig_size, (unsigned) start);
3167 }
3168
3169 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3170 {
3171 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3172
3173 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3174 atomic_inc(&sbi->s_bal_reqs);
3175 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3176 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3177 atomic_inc(&sbi->s_bal_success);
3178 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3179 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3180 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3181 atomic_inc(&sbi->s_bal_goals);
3182 if (ac->ac_found > sbi->s_mb_max_to_scan)
3183 atomic_inc(&sbi->s_bal_breaks);
3184 }
3185
3186 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3187 trace_ext4_mballoc_alloc(ac);
3188 else
3189 trace_ext4_mballoc_prealloc(ac);
3190 }
3191
3192 /*
3193 * Called on failure; free up any blocks from the inode PA for this
3194 * context. We don't need this for MB_GROUP_PA because we only change
3195 * pa_free in ext4_mb_release_context(), but on failure, we've already
3196 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3197 */
3198 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3199 {
3200 struct ext4_prealloc_space *pa = ac->ac_pa;
3201 struct ext4_buddy e4b;
3202 int err;
3203
3204 if (pa == NULL) {
3205 if (ac->ac_f_ex.fe_len == 0)
3206 return;
3207 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3208 if (err) {
3209 /*
3210 * This should never happen since we pin the
3211 * pages in the ext4_allocation_context so
3212 * ext4_mb_load_buddy() should never fail.
3213 */
3214 WARN(1, "mb_load_buddy failed (%d)", err);
3215 return;
3216 }
3217 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3218 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3219 ac->ac_f_ex.fe_len);
3220 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3221 ext4_mb_unload_buddy(&e4b);
3222 return;
3223 }
3224 if (pa->pa_type == MB_INODE_PA)
3225 pa->pa_free += ac->ac_b_ex.fe_len;
3226 }
3227
3228 /*
3229 * use blocks preallocated to inode
3230 */
3231 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3232 struct ext4_prealloc_space *pa)
3233 {
3234 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3235 ext4_fsblk_t start;
3236 ext4_fsblk_t end;
3237 int len;
3238
3239 /* found preallocated blocks, use them */
3240 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3241 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3242 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3243 len = EXT4_NUM_B2C(sbi, end - start);
3244 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3245 &ac->ac_b_ex.fe_start);
3246 ac->ac_b_ex.fe_len = len;
3247 ac->ac_status = AC_STATUS_FOUND;
3248 ac->ac_pa = pa;
3249
3250 BUG_ON(start < pa->pa_pstart);
3251 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3252 BUG_ON(pa->pa_free < len);
3253 pa->pa_free -= len;
3254
3255 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3256 }
3257
3258 /*
3259 * use blocks preallocated to locality group
3260 */
3261 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3262 struct ext4_prealloc_space *pa)
3263 {
3264 unsigned int len = ac->ac_o_ex.fe_len;
3265
3266 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3267 &ac->ac_b_ex.fe_group,
3268 &ac->ac_b_ex.fe_start);
3269 ac->ac_b_ex.fe_len = len;
3270 ac->ac_status = AC_STATUS_FOUND;
3271 ac->ac_pa = pa;
3272
3273 /* we don't correct pa_pstart or pa_plen here to avoid
3274 * possible race when the group is being loaded concurrently
3275 * instead we correct pa later, after blocks are marked
3276 * in on-disk bitmap -- see ext4_mb_release_context()
3277 * Other CPUs are prevented from allocating from this pa by lg_mutex
3278 */
3279 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3280 }
3281
3282 /*
3283 * Return the prealloc space that have minimal distance
3284 * from the goal block. @cpa is the prealloc
3285 * space that is having currently known minimal distance
3286 * from the goal block.
3287 */
3288 static struct ext4_prealloc_space *
3289 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3290 struct ext4_prealloc_space *pa,
3291 struct ext4_prealloc_space *cpa)
3292 {
3293 ext4_fsblk_t cur_distance, new_distance;
3294
3295 if (cpa == NULL) {
3296 atomic_inc(&pa->pa_count);
3297 return pa;
3298 }
3299 cur_distance = abs(goal_block - cpa->pa_pstart);
3300 new_distance = abs(goal_block - pa->pa_pstart);
3301
3302 if (cur_distance <= new_distance)
3303 return cpa;
3304
3305 /* drop the previous reference */
3306 atomic_dec(&cpa->pa_count);
3307 atomic_inc(&pa->pa_count);
3308 return pa;
3309 }
3310
3311 /*
3312 * search goal blocks in preallocated space
3313 */
3314 static noinline_for_stack int
3315 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3316 {
3317 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3318 int order, i;
3319 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3320 struct ext4_locality_group *lg;
3321 struct ext4_prealloc_space *pa, *cpa = NULL;
3322 ext4_fsblk_t goal_block;
3323
3324 /* only data can be preallocated */
3325 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3326 return 0;
3327
3328 /* first, try per-file preallocation */
3329 rcu_read_lock();
3330 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3331
3332 /* all fields in this condition don't change,
3333 * so we can skip locking for them */
3334 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3335 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3336 EXT4_C2B(sbi, pa->pa_len)))
3337 continue;
3338
3339 /* non-extent files can't have physical blocks past 2^32 */
3340 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3341 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3342 EXT4_MAX_BLOCK_FILE_PHYS))
3343 continue;
3344
3345 /* found preallocated blocks, use them */
3346 spin_lock(&pa->pa_lock);
3347 if (pa->pa_deleted == 0 && pa->pa_free) {
3348 atomic_inc(&pa->pa_count);
3349 ext4_mb_use_inode_pa(ac, pa);
3350 spin_unlock(&pa->pa_lock);
3351 ac->ac_criteria = 10;
3352 rcu_read_unlock();
3353 return 1;
3354 }
3355 spin_unlock(&pa->pa_lock);
3356 }
3357 rcu_read_unlock();
3358
3359 /* can we use group allocation? */
3360 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3361 return 0;
3362
3363 /* inode may have no locality group for some reason */
3364 lg = ac->ac_lg;
3365 if (lg == NULL)
3366 return 0;
3367 order = fls(ac->ac_o_ex.fe_len) - 1;
3368 if (order > PREALLOC_TB_SIZE - 1)
3369 /* The max size of hash table is PREALLOC_TB_SIZE */
3370 order = PREALLOC_TB_SIZE - 1;
3371
3372 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3373 /*
3374 * search for the prealloc space that is having
3375 * minimal distance from the goal block.
3376 */
3377 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3378 rcu_read_lock();
3379 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3380 pa_inode_list) {
3381 spin_lock(&pa->pa_lock);
3382 if (pa->pa_deleted == 0 &&
3383 pa->pa_free >= ac->ac_o_ex.fe_len) {
3384
3385 cpa = ext4_mb_check_group_pa(goal_block,
3386 pa, cpa);
3387 }
3388 spin_unlock(&pa->pa_lock);
3389 }
3390 rcu_read_unlock();
3391 }
3392 if (cpa) {
3393 ext4_mb_use_group_pa(ac, cpa);
3394 ac->ac_criteria = 20;
3395 return 1;
3396 }
3397 return 0;
3398 }
3399
3400 /*
3401 * the function goes through all block freed in the group
3402 * but not yet committed and marks them used in in-core bitmap.
3403 * buddy must be generated from this bitmap
3404 * Need to be called with the ext4 group lock held
3405 */
3406 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3407 ext4_group_t group)
3408 {
3409 struct rb_node *n;
3410 struct ext4_group_info *grp;
3411 struct ext4_free_data *entry;
3412
3413 grp = ext4_get_group_info(sb, group);
3414 n = rb_first(&(grp->bb_free_root));
3415
3416 while (n) {
3417 entry = rb_entry(n, struct ext4_free_data, efd_node);
3418 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3419 n = rb_next(n);
3420 }
3421 return;
3422 }
3423
3424 /*
3425 * the function goes through all preallocation in this group and marks them
3426 * used in in-core bitmap. buddy must be generated from this bitmap
3427 * Need to be called with ext4 group lock held
3428 */
3429 static noinline_for_stack
3430 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3431 ext4_group_t group)
3432 {
3433 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3434 struct ext4_prealloc_space *pa;
3435 struct list_head *cur;
3436 ext4_group_t groupnr;
3437 ext4_grpblk_t start;
3438 int preallocated = 0;
3439 int len;
3440
3441 /* all form of preallocation discards first load group,
3442 * so the only competing code is preallocation use.
