ARM: mxs: icoll: Fix interrupts gpio bank 0
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 ext4_grpblk_t i = 0;
727 ext4_grpblk_t first;
728 ext4_grpblk_t len;
729 unsigned free = 0;
730 unsigned fragments = 0;
731 unsigned long long period = get_cycles();
732
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i = mb_find_next_zero_bit(bitmap, max, 0);
736 grp->bb_first_free = i;
737 while (i < max) {
738 fragments++;
739 first = i;
740 i = mb_find_next_bit(bitmap, max, i);
741 len = i - first;
742 free += len;
743 if (len > 1)
744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 else
746 grp->bb_counters[0]++;
747 if (i < max)
748 i = mb_find_next_zero_bit(bitmap, max, i);
749 }
750 grp->bb_fragments = fragments;
751
752 if (free != grp->bb_free) {
753 ext4_grp_locked_error(sb, group, 0, 0,
754 "%u clusters in bitmap, %u in gd",
755 free, grp->bb_free);
756 /*
757 * If we intent to continue, we consider group descritor
758 * corrupt and update bb_free using bitmap value
759 */
760 grp->bb_free = free;
761 }
762 mb_set_largest_free_order(sb, grp);
763
764 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
765
766 period = get_cycles() - period;
767 spin_lock(&EXT4_SB(sb)->s_bal_lock);
768 EXT4_SB(sb)->s_mb_buddies_generated++;
769 EXT4_SB(sb)->s_mb_generation_time += period;
770 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
771 }
772
773 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
774 {
775 int count;
776 int order = 1;
777 void *buddy;
778
779 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
780 ext4_set_bits(buddy, 0, count);
781 }
782 e4b->bd_info->bb_fragments = 0;
783 memset(e4b->bd_info->bb_counters, 0,
784 sizeof(*e4b->bd_info->bb_counters) *
785 (e4b->bd_sb->s_blocksize_bits + 2));
786
787 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
788 e4b->bd_bitmap, e4b->bd_group);
789 }
790
791 /* The buddy information is attached the buddy cache inode
792 * for convenience. The information regarding each group
793 * is loaded via ext4_mb_load_buddy. The information involve
794 * block bitmap and buddy information. The information are
795 * stored in the inode as
796 *
797 * { page }
798 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
799 *
800 *
801 * one block each for bitmap and buddy information.
802 * So for each group we take up 2 blocks. A page can
803 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
804 * So it can have information regarding groups_per_page which
805 * is blocks_per_page/2
806 *
807 * Locking note: This routine takes the block group lock of all groups
808 * for this page; do not hold this lock when calling this routine!
809 */
810
811 static int ext4_mb_init_cache(struct page *page, char *incore)
812 {
813 ext4_group_t ngroups;
814 int blocksize;
815 int blocks_per_page;
816 int groups_per_page;
817 int err = 0;
818 int i;
819 ext4_group_t first_group, group;
820 int first_block;
821 struct super_block *sb;
822 struct buffer_head *bhs;
823 struct buffer_head **bh = NULL;
824 struct inode *inode;
825 char *data;
826 char *bitmap;
827 struct ext4_group_info *grinfo;
828
829 mb_debug(1, "init page %lu\n", page->index);
830
831 inode = page->mapping->host;
832 sb = inode->i_sb;
833 ngroups = ext4_get_groups_count(sb);
834 blocksize = 1 << inode->i_blkbits;
835 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
836
837 groups_per_page = blocks_per_page >> 1;
838 if (groups_per_page == 0)
839 groups_per_page = 1;
840
841 /* allocate buffer_heads to read bitmaps */
842 if (groups_per_page > 1) {
843 i = sizeof(struct buffer_head *) * groups_per_page;
844 bh = kzalloc(i, GFP_NOFS);
845 if (bh == NULL) {
846 err = -ENOMEM;
847 goto out;
848 }
849 } else
850 bh = &bhs;
851
852 first_group = page->index * blocks_per_page / 2;
853
854 /* read all groups the page covers into the cache */
855 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
856 if (group >= ngroups)
857 break;
858
859 grinfo = ext4_get_group_info(sb, group);
860 /*
861 * If page is uptodate then we came here after online resize
862 * which added some new uninitialized group info structs, so
863 * we must skip all initialized uptodate buddies on the page,
864 * which may be currently in use by an allocating task.
865 */
866 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
867 bh[i] = NULL;
868 continue;
869 }
870 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
871 err = -ENOMEM;
872 goto out;
873 }
874 mb_debug(1, "read bitmap for group %u\n", group);
875 }
876
877 /* wait for I/O completion */
878 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
879 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
880 err = -EIO;
881 goto out;
882 }
883 }
884
885 first_block = page->index * blocks_per_page;
886 for (i = 0; i < blocks_per_page; i++) {
887 group = (first_block + i) >> 1;
888 if (group >= ngroups)
889 break;
890
891 if (!bh[group - first_group])
892 /* skip initialized uptodate buddy */
893 continue;
894
895 /*
896 * data carry information regarding this
897 * particular group in the format specified
898 * above
899 *
900 */
901 data = page_address(page) + (i * blocksize);
902 bitmap = bh[group - first_group]->b_data;
903
904 /*
905 * We place the buddy block and bitmap block
906 * close together
907 */
908 if ((first_block + i) & 1) {
909 /* this is block of buddy */
910 BUG_ON(incore == NULL);
911 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
912 group, page->index, i * blocksize);
913 trace_ext4_mb_buddy_bitmap_load(sb, group);
914 grinfo = ext4_get_group_info(sb, group);
915 grinfo->bb_fragments = 0;
916 memset(grinfo->bb_counters, 0,
917 sizeof(*grinfo->bb_counters) *
918 (sb->s_blocksize_bits+2));
919 /*
920 * incore got set to the group block bitmap below
921 */
922 ext4_lock_group(sb, group);
923 /* init the buddy */
924 memset(data, 0xff, blocksize);
925 ext4_mb_generate_buddy(sb, data, incore, group);
926 ext4_unlock_group(sb, group);
927 incore = NULL;
928 } else {
929 /* this is block of bitmap */
930 BUG_ON(incore != NULL);
931 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
932 group, page->index, i * blocksize);
933 trace_ext4_mb_bitmap_load(sb, group);
934
935 /* see comments in ext4_mb_put_pa() */
936 ext4_lock_group(sb, group);
937 memcpy(data, bitmap, blocksize);
938
939 /* mark all preallocated blks used in in-core bitmap */
940 ext4_mb_generate_from_pa(sb, data, group);
941 ext4_mb_generate_from_freelist(sb, data, group);
942 ext4_unlock_group(sb, group);
943
944 /* set incore so that the buddy information can be
945 * generated using this
946 */
947 incore = data;
948 }
949 }
950 SetPageUptodate(page);
951
952 out:
953 if (bh) {
954 for (i = 0; i < groups_per_page; i++)
955 brelse(bh[i]);
956 if (bh != &bhs)
957 kfree(bh);
958 }
959 return err;
960 }
961
962 /*
963 * Lock the buddy and bitmap pages. This make sure other parallel init_group
964 * on the same buddy page doesn't happen whild holding the buddy page lock.
965 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
966 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
967 */
968 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
969 ext4_group_t group, struct ext4_buddy *e4b)
970 {
971 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
972 int block, pnum, poff;
973 int blocks_per_page;
974 struct page *page;
975
976 e4b->bd_buddy_page = NULL;
977 e4b->bd_bitmap_page = NULL;
978
979 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
980 /*
981 * the buddy cache inode stores the block bitmap
982 * and buddy information in consecutive blocks.
983 * So for each group we need two blocks.
984 */
985 block = group * 2;
986 pnum = block / blocks_per_page;
987 poff = block % blocks_per_page;
988 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
989 if (!page)
990 return -EIO;
991 BUG_ON(page->mapping != inode->i_mapping);
992 e4b->bd_bitmap_page = page;
993 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
994
995 if (blocks_per_page >= 2) {
996 /* buddy and bitmap are on the same page */
997 return 0;
998 }
999
1000 block++;
1001 pnum = block / blocks_per_page;
1002 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1003 if (!page)
1004 return -EIO;
1005 BUG_ON(page->mapping != inode->i_mapping);
1006 e4b->bd_buddy_page = page;
1007 return 0;
1008 }
1009
1010 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1011 {
1012 if (e4b->bd_bitmap_page) {
1013 unlock_page(e4b->bd_bitmap_page);
1014 page_cache_release(e4b->bd_bitmap_page);
1015 }
1016 if (e4b->bd_buddy_page) {
1017 unlock_page(e4b->bd_buddy_page);
1018 page_cache_release(e4b->bd_buddy_page);
1019 }
1020 }
1021
1022 /*
1023 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1024 * block group lock of all groups for this page; do not hold the BG lock when
1025 * calling this routine!
1026 */
1027 static noinline_for_stack
1028 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1029 {
1030
1031 struct ext4_group_info *this_grp;
1032 struct ext4_buddy e4b;
1033 struct page *page;
1034 int ret = 0;
1035
1036 might_sleep();
1037 mb_debug(1, "init group %u\n", group);
1038 this_grp = ext4_get_group_info(sb, group);
1039 /*
1040 * This ensures that we don't reinit the buddy cache
1041 * page which map to the group from which we are already
1042 * allocating. If we are looking at the buddy cache we would
1043 * have taken a reference using ext4_mb_load_buddy and that
1044 * would have pinned buddy page to page cache.
1045 */
1046 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1047 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1048 /*
1049 * somebody initialized the group
1050 * return without doing anything
1051 */
1052 goto err;
1053 }
1054
1055 page = e4b.bd_bitmap_page;
1056 ret = ext4_mb_init_cache(page, NULL);
1057 if (ret)
1058 goto err;
1059 if (!PageUptodate(page)) {
1060 ret = -EIO;
1061 goto err;
1062 }
1063 mark_page_accessed(page);
1064
1065 if (e4b.bd_buddy_page == NULL) {
1066 /*
1067 * If both the bitmap and buddy are in
1068 * the same page we don't need to force
1069 * init the buddy
1070 */
1071 ret = 0;
1072 goto err;
1073 }
1074 /* init buddy cache */
1075 page = e4b.bd_buddy_page;
1076 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1077 if (ret)
1078 goto err;
1079 if (!PageUptodate(page)) {
1080 ret = -EIO;
1081 goto err;
1082 }
1083 mark_page_accessed(page);
1084 err:
1085 ext4_mb_put_buddy_page_lock(&e4b);
1086 return ret;
1087 }
1088
1089 /*
1090 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1091 * block group lock of all groups for this page; do not hold the BG lock when
1092 * calling this routine!
1093 */
1094 static noinline_for_stack int
1095 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1096 struct ext4_buddy *e4b)
1097 {
1098 int blocks_per_page;
1099 int block;
1100 int pnum;
1101 int poff;
1102 struct page *page;
1103 int ret;
1104 struct ext4_group_info *grp;
1105 struct ext4_sb_info *sbi = EXT4_SB(sb);
1106 struct inode *inode = sbi->s_buddy_cache;
1107
1108 might_sleep();
1109 mb_debug(1, "load group %u\n", group);
1110
1111 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1112 grp = ext4_get_group_info(sb, group);
1113
1114 e4b->bd_blkbits = sb->s_blocksize_bits;
1115 e4b->bd_info = grp;
1116 e4b->bd_sb = sb;
1117 e4b->bd_group = group;
1118 e4b->bd_buddy_page = NULL;
1119 e4b->bd_bitmap_page = NULL;
1120
1121 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1122 /*
1123 * we need full data about the group
1124 * to make a good selection
1125 */
1126 ret = ext4_mb_init_group(sb, group);
1127 if (ret)
1128 return ret;
1129 }
1130
1131 /*
1132 * the buddy cache inode stores the block bitmap
1133 * and buddy information in consecutive blocks.
1134 * So for each group we need two blocks.
1135 */
1136 block = group * 2;
1137 pnum = block / blocks_per_page;
1138 poff = block % blocks_per_page;
1139
1140 /* we could use find_or_create_page(), but it locks page
1141 * what we'd like to avoid in fast path ... */
1142 page = find_get_page(inode->i_mapping, pnum);
1143 if (page == NULL || !PageUptodate(page)) {
1144 if (page)
1145 /*
1146 * drop the page reference and try
1147 * to get the page with lock. If we
1148 * are not uptodate that implies
1149 * somebody just created the page but
1150 * is yet to initialize the same. So
1151 * wait for it to initialize.
1152 */
1153 page_cache_release(page);
1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155 if (page) {
1156 BUG_ON(page->mapping != inode->i_mapping);
1157 if (!PageUptodate(page)) {
1158 ret = ext4_mb_init_cache(page, NULL);
1159 if (ret) {
1160 unlock_page(page);
1161 goto err;
1162 }
1163 mb_cmp_bitmaps(e4b, page_address(page) +
1164 (poff * sb->s_blocksize));
1165 }
1166 unlock_page(page);
1167 }
1168 }
1169 if (page == NULL || !PageUptodate(page)) {
1170 ret = -EIO;
1171 goto err;
1172 }
1173 e4b->bd_bitmap_page = page;
1174 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1175 mark_page_accessed(page);
1176
1177 block++;
1178 pnum = block / blocks_per_page;
1179 poff = block % blocks_per_page;
1180
1181 page = find_get_page(inode->i_mapping, pnum);
1182 if (page == NULL || !PageUptodate(page)) {
1183 if (page)
1184 page_cache_release(page);
1185 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1186 if (page) {
1187 BUG_ON(page->mapping != inode->i_mapping);
1188 if (!PageUptodate(page)) {
1189 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1190 if (ret) {
1191 unlock_page(page);
1192 goto err;
1193 }
1194 }
1195 unlock_page(page);
1196 }
1197 }
1198 if (page == NULL || !PageUptodate(page)) {
1199 ret = -EIO;
1200 goto err;
1201 }
1202 e4b->bd_buddy_page = page;
1203 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1204 mark_page_accessed(page);
1205
1206 BUG_ON(e4b->bd_bitmap_page == NULL);
1207 BUG_ON(e4b->bd_buddy_page == NULL);
1208
1209 return 0;
1210
1211 err:
1212 if (page)
1213 page_cache_release(page);
1214 if (e4b->bd_bitmap_page)
1215 page_cache_release(e4b->bd_bitmap_page);
1216 if (e4b->bd_buddy_page)
1217 page_cache_release(e4b->bd_buddy_page);
1218 e4b->bd_buddy = NULL;
1219 e4b->bd_bitmap = NULL;
1220 return ret;
1221 }
1222
1223 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1224 {
1225 if (e4b->bd_bitmap_page)
1226 page_cache_release(e4b->bd_bitmap_page);
1227 if (e4b->bd_buddy_page)
1228 page_cache_release(e4b->bd_buddy_page);
1229 }
1230
1231
1232 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1233 {
1234 int order = 1;
1235 void *bb;
1236
1237 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1238 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1239
1240 bb = e4b->bd_buddy;
1241 while (order <= e4b->bd_blkbits + 1) {
1242 block = block >> 1;
1243 if (!mb_test_bit(block, bb)) {
1244 /* this block is part of buddy of order 'order' */
1245 return order;
1246 }
1247 bb += 1 << (e4b->bd_blkbits - order);
1248 order++;
1249 }
1250 return 0;
1251 }
1252
1253 static void mb_clear_bits(void *bm, int cur, int len)
1254 {
1255 __u32 *addr;
1256
1257 len = cur + len;
1258 while (cur < len) {
1259 if ((cur & 31) == 0 && (len - cur) >= 32) {
1260 /* fast path: clear whole word at once */
1261 addr = bm + (cur >> 3);
1262 *addr = 0;
1263 cur += 32;
1264 continue;
1265 }
1266 mb_clear_bit(cur, bm);
1267 cur++;
1268 }
1269 }
1270
1271 /* clear bits in given range
1272 * will return first found zero bit if any, -1 otherwise
1273 */
1274 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1275 {
1276 __u32 *addr;
1277 int zero_bit = -1;
1278
1279 len = cur + len;
1280 while (cur < len) {
1281 if ((cur & 31) == 0 && (len - cur) >= 32) {
1282 /* fast path: clear whole word at once */
1283 addr = bm + (cur >> 3);
1284 if (*addr != (__u32)(-1) && zero_bit == -1)
1285 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1286 *addr = 0;
1287 cur += 32;
1288 continue;
1289 }
1290 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1291 zero_bit = cur;
1292 cur++;
1293 }
1294
1295 return zero_bit;
1296 }
1297
1298 void ext4_set_bits(void *bm, int cur, int len)
1299 {
1300 __u32 *addr;
1301
1302 len = cur + len;
1303 while (cur < len) {
1304 if ((cur & 31) == 0 && (len - cur) >= 32) {
1305 /* fast path: set whole word at once */
1306 addr = bm + (cur >> 3);
1307 *addr = 0xffffffff;
1308 cur += 32;
1309 continue;
1310 }
1311 mb_set_bit(cur, bm);
1312 cur++;
1313 }
1314 }
1315
1316 /*
1317 * _________________________________________________________________ */
1318
1319 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1320 {
1321 if (mb_test_bit(*bit + side, bitmap)) {
1322 mb_clear_bit(*bit, bitmap);
1323 (*bit) -= side;
1324 return 1;
1325 }
1326 else {
1327 (*bit) += side;
1328 mb_set_bit(*bit, bitmap);
1329 return -1;
1330 }
1331 }
1332
1333 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1334 {
1335 int max;
1336 int order = 1;
1337 void *buddy = mb_find_buddy(e4b, order, &max);
1338
1339 while (buddy) {
1340 void *buddy2;
1341
1342 /* Bits in range [first; last] are known to be set since
1343 * corresponding blocks were allocated. Bits in range
1344 * (first; last) will stay set because they form buddies on
1345 * upper layer. We just deal with borders if they don't
1346 * align with upper layer and then go up.
