4d739463831e266c4c4a59a4795b3df1b21fac83
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 ext4_grpblk_t i = 0;
727 ext4_grpblk_t first;
728 ext4_grpblk_t len;
729 unsigned free = 0;
730 unsigned fragments = 0;
731 unsigned long long period = get_cycles();
732
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i = mb_find_next_zero_bit(bitmap, max, 0);
736 grp->bb_first_free = i;
737 while (i < max) {
738 fragments++;
739 first = i;
740 i = mb_find_next_bit(bitmap, max, i);
741 len = i - first;
742 free += len;
743 if (len > 1)
744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 else
746 grp->bb_counters[0]++;
747 if (i < max)
748 i = mb_find_next_zero_bit(bitmap, max, i);
749 }
750 grp->bb_fragments = fragments;
751
752 if (free != grp->bb_free) {
753 ext4_grp_locked_error(sb, group, 0, 0,
754 "%u clusters in bitmap, %u in gd",
755 free, grp->bb_free);
756 /*
757 * If we intent to continue, we consider group descritor
758 * corrupt and update bb_free using bitmap value
759 */
760 grp->bb_free = free;
761 }
762 mb_set_largest_free_order(sb, grp);
763
764 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
765
766 period = get_cycles() - period;
767 spin_lock(&EXT4_SB(sb)->s_bal_lock);
768 EXT4_SB(sb)->s_mb_buddies_generated++;
769 EXT4_SB(sb)->s_mb_generation_time += period;
770 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
771 }
772
773 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
774 {
775 int count;
776 int order = 1;
777 void *buddy;
778
779 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
780 ext4_set_bits(buddy, 0, count);
781 }
782 e4b->bd_info->bb_fragments = 0;
783 memset(e4b->bd_info->bb_counters, 0,
784 sizeof(*e4b->bd_info->bb_counters) *
785 (e4b->bd_sb->s_blocksize_bits + 2));
786
787 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
788 e4b->bd_bitmap, e4b->bd_group);
789 }
790
791 /* The buddy information is attached the buddy cache inode
792 * for convenience. The information regarding each group
793 * is loaded via ext4_mb_load_buddy. The information involve
794 * block bitmap and buddy information. The information are
795 * stored in the inode as
796 *
797 * { page }
798 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
799 *
800 *
801 * one block each for bitmap and buddy information.
802 * So for each group we take up 2 blocks. A page can
803 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
804 * So it can have information regarding groups_per_page which
805 * is blocks_per_page/2
806 *
807 * Locking note: This routine takes the block group lock of all groups
808 * for this page; do not hold this lock when calling this routine!
809 */
810
811 static int ext4_mb_init_cache(struct page *page, char *incore)
812 {
813 ext4_group_t ngroups;
814 int blocksize;
815 int blocks_per_page;
816 int groups_per_page;
817 int err = 0;
818 int i;
819 ext4_group_t first_group, group;
820 int first_block;
821 struct super_block *sb;
822 struct buffer_head *bhs;
823 struct buffer_head **bh = NULL;
824 struct inode *inode;
825 char *data;
826 char *bitmap;
827 struct ext4_group_info *grinfo;
828
829 mb_debug(1, "init page %lu\n", page->index);
830
831 inode = page->mapping->host;
832 sb = inode->i_sb;
833 ngroups = ext4_get_groups_count(sb);
834 blocksize = 1 << inode->i_blkbits;
835 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
836
837 groups_per_page = blocks_per_page >> 1;
838 if (groups_per_page == 0)
839 groups_per_page = 1;
840
841 /* allocate buffer_heads to read bitmaps */
842 if (groups_per_page > 1) {
843 i = sizeof(struct buffer_head *) * groups_per_page;
844 bh = kzalloc(i, GFP_NOFS);
845 if (bh == NULL) {
846 err = -ENOMEM;
847 goto out;
848 }
849 } else
850 bh = &bhs;
851
852 first_group = page->index * blocks_per_page / 2;
853
854 /* read all groups the page covers into the cache */
855 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
856 if (group >= ngroups)
857 break;
858
859 grinfo = ext4_get_group_info(sb, group);
860 /*
861 * If page is uptodate then we came here after online resize
862 * which added some new uninitialized group info structs, so
863 * we must skip all initialized uptodate buddies on the page,
864 * which may be currently in use by an allocating task.
865 */
866 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
867 bh[i] = NULL;
868 continue;
869 }
870 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
871 err = -ENOMEM;
872 goto out;
873 }
874 mb_debug(1, "read bitmap for group %u\n", group);
875 }
876
877 /* wait for I/O completion */
878 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
879 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
880 err = -EIO;
881 goto out;
882 }
883 }
884
885 first_block = page->index * blocks_per_page;
886 for (i = 0; i < blocks_per_page; i++) {
887 group = (first_block + i) >> 1;
888 if (group >= ngroups)
889 break;
890
891 if (!bh[group - first_group])
892 /* skip initialized uptodate buddy */
893 continue;
894
895 /*
896 * data carry information regarding this
897 * particular group in the format specified
898 * above
899 *
900 */
901 data = page_address(page) + (i * blocksize);
902 bitmap = bh[group - first_group]->b_data;
903
904 /*
905 * We place the buddy block and bitmap block
906 * close together
907 */
908 if ((first_block + i) & 1) {
909 /* this is block of buddy */
910 BUG_ON(incore == NULL);
911 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
912 group, page->index, i * blocksize);
913 trace_ext4_mb_buddy_bitmap_load(sb, group);
914 grinfo = ext4_get_group_info(sb, group);
915 grinfo->bb_fragments = 0;
916 memset(grinfo->bb_counters, 0,
917 sizeof(*grinfo->bb_counters) *
918 (sb->s_blocksize_bits+2));
919 /*
920 * incore got set to the group block bitmap below
921 */
922 ext4_lock_group(sb, group);
923 /* init the buddy */
924 memset(data, 0xff, blocksize);
925 ext4_mb_generate_buddy(sb, data, incore, group);
926 ext4_unlock_group(sb, group);
927 incore = NULL;
928 } else {
929 /* this is block of bitmap */
930 BUG_ON(incore != NULL);
931 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
932 group, page->index, i * blocksize);
933 trace_ext4_mb_bitmap_load(sb, group);
934
935 /* see comments in ext4_mb_put_pa() */
936 ext4_lock_group(sb, group);
937 memcpy(data, bitmap, blocksize);
938
939 /* mark all preallocated blks used in in-core bitmap */
940 ext4_mb_generate_from_pa(sb, data, group);
941 ext4_mb_generate_from_freelist(sb, data, group);
942 ext4_unlock_group(sb, group);
943
944 /* set incore so that the buddy information can be
945 * generated using this
946 */
947 incore = data;
948 }
949 }
950 SetPageUptodate(page);
951
952 out:
953 if (bh) {
954 for (i = 0; i < groups_per_page; i++)
955 brelse(bh[i]);
956 if (bh != &bhs)
957 kfree(bh);
958 }
959 return err;
960 }
961
962 /*
963 * Lock the buddy and bitmap pages. This make sure other parallel init_group
964 * on the same buddy page doesn't happen whild holding the buddy page lock.
965 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
966 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
967 */
968 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
969 ext4_group_t group, struct ext4_buddy *e4b)
970 {
971 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
972 int block, pnum, poff;
973 int blocks_per_page;
974 struct page *page;
975
976 e4b->bd_buddy_page = NULL;
977 e4b->bd_bitmap_page = NULL;
978
979 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
980 /*
981 * the buddy cache inode stores the block bitmap
982 * and buddy information in consecutive blocks.
983 * So for each group we need two blocks.
984 */
985 block = group * 2;
986 pnum = block / blocks_per_page;
987 poff = block % blocks_per_page;
988 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
989 if (!page)
990 return -EIO;
991 BUG_ON(page->mapping != inode->i_mapping);
992 e4b->bd_bitmap_page = page;
993 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
994
995 if (blocks_per_page >= 2) {
996 /* buddy and bitmap are on the same page */
997 return 0;
998 }
999
1000 block++;
1001 pnum = block / blocks_per_page;
1002 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1003 if (!page)
1004 return -EIO;
1005 BUG_ON(page->mapping != inode->i_mapping);
1006 e4b->bd_buddy_page = page;
1007 return 0;
1008 }
1009
1010 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1011 {
1012 if (e4b->bd_bitmap_page) {
1013 unlock_page(e4b->bd_bitmap_page);
1014 page_cache_release(e4b->bd_bitmap_page);
1015 }
1016 if (e4b->bd_buddy_page) {
1017 unlock_page(e4b->bd_buddy_page);
1018 page_cache_release(e4b->bd_buddy_page);
1019 }
1020 }
1021
1022 /*
1023 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1024 * block group lock of all groups for this page; do not hold the BG lock when
1025 * calling this routine!
1026 */
1027 static noinline_for_stack
1028 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1029 {
1030
1031 struct ext4_group_info *this_grp;
1032 struct ext4_buddy e4b;
1033 struct page *page;
1034 int ret = 0;
1035
1036 might_sleep();
1037 mb_debug(1, "init group %u\n", group);
1038 this_grp = ext4_get_group_info(sb, group);
1039 /*
1040 * This ensures that we don't reinit the buddy cache
1041 * page which map to the group from which we are already
1042 * allocating. If we are looking at the buddy cache we would
1043 * have taken a reference using ext4_mb_load_buddy and that
1044 * would have pinned buddy page to page cache.
1045 */
1046 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1047 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1048 /*
1049 * somebody initialized the group
1050 * return without doing anything
1051 */
1052 goto err;
1053 }
1054
1055 page = e4b.bd_bitmap_page;
1056 ret = ext4_mb_init_cache(page, NULL);
1057 if (ret)
1058 goto err;
1059 if (!PageUptodate(page)) {
1060 ret = -EIO;
1061 goto err;
1062 }
1063 mark_page_accessed(page);
1064
1065 if (e4b.bd_buddy_page == NULL) {
1066 /*
1067 * If both the bitmap and buddy are in
1068 * the same page we don't need to force
1069 * init the buddy
1070 */
1071 ret = 0;
1072 goto err;
1073 }
1074 /* init buddy cache */
1075 page = e4b.bd_buddy_page;
1076 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1077 if (ret)
1078 goto err;
1079 if (!PageUptodate(page)) {
1080 ret = -EIO;
1081 goto err;
1082 }
1083 mark_page_accessed(page);
1084 err:
1085 ext4_mb_put_buddy_page_lock(&e4b);
1086 return ret;
1087 }
1088
1089 /*
1090 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1091 * block group lock of all groups for this page; do not hold the BG lock when
1092 * calling this routine!
1093 */
1094 static noinline_for_stack int
1095 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1096 struct ext4_buddy *e4b)
1097 {
1098 int blocks_per_page;
1099 int block;
1100 int pnum;
1101 int poff;
1102 struct page *page;
1103 int ret;
1104 struct ext4_group_info *grp;
1105 struct ext4_sb_info *sbi = EXT4_SB(sb);
1106 struct inode *inode = sbi->s_buddy_cache;
1107
1108 might_sleep();
1109 mb_debug(1, "load group %u\n", group);
1110
1111 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1112 grp = ext4_get_group_info(sb, group);
1113
1114 e4b->bd_blkbits = sb->s_blocksize_bits;
1115 e4b->bd_info = grp;
1116 e4b->bd_sb = sb;
1117 e4b->bd_group = group;
1118 e4b->bd_buddy_page = NULL;
1119 e4b->bd_bitmap_page = NULL;
1120
1121 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1122 /*
1123 * we need full data about the group
1124 * to make a good selection
1125 */
1126 ret = ext4_mb_init_group(sb, group);
1127 if (ret)
1128 return ret;
1129 }
1130
1131 /*
1132 * the buddy cache inode stores the block bitmap
1133 * and buddy information in consecutive blocks.
1134 * So for each group we need two blocks.
1135 */
1136 block = group * 2;
1137 pnum = block / blocks_per_page;
1138 poff = block % blocks_per_page;
1139
1140 /* we could use find_or_create_page(), but it locks page
1141 * what we'd like to avoid in fast path ... */
1142 page = find_get_page(inode->i_mapping, pnum);
1143 if (page == NULL || !PageUptodate(page)) {
1144 if (page)
1145 /*
1146 * drop the page reference and try
1147 * to get the page with lock. If we
1148 * are not uptodate that implies
1149 * somebody just created the page but
1150 * is yet to initialize the same. So
1151 * wait for it to initialize.
1152 */
1153 page_cache_release(page);
1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155 if (page) {
1156 BUG_ON(page->mapping != inode->i_mapping);
1157 if (!PageUptodate(page)) {
1158 ret = ext4_mb_init_cache(page, NULL);
1159 if (ret) {
1160 unlock_page(page);
1161 goto err;
1162 }
1163 mb_cmp_bitmaps(e4b, page_address(page) +
1164 (poff * sb->s_blocksize));
1165 }
1166 unlock_page(page);
1167 }
1168 }
1169 if (page == NULL || !PageUptodate(page)) {
1170 ret = -EIO;
1171 goto err;
1172 }
1173 e4b->bd_bitmap_page = page;
1174 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1175 mark_page_accessed(page);
1176
1177 block++;
1178 pnum = block / blocks_per_page;
1179 poff = block % blocks_per_page;
1180
1181 page = find_get_page(inode->i_mapping, pnum);
1182 if (page == NULL || !PageUptodate(page)) {
1183 if (page)
1184 page_cache_release(page);
1185 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1186 if (page) {
1187 BUG_ON(page->mapping != inode->i_mapping);
1188 if (!PageUptodate(page)) {
1189 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1190 if (ret) {
1191 unlock_page(page);
1192 goto err;
1193 }
1194 }
1195 unlock_page(page);
1196 }
1197 }
1198 if (page == NULL || !PageUptodate(page)) {
1199 ret = -EIO;
1200 goto err;
1201 }
1202 e4b->bd_buddy_page = page;
1203 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1204 mark_page_accessed(page);
1205
1206 BUG_ON(e4b->bd_bitmap_page == NULL);
1207 BUG_ON(e4b->bd_buddy_page == NULL);
1208
1209 return 0;
1210
1211 err:
1212 if (page)
1213 page_cache_release(page);
1214 if (e4b->bd_bitmap_page)
1215 page_cache_release(e4b->bd_bitmap_page);
1216 if (e4b->bd_buddy_page)
1217 page_cache_release(e4b->bd_buddy_page);
1218 e4b->bd_buddy = NULL;
1219 e4b->bd_bitmap = NULL;
1220 return ret;
1221 }
1222
1223 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1224 {
1225 if (e4b->bd_bitmap_page)
1226 page_cache_release(e4b->bd_bitmap_page);
1227 if (e4b->bd_buddy_page)
1228 page_cache_release(e4b->bd_buddy_page);
1229 }
1230
1231
1232 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1233 {
1234 int order = 1;
1235 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1236 void *bb;
1237
1238 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1239 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1240
1241 bb = e4b->bd_buddy;
1242 while (order <= e4b->bd_blkbits + 1) {
1243 block = block >> 1;
1244 if (!mb_test_bit(block, bb)) {
1245 /* this block is part of buddy of order 'order' */
1246 return order;
1247 }
1248 bb += bb_incr;
1249 bb_incr >>= 1;
1250 order++;
1251 }
1252 return 0;
1253 }
1254
1255 static void mb_clear_bits(void *bm, int cur, int len)
1256 {
1257 __u32 *addr;
1258
1259 len = cur + len;
1260 while (cur < len) {
1261 if ((cur & 31) == 0 && (len - cur) >= 32) {
1262 /* fast path: clear whole word at once */
1263 addr = bm + (cur >> 3);
1264 *addr = 0;
1265 cur += 32;
1266 continue;
1267 }
1268 mb_clear_bit(cur, bm);
1269 cur++;
1270 }
1271 }
1272
1273 /* clear bits in given range
1274 * will return first found zero bit if any, -1 otherwise
1275 */
1276 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1277 {
1278 __u32 *addr;
1279 int zero_bit = -1;
1280
1281 len = cur + len;
1282 while (cur < len) {
1283 if ((cur & 31) == 0 && (len - cur) >= 32) {
1284 /* fast path: clear whole word at once */
1285 addr = bm + (cur >> 3);
1286 if (*addr != (__u32)(-1) && zero_bit == -1)
1287 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1288 *addr = 0;
1289 cur += 32;
1290 continue;
1291 }
1292 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1293 zero_bit = cur;
1294 cur++;
1295 }
1296
1297 return zero_bit;
1298 }
1299
1300 void ext4_set_bits(void *bm, int cur, int len)
1301 {
1302 __u32 *addr;
1303
1304 len = cur + len;
1305 while (cur < len) {
1306 if ((cur & 31) == 0 && (len - cur) >= 32) {
1307 /* fast path: set whole word at once */
1308 addr = bm + (cur >> 3);
1309 *addr = 0xffffffff;
1310 cur += 32;
1311 continue;
1312 }
1313 mb_set_bit(cur, bm);
1314 cur++;
1315 }
1316 }
1317
1318 /*
1319 * _________________________________________________________________ */
1320
1321 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1322 {
1323 if (mb_test_bit(*bit + side, bitmap)) {
1324 mb_clear_bit(*bit, bitmap);
1325 (*bit) -= side;
1326 return 1;
1327 }
1328 else {
1329 (*bit) += side;
1330 mb_set_bit(*bit, bitmap);
1331 return -1;
1332 }
1333 }
1334
1335 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1336 {
1337 int max;
1338 int order = 1;
1339 void *buddy = mb_find_buddy(e4b, order, &max);
1340
1341 while (buddy) {
1342 void *buddy2;
1343
1344 /* Bits in range [first; last] are known to be set since
1345 * corresponding blocks were allocated. Bits in range
1346 * (first; last) will stay set because they form buddies on
1347 * upper layer. We just deal with borders if they don't
1348 * align with upper layer and then go up.