3443 * we don't need any locking here
3444 * notice we do NOT ignore preallocations with pa_deleted
3445 * otherwise we could leave used blocks available for
3446 * allocation in buddy when concurrent ext4_mb_put_pa()
3447 * is dropping preallocation
3448 */
3449 list_for_each(cur, &grp->bb_prealloc_list) {
3450 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3451 spin_lock(&pa->pa_lock);
3452 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3453 &groupnr, &start);
3454 len = pa->pa_len;
3455 spin_unlock(&pa->pa_lock);
3456 if (unlikely(len == 0))
3457 continue;
3458 BUG_ON(groupnr != group);
3459 ext4_set_bits(bitmap, start, len);
3460 preallocated += len;
3461 }
3462 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3463 }
3464
3465 static void ext4_mb_pa_callback(struct rcu_head *head)
3466 {
3467 struct ext4_prealloc_space *pa;
3468 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3469
3470 BUG_ON(atomic_read(&pa->pa_count));
3471 BUG_ON(pa->pa_deleted == 0);
3472 kmem_cache_free(ext4_pspace_cachep, pa);
3473 }
3474
3475 /*
3476 * drops a reference to preallocated space descriptor
3477 * if this was the last reference and the space is consumed
3478 */
3479 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3480 struct super_block *sb, struct ext4_prealloc_space *pa)
3481 {
3482 ext4_group_t grp;
3483 ext4_fsblk_t grp_blk;
3484
3485 /* in this short window concurrent discard can set pa_deleted */
3486 spin_lock(&pa->pa_lock);
3487 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3488 spin_unlock(&pa->pa_lock);
3489 return;
3490 }
3491
3492 if (pa->pa_deleted == 1) {
3493 spin_unlock(&pa->pa_lock);
3494 return;
3495 }
3496
3497 pa->pa_deleted = 1;
3498 spin_unlock(&pa->pa_lock);
3499
3500 grp_blk = pa->pa_pstart;
3501 /*
3502 * If doing group-based preallocation, pa_pstart may be in the
3503 * next group when pa is used up
3504 */
3505 if (pa->pa_type == MB_GROUP_PA)
3506 grp_blk--;
3507
3508 grp = ext4_get_group_number(sb, grp_blk);
3509
3510 /*
3511 * possible race:
3512 *
3513 * P1 (buddy init) P2 (regular allocation)
3514 * find block B in PA
3515 * copy on-disk bitmap to buddy
3516 * mark B in on-disk bitmap
3517 * drop PA from group
3518 * mark all PAs in buddy
3519 *
3520 * thus, P1 initializes buddy with B available. to prevent this
3521 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3522 * against that pair
3523 */
3524 ext4_lock_group(sb, grp);
3525 list_del(&pa->pa_group_list);
3526 ext4_unlock_group(sb, grp);
3527
3528 spin_lock(pa->pa_obj_lock);
3529 list_del_rcu(&pa->pa_inode_list);
3530 spin_unlock(pa->pa_obj_lock);
3531
3532 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3533 }
3534
3535 /*
3536 * creates new preallocated space for given inode
3537 */
3538 static noinline_for_stack int
3539 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3540 {
3541 struct super_block *sb = ac->ac_sb;
3542 struct ext4_sb_info *sbi = EXT4_SB(sb);
3543 struct ext4_prealloc_space *pa;
3544 struct ext4_group_info *grp;
3545 struct ext4_inode_info *ei;
3546
3547 /* preallocate only when found space is larger then requested */
3548 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3549 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3550 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3551
3552 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3553 if (pa == NULL)
3554 return -ENOMEM;
3555
3556 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3557 int winl;
3558 int wins;
3559 int win;
3560 int offs;
3561
3562 /* we can't allocate as much as normalizer wants.
3563 * so, found space must get proper lstart
3564 * to cover original request */
3565 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3566 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3567
3568 /* we're limited by original request in that
3569 * logical block must be covered any way
3570 * winl is window we can move our chunk within */
3571 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3572
3573 /* also, we should cover whole original request */
3574 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3575
3576 /* the smallest one defines real window */
3577 win = min(winl, wins);
3578
3579 offs = ac->ac_o_ex.fe_logical %
3580 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3581 if (offs && offs < win)
3582 win = offs;
3583
3584 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3585 EXT4_NUM_B2C(sbi, win);
3586 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3587 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3588 }
3589
3590 /* preallocation can change ac_b_ex, thus we store actually
3591 * allocated blocks for history */
3592 ac->ac_f_ex = ac->ac_b_ex;
3593
3594 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3595 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3596 pa->pa_len = ac->ac_b_ex.fe_len;
3597 pa->pa_free = pa->pa_len;
3598 atomic_set(&pa->pa_count, 1);
3599 spin_lock_init(&pa->pa_lock);
3600 INIT_LIST_HEAD(&pa->pa_inode_list);
3601 INIT_LIST_HEAD(&pa->pa_group_list);
3602 pa->pa_deleted = 0;
3603 pa->pa_type = MB_INODE_PA;
3604
3605 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3606 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3607 trace_ext4_mb_new_inode_pa(ac, pa);
3608
3609 ext4_mb_use_inode_pa(ac, pa);
3610 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3611
3612 ei = EXT4_I(ac->ac_inode);
3613 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3614
3615 pa->pa_obj_lock = &ei->i_prealloc_lock;
3616 pa->pa_inode = ac->ac_inode;
3617
3618 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3619 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3620 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3621
3622 spin_lock(pa->pa_obj_lock);
3623 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3624 spin_unlock(pa->pa_obj_lock);
3625
3626 return 0;
3627 }
3628
3629 /*
3630 * creates new preallocated space for locality group inodes belongs to
3631 */
3632 static noinline_for_stack int
3633 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3634 {
3635 struct super_block *sb = ac->ac_sb;
3636 struct ext4_locality_group *lg;
3637 struct ext4_prealloc_space *pa;
3638 struct ext4_group_info *grp;
3639
3640 /* preallocate only when found space is larger then requested */
3641 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3642 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3643 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3644
3645 BUG_ON(ext4_pspace_cachep == NULL);
3646 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3647 if (pa == NULL)
3648 return -ENOMEM;
3649
3650 /* preallocation can change ac_b_ex, thus we store actually
3651 * allocated blocks for history */
3652 ac->ac_f_ex = ac->ac_b_ex;
3653
3654 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3655 pa->pa_lstart = pa->pa_pstart;
3656 pa->pa_len = ac->ac_b_ex.fe_len;
3657 pa->pa_free = pa->pa_len;
3658 atomic_set(&pa->pa_count, 1);
3659 spin_lock_init(&pa->pa_lock);
3660 INIT_LIST_HEAD(&pa->pa_inode_list);
3661 INIT_LIST_HEAD(&pa->pa_group_list);
3662 pa->pa_deleted = 0;
3663 pa->pa_type = MB_GROUP_PA;
3664
3665 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3666 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3667 trace_ext4_mb_new_group_pa(ac, pa);
3668
3669 ext4_mb_use_group_pa(ac, pa);
3670 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3671
3672 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3673 lg = ac->ac_lg;
3674 BUG_ON(lg == NULL);
3675
3676 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3677 pa->pa_inode = NULL;
3678
3679 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3680 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3681 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3682
3683 /*
3684 * We will later add the new pa to the right bucket
3685 * after updating the pa_free in ext4_mb_release_context
3686 */
3687 return 0;
3688 }
3689
3690 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3691 {
3692 int err;
3693
3694 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3695 err = ext4_mb_new_group_pa(ac);
3696 else
3697 err = ext4_mb_new_inode_pa(ac);
3698 return err;
3699 }
3700
3701 /*
3702 * finds all unused blocks in on-disk bitmap, frees them in
3703 * in-core bitmap and buddy.