1347 * Releasing entire group is all about clearing
1348 * single bit of highest order buddy.
1349 */
1350
1351 /* Example:
1352 * ---------------------------------
1353 * | 1 | 1 | 1 | 1 |
1354 * ---------------------------------
1355 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1356 * ---------------------------------
1357 * 0 1 2 3 4 5 6 7
1358 * \_____________________/
1359 *
1360 * Neither [1] nor [6] is aligned to above layer.
1361 * Left neighbour [0] is free, so mark it busy,
1362 * decrease bb_counters and extend range to
1363 * [0; 6]
1364 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1365 * mark [6] free, increase bb_counters and shrink range to
1366 * [0; 5].
1367 * Then shift range to [0; 2], go up and do the same.
1368 */
1369
1370
1371 if (first & 1)
1372 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1373 if (!(last & 1))
1374 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1375 if (first > last)
1376 break;
1377 order++;
1378
1379 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1380 mb_clear_bits(buddy, first, last - first + 1);
1381 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1382 break;
1383 }
1384 first >>= 1;
1385 last >>= 1;
1386 buddy = buddy2;
1387 }
1388 }
1389
1390 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1391 int first, int count)
1392 {
1393 int left_is_free = 0;
1394 int right_is_free = 0;
1395 int block;
1396 int last = first + count - 1;
1397 struct super_block *sb = e4b->bd_sb;
1398
1399 BUG_ON(last >= (sb->s_blocksize << 3));
1400 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1401 mb_check_buddy(e4b);
1402 mb_free_blocks_double(inode, e4b, first, count);
1403
1404 e4b->bd_info->bb_free += count;
1405 if (first < e4b->bd_info->bb_first_free)
1406 e4b->bd_info->bb_first_free = first;
1407
1408 /* access memory sequentially: check left neighbour,
1409 * clear range and then check right neighbour
1410 */
1411 if (first != 0)
1412 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1413 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1414 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1415 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1416
1417 if (unlikely(block != -1)) {
1418 ext4_fsblk_t blocknr;
1419
1420 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1421 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1422 ext4_grp_locked_error(sb, e4b->bd_group,
1423 inode ? inode->i_ino : 0,
1424 blocknr,
1425 "freeing already freed block "
1426 "(bit %u)", block);
1427 mb_regenerate_buddy(e4b);
1428 goto done;
1429 }
1430
1431 /* let's maintain fragments counter */
1432 if (left_is_free && right_is_free)
1433 e4b->bd_info->bb_fragments--;
1434 else if (!left_is_free && !right_is_free)
1435 e4b->bd_info->bb_fragments++;
1436
1437 /* buddy[0] == bd_bitmap is a special case, so handle
1438 * it right away and let mb_buddy_mark_free stay free of
1439 * zero order checks.
1440 * Check if neighbours are to be coaleasced,
1441 * adjust bitmap bb_counters and borders appropriately.
1442 */
1443 if (first & 1) {
1444 first += !left_is_free;
1445 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1446 }
1447 if (!(last & 1)) {
1448 last -= !right_is_free;
1449 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1450 }
1451
1452 if (first <= last)
1453 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1454
1455 done:
1456 mb_set_largest_free_order(sb, e4b->bd_info);
1457 mb_check_buddy(e4b);
1458 }
1459
1460 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1461 int needed, struct ext4_free_extent *ex)
1462 {
1463 int next = block;
1464 int max, order;
1465 void *buddy;
1466
1467 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1468 BUG_ON(ex == NULL);
1469
1470 buddy = mb_find_buddy(e4b, 0, &max);
1471 BUG_ON(buddy == NULL);
1472 BUG_ON(block >= max);
1473 if (mb_test_bit(block, buddy)) {
1474 ex->fe_len = 0;
1475 ex->fe_start = 0;
1476 ex->fe_group = 0;
1477 return 0;
1478 }
1479
1480 /* find actual order */
1481 order = mb_find_order_for_block(e4b, block);
1482 block = block >> order;
1483
1484 ex->fe_len = 1 << order;
1485 ex->fe_start = block << order;
1486 ex->fe_group = e4b->bd_group;
1487
1488 /* calc difference from given start */
1489 next = next - ex->fe_start;
1490 ex->fe_len -= next;
1491 ex->fe_start += next;
1492
1493 while (needed > ex->fe_len &&
1494 mb_find_buddy(e4b, order, &max)) {
1495
1496 if (block + 1 >= max)
1497 break;
1498
1499 next = (block + 1) * (1 << order);
1500 if (mb_test_bit(next, e4b->bd_bitmap))
1501 break;
1502
1503 order = mb_find_order_for_block(e4b, next);
1504
1505 block = next >> order;
1506 ex->fe_len += 1 << order;
1507 }
1508
1509 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1510 return ex->fe_len;
1511 }
1512
1513 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1514 {
1515 int ord;
1516 int mlen = 0;
1517 int max = 0;
1518 int cur;
1519 int start = ex->fe_start;
1520 int len = ex->fe_len;
1521 unsigned ret = 0;
1522 int len0 = len;
1523 void *buddy;
1524
1525 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1526 BUG_ON(e4b->bd_group != ex->fe_group);
1527 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1528 mb_check_buddy(e4b);
1529 mb_mark_used_double(e4b, start, len);
1530
1531 e4b->bd_info->bb_free -= len;
1532 if (e4b->bd_info->bb_first_free == start)
1533 e4b->bd_info->bb_first_free += len;
1534
1535 /* let's maintain fragments counter */
1536 if (start != 0)
1537 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1538 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1539 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1540 if (mlen && max)
1541 e4b->bd_info->bb_fragments++;
1542 else if (!mlen && !max)
1543 e4b->bd_info->bb_fragments--;
1544
1545 /* let's maintain buddy itself */
1546 while (len) {
1547 ord = mb_find_order_for_block(e4b, start);
1548
1549 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1550 /* the whole chunk may be allocated at once! */
1551 mlen = 1 << ord;
1552 buddy = mb_find_buddy(e4b, ord, &max);
1553 BUG_ON((start >> ord) >= max);
1554 mb_set_bit(start >> ord, buddy);
1555 e4b->bd_info->bb_counters[ord]--;
1556 start += mlen;
1557 len -= mlen;
1558 BUG_ON(len < 0);
1559 continue;
1560 }
1561
1562 /* store for history */
1563 if (ret == 0)
1564 ret = len | (ord << 16);
1565
1566 /* we have to split large buddy */
1567 BUG_ON(ord <= 0);
1568 buddy = mb_find_buddy(e4b, ord, &max);
1569 mb_set_bit(start >> ord, buddy);
1570 e4b->bd_info->bb_counters[ord]--;
1571
1572 ord--;
1573 cur = (start >> ord) & ~1U;
1574 buddy = mb_find_buddy(e4b, ord, &max);
1575 mb_clear_bit(cur, buddy);
1576 mb_clear_bit(cur + 1, buddy);
1577 e4b->bd_info->bb_counters[ord]++;
1578 e4b->bd_info->bb_counters[ord]++;
1579 }
1580 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1581
1582 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1583 mb_check_buddy(e4b);
1584
1585 return ret;
1586 }
1587
1588 /*
1589 * Must be called under group lock!
1590 */
1591 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1592 struct ext4_buddy *e4b)
1593 {
1594 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1595 int ret;
1596
1597 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1598 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1599
1600 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1601 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1602 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1603
1604 /* preallocation can change ac_b_ex, thus we store actually
1605 * allocated blocks for history */
1606 ac->ac_f_ex = ac->ac_b_ex;
1607
1608 ac->ac_status = AC_STATUS_FOUND;
1609 ac->ac_tail = ret & 0xffff;
1610 ac->ac_buddy = ret >> 16;
1611
1612 /*
1613 * take the page reference. We want the page to be pinned
1614 * so that we don't get a ext4_mb_init_cache_call for this
1615 * group until we update the bitmap. That would mean we
1616 * double allocate blocks. The reference is dropped
1617 * in ext4_mb_release_context
1618 */
1619 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1620 get_page(ac->ac_bitmap_page);
1621 ac->ac_buddy_page = e4b->bd_buddy_page;
1622 get_page(ac->ac_buddy_page);
1623 /* store last allocated for subsequent stream allocation */
1624 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1625 spin_lock(&sbi->s_md_lock);
1626 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1627 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1628 spin_unlock(&sbi->s_md_lock);
1629 }
1630 }
1631
1632 /*
1633 * regular allocator, for general purposes allocation
1634 */
1635
1636 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1637 struct ext4_buddy *e4b,
1638 int finish_group)
1639 {
1640 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1641 struct ext4_free_extent *bex = &ac->ac_b_ex;
1642 struct ext4_free_extent *gex = &ac->ac_g_ex;
1643 struct ext4_free_extent ex;
1644 int max;
1645
1646 if (ac->ac_status == AC_STATUS_FOUND)
1647 return;
1648 /*
1649 * We don't want to scan for a whole year
1650 */
1651 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1652 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1653 ac->ac_status = AC_STATUS_BREAK;
1654 return;
1655 }
1656
1657 /*
1658 * Haven't found good chunk so far, let's continue
1659 */
1660 if (bex->fe_len < gex->fe_len)
1661 return;
1662
1663 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1664 && bex->fe_group == e4b->bd_group) {
1665 /* recheck chunk's availability - we don't know
1666 * when it was found (within this lock-unlock
1667 * period or not) */
1668 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1669 if (max >= gex->fe_len) {
1670 ext4_mb_use_best_found(ac, e4b);
1671 return;
1672 }
1673 }
1674 }
1675
1676 /*
1677 * The routine checks whether found extent is good enough. If it is,
1678 * then the extent gets marked used and flag is set to the context
1679 * to stop scanning. Otherwise, the extent is compared with the
1680 * previous found extent and if new one is better, then it's stored
1681 * in the context. Later, the best found extent will be used, if
1682 * mballoc can't find good enough extent.
1683 *
1684 * FIXME: real allocation policy is to be designed yet!
1685 */
1686 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1687 struct ext4_free_extent *ex,
1688 struct ext4_buddy *e4b)
1689 {
1690 struct ext4_free_extent *bex = &ac->ac_b_ex;
1691 struct ext4_free_extent *gex = &ac->ac_g_ex;
1692
1693 BUG_ON(ex->fe_len <= 0);
1694 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1695 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1696 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1697
1698 ac->ac_found++;
1699
1700 /*
1701 * The special case - take what you catch first
1702 */
1703 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1704 *bex = *ex;
1705 ext4_mb_use_best_found(ac, e4b);
1706 return;
1707 }
1708
1709 /*
1710 * Let's check whether the chuck is good enough
1711 */
1712 if (ex->fe_len == gex->fe_len) {
1713 *bex = *ex;
1714 ext4_mb_use_best_found(ac, e4b);
1715 return;
1716 }
1717
1718 /*
1719 * If this is first found extent, just store it in the context
1720 */
1721 if (bex->fe_len == 0) {
1722 *bex = *ex;
1723 return;
1724 }
1725
1726 /*
1727 * If new found extent is better, store it in the context
1728 */
1729 if (bex->fe_len < gex->fe_len) {
1730 /* if the request isn't satisfied, any found extent
1731 * larger than previous best one is better */
1732 if (ex->fe_len > bex->fe_len)
1733 *bex = *ex;
1734 } else if (ex->fe_len > gex->fe_len) {
1735 /* if the request is satisfied, then we try to find
1736 * an extent that still satisfy the request, but is
1737 * smaller than previous one */
1738 if (ex->fe_len < bex->fe_len)
1739 *bex = *ex;
1740 }
1741
1742 ext4_mb_check_limits(ac, e4b, 0);
1743 }
1744
1745 static noinline_for_stack
1746 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1747 struct ext4_buddy *e4b)
1748 {
1749 struct ext4_free_extent ex = ac->ac_b_ex;
1750 ext4_group_t group = ex.fe_group;
1751 int max;
1752 int err;
1753
1754 BUG_ON(ex.fe_len <= 0);
1755 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1756 if (err)
1757 return err;
1758
1759 ext4_lock_group(ac->ac_sb, group);
1760 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1761
1762 if (max > 0) {
1763 ac->ac_b_ex = ex;
1764 ext4_mb_use_best_found(ac, e4b);
1765 }
1766
1767 ext4_unlock_group(ac->ac_sb, group);
1768 ext4_mb_unload_buddy(e4b);
1769
1770 return 0;
1771 }
1772
1773 static noinline_for_stack
1774 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1775 struct ext4_buddy *e4b)
1776 {
1777 ext4_group_t group = ac->ac_g_ex.fe_group;
1778 int max;
1779 int err;
1780 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1781 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1782 struct ext4_free_extent ex;
1783
1784 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1785 return 0;
1786 if (grp->bb_free == 0)
1787 return 0;
1788
1789 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1790 if (err)
1791 return err;
1792
1793 ext4_lock_group(ac->ac_sb, group);
1794 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1795 ac->ac_g_ex.fe_len, &ex);
1796
1797 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1798 ext4_fsblk_t start;
1799
1800 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1801 ex.fe_start;
1802 /* use do_div to get remainder (would be 64-bit modulo) */
1803 if (do_div(start, sbi->s_stripe) == 0) {
1804 ac->ac_found++;
1805 ac->ac_b_ex = ex;
1806 ext4_mb_use_best_found(ac, e4b);
1807 }
1808 } else if (max >= ac->ac_g_ex.fe_len) {
1809 BUG_ON(ex.fe_len <= 0);
1810 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1811 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1812 ac->ac_found++;
1813 ac->ac_b_ex = ex;
1814 ext4_mb_use_best_found(ac, e4b);
1815 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1816 /* Sometimes, caller may want to merge even small
1817 * number of blocks to an existing extent */
1818 BUG_ON(ex.fe_len <= 0);
1819 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1820 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1821 ac->ac_found++;
1822 ac->ac_b_ex = ex;
1823 ext4_mb_use_best_found(ac, e4b);
1824 }
1825 ext4_unlock_group(ac->ac_sb, group);
1826 ext4_mb_unload_buddy(e4b);
1827
1828 return 0;
1829 }
1830
1831 /*
1832 * The routine scans buddy structures (not bitmap!) from given order
1833 * to max order and tries to find big enough chunk to satisfy the req
1834 */
1835 static noinline_for_stack
1836 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1837 struct ext4_buddy *e4b)
1838 {
1839 struct super_block *sb = ac->ac_sb;
1840 struct ext4_group_info *grp = e4b->bd_info;
1841 void *buddy;
1842 int i;
1843 int k;
1844 int max;
1845
1846 BUG_ON(ac->ac_2order <= 0);
1847 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1848 if (grp->bb_counters[i] == 0)
1849 continue;
1850
1851 buddy = mb_find_buddy(e4b, i, &max);
1852 BUG_ON(buddy == NULL);
1853
1854 k = mb_find_next_zero_bit(buddy, max, 0);
1855 BUG_ON(k >= max);
1856
1857 ac->ac_found++;
1858
1859 ac->ac_b_ex.fe_len = 1 << i;
1860 ac->ac_b_ex.fe_start = k << i;
1861 ac->ac_b_ex.fe_group = e4b->bd_group;
1862
1863 ext4_mb_use_best_found(ac, e4b);
1864
1865 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1866
1867 if (EXT4_SB(sb)->s_mb_stats)
1868 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1869
1870 break;
1871 }
1872 }
1873
1874 /*
1875 * The routine scans the group and measures all found extents.
1876 * In order to optimize scanning, caller must pass number of
1877 * free blocks in the group, so the routine can know upper limit.