1349 * Releasing entire group is all about clearing
1350 * single bit of highest order buddy.
1351 */
1352
1353 /* Example:
1354 * ---------------------------------
1355 * | 1 | 1 | 1 | 1 |
1356 * ---------------------------------
1357 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1358 * ---------------------------------
1359 * 0 1 2 3 4 5 6 7
1360 * \_____________________/
1361 *
1362 * Neither [1] nor [6] is aligned to above layer.
1363 * Left neighbour [0] is free, so mark it busy,
1364 * decrease bb_counters and extend range to
1365 * [0; 6]
1366 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1367 * mark [6] free, increase bb_counters and shrink range to
1368 * [0; 5].
1369 * Then shift range to [0; 2], go up and do the same.
1370 */
1371
1372
1373 if (first & 1)
1374 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1375 if (!(last & 1))
1376 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1377 if (first > last)
1378 break;
1379 order++;
1380
1381 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1382 mb_clear_bits(buddy, first, last - first + 1);
1383 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1384 break;
1385 }
1386 first >>= 1;
1387 last >>= 1;
1388 buddy = buddy2;
1389 }
1390 }
1391
1392 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1393 int first, int count)
1394 {
1395 int left_is_free = 0;
1396 int right_is_free = 0;
1397 int block;
1398 int last = first + count - 1;
1399 struct super_block *sb = e4b->bd_sb;
1400
1401 if (WARN_ON(count == 0))
1402 return;
1403 BUG_ON(last >= (sb->s_blocksize << 3));
1404 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1405 mb_check_buddy(e4b);
1406 mb_free_blocks_double(inode, e4b, first, count);
1407
1408 e4b->bd_info->bb_free += count;
1409 if (first < e4b->bd_info->bb_first_free)
1410 e4b->bd_info->bb_first_free = first;
1411
1412 /* access memory sequentially: check left neighbour,
1413 * clear range and then check right neighbour
1414 */
1415 if (first != 0)
1416 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1417 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1418 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1419 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1420
1421 if (unlikely(block != -1)) {
1422 ext4_fsblk_t blocknr;
1423
1424 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1425 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1426 ext4_grp_locked_error(sb, e4b->bd_group,
1427 inode ? inode->i_ino : 0,
1428 blocknr,
1429 "freeing already freed block "
1430 "(bit %u)", block);
1431 mb_regenerate_buddy(e4b);
1432 goto done;
1433 }
1434
1435 /* let's maintain fragments counter */
1436 if (left_is_free && right_is_free)
1437 e4b->bd_info->bb_fragments--;
1438 else if (!left_is_free && !right_is_free)
1439 e4b->bd_info->bb_fragments++;
1440
1441 /* buddy[0] == bd_bitmap is a special case, so handle
1442 * it right away and let mb_buddy_mark_free stay free of
1443 * zero order checks.
1444 * Check if neighbours are to be coaleasced,
1445 * adjust bitmap bb_counters and borders appropriately.
1446 */
1447 if (first & 1) {
1448 first += !left_is_free;
1449 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1450 }
1451 if (!(last & 1)) {
1452 last -= !right_is_free;
1453 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1454 }
1455
1456 if (first <= last)
1457 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1458
1459 done:
1460 mb_set_largest_free_order(sb, e4b->bd_info);
1461 mb_check_buddy(e4b);
1462 }
1463
1464 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1465 int needed, struct ext4_free_extent *ex)
1466 {
1467 int next = block;
1468 int max, order;
1469 void *buddy;
1470
1471 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1472 BUG_ON(ex == NULL);
1473
1474 buddy = mb_find_buddy(e4b, 0, &max);
1475 BUG_ON(buddy == NULL);
1476 BUG_ON(block >= max);
1477 if (mb_test_bit(block, buddy)) {
1478 ex->fe_len = 0;
1479 ex->fe_start = 0;
1480 ex->fe_group = 0;
1481 return 0;
1482 }
1483
1484 /* find actual order */
1485 order = mb_find_order_for_block(e4b, block);
1486 block = block >> order;
1487
1488 ex->fe_len = 1 << order;
1489 ex->fe_start = block << order;
1490 ex->fe_group = e4b->bd_group;
1491
1492 /* calc difference from given start */
1493 next = next - ex->fe_start;
1494 ex->fe_len -= next;
1495 ex->fe_start += next;
1496
1497 while (needed > ex->fe_len &&
1498 mb_find_buddy(e4b, order, &max)) {
1499
1500 if (block + 1 >= max)
1501 break;
1502
1503 next = (block + 1) * (1 << order);
1504 if (mb_test_bit(next, e4b->bd_bitmap))
1505 break;
1506
1507 order = mb_find_order_for_block(e4b, next);
1508
1509 block = next >> order;
1510 ex->fe_len += 1 << order;
1511 }
1512
1513 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1514 return ex->fe_len;
1515 }
1516
1517 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1518 {
1519 int ord;
1520 int mlen = 0;
1521 int max = 0;
1522 int cur;
1523 int start = ex->fe_start;
1524 int len = ex->fe_len;
1525 unsigned ret = 0;
1526 int len0 = len;
1527 void *buddy;
1528
1529 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1530 BUG_ON(e4b->bd_group != ex->fe_group);
1531 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1532 mb_check_buddy(e4b);
1533 mb_mark_used_double(e4b, start, len);
1534
1535 e4b->bd_info->bb_free -= len;
1536 if (e4b->bd_info->bb_first_free == start)
1537 e4b->bd_info->bb_first_free += len;
1538
1539 /* let's maintain fragments counter */
1540 if (start != 0)
1541 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1542 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1543 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1544 if (mlen && max)
1545 e4b->bd_info->bb_fragments++;
1546 else if (!mlen && !max)
1547 e4b->bd_info->bb_fragments--;
1548
1549 /* let's maintain buddy itself */
1550 while (len) {
1551 ord = mb_find_order_for_block(e4b, start);
1552
1553 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1554 /* the whole chunk may be allocated at once! */
1555 mlen = 1 << ord;
1556 buddy = mb_find_buddy(e4b, ord, &max);
1557 BUG_ON((start >> ord) >= max);
1558 mb_set_bit(start >> ord, buddy);
1559 e4b->bd_info->bb_counters[ord]--;
1560 start += mlen;
1561 len -= mlen;
1562 BUG_ON(len < 0);
1563 continue;
1564 }
1565
1566 /* store for history */
1567 if (ret == 0)
1568 ret = len | (ord << 16);
1569
1570 /* we have to split large buddy */
1571 BUG_ON(ord <= 0);
1572 buddy = mb_find_buddy(e4b, ord, &max);
1573 mb_set_bit(start >> ord, buddy);
1574 e4b->bd_info->bb_counters[ord]--;
1575
1576 ord--;
1577 cur = (start >> ord) & ~1U;
1578 buddy = mb_find_buddy(e4b, ord, &max);
1579 mb_clear_bit(cur, buddy);
1580 mb_clear_bit(cur + 1, buddy);
1581 e4b->bd_info->bb_counters[ord]++;
1582 e4b->bd_info->bb_counters[ord]++;
1583 }
1584 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1585
1586 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1587 mb_check_buddy(e4b);
1588
1589 return ret;
1590 }
1591
1592 /*
1593 * Must be called under group lock!
1594 */
1595 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1596 struct ext4_buddy *e4b)
1597 {
1598 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1599 int ret;
1600
1601 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1602 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1603
1604 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1605 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1606 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1607
1608 /* preallocation can change ac_b_ex, thus we store actually
1609 * allocated blocks for history */
1610 ac->ac_f_ex = ac->ac_b_ex;
1611
1612 ac->ac_status = AC_STATUS_FOUND;
1613 ac->ac_tail = ret & 0xffff;
1614 ac->ac_buddy = ret >> 16;
1615
1616 /*
1617 * take the page reference. We want the page to be pinned
1618 * so that we don't get a ext4_mb_init_cache_call for this
1619 * group until we update the bitmap. That would mean we
1620 * double allocate blocks. The reference is dropped
1621 * in ext4_mb_release_context
1622 */
1623 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1624 get_page(ac->ac_bitmap_page);
1625 ac->ac_buddy_page = e4b->bd_buddy_page;
1626 get_page(ac->ac_buddy_page);
1627 /* store last allocated for subsequent stream allocation */
1628 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1629 spin_lock(&sbi->s_md_lock);
1630 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1631 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1632 spin_unlock(&sbi->s_md_lock);
1633 }
1634 }
1635
1636 /*
1637 * regular allocator, for general purposes allocation
1638 */
1639
1640 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1641 struct ext4_buddy *e4b,
1642 int finish_group)
1643 {
1644 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1645 struct ext4_free_extent *bex = &ac->ac_b_ex;
1646 struct ext4_free_extent *gex = &ac->ac_g_ex;
1647 struct ext4_free_extent ex;
1648 int max;
1649
1650 if (ac->ac_status == AC_STATUS_FOUND)
1651 return;
1652 /*
1653 * We don't want to scan for a whole year
1654 */
1655 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1656 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1657 ac->ac_status = AC_STATUS_BREAK;
1658 return;
1659 }
1660
1661 /*
1662 * Haven't found good chunk so far, let's continue
1663 */
1664 if (bex->fe_len < gex->fe_len)
1665 return;
1666
1667 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1668 && bex->fe_group == e4b->bd_group) {
1669 /* recheck chunk's availability - we don't know
1670 * when it was found (within this lock-unlock
1671 * period or not) */
1672 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1673 if (max >= gex->fe_len) {
1674 ext4_mb_use_best_found(ac, e4b);
1675 return;
1676 }
1677 }
1678 }
1679
1680 /*
1681 * The routine checks whether found extent is good enough. If it is,
1682 * then the extent gets marked used and flag is set to the context
1683 * to stop scanning. Otherwise, the extent is compared with the
1684 * previous found extent and if new one is better, then it's stored
1685 * in the context. Later, the best found extent will be used, if
1686 * mballoc can't find good enough extent.
1687 *
1688 * FIXME: real allocation policy is to be designed yet!
1689 */
1690 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1691 struct ext4_free_extent *ex,
1692 struct ext4_buddy *e4b)
1693 {
1694 struct ext4_free_extent *bex = &ac->ac_b_ex;
1695 struct ext4_free_extent *gex = &ac->ac_g_ex;
1696
1697 BUG_ON(ex->fe_len <= 0);
1698 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1699 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1700 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1701
1702 ac->ac_found++;
1703
1704 /*
1705 * The special case - take what you catch first
1706 */
1707 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1708 *bex = *ex;
1709 ext4_mb_use_best_found(ac, e4b);
1710 return;
1711 }
1712
1713 /*
1714 * Let's check whether the chuck is good enough
1715 */
1716 if (ex->fe_len == gex->fe_len) {
1717 *bex = *ex;
1718 ext4_mb_use_best_found(ac, e4b);
1719 return;
1720 }
1721
1722 /*
1723 * If this is first found extent, just store it in the context
1724 */
1725 if (bex->fe_len == 0) {
1726 *bex = *ex;
1727 return;
1728 }
1729
1730 /*
1731 * If new found extent is better, store it in the context
1732 */
1733 if (bex->fe_len < gex->fe_len) {
1734 /* if the request isn't satisfied, any found extent
1735 * larger than previous best one is better */
1736 if (ex->fe_len > bex->fe_len)
1737 *bex = *ex;
1738 } else if (ex->fe_len > gex->fe_len) {
1739 /* if the request is satisfied, then we try to find
1740 * an extent that still satisfy the request, but is
1741 * smaller than previous one */
1742 if (ex->fe_len < bex->fe_len)
1743 *bex = *ex;
1744 }
1745
1746 ext4_mb_check_limits(ac, e4b, 0);
1747 }
1748
1749 static noinline_for_stack
1750 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1751 struct ext4_buddy *e4b)
1752 {
1753 struct ext4_free_extent ex = ac->ac_b_ex;
1754 ext4_group_t group = ex.fe_group;
1755 int max;
1756 int err;
1757
1758 BUG_ON(ex.fe_len <= 0);
1759 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1760 if (err)
1761 return err;
1762
1763 ext4_lock_group(ac->ac_sb, group);
1764 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1765
1766 if (max > 0) {
1767 ac->ac_b_ex = ex;
1768 ext4_mb_use_best_found(ac, e4b);
1769 }
1770
1771 ext4_unlock_group(ac->ac_sb, group);
1772 ext4_mb_unload_buddy(e4b);
1773
1774 return 0;
1775 }
1776
1777 static noinline_for_stack
1778 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1779 struct ext4_buddy *e4b)
1780 {
1781 ext4_group_t group = ac->ac_g_ex.fe_group;
1782 int max;
1783 int err;
1784 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1785 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1786 struct ext4_free_extent ex;
1787
1788 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1789 return 0;
1790 if (grp->bb_free == 0)
1791 return 0;
1792
1793 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1794 if (err)
1795 return err;
1796
1797 ext4_lock_group(ac->ac_sb, group);
1798 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1799 ac->ac_g_ex.fe_len, &ex);
1800
1801 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1802 ext4_fsblk_t start;
1803
1804 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1805 ex.fe_start;
1806 /* use do_div to get remainder (would be 64-bit modulo) */
1807 if (do_div(start, sbi->s_stripe) == 0) {
1808 ac->ac_found++;
1809 ac->ac_b_ex = ex;
1810 ext4_mb_use_best_found(ac, e4b);
1811 }
1812 } else if (max >= ac->ac_g_ex.fe_len) {
1813 BUG_ON(ex.fe_len <= 0);
1814 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1815 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1816 ac->ac_found++;
1817 ac->ac_b_ex = ex;
1818 ext4_mb_use_best_found(ac, e4b);
1819 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1820 /* Sometimes, caller may want to merge even small
1821 * number of blocks to an existing extent */
1822 BUG_ON(ex.fe_len <= 0);
1823 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1824 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1825 ac->ac_found++;
1826 ac->ac_b_ex = ex;
1827 ext4_mb_use_best_found(ac, e4b);
1828 }
1829 ext4_unlock_group(ac->ac_sb, group);
1830 ext4_mb_unload_buddy(e4b);
1831
1832 return 0;
1833 }
1834
1835 /*
1836 * The routine scans buddy structures (not bitmap!) from given order
1837 * to max order and tries to find big enough chunk to satisfy the req
1838 */
1839 static noinline_for_stack
1840 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1841 struct ext4_buddy *e4b)
1842 {
1843 struct super_block *sb = ac->ac_sb;
1844 struct ext4_group_info *grp = e4b->bd_info;
1845 void *buddy;
1846 int i;
1847 int k;
1848 int max;
1849
1850 BUG_ON(ac->ac_2order <= 0);
1851 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1852 if (grp->bb_counters[i] == 0)
1853 continue;
1854
1855 buddy = mb_find_buddy(e4b, i, &max);
1856 BUG_ON(buddy == NULL);
1857
1858 k = mb_find_next_zero_bit(buddy, max, 0);
1859 BUG_ON(k >= max);
1860
1861 ac->ac_found++;
1862
1863 ac->ac_b_ex.fe_len = 1 << i;
1864 ac->ac_b_ex.fe_start = k << i;
1865 ac->ac_b_ex.fe_group = e4b->bd_group;
1866
1867 ext4_mb_use_best_found(ac, e4b);
1868
1869 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1870
1871 if (EXT4_SB(sb)->s_mb_stats)
1872 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1873
1874 break;
1875 }
1876 }
1877
1878 /*
1879 * The routine scans the group and measures all found extents.