3704 * @pa must be unlinked from inode and group lists, so that
3705 * nobody else can find/use it.
3706 * the caller MUST hold group/inode locks.
3707 * TODO: optimize the case when there are no in-core structures yet
3708 */
3709 static noinline_for_stack int
3710 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3711 struct ext4_prealloc_space *pa)
3712 {
3713 struct super_block *sb = e4b->bd_sb;
3714 struct ext4_sb_info *sbi = EXT4_SB(sb);
3715 unsigned int end;
3716 unsigned int next;
3717 ext4_group_t group;
3718 ext4_grpblk_t bit;
3719 unsigned long long grp_blk_start;
3720 int err = 0;
3721 int free = 0;
3722
3723 BUG_ON(pa->pa_deleted == 0);
3724 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3725 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3726 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3727 end = bit + pa->pa_len;
3728
3729 while (bit < end) {
3730 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3731 if (bit >= end)
3732 break;
3733 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3734 mb_debug(1, " free preallocated %u/%u in group %u\n",
3735 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3736 (unsigned) next - bit, (unsigned) group);
3737 free += next - bit;
3738
3739 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3740 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3741 EXT4_C2B(sbi, bit)),
3742 next - bit);
3743 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3744 bit = next + 1;
3745 }
3746 if (free != pa->pa_free) {
3747 ext4_msg(e4b->bd_sb, KERN_CRIT,
3748 "pa %p: logic %lu, phys. %lu, len %lu",
3749 pa, (unsigned long) pa->pa_lstart,
3750 (unsigned long) pa->pa_pstart,
3751 (unsigned long) pa->pa_len);
3752 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3753 free, pa->pa_free);
3754 /*
3755 * pa is already deleted so we use the value obtained
3756 * from the bitmap and continue.
3757 */
3758 }
3759 atomic_add(free, &sbi->s_mb_discarded);
3760
3761 return err;
3762 }
3763
3764 static noinline_for_stack int
3765 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3766 struct ext4_prealloc_space *pa)
3767 {
3768 struct super_block *sb = e4b->bd_sb;
3769 ext4_group_t group;
3770 ext4_grpblk_t bit;
3771
3772 trace_ext4_mb_release_group_pa(sb, pa);
3773 BUG_ON(pa->pa_deleted == 0);
3774 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3775 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3776 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3777 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3778 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3779
3780 return 0;
3781 }
3782
3783 /*
3784 * releases all preallocations in given group
3785 *
3786 * first, we need to decide discard policy:
3787 * - when do we discard
3788 * 1) ENOSPC
3789 * - how many do we discard
3790 * 1) how many requested
3791 */
3792 static noinline_for_stack int
3793 ext4_mb_discard_group_preallocations(struct super_block *sb,
3794 ext4_group_t group, int needed)
3795 {
3796 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3797 struct buffer_head *bitmap_bh = NULL;
3798 struct ext4_prealloc_space *pa, *tmp;
3799 struct list_head list;
3800 struct ext4_buddy e4b;
3801 int err;
3802 int busy = 0;
3803 int free = 0;
3804
3805 mb_debug(1, "discard preallocation for group %u\n", group);
3806
3807 if (list_empty(&grp->bb_prealloc_list))
3808 return 0;
3809
3810 bitmap_bh = ext4_read_block_bitmap(sb, group);
3811 if (bitmap_bh == NULL) {
3812 ext4_error(sb, "Error reading block bitmap for %u", group);
3813 return 0;
3814 }
3815
3816 err = ext4_mb_load_buddy(sb, group, &e4b);
3817 if (err) {
3818 ext4_error(sb, "Error loading buddy information for %u", group);
3819 put_bh(bitmap_bh);
3820 return 0;
3821 }
3822
3823 if (needed == 0)
3824 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3825
3826 INIT_LIST_HEAD(&list);
3827 repeat:
3828 ext4_lock_group(sb, group);
3829 list_for_each_entry_safe(pa, tmp,
3830 &grp->bb_prealloc_list, pa_group_list) {
3831 spin_lock(&pa->pa_lock);
3832 if (atomic_read(&pa->pa_count)) {
3833 spin_unlock(&pa->pa_lock);
3834 busy = 1;
3835 continue;
3836 }
3837 if (pa->pa_deleted) {
3838 spin_unlock(&pa->pa_lock);
3839 continue;
3840 }
3841
3842 /* seems this one can be freed ... */
3843 pa->pa_deleted = 1;
3844
3845 /* we can trust pa_free ... */
3846 free += pa->pa_free;
3847
3848 spin_unlock(&pa->pa_lock);
3849
3850 list_del(&pa->pa_group_list);
3851 list_add(&pa->u.pa_tmp_list, &list);
3852 }
3853
3854 /* if we still need more blocks and some PAs were used, try again */
3855 if (free < needed && busy) {
3856 busy = 0;
3857 ext4_unlock_group(sb, group);
3858 cond_resched();
3859 goto repeat;
3860 }
3861
3862 /* found anything to free? */
3863 if (list_empty(&list)) {
3864 BUG_ON(free != 0);
3865 goto out;
3866 }
3867
3868 /* now free all selected PAs */
3869 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3870
3871 /* remove from object (inode or locality group) */
3872 spin_lock(pa->pa_obj_lock);
3873 list_del_rcu(&pa->pa_inode_list);
3874 spin_unlock(pa->pa_obj_lock);
3875
3876 if (pa->pa_type == MB_GROUP_PA)
3877 ext4_mb_release_group_pa(&e4b, pa);
3878 else
3879 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3880
3881 list_del(&pa->u.pa_tmp_list);
3882 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3883 }
3884
3885 out:
3886 ext4_unlock_group(sb, group);
3887 ext4_mb_unload_buddy(&e4b);
3888 put_bh(bitmap_bh);
3889 return free;
3890 }
3891
3892 /*
3893 * releases all non-used preallocated blocks for given inode
3894 *
3895 * It's important to discard preallocations under i_data_sem
3896 * We don't want another block to be served from the prealloc
3897 * space when we are discarding the inode prealloc space.