1878 */
1879 static noinline_for_stack
1880 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1881 struct ext4_buddy *e4b)
1882 {
1883 struct super_block *sb = ac->ac_sb;
1884 void *bitmap = e4b->bd_bitmap;
1885 struct ext4_free_extent ex;
1886 int i;
1887 int free;
1888
1889 free = e4b->bd_info->bb_free;
1890 BUG_ON(free <= 0);
1891
1892 i = e4b->bd_info->bb_first_free;
1893
1894 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1895 i = mb_find_next_zero_bit(bitmap,
1896 EXT4_CLUSTERS_PER_GROUP(sb), i);
1897 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1898 /*
1899 * IF we have corrupt bitmap, we won't find any
1900 * free blocks even though group info says we
1901 * we have free blocks
1902 */
1903 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1904 "%d free clusters as per "
1905 "group info. But bitmap says 0",
1906 free);
1907 break;
1908 }
1909
1910 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1911 BUG_ON(ex.fe_len <= 0);
1912 if (free < ex.fe_len) {
1913 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1914 "%d free clusters as per "
1915 "group info. But got %d blocks",
1916 free, ex.fe_len);
1917 /*
1918 * The number of free blocks differs. This mostly
1919 * indicate that the bitmap is corrupt. So exit
1920 * without claiming the space.
1921 */
1922 break;
1923 }
1924
1925 ext4_mb_measure_extent(ac, &ex, e4b);
1926
1927 i += ex.fe_len;
1928 free -= ex.fe_len;
1929 }
1930
1931 ext4_mb_check_limits(ac, e4b, 1);
1932 }
1933
1934 /*
1935 * This is a special case for storages like raid5
1936 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1937 */
1938 static noinline_for_stack
1939 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1940 struct ext4_buddy *e4b)
1941 {
1942 struct super_block *sb = ac->ac_sb;
1943 struct ext4_sb_info *sbi = EXT4_SB(sb);
1944 void *bitmap = e4b->bd_bitmap;
1945 struct ext4_free_extent ex;
1946 ext4_fsblk_t first_group_block;
1947 ext4_fsblk_t a;
1948 ext4_grpblk_t i;
1949 int max;
1950
1951 BUG_ON(sbi->s_stripe == 0);
1952
1953 /* find first stripe-aligned block in group */
1954 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1955
1956 a = first_group_block + sbi->s_stripe - 1;
1957 do_div(a, sbi->s_stripe);
1958 i = (a * sbi->s_stripe) - first_group_block;
1959
1960 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1961 if (!mb_test_bit(i, bitmap)) {
1962 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1963 if (max >= sbi->s_stripe) {
1964 ac->ac_found++;
1965 ac->ac_b_ex = ex;
1966 ext4_mb_use_best_found(ac, e4b);
1967 break;
1968 }
1969 }
1970 i += sbi->s_stripe;
1971 }
1972 }
1973
1974 /* This is now called BEFORE we load the buddy bitmap. */
1975 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1976 ext4_group_t group, int cr)
1977 {
1978 unsigned free, fragments;
1979 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1980 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1981
1982 BUG_ON(cr < 0 || cr >= 4);
1983
1984 free = grp->bb_free;
1985 if (free == 0)
1986 return 0;
1987 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
1988 return 0;
1989
1990 /* We only do this if the grp has never been initialized */
1991 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1992 int ret = ext4_mb_init_group(ac->ac_sb, group);
1993 if (ret)
1994 return 0;
1995 }
1996
1997 fragments = grp->bb_fragments;
1998 if (fragments == 0)
1999 return 0;
2000
2001 switch (cr) {
2002 case 0:
2003 BUG_ON(ac->ac_2order == 0);
2004
2005 /* Avoid using the first bg of a flexgroup for data files */
2006 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2007 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2008 ((group % flex_size) == 0))
2009 return 0;
2010
2011 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2012 (free / fragments) >= ac->ac_g_ex.fe_len)
2013 return 1;
2014
2015 if (grp->bb_largest_free_order < ac->ac_2order)
2016 return 0;
2017
2018 return 1;
2019 case 1:
2020 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2021 return 1;
2022 break;
2023 case 2:
2024 if (free >= ac->ac_g_ex.fe_len)
2025 return 1;
2026 break;
2027 case 3:
2028 return 1;
2029 default:
2030 BUG();
2031 }
2032
2033 return 0;
2034 }
2035
2036 static noinline_for_stack int
2037 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2038 {
2039 ext4_group_t ngroups, group, i;
2040 int cr;
2041 int err = 0;
2042 struct ext4_sb_info *sbi;
2043 struct super_block *sb;
2044 struct ext4_buddy e4b;
2045
2046 sb = ac->ac_sb;
2047 sbi = EXT4_SB(sb);
2048 ngroups = ext4_get_groups_count(sb);
2049 /* non-extent files are limited to low blocks/groups */
2050 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2051 ngroups = sbi->s_blockfile_groups;
2052
2053 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2054
2055 /* first, try the goal */
2056 err = ext4_mb_find_by_goal(ac, &e4b);
2057 if (err || ac->ac_status == AC_STATUS_FOUND)
2058 goto out;
2059
2060 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2061 goto out;
2062
2063 /*
2064 * ac->ac2_order is set only if the fe_len is a power of 2
2065 * if ac2_order is set we also set criteria to 0 so that we
2066 * try exact allocation using buddy.
2067 */
2068 i = fls(ac->ac_g_ex.fe_len);
2069 ac->ac_2order = 0;
2070 /*
2071 * We search using buddy data only if the order of the request
2072 * is greater than equal to the sbi_s_mb_order2_reqs
2073 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2074 */
2075 if (i >= sbi->s_mb_order2_reqs) {
2076 /*
2077 * This should tell if fe_len is exactly power of 2
2078 */
2079 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2080 ac->ac_2order = i - 1;
2081 }
2082
2083 /* if stream allocation is enabled, use global goal */
2084 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2085 /* TBD: may be hot point */
2086 spin_lock(&sbi->s_md_lock);
2087 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2088 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2089 spin_unlock(&sbi->s_md_lock);
2090 }
2091
2092 /* Let's just scan groups to find more-less suitable blocks */
2093 cr = ac->ac_2order ? 0 : 1;
2094 /*
2095 * cr == 0 try to get exact allocation,
2096 * cr == 3 try to get anything
2097 */
2098 repeat:
2099 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2100 ac->ac_criteria = cr;
2101 /*
2102 * searching for the right group start
2103 * from the goal value specified
2104 */
2105 group = ac->ac_g_ex.fe_group;
2106
2107 for (i = 0; i < ngroups; group++, i++) {
2108 if (group == ngroups)
2109 group = 0;
2110
2111 /* This now checks without needing the buddy page */
2112 if (!ext4_mb_good_group(ac, group, cr))
2113 continue;
2114
2115 err = ext4_mb_load_buddy(sb, group, &e4b);
2116 if (err)
2117 goto out;
2118
2119 ext4_lock_group(sb, group);
2120
2121 /*
2122 * We need to check again after locking the
2123 * block group
2124 */
2125 if (!ext4_mb_good_group(ac, group, cr)) {
2126 ext4_unlock_group(sb, group);
2127 ext4_mb_unload_buddy(&e4b);
2128 continue;
2129 }
2130
2131 ac->ac_groups_scanned++;
2132 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2133 ext4_mb_simple_scan_group(ac, &e4b);
2134 else if (cr == 1 && sbi->s_stripe &&
2135 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2136 ext4_mb_scan_aligned(ac, &e4b);
2137 else
2138 ext4_mb_complex_scan_group(ac, &e4b);
2139
2140 ext4_unlock_group(sb, group);
2141 ext4_mb_unload_buddy(&e4b);
2142
2143 if (ac->ac_status != AC_STATUS_CONTINUE)
2144 break;
2145 }
2146 }
2147
2148 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2149 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2150 /*
2151 * We've been searching too long. Let's try to allocate
2152 * the best chunk we've found so far
2153 */
2154
2155 ext4_mb_try_best_found(ac, &e4b);
2156 if (ac->ac_status != AC_STATUS_FOUND) {
2157 /*
2158 * Someone more lucky has already allocated it.
2159 * The only thing we can do is just take first
2160 * found block(s)
2161 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2162 */
2163 ac->ac_b_ex.fe_group = 0;
2164 ac->ac_b_ex.fe_start = 0;
2165 ac->ac_b_ex.fe_len = 0;
2166 ac->ac_status = AC_STATUS_CONTINUE;
2167 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2168 cr = 3;
2169 atomic_inc(&sbi->s_mb_lost_chunks);
2170 goto repeat;
2171 }
2172 }
2173 out:
2174 return err;
2175 }
2176
2177 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2178 {
2179 struct super_block *sb = seq->private;
2180 ext4_group_t group;
2181
2182 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2183 return NULL;
2184 group = *pos + 1;
2185 return (void *) ((unsigned long) group);
2186 }
2187
2188 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2189 {
2190 struct super_block *sb = seq->private;
2191 ext4_group_t group;
2192
2193 ++*pos;
2194 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2195 return NULL;
2196 group = *pos + 1;
2197 return (void *) ((unsigned long) group);
2198 }
2199
2200 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2201 {
2202 struct super_block *sb = seq->private;
2203 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2204 int i;
2205 int err, buddy_loaded = 0;
2206 struct ext4_buddy e4b;
2207 struct ext4_group_info *grinfo;
2208 struct sg {
2209 struct ext4_group_info info;
2210 ext4_grpblk_t counters[16];
2211 } sg;
2212
2213 group--;
2214 if (group == 0)
2215 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2216 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2217 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2218 "group", "free", "frags", "first",
2219 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2220 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2221
2222 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2223 sizeof(struct ext4_group_info);
2224 grinfo = ext4_get_group_info(sb, group);
2225 /* Load the group info in memory only if not already loaded. */
2226 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2227 err = ext4_mb_load_buddy(sb, group, &e4b);
2228 if (err) {
2229 seq_printf(seq, "#%-5u: I/O error\n", group);
2230 return 0;
2231 }
2232 buddy_loaded = 1;
2233 }
2234
2235 memcpy(&sg, ext4_get_group_info(sb, group), i);
2236
2237 if (buddy_loaded)
2238 ext4_mb_unload_buddy(&e4b);
2239
2240 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2241 sg.info.bb_fragments, sg.info.bb_first_free);
2242 for (i = 0; i <= 13; i++)
2243 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2244 sg.info.bb_counters[i] : 0);
2245 seq_printf(seq, " ]\n");
2246
2247 return 0;
2248 }
2249
2250 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2251 {
2252 }
2253
2254 static const struct seq_operations ext4_mb_seq_groups_ops = {
2255 .start = ext4_mb_seq_groups_start,
2256 .next = ext4_mb_seq_groups_next,
2257 .stop = ext4_mb_seq_groups_stop,
2258 .show = ext4_mb_seq_groups_show,
2259 };
2260
2261 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2262 {
2263 struct super_block *sb = PDE_DATA(inode);
2264 int rc;
2265
2266 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2267 if (rc == 0) {
2268 struct seq_file *m = file->private_data;
2269 m->private = sb;
2270 }
2271 return rc;
2272
2273 }
2274
2275 static const struct file_operations ext4_mb_seq_groups_fops = {
2276 .owner = THIS_MODULE,
2277 .open = ext4_mb_seq_groups_open,
2278 .read = seq_read,
2279 .llseek = seq_lseek,
2280 .release = seq_release,
2281 };
2282
2283 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2284 {
2285 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2286 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2287
2288 BUG_ON(!cachep);
2289 return cachep;
2290 }
2291
2292 /*
2293 * Allocate the top-level s_group_info array for the specified number
2294 * of groups
2295 */
2296 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2297 {
2298 struct ext4_sb_info *sbi = EXT4_SB(sb);
2299 unsigned size;
2300 struct ext4_group_info ***new_groupinfo;
2301
2302 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2303 EXT4_DESC_PER_BLOCK_BITS(sb);
2304 if (size <= sbi->s_group_info_size)
2305 return 0;
2306
2307 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2308 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2309 if (!new_groupinfo) {
2310 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2311 return -ENOMEM;
2312 }
2313 if (sbi->s_group_info) {
2314 memcpy(new_groupinfo, sbi->s_group_info,
2315 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2316 ext4_kvfree(sbi->s_group_info);
2317 }
2318 sbi->s_group_info = new_groupinfo;
2319 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2320 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2321 sbi->s_group_info_size);
2322 return 0;
2323 }
2324
2325 /* Create and initialize ext4_group_info data for the given group. */
2326 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2327 struct ext4_group_desc *desc)
2328 {
2329 int i;
2330 int metalen = 0;
2331 struct ext4_sb_info *sbi = EXT4_SB(sb);
2332 struct ext4_group_info **meta_group_info;
2333 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2334
2335 /*
2336 * First check if this group is the first of a reserved block.
2337 * If it's true, we have to allocate a new table of pointers
2338 * to ext4_group_info structures
2339 */
2340 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2341 metalen = sizeof(*meta_group_info) <<
2342 EXT4_DESC_PER_BLOCK_BITS(sb);
2343 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2344 if (meta_group_info == NULL) {
2345 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2346 "for a buddy group");
2347 goto exit_meta_group_info;
2348 }
2349 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2350 meta_group_info;
2351 }
2352
2353 meta_group_info =
2354 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2355 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2356
2357 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2358 if (meta_group_info[i] == NULL) {
2359 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2360 goto exit_group_info;
2361 }
2362 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2363 &(meta_group_info[i]->bb_state));
2364
2365 /*
2366 * initialize bb_free to be able to skip
2367 * empty groups without initialization
2368 */
2369 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2370 meta_group_info[i]->bb_free =
2371 ext4_free_clusters_after_init(sb, group, desc);
2372 } else {
2373 meta_group_info[i]->bb_free =
2374 ext4_free_group_clusters(sb, desc);
2375 }
2376
2377 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2378 init_rwsem(&meta_group_info[i]->alloc_sem);
2379 meta_group_info[i]->bb_free_root = RB_ROOT;
2380 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2381
2382 #ifdef DOUBLE_CHECK
2383 {
2384 struct buffer_head *bh;
2385 meta_group_info[i]->bb_bitmap =
2386 kmalloc(sb->s_blocksize, GFP_KERNEL);
2387 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2388 bh = ext4_read_block_bitmap(sb, group);
2389 BUG_ON(bh == NULL);
2390 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2391 sb->s_blocksize);
2392 put_bh(bh);
2393 }
2394 #endif
2395
2396 return 0;
2397
2398 exit_group_info:
2399 /* If a meta_group_info table has been allocated, release it now */
2400 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2401 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2402 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2403 }
2404 exit_meta_group_info:
2405 return -ENOMEM;
2406 } /* ext4_mb_add_groupinfo */
2407
2408 static int ext4_mb_init_backend(struct super_block *sb)
2409 {
2410 ext4_group_t ngroups = ext4_get_groups_count(sb);
2411 ext4_group_t i;
2412 struct ext4_sb_info *sbi = EXT4_SB(sb);
2413 int err;
2414 struct ext4_group_desc *desc;
2415 struct kmem_cache *cachep;
2416
2417 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2418 if (err)
2419 return err;
2420
2421 sbi->s_buddy_cache = new_inode(sb);
2422 if (sbi->s_buddy_cache == NULL) {
2423 ext4_msg(sb, KERN_ERR, "can't get new inode");
2424 goto err_freesgi;
2425 }
2426 /* To avoid potentially colliding with an valid on-disk inode number,
2427 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2428 * not in the inode hash, so it should never be found by iget(), but
2429 * this will avoid confusion if it ever shows up during debugging. */
2430 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2431 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2432 for (i = 0; i < ngroups; i++) {
2433 desc = ext4_get_group_desc(sb, i, NULL);
2434 if (desc == NULL) {
2435 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2436 goto err_freebuddy;
2437 }
2438 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2439 goto err_freebuddy;
2440 }
2441
2442 return 0;
2443
2444 err_freebuddy:
2445 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2446 while (i-- > 0)
2447 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2448 i = sbi->s_group_info_size;
2449 while (i-- > 0)
2450 kfree(sbi->s_group_info[i]);
2451 iput(sbi->s_buddy_cache);
2452 err_freesgi:
2453 ext4_kvfree(sbi->s_group_info);
2454 return -ENOMEM;
2455 }
2456
2457 static void ext4_groupinfo_destroy_slabs(void)
2458 {
2459 int i;
2460
2461 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2462 if (ext4_groupinfo_caches[i])
2463 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2464 ext4_groupinfo_caches[i] = NULL;
2465 }
2466 }
2467
2468 static int ext4_groupinfo_create_slab(size_t size)
2469 {
2470 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2471 int slab_size;
2472 int blocksize_bits = order_base_2(size);
2473 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2474 struct kmem_cache *cachep;
2475
2476 if (cache_index >= NR_GRPINFO_CACHES)
2477 return -EINVAL;
2478
2479 if (unlikely(cache_index < 0))
2480 cache_index = 0;
2481
2482 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2483 if (ext4_groupinfo_caches[cache_index]) {
2484 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2485 return 0; /* Already created */
2486 }
2487
2488 slab_size = offsetof(struct ext4_group_info,
2489 bb_counters[blocksize_bits + 2]);
2490
2491 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2492 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2493 NULL);
2494
2495 ext4_groupinfo_caches[cache_index] = cachep;
2496
2497 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2498 if (!cachep) {
2499 printk(KERN_EMERG
2500 "EXT4-fs: no memory for groupinfo slab cache\n");
2501 return -ENOMEM;
2502 }
2503
2504 return 0;
2505 }
2506
2507 int ext4_mb_init(struct super_block *sb)
2508 {
2509 struct ext4_sb_info *sbi = EXT4_SB(sb);
2510 unsigned i, j;
2511 unsigned offset;
2512 unsigned max;
2513 int ret;
2514
2515 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2516
2517 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2518 if (sbi->s_mb_offsets == NULL) {
2519 ret = -ENOMEM;
2520 goto out;
2521 }
2522
2523 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2524 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2525 if (sbi->s_mb_maxs == NULL) {
2526 ret = -ENOMEM;
2527 goto out;
2528 }
2529
2530 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2531 if (ret < 0)
2532 goto out;
2533
2534 /* order 0 is regular bitmap */
2535 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2536 sbi->s_mb_offsets[0] = 0;
2537
2538 i = 1;
2539 offset = 0;
2540 max = sb->s_blocksize << 2;
2541 do {
2542 sbi->s_mb_offsets[i] = offset;
2543 sbi->s_mb_maxs[i] = max;
2544 offset += 1 << (sb->s_blocksize_bits - i);
2545 max = max >> 1;
2546 i++;
2547 } while (i <= sb->s_blocksize_bits + 1);
2548
2549 spin_lock_init(&sbi->s_md_lock);
2550 spin_lock_init(&sbi->s_bal_lock);
2551
2552 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2553 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2554 sbi->s_mb_stats = MB_DEFAULT_STATS;
2555 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2556 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2557 /*
2558 * The default group preallocation is 512, which for 4k block
2559 * sizes translates to 2 megabytes. However for bigalloc file
2560 * systems, this is probably too big (i.e, if the cluster size
2561 * is 1 megabyte, then group preallocation size becomes half a
2562 * gigabyte!). As a default, we will keep a two megabyte
2563 * group pralloc size for cluster sizes up to 64k, and after
2564 * that, we will force a minimum group preallocation size of
2565 * 32 clusters. This translates to 8 megs when the cluster
2566 * size is 256k, and 32 megs when the cluster size is 1 meg,
2567 * which seems reasonable as a default.