1880 * In order to optimize scanning, caller must pass number of
1881 * free blocks in the group, so the routine can know upper limit.
1882 */
1883 static noinline_for_stack
1884 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1885 struct ext4_buddy *e4b)
1886 {
1887 struct super_block *sb = ac->ac_sb;
1888 void *bitmap = e4b->bd_bitmap;
1889 struct ext4_free_extent ex;
1890 int i;
1891 int free;
1892
1893 free = e4b->bd_info->bb_free;
1894 BUG_ON(free <= 0);
1895
1896 i = e4b->bd_info->bb_first_free;
1897
1898 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1899 i = mb_find_next_zero_bit(bitmap,
1900 EXT4_CLUSTERS_PER_GROUP(sb), i);
1901 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1902 /*
1903 * IF we have corrupt bitmap, we won't find any
1904 * free blocks even though group info says we
1905 * we have free blocks
1906 */
1907 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1908 "%d free clusters as per "
1909 "group info. But bitmap says 0",
1910 free);
1911 break;
1912 }
1913
1914 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1915 BUG_ON(ex.fe_len <= 0);
1916 if (free < ex.fe_len) {
1917 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1918 "%d free clusters as per "
1919 "group info. But got %d blocks",
1920 free, ex.fe_len);
1921 /*
1922 * The number of free blocks differs. This mostly
1923 * indicate that the bitmap is corrupt. So exit
1924 * without claiming the space.
1925 */
1926 break;
1927 }
1928
1929 ext4_mb_measure_extent(ac, &ex, e4b);
1930
1931 i += ex.fe_len;
1932 free -= ex.fe_len;
1933 }
1934
1935 ext4_mb_check_limits(ac, e4b, 1);
1936 }
1937
1938 /*
1939 * This is a special case for storages like raid5
1940 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1941 */
1942 static noinline_for_stack
1943 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1944 struct ext4_buddy *e4b)
1945 {
1946 struct super_block *sb = ac->ac_sb;
1947 struct ext4_sb_info *sbi = EXT4_SB(sb);
1948 void *bitmap = e4b->bd_bitmap;
1949 struct ext4_free_extent ex;
1950 ext4_fsblk_t first_group_block;
1951 ext4_fsblk_t a;
1952 ext4_grpblk_t i;
1953 int max;
1954
1955 BUG_ON(sbi->s_stripe == 0);
1956
1957 /* find first stripe-aligned block in group */
1958 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1959
1960 a = first_group_block + sbi->s_stripe - 1;
1961 do_div(a, sbi->s_stripe);
1962 i = (a * sbi->s_stripe) - first_group_block;
1963
1964 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1965 if (!mb_test_bit(i, bitmap)) {
1966 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1967 if (max >= sbi->s_stripe) {
1968 ac->ac_found++;
1969 ac->ac_b_ex = ex;
1970 ext4_mb_use_best_found(ac, e4b);
1971 break;
1972 }
1973 }
1974 i += sbi->s_stripe;
1975 }
1976 }
1977
1978 /* This is now called BEFORE we load the buddy bitmap. */
1979 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1980 ext4_group_t group, int cr)
1981 {
1982 unsigned free, fragments;
1983 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1984 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1985
1986 BUG_ON(cr < 0 || cr >= 4);
1987
1988 free = grp->bb_free;
1989 if (free == 0)
1990 return 0;
1991 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
1992 return 0;
1993
1994 /* We only do this if the grp has never been initialized */
1995 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1996 int ret = ext4_mb_init_group(ac->ac_sb, group);
1997 if (ret)
1998 return 0;
1999 }
2000
2001 fragments = grp->bb_fragments;
2002 if (fragments == 0)
2003 return 0;
2004
2005 switch (cr) {
2006 case 0:
2007 BUG_ON(ac->ac_2order == 0);
2008
2009 /* Avoid using the first bg of a flexgroup for data files */
2010 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2011 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2012 ((group % flex_size) == 0))
2013 return 0;
2014
2015 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2016 (free / fragments) >= ac->ac_g_ex.fe_len)
2017 return 1;
2018
2019 if (grp->bb_largest_free_order < ac->ac_2order)
2020 return 0;
2021
2022 return 1;
2023 case 1:
2024 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2025 return 1;
2026 break;
2027 case 2:
2028 if (free >= ac->ac_g_ex.fe_len)
2029 return 1;
2030 break;
2031 case 3:
2032 return 1;
2033 default:
2034 BUG();
2035 }
2036
2037 return 0;
2038 }
2039
2040 static noinline_for_stack int
2041 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2042 {
2043 ext4_group_t ngroups, group, i;
2044 int cr;
2045 int err = 0;
2046 struct ext4_sb_info *sbi;
2047 struct super_block *sb;
2048 struct ext4_buddy e4b;
2049
2050 sb = ac->ac_sb;
2051 sbi = EXT4_SB(sb);
2052 ngroups = ext4_get_groups_count(sb);
2053 /* non-extent files are limited to low blocks/groups */
2054 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2055 ngroups = sbi->s_blockfile_groups;
2056
2057 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2058
2059 /* first, try the goal */
2060 err = ext4_mb_find_by_goal(ac, &e4b);
2061 if (err || ac->ac_status == AC_STATUS_FOUND)
2062 goto out;
2063
2064 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2065 goto out;
2066
2067 /*
2068 * ac->ac2_order is set only if the fe_len is a power of 2
2069 * if ac2_order is set we also set criteria to 0 so that we
2070 * try exact allocation using buddy.
2071 */
2072 i = fls(ac->ac_g_ex.fe_len);
2073 ac->ac_2order = 0;
2074 /*
2075 * We search using buddy data only if the order of the request
2076 * is greater than equal to the sbi_s_mb_order2_reqs
2077 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2078 */
2079 if (i >= sbi->s_mb_order2_reqs) {
2080 /*
2081 * This should tell if fe_len is exactly power of 2
2082 */
2083 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2084 ac->ac_2order = i - 1;
2085 }
2086
2087 /* if stream allocation is enabled, use global goal */
2088 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2089 /* TBD: may be hot point */
2090 spin_lock(&sbi->s_md_lock);
2091 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2092 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2093 spin_unlock(&sbi->s_md_lock);
2094 }
2095
2096 /* Let's just scan groups to find more-less suitable blocks */
2097 cr = ac->ac_2order ? 0 : 1;
2098 /*
2099 * cr == 0 try to get exact allocation,
2100 * cr == 3 try to get anything
2101 */
2102 repeat:
2103 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2104 ac->ac_criteria = cr;
2105 /*
2106 * searching for the right group start
2107 * from the goal value specified
2108 */
2109 group = ac->ac_g_ex.fe_group;
2110
2111 for (i = 0; i < ngroups; group++, i++) {
2112 /*
2113 * Artificially restricted ngroups for non-extent
2114 * files makes group > ngroups possible on first loop.
2115 */
2116 if (group >= ngroups)
2117 group = 0;
2118
2119 /* This now checks without needing the buddy page */
2120 if (!ext4_mb_good_group(ac, group, cr))
2121 continue;
2122
2123 err = ext4_mb_load_buddy(sb, group, &e4b);
2124 if (err)
2125 goto out;
2126
2127 ext4_lock_group(sb, group);
2128
2129 /*
2130 * We need to check again after locking the
2131 * block group
2132 */
2133 if (!ext4_mb_good_group(ac, group, cr)) {
2134 ext4_unlock_group(sb, group);
2135 ext4_mb_unload_buddy(&e4b);
2136 continue;
2137 }
2138
2139 ac->ac_groups_scanned++;
2140 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2141 ext4_mb_simple_scan_group(ac, &e4b);
2142 else if (cr == 1 && sbi->s_stripe &&
2143 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2144 ext4_mb_scan_aligned(ac, &e4b);
2145 else
2146 ext4_mb_complex_scan_group(ac, &e4b);
2147
2148 ext4_unlock_group(sb, group);
2149 ext4_mb_unload_buddy(&e4b);
2150
2151 if (ac->ac_status != AC_STATUS_CONTINUE)
2152 break;
2153 }
2154 }
2155
2156 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2157 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2158 /*
2159 * We've been searching too long. Let's try to allocate
2160 * the best chunk we've found so far
2161 */
2162
2163 ext4_mb_try_best_found(ac, &e4b);
2164 if (ac->ac_status != AC_STATUS_FOUND) {
2165 /*
2166 * Someone more lucky has already allocated it.
2167 * The only thing we can do is just take first
2168 * found block(s)
2169 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2170 */
2171 ac->ac_b_ex.fe_group = 0;
2172 ac->ac_b_ex.fe_start = 0;
2173 ac->ac_b_ex.fe_len = 0;
2174 ac->ac_status = AC_STATUS_CONTINUE;
2175 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2176 cr = 3;
2177 atomic_inc(&sbi->s_mb_lost_chunks);
2178 goto repeat;
2179 }
2180 }
2181 out:
2182 return err;
2183 }
2184
2185 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2186 {
2187 struct super_block *sb = seq->private;
2188 ext4_group_t group;
2189
2190 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2191 return NULL;
2192 group = *pos + 1;
2193 return (void *) ((unsigned long) group);
2194 }
2195
2196 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2197 {
2198 struct super_block *sb = seq->private;
2199 ext4_group_t group;
2200
2201 ++*pos;
2202 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2203 return NULL;
2204 group = *pos + 1;
2205 return (void *) ((unsigned long) group);
2206 }
2207
2208 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2209 {
2210 struct super_block *sb = seq->private;
2211 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2212 int i;
2213 int err, buddy_loaded = 0;
2214 struct ext4_buddy e4b;
2215 struct ext4_group_info *grinfo;
2216 struct sg {
2217 struct ext4_group_info info;
2218 ext4_grpblk_t counters[16];
2219 } sg;
2220
2221 group--;
2222 if (group == 0)
2223 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2224 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2225 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2226 "group", "free", "frags", "first",
2227 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2228 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2229
2230 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2231 sizeof(struct ext4_group_info);
2232 grinfo = ext4_get_group_info(sb, group);
2233 /* Load the group info in memory only if not already loaded. */
2234 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2235 err = ext4_mb_load_buddy(sb, group, &e4b);
2236 if (err) {
2237 seq_printf(seq, "#%-5u: I/O error\n", group);
2238 return 0;
2239 }
2240 buddy_loaded = 1;
2241 }
2242
2243 memcpy(&sg, ext4_get_group_info(sb, group), i);
2244
2245 if (buddy_loaded)
2246 ext4_mb_unload_buddy(&e4b);
2247
2248 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2249 sg.info.bb_fragments, sg.info.bb_first_free);
2250 for (i = 0; i <= 13; i++)
2251 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2252 sg.info.bb_counters[i] : 0);
2253 seq_printf(seq, " ]\n");
2254
2255 return 0;
2256 }
2257
2258 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2259 {
2260 }
2261
2262 static const struct seq_operations ext4_mb_seq_groups_ops = {
2263 .start = ext4_mb_seq_groups_start,
2264 .next = ext4_mb_seq_groups_next,
2265 .stop = ext4_mb_seq_groups_stop,
2266 .show = ext4_mb_seq_groups_show,
2267 };
2268
2269 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2270 {
2271 struct super_block *sb = PDE_DATA(inode);
2272 int rc;
2273
2274 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2275 if (rc == 0) {
2276 struct seq_file *m = file->private_data;
2277 m->private = sb;
2278 }
2279 return rc;
2280
2281 }
2282
2283 static const struct file_operations ext4_mb_seq_groups_fops = {
2284 .owner = THIS_MODULE,
2285 .open = ext4_mb_seq_groups_open,
2286 .read = seq_read,
2287 .llseek = seq_lseek,
2288 .release = seq_release,
2289 };
2290
2291 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2292 {
2293 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2294 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2295
2296 BUG_ON(!cachep);
2297 return cachep;
2298 }
2299
2300 /*
2301 * Allocate the top-level s_group_info array for the specified number
2302 * of groups
2303 */
2304 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2305 {
2306 struct ext4_sb_info *sbi = EXT4_SB(sb);
2307 unsigned size;
2308 struct ext4_group_info ***new_groupinfo;
2309
2310 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2311 EXT4_DESC_PER_BLOCK_BITS(sb);
2312 if (size <= sbi->s_group_info_size)
2313 return 0;
2314
2315 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2316 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2317 if (!new_groupinfo) {
2318 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2319 return -ENOMEM;
2320 }
2321 if (sbi->s_group_info) {
2322 memcpy(new_groupinfo, sbi->s_group_info,
2323 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2324 ext4_kvfree(sbi->s_group_info);
2325 }
2326 sbi->s_group_info = new_groupinfo;
2327 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2328 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2329 sbi->s_group_info_size);
2330 return 0;
2331 }
2332
2333 /* Create and initialize ext4_group_info data for the given group. */
2334 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2335 struct ext4_group_desc *desc)
2336 {
2337 int i;
2338 int metalen = 0;
2339 struct ext4_sb_info *sbi = EXT4_SB(sb);
2340 struct ext4_group_info **meta_group_info;
2341 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2342
2343 /*
2344 * First check if this group is the first of a reserved block.