3898 *
3899 * FIXME!! Make sure it is valid at all the call sites
3900 */
3901 void ext4_discard_preallocations(struct inode *inode)
3902 {
3903 struct ext4_inode_info *ei = EXT4_I(inode);
3904 struct super_block *sb = inode->i_sb;
3905 struct buffer_head *bitmap_bh = NULL;
3906 struct ext4_prealloc_space *pa, *tmp;
3907 ext4_group_t group = 0;
3908 struct list_head list;
3909 struct ext4_buddy e4b;
3910 int err;
3911
3912 if (!S_ISREG(inode->i_mode)) {
3913 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3914 return;
3915 }
3916
3917 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3918 trace_ext4_discard_preallocations(inode);
3919
3920 INIT_LIST_HEAD(&list);
3921
3922 repeat:
3923 /* first, collect all pa's in the inode */
3924 spin_lock(&ei->i_prealloc_lock);
3925 while (!list_empty(&ei->i_prealloc_list)) {
3926 pa = list_entry(ei->i_prealloc_list.next,
3927 struct ext4_prealloc_space, pa_inode_list);
3928 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3929 spin_lock(&pa->pa_lock);
3930 if (atomic_read(&pa->pa_count)) {
3931 /* this shouldn't happen often - nobody should
3932 * use preallocation while we're discarding it */
3933 spin_unlock(&pa->pa_lock);
3934 spin_unlock(&ei->i_prealloc_lock);
3935 ext4_msg(sb, KERN_ERR,
3936 "uh-oh! used pa while discarding");
3937 WARN_ON(1);
3938 schedule_timeout_uninterruptible(HZ);
3939 goto repeat;
3940
3941 }
3942 if (pa->pa_deleted == 0) {
3943 pa->pa_deleted = 1;
3944 spin_unlock(&pa->pa_lock);
3945 list_del_rcu(&pa->pa_inode_list);
3946 list_add(&pa->u.pa_tmp_list, &list);
3947 continue;
3948 }
3949
3950 /* someone is deleting pa right now */
3951 spin_unlock(&pa->pa_lock);
3952 spin_unlock(&ei->i_prealloc_lock);
3953
3954 /* we have to wait here because pa_deleted
3955 * doesn't mean pa is already unlinked from
3956 * the list. as we might be called from
3957 * ->clear_inode() the inode will get freed
3958 * and concurrent thread which is unlinking
3959 * pa from inode's list may access already
3960 * freed memory, bad-bad-bad */
3961
3962 /* XXX: if this happens too often, we can
3963 * add a flag to force wait only in case
3964 * of ->clear_inode(), but not in case of
3965 * regular truncate */
3966 schedule_timeout_uninterruptible(HZ);
3967 goto repeat;
3968 }
3969 spin_unlock(&ei->i_prealloc_lock);
3970
3971 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3972 BUG_ON(pa->pa_type != MB_INODE_PA);
3973 group = ext4_get_group_number(sb, pa->pa_pstart);
3974
3975 err = ext4_mb_load_buddy(sb, group, &e4b);
3976 if (err) {
3977 ext4_error(sb, "Error loading buddy information for %u",
3978 group);
3979 continue;
3980 }
3981
3982 bitmap_bh = ext4_read_block_bitmap(sb, group);
3983 if (bitmap_bh == NULL) {
3984 ext4_error(sb, "Error reading block bitmap for %u",
3985 group);
3986 ext4_mb_unload_buddy(&e4b);
3987 continue;
3988 }
3989
3990 ext4_lock_group(sb, group);
3991 list_del(&pa->pa_group_list);
3992 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3993 ext4_unlock_group(sb, group);
3994
3995 ext4_mb_unload_buddy(&e4b);
3996 put_bh(bitmap_bh);
3997
3998 list_del(&pa->u.pa_tmp_list);
3999 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4000 }
4001 }
4002
4003 #ifdef CONFIG_EXT4_DEBUG
4004 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4005 {
4006 struct super_block *sb = ac->ac_sb;
4007 ext4_group_t ngroups, i;
4008
4009 if (!ext4_mballoc_debug ||
4010 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4011 return;
4012
4013 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4014 " Allocation context details:");
4015 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4016 ac->ac_status, ac->ac_flags);
4017 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4018 "goal %lu/%lu/%lu@%lu, "
4019 "best %lu/%lu/%lu@%lu cr %d",
4020 (unsigned long)ac->ac_o_ex.fe_group,
4021 (unsigned long)ac->ac_o_ex.fe_start,
4022 (unsigned long)ac->ac_o_ex.fe_len,
4023 (unsigned long)ac->ac_o_ex.fe_logical,
4024 (unsigned long)ac->ac_g_ex.fe_group,
4025 (unsigned long)ac->ac_g_ex.fe_start,
4026 (unsigned long)ac->ac_g_ex.fe_len,
4027 (unsigned long)ac->ac_g_ex.fe_logical,
4028 (unsigned long)ac->ac_b_ex.fe_group,
4029 (unsigned long)ac->ac_b_ex.fe_start,
4030 (unsigned long)ac->ac_b_ex.fe_len,
4031 (unsigned long)ac->ac_b_ex.fe_logical,
4032 (int)ac->ac_criteria);
4033 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
4034 ac->ac_ex_scanned, ac->ac_found);
4035 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4036 ngroups = ext4_get_groups_count(sb);
4037 for (i = 0; i < ngroups; i++) {
4038 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4039 struct ext4_prealloc_space *pa;
4040 ext4_grpblk_t start;
4041 struct list_head *cur;
4042 ext4_lock_group(sb, i);
4043 list_for_each(cur, &grp->bb_prealloc_list) {
4044 pa = list_entry(cur, struct ext4_prealloc_space,
4045 pa_group_list);
4046 spin_lock(&pa->pa_lock);
4047 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4048 NULL, &start);
4049 spin_unlock(&pa->pa_lock);
4050 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4051 start, pa->pa_len);
4052 }
4053 ext4_unlock_group(sb, i);
4054
4055 if (grp->bb_free == 0)
4056 continue;
4057 printk(KERN_ERR "%u: %d/%d \n",
4058 i, grp->bb_free, grp->bb_fragments);
4059 }
4060 printk(KERN_ERR "\n");
4061 }
4062 #else
4063 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4064 {
4065 return;
4066 }
4067 #endif
4068
4069 /*
4070 * We use locality group preallocation for small size file. The size of the
4071 * file is determined by the current size or the resulting size after
4072 * allocation which ever is larger
4073 *
4074 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4075 */
4076 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4077 {
4078 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4079 int bsbits = ac->ac_sb->s_blocksize_bits;
4080 loff_t size, isize;
4081
4082 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4083 return;
4084
4085 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4086 return;
4087
4088 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4089 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4090 >> bsbits;
4091
4092 if ((size == isize) &&
4093 !ext4_fs_is_busy(sbi) &&
4094 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4095 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4096 return;
4097 }
4098
4099 if (sbi->s_mb_group_prealloc <= 0) {
4100 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4101 return;
4102 }
4103
4104 /* don't use group allocation for large files */
4105 size = max(size, isize);
4106 if (size > sbi->s_mb_stream_request) {
4107 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4108 return;
4109 }
4110
4111 BUG_ON(ac->ac_lg != NULL);
4112 /*
4113 * locality group prealloc space are per cpu. The reason for having
4114 * per cpu locality group is to reduce the contention between block
4115 * request from multiple CPUs.
4116 */
4117 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4118
4119 /* we're going to use group allocation */
4120 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4121
4122 /* serialize all allocations in the group */
4123 mutex_lock(&ac->ac_lg->lg_mutex);
4124 }
4125
4126 static noinline_for_stack int
4127 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4128 struct ext4_allocation_request *ar)
4129 {
4130 struct super_block *sb = ar->inode->i_sb;
4131 struct ext4_sb_info *sbi = EXT4_SB(sb);
4132 struct ext4_super_block *es = sbi->s_es;
4133 ext4_group_t group;
4134 unsigned int len;
4135 ext4_fsblk_t goal;
4136 ext4_grpblk_t block;
4137
4138 /* we can't allocate > group size */
4139 len = ar->len;
4140
4141 /* just a dirty hack to filter too big requests */
4142 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4143 len = EXT4_CLUSTERS_PER_GROUP(sb);
4144
4145 /* start searching from the goal */
4146 goal = ar->goal;
4147 if (goal < le32_to_cpu(es->s_first_data_block) ||
4148 goal >= ext4_blocks_count(es))
4149 goal = le32_to_cpu(es->s_first_data_block);
4150 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4151
4152 /* set up allocation goals */
4153 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4154 ac->ac_status = AC_STATUS_CONTINUE;
4155 ac->ac_sb = sb;
4156 ac->ac_inode = ar->inode;
4157 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4158 ac->ac_o_ex.fe_group = group;
4159 ac->ac_o_ex.fe_start = block;
4160 ac->ac_o_ex.fe_len = len;
4161 ac->ac_g_ex = ac->ac_o_ex;
4162 ac->ac_flags = ar->flags;
4163
4164 /* we have to define context: we'll we work with a file or
4165 * locality group. this is a policy, actually */
4166 ext4_mb_group_or_file(ac);
4167
4168 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4169 "left: %u/%u, right %u/%u to %swritable\n",
4170 (unsigned) ar->len, (unsigned) ar->logical,
4171 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4172 (unsigned) ar->lleft, (unsigned) ar->pleft,
4173 (unsigned) ar->lright, (unsigned) ar->pright,
4174 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4175 return 0;
4176
4177 }
4178
4179 static noinline_for_stack void
4180 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4181 struct ext4_locality_group *lg,
4182 int order, int total_entries)
4183 {
4184 ext4_group_t group = 0;
4185 struct ext4_buddy e4b;
4186 struct list_head discard_list;
4187 struct ext4_prealloc_space *pa, *tmp;
4188
4189 mb_debug(1, "discard locality group preallocation\n");
4190
4191 INIT_LIST_HEAD(&discard_list);
4192
4193 spin_lock(&lg->lg_prealloc_lock);
4194 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4195 pa_inode_list) {
4196 spin_lock(&pa->pa_lock);
4197 if (atomic_read(&pa->pa_count)) {
4198 /*
4199 * This is the pa that we just used
4200 * for block allocation. So don't
4201 * free that
4202 */
4203 spin_unlock(&pa->pa_lock);
4204 continue;
4205 }
4206 if (pa->pa_deleted) {
4207 spin_unlock(&pa->pa_lock);
4208 continue;
4209 }
4210 /* only lg prealloc space */
4211 BUG_ON(pa->pa_type != MB_GROUP_PA);
4212
4213 /* seems this one can be freed ... */
4214 pa->pa_deleted = 1;
4215 spin_unlock(&pa->pa_lock);
4216
4217 list_del_rcu(&pa->pa_inode_list);
4218 list_add(&pa->u.pa_tmp_list, &discard_list);
4219
4220 total_entries--;
4221 if (total_entries <= 5) {
4222 /*
4223 * we want to keep only 5 entries
4224 * allowing it to grow to 8. This
4225 * mak sure we don't call discard
4226 * soon for this list.