2568 */
2569 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2570 sbi->s_cluster_bits, 32);
2571 /*
2572 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2573 * to the lowest multiple of s_stripe which is bigger than
2574 * the s_mb_group_prealloc as determined above. We want
2575 * the preallocation size to be an exact multiple of the
2576 * RAID stripe size so that preallocations don't fragment
2577 * the stripes.
2578 */
2579 if (sbi->s_stripe > 1) {
2580 sbi->s_mb_group_prealloc = roundup(
2581 sbi->s_mb_group_prealloc, sbi->s_stripe);
2582 }
2583
2584 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2585 if (sbi->s_locality_groups == NULL) {
2586 ret = -ENOMEM;
2587 goto out_free_groupinfo_slab;
2588 }
2589 for_each_possible_cpu(i) {
2590 struct ext4_locality_group *lg;
2591 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2592 mutex_init(&lg->lg_mutex);
2593 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2594 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2595 spin_lock_init(&lg->lg_prealloc_lock);
2596 }
2597
2598 /* init file for buddy data */
2599 ret = ext4_mb_init_backend(sb);
2600 if (ret != 0)
2601 goto out_free_locality_groups;
2602
2603 if (sbi->s_proc)
2604 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2605 &ext4_mb_seq_groups_fops, sb);
2606
2607 return 0;
2608
2609 out_free_locality_groups:
2610 free_percpu(sbi->s_locality_groups);
2611 sbi->s_locality_groups = NULL;
2612 out_free_groupinfo_slab:
2613 ext4_groupinfo_destroy_slabs();
2614 out:
2615 kfree(sbi->s_mb_offsets);
2616 sbi->s_mb_offsets = NULL;
2617 kfree(sbi->s_mb_maxs);
2618 sbi->s_mb_maxs = NULL;
2619 return ret;
2620 }
2621
2622 /* need to called with the ext4 group lock held */
2623 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2624 {
2625 struct ext4_prealloc_space *pa;
2626 struct list_head *cur, *tmp;
2627 int count = 0;
2628
2629 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2630 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2631 list_del(&pa->pa_group_list);
2632 count++;
2633 kmem_cache_free(ext4_pspace_cachep, pa);
2634 }
2635 if (count)
2636 mb_debug(1, "mballoc: %u PAs left\n", count);
2637
2638 }
2639
2640 int ext4_mb_release(struct super_block *sb)
2641 {
2642 ext4_group_t ngroups = ext4_get_groups_count(sb);
2643 ext4_group_t i;
2644 int num_meta_group_infos;
2645 struct ext4_group_info *grinfo;
2646 struct ext4_sb_info *sbi = EXT4_SB(sb);
2647 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2648
2649 if (sbi->s_proc)
2650 remove_proc_entry("mb_groups", sbi->s_proc);
2651
2652 if (sbi->s_group_info) {
2653 for (i = 0; i < ngroups; i++) {
2654 grinfo = ext4_get_group_info(sb, i);
2655 #ifdef DOUBLE_CHECK
2656 kfree(grinfo->bb_bitmap);
2657 #endif
2658 ext4_lock_group(sb, i);
2659 ext4_mb_cleanup_pa(grinfo);
2660 ext4_unlock_group(sb, i);
2661 kmem_cache_free(cachep, grinfo);
2662 }
2663 num_meta_group_infos = (ngroups +
2664 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2665 EXT4_DESC_PER_BLOCK_BITS(sb);
2666 for (i = 0; i < num_meta_group_infos; i++)
2667 kfree(sbi->s_group_info[i]);
2668 ext4_kvfree(sbi->s_group_info);
2669 }
2670 kfree(sbi->s_mb_offsets);
2671 kfree(sbi->s_mb_maxs);
2672 if (sbi->s_buddy_cache)
2673 iput(sbi->s_buddy_cache);
2674 if (sbi->s_mb_stats) {
2675 ext4_msg(sb, KERN_INFO,
2676 "mballoc: %u blocks %u reqs (%u success)",
2677 atomic_read(&sbi->s_bal_allocated),
2678 atomic_read(&sbi->s_bal_reqs),
2679 atomic_read(&sbi->s_bal_success));
2680 ext4_msg(sb, KERN_INFO,
2681 "mballoc: %u extents scanned, %u goal hits, "
2682 "%u 2^N hits, %u breaks, %u lost",
2683 atomic_read(&sbi->s_bal_ex_scanned),
2684 atomic_read(&sbi->s_bal_goals),
2685 atomic_read(&sbi->s_bal_2orders),
2686 atomic_read(&sbi->s_bal_breaks),
2687 atomic_read(&sbi->s_mb_lost_chunks));
2688 ext4_msg(sb, KERN_INFO,
2689 "mballoc: %lu generated and it took %Lu",
2690 sbi->s_mb_buddies_generated,
2691 sbi->s_mb_generation_time);
2692 ext4_msg(sb, KERN_INFO,
2693 "mballoc: %u preallocated, %u discarded",
2694 atomic_read(&sbi->s_mb_preallocated),
2695 atomic_read(&sbi->s_mb_discarded));
2696 }
2697
2698 free_percpu(sbi->s_locality_groups);
2699
2700 return 0;
2701 }
2702
2703 static inline int ext4_issue_discard(struct super_block *sb,
2704 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2705 {
2706 ext4_fsblk_t discard_block;
2707
2708 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2709 ext4_group_first_block_no(sb, block_group));
2710 count = EXT4_C2B(EXT4_SB(sb), count);
2711 trace_ext4_discard_blocks(sb,
2712 (unsigned long long) discard_block, count);
2713 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2714 }
2715
2716 /*
2717 * This function is called by the jbd2 layer once the commit has finished,
2718 * so we know we can free the blocks that were released with that commit.
2719 */
2720 static void ext4_free_data_callback(struct super_block *sb,
2721 struct ext4_journal_cb_entry *jce,
2722 int rc)
2723 {
2724 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2725 struct ext4_buddy e4b;
2726 struct ext4_group_info *db;
2727 int err, count = 0, count2 = 0;
2728
2729 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2730 entry->efd_count, entry->efd_group, entry);
2731
2732 if (test_opt(sb, DISCARD)) {
2733 err = ext4_issue_discard(sb, entry->efd_group,
2734 entry->efd_start_cluster,
2735 entry->efd_count);
2736 if (err && err != -EOPNOTSUPP)
2737 ext4_msg(sb, KERN_WARNING, "discard request in"
2738 " group:%d block:%d count:%d failed"
2739 " with %d", entry->efd_group,
2740 entry->efd_start_cluster,
2741 entry->efd_count, err);
2742 }
2743
2744 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2745 /* we expect to find existing buddy because it's pinned */
2746 BUG_ON(err != 0);
2747
2748
2749 db = e4b.bd_info;
2750 /* there are blocks to put in buddy to make them really free */
2751 count += entry->efd_count;
2752 count2++;
2753 ext4_lock_group(sb, entry->efd_group);
2754 /* Take it out of per group rb tree */
2755 rb_erase(&entry->efd_node, &(db->bb_free_root));
2756 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2757
2758 /*
2759 * Clear the trimmed flag for the group so that the next
2760 * ext4_trim_fs can trim it.
2761 * If the volume is mounted with -o discard, online discard
2762 * is supported and the free blocks will be trimmed online.
2763 */
2764 if (!test_opt(sb, DISCARD))
2765 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2766
2767 if (!db->bb_free_root.rb_node) {
2768 /* No more items in the per group rb tree
2769 * balance refcounts from ext4_mb_free_metadata()
2770 */
2771 page_cache_release(e4b.bd_buddy_page);
2772 page_cache_release(e4b.bd_bitmap_page);
2773 }
2774 ext4_unlock_group(sb, entry->efd_group);
2775 kmem_cache_free(ext4_free_data_cachep, entry);
2776 ext4_mb_unload_buddy(&e4b);
2777
2778 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2779 }
2780
2781 int __init ext4_init_mballoc(void)
2782 {
2783 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2784 SLAB_RECLAIM_ACCOUNT);
2785 if (ext4_pspace_cachep == NULL)
2786 return -ENOMEM;
2787
2788 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2789 SLAB_RECLAIM_ACCOUNT);
2790 if (ext4_ac_cachep == NULL) {
2791 kmem_cache_destroy(ext4_pspace_cachep);
2792 return -ENOMEM;
2793 }
2794
2795 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2796 SLAB_RECLAIM_ACCOUNT);
2797 if (ext4_free_data_cachep == NULL) {
2798 kmem_cache_destroy(ext4_pspace_cachep);
2799 kmem_cache_destroy(ext4_ac_cachep);
2800 return -ENOMEM;
2801 }
2802 return 0;
2803 }
2804
2805 void ext4_exit_mballoc(void)
2806 {
2807 /*
2808 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2809 * before destroying the slab cache.
2810 */
2811 rcu_barrier();
2812 kmem_cache_destroy(ext4_pspace_cachep);
2813 kmem_cache_destroy(ext4_ac_cachep);
2814 kmem_cache_destroy(ext4_free_data_cachep);
2815 ext4_groupinfo_destroy_slabs();
2816 }
2817
2818
2819 /*
2820 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2821 * Returns 0 if success or error code
2822 */
2823 static noinline_for_stack int
2824 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2825 handle_t *handle, unsigned int reserv_clstrs)
2826 {
2827 struct buffer_head *bitmap_bh = NULL;
2828 struct ext4_group_desc *gdp;
2829 struct buffer_head *gdp_bh;
2830 struct ext4_sb_info *sbi;
2831 struct super_block *sb;
2832 ext4_fsblk_t block;
2833 int err, len;
2834
2835 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2836 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2837
2838 sb = ac->ac_sb;
2839 sbi = EXT4_SB(sb);
2840
2841 err = -EIO;
2842 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2843 if (!bitmap_bh)
2844 goto out_err;
2845
2846 err = ext4_journal_get_write_access(handle, bitmap_bh);
2847 if (err)
2848 goto out_err;
2849
2850 err = -EIO;
2851 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2852 if (!gdp)
2853 goto out_err;
2854
2855 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2856 ext4_free_group_clusters(sb, gdp));
2857
2858 err = ext4_journal_get_write_access(handle, gdp_bh);
2859 if (err)
2860 goto out_err;
2861
2862 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2863
2864 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2865 if (!ext4_data_block_valid(sbi, block, len)) {
2866 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2867 "fs metadata", block, block+len);
2868 /* File system mounted not to panic on error
2869 * Fix the bitmap and repeat the block allocation
2870 * We leak some of the blocks here.
2871 */
2872 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2873 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2874 ac->ac_b_ex.fe_len);
2875 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2876 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2877 if (!err)
2878 err = -EAGAIN;
2879 goto out_err;
2880 }
2881
2882 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2883 #ifdef AGGRESSIVE_CHECK
2884 {
2885 int i;
2886 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2887 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2888 bitmap_bh->b_data));
2889 }
2890 }
2891 #endif
2892 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2893 ac->ac_b_ex.fe_len);
2894 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2895 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2896 ext4_free_group_clusters_set(sb, gdp,
2897 ext4_free_clusters_after_init(sb,
2898 ac->ac_b_ex.fe_group, gdp));
2899 }
2900 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2901 ext4_free_group_clusters_set(sb, gdp, len);
2902 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2903 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2904
2905 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2906 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2907 /*
2908 * Now reduce the dirty block count also. Should not go negative
2909 */
2910 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2911 /* release all the reserved blocks if non delalloc */
2912 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2913 reserv_clstrs);
2914
2915 if (sbi->s_log_groups_per_flex) {
2916 ext4_group_t flex_group = ext4_flex_group(sbi,
2917 ac->ac_b_ex.fe_group);
2918 atomic64_sub(ac->ac_b_ex.fe_len,
2919 &sbi->s_flex_groups[flex_group].free_clusters);
2920 }
2921
2922 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2923 if (err)
2924 goto out_err;
2925 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2926
2927 out_err:
2928 brelse(bitmap_bh);
2929 return err;
2930 }
2931
2932 /*
2933 * here we normalize request for locality group
2934 * Group request are normalized to s_mb_group_prealloc, which goes to
2935 * s_strip if we set the same via mount option.
2936 * s_mb_group_prealloc can be configured via
2937 * /sys/fs/ext4/<partition>/mb_group_prealloc
2938 *
2939 * XXX: should we try to preallocate more than the group has now?