2345 * If it's true, we have to allocate a new table of pointers
2346 * to ext4_group_info structures
2347 */
2348 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2349 metalen = sizeof(*meta_group_info) <<
2350 EXT4_DESC_PER_BLOCK_BITS(sb);
2351 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2352 if (meta_group_info == NULL) {
2353 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2354 "for a buddy group");
2355 goto exit_meta_group_info;
2356 }
2357 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2358 meta_group_info;
2359 }
2360
2361 meta_group_info =
2362 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2363 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2364
2365 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2366 if (meta_group_info[i] == NULL) {
2367 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2368 goto exit_group_info;
2369 }
2370 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2371 &(meta_group_info[i]->bb_state));
2372
2373 /*
2374 * initialize bb_free to be able to skip
2375 * empty groups without initialization
2376 */
2377 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2378 meta_group_info[i]->bb_free =
2379 ext4_free_clusters_after_init(sb, group, desc);
2380 } else {
2381 meta_group_info[i]->bb_free =
2382 ext4_free_group_clusters(sb, desc);
2383 }
2384
2385 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2386 init_rwsem(&meta_group_info[i]->alloc_sem);
2387 meta_group_info[i]->bb_free_root = RB_ROOT;
2388 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2389
2390 #ifdef DOUBLE_CHECK
2391 {
2392 struct buffer_head *bh;
2393 meta_group_info[i]->bb_bitmap =
2394 kmalloc(sb->s_blocksize, GFP_KERNEL);
2395 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2396 bh = ext4_read_block_bitmap(sb, group);
2397 BUG_ON(bh == NULL);
2398 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2399 sb->s_blocksize);
2400 put_bh(bh);
2401 }
2402 #endif
2403
2404 return 0;
2405
2406 exit_group_info:
2407 /* If a meta_group_info table has been allocated, release it now */
2408 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2409 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2410 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2411 }
2412 exit_meta_group_info:
2413 return -ENOMEM;
2414 } /* ext4_mb_add_groupinfo */
2415
2416 static int ext4_mb_init_backend(struct super_block *sb)
2417 {
2418 ext4_group_t ngroups = ext4_get_groups_count(sb);
2419 ext4_group_t i;
2420 struct ext4_sb_info *sbi = EXT4_SB(sb);
2421 int err;
2422 struct ext4_group_desc *desc;
2423 struct kmem_cache *cachep;
2424
2425 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2426 if (err)
2427 return err;
2428
2429 sbi->s_buddy_cache = new_inode(sb);
2430 if (sbi->s_buddy_cache == NULL) {
2431 ext4_msg(sb, KERN_ERR, "can't get new inode");
2432 goto err_freesgi;
2433 }
2434 /* To avoid potentially colliding with an valid on-disk inode number,
2435 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2436 * not in the inode hash, so it should never be found by iget(), but
2437 * this will avoid confusion if it ever shows up during debugging. */
2438 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2439 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2440 for (i = 0; i < ngroups; i++) {
2441 desc = ext4_get_group_desc(sb, i, NULL);
2442 if (desc == NULL) {
2443 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2444 goto err_freebuddy;
2445 }
2446 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2447 goto err_freebuddy;
2448 }
2449
2450 return 0;
2451
2452 err_freebuddy:
2453 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2454 while (i-- > 0)
2455 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2456 i = sbi->s_group_info_size;
2457 while (i-- > 0)
2458 kfree(sbi->s_group_info[i]);
2459 iput(sbi->s_buddy_cache);
2460 err_freesgi:
2461 ext4_kvfree(sbi->s_group_info);
2462 return -ENOMEM;
2463 }
2464
2465 static void ext4_groupinfo_destroy_slabs(void)
2466 {
2467 int i;
2468
2469 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2470 if (ext4_groupinfo_caches[i])
2471 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2472 ext4_groupinfo_caches[i] = NULL;
2473 }
2474 }
2475
2476 static int ext4_groupinfo_create_slab(size_t size)
2477 {
2478 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2479 int slab_size;
2480 int blocksize_bits = order_base_2(size);
2481 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2482 struct kmem_cache *cachep;
2483
2484 if (cache_index >= NR_GRPINFO_CACHES)
2485 return -EINVAL;
2486
2487 if (unlikely(cache_index < 0))
2488 cache_index = 0;
2489
2490 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2491 if (ext4_groupinfo_caches[cache_index]) {
2492 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2493 return 0; /* Already created */
2494 }
2495
2496 slab_size = offsetof(struct ext4_group_info,
2497 bb_counters[blocksize_bits + 2]);
2498
2499 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2500 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2501 NULL);
2502
2503 ext4_groupinfo_caches[cache_index] = cachep;
2504
2505 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2506 if (!cachep) {
2507 printk(KERN_EMERG
2508 "EXT4-fs: no memory for groupinfo slab cache\n");
2509 return -ENOMEM;
2510 }
2511
2512 return 0;
2513 }
2514
2515 int ext4_mb_init(struct super_block *sb)
2516 {
2517 struct ext4_sb_info *sbi = EXT4_SB(sb);
2518 unsigned i, j;
2519 unsigned offset, offset_incr;
2520 unsigned max;
2521 int ret;
2522
2523 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2524
2525 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2526 if (sbi->s_mb_offsets == NULL) {
2527 ret = -ENOMEM;
2528 goto out;
2529 }
2530
2531 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2532 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2533 if (sbi->s_mb_maxs == NULL) {
2534 ret = -ENOMEM;
2535 goto out;
2536 }
2537
2538 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2539 if (ret < 0)
2540 goto out;
2541
2542 /* order 0 is regular bitmap */
2543 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2544 sbi->s_mb_offsets[0] = 0;
2545
2546 i = 1;
2547 offset = 0;
2548 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2549 max = sb->s_blocksize << 2;
2550 do {
2551 sbi->s_mb_offsets[i] = offset;
2552 sbi->s_mb_maxs[i] = max;
2553 offset += offset_incr;
2554 offset_incr = offset_incr >> 1;
2555 max = max >> 1;
2556 i++;
2557 } while (i <= sb->s_blocksize_bits + 1);
2558
2559 spin_lock_init(&sbi->s_md_lock);
2560 spin_lock_init(&sbi->s_bal_lock);
2561
2562 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2563 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2564 sbi->s_mb_stats = MB_DEFAULT_STATS;
2565 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2566 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2567 /*
2568 * The default group preallocation is 512, which for 4k block
2569 * sizes translates to 2 megabytes. However for bigalloc file
2570 * systems, this is probably too big (i.e, if the cluster size
2571 * is 1 megabyte, then group preallocation size becomes half a
2572 * gigabyte!). As a default, we will keep a two megabyte
2573 * group pralloc size for cluster sizes up to 64k, and after
2574 * that, we will force a minimum group preallocation size of
2575 * 32 clusters. This translates to 8 megs when the cluster
2576 * size is 256k, and 32 megs when the cluster size is 1 meg,
2577 * which seems reasonable as a default.
2578 */
2579 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2580 sbi->s_cluster_bits, 32);
2581 /*
2582 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2583 * to the lowest multiple of s_stripe which is bigger than
2584 * the s_mb_group_prealloc as determined above. We want
2585 * the preallocation size to be an exact multiple of the
2586 * RAID stripe size so that preallocations don't fragment
2587 * the stripes.
2588 */
2589 if (sbi->s_stripe > 1) {
2590 sbi->s_mb_group_prealloc = roundup(
2591 sbi->s_mb_group_prealloc, sbi->s_stripe);
2592 }
2593
2594 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2595 if (sbi->s_locality_groups == NULL) {
2596 ret = -ENOMEM;
2597 goto out_free_groupinfo_slab;
2598 }
2599 for_each_possible_cpu(i) {
2600 struct ext4_locality_group *lg;
2601 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2602 mutex_init(&lg->lg_mutex);
2603 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2604 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2605 spin_lock_init(&lg->lg_prealloc_lock);
2606 }
2607
2608 /* init file for buddy data */
2609 ret = ext4_mb_init_backend(sb);
2610 if (ret != 0)
2611 goto out_free_locality_groups;
2612
2613 if (sbi->s_proc)
2614 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2615 &ext4_mb_seq_groups_fops, sb);
2616
2617 return 0;
2618
2619 out_free_locality_groups:
2620 free_percpu(sbi->s_locality_groups);
2621 sbi->s_locality_groups = NULL;
2622 out_free_groupinfo_slab:
2623 ext4_groupinfo_destroy_slabs();
2624 out:
2625 kfree(sbi->s_mb_offsets);
2626 sbi->s_mb_offsets = NULL;
2627 kfree(sbi->s_mb_maxs);
2628 sbi->s_mb_maxs = NULL;
2629 return ret;
2630 }
2631
2632 /* need to called with the ext4 group lock held */
2633 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2634 {
2635 struct ext4_prealloc_space *pa;
2636 struct list_head *cur, *tmp;
2637 int count = 0;
2638
2639 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2640 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2641 list_del(&pa->pa_group_list);
2642 count++;
2643 kmem_cache_free(ext4_pspace_cachep, pa);
2644 }
2645 if (count)
2646 mb_debug(1, "mballoc: %u PAs left\n", count);
2647
2648 }
2649
2650 int ext4_mb_release(struct super_block *sb)
2651 {
2652 ext4_group_t ngroups = ext4_get_groups_count(sb);
2653 ext4_group_t i;
2654 int num_meta_group_infos;
2655 struct ext4_group_info *grinfo;
2656 struct ext4_sb_info *sbi = EXT4_SB(sb);
2657 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2658
2659 if (sbi->s_proc)
2660 remove_proc_entry("mb_groups", sbi->s_proc);
2661
2662 if (sbi->s_group_info) {
2663 for (i = 0; i < ngroups; i++) {
2664 grinfo = ext4_get_group_info(sb, i);
2665 #ifdef DOUBLE_CHECK
2666 kfree(grinfo->bb_bitmap);
2667 #endif
2668 ext4_lock_group(sb, i);
2669 ext4_mb_cleanup_pa(grinfo);
2670 ext4_unlock_group(sb, i);
2671 kmem_cache_free(cachep, grinfo);
2672 }
2673 num_meta_group_infos = (ngroups +
2674 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2675 EXT4_DESC_PER_BLOCK_BITS(sb);
2676 for (i = 0; i < num_meta_group_infos; i++)
2677 kfree(sbi->s_group_info[i]);
2678 ext4_kvfree(sbi->s_group_info);
2679 }
2680 kfree(sbi->s_mb_offsets);
2681 kfree(sbi->s_mb_maxs);
2682 if (sbi->s_buddy_cache)
2683 iput(sbi->s_buddy_cache);
2684 if (sbi->s_mb_stats) {
2685 ext4_msg(sb, KERN_INFO,
2686 "mballoc: %u blocks %u reqs (%u success)",
2687 atomic_read(&sbi->s_bal_allocated),
2688 atomic_read(&sbi->s_bal_reqs),
2689 atomic_read(&sbi->s_bal_success));
2690 ext4_msg(sb, KERN_INFO,
2691 "mballoc: %u extents scanned, %u goal hits, "
2692 "%u 2^N hits, %u breaks, %u lost",
2693 atomic_read(&sbi->s_bal_ex_scanned),
2694 atomic_read(&sbi->s_bal_goals),
2695 atomic_read(&sbi->s_bal_2orders),
2696 atomic_read(&sbi->s_bal_breaks),
2697 atomic_read(&sbi->s_mb_lost_chunks));
2698 ext4_msg(sb, KERN_INFO,
2699 "mballoc: %lu generated and it took %Lu",
2700 sbi->s_mb_buddies_generated,
2701 sbi->s_mb_generation_time);
2702 ext4_msg(sb, KERN_INFO,
2703 "mballoc: %u preallocated, %u discarded",
2704 atomic_read(&sbi->s_mb_preallocated),
2705 atomic_read(&sbi->s_mb_discarded));
2706 }
2707
2708 free_percpu(sbi->s_locality_groups);
2709
2710 return 0;
2711 }
2712
2713 static inline int ext4_issue_discard(struct super_block *sb,
2714 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2715 {
2716 ext4_fsblk_t discard_block;
2717
2718 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2719 ext4_group_first_block_no(sb, block_group));
2720 count = EXT4_C2B(EXT4_SB(sb), count);
2721 trace_ext4_discard_blocks(sb,
2722 (unsigned long long) discard_block, count);
2723 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2724 }
2725
2726 /*
2727 * This function is called by the jbd2 layer once the commit has finished,
2728 * so we know we can free the blocks that were released with that commit.
2729 */
2730 static void ext4_free_data_callback(struct super_block *sb,
2731 struct ext4_journal_cb_entry *jce,
2732 int rc)
2733 {
2734 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2735 struct ext4_buddy e4b;
2736 struct ext4_group_info *db;
2737 int err, count = 0, count2 = 0;
2738
2739 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2740 entry->efd_count, entry->efd_group, entry);
2741
2742 if (test_opt(sb, DISCARD)) {
2743 err = ext4_issue_discard(sb, entry->efd_group,
2744 entry->efd_start_cluster,
2745 entry->efd_count);
2746 if (err && err != -EOPNOTSUPP)
2747 ext4_msg(sb, KERN_WARNING, "discard request in"
2748 " group:%d block:%d count:%d failed"
2749 " with %d", entry->efd_group,
2750 entry->efd_start_cluster,
2751 entry->efd_count, err);
2752 }
2753
2754 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2755 /* we expect to find existing buddy because it's pinned */
2756 BUG_ON(err != 0);
2757
2758
2759 db = e4b.bd_info;
2760 /* there are blocks to put in buddy to make them really free */
2761 count += entry->efd_count;
2762 count2++;
2763 ext4_lock_group(sb, entry->efd_group);
2764 /* Take it out of per group rb tree */
2765 rb_erase(&entry->efd_node, &(db->bb_free_root));
2766 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2767
2768 /*
2769 * Clear the trimmed flag for the group so that the next
2770 * ext4_trim_fs can trim it.
2771 * If the volume is mounted with -o discard, online discard
2772 * is supported and the free blocks will be trimmed online.
2773 */
2774 if (!test_opt(sb, DISCARD))
2775 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2776
2777 if (!db->bb_free_root.rb_node) {
2778 /* No more items in the per group rb tree
2779 * balance refcounts from ext4_mb_free_metadata()
2780 */
2781 page_cache_release(e4b.bd_buddy_page);
2782 page_cache_release(e4b.bd_bitmap_page);
2783 }
2784 ext4_unlock_group(sb, entry->efd_group);
2785 kmem_cache_free(ext4_free_data_cachep, entry);
2786 ext4_mb_unload_buddy(&e4b);
2787
2788 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2789 }
2790
2791 int __init ext4_init_mballoc(void)
2792 {
2793 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2794 SLAB_RECLAIM_ACCOUNT);
2795 if (ext4_pspace_cachep == NULL)
2796 return -ENOMEM;
2797
2798 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2799 SLAB_RECLAIM_ACCOUNT);
2800 if (ext4_ac_cachep == NULL) {
2801 kmem_cache_destroy(ext4_pspace_cachep);
2802 return -ENOMEM;
2803 }
2804
2805 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2806 SLAB_RECLAIM_ACCOUNT);
2807 if (ext4_free_data_cachep == NULL) {
2808 kmem_cache_destroy(ext4_pspace_cachep);
2809 kmem_cache_destroy(ext4_ac_cachep);
2810 return -ENOMEM;
2811 }
2812 return 0;
2813 }
2814
2815 void ext4_exit_mballoc(void)
2816 {
2817 /*
2818 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2819 * before destroying the slab cache.