4227 */
4228 break;
4229 }
4230 }
4231 spin_unlock(&lg->lg_prealloc_lock);
4232
4233 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4234
4235 group = ext4_get_group_number(sb, pa->pa_pstart);
4236 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4237 ext4_error(sb, "Error loading buddy information for %u",
4238 group);
4239 continue;
4240 }
4241 ext4_lock_group(sb, group);
4242 list_del(&pa->pa_group_list);
4243 ext4_mb_release_group_pa(&e4b, pa);
4244 ext4_unlock_group(sb, group);
4245
4246 ext4_mb_unload_buddy(&e4b);
4247 list_del(&pa->u.pa_tmp_list);
4248 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4249 }
4250 }
4251
4252 /*
4253 * We have incremented pa_count. So it cannot be freed at this
4254 * point. Also we hold lg_mutex. So no parallel allocation is
4255 * possible from this lg. That means pa_free cannot be updated.
4256 *
4257 * A parallel ext4_mb_discard_group_preallocations is possible.
4258 * which can cause the lg_prealloc_list to be updated.
4259 */
4260
4261 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4262 {
4263 int order, added = 0, lg_prealloc_count = 1;
4264 struct super_block *sb = ac->ac_sb;
4265 struct ext4_locality_group *lg = ac->ac_lg;
4266 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4267
4268 order = fls(pa->pa_free) - 1;
4269 if (order > PREALLOC_TB_SIZE - 1)
4270 /* The max size of hash table is PREALLOC_TB_SIZE */
4271 order = PREALLOC_TB_SIZE - 1;
4272 /* Add the prealloc space to lg */
4273 spin_lock(&lg->lg_prealloc_lock);
4274 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4275 pa_inode_list) {
4276 spin_lock(&tmp_pa->pa_lock);
4277 if (tmp_pa->pa_deleted) {
4278 spin_unlock(&tmp_pa->pa_lock);
4279 continue;
4280 }
4281 if (!added && pa->pa_free < tmp_pa->pa_free) {
4282 /* Add to the tail of the previous entry */
4283 list_add_tail_rcu(&pa->pa_inode_list,
4284 &tmp_pa->pa_inode_list);
4285 added = 1;
4286 /*
4287 * we want to count the total
4288 * number of entries in the list
4289 */
4290 }
4291 spin_unlock(&tmp_pa->pa_lock);
4292 lg_prealloc_count++;
4293 }
4294 if (!added)
4295 list_add_tail_rcu(&pa->pa_inode_list,
4296 &lg->lg_prealloc_list[order]);
4297 spin_unlock(&lg->lg_prealloc_lock);
4298
4299 /* Now trim the list to be not more than 8 elements */
4300 if (lg_prealloc_count > 8) {
4301 ext4_mb_discard_lg_preallocations(sb, lg,
4302 order, lg_prealloc_count);
4303 return;
4304 }
4305 return ;
4306 }
4307
4308 /*
4309 * release all resource we used in allocation
4310 */
4311 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4312 {
4313 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4314 struct ext4_prealloc_space *pa = ac->ac_pa;
4315 if (pa) {
4316 if (pa->pa_type == MB_GROUP_PA) {
4317 /* see comment in ext4_mb_use_group_pa() */
4318 spin_lock(&pa->pa_lock);
4319 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4320 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4321 pa->pa_free -= ac->ac_b_ex.fe_len;
4322 pa->pa_len -= ac->ac_b_ex.fe_len;
4323 spin_unlock(&pa->pa_lock);
4324 }
4325 }
4326 if (pa) {
4327 /*
4328 * We want to add the pa to the right bucket.
4329 * Remove it from the list and while adding
4330 * make sure the list to which we are adding
4331 * doesn't grow big.
4332 */
4333 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4334 spin_lock(pa->pa_obj_lock);
4335 list_del_rcu(&pa->pa_inode_list);
4336 spin_unlock(pa->pa_obj_lock);
4337 ext4_mb_add_n_trim(ac);
4338 }
4339 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4340 }
4341 if (ac->ac_bitmap_page)
4342 page_cache_release(ac->ac_bitmap_page);
4343 if (ac->ac_buddy_page)
4344 page_cache_release(ac->ac_buddy_page);
4345 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4346 mutex_unlock(&ac->ac_lg->lg_mutex);
4347 ext4_mb_collect_stats(ac);
4348 return 0;
4349 }
4350
4351 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4352 {
4353 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4354 int ret;
4355 int freed = 0;
4356
4357 trace_ext4_mb_discard_preallocations(sb, needed);
4358 for (i = 0; i < ngroups && needed > 0; i++) {
4359 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4360 freed += ret;
4361 needed -= ret;
4362 }
4363
4364 return freed;
4365 }
4366
4367 /*
4368 * Main entry point into mballoc to allocate blocks
4369 * it tries to use preallocation first, then falls back
4370 * to usual allocation
4371 */
4372 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4373 struct ext4_allocation_request *ar, int *errp)
4374 {
4375 int freed;
4376 struct ext4_allocation_context *ac = NULL;
4377 struct ext4_sb_info *sbi;
4378 struct super_block *sb;
4379 ext4_fsblk_t block = 0;
4380 unsigned int inquota = 0;
4381 unsigned int reserv_clstrs = 0;
4382
4383 might_sleep();
4384 sb = ar->inode->i_sb;
4385 sbi = EXT4_SB(sb);
4386
4387 trace_ext4_request_blocks(ar);
4388
4389 /* Allow to use superuser reservation for quota file */
4390 if (IS_NOQUOTA(ar->inode))
4391 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4392
4393 /*
4394 * For delayed allocation, we could skip the ENOSPC and
4395 * EDQUOT check, as blocks and quotas have been already
4396 * reserved when data being copied into pagecache.
4397 */
4398 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4399 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4400 else {
4401 /* Without delayed allocation we need to verify
4402 * there is enough free blocks to do block allocation
4403 * and verify allocation doesn't exceed the quota limits.