2940 */
2941 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2942 {
2943 struct super_block *sb = ac->ac_sb;
2944 struct ext4_locality_group *lg = ac->ac_lg;
2945
2946 BUG_ON(lg == NULL);
2947 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2948 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2949 current->pid, ac->ac_g_ex.fe_len);
2950 }
2951
2952 /*
2953 * Normalization means making request better in terms of
2954 * size and alignment
2955 */
2956 static noinline_for_stack void
2957 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2958 struct ext4_allocation_request *ar)
2959 {
2960 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2961 int bsbits, max;
2962 ext4_lblk_t end;
2963 loff_t size, start_off;
2964 loff_t orig_size __maybe_unused;
2965 ext4_lblk_t start;
2966 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2967 struct ext4_prealloc_space *pa;
2968
2969 /* do normalize only data requests, metadata requests
2970 do not need preallocation */
2971 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2972 return;
2973
2974 /* sometime caller may want exact blocks */
2975 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2976 return;
2977
2978 /* caller may indicate that preallocation isn't
2979 * required (it's a tail, for example) */
2980 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2981 return;
2982
2983 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2984 ext4_mb_normalize_group_request(ac);
2985 return ;
2986 }
2987
2988 bsbits = ac->ac_sb->s_blocksize_bits;
2989
2990 /* first, let's learn actual file size
2991 * given current request is allocated */
2992 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2993 size = size << bsbits;
2994 if (size < i_size_read(ac->ac_inode))
2995 size = i_size_read(ac->ac_inode);
2996 orig_size = size;
2997
2998 /* max size of free chunks */
2999 max = 2 << bsbits;
3000
3001 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3002 (req <= (size) || max <= (chunk_size))
3003
3004 /* first, try to predict filesize */
3005 /* XXX: should this table be tunable? */
3006 start_off = 0;
3007 if (size <= 16 * 1024) {
3008 size = 16 * 1024;
3009 } else if (size <= 32 * 1024) {
3010 size = 32 * 1024;
3011 } else if (size <= 64 * 1024) {
3012 size = 64 * 1024;
3013 } else if (size <= 128 * 1024) {
3014 size = 128 * 1024;
3015 } else if (size <= 256 * 1024) {
3016 size = 256 * 1024;
3017 } else if (size <= 512 * 1024) {
3018 size = 512 * 1024;
3019 } else if (size <= 1024 * 1024) {
3020 size = 1024 * 1024;
3021 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3022 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3023 (21 - bsbits)) << 21;
3024 size = 2 * 1024 * 1024;
3025 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3026 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3027 (22 - bsbits)) << 22;
3028 size = 4 * 1024 * 1024;
3029 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3030 (8<<20)>>bsbits, max, 8 * 1024)) {
3031 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3032 (23 - bsbits)) << 23;
3033 size = 8 * 1024 * 1024;
3034 } else {
3035 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3036 size = ac->ac_o_ex.fe_len << bsbits;
3037 }
3038 size = size >> bsbits;
3039 start = start_off >> bsbits;
3040
3041 /* don't cover already allocated blocks in selected range */
3042 if (ar->pleft && start <= ar->lleft) {
3043 size -= ar->lleft + 1 - start;
3044 start = ar->lleft + 1;
3045 }
3046 if (ar->pright && start + size - 1 >= ar->lright)
3047 size -= start + size - ar->lright;
3048
3049 end = start + size;
3050
3051 /* check we don't cross already preallocated blocks */
3052 rcu_read_lock();
3053 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3054 ext4_lblk_t pa_end;
3055
3056 if (pa->pa_deleted)
3057 continue;
3058 spin_lock(&pa->pa_lock);
3059 if (pa->pa_deleted) {
3060 spin_unlock(&pa->pa_lock);
3061 continue;
3062 }
3063
3064 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3065 pa->pa_len);
3066
3067 /* PA must not overlap original request */
3068 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3069 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3070
3071 /* skip PAs this normalized request doesn't overlap with */
3072 if (pa->pa_lstart >= end || pa_end <= start) {
3073 spin_unlock(&pa->pa_lock);
3074 continue;
3075 }
3076 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3077
3078 /* adjust start or end to be adjacent to this pa */
3079 if (pa_end <= ac->ac_o_ex.fe_logical) {
3080 BUG_ON(pa_end < start);
3081 start = pa_end;
3082 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3083 BUG_ON(pa->pa_lstart > end);
3084 end = pa->pa_lstart;
3085 }
3086 spin_unlock(&pa->pa_lock);
3087 }
3088 rcu_read_unlock();
3089 size = end - start;
3090
3091 /* XXX: extra loop to check we really don't overlap preallocations */
3092 rcu_read_lock();
3093 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3094 ext4_lblk_t pa_end;
3095
3096 spin_lock(&pa->pa_lock);
3097 if (pa->pa_deleted == 0) {
3098 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3099 pa->pa_len);
3100 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3101 }
3102 spin_unlock(&pa->pa_lock);
3103 }
3104 rcu_read_unlock();
3105
3106 if (start + size <= ac->ac_o_ex.fe_logical &&
3107 start > ac->ac_o_ex.fe_logical) {
3108 ext4_msg(ac->ac_sb, KERN_ERR,
3109 "start %lu, size %lu, fe_logical %lu",
3110 (unsigned long) start, (unsigned long) size,
3111 (unsigned long) ac->ac_o_ex.fe_logical);
3112 }
3113 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3114 start > ac->ac_o_ex.fe_logical);
3115 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3116
3117 /* now prepare goal request */
3118
3119 /* XXX: is it better to align blocks WRT to logical
3120 * placement or satisfy big request as is */
3121 ac->ac_g_ex.fe_logical = start;
3122 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3123
3124 /* define goal start in order to merge */
3125 if (ar->pright && (ar->lright == (start + size))) {
3126 /* merge to the right */
3127 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3128 &ac->ac_f_ex.fe_group,
3129 &ac->ac_f_ex.fe_start);
3130 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3131 }
3132 if (ar->pleft && (ar->lleft + 1 == start)) {
3133 /* merge to the left */
3134 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3135 &ac->ac_f_ex.fe_group,
3136 &ac->ac_f_ex.fe_start);
3137 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3138 }
3139
3140 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3141 (unsigned) orig_size, (unsigned) start);
3142 }
3143
3144 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3145 {
3146 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3147
3148 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3149 atomic_inc(&sbi->s_bal_reqs);
3150 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3151 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3152 atomic_inc(&sbi->s_bal_success);
3153 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3154 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3155 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3156 atomic_inc(&sbi->s_bal_goals);
3157 if (ac->ac_found > sbi->s_mb_max_to_scan)
3158 atomic_inc(&sbi->s_bal_breaks);
3159 }
3160
3161 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3162 trace_ext4_mballoc_alloc(ac);
3163 else
3164 trace_ext4_mballoc_prealloc(ac);
3165 }
3166
3167 /*
3168 * Called on failure; free up any blocks from the inode PA for this
3169 * context. We don't need this for MB_GROUP_PA because we only change
3170 * pa_free in ext4_mb_release_context(), but on failure, we've already
3171 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3172 */
3173 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3174 {
3175 struct ext4_prealloc_space *pa = ac->ac_pa;
3176
3177 if (pa && pa->pa_type == MB_INODE_PA)
3178 pa->pa_free += ac->ac_b_ex.fe_len;
3179 }
3180
3181 /*
3182 * use blocks preallocated to inode
3183 */
3184 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3185 struct ext4_prealloc_space *pa)
3186 {
3187 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3188 ext4_fsblk_t start;
3189 ext4_fsblk_t end;
3190 int len;
3191
3192 /* found preallocated blocks, use them */
3193 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3194 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3195 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3196 len = EXT4_NUM_B2C(sbi, end - start);
3197 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3198 &ac->ac_b_ex.fe_start);
3199 ac->ac_b_ex.fe_len = len;
3200 ac->ac_status = AC_STATUS_FOUND;
3201 ac->ac_pa = pa;
3202
3203 BUG_ON(start < pa->pa_pstart);
3204 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3205 BUG_ON(pa->pa_free < len);
3206 pa->pa_free -= len;
3207
3208 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3209 }
3210
3211 /*
3212 * use blocks preallocated to locality group
3213 */
3214 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3215 struct ext4_prealloc_space *pa)
3216 {
3217 unsigned int len = ac->ac_o_ex.fe_len;
3218
3219 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3220 &ac->ac_b_ex.fe_group,
3221 &ac->ac_b_ex.fe_start);
3222 ac->ac_b_ex.fe_len = len;
3223 ac->ac_status = AC_STATUS_FOUND;
3224 ac->ac_pa = pa;
3225
3226 /* we don't correct pa_pstart or pa_plen here to avoid
3227 * possible race when the group is being loaded concurrently
3228 * instead we correct pa later, after blocks are marked
3229 * in on-disk bitmap -- see ext4_mb_release_context()
3230 * Other CPUs are prevented from allocating from this pa by lg_mutex
3231 */
3232 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3233 }
3234
3235 /*
3236 * Return the prealloc space that have minimal distance
3237 * from the goal block. @cpa is the prealloc
3238 * space that is having currently known minimal distance
3239 * from the goal block.
3240 */
3241 static struct ext4_prealloc_space *
3242 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3243 struct ext4_prealloc_space *pa,
3244 struct ext4_prealloc_space *cpa)
3245 {
3246 ext4_fsblk_t cur_distance, new_distance;
3247
3248 if (cpa == NULL) {
3249 atomic_inc(&pa->pa_count);
3250 return pa;
3251 }
3252 cur_distance = abs(goal_block - cpa->pa_pstart);
3253 new_distance = abs(goal_block - pa->pa_pstart);
3254
3255 if (cur_distance <= new_distance)
3256 return cpa;
3257
3258 /* drop the previous reference */
3259 atomic_dec(&cpa->pa_count);
3260 atomic_inc(&pa->pa_count);
3261 return pa;
3262 }
3263
3264 /*
3265 * search goal blocks in preallocated space
3266 */
3267 static noinline_for_stack int
3268 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3269 {
3270 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3271 int order, i;
3272 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3273 struct ext4_locality_group *lg;
3274 struct ext4_prealloc_space *pa, *cpa = NULL;
3275 ext4_fsblk_t goal_block;
3276
3277 /* only data can be preallocated */
3278 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3279 return 0;
3280
3281 /* first, try per-file preallocation */
3282 rcu_read_lock();
3283 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3284
3285 /* all fields in this condition don't change,
3286 * so we can skip locking for them */
3287 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3288 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3289 EXT4_C2B(sbi, pa->pa_len)))
3290 continue;
3291
3292 /* non-extent files can't have physical blocks past 2^32 */
3293 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3294 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3295 EXT4_MAX_BLOCK_FILE_PHYS))
3296 continue;
3297
3298 /* found preallocated blocks, use them */
3299 spin_lock(&pa->pa_lock);
3300 if (pa->pa_deleted == 0 && pa->pa_free) {
3301 atomic_inc(&pa->pa_count);
3302 ext4_mb_use_inode_pa(ac, pa);
3303 spin_unlock(&pa->pa_lock);
3304 ac->ac_criteria = 10;
3305 rcu_read_unlock();
3306 return 1;
3307 }
3308 spin_unlock(&pa->pa_lock);
3309 }
3310 rcu_read_unlock();
3311
3312 /* can we use group allocation? */
3313 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3314 return 0;
3315
3316 /* inode may have no locality group for some reason */
3317 lg = ac->ac_lg;
3318 if (lg == NULL)
3319 return 0;
3320 order = fls(ac->ac_o_ex.fe_len) - 1;
3321 if (order > PREALLOC_TB_SIZE - 1)
3322 /* The max size of hash table is PREALLOC_TB_SIZE */
3323 order = PREALLOC_TB_SIZE - 1;
3324
3325 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3326 /*
3327 * search for the prealloc space that is having
3328 * minimal distance from the goal block.
3329 */
3330 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3331 rcu_read_lock();
3332 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3333 pa_inode_list) {
3334 spin_lock(&pa->pa_lock);
3335 if (pa->pa_deleted == 0 &&
3336 pa->pa_free >= ac->ac_o_ex.fe_len) {
3337
3338 cpa = ext4_mb_check_group_pa(goal_block,
3339 pa, cpa);
3340 }
3341 spin_unlock(&pa->pa_lock);
3342 }
3343 rcu_read_unlock();
3344 }
3345 if (cpa) {
3346 ext4_mb_use_group_pa(ac, cpa);
3347 ac->ac_criteria = 20;
3348 return 1;
3349 }
3350 return 0;
3351 }
3352
3353 /*
3354 * the function goes through all block freed in the group
3355 * but not yet committed and marks them used in in-core bitmap.
3356 * buddy must be generated from this bitmap
3357 * Need to be called with the ext4 group lock held
3358 */
3359 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3360 ext4_group_t group)
3361 {
3362 struct rb_node *n;
3363 struct ext4_group_info *grp;
3364 struct ext4_free_data *entry;
3365
3366 grp = ext4_get_group_info(sb, group);
3367 n = rb_first(&(grp->bb_free_root));
3368
3369 while (n) {
3370 entry = rb_entry(n, struct ext4_free_data, efd_node);
3371 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3372 n = rb_next(n);
3373 }
3374 return;
3375 }
3376
3377 /*
3378 * the function goes through all preallocation in this group and marks them
3379 * used in in-core bitmap. buddy must be generated from this bitmap
3380 * Need to be called with ext4 group lock held
3381 */
3382 static noinline_for_stack
3383 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3384 ext4_group_t group)
3385 {
3386 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3387 struct ext4_prealloc_space *pa;
3388 struct list_head *cur;
3389 ext4_group_t groupnr;
3390 ext4_grpblk_t start;
3391 int preallocated = 0;
3392 int len;
3393
3394 /* all form of preallocation discards first load group,
3395 * so the only competing code is preallocation use.
3396 * we don't need any locking here
3397 * notice we do NOT ignore preallocations with pa_deleted
3398 * otherwise we could leave used blocks available for
3399 * allocation in buddy when concurrent ext4_mb_put_pa()
3400 * is dropping preallocation
3401 */
3402 list_for_each(cur, &grp->bb_prealloc_list) {
3403 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3404 spin_lock(&pa->pa_lock);
3405 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3406 &groupnr, &start);
3407 len = pa->pa_len;
3408 spin_unlock(&pa->pa_lock);
3409 if (unlikely(len == 0))
3410 continue;
3411 BUG_ON(groupnr != group);
3412 ext4_set_bits(bitmap, start, len);
3413 preallocated += len;
3414 }
3415 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3416 }
3417
3418 static void ext4_mb_pa_callback(struct rcu_head *head)
3419 {
3420 struct ext4_prealloc_space *pa;
3421 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3422 kmem_cache_free(ext4_pspace_cachep, pa);
3423 }
3424
3425 /*
3426 * drops a reference to preallocated space descriptor
3427 * if this was the last reference and the space is consumed
3428 */
3429 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3430 struct super_block *sb, struct ext4_prealloc_space *pa)
3431 {
3432 ext4_group_t grp;
3433 ext4_fsblk_t grp_blk;
3434
3435 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3436 return;
3437
3438 /* in this short window concurrent discard can set pa_deleted */
3439 spin_lock(&pa->pa_lock);
3440 if (pa->pa_deleted == 1) {
3441 spin_unlock(&pa->pa_lock);
3442 return;
3443 }
3444
3445 pa->pa_deleted = 1;
3446 spin_unlock(&pa->pa_lock);
3447
3448 grp_blk = pa->pa_pstart;
3449 /*
3450 * If doing group-based preallocation, pa_pstart may be in the
3451 * next group when pa is used up
3452 */
3453 if (pa->pa_type == MB_GROUP_PA)
3454 grp_blk--;
3455
3456 grp = ext4_get_group_number(sb, grp_blk);
3457
3458 /*
3459 * possible race:
3460 *
3461 * P1 (buddy init) P2 (regular allocation)
3462 * find block B in PA
3463 * copy on-disk bitmap to buddy
3464 * mark B in on-disk bitmap
3465 * drop PA from group
3466 * mark all PAs in buddy
3467 *
3468 * thus, P1 initializes buddy with B available. to prevent this
3469 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3470 * against that pair
3471 */
3472 ext4_lock_group(sb, grp);
3473 list_del(&pa->pa_group_list);
3474 ext4_unlock_group(sb, grp);
3475
3476 spin_lock(pa->pa_obj_lock);
3477 list_del_rcu(&pa->pa_inode_list);
3478 spin_unlock(pa->pa_obj_lock);
3479
3480 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3481 }
3482
3483 /*
3484 * creates new preallocated space for given inode
3485 */
3486 static noinline_for_stack int
3487 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3488 {
3489 struct super_block *sb = ac->ac_sb;
3490 struct ext4_sb_info *sbi = EXT4_SB(sb);
3491 struct ext4_prealloc_space *pa;
3492 struct ext4_group_info *grp;
3493 struct ext4_inode_info *ei;
3494
3495 /* preallocate only when found space is larger then requested */
3496 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3497 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3498 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3499
3500 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3501 if (pa == NULL)
3502 return -ENOMEM;
3503
3504 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3505 int winl;
3506 int wins;
3507 int win;
3508 int offs;
3509
3510 /* we can't allocate as much as normalizer wants.