2820 */
2821 rcu_barrier();
2822 kmem_cache_destroy(ext4_pspace_cachep);
2823 kmem_cache_destroy(ext4_ac_cachep);
2824 kmem_cache_destroy(ext4_free_data_cachep);
2825 ext4_groupinfo_destroy_slabs();
2826 }
2827
2828
2829 /*
2830 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2831 * Returns 0 if success or error code
2832 */
2833 static noinline_for_stack int
2834 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2835 handle_t *handle, unsigned int reserv_clstrs)
2836 {
2837 struct buffer_head *bitmap_bh = NULL;
2838 struct ext4_group_desc *gdp;
2839 struct buffer_head *gdp_bh;
2840 struct ext4_sb_info *sbi;
2841 struct super_block *sb;
2842 ext4_fsblk_t block;
2843 int err, len;
2844
2845 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2846 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2847
2848 sb = ac->ac_sb;
2849 sbi = EXT4_SB(sb);
2850
2851 err = -EIO;
2852 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2853 if (!bitmap_bh)
2854 goto out_err;
2855
2856 err = ext4_journal_get_write_access(handle, bitmap_bh);
2857 if (err)
2858 goto out_err;
2859
2860 err = -EIO;
2861 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2862 if (!gdp)
2863 goto out_err;
2864
2865 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2866 ext4_free_group_clusters(sb, gdp));
2867
2868 err = ext4_journal_get_write_access(handle, gdp_bh);
2869 if (err)
2870 goto out_err;
2871
2872 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2873
2874 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2875 if (!ext4_data_block_valid(sbi, block, len)) {
2876 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2877 "fs metadata", block, block+len);
2878 /* File system mounted not to panic on error
2879 * Fix the bitmap and repeat the block allocation
2880 * We leak some of the blocks here.
2881 */
2882 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2883 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2884 ac->ac_b_ex.fe_len);
2885 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2886 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2887 if (!err)
2888 err = -EAGAIN;
2889 goto out_err;
2890 }
2891
2892 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2893 #ifdef AGGRESSIVE_CHECK
2894 {
2895 int i;
2896 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2897 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2898 bitmap_bh->b_data));
2899 }
2900 }
2901 #endif
2902 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2903 ac->ac_b_ex.fe_len);
2904 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2905 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2906 ext4_free_group_clusters_set(sb, gdp,
2907 ext4_free_clusters_after_init(sb,
2908 ac->ac_b_ex.fe_group, gdp));
2909 }
2910 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2911 ext4_free_group_clusters_set(sb, gdp, len);
2912 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2913 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2914
2915 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2916 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2917 /*
2918 * Now reduce the dirty block count also. Should not go negative
2919 */
2920 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2921 /* release all the reserved blocks if non delalloc */
2922 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2923 reserv_clstrs);
2924
2925 if (sbi->s_log_groups_per_flex) {
2926 ext4_group_t flex_group = ext4_flex_group(sbi,
2927 ac->ac_b_ex.fe_group);
2928 atomic64_sub(ac->ac_b_ex.fe_len,
2929 &sbi->s_flex_groups[flex_group].free_clusters);
2930 }
2931
2932 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2933 if (err)
2934 goto out_err;
2935 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2936
2937 out_err:
2938 brelse(bitmap_bh);
2939 return err;
2940 }
2941
2942 /*
2943 * here we normalize request for locality group
2944 * Group request are normalized to s_mb_group_prealloc, which goes to
2945 * s_strip if we set the same via mount option.
2946 * s_mb_group_prealloc can be configured via
2947 * /sys/fs/ext4/<partition>/mb_group_prealloc
2948 *
2949 * XXX: should we try to preallocate more than the group has now?
2950 */
2951 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2952 {
2953 struct super_block *sb = ac->ac_sb;
2954 struct ext4_locality_group *lg = ac->ac_lg;
2955
2956 BUG_ON(lg == NULL);
2957 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2958 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2959 current->pid, ac->ac_g_ex.fe_len);
2960 }
2961
2962 /*
2963 * Normalization means making request better in terms of
2964 * size and alignment
2965 */
2966 static noinline_for_stack void
2967 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2968 struct ext4_allocation_request *ar)
2969 {
2970 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2971 int bsbits, max;
2972 ext4_lblk_t end;
2973 loff_t size, start_off;
2974 loff_t orig_size __maybe_unused;
2975 ext4_lblk_t start;
2976 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2977 struct ext4_prealloc_space *pa;
2978
2979 /* do normalize only data requests, metadata requests
2980 do not need preallocation */
2981 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2982 return;
2983
2984 /* sometime caller may want exact blocks */
2985 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2986 return;
2987
2988 /* caller may indicate that preallocation isn't
2989 * required (it's a tail, for example) */
2990 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2991 return;
2992
2993 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2994 ext4_mb_normalize_group_request(ac);
2995 return ;
2996 }
2997
2998 bsbits = ac->ac_sb->s_blocksize_bits;
2999
3000 /* first, let's learn actual file size
3001 * given current request is allocated */
3002 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3003 size = size << bsbits;
3004 if (size < i_size_read(ac->ac_inode))
3005 size = i_size_read(ac->ac_inode);
3006 orig_size = size;
3007
3008 /* max size of free chunks */
3009 max = 2 << bsbits;
3010
3011 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3012 (req <= (size) || max <= (chunk_size))
3013
3014 /* first, try to predict filesize */
3015 /* XXX: should this table be tunable? */
3016 start_off = 0;
3017 if (size <= 16 * 1024) {
3018 size = 16 * 1024;
3019 } else if (size <= 32 * 1024) {
3020 size = 32 * 1024;
3021 } else if (size <= 64 * 1024) {
3022 size = 64 * 1024;
3023 } else if (size <= 128 * 1024) {
3024 size = 128 * 1024;
3025 } else if (size <= 256 * 1024) {
3026 size = 256 * 1024;
3027 } else if (size <= 512 * 1024) {
3028 size = 512 * 1024;
3029 } else if (size <= 1024 * 1024) {
3030 size = 1024 * 1024;
3031 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3032 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3033 (21 - bsbits)) << 21;
3034 size = 2 * 1024 * 1024;
3035 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3036 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3037 (22 - bsbits)) << 22;
3038 size = 4 * 1024 * 1024;
3039 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3040 (8<<20)>>bsbits, max, 8 * 1024)) {
3041 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3042 (23 - bsbits)) << 23;
3043 size = 8 * 1024 * 1024;
3044 } else {
3045 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3046 size = ac->ac_o_ex.fe_len << bsbits;
3047 }
3048 size = size >> bsbits;
3049 start = start_off >> bsbits;
3050
3051 /* don't cover already allocated blocks in selected range */
3052 if (ar->pleft && start <= ar->lleft) {
3053 size -= ar->lleft + 1 - start;
3054 start = ar->lleft + 1;
3055 }
3056 if (ar->pright && start + size - 1 >= ar->lright)
3057 size -= start + size - ar->lright;
3058
3059 end = start + size;
3060
3061 /* check we don't cross already preallocated blocks */
3062 rcu_read_lock();
3063 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3064 ext4_lblk_t pa_end;
3065
3066 if (pa->pa_deleted)
3067 continue;
3068 spin_lock(&pa->pa_lock);
3069 if (pa->pa_deleted) {
3070 spin_unlock(&pa->pa_lock);
3071 continue;
3072 }
3073
3074 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3075 pa->pa_len);
3076
3077 /* PA must not overlap original request */
3078 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3079 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3080
3081 /* skip PAs this normalized request doesn't overlap with */
3082 if (pa->pa_lstart >= end || pa_end <= start) {
3083 spin_unlock(&pa->pa_lock);
3084 continue;
3085 }
3086 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3087
3088 /* adjust start or end to be adjacent to this pa */
3089 if (pa_end <= ac->ac_o_ex.fe_logical) {
3090 BUG_ON(pa_end < start);
3091 start = pa_end;
3092 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3093 BUG_ON(pa->pa_lstart > end);
3094 end = pa->pa_lstart;
3095 }
3096 spin_unlock(&pa->pa_lock);
3097 }
3098 rcu_read_unlock();
3099 size = end - start;
3100
3101 /* XXX: extra loop to check we really don't overlap preallocations */
3102 rcu_read_lock();
3103 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3104 ext4_lblk_t pa_end;
3105
3106 spin_lock(&pa->pa_lock);
3107 if (pa->pa_deleted == 0) {
3108 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3109 pa->pa_len);
3110 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3111 }
3112 spin_unlock(&pa->pa_lock);
3113 }
3114 rcu_read_unlock();
3115
3116 if (start + size <= ac->ac_o_ex.fe_logical &&
3117 start > ac->ac_o_ex.fe_logical) {
3118 ext4_msg(ac->ac_sb, KERN_ERR,
3119 "start %lu, size %lu, fe_logical %lu",
3120 (unsigned long) start, (unsigned long) size,
3121 (unsigned long) ac->ac_o_ex.fe_logical);
3122 }
3123 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3124 start > ac->ac_o_ex.fe_logical);
3125 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3126
3127 /* now prepare goal request */
3128
3129 /* XXX: is it better to align blocks WRT to logical
3130 * placement or satisfy big request as is */
3131 ac->ac_g_ex.fe_logical = start;
3132 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3133
3134 /* define goal start in order to merge */
3135 if (ar->pright && (ar->lright == (start + size))) {
3136 /* merge to the right */
3137 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3138 &ac->ac_f_ex.fe_group,
3139 &ac->ac_f_ex.fe_start);
3140 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3141 }
3142 if (ar->pleft && (ar->lleft + 1 == start)) {
3143 /* merge to the left */
3144 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3145 &ac->ac_f_ex.fe_group,
3146 &ac->ac_f_ex.fe_start);
3147 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3148 }
3149
3150 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3151 (unsigned) orig_size, (unsigned) start);
3152 }
3153
3154 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3155 {
3156 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3157
3158 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3159 atomic_inc(&sbi->s_bal_reqs);
3160 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3161 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3162 atomic_inc(&sbi->s_bal_success);
3163 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3164 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3165 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3166 atomic_inc(&sbi->s_bal_goals);
3167 if (ac->ac_found > sbi->s_mb_max_to_scan)
3168 atomic_inc(&sbi->s_bal_breaks);
3169 }
3170
3171 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3172 trace_ext4_mballoc_alloc(ac);
3173 else
3174 trace_ext4_mballoc_prealloc(ac);
3175 }
3176
3177 /*
3178 * Called on failure; free up any blocks from the inode PA for this
3179 * context. We don't need this for MB_GROUP_PA because we only change
3180 * pa_free in ext4_mb_release_context(), but on failure, we've already
3181 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3182 */
3183 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3184 {
3185 struct ext4_prealloc_space *pa = ac->ac_pa;
3186 struct ext4_buddy e4b;
3187 int err;
3188
3189 if (pa == NULL) {
3190 if (ac->ac_f_ex.fe_len == 0)
3191 return;
3192 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3193 if (err) {
3194 /*
3195 * This should never happen since we pin the
3196 * pages in the ext4_allocation_context so
3197 * ext4_mb_load_buddy() should never fail.
3198 */
3199 WARN(1, "mb_load_buddy failed (%d)", err);
3200 return;
3201 }
3202 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3203 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3204 ac->ac_f_ex.fe_len);
3205 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3206 ext4_mb_unload_buddy(&e4b);
3207 return;
3208 }
3209 if (pa->pa_type == MB_INODE_PA)
3210 pa->pa_free += ac->ac_b_ex.fe_len;
3211 }
3212
3213 /*
3214 * use blocks preallocated to inode
3215 */
3216 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3217 struct ext4_prealloc_space *pa)
3218 {
3219 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3220 ext4_fsblk_t start;
3221 ext4_fsblk_t end;
3222 int len;
3223
3224 /* found preallocated blocks, use them */
3225 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3226 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3227 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3228 len = EXT4_NUM_B2C(sbi, end - start);
3229 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3230 &ac->ac_b_ex.fe_start);
3231 ac->ac_b_ex.fe_len = len;
3232 ac->ac_status = AC_STATUS_FOUND;
3233 ac->ac_pa = pa;
3234
3235 BUG_ON(start < pa->pa_pstart);
3236 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3237 BUG_ON(pa->pa_free < len);
3238 pa->pa_free -= len;
3239
3240 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3241 }
3242
3243 /*
3244 * use blocks preallocated to locality group
3245 */
3246 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3247 struct ext4_prealloc_space *pa)
3248 {
3249 unsigned int len = ac->ac_o_ex.fe_len;
3250
3251 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3252 &ac->ac_b_ex.fe_group,
3253 &ac->ac_b_ex.fe_start);
3254 ac->ac_b_ex.fe_len = len;
3255 ac->ac_status = AC_STATUS_FOUND;
3256 ac->ac_pa = pa;
3257
3258 /* we don't correct pa_pstart or pa_plen here to avoid
3259 * possible race when the group is being loaded concurrently
3260 * instead we correct pa later, after blocks are marked
3261 * in on-disk bitmap -- see ext4_mb_release_context()
3262 * Other CPUs are prevented from allocating from this pa by lg_mutex
3263 */
3264 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3265 }
3266
3267 /*
3268 * Return the prealloc space that have minimal distance
3269 * from the goal block. @cpa is the prealloc
3270 * space that is having currently known minimal distance
3271 * from the goal block.
3272 */
3273 static struct ext4_prealloc_space *
3274 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3275 struct ext4_prealloc_space *pa,
3276 struct ext4_prealloc_space *cpa)
3277 {
3278 ext4_fsblk_t cur_distance, new_distance;
3279
3280 if (cpa == NULL) {
3281 atomic_inc(&pa->pa_count);
3282 return pa;
3283 }
3284 cur_distance = abs(goal_block - cpa->pa_pstart);
3285 new_distance = abs(goal_block - pa->pa_pstart);
3286
3287 if (cur_distance <= new_distance)
3288 return cpa;
3289
3290 /* drop the previous reference */
3291 atomic_dec(&cpa->pa_count);
3292 atomic_inc(&pa->pa_count);
3293 return pa;
3294 }
3295
3296 /*
3297 * search goal blocks in preallocated space
3298 */
3299 static noinline_for_stack int
3300 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3301 {
3302 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3303 int order, i;
3304 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3305 struct ext4_locality_group *lg;
3306 struct ext4_prealloc_space *pa, *cpa = NULL;
3307 ext4_fsblk_t goal_block;
3308
3309 /* only data can be preallocated */
3310 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3311 return 0;
3312
3313 /* first, try per-file preallocation */
3314 rcu_read_lock();
3315 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3316
3317 /* all fields in this condition don't change,
3318 * so we can skip locking for them */
3319 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3320 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3321 EXT4_C2B(sbi, pa->pa_len)))
3322 continue;
3323
3324 /* non-extent files can't have physical blocks past 2^32 */
3325 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3326 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3327 EXT4_MAX_BLOCK_FILE_PHYS))
3328 continue;
3329
3330 /* found preallocated blocks, use them */
3331 spin_lock(&pa->pa_lock);
3332 if (pa->pa_deleted == 0 && pa->pa_free) {
3333 atomic_inc(&pa->pa_count);
3334 ext4_mb_use_inode_pa(ac, pa);
3335 spin_unlock(&pa->pa_lock);
3336 ac->ac_criteria = 10;
3337 rcu_read_unlock();
3338 return 1;
3339 }
3340 spin_unlock(&pa->pa_lock);
3341 }
3342 rcu_read_unlock();
3343
3344 /* can we use group allocation? */
3345 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3346 return 0;
3347
3348 /* inode may have no locality group for some reason */
3349 lg = ac->ac_lg;
3350 if (lg == NULL)
3351 return 0;
3352 order = fls(ac->ac_o_ex.fe_len) - 1;
3353 if (order > PREALLOC_TB_SIZE - 1)
3354 /* The max size of hash table is PREALLOC_TB_SIZE */
3355 order = PREALLOC_TB_SIZE - 1;
3356
3357 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3358 /*
3359 * search for the prealloc space that is having
3360 * minimal distance from the goal block.