4404 */
4405 while (ar->len &&
4406 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4407
4408 /* let others to free the space */
4409 cond_resched();
4410 ar->len = ar->len >> 1;
4411 }
4412 if (!ar->len) {
4413 *errp = -ENOSPC;
4414 return 0;
4415 }
4416 reserv_clstrs = ar->len;
4417 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4418 dquot_alloc_block_nofail(ar->inode,
4419 EXT4_C2B(sbi, ar->len));
4420 } else {
4421 while (ar->len &&
4422 dquot_alloc_block(ar->inode,
4423 EXT4_C2B(sbi, ar->len))) {
4424
4425 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4426 ar->len--;
4427 }
4428 }
4429 inquota = ar->len;
4430 if (ar->len == 0) {
4431 *errp = -EDQUOT;
4432 goto out;
4433 }
4434 }
4435
4436 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4437 if (!ac) {
4438 ar->len = 0;
4439 *errp = -ENOMEM;
4440 goto out;
4441 }
4442
4443 *errp = ext4_mb_initialize_context(ac, ar);
4444 if (*errp) {
4445 ar->len = 0;
4446 goto out;
4447 }
4448
4449 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4450 if (!ext4_mb_use_preallocated(ac)) {
4451 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4452 ext4_mb_normalize_request(ac, ar);
4453 repeat:
4454 /* allocate space in core */
4455 *errp = ext4_mb_regular_allocator(ac);
4456 if (*errp) {
4457 ext4_discard_allocated_blocks(ac);
4458 goto errout;
4459 }
4460
4461 /* as we've just preallocated more space than
4462 * user requested orinally, we store allocated
4463 * space in a special descriptor */
4464 if (ac->ac_status == AC_STATUS_FOUND &&
4465 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4466 ext4_mb_new_preallocation(ac);
4467 }
4468 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4469 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4470 if (*errp) {
4471 ext4_discard_allocated_blocks(ac);
4472 goto errout;
4473 } else {
4474 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4475 ar->len = ac->ac_b_ex.fe_len;
4476 }
4477 } else {
4478 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4479 if (freed)
4480 goto repeat;
4481 *errp = -ENOSPC;
4482 }
4483
4484 errout:
4485 if (*errp) {
4486 ac->ac_b_ex.fe_len = 0;
4487 ar->len = 0;
4488 ext4_mb_show_ac(ac);
4489 }
4490 ext4_mb_release_context(ac);
4491 out:
4492 if (ac)
4493 kmem_cache_free(ext4_ac_cachep, ac);
4494 if (inquota && ar->len < inquota)
4495 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4496 if (!ar->len) {
4497 if (!ext4_test_inode_state(ar->inode,
4498 EXT4_STATE_DELALLOC_RESERVED))
4499 /* release all the reserved blocks if non delalloc */
4500 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4501 reserv_clstrs);
4502 }
4503
4504 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4505
4506 return block;
4507 }
4508
4509 /*
4510 * We can merge two free data extents only if the physical blocks
4511 * are contiguous, AND the extents were freed by the same transaction,
4512 * AND the blocks are associated with the same group.
4513 */
4514 static int can_merge(struct ext4_free_data *entry1,
4515 struct ext4_free_data *entry2)
4516 {
4517 if ((entry1->efd_tid == entry2->efd_tid) &&
4518 (entry1->efd_group == entry2->efd_group) &&
4519 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4520 return 1;
4521 return 0;
4522 }
4523
4524 static noinline_for_stack int
4525 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4526 struct ext4_free_data *new_entry)
4527 {
4528 ext4_group_t group = e4b->bd_group;
4529 ext4_grpblk_t cluster;
4530 struct ext4_free_data *entry;
4531 struct ext4_group_info *db = e4b->bd_info;
4532 struct super_block *sb = e4b->bd_sb;
4533 struct ext4_sb_info *sbi = EXT4_SB(sb);
4534 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4535 struct rb_node *parent = NULL, *new_node;
4536
4537 BUG_ON(!ext4_handle_valid(handle));
4538 BUG_ON(e4b->bd_bitmap_page == NULL);
4539 BUG_ON(e4b->bd_buddy_page == NULL);
4540
4541 new_node = &new_entry->efd_node;
4542 cluster = new_entry->efd_start_cluster;
4543
4544 if (!*n) {
4545 /* first free block exent. We need to
4546 protect buddy cache from being freed,
4547 * otherwise we'll refresh it from
4548 * on-disk bitmap and lose not-yet-available
4549 * blocks */
4550 page_cache_get(e4b->bd_buddy_page);
4551 page_cache_get(e4b->bd_bitmap_page);
4552 }
4553 while (*n) {
4554 parent = *n;
4555 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4556 if (cluster < entry->efd_start_cluster)
4557 n = &(*n)->rb_left;
4558 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4559 n = &(*n)->rb_right;
4560 else {
4561 ext4_grp_locked_error(sb, group, 0,
4562 ext4_group_first_block_no(sb, group) +
4563 EXT4_C2B(sbi, cluster),
4564 "Block already on to-be-freed list");
4565 return 0;
4566 }
4567 }
4568
4569 rb_link_node(new_node, parent, n);
4570 rb_insert_color(new_node, &db->bb_free_root);
4571
4572 /* Now try to see the extent can be merged to left and right */
4573 node = rb_prev(new_node);
4574 if (node) {
4575 entry = rb_entry(node, struct ext4_free_data, efd_node);
4576 if (can_merge(entry, new_entry) &&
4577 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4578 new_entry->efd_start_cluster = entry->efd_start_cluster;
4579 new_entry->efd_count += entry->efd_count;
4580 rb_erase(node, &(db->bb_free_root));
4581 kmem_cache_free(ext4_free_data_cachep, entry);
4582 }
4583 }
4584
4585 node = rb_next(new_node);
4586 if (node) {
4587 entry = rb_entry(node, struct ext4_free_data, efd_node);
4588 if (can_merge(new_entry, entry) &&
4589 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4590 new_entry->efd_count += entry->efd_count;
4591 rb_erase(node, &(db->bb_free_root));
4592 kmem_cache_free(ext4_free_data_cachep, entry);
4593 }
4594 }
4595 /* Add the extent to transaction's private list */
4596 ext4_journal_callback_add(handle, ext4_free_data_callback,
4597 &new_entry->efd_jce);
4598 return 0;
4599 }
4600
4601 /**
4602 * ext4_free_blocks() -- Free given blocks and update quota
4603 * @handle: handle for this transaction
4604 * @inode: inode
4605 * @block: start physical block to free
4606 * @count: number of blocks to count
4607 * @flags: flags used by ext4_free_blocks
4608 */
4609 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4610 struct buffer_head *bh, ext4_fsblk_t block,
4611 unsigned long count, int flags)
4612 {
4613 struct buffer_head *bitmap_bh = NULL;
4614 struct super_block *sb = inode->i_sb;
4615 struct ext4_group_desc *gdp;
4616 unsigned int overflow;
4617 ext4_grpblk_t bit;
4618 struct buffer_head *gd_bh;
4619 ext4_group_t block_group;
4620 struct ext4_sb_info *sbi;
4621 struct ext4_inode_info *ei = EXT4_I(inode);
4622 struct ext4_buddy e4b;
4623 unsigned int count_clusters;
4624 int err = 0;
4625 int ret;
4626
4627 might_sleep();
4628 if (bh) {
4629 if (block)
4630 BUG_ON(block != bh->b_blocknr);
4631 else
4632 block = bh->b_blocknr;
4633 }
4634
4635 sbi = EXT4_SB(sb);
4636 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4637 !ext4_data_block_valid(sbi, block, count)) {
4638 ext4_error(sb, "Freeing blocks not in datazone - "
4639 "block = %llu, count = %lu", block, count);
4640 goto error_return;
4641 }
4642
4643 ext4_debug("freeing block %llu\n", block);
4644 trace_ext4_free_blocks(inode, block, count, flags);
4645
4646 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4647 struct buffer_head *tbh = bh;
4648 int i;
4649
4650 BUG_ON(bh && (count > 1));
4651
4652 for (i = 0; i < count; i++) {
4653 if (!bh)
4654 tbh = sb_find_get_block(inode->i_sb,
4655 block + i);
4656 if (unlikely(!tbh))
4657 continue;
4658 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4659 inode, tbh, block + i);
4660 }
4661 }
4662
4663 /*
4664 * We need to make sure we don't reuse the freed block until
4665 * after the transaction is committed, which we can do by
4666 * treating the block as metadata, below. We make an
4667 * exception if the inode is to be written in writeback mode
4668 * since writeback mode has weak data consistency guarantees.
4669 */
4670 if (!ext4_should_writeback_data(inode))
4671 flags |= EXT4_FREE_BLOCKS_METADATA;
4672
4673 /*
4674 * If the extent to be freed does not begin on a cluster
4675 * boundary, we need to deal with partial clusters at the
4676 * beginning and end of the extent. Normally we will free
4677 * blocks at the beginning or the end unless we are explicitly
4678 * requested to avoid doing so.