3511 * so, found space must get proper lstart
3512 * to cover original request */
3513 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3514 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3515
3516 /* we're limited by original request in that
3517 * logical block must be covered any way
3518 * winl is window we can move our chunk within */
3519 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3520
3521 /* also, we should cover whole original request */
3522 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3523
3524 /* the smallest one defines real window */
3525 win = min(winl, wins);
3526
3527 offs = ac->ac_o_ex.fe_logical %
3528 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3529 if (offs && offs < win)
3530 win = offs;
3531
3532 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3533 EXT4_NUM_B2C(sbi, win);
3534 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3535 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3536 }
3537
3538 /* preallocation can change ac_b_ex, thus we store actually
3539 * allocated blocks for history */
3540 ac->ac_f_ex = ac->ac_b_ex;
3541
3542 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3543 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3544 pa->pa_len = ac->ac_b_ex.fe_len;
3545 pa->pa_free = pa->pa_len;
3546 atomic_set(&pa->pa_count, 1);
3547 spin_lock_init(&pa->pa_lock);
3548 INIT_LIST_HEAD(&pa->pa_inode_list);
3549 INIT_LIST_HEAD(&pa->pa_group_list);
3550 pa->pa_deleted = 0;
3551 pa->pa_type = MB_INODE_PA;
3552
3553 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3554 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3555 trace_ext4_mb_new_inode_pa(ac, pa);
3556
3557 ext4_mb_use_inode_pa(ac, pa);
3558 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3559
3560 ei = EXT4_I(ac->ac_inode);
3561 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3562
3563 pa->pa_obj_lock = &ei->i_prealloc_lock;
3564 pa->pa_inode = ac->ac_inode;
3565
3566 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3567 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3568 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3569
3570 spin_lock(pa->pa_obj_lock);
3571 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3572 spin_unlock(pa->pa_obj_lock);
3573
3574 return 0;
3575 }
3576
3577 /*
3578 * creates new preallocated space for locality group inodes belongs to
3579 */
3580 static noinline_for_stack int
3581 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3582 {
3583 struct super_block *sb = ac->ac_sb;
3584 struct ext4_locality_group *lg;
3585 struct ext4_prealloc_space *pa;
3586 struct ext4_group_info *grp;
3587
3588 /* preallocate only when found space is larger then requested */
3589 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3590 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3591 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3592
3593 BUG_ON(ext4_pspace_cachep == NULL);
3594 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3595 if (pa == NULL)
3596 return -ENOMEM;
3597
3598 /* preallocation can change ac_b_ex, thus we store actually
3599 * allocated blocks for history */
3600 ac->ac_f_ex = ac->ac_b_ex;
3601
3602 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3603 pa->pa_lstart = pa->pa_pstart;
3604 pa->pa_len = ac->ac_b_ex.fe_len;
3605 pa->pa_free = pa->pa_len;
3606 atomic_set(&pa->pa_count, 1);
3607 spin_lock_init(&pa->pa_lock);
3608 INIT_LIST_HEAD(&pa->pa_inode_list);
3609 INIT_LIST_HEAD(&pa->pa_group_list);
3610 pa->pa_deleted = 0;
3611 pa->pa_type = MB_GROUP_PA;
3612
3613 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3614 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3615 trace_ext4_mb_new_group_pa(ac, pa);
3616
3617 ext4_mb_use_group_pa(ac, pa);
3618 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3619
3620 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3621 lg = ac->ac_lg;
3622 BUG_ON(lg == NULL);
3623
3624 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3625 pa->pa_inode = NULL;
3626
3627 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3628 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3629 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3630
3631 /*
3632 * We will later add the new pa to the right bucket
3633 * after updating the pa_free in ext4_mb_release_context
3634 */
3635 return 0;
3636 }
3637
3638 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3639 {
3640 int err;
3641
3642 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3643 err = ext4_mb_new_group_pa(ac);
3644 else
3645 err = ext4_mb_new_inode_pa(ac);
3646 return err;
3647 }
3648
3649 /*
3650 * finds all unused blocks in on-disk bitmap, frees them in
3651 * in-core bitmap and buddy.
3652 * @pa must be unlinked from inode and group lists, so that
3653 * nobody else can find/use it.
3654 * the caller MUST hold group/inode locks.
3655 * TODO: optimize the case when there are no in-core structures yet
3656 */
3657 static noinline_for_stack int
3658 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3659 struct ext4_prealloc_space *pa)
3660 {
3661 struct super_block *sb = e4b->bd_sb;
3662 struct ext4_sb_info *sbi = EXT4_SB(sb);
3663 unsigned int end;
3664 unsigned int next;
3665 ext4_group_t group;
3666 ext4_grpblk_t bit;
3667 unsigned long long grp_blk_start;
3668 int err = 0;
3669 int free = 0;
3670
3671 BUG_ON(pa->pa_deleted == 0);
3672 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3673 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3674 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3675 end = bit + pa->pa_len;
3676
3677 while (bit < end) {
3678 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3679 if (bit >= end)
3680 break;
3681 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3682 mb_debug(1, " free preallocated %u/%u in group %u\n",
3683 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3684 (unsigned) next - bit, (unsigned) group);
3685 free += next - bit;
3686
3687 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3688 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3689 EXT4_C2B(sbi, bit)),
3690 next - bit);
3691 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3692 bit = next + 1;
3693 }
3694 if (free != pa->pa_free) {
3695 ext4_msg(e4b->bd_sb, KERN_CRIT,
3696 "pa %p: logic %lu, phys. %lu, len %lu",
3697 pa, (unsigned long) pa->pa_lstart,
3698 (unsigned long) pa->pa_pstart,
3699 (unsigned long) pa->pa_len);
3700 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3701 free, pa->pa_free);
3702 /*
3703 * pa is already deleted so we use the value obtained
3704 * from the bitmap and continue.
3705 */
3706 }
3707 atomic_add(free, &sbi->s_mb_discarded);
3708
3709 return err;
3710 }
3711
3712 static noinline_for_stack int
3713 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3714 struct ext4_prealloc_space *pa)
3715 {
3716 struct super_block *sb = e4b->bd_sb;
3717 ext4_group_t group;
3718 ext4_grpblk_t bit;
3719
3720 trace_ext4_mb_release_group_pa(sb, pa);
3721 BUG_ON(pa->pa_deleted == 0);
3722 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3723 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3724 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3725 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3726 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3727
3728 return 0;
3729 }
3730
3731 /*
3732 * releases all preallocations in given group
3733 *
3734 * first, we need to decide discard policy:
3735 * - when do we discard
3736 * 1) ENOSPC
3737 * - how many do we discard
3738 * 1) how many requested
3739 */
3740 static noinline_for_stack int
3741 ext4_mb_discard_group_preallocations(struct super_block *sb,
3742 ext4_group_t group, int needed)
3743 {
3744 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3745 struct buffer_head *bitmap_bh = NULL;
3746 struct ext4_prealloc_space *pa, *tmp;
3747 struct list_head list;
3748 struct ext4_buddy e4b;
3749 int err;
3750 int busy = 0;
3751 int free = 0;
3752
3753 mb_debug(1, "discard preallocation for group %u\n", group);
3754
3755 if (list_empty(&grp->bb_prealloc_list))
3756 return 0;
3757
3758 bitmap_bh = ext4_read_block_bitmap(sb, group);
3759 if (bitmap_bh == NULL) {
3760 ext4_error(sb, "Error reading block bitmap for %u", group);
3761 return 0;
3762 }
3763
3764 err = ext4_mb_load_buddy(sb, group, &e4b);
3765 if (err) {
3766 ext4_error(sb, "Error loading buddy information for %u", group);
3767 put_bh(bitmap_bh);
3768 return 0;
3769 }
3770
3771 if (needed == 0)
3772 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3773
3774 INIT_LIST_HEAD(&list);
3775 repeat:
3776 ext4_lock_group(sb, group);
3777 list_for_each_entry_safe(pa, tmp,
3778 &grp->bb_prealloc_list, pa_group_list) {
3779 spin_lock(&pa->pa_lock);
3780 if (atomic_read(&pa->pa_count)) {
3781 spin_unlock(&pa->pa_lock);
3782 busy = 1;
3783 continue;
3784 }
3785 if (pa->pa_deleted) {
3786 spin_unlock(&pa->pa_lock);
3787 continue;
3788 }
3789
3790 /* seems this one can be freed ... */
3791 pa->pa_deleted = 1;
3792
3793 /* we can trust pa_free ... */
3794 free += pa->pa_free;
3795
3796 spin_unlock(&pa->pa_lock);
3797
3798 list_del(&pa->pa_group_list);
3799 list_add(&pa->u.pa_tmp_list, &list);
3800 }
3801
3802 /* if we still need more blocks and some PAs were used, try again */
3803 if (free < needed && busy) {
3804 busy = 0;
3805 ext4_unlock_group(sb, group);
3806 cond_resched();
3807 goto repeat;
3808 }
3809
3810 /* found anything to free? */
3811 if (list_empty(&list)) {
3812 BUG_ON(free != 0);
3813 goto out;
3814 }
3815
3816 /* now free all selected PAs */
3817 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3818
3819 /* remove from object (inode or locality group) */
3820 spin_lock(pa->pa_obj_lock);
3821 list_del_rcu(&pa->pa_inode_list);
3822 spin_unlock(pa->pa_obj_lock);
3823
3824 if (pa->pa_type == MB_GROUP_PA)
3825 ext4_mb_release_group_pa(&e4b, pa);
3826 else
3827 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3828
3829 list_del(&pa->u.pa_tmp_list);
3830 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3831 }
3832
3833 out:
3834 ext4_unlock_group(sb, group);
3835 ext4_mb_unload_buddy(&e4b);
3836 put_bh(bitmap_bh);
3837 return free;
3838 }
3839
3840 /*
3841 * releases all non-used preallocated blocks for given inode
3842 *
3843 * It's important to discard preallocations under i_data_sem
3844 * We don't want another block to be served from the prealloc
3845 * space when we are discarding the inode prealloc space.
3846 *
3847 * FIXME!! Make sure it is valid at all the call sites
3848 */
3849 void ext4_discard_preallocations(struct inode *inode)
3850 {
3851 struct ext4_inode_info *ei = EXT4_I(inode);
3852 struct super_block *sb = inode->i_sb;
3853 struct buffer_head *bitmap_bh = NULL;
3854 struct ext4_prealloc_space *pa, *tmp;
3855 ext4_group_t group = 0;
3856 struct list_head list;
3857 struct ext4_buddy e4b;
3858 int err;
3859
3860 if (!S_ISREG(inode->i_mode)) {
3861 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3862 return;
3863 }
3864
3865 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3866 trace_ext4_discard_preallocations(inode);
3867
3868 INIT_LIST_HEAD(&list);
3869
3870 repeat:
3871 /* first, collect all pa's in the inode */
3872 spin_lock(&ei->i_prealloc_lock);
3873 while (!list_empty(&ei->i_prealloc_list)) {
3874 pa = list_entry(ei->i_prealloc_list.next,
3875 struct ext4_prealloc_space, pa_inode_list);
3876 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3877 spin_lock(&pa->pa_lock);
3878 if (atomic_read(&pa->pa_count)) {
3879 /* this shouldn't happen often - nobody should
3880 * use preallocation while we're discarding it */
3881 spin_unlock(&pa->pa_lock);
3882 spin_unlock(&ei->i_prealloc_lock);
3883 ext4_msg(sb, KERN_ERR,
3884 "uh-oh! used pa while discarding");
3885 WARN_ON(1);
3886 schedule_timeout_uninterruptible(HZ);
3887 goto repeat;
3888
3889 }
3890 if (pa->pa_deleted == 0) {
3891 pa->pa_deleted = 1;
3892 spin_unlock(&pa->pa_lock);
3893 list_del_rcu(&pa->pa_inode_list);
3894 list_add(&pa->u.pa_tmp_list, &list);
3895 continue;
3896 }
3897
3898 /* someone is deleting pa right now */
3899 spin_unlock(&pa->pa_lock);
3900 spin_unlock(&ei->i_prealloc_lock);
3901
3902 /* we have to wait here because pa_deleted
3903 * doesn't mean pa is already unlinked from
3904 * the list. as we might be called from
3905 * ->clear_inode() the inode will get freed
3906 * and concurrent thread which is unlinking
3907 * pa from inode's list may access already
3908 * freed memory, bad-bad-bad */
3909
3910 /* XXX: if this happens too often, we can
3911 * add a flag to force wait only in case
3912 * of ->clear_inode(), but not in case of
3913 * regular truncate */
3914 schedule_timeout_uninterruptible(HZ);
3915 goto repeat;
3916 }
3917 spin_unlock(&ei->i_prealloc_lock);
3918
3919 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3920 BUG_ON(pa->pa_type != MB_INODE_PA);
3921 group = ext4_get_group_number(sb, pa->pa_pstart);
3922
3923 err = ext4_mb_load_buddy(sb, group, &e4b);
3924 if (err) {
3925 ext4_error(sb, "Error loading buddy information for %u",
3926 group);
3927 continue;
3928 }
3929
3930 bitmap_bh = ext4_read_block_bitmap(sb, group);
3931 if (bitmap_bh == NULL) {
3932 ext4_error(sb, "Error reading block bitmap for %u",
3933 group);
3934 ext4_mb_unload_buddy(&e4b);
3935 continue;
3936 }
3937
3938 ext4_lock_group(sb, group);
3939 list_del(&pa->pa_group_list);
3940 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3941 ext4_unlock_group(sb, group);
3942
3943 ext4_mb_unload_buddy(&e4b);
3944 put_bh(bitmap_bh);
3945
3946 list_del(&pa->u.pa_tmp_list);
3947 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3948 }
3949 }
3950
3951 #ifdef CONFIG_EXT4_DEBUG
3952 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3953 {
3954 struct super_block *sb = ac->ac_sb;
3955 ext4_group_t ngroups, i;
3956
3957 if (!ext4_mballoc_debug ||
3958 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3959 return;
3960
3961 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3962 " Allocation context details:");
3963 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3964 ac->ac_status, ac->ac_flags);
3965 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3966 "goal %lu/%lu/%lu@%lu, "
3967 "best %lu/%lu/%lu@%lu cr %d",
3968 (unsigned long)ac->ac_o_ex.fe_group,
3969 (unsigned long)ac->ac_o_ex.fe_start,
3970 (unsigned long)ac->ac_o_ex.fe_len,
3971 (unsigned long)ac->ac_o_ex.fe_logical,
3972 (unsigned long)ac->ac_g_ex.fe_group,
3973 (unsigned long)ac->ac_g_ex.fe_start,
3974 (unsigned long)ac->ac_g_ex.fe_len,
3975 (unsigned long)ac->ac_g_ex.fe_logical,
3976 (unsigned long)ac->ac_b_ex.fe_group,
3977 (unsigned long)ac->ac_b_ex.fe_start,
3978 (unsigned long)ac->ac_b_ex.fe_len,
3979 (unsigned long)ac->ac_b_ex.fe_logical,
3980 (int)ac->ac_criteria);
3981 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3982 ac->ac_ex_scanned, ac->ac_found);
3983 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3984 ngroups = ext4_get_groups_count(sb);
3985 for (i = 0; i < ngroups; i++) {
3986 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3987 struct ext4_prealloc_space *pa;
3988 ext4_grpblk_t start;
3989 struct list_head *cur;
3990 ext4_lock_group(sb, i);
3991 list_for_each(cur, &grp->bb_prealloc_list) {
3992 pa = list_entry(cur, struct ext4_prealloc_space,
3993 pa_group_list);
3994 spin_lock(&pa->pa_lock);
3995 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3996 NULL, &start);
3997 spin_unlock(&pa->pa_lock);
3998 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3999 start, pa->pa_len);
4000 }
4001 ext4_unlock_group(sb, i);
4002
4003 if (grp->bb_free == 0)
4004 continue;
4005 printk(KERN_ERR "%u: %d/%d \n",
4006 i, grp->bb_free, grp->bb_fragments);
4007 }
4008 printk(KERN_ERR "\n");
4009 }
4010 #else
4011 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4012 {
4013 return;
4014 }
4015 #endif
4016
4017 /*
4018 * We use locality group preallocation for small size file. The size of the
4019 * file is determined by the current size or the resulting size after
4020 * allocation which ever is larger
4021 *
4022 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4023 */
4024 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4025 {
4026 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4027 int bsbits = ac->ac_sb->s_blocksize_bits;
4028 loff_t size, isize;
4029
4030 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4031 return;
4032
4033 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4034 return;
4035
4036 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4037 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4038 >> bsbits;
4039
4040 if ((size == isize) &&
4041 !ext4_fs_is_busy(sbi) &&
4042 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4043 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4044 return;
4045 }
4046
4047 if (sbi->s_mb_group_prealloc <= 0) {
4048 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4049 return;
4050 }
4051
4052 /* don't use group allocation for large files */
4053 size = max(size, isize);
4054 if (size > sbi->s_mb_stream_request) {
4055 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4056 return;
4057 }
4058
4059 BUG_ON(ac->ac_lg != NULL);
4060 /*
4061 * locality group prealloc space are per cpu. The reason for having
4062 * per cpu locality group is to reduce the contention between block
4063 * request from multiple CPUs.