3361 */
3362 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3363 rcu_read_lock();
3364 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3365 pa_inode_list) {
3366 spin_lock(&pa->pa_lock);
3367 if (pa->pa_deleted == 0 &&
3368 pa->pa_free >= ac->ac_o_ex.fe_len) {
3369
3370 cpa = ext4_mb_check_group_pa(goal_block,
3371 pa, cpa);
3372 }
3373 spin_unlock(&pa->pa_lock);
3374 }
3375 rcu_read_unlock();
3376 }
3377 if (cpa) {
3378 ext4_mb_use_group_pa(ac, cpa);
3379 ac->ac_criteria = 20;
3380 return 1;
3381 }
3382 return 0;
3383 }
3384
3385 /*
3386 * the function goes through all block freed in the group
3387 * but not yet committed and marks them used in in-core bitmap.
3388 * buddy must be generated from this bitmap
3389 * Need to be called with the ext4 group lock held
3390 */
3391 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3392 ext4_group_t group)
3393 {
3394 struct rb_node *n;
3395 struct ext4_group_info *grp;
3396 struct ext4_free_data *entry;
3397
3398 grp = ext4_get_group_info(sb, group);
3399 n = rb_first(&(grp->bb_free_root));
3400
3401 while (n) {
3402 entry = rb_entry(n, struct ext4_free_data, efd_node);
3403 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3404 n = rb_next(n);
3405 }
3406 return;
3407 }
3408
3409 /*
3410 * the function goes through all preallocation in this group and marks them
3411 * used in in-core bitmap. buddy must be generated from this bitmap
3412 * Need to be called with ext4 group lock held
3413 */
3414 static noinline_for_stack
3415 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3416 ext4_group_t group)
3417 {
3418 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3419 struct ext4_prealloc_space *pa;
3420 struct list_head *cur;
3421 ext4_group_t groupnr;
3422 ext4_grpblk_t start;
3423 int preallocated = 0;
3424 int len;
3425
3426 /* all form of preallocation discards first load group,
3427 * so the only competing code is preallocation use.
3428 * we don't need any locking here
3429 * notice we do NOT ignore preallocations with pa_deleted
3430 * otherwise we could leave used blocks available for
3431 * allocation in buddy when concurrent ext4_mb_put_pa()
3432 * is dropping preallocation
3433 */
3434 list_for_each(cur, &grp->bb_prealloc_list) {
3435 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3436 spin_lock(&pa->pa_lock);
3437 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3438 &groupnr, &start);
3439 len = pa->pa_len;
3440 spin_unlock(&pa->pa_lock);
3441 if (unlikely(len == 0))
3442 continue;
3443 BUG_ON(groupnr != group);
3444 ext4_set_bits(bitmap, start, len);
3445 preallocated += len;
3446 }
3447 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3448 }
3449
3450 static void ext4_mb_pa_callback(struct rcu_head *head)
3451 {
3452 struct ext4_prealloc_space *pa;
3453 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3454
3455 BUG_ON(atomic_read(&pa->pa_count));
3456 BUG_ON(pa->pa_deleted == 0);
3457 kmem_cache_free(ext4_pspace_cachep, pa);
3458 }
3459
3460 /*
3461 * drops a reference to preallocated space descriptor
3462 * if this was the last reference and the space is consumed
3463 */
3464 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3465 struct super_block *sb, struct ext4_prealloc_space *pa)
3466 {
3467 ext4_group_t grp;
3468 ext4_fsblk_t grp_blk;
3469
3470 /* in this short window concurrent discard can set pa_deleted */
3471 spin_lock(&pa->pa_lock);
3472 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3473 spin_unlock(&pa->pa_lock);
3474 return;
3475 }
3476
3477 if (pa->pa_deleted == 1) {
3478 spin_unlock(&pa->pa_lock);
3479 return;
3480 }
3481
3482 pa->pa_deleted = 1;
3483 spin_unlock(&pa->pa_lock);
3484
3485 grp_blk = pa->pa_pstart;
3486 /*
3487 * If doing group-based preallocation, pa_pstart may be in the
3488 * next group when pa is used up
3489 */
3490 if (pa->pa_type == MB_GROUP_PA)
3491 grp_blk--;
3492
3493 grp = ext4_get_group_number(sb, grp_blk);
3494
3495 /*
3496 * possible race:
3497 *
3498 * P1 (buddy init) P2 (regular allocation)
3499 * find block B in PA
3500 * copy on-disk bitmap to buddy
3501 * mark B in on-disk bitmap
3502 * drop PA from group
3503 * mark all PAs in buddy
3504 *
3505 * thus, P1 initializes buddy with B available. to prevent this
3506 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3507 * against that pair
3508 */
3509 ext4_lock_group(sb, grp);
3510 list_del(&pa->pa_group_list);
3511 ext4_unlock_group(sb, grp);
3512
3513 spin_lock(pa->pa_obj_lock);
3514 list_del_rcu(&pa->pa_inode_list);
3515 spin_unlock(pa->pa_obj_lock);
3516
3517 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3518 }
3519
3520 /*
3521 * creates new preallocated space for given inode
3522 */
3523 static noinline_for_stack int
3524 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3525 {
3526 struct super_block *sb = ac->ac_sb;
3527 struct ext4_sb_info *sbi = EXT4_SB(sb);
3528 struct ext4_prealloc_space *pa;
3529 struct ext4_group_info *grp;
3530 struct ext4_inode_info *ei;
3531
3532 /* preallocate only when found space is larger then requested */
3533 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3534 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3535 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3536
3537 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3538 if (pa == NULL)
3539 return -ENOMEM;
3540
3541 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3542 int winl;
3543 int wins;
3544 int win;
3545 int offs;
3546
3547 /* we can't allocate as much as normalizer wants.
3548 * so, found space must get proper lstart
3549 * to cover original request */
3550 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3551 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3552
3553 /* we're limited by original request in that
3554 * logical block must be covered any way
3555 * winl is window we can move our chunk within */
3556 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3557
3558 /* also, we should cover whole original request */
3559 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3560
3561 /* the smallest one defines real window */
3562 win = min(winl, wins);
3563
3564 offs = ac->ac_o_ex.fe_logical %
3565 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3566 if (offs && offs < win)
3567 win = offs;
3568
3569 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3570 EXT4_NUM_B2C(sbi, win);
3571 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3572 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3573 }
3574
3575 /* preallocation can change ac_b_ex, thus we store actually
3576 * allocated blocks for history */
3577 ac->ac_f_ex = ac->ac_b_ex;
3578
3579 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3580 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3581 pa->pa_len = ac->ac_b_ex.fe_len;
3582 pa->pa_free = pa->pa_len;
3583 atomic_set(&pa->pa_count, 1);
3584 spin_lock_init(&pa->pa_lock);
3585 INIT_LIST_HEAD(&pa->pa_inode_list);
3586 INIT_LIST_HEAD(&pa->pa_group_list);
3587 pa->pa_deleted = 0;
3588 pa->pa_type = MB_INODE_PA;
3589
3590 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3591 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3592 trace_ext4_mb_new_inode_pa(ac, pa);
3593
3594 ext4_mb_use_inode_pa(ac, pa);
3595 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3596
3597 ei = EXT4_I(ac->ac_inode);
3598 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3599
3600 pa->pa_obj_lock = &ei->i_prealloc_lock;
3601 pa->pa_inode = ac->ac_inode;
3602
3603 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3604 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3605 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3606
3607 spin_lock(pa->pa_obj_lock);
3608 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3609 spin_unlock(pa->pa_obj_lock);
3610
3611 return 0;
3612 }
3613
3614 /*
3615 * creates new preallocated space for locality group inodes belongs to
3616 */
3617 static noinline_for_stack int
3618 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3619 {
3620 struct super_block *sb = ac->ac_sb;
3621 struct ext4_locality_group *lg;
3622 struct ext4_prealloc_space *pa;
3623 struct ext4_group_info *grp;
3624
3625 /* preallocate only when found space is larger then requested */
3626 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3627 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3628 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3629
3630 BUG_ON(ext4_pspace_cachep == NULL);
3631 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3632 if (pa == NULL)
3633 return -ENOMEM;
3634
3635 /* preallocation can change ac_b_ex, thus we store actually
3636 * allocated blocks for history */
3637 ac->ac_f_ex = ac->ac_b_ex;
3638
3639 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3640 pa->pa_lstart = pa->pa_pstart;
3641 pa->pa_len = ac->ac_b_ex.fe_len;
3642 pa->pa_free = pa->pa_len;
3643 atomic_set(&pa->pa_count, 1);
3644 spin_lock_init(&pa->pa_lock);
3645 INIT_LIST_HEAD(&pa->pa_inode_list);
3646 INIT_LIST_HEAD(&pa->pa_group_list);
3647 pa->pa_deleted = 0;
3648 pa->pa_type = MB_GROUP_PA;
3649
3650 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3651 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3652 trace_ext4_mb_new_group_pa(ac, pa);
3653
3654 ext4_mb_use_group_pa(ac, pa);
3655 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3656
3657 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3658 lg = ac->ac_lg;
3659 BUG_ON(lg == NULL);
3660
3661 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3662 pa->pa_inode = NULL;
3663
3664 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3665 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3666 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3667
3668 /*
3669 * We will later add the new pa to the right bucket
3670 * after updating the pa_free in ext4_mb_release_context
3671 */
3672 return 0;
3673 }
3674
3675 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3676 {
3677 int err;
3678
3679 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3680 err = ext4_mb_new_group_pa(ac);
3681 else
3682 err = ext4_mb_new_inode_pa(ac);
3683 return err;
3684 }
3685
3686 /*
3687 * finds all unused blocks in on-disk bitmap, frees them in
3688 * in-core bitmap and buddy.
3689 * @pa must be unlinked from inode and group lists, so that
3690 * nobody else can find/use it.
3691 * the caller MUST hold group/inode locks.
3692 * TODO: optimize the case when there are no in-core structures yet
3693 */
3694 static noinline_for_stack int
3695 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3696 struct ext4_prealloc_space *pa)
3697 {
3698 struct super_block *sb = e4b->bd_sb;
3699 struct ext4_sb_info *sbi = EXT4_SB(sb);
3700 unsigned int end;
3701 unsigned int next;
3702 ext4_group_t group;
3703 ext4_grpblk_t bit;
3704 unsigned long long grp_blk_start;
3705 int err = 0;
3706 int free = 0;
3707
3708 BUG_ON(pa->pa_deleted == 0);
3709 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3710 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3711 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3712 end = bit + pa->pa_len;
3713
3714 while (bit < end) {
3715 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3716 if (bit >= end)
3717 break;
3718 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3719 mb_debug(1, " free preallocated %u/%u in group %u\n",
3720 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3721 (unsigned) next - bit, (unsigned) group);
3722 free += next - bit;
3723
3724 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3725 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3726 EXT4_C2B(sbi, bit)),
3727 next - bit);
3728 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3729 bit = next + 1;
3730 }
3731 if (free != pa->pa_free) {
3732 ext4_msg(e4b->bd_sb, KERN_CRIT,
3733 "pa %p: logic %lu, phys. %lu, len %lu",
3734 pa, (unsigned long) pa->pa_lstart,
3735 (unsigned long) pa->pa_pstart,
3736 (unsigned long) pa->pa_len);
3737 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3738 free, pa->pa_free);
3739 /*
3740 * pa is already deleted so we use the value obtained
3741 * from the bitmap and continue.
3742 */
3743 }
3744 atomic_add(free, &sbi->s_mb_discarded);
3745
3746 return err;
3747 }
3748
3749 static noinline_for_stack int
3750 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3751 struct ext4_prealloc_space *pa)
3752 {
3753 struct super_block *sb = e4b->bd_sb;
3754 ext4_group_t group;
3755 ext4_grpblk_t bit;
3756
3757 trace_ext4_mb_release_group_pa(sb, pa);
3758 BUG_ON(pa->pa_deleted == 0);
3759 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3760 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3761 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3762 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3763 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3764
3765 return 0;
3766 }
3767
3768 /*
3769 * releases all preallocations in given group
3770 *
3771 * first, we need to decide discard policy:
3772 * - when do we discard
3773 * 1) ENOSPC
3774 * - how many do we discard
3775 * 1) how many requested
3776 */
3777 static noinline_for_stack int
3778 ext4_mb_discard_group_preallocations(struct super_block *sb,
3779 ext4_group_t group, int needed)
3780 {
3781 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3782 struct buffer_head *bitmap_bh = NULL;
3783 struct ext4_prealloc_space *pa, *tmp;
3784 struct list_head list;
3785 struct ext4_buddy e4b;
3786 int err;
3787 int busy = 0;
3788 int free = 0;
3789
3790 mb_debug(1, "discard preallocation for group %u\n", group);
3791
3792 if (list_empty(&grp->bb_prealloc_list))
3793 return 0;
3794
3795 bitmap_bh = ext4_read_block_bitmap(sb, group);
3796 if (bitmap_bh == NULL) {
3797 ext4_error(sb, "Error reading block bitmap for %u", group);
3798 return 0;
3799 }
3800
3801 err = ext4_mb_load_buddy(sb, group, &e4b);
3802 if (err) {
3803 ext4_error(sb, "Error loading buddy information for %u", group);
3804 put_bh(bitmap_bh);
3805 return 0;
3806 }
3807
3808 if (needed == 0)
3809 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3810
3811 INIT_LIST_HEAD(&list);
3812 repeat:
3813 ext4_lock_group(sb, group);
3814 list_for_each_entry_safe(pa, tmp,
3815 &grp->bb_prealloc_list, pa_group_list) {
3816 spin_lock(&pa->pa_lock);
3817 if (atomic_read(&pa->pa_count)) {
3818 spin_unlock(&pa->pa_lock);
3819 busy = 1;
3820 continue;
3821 }
3822 if (pa->pa_deleted) {
3823 spin_unlock(&pa->pa_lock);
3824 continue;
3825 }
3826
3827 /* seems this one can be freed ... */
3828 pa->pa_deleted = 1;
3829
3830 /* we can trust pa_free ... */
3831 free += pa->pa_free;
3832
3833 spin_unlock(&pa->pa_lock);
3834
3835 list_del(&pa->pa_group_list);
3836 list_add(&pa->u.pa_tmp_list, &list);
3837 }
3838
3839 /* if we still need more blocks and some PAs were used, try again */
3840 if (free < needed && busy) {
3841 busy = 0;
3842 ext4_unlock_group(sb, group);
3843 cond_resched();
3844 goto repeat;
3845 }
3846
3847 /* found anything to free? */
3848 if (list_empty(&list)) {
3849 BUG_ON(free != 0);
3850 goto out;
3851 }
3852
3853 /* now free all selected PAs */
3854 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3855
3856 /* remove from object (inode or locality group) */
3857 spin_lock(pa->pa_obj_lock);
3858 list_del_rcu(&pa->pa_inode_list);
3859 spin_unlock(pa->pa_obj_lock);
3860
3861 if (pa->pa_type == MB_GROUP_PA)
3862 ext4_mb_release_group_pa(&e4b, pa);
3863 else
3864 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3865
3866 list_del(&pa->u.pa_tmp_list);
3867 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3868 }
3869
3870 out:
3871 ext4_unlock_group(sb, group);
3872 ext4_mb_unload_buddy(&e4b);
3873 put_bh(bitmap_bh);
3874 return free;
3875 }
3876
3877 /*
3878 * releases all non-used preallocated blocks for given inode
3879 *
3880 * It's important to discard preallocations under i_data_sem
3881 * We don't want another block to be served from the prealloc
3882 * space when we are discarding the inode prealloc space.