4679 */
4680 overflow = EXT4_PBLK_COFF(sbi, block);
4681 if (overflow) {
4682 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4683 overflow = sbi->s_cluster_ratio - overflow;
4684 block += overflow;
4685 if (count > overflow)
4686 count -= overflow;
4687 else
4688 return;
4689 } else {
4690 block -= overflow;
4691 count += overflow;
4692 }
4693 }
4694 overflow = EXT4_LBLK_COFF(sbi, count);
4695 if (overflow) {
4696 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4697 if (count > overflow)
4698 count -= overflow;
4699 else
4700 return;
4701 } else
4702 count += sbi->s_cluster_ratio - overflow;
4703 }
4704
4705 do_more:
4706 overflow = 0;
4707 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4708
4709 /*
4710 * Check to see if we are freeing blocks across a group
4711 * boundary.
4712 */
4713 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4714 overflow = EXT4_C2B(sbi, bit) + count -
4715 EXT4_BLOCKS_PER_GROUP(sb);
4716 count -= overflow;
4717 }
4718 count_clusters = EXT4_NUM_B2C(sbi, count);
4719 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4720 if (!bitmap_bh) {
4721 err = -EIO;
4722 goto error_return;
4723 }
4724 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4725 if (!gdp) {
4726 err = -EIO;
4727 goto error_return;
4728 }
4729
4730 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4731 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4732 in_range(block, ext4_inode_table(sb, gdp),
4733 EXT4_SB(sb)->s_itb_per_group) ||
4734 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4735 EXT4_SB(sb)->s_itb_per_group)) {
4736
4737 ext4_error(sb, "Freeing blocks in system zone - "
4738 "Block = %llu, count = %lu", block, count);
4739 /* err = 0. ext4_std_error should be a no op */
4740 goto error_return;
4741 }
4742
4743 BUFFER_TRACE(bitmap_bh, "getting write access");
4744 err = ext4_journal_get_write_access(handle, bitmap_bh);
4745 if (err)
4746 goto error_return;
4747
4748 /*
4749 * We are about to modify some metadata. Call the journal APIs
4750 * to unshare ->b_data if a currently-committing transaction is
4751 * using it
4752 */
4753 BUFFER_TRACE(gd_bh, "get_write_access");
4754 err = ext4_journal_get_write_access(handle, gd_bh);
4755 if (err)
4756 goto error_return;
4757 #ifdef AGGRESSIVE_CHECK
4758 {
4759 int i;
4760 for (i = 0; i < count_clusters; i++)
4761 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4762 }
4763 #endif
4764 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4765
4766 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4767 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4768 GFP_NOFS|__GFP_NOFAIL);
4769 if (err)
4770 goto error_return;
4771
4772 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4773 struct ext4_free_data *new_entry;
4774 /*
4775 * blocks being freed are metadata. these blocks shouldn't
4776 * be used until this transaction is committed
4777 *
4778 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4779 * to fail.
4780 */
4781 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4782 GFP_NOFS|__GFP_NOFAIL);
4783 new_entry->efd_start_cluster = bit;
4784 new_entry->efd_group = block_group;
4785 new_entry->efd_count = count_clusters;
4786 new_entry->efd_tid = handle->h_transaction->t_tid;
4787
4788 ext4_lock_group(sb, block_group);
4789 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4790 ext4_mb_free_metadata(handle, &e4b, new_entry);
4791 } else {
4792 /* need to update group_info->bb_free and bitmap
4793 * with group lock held. generate_buddy look at
4794 * them with group lock_held
4795 */
4796 if (test_opt(sb, DISCARD)) {
4797 err = ext4_issue_discard(sb, block_group, bit, count,
4798 0);
4799 if (err && err != -EOPNOTSUPP)
4800 ext4_msg(sb, KERN_WARNING, "discard request in"
4801 " group:%d block:%d count:%lu failed"
4802 " with %d", block_group, bit, count,
4803 err);
4804 } else
4805 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4806
4807 ext4_lock_group(sb, block_group);
4808 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4809 mb_free_blocks(inode, &e4b, bit, count_clusters);
4810 }
4811
4812 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4813 ext4_free_group_clusters_set(sb, gdp, ret);
4814 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4815 ext4_group_desc_csum_set(sb, block_group, gdp);
4816 ext4_unlock_group(sb, block_group);
4817
4818 if (sbi->s_log_groups_per_flex) {
4819 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4820 atomic64_add(count_clusters,
4821 &sbi->s_flex_groups[flex_group].free_clusters);
4822 }
4823
4824 if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4825 percpu_counter_add(&sbi->s_dirtyclusters_counter,
4826 count_clusters);
4827 spin_lock(&ei->i_block_reservation_lock);
4828 if (flags & EXT4_FREE_BLOCKS_METADATA)
4829 ei->i_reserved_meta_blocks += count_clusters;
4830 else
4831 ei->i_reserved_data_blocks += count_clusters;
4832 spin_unlock(&ei->i_block_reservation_lock);
4833 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4834 dquot_reclaim_block(inode,
4835 EXT4_C2B(sbi, count_clusters));
4836 } else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4837 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4838 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4839
4840 ext4_mb_unload_buddy(&e4b);
4841
4842 /* We dirtied the bitmap block */
4843 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4844 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4845
4846 /* And the group descriptor block */
4847 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4848 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4849 if (!err)
4850 err = ret;
4851
4852 if (overflow && !err) {
4853 block += count;
4854 count = overflow;
4855 put_bh(bitmap_bh);
4856 goto do_more;
4857 }
4858 error_return:
4859 brelse(bitmap_bh);
4860 ext4_std_error(sb, err);
4861 return;
4862 }
4863
4864 /**
4865 * ext4_group_add_blocks() -- Add given blocks to an existing group
4866 * @handle: handle to this transaction
4867 * @sb: super block
4868 * @block: start physical block to add to the block group
4869 * @count: number of blocks to free
4870 *
4871 * This marks the blocks as free in the bitmap and buddy.
4872 */
4873 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4874 ext4_fsblk_t block, unsigned long count)
4875 {
4876 struct buffer_head *bitmap_bh = NULL;
4877 struct buffer_head *gd_bh;
4878 ext4_group_t block_group;
4879 ext4_grpblk_t bit;
4880 unsigned int i;
4881 struct ext4_group_desc *desc;
4882 struct ext4_sb_info *sbi = EXT4_SB(sb);
4883 struct ext4_buddy e4b;
4884 int err = 0, ret, blk_free_count;
4885 ext4_grpblk_t blocks_freed;
4886
4887 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4888
4889 if (count == 0)
4890 return 0;
4891
4892 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4893 /*
4894 * Check to see if we are freeing blocks across a group
4895 * boundary.