4064 */
4065 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4066
4067 /* we're going to use group allocation */
4068 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4069
4070 /* serialize all allocations in the group */
4071 mutex_lock(&ac->ac_lg->lg_mutex);
4072 }
4073
4074 static noinline_for_stack int
4075 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4076 struct ext4_allocation_request *ar)
4077 {
4078 struct super_block *sb = ar->inode->i_sb;
4079 struct ext4_sb_info *sbi = EXT4_SB(sb);
4080 struct ext4_super_block *es = sbi->s_es;
4081 ext4_group_t group;
4082 unsigned int len;
4083 ext4_fsblk_t goal;
4084 ext4_grpblk_t block;
4085
4086 /* we can't allocate > group size */
4087 len = ar->len;
4088
4089 /* just a dirty hack to filter too big requests */
4090 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4091 len = EXT4_CLUSTERS_PER_GROUP(sb);
4092
4093 /* start searching from the goal */
4094 goal = ar->goal;
4095 if (goal < le32_to_cpu(es->s_first_data_block) ||
4096 goal >= ext4_blocks_count(es))
4097 goal = le32_to_cpu(es->s_first_data_block);
4098 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4099
4100 /* set up allocation goals */
4101 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4102 ac->ac_status = AC_STATUS_CONTINUE;
4103 ac->ac_sb = sb;
4104 ac->ac_inode = ar->inode;
4105 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4106 ac->ac_o_ex.fe_group = group;
4107 ac->ac_o_ex.fe_start = block;
4108 ac->ac_o_ex.fe_len = len;
4109 ac->ac_g_ex = ac->ac_o_ex;
4110 ac->ac_flags = ar->flags;
4111
4112 /* we have to define context: we'll we work with a file or
4113 * locality group. this is a policy, actually */
4114 ext4_mb_group_or_file(ac);
4115
4116 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4117 "left: %u/%u, right %u/%u to %swritable\n",
4118 (unsigned) ar->len, (unsigned) ar->logical,
4119 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4120 (unsigned) ar->lleft, (unsigned) ar->pleft,
4121 (unsigned) ar->lright, (unsigned) ar->pright,
4122 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4123 return 0;
4124
4125 }
4126
4127 static noinline_for_stack void
4128 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4129 struct ext4_locality_group *lg,
4130 int order, int total_entries)
4131 {
4132 ext4_group_t group = 0;
4133 struct ext4_buddy e4b;
4134 struct list_head discard_list;
4135 struct ext4_prealloc_space *pa, *tmp;
4136
4137 mb_debug(1, "discard locality group preallocation\n");
4138
4139 INIT_LIST_HEAD(&discard_list);
4140
4141 spin_lock(&lg->lg_prealloc_lock);
4142 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4143 pa_inode_list) {
4144 spin_lock(&pa->pa_lock);
4145 if (atomic_read(&pa->pa_count)) {
4146 /*
4147 * This is the pa that we just used
4148 * for block allocation. So don't
4149 * free that
4150 */
4151 spin_unlock(&pa->pa_lock);
4152 continue;
4153 }
4154 if (pa->pa_deleted) {
4155 spin_unlock(&pa->pa_lock);
4156 continue;
4157 }
4158 /* only lg prealloc space */
4159 BUG_ON(pa->pa_type != MB_GROUP_PA);
4160
4161 /* seems this one can be freed ... */
4162 pa->pa_deleted = 1;
4163 spin_unlock(&pa->pa_lock);
4164
4165 list_del_rcu(&pa->pa_inode_list);
4166 list_add(&pa->u.pa_tmp_list, &discard_list);
4167
4168 total_entries--;
4169 if (total_entries <= 5) {
4170 /*
4171 * we want to keep only 5 entries
4172 * allowing it to grow to 8. This
4173 * mak sure we don't call discard
4174 * soon for this list.
4175 */
4176 break;
4177 }
4178 }
4179 spin_unlock(&lg->lg_prealloc_lock);
4180
4181 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4182
4183 group = ext4_get_group_number(sb, pa->pa_pstart);
4184 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4185 ext4_error(sb, "Error loading buddy information for %u",
4186 group);
4187 continue;
4188 }
4189 ext4_lock_group(sb, group);
4190 list_del(&pa->pa_group_list);
4191 ext4_mb_release_group_pa(&e4b, pa);
4192 ext4_unlock_group(sb, group);
4193
4194 ext4_mb_unload_buddy(&e4b);
4195 list_del(&pa->u.pa_tmp_list);
4196 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4197 }
4198 }
4199
4200 /*
4201 * We have incremented pa_count. So it cannot be freed at this
4202 * point. Also we hold lg_mutex. So no parallel allocation is
4203 * possible from this lg. That means pa_free cannot be updated.
4204 *
4205 * A parallel ext4_mb_discard_group_preallocations is possible.
4206 * which can cause the lg_prealloc_list to be updated.
4207 */
4208
4209 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4210 {
4211 int order, added = 0, lg_prealloc_count = 1;
4212 struct super_block *sb = ac->ac_sb;
4213 struct ext4_locality_group *lg = ac->ac_lg;
4214 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4215
4216 order = fls(pa->pa_free) - 1;
4217 if (order > PREALLOC_TB_SIZE - 1)
4218 /* The max size of hash table is PREALLOC_TB_SIZE */
4219 order = PREALLOC_TB_SIZE - 1;
4220 /* Add the prealloc space to lg */
4221 spin_lock(&lg->lg_prealloc_lock);
4222 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4223 pa_inode_list) {
4224 spin_lock(&tmp_pa->pa_lock);
4225 if (tmp_pa->pa_deleted) {
4226 spin_unlock(&tmp_pa->pa_lock);
4227 continue;
4228 }
4229 if (!added && pa->pa_free < tmp_pa->pa_free) {
4230 /* Add to the tail of the previous entry */
4231 list_add_tail_rcu(&pa->pa_inode_list,
4232 &tmp_pa->pa_inode_list);
4233 added = 1;
4234 /*
4235 * we want to count the total
4236 * number of entries in the list
4237 */
4238 }
4239 spin_unlock(&tmp_pa->pa_lock);
4240 lg_prealloc_count++;
4241 }
4242 if (!added)
4243 list_add_tail_rcu(&pa->pa_inode_list,
4244 &lg->lg_prealloc_list[order]);
4245 spin_unlock(&lg->lg_prealloc_lock);
4246
4247 /* Now trim the list to be not more than 8 elements */
4248 if (lg_prealloc_count > 8) {
4249 ext4_mb_discard_lg_preallocations(sb, lg,
4250 order, lg_prealloc_count);
4251 return;
4252 }
4253 return ;
4254 }
4255
4256 /*
4257 * release all resource we used in allocation
4258 */
4259 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4260 {
4261 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4262 struct ext4_prealloc_space *pa = ac->ac_pa;
4263 if (pa) {
4264 if (pa->pa_type == MB_GROUP_PA) {
4265 /* see comment in ext4_mb_use_group_pa() */
4266 spin_lock(&pa->pa_lock);
4267 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4268 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4269 pa->pa_free -= ac->ac_b_ex.fe_len;
4270 pa->pa_len -= ac->ac_b_ex.fe_len;
4271 spin_unlock(&pa->pa_lock);
4272 }
4273 }
4274 if (pa) {
4275 /*
4276 * We want to add the pa to the right bucket.
4277 * Remove it from the list and while adding
4278 * make sure the list to which we are adding
4279 * doesn't grow big.
4280 */
4281 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4282 spin_lock(pa->pa_obj_lock);
4283 list_del_rcu(&pa->pa_inode_list);
4284 spin_unlock(pa->pa_obj_lock);
4285 ext4_mb_add_n_trim(ac);
4286 }
4287 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4288 }
4289 if (ac->ac_bitmap_page)
4290 page_cache_release(ac->ac_bitmap_page);
4291 if (ac->ac_buddy_page)
4292 page_cache_release(ac->ac_buddy_page);
4293 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4294 mutex_unlock(&ac->ac_lg->lg_mutex);
4295 ext4_mb_collect_stats(ac);
4296 return 0;
4297 }
4298
4299 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4300 {
4301 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4302 int ret;
4303 int freed = 0;
4304
4305 trace_ext4_mb_discard_preallocations(sb, needed);
4306 for (i = 0; i < ngroups && needed > 0; i++) {
4307 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4308 freed += ret;
4309 needed -= ret;
4310 }
4311
4312 return freed;
4313 }
4314
4315 /*
4316 * Main entry point into mballoc to allocate blocks
4317 * it tries to use preallocation first, then falls back
4318 * to usual allocation
4319 */
4320 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4321 struct ext4_allocation_request *ar, int *errp)
4322 {
4323 int freed;
4324 struct ext4_allocation_context *ac = NULL;
4325 struct ext4_sb_info *sbi;
4326 struct super_block *sb;
4327 ext4_fsblk_t block = 0;
4328 unsigned int inquota = 0;
4329 unsigned int reserv_clstrs = 0;
4330
4331 might_sleep();
4332 sb = ar->inode->i_sb;
4333 sbi = EXT4_SB(sb);
4334
4335 trace_ext4_request_blocks(ar);
4336
4337 /* Allow to use superuser reservation for quota file */
4338 if (IS_NOQUOTA(ar->inode))
4339 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4340
4341 /*
4342 * For delayed allocation, we could skip the ENOSPC and
4343 * EDQUOT check, as blocks and quotas have been already
4344 * reserved when data being copied into pagecache.
4345 */
4346 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4347 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4348 else {
4349 /* Without delayed allocation we need to verify
4350 * there is enough free blocks to do block allocation
4351 * and verify allocation doesn't exceed the quota limits.
4352 */
4353 while (ar->len &&
4354 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4355
4356 /* let others to free the space */
4357 cond_resched();
4358 ar->len = ar->len >> 1;
4359 }
4360 if (!ar->len) {
4361 *errp = -ENOSPC;
4362 return 0;
4363 }
4364 reserv_clstrs = ar->len;
4365 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4366 dquot_alloc_block_nofail(ar->inode,
4367 EXT4_C2B(sbi, ar->len));
4368 } else {
4369 while (ar->len &&
4370 dquot_alloc_block(ar->inode,
4371 EXT4_C2B(sbi, ar->len))) {
4372
4373 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4374 ar->len--;
4375 }
4376 }
4377 inquota = ar->len;
4378 if (ar->len == 0) {
4379 *errp = -EDQUOT;
4380 goto out;
4381 }
4382 }
4383
4384 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4385 if (!ac) {
4386 ar->len = 0;
4387 *errp = -ENOMEM;
4388 goto out;
4389 }
4390
4391 *errp = ext4_mb_initialize_context(ac, ar);
4392 if (*errp) {
4393 ar->len = 0;
4394 goto out;
4395 }
4396
4397 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4398 if (!ext4_mb_use_preallocated(ac)) {
4399 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4400 ext4_mb_normalize_request(ac, ar);
4401 repeat:
4402 /* allocate space in core */
4403 *errp = ext4_mb_regular_allocator(ac);
4404 if (*errp) {
4405 ext4_discard_allocated_blocks(ac);
4406 goto errout;
4407 }
4408
4409 /* as we've just preallocated more space than
4410 * user requested orinally, we store allocated
4411 * space in a special descriptor */
4412 if (ac->ac_status == AC_STATUS_FOUND &&
4413 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4414 ext4_mb_new_preallocation(ac);
4415 }
4416 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4417 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4418 if (*errp == -EAGAIN) {
4419 /*
4420 * drop the reference that we took
4421 * in ext4_mb_use_best_found
4422 */
4423 ext4_mb_release_context(ac);
4424 ac->ac_b_ex.fe_group = 0;
4425 ac->ac_b_ex.fe_start = 0;
4426 ac->ac_b_ex.fe_len = 0;
4427 ac->ac_status = AC_STATUS_CONTINUE;
4428 goto repeat;
4429 } else if (*errp) {
4430 ext4_discard_allocated_blocks(ac);
4431 goto errout;
4432 } else {
4433 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4434 ar->len = ac->ac_b_ex.fe_len;
4435 }
4436 } else {
4437 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4438 if (freed)
4439 goto repeat;
4440 *errp = -ENOSPC;
4441 }
4442
4443 errout:
4444 if (*errp) {
4445 ac->ac_b_ex.fe_len = 0;
4446 ar->len = 0;
4447 ext4_mb_show_ac(ac);
4448 }
4449 ext4_mb_release_context(ac);
4450 out:
4451 if (ac)
4452 kmem_cache_free(ext4_ac_cachep, ac);
4453 if (inquota && ar->len < inquota)
4454 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4455 if (!ar->len) {
4456 if (!ext4_test_inode_state(ar->inode,
4457 EXT4_STATE_DELALLOC_RESERVED))
4458 /* release all the reserved blocks if non delalloc */
4459 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4460 reserv_clstrs);
4461 }
4462
4463 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4464
4465 return block;
4466 }
4467
4468 /*
4469 * We can merge two free data extents only if the physical blocks
4470 * are contiguous, AND the extents were freed by the same transaction,
4471 * AND the blocks are associated with the same group.
4472 */
4473 static int can_merge(struct ext4_free_data *entry1,
4474 struct ext4_free_data *entry2)
4475 {
4476 if ((entry1->efd_tid == entry2->efd_tid) &&
4477 (entry1->efd_group == entry2->efd_group) &&
4478 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4479 return 1;
4480 return 0;
4481 }
4482
4483 static noinline_for_stack int
4484 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4485 struct ext4_free_data *new_entry)
4486 {
4487 ext4_group_t group = e4b->bd_group;
4488 ext4_grpblk_t cluster;
4489 struct ext4_free_data *entry;
4490 struct ext4_group_info *db = e4b->bd_info;
4491 struct super_block *sb = e4b->bd_sb;
4492 struct ext4_sb_info *sbi = EXT4_SB(sb);
4493 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4494 struct rb_node *parent = NULL, *new_node;
4495
4496 BUG_ON(!ext4_handle_valid(handle));
4497 BUG_ON(e4b->bd_bitmap_page == NULL);
4498 BUG_ON(e4b->bd_buddy_page == NULL);
4499
4500 new_node = &new_entry->efd_node;
4501 cluster = new_entry->efd_start_cluster;
4502
4503 if (!*n) {
4504 /* first free block exent. We need to
4505 protect buddy cache from being freed,
4506 * otherwise we'll refresh it from
4507 * on-disk bitmap and lose not-yet-available
4508 * blocks */
4509 page_cache_get(e4b->bd_buddy_page);
4510 page_cache_get(e4b->bd_bitmap_page);
4511 }
4512 while (*n) {
4513 parent = *n;
4514 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4515 if (cluster < entry->efd_start_cluster)
4516 n = &(*n)->rb_left;
4517 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4518 n = &(*n)->rb_right;
4519 else {
4520 ext4_grp_locked_error(sb, group, 0,
4521 ext4_group_first_block_no(sb, group) +
4522 EXT4_C2B(sbi, cluster),
4523 "Block already on to-be-freed list");
4524 return 0;
4525 }
4526 }
4527
4528 rb_link_node(new_node, parent, n);
4529 rb_insert_color(new_node, &db->bb_free_root);
4530
4531 /* Now try to see the extent can be merged to left and right */
4532 node = rb_prev(new_node);
4533 if (node) {
4534 entry = rb_entry(node, struct ext4_free_data, efd_node);
4535 if (can_merge(entry, new_entry) &&
4536 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4537 new_entry->efd_start_cluster = entry->efd_start_cluster;
4538 new_entry->efd_count += entry->efd_count;
4539 rb_erase(node, &(db->bb_free_root));
4540 kmem_cache_free(ext4_free_data_cachep, entry);
4541 }
4542 }
4543
4544 node = rb_next(new_node);
4545 if (node) {
4546 entry = rb_entry(node, struct ext4_free_data, efd_node);
4547 if (can_merge(new_entry, entry) &&
4548 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4549 new_entry->efd_count += entry->efd_count;
4550 rb_erase(node, &(db->bb_free_root));
4551 kmem_cache_free(ext4_free_data_cachep, entry);
4552 }
4553 }
4554 /* Add the extent to transaction's private list */
4555 ext4_journal_callback_add(handle, ext4_free_data_callback,
4556 &new_entry->efd_jce);
4557 return 0;
4558 }
4559
4560 /**
4561 * ext4_free_blocks() -- Free given blocks and update quota
4562 * @handle: handle for this transaction
4563 * @inode: inode
4564 * @block: start physical block to free
4565 * @count: number of blocks to count
4566 * @flags: flags used by ext4_free_blocks
4567 */
4568 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4569 struct buffer_head *bh, ext4_fsblk_t block,
4570 unsigned long count, int flags)
4571 {
4572 struct buffer_head *bitmap_bh = NULL;
4573 struct super_block *sb = inode->i_sb;
4574 struct ext4_group_desc *gdp;
4575 unsigned int overflow;
4576 ext4_grpblk_t bit;
4577 struct buffer_head *gd_bh;
4578 ext4_group_t block_group;
4579 struct ext4_sb_info *sbi;
4580 struct ext4_buddy e4b;
4581 unsigned int count_clusters;
4582 int err = 0;
4583 int ret;
4584
4585 might_sleep();
4586 if (bh) {
4587 if (block)
4588 BUG_ON(block != bh->b_blocknr);
4589 else
4590 block = bh->b_blocknr;
4591 }
4592
4593 sbi = EXT4_SB(sb);
4594 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4595 !ext4_data_block_valid(sbi, block, count)) {
4596 ext4_error(sb, "Freeing blocks not in datazone - "
4597 "block = %llu, count = %lu", block, count);
4598 goto error_return;
4599 }
4600
4601 ext4_debug("freeing block %llu\n", block);
4602 trace_ext4_free_blocks(inode, block, count, flags);
4603
4604 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4605 struct buffer_head *tbh = bh;
4606 int i;
4607
4608 BUG_ON(bh && (count > 1));
4609
4610 for (i = 0; i < count; i++) {
4611 if (!bh)
4612 tbh = sb_find_get_block(inode->i_sb,
4613 block + i);
4614 if (unlikely(!tbh))
4615 continue;
4616 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4617 inode, tbh, block + i);
4618 }
4619 }
4620
4621 /*
4622 * We need to make sure we don't reuse the freed block until
4623 * after the transaction is committed, which we can do by
4624 * treating the block as metadata, below. We make an
4625 * exception if the inode is to be written in writeback mode
4626 * since writeback mode has weak data consistency guarantees.