3883 *
3884 * FIXME!! Make sure it is valid at all the call sites
3885 */
3886 void ext4_discard_preallocations(struct inode *inode)
3887 {
3888 struct ext4_inode_info *ei = EXT4_I(inode);
3889 struct super_block *sb = inode->i_sb;
3890 struct buffer_head *bitmap_bh = NULL;
3891 struct ext4_prealloc_space *pa, *tmp;
3892 ext4_group_t group = 0;
3893 struct list_head list;
3894 struct ext4_buddy e4b;
3895 int err;
3896
3897 if (!S_ISREG(inode->i_mode)) {
3898 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3899 return;
3900 }
3901
3902 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3903 trace_ext4_discard_preallocations(inode);
3904
3905 INIT_LIST_HEAD(&list);
3906
3907 repeat:
3908 /* first, collect all pa's in the inode */
3909 spin_lock(&ei->i_prealloc_lock);
3910 while (!list_empty(&ei->i_prealloc_list)) {
3911 pa = list_entry(ei->i_prealloc_list.next,
3912 struct ext4_prealloc_space, pa_inode_list);
3913 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3914 spin_lock(&pa->pa_lock);
3915 if (atomic_read(&pa->pa_count)) {
3916 /* this shouldn't happen often - nobody should
3917 * use preallocation while we're discarding it */
3918 spin_unlock(&pa->pa_lock);
3919 spin_unlock(&ei->i_prealloc_lock);
3920 ext4_msg(sb, KERN_ERR,
3921 "uh-oh! used pa while discarding");
3922 WARN_ON(1);
3923 schedule_timeout_uninterruptible(HZ);
3924 goto repeat;
3925
3926 }
3927 if (pa->pa_deleted == 0) {
3928 pa->pa_deleted = 1;
3929 spin_unlock(&pa->pa_lock);
3930 list_del_rcu(&pa->pa_inode_list);
3931 list_add(&pa->u.pa_tmp_list, &list);
3932 continue;
3933 }
3934
3935 /* someone is deleting pa right now */
3936 spin_unlock(&pa->pa_lock);
3937 spin_unlock(&ei->i_prealloc_lock);
3938
3939 /* we have to wait here because pa_deleted
3940 * doesn't mean pa is already unlinked from
3941 * the list. as we might be called from
3942 * ->clear_inode() the inode will get freed
3943 * and concurrent thread which is unlinking
3944 * pa from inode's list may access already
3945 * freed memory, bad-bad-bad */
3946
3947 /* XXX: if this happens too often, we can
3948 * add a flag to force wait only in case
3949 * of ->clear_inode(), but not in case of
3950 * regular truncate */
3951 schedule_timeout_uninterruptible(HZ);
3952 goto repeat;
3953 }
3954 spin_unlock(&ei->i_prealloc_lock);
3955
3956 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3957 BUG_ON(pa->pa_type != MB_INODE_PA);
3958 group = ext4_get_group_number(sb, pa->pa_pstart);
3959
3960 err = ext4_mb_load_buddy(sb, group, &e4b);
3961 if (err) {
3962 ext4_error(sb, "Error loading buddy information for %u",
3963 group);
3964 continue;
3965 }
3966
3967 bitmap_bh = ext4_read_block_bitmap(sb, group);
3968 if (bitmap_bh == NULL) {
3969 ext4_error(sb, "Error reading block bitmap for %u",
3970 group);
3971 ext4_mb_unload_buddy(&e4b);
3972 continue;
3973 }
3974
3975 ext4_lock_group(sb, group);
3976 list_del(&pa->pa_group_list);
3977 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3978 ext4_unlock_group(sb, group);
3979
3980 ext4_mb_unload_buddy(&e4b);
3981 put_bh(bitmap_bh);
3982
3983 list_del(&pa->u.pa_tmp_list);
3984 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3985 }
3986 }
3987
3988 #ifdef CONFIG_EXT4_DEBUG
3989 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3990 {
3991 struct super_block *sb = ac->ac_sb;
3992 ext4_group_t ngroups, i;
3993
3994 if (!ext4_mballoc_debug ||
3995 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3996 return;
3997
3998 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3999 " Allocation context details:");
4000 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4001 ac->ac_status, ac->ac_flags);
4002 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4003 "goal %lu/%lu/%lu@%lu, "
4004 "best %lu/%lu/%lu@%lu cr %d",
4005 (unsigned long)ac->ac_o_ex.fe_group,
4006 (unsigned long)ac->ac_o_ex.fe_start,
4007 (unsigned long)ac->ac_o_ex.fe_len,
4008 (unsigned long)ac->ac_o_ex.fe_logical,
4009 (unsigned long)ac->ac_g_ex.fe_group,
4010 (unsigned long)ac->ac_g_ex.fe_start,
4011 (unsigned long)ac->ac_g_ex.fe_len,
4012 (unsigned long)ac->ac_g_ex.fe_logical,
4013 (unsigned long)ac->ac_b_ex.fe_group,
4014 (unsigned long)ac->ac_b_ex.fe_start,
4015 (unsigned long)ac->ac_b_ex.fe_len,
4016 (unsigned long)ac->ac_b_ex.fe_logical,
4017 (int)ac->ac_criteria);
4018 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
4019 ac->ac_ex_scanned, ac->ac_found);
4020 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4021 ngroups = ext4_get_groups_count(sb);
4022 for (i = 0; i < ngroups; i++) {
4023 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4024 struct ext4_prealloc_space *pa;
4025 ext4_grpblk_t start;
4026 struct list_head *cur;
4027 ext4_lock_group(sb, i);
4028 list_for_each(cur, &grp->bb_prealloc_list) {
4029 pa = list_entry(cur, struct ext4_prealloc_space,
4030 pa_group_list);
4031 spin_lock(&pa->pa_lock);
4032 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4033 NULL, &start);
4034 spin_unlock(&pa->pa_lock);
4035 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4036 start, pa->pa_len);
4037 }
4038 ext4_unlock_group(sb, i);
4039
4040 if (grp->bb_free == 0)
4041 continue;
4042 printk(KERN_ERR "%u: %d/%d \n",
4043 i, grp->bb_free, grp->bb_fragments);
4044 }
4045 printk(KERN_ERR "\n");
4046 }
4047 #else
4048 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4049 {
4050 return;
4051 }
4052 #endif
4053
4054 /*
4055 * We use locality group preallocation for small size file. The size of the
4056 * file is determined by the current size or the resulting size after
4057 * allocation which ever is larger
4058 *
4059 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4060 */
4061 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4062 {
4063 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4064 int bsbits = ac->ac_sb->s_blocksize_bits;
4065 loff_t size, isize;
4066
4067 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4068 return;
4069
4070 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4071 return;
4072
4073 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4074 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4075 >> bsbits;
4076
4077 if ((size == isize) &&
4078 !ext4_fs_is_busy(sbi) &&
4079 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4080 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4081 return;
4082 }
4083
4084 if (sbi->s_mb_group_prealloc <= 0) {
4085 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4086 return;
4087 }
4088
4089 /* don't use group allocation for large files */
4090 size = max(size, isize);
4091 if (size > sbi->s_mb_stream_request) {
4092 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4093 return;
4094 }
4095
4096 BUG_ON(ac->ac_lg != NULL);
4097 /*
4098 * locality group prealloc space are per cpu. The reason for having
4099 * per cpu locality group is to reduce the contention between block
4100 * request from multiple CPUs.
4101 */
4102 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4103
4104 /* we're going to use group allocation */
4105 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4106
4107 /* serialize all allocations in the group */
4108 mutex_lock(&ac->ac_lg->lg_mutex);
4109 }
4110
4111 static noinline_for_stack int
4112 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4113 struct ext4_allocation_request *ar)
4114 {
4115 struct super_block *sb = ar->inode->i_sb;
4116 struct ext4_sb_info *sbi = EXT4_SB(sb);
4117 struct ext4_super_block *es = sbi->s_es;
4118 ext4_group_t group;
4119 unsigned int len;
4120 ext4_fsblk_t goal;
4121 ext4_grpblk_t block;
4122
4123 /* we can't allocate > group size */
4124 len = ar->len;
4125
4126 /* just a dirty hack to filter too big requests */
4127 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4128 len = EXT4_CLUSTERS_PER_GROUP(sb);
4129
4130 /* start searching from the goal */
4131 goal = ar->goal;
4132 if (goal < le32_to_cpu(es->s_first_data_block) ||
4133 goal >= ext4_blocks_count(es))
4134 goal = le32_to_cpu(es->s_first_data_block);
4135 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4136
4137 /* set up allocation goals */
4138 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4139 ac->ac_status = AC_STATUS_CONTINUE;
4140 ac->ac_sb = sb;
4141 ac->ac_inode = ar->inode;
4142 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4143 ac->ac_o_ex.fe_group = group;
4144 ac->ac_o_ex.fe_start = block;
4145 ac->ac_o_ex.fe_len = len;
4146 ac->ac_g_ex = ac->ac_o_ex;
4147 ac->ac_flags = ar->flags;
4148
4149 /* we have to define context: we'll we work with a file or
4150 * locality group. this is a policy, actually */
4151 ext4_mb_group_or_file(ac);
4152
4153 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4154 "left: %u/%u, right %u/%u to %swritable\n",
4155 (unsigned) ar->len, (unsigned) ar->logical,
4156 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4157 (unsigned) ar->lleft, (unsigned) ar->pleft,
4158 (unsigned) ar->lright, (unsigned) ar->pright,
4159 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4160 return 0;
4161
4162 }
4163
4164 static noinline_for_stack void
4165 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4166 struct ext4_locality_group *lg,
4167 int order, int total_entries)
4168 {
4169 ext4_group_t group = 0;
4170 struct ext4_buddy e4b;
4171 struct list_head discard_list;
4172 struct ext4_prealloc_space *pa, *tmp;
4173
4174 mb_debug(1, "discard locality group preallocation\n");
4175
4176 INIT_LIST_HEAD(&discard_list);
4177
4178 spin_lock(&lg->lg_prealloc_lock);
4179 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4180 pa_inode_list) {
4181 spin_lock(&pa->pa_lock);
4182 if (atomic_read(&pa->pa_count)) {
4183 /*
4184 * This is the pa that we just used
4185 * for block allocation. So don't
4186 * free that
4187 */
4188 spin_unlock(&pa->pa_lock);
4189 continue;
4190 }
4191 if (pa->pa_deleted) {
4192 spin_unlock(&pa->pa_lock);
4193 continue;
4194 }
4195 /* only lg prealloc space */
4196 BUG_ON(pa->pa_type != MB_GROUP_PA);
4197
4198 /* seems this one can be freed ... */
4199 pa->pa_deleted = 1;
4200 spin_unlock(&pa->pa_lock);
4201
4202 list_del_rcu(&pa->pa_inode_list);
4203 list_add(&pa->u.pa_tmp_list, &discard_list);
4204
4205 total_entries--;
4206 if (total_entries <= 5) {
4207 /*
4208 * we want to keep only 5 entries
4209 * allowing it to grow to 8. This
4210 * mak sure we don't call discard
4211 * soon for this list.
4212 */
4213 break;
4214 }
4215 }
4216 spin_unlock(&lg->lg_prealloc_lock);
4217
4218 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4219
4220 group = ext4_get_group_number(sb, pa->pa_pstart);
4221 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4222 ext4_error(sb, "Error loading buddy information for %u",
4223 group);
4224 continue;
4225 }
4226 ext4_lock_group(sb, group);
4227 list_del(&pa->pa_group_list);
4228 ext4_mb_release_group_pa(&e4b, pa);
4229 ext4_unlock_group(sb, group);
4230
4231 ext4_mb_unload_buddy(&e4b);
4232 list_del(&pa->u.pa_tmp_list);
4233 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4234 }
4235 }
4236
4237 /*
4238 * We have incremented pa_count. So it cannot be freed at this
4239 * point. Also we hold lg_mutex. So no parallel allocation is
4240 * possible from this lg. That means pa_free cannot be updated.
4241 *
4242 * A parallel ext4_mb_discard_group_preallocations is possible.
4243 * which can cause the lg_prealloc_list to be updated.
4244 */
4245
4246 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4247 {
4248 int order, added = 0, lg_prealloc_count = 1;
4249 struct super_block *sb = ac->ac_sb;
4250 struct ext4_locality_group *lg = ac->ac_lg;
4251 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4252
4253 order = fls(pa->pa_free) - 1;
4254 if (order > PREALLOC_TB_SIZE - 1)
4255 /* The max size of hash table is PREALLOC_TB_SIZE */
4256 order = PREALLOC_TB_SIZE - 1;
4257 /* Add the prealloc space to lg */
4258 spin_lock(&lg->lg_prealloc_lock);
4259 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4260 pa_inode_list) {
4261 spin_lock(&tmp_pa->pa_lock);
4262 if (tmp_pa->pa_deleted) {
4263 spin_unlock(&tmp_pa->pa_lock);
4264 continue;
4265 }
4266 if (!added && pa->pa_free < tmp_pa->pa_free) {
4267 /* Add to the tail of the previous entry */
4268 list_add_tail_rcu(&pa->pa_inode_list,
4269 &tmp_pa->pa_inode_list);
4270 added = 1;
4271 /*
4272 * we want to count the total
4273 * number of entries in the list
4274 */
4275 }
4276 spin_unlock(&tmp_pa->pa_lock);
4277 lg_prealloc_count++;
4278 }
4279 if (!added)
4280 list_add_tail_rcu(&pa->pa_inode_list,
4281 &lg->lg_prealloc_list[order]);
4282 spin_unlock(&lg->lg_prealloc_lock);
4283
4284 /* Now trim the list to be not more than 8 elements */
4285 if (lg_prealloc_count > 8) {
4286 ext4_mb_discard_lg_preallocations(sb, lg,
4287 order, lg_prealloc_count);
4288 return;
4289 }
4290 return ;
4291 }
4292
4293 /*
4294 * release all resource we used in allocation
4295 */
4296 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4297 {
4298 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4299 struct ext4_prealloc_space *pa = ac->ac_pa;
4300 if (pa) {
4301 if (pa->pa_type == MB_GROUP_PA) {
4302 /* see comment in ext4_mb_use_group_pa() */
4303 spin_lock(&pa->pa_lock);
4304 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4305 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4306 pa->pa_free -= ac->ac_b_ex.fe_len;
4307 pa->pa_len -= ac->ac_b_ex.fe_len;
4308 spin_unlock(&pa->pa_lock);
4309 }
4310 }
4311 if (pa) {
4312 /*
4313 * We want to add the pa to the right bucket.
4314 * Remove it from the list and while adding
4315 * make sure the list to which we are adding
4316 * doesn't grow big.