4896 */
4897 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4898 ext4_warning(sb, "too much blocks added to group %u\n",
4899 block_group);
4900 err = -EINVAL;
4901 goto error_return;
4902 }
4903
4904 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4905 if (!bitmap_bh) {
4906 err = -EIO;
4907 goto error_return;
4908 }
4909
4910 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4911 if (!desc) {
4912 err = -EIO;
4913 goto error_return;
4914 }
4915
4916 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4917 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4918 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4919 in_range(block + count - 1, ext4_inode_table(sb, desc),
4920 sbi->s_itb_per_group)) {
4921 ext4_error(sb, "Adding blocks in system zones - "
4922 "Block = %llu, count = %lu",
4923 block, count);
4924 err = -EINVAL;
4925 goto error_return;
4926 }
4927
4928 BUFFER_TRACE(bitmap_bh, "getting write access");
4929 err = ext4_journal_get_write_access(handle, bitmap_bh);
4930 if (err)
4931 goto error_return;
4932
4933 /*
4934 * We are about to modify some metadata. Call the journal APIs
4935 * to unshare ->b_data if a currently-committing transaction is
4936 * using it
4937 */
4938 BUFFER_TRACE(gd_bh, "get_write_access");
4939 err = ext4_journal_get_write_access(handle, gd_bh);
4940 if (err)
4941 goto error_return;
4942
4943 for (i = 0, blocks_freed = 0; i < count; i++) {
4944 BUFFER_TRACE(bitmap_bh, "clear bit");
4945 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4946 ext4_error(sb, "bit already cleared for block %llu",
4947 (ext4_fsblk_t)(block + i));
4948 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4949 } else {
4950 blocks_freed++;
4951 }
4952 }
4953
4954 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4955 if (err)
4956 goto error_return;
4957
4958 /*
4959 * need to update group_info->bb_free and bitmap
4960 * with group lock held. generate_buddy look at
4961 * them with group lock_held
4962 */
4963 ext4_lock_group(sb, block_group);
4964 mb_clear_bits(bitmap_bh->b_data, bit, count);
4965 mb_free_blocks(NULL, &e4b, bit, count);
4966 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4967 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4968 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4969 ext4_group_desc_csum_set(sb, block_group, desc);
4970 ext4_unlock_group(sb, block_group);
4971 percpu_counter_add(&sbi->s_freeclusters_counter,
4972 EXT4_NUM_B2C(sbi, blocks_freed));
4973
4974 if (sbi->s_log_groups_per_flex) {
4975 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4976 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4977 &sbi->s_flex_groups[flex_group].free_clusters);
4978 }
4979
4980 ext4_mb_unload_buddy(&e4b);
4981
4982 /* We dirtied the bitmap block */
4983 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4984 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4985
4986 /* And the group descriptor block */
4987 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4988 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4989 if (!err)
4990 err = ret;
4991
4992 error_return:
4993 brelse(bitmap_bh);
4994 ext4_std_error(sb, err);
4995 return err;
4996 }
4997
4998 /**
4999 * ext4_trim_extent -- function to TRIM one single free extent in the group
5000 * @sb: super block for the file system
5001 * @start: starting block of the free extent in the alloc. group
5002 * @count: number of blocks to TRIM
5003 * @group: alloc. group we are working with
5004 * @e4b: ext4 buddy for the group
5005 * @blkdev_flags: flags for the block device
5006 *
5007 * Trim "count" blocks starting at "start" in the "group". To assure that no
5008 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5009 * be called with under the group lock.
5010 */
5011 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5012 ext4_group_t group, struct ext4_buddy *e4b,
5013 unsigned long blkdev_flags)
5014 {
5015 struct ext4_free_extent ex;
5016 int ret = 0;
5017
5018 trace_ext4_trim_extent(sb, group, start, count);
5019
5020 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5021
5022 ex.fe_start = start;
5023 ex.fe_group = group;
5024 ex.fe_len = count;
5025
5026 /*
5027 * Mark blocks used, so no one can reuse them while
5028 * being trimmed.
5029 */
5030 mb_mark_used(e4b, &ex);
5031 ext4_unlock_group(sb, group);
5032 ret = ext4_issue_discard(sb, group, start, count, blkdev_flags);
5033 ext4_lock_group(sb, group);
5034 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5035 return ret;
5036 }
5037
5038 /**
5039 * ext4_trim_all_free -- function to trim all free space in alloc. group
5040 * @sb: super block for file system
5041 * @group: group to be trimmed
5042 * @start: first group block to examine
5043 * @max: last group block to examine
5044 * @minblocks: minimum extent block count
5045 * @blkdev_flags: flags for the block device
5046 *
5047 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5048 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5049 * the extent.
5050 *
5051 *
5052 * ext4_trim_all_free walks through group's block bitmap searching for free
5053 * extents. When the free extent is found, mark it as used in group buddy
5054 * bitmap. Then issue a TRIM command on this extent and free the extent in
5055 * the group buddy bitmap. This is done until whole group is scanned.
5056 */
5057 static ext4_grpblk_t
5058 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5059 ext4_grpblk_t start, ext4_grpblk_t max,
5060 ext4_grpblk_t minblocks, unsigned long blkdev_flags)
5061 {
5062 void *bitmap;
5063 ext4_grpblk_t next, count = 0, free_count = 0;
5064 struct ext4_buddy e4b;
5065 int ret = 0;
5066
5067 trace_ext4_trim_all_free(sb, group, start, max);
5068
5069 ret = ext4_mb_load_buddy(sb, group, &e4b);
5070 if (ret) {
5071 ext4_error(sb, "Error in loading buddy "
5072 "information for %u", group);
5073 return ret;
5074 }
5075 bitmap = e4b.bd_bitmap;
5076
5077 ext4_lock_group(sb, group);
5078 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5079 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5080 goto out;
5081
5082 start = (e4b.bd_info->bb_first_free > start) ?
5083 e4b.bd_info->bb_first_free : start;
5084
5085 while (start <= max) {
5086 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5087 if (start > max)
5088 break;
5089 next = mb_find_next_bit(bitmap, max + 1, start);
5090
5091 if ((next - start) >= minblocks) {
5092 ret = ext4_trim_extent(sb, start,
5093 next - start, group, &e4b,
5094 blkdev_flags);
5095 if (ret && ret != -EOPNOTSUPP)
5096 break;
5097 ret = 0;
5098 count += next - start;
5099 }
5100 free_count += next - start;
5101 start = next + 1;
5102
5103 if (fatal_signal_pending(current)) {
5104 count = -ERESTARTSYS;
5105 break;
5106 }
5107
5108 if (need_resched()) {
5109 ext4_unlock_group(sb, group);
5110 cond_resched();
5111 ext4_lock_group(sb, group);
5112 }
5113
5114 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5115 break;
5116 }
5117
5118 if (!ret) {
5119 ret = count;
5120 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5121 }
5122 out:
5123 ext4_unlock_group(sb, group);
5124 ext4_mb_unload_buddy(&e4b);
5125
5126 ext4_debug("trimmed %d blocks in the group %d\n",
5127 count, group);
5128
5129 return ret;
5130 }
5131
5132 /**
5133 * ext4_trim_fs() -- trim ioctl handle function
5134 * @sb: superblock for filesystem
5135 * @range: fstrim_range structure
5136 * @blkdev_flags: flags for the block device
5137 *
5138 * start: First Byte to trim
5139 * len: number of Bytes to trim from start
5140 * minlen: minimum extent length in Bytes
5141 * ext4_trim_fs goes through all allocation groups containing Bytes from
5142 * start to start+len. For each such a group ext4_trim_all_free function
5143 * is invoked to trim all free space.
5144 */
5145 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range,
5146 unsigned long blkdev_flags)
5147 {
5148 struct ext4_group_info *grp;
5149 ext4_group_t group, first_group, last_group;
5150 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5151 uint64_t start, end, minlen, trimmed = 0;
5152 ext4_fsblk_t first_data_blk =
5153 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5154 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5155 int ret = 0;
5156
5157 start = range->start >> sb->s_blocksize_bits;
5158 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5159 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5160 range->minlen >> sb->s_blocksize_bits);
5161
5162 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5163 start >= max_blks ||
5164 range->len < sb->s_blocksize)
5165 return -EINVAL;
5166 if (end >= max_blks)
5167 end = max_blks - 1;
5168 if (end <= first_data_blk)
5169 goto out;
5170 if (start < first_data_blk)
5171 start = first_data_blk;
5172
5173 /* Determine first and last group to examine based on start and end */
5174 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5175 &first_group, &first_cluster);
5176 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5177 &last_group, &last_cluster);
5178
5179 /* end now represents the last cluster to discard in this group */
5180 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5181
5182 for (group = first_group; group <= last_group; group++) {
5183 grp = ext4_get_group_info(sb, group);
5184 /* We only do this if the grp has never been initialized */
5185 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5186 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5187 if (ret)
5188 break;
5189 }
5190
5191 /*
5192 * For all the groups except the last one, last cluster will
5193 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5194 * change it for the last group, note that last_cluster is
5195 * already computed earlier by ext4_get_group_no_and_offset()
5196 */
5197 if (group == last_group)
5198 end = last_cluster;
5199
5200 if (grp->bb_free >= minlen) {
5201 cnt = ext4_trim_all_free(sb, group, first_cluster,
5202 end, minlen, blkdev_flags);
5203 if (cnt < 0) {
5204 ret = cnt;
5205 break;
5206 }
5207 trimmed += cnt;
5208 }
5209
5210 /*
5211 * For every group except the first one, we are sure
5212 * that the first cluster to discard will be cluster #0.
5213 */
5214 first_cluster = 0;
5215 }
5216
5217 if (!ret)
5218 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5219
5220 out:
5221 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5222 return ret;
5223 }