4627 */
4628 if (!ext4_should_writeback_data(inode))
4629 flags |= EXT4_FREE_BLOCKS_METADATA;
4630
4631 /*
4632 * If the extent to be freed does not begin on a cluster
4633 * boundary, we need to deal with partial clusters at the
4634 * beginning and end of the extent. Normally we will free
4635 * blocks at the beginning or the end unless we are explicitly
4636 * requested to avoid doing so.
4637 */
4638 overflow = block & (sbi->s_cluster_ratio - 1);
4639 if (overflow) {
4640 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4641 overflow = sbi->s_cluster_ratio - overflow;
4642 block += overflow;
4643 if (count > overflow)
4644 count -= overflow;
4645 else
4646 return;
4647 } else {
4648 block -= overflow;
4649 count += overflow;
4650 }
4651 }
4652 overflow = count & (sbi->s_cluster_ratio - 1);
4653 if (overflow) {
4654 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4655 if (count > overflow)
4656 count -= overflow;
4657 else
4658 return;
4659 } else
4660 count += sbi->s_cluster_ratio - overflow;
4661 }
4662
4663 do_more:
4664 overflow = 0;
4665 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4666
4667 /*
4668 * Check to see if we are freeing blocks across a group
4669 * boundary.
4670 */
4671 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4672 overflow = EXT4_C2B(sbi, bit) + count -
4673 EXT4_BLOCKS_PER_GROUP(sb);
4674 count -= overflow;
4675 }
4676 count_clusters = EXT4_NUM_B2C(sbi, count);
4677 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4678 if (!bitmap_bh) {
4679 err = -EIO;
4680 goto error_return;
4681 }
4682 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4683 if (!gdp) {
4684 err = -EIO;
4685 goto error_return;
4686 }
4687
4688 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4689 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4690 in_range(block, ext4_inode_table(sb, gdp),
4691 EXT4_SB(sb)->s_itb_per_group) ||
4692 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4693 EXT4_SB(sb)->s_itb_per_group)) {
4694
4695 ext4_error(sb, "Freeing blocks in system zone - "
4696 "Block = %llu, count = %lu", block, count);
4697 /* err = 0. ext4_std_error should be a no op */
4698 goto error_return;
4699 }
4700
4701 BUFFER_TRACE(bitmap_bh, "getting write access");
4702 err = ext4_journal_get_write_access(handle, bitmap_bh);
4703 if (err)
4704 goto error_return;
4705
4706 /*
4707 * We are about to modify some metadata. Call the journal APIs
4708 * to unshare ->b_data if a currently-committing transaction is
4709 * using it
4710 */
4711 BUFFER_TRACE(gd_bh, "get_write_access");
4712 err = ext4_journal_get_write_access(handle, gd_bh);
4713 if (err)
4714 goto error_return;
4715 #ifdef AGGRESSIVE_CHECK
4716 {
4717 int i;
4718 for (i = 0; i < count_clusters; i++)
4719 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4720 }
4721 #endif
4722 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4723
4724 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4725 if (err)
4726 goto error_return;
4727
4728 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4729 struct ext4_free_data *new_entry;
4730 /*
4731 * blocks being freed are metadata. these blocks shouldn't
4732 * be used until this transaction is committed
4733 */
4734 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4735 if (!new_entry) {
4736 ext4_mb_unload_buddy(&e4b);
4737 err = -ENOMEM;
4738 goto error_return;
4739 }
4740 new_entry->efd_start_cluster = bit;
4741 new_entry->efd_group = block_group;
4742 new_entry->efd_count = count_clusters;
4743 new_entry->efd_tid = handle->h_transaction->t_tid;
4744
4745 ext4_lock_group(sb, block_group);
4746 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4747 ext4_mb_free_metadata(handle, &e4b, new_entry);
4748 } else {
4749 /* need to update group_info->bb_free and bitmap
4750 * with group lock held. generate_buddy look at
4751 * them with group lock_held
4752 */
4753 if (test_opt(sb, DISCARD)) {
4754 err = ext4_issue_discard(sb, block_group, bit, count);
4755 if (err && err != -EOPNOTSUPP)
4756 ext4_msg(sb, KERN_WARNING, "discard request in"
4757 " group:%d block:%d count:%lu failed"
4758 " with %d", block_group, bit, count,
4759 err);
4760 }
4761
4762
4763 ext4_lock_group(sb, block_group);
4764 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4765 mb_free_blocks(inode, &e4b, bit, count_clusters);
4766 }
4767
4768 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4769 ext4_free_group_clusters_set(sb, gdp, ret);
4770 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4771 ext4_group_desc_csum_set(sb, block_group, gdp);
4772 ext4_unlock_group(sb, block_group);
4773 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4774
4775 if (sbi->s_log_groups_per_flex) {
4776 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4777 atomic64_add(count_clusters,
4778 &sbi->s_flex_groups[flex_group].free_clusters);
4779 }
4780
4781 ext4_mb_unload_buddy(&e4b);
4782
4783 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4784 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4785
4786 /* We dirtied the bitmap block */
4787 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4788 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4789
4790 /* And the group descriptor block */
4791 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4792 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4793 if (!err)
4794 err = ret;
4795
4796 if (overflow && !err) {
4797 block += count;
4798 count = overflow;
4799 put_bh(bitmap_bh);
4800 goto do_more;
4801 }
4802 error_return:
4803 brelse(bitmap_bh);
4804 ext4_std_error(sb, err);
4805 return;
4806 }
4807
4808 /**
4809 * ext4_group_add_blocks() -- Add given blocks to an existing group
4810 * @handle: handle to this transaction
4811 * @sb: super block
4812 * @block: start physical block to add to the block group
4813 * @count: number of blocks to free
4814 *
4815 * This marks the blocks as free in the bitmap and buddy.
4816 */
4817 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4818 ext4_fsblk_t block, unsigned long count)
4819 {
4820 struct buffer_head *bitmap_bh = NULL;
4821 struct buffer_head *gd_bh;
4822 ext4_group_t block_group;
4823 ext4_grpblk_t bit;
4824 unsigned int i;
4825 struct ext4_group_desc *desc;
4826 struct ext4_sb_info *sbi = EXT4_SB(sb);
4827 struct ext4_buddy e4b;
4828 int err = 0, ret, blk_free_count;
4829 ext4_grpblk_t blocks_freed;
4830
4831 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4832
4833 if (count == 0)
4834 return 0;
4835
4836 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4837 /*
4838 * Check to see if we are freeing blocks across a group
4839 * boundary.
4840 */
4841 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4842 ext4_warning(sb, "too much blocks added to group %u\n",
4843 block_group);
4844 err = -EINVAL;
4845 goto error_return;
4846 }
4847
4848 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4849 if (!bitmap_bh) {
4850 err = -EIO;
4851 goto error_return;
4852 }
4853
4854 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4855 if (!desc) {
4856 err = -EIO;
4857 goto error_return;
4858 }
4859
4860 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4861 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4862 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4863 in_range(block + count - 1, ext4_inode_table(sb, desc),
4864 sbi->s_itb_per_group)) {
4865 ext4_error(sb, "Adding blocks in system zones - "
4866 "Block = %llu, count = %lu",
4867 block, count);
4868 err = -EINVAL;
4869 goto error_return;
4870 }
4871
4872 BUFFER_TRACE(bitmap_bh, "getting write access");
4873 err = ext4_journal_get_write_access(handle, bitmap_bh);
4874 if (err)
4875 goto error_return;
4876
4877 /*
4878 * We are about to modify some metadata. Call the journal APIs
4879 * to unshare ->b_data if a currently-committing transaction is
4880 * using it
4881 */
4882 BUFFER_TRACE(gd_bh, "get_write_access");
4883 err = ext4_journal_get_write_access(handle, gd_bh);
4884 if (err)
4885 goto error_return;
4886
4887 for (i = 0, blocks_freed = 0; i < count; i++) {
4888 BUFFER_TRACE(bitmap_bh, "clear bit");
4889 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4890 ext4_error(sb, "bit already cleared for block %llu",
4891 (ext4_fsblk_t)(block + i));
4892 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4893 } else {
4894 blocks_freed++;
4895 }
4896 }
4897
4898 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4899 if (err)
4900 goto error_return;
4901
4902 /*
4903 * need to update group_info->bb_free and bitmap
4904 * with group lock held. generate_buddy look at
4905 * them with group lock_held
4906 */
4907 ext4_lock_group(sb, block_group);
4908 mb_clear_bits(bitmap_bh->b_data, bit, count);
4909 mb_free_blocks(NULL, &e4b, bit, count);
4910 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4911 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4912 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4913 ext4_group_desc_csum_set(sb, block_group, desc);
4914 ext4_unlock_group(sb, block_group);
4915 percpu_counter_add(&sbi->s_freeclusters_counter,
4916 EXT4_NUM_B2C(sbi, blocks_freed));
4917
4918 if (sbi->s_log_groups_per_flex) {
4919 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4920 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4921 &sbi->s_flex_groups[flex_group].free_clusters);
4922 }
4923
4924 ext4_mb_unload_buddy(&e4b);
4925
4926 /* We dirtied the bitmap block */
4927 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4928 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4929
4930 /* And the group descriptor block */
4931 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4932 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4933 if (!err)
4934 err = ret;
4935
4936 error_return:
4937 brelse(bitmap_bh);
4938 ext4_std_error(sb, err);
4939 return err;
4940 }
4941
4942 /**
4943 * ext4_trim_extent -- function to TRIM one single free extent in the group
4944 * @sb: super block for the file system
4945 * @start: starting block of the free extent in the alloc. group
4946 * @count: number of blocks to TRIM
4947 * @group: alloc. group we are working with
4948 * @e4b: ext4 buddy for the group
4949 *
4950 * Trim "count" blocks starting at "start" in the "group". To assure that no
4951 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4952 * be called with under the group lock.
4953 */
4954 static int ext4_trim_extent(struct super_block *sb, int start, int count,
4955 ext4_group_t group, struct ext4_buddy *e4b)
4956 {
4957 struct ext4_free_extent ex;
4958 int ret = 0;
4959
4960 trace_ext4_trim_extent(sb, group, start, count);
4961
4962 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4963
4964 ex.fe_start = start;
4965 ex.fe_group = group;
4966 ex.fe_len = count;
4967
4968 /*
4969 * Mark blocks used, so no one can reuse them while
4970 * being trimmed.
4971 */
4972 mb_mark_used(e4b, &ex);
4973 ext4_unlock_group(sb, group);
4974 ret = ext4_issue_discard(sb, group, start, count);
4975 ext4_lock_group(sb, group);
4976 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4977 return ret;
4978 }
4979
4980 /**
4981 * ext4_trim_all_free -- function to trim all free space in alloc. group
4982 * @sb: super block for file system
4983 * @group: group to be trimmed
4984 * @start: first group block to examine
4985 * @max: last group block to examine
4986 * @minblocks: minimum extent block count
4987 *
4988 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4989 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4990 * the extent.
4991 *
4992 *
4993 * ext4_trim_all_free walks through group's block bitmap searching for free
4994 * extents. When the free extent is found, mark it as used in group buddy
4995 * bitmap. Then issue a TRIM command on this extent and free the extent in
4996 * the group buddy bitmap. This is done until whole group is scanned.
4997 */
4998 static ext4_grpblk_t
4999 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5000 ext4_grpblk_t start, ext4_grpblk_t max,
5001 ext4_grpblk_t minblocks)
5002 {
5003 void *bitmap;
5004 ext4_grpblk_t next, count = 0, free_count = 0;
5005 struct ext4_buddy e4b;
5006 int ret = 0;
5007
5008 trace_ext4_trim_all_free(sb, group, start, max);
5009
5010 ret = ext4_mb_load_buddy(sb, group, &e4b);
5011 if (ret) {
5012 ext4_error(sb, "Error in loading buddy "
5013 "information for %u", group);
5014 return ret;
5015 }
5016 bitmap = e4b.bd_bitmap;
5017
5018 ext4_lock_group(sb, group);
5019 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5020 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5021 goto out;
5022
5023 start = (e4b.bd_info->bb_first_free > start) ?
5024 e4b.bd_info->bb_first_free : start;
5025
5026 while (start <= max) {
5027 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5028 if (start > max)
5029 break;
5030 next = mb_find_next_bit(bitmap, max + 1, start);
5031
5032 if ((next - start) >= minblocks) {
5033 ret = ext4_trim_extent(sb, start,
5034 next - start, group, &e4b);
5035 if (ret && ret != -EOPNOTSUPP)
5036 break;
5037 ret = 0;
5038 count += next - start;
5039 }
5040 free_count += next - start;
5041 start = next + 1;
5042
5043 if (fatal_signal_pending(current)) {
5044 count = -ERESTARTSYS;
5045 break;
5046 }
5047
5048 if (need_resched()) {
5049 ext4_unlock_group(sb, group);
5050 cond_resched();
5051 ext4_lock_group(sb, group);
5052 }
5053
5054 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5055 break;
5056 }
5057
5058 if (!ret) {
5059 ret = count;
5060 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5061 }
5062 out:
5063 ext4_unlock_group(sb, group);
5064 ext4_mb_unload_buddy(&e4b);
5065
5066 ext4_debug("trimmed %d blocks in the group %d\n",
5067 count, group);
5068
5069 return ret;
5070 }
5071
5072 /**
5073 * ext4_trim_fs() -- trim ioctl handle function
5074 * @sb: superblock for filesystem
5075 * @range: fstrim_range structure
5076 *
5077 * start: First Byte to trim
5078 * len: number of Bytes to trim from start
5079 * minlen: minimum extent length in Bytes
5080 * ext4_trim_fs goes through all allocation groups containing Bytes from
5081 * start to start+len. For each such a group ext4_trim_all_free function
5082 * is invoked to trim all free space.
5083 */
5084 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5085 {
5086 struct ext4_group_info *grp;
5087 ext4_group_t group, first_group, last_group;
5088 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5089 uint64_t start, end, minlen, trimmed = 0;
5090 ext4_fsblk_t first_data_blk =
5091 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5092 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5093 int ret = 0;
5094
5095 start = range->start >> sb->s_blocksize_bits;
5096 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5097 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5098 range->minlen >> sb->s_blocksize_bits);
5099
5100 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5101 start >= max_blks ||
5102 range->len < sb->s_blocksize)
5103 return -EINVAL;
5104 if (end >= max_blks)
5105 end = max_blks - 1;
5106 if (end <= first_data_blk)
5107 goto out;
5108 if (start < first_data_blk)
5109 start = first_data_blk;
5110
5111 /* Determine first and last group to examine based on start and end */
5112 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5113 &first_group, &first_cluster);
5114 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5115 &last_group, &last_cluster);
5116
5117 /* end now represents the last cluster to discard in this group */
5118 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5119
5120 for (group = first_group; group <= last_group; group++) {
5121 grp = ext4_get_group_info(sb, group);
5122 /* We only do this if the grp has never been initialized */
5123 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5124 ret = ext4_mb_init_group(sb, group);
5125 if (ret)
5126 break;
5127 }
5128
5129 /*
5130 * For all the groups except the last one, last cluster will
5131 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5132 * change it for the last group, note that last_cluster is
5133 * already computed earlier by ext4_get_group_no_and_offset()
5134 */
5135 if (group == last_group)
5136 end = last_cluster;
5137
5138 if (grp->bb_free >= minlen) {
5139 cnt = ext4_trim_all_free(sb, group, first_cluster,
5140 end, minlen);
5141 if (cnt < 0) {
5142 ret = cnt;
5143 break;
5144 }
5145 trimmed += cnt;
5146 }
5147
5148 /*
5149 * For every group except the first one, we are sure
5150 * that the first cluster to discard will be cluster #0.
5151 */
5152 first_cluster = 0;
5153 }
5154
5155 if (!ret)
5156 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5157
5158 out:
5159 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5160 return ret;
5161 }