4317 */
4318 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4319 spin_lock(pa->pa_obj_lock);
4320 list_del_rcu(&pa->pa_inode_list);
4321 spin_unlock(pa->pa_obj_lock);
4322 ext4_mb_add_n_trim(ac);
4323 }
4324 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4325 }
4326 if (ac->ac_bitmap_page)
4327 page_cache_release(ac->ac_bitmap_page);
4328 if (ac->ac_buddy_page)
4329 page_cache_release(ac->ac_buddy_page);
4330 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4331 mutex_unlock(&ac->ac_lg->lg_mutex);
4332 ext4_mb_collect_stats(ac);
4333 return 0;
4334 }
4335
4336 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4337 {
4338 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4339 int ret;
4340 int freed = 0;
4341
4342 trace_ext4_mb_discard_preallocations(sb, needed);
4343 for (i = 0; i < ngroups && needed > 0; i++) {
4344 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4345 freed += ret;
4346 needed -= ret;
4347 }
4348
4349 return freed;
4350 }
4351
4352 /*
4353 * Main entry point into mballoc to allocate blocks
4354 * it tries to use preallocation first, then falls back
4355 * to usual allocation
4356 */
4357 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4358 struct ext4_allocation_request *ar, int *errp)
4359 {
4360 int freed;
4361 struct ext4_allocation_context *ac = NULL;
4362 struct ext4_sb_info *sbi;
4363 struct super_block *sb;
4364 ext4_fsblk_t block = 0;
4365 unsigned int inquota = 0;
4366 unsigned int reserv_clstrs = 0;
4367
4368 might_sleep();
4369 sb = ar->inode->i_sb;
4370 sbi = EXT4_SB(sb);
4371
4372 trace_ext4_request_blocks(ar);
4373
4374 /* Allow to use superuser reservation for quota file */
4375 if (IS_NOQUOTA(ar->inode))
4376 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4377
4378 /*
4379 * For delayed allocation, we could skip the ENOSPC and
4380 * EDQUOT check, as blocks and quotas have been already
4381 * reserved when data being copied into pagecache.
4382 */
4383 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4384 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4385 else {
4386 /* Without delayed allocation we need to verify
4387 * there is enough free blocks to do block allocation
4388 * and verify allocation doesn't exceed the quota limits.
4389 */
4390 while (ar->len &&
4391 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4392
4393 /* let others to free the space */
4394 cond_resched();
4395 ar->len = ar->len >> 1;
4396 }
4397 if (!ar->len) {
4398 *errp = -ENOSPC;
4399 return 0;
4400 }
4401 reserv_clstrs = ar->len;
4402 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4403 dquot_alloc_block_nofail(ar->inode,
4404 EXT4_C2B(sbi, ar->len));
4405 } else {
4406 while (ar->len &&
4407 dquot_alloc_block(ar->inode,
4408 EXT4_C2B(sbi, ar->len))) {
4409
4410 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4411 ar->len--;
4412 }
4413 }
4414 inquota = ar->len;
4415 if (ar->len == 0) {
4416 *errp = -EDQUOT;
4417 goto out;
4418 }
4419 }
4420
4421 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4422 if (!ac) {
4423 ar->len = 0;
4424 *errp = -ENOMEM;
4425 goto out;
4426 }
4427
4428 *errp = ext4_mb_initialize_context(ac, ar);
4429 if (*errp) {
4430 ar->len = 0;
4431 goto out;
4432 }
4433
4434 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4435 if (!ext4_mb_use_preallocated(ac)) {
4436 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4437 ext4_mb_normalize_request(ac, ar);
4438 repeat:
4439 /* allocate space in core */
4440 *errp = ext4_mb_regular_allocator(ac);
4441 if (*errp) {
4442 ext4_discard_allocated_blocks(ac);
4443 goto errout;
4444 }
4445
4446 /* as we've just preallocated more space than
4447 * user requested orinally, we store allocated
4448 * space in a special descriptor */
4449 if (ac->ac_status == AC_STATUS_FOUND &&
4450 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4451 ext4_mb_new_preallocation(ac);
4452 }
4453 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4454 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4455 if (*errp == -EAGAIN) {
4456 /*
4457 * drop the reference that we took
4458 * in ext4_mb_use_best_found
4459 */
4460 ext4_mb_release_context(ac);
4461 ac->ac_b_ex.fe_group = 0;
4462 ac->ac_b_ex.fe_start = 0;
4463 ac->ac_b_ex.fe_len = 0;
4464 ac->ac_status = AC_STATUS_CONTINUE;
4465 goto repeat;
4466 } else if (*errp) {
4467 ext4_discard_allocated_blocks(ac);
4468 goto errout;
4469 } else {
4470 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4471 ar->len = ac->ac_b_ex.fe_len;
4472 }
4473 } else {
4474 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4475 if (freed)
4476 goto repeat;
4477 *errp = -ENOSPC;
4478 }
4479
4480 errout:
4481 if (*errp) {
4482 ac->ac_b_ex.fe_len = 0;
4483 ar->len = 0;
4484 ext4_mb_show_ac(ac);
4485 }
4486 ext4_mb_release_context(ac);
4487 out:
4488 if (ac)
4489 kmem_cache_free(ext4_ac_cachep, ac);
4490 if (inquota && ar->len < inquota)
4491 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4492 if (!ar->len) {
4493 if (!ext4_test_inode_state(ar->inode,
4494 EXT4_STATE_DELALLOC_RESERVED))
4495 /* release all the reserved blocks if non delalloc */
4496 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4497 reserv_clstrs);
4498 }
4499
4500 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4501
4502 return block;
4503 }
4504
4505 /*
4506 * We can merge two free data extents only if the physical blocks
4507 * are contiguous, AND the extents were freed by the same transaction,
4508 * AND the blocks are associated with the same group.
4509 */
4510 static int can_merge(struct ext4_free_data *entry1,
4511 struct ext4_free_data *entry2)
4512 {
4513 if ((entry1->efd_tid == entry2->efd_tid) &&
4514 (entry1->efd_group == entry2->efd_group) &&
4515 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4516 return 1;
4517 return 0;
4518 }
4519
4520 static noinline_for_stack int
4521 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4522 struct ext4_free_data *new_entry)
4523 {
4524 ext4_group_t group = e4b->bd_group;
4525 ext4_grpblk_t cluster;
4526 struct ext4_free_data *entry;
4527 struct ext4_group_info *db = e4b->bd_info;
4528 struct super_block *sb = e4b->bd_sb;
4529 struct ext4_sb_info *sbi = EXT4_SB(sb);
4530 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4531 struct rb_node *parent = NULL, *new_node;
4532
4533 BUG_ON(!ext4_handle_valid(handle));
4534 BUG_ON(e4b->bd_bitmap_page == NULL);
4535 BUG_ON(e4b->bd_buddy_page == NULL);
4536
4537 new_node = &new_entry->efd_node;
4538 cluster = new_entry->efd_start_cluster;
4539
4540 if (!*n) {
4541 /* first free block exent. We need to
4542 protect buddy cache from being freed,
4543 * otherwise we'll refresh it from
4544 * on-disk bitmap and lose not-yet-available
4545 * blocks */
4546 page_cache_get(e4b->bd_buddy_page);
4547 page_cache_get(e4b->bd_bitmap_page);
4548 }
4549 while (*n) {
4550 parent = *n;
4551 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4552 if (cluster < entry->efd_start_cluster)
4553 n = &(*n)->rb_left;
4554 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4555 n = &(*n)->rb_right;
4556 else {
4557 ext4_grp_locked_error(sb, group, 0,
4558 ext4_group_first_block_no(sb, group) +
4559 EXT4_C2B(sbi, cluster),
4560 "Block already on to-be-freed list");
4561 return 0;
4562 }
4563 }
4564
4565 rb_link_node(new_node, parent, n);
4566 rb_insert_color(new_node, &db->bb_free_root);
4567
4568 /* Now try to see the extent can be merged to left and right */
4569 node = rb_prev(new_node);
4570 if (node) {
4571 entry = rb_entry(node, struct ext4_free_data, efd_node);
4572 if (can_merge(entry, new_entry) &&
4573 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4574 new_entry->efd_start_cluster = entry->efd_start_cluster;
4575 new_entry->efd_count += entry->efd_count;
4576 rb_erase(node, &(db->bb_free_root));
4577 kmem_cache_free(ext4_free_data_cachep, entry);
4578 }
4579 }
4580
4581 node = rb_next(new_node);
4582 if (node) {
4583 entry = rb_entry(node, struct ext4_free_data, efd_node);
4584 if (can_merge(new_entry, entry) &&
4585 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4586 new_entry->efd_count += entry->efd_count;
4587 rb_erase(node, &(db->bb_free_root));
4588 kmem_cache_free(ext4_free_data_cachep, entry);
4589 }
4590 }
4591 /* Add the extent to transaction's private list */
4592 ext4_journal_callback_add(handle, ext4_free_data_callback,
4593 &new_entry->efd_jce);
4594 return 0;
4595 }
4596
4597 /**
4598 * ext4_free_blocks() -- Free given blocks and update quota
4599 * @handle: handle for this transaction
4600 * @inode: inode
4601 * @block: start physical block to free
4602 * @count: number of blocks to count
4603 * @flags: flags used by ext4_free_blocks
4604 */
4605 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4606 struct buffer_head *bh, ext4_fsblk_t block,
4607 unsigned long count, int flags)
4608 {
4609 struct buffer_head *bitmap_bh = NULL;
4610 struct super_block *sb = inode->i_sb;
4611 struct ext4_group_desc *gdp;
4612 unsigned int overflow;
4613 ext4_grpblk_t bit;
4614 struct buffer_head *gd_bh;
4615 ext4_group_t block_group;
4616 struct ext4_sb_info *sbi;
4617 struct ext4_inode_info *ei = EXT4_I(inode);
4618 struct ext4_buddy e4b;
4619 unsigned int count_clusters;
4620 int err = 0;
4621 int ret;
4622
4623 might_sleep();
4624 if (bh) {
4625 if (block)
4626 BUG_ON(block != bh->b_blocknr);
4627 else
4628 block = bh->b_blocknr;
4629 }
4630
4631 sbi = EXT4_SB(sb);
4632 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4633 !ext4_data_block_valid(sbi, block, count)) {
4634 ext4_error(sb, "Freeing blocks not in datazone - "
4635 "block = %llu, count = %lu", block, count);
4636 goto error_return;
4637 }
4638
4639 ext4_debug("freeing block %llu\n", block);
4640 trace_ext4_free_blocks(inode, block, count, flags);
4641
4642 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4643 struct buffer_head *tbh = bh;
4644 int i;
4645
4646 BUG_ON(bh && (count > 1));
4647
4648 for (i = 0; i < count; i++) {
4649 if (!bh)
4650 tbh = sb_find_get_block(inode->i_sb,
4651 block + i);
4652 if (unlikely(!tbh))
4653 continue;
4654 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4655 inode, tbh, block + i);
4656 }
4657 }
4658
4659 /*
4660 * We need to make sure we don't reuse the freed block until
4661 * after the transaction is committed, which we can do by
4662 * treating the block as metadata, below. We make an
4663 * exception if the inode is to be written in writeback mode
4664 * since writeback mode has weak data consistency guarantees.
4665 */
4666 if (!ext4_should_writeback_data(inode))
4667 flags |= EXT4_FREE_BLOCKS_METADATA;
4668
4669 /*
4670 * If the extent to be freed does not begin on a cluster
4671 * boundary, we need to deal with partial clusters at the
4672 * beginning and end of the extent. Normally we will free
4673 * blocks at the beginning or the end unless we are explicitly
4674 * requested to avoid doing so.
4675 */
4676 overflow = EXT4_PBLK_COFF(sbi, block);
4677 if (overflow) {
4678 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4679 overflow = sbi->s_cluster_ratio - overflow;
4680 block += overflow;
4681 if (count > overflow)
4682 count -= overflow;
4683 else
4684 return;
4685 } else {
4686 block -= overflow;
4687 count += overflow;
4688 }
4689 }
4690 overflow = EXT4_LBLK_COFF(sbi, count);
4691 if (overflow) {
4692 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4693 if (count > overflow)
4694 count -= overflow;
4695 else
4696 return;
4697 } else
4698 count += sbi->s_cluster_ratio - overflow;
4699 }
4700
4701 do_more:
4702 overflow = 0;
4703 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4704
4705 /*
4706 * Check to see if we are freeing blocks across a group
4707 * boundary.
4708 */
4709 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4710 overflow = EXT4_C2B(sbi, bit) + count -
4711 EXT4_BLOCKS_PER_GROUP(sb);
4712 count -= overflow;
4713 }
4714 count_clusters = EXT4_NUM_B2C(sbi, count);
4715 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4716 if (!bitmap_bh) {
4717 err = -EIO;
4718 goto error_return;
4719 }
4720 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4721 if (!gdp) {
4722 err = -EIO;
4723 goto error_return;
4724 }
4725
4726 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4727 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4728 in_range(block, ext4_inode_table(sb, gdp),
4729 EXT4_SB(sb)->s_itb_per_group) ||
4730 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4731 EXT4_SB(sb)->s_itb_per_group)) {
4732
4733 ext4_error(sb, "Freeing blocks in system zone - "
4734 "Block = %llu, count = %lu", block, count);
4735 /* err = 0. ext4_std_error should be a no op */
4736 goto error_return;
4737 }
4738
4739 BUFFER_TRACE(bitmap_bh, "getting write access");
4740 err = ext4_journal_get_write_access(handle, bitmap_bh);
4741 if (err)
4742 goto error_return;
4743
4744 /*
4745 * We are about to modify some metadata. Call the journal APIs
4746 * to unshare ->b_data if a currently-committing transaction is
4747 * using it
4748 */
4749 BUFFER_TRACE(gd_bh, "get_write_access");
4750 err = ext4_journal_get_write_access(handle, gd_bh);
4751 if (err)
4752 goto error_return;
4753 #ifdef AGGRESSIVE_CHECK
4754 {
4755 int i;
4756 for (i = 0; i < count_clusters; i++)
4757 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4758 }
4759 #endif
4760 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4761
4762 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4763 if (err)
4764 goto error_return;
4765
4766 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4767 struct ext4_free_data *new_entry;
4768 /*
4769 * blocks being freed are metadata. these blocks shouldn't
4770 * be used until this transaction is committed
4771 *
4772 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4773 * to fail.
4774 */
4775 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4776 GFP_NOFS|__GFP_NOFAIL);
4777 new_entry->efd_start_cluster = bit;
4778 new_entry->efd_group = block_group;
4779 new_entry->efd_count = count_clusters;
4780 new_entry->efd_tid = handle->h_transaction->t_tid;
4781
4782 ext4_lock_group(sb, block_group);
4783 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4784 ext4_mb_free_metadata(handle, &e4b, new_entry);
4785 } else {
4786 /* need to update group_info->bb_free and bitmap
4787 * with group lock held. generate_buddy look at
4788 * them with group lock_held
4789 */
4790 if (test_opt(sb, DISCARD)) {
4791 err = ext4_issue_discard(sb, block_group, bit, count);
4792 if (err && err != -EOPNOTSUPP)
4793 ext4_msg(sb, KERN_WARNING, "discard request in"
4794 " group:%d block:%d count:%lu failed"
4795 " with %d", block_group, bit, count,
4796 err);
4797 } else
4798 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4799
4800 ext4_lock_group(sb, block_group);
4801 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4802 mb_free_blocks(inode, &e4b, bit, count_clusters);
4803 }
4804
4805 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4806 ext4_free_group_clusters_set(sb, gdp, ret);
4807 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4808 ext4_group_desc_csum_set(sb, block_group, gdp);
4809 ext4_unlock_group(sb, block_group);
4810
4811 if (sbi->s_log_groups_per_flex) {
4812 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4813 atomic64_add(count_clusters,
4814 &sbi->s_flex_groups[flex_group].free_clusters);
4815 }
4816
4817 if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4818 percpu_counter_add(&sbi->s_dirtyclusters_counter,
4819 count_clusters);
4820 spin_lock(&ei->i_block_reservation_lock);
4821 if (flags & EXT4_FREE_BLOCKS_METADATA)
4822 ei->i_reserved_meta_blocks += count_clusters;
4823 else
4824 ei->i_reserved_data_blocks += count_clusters;
4825 spin_unlock(&ei->i_block_reservation_lock);
4826 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4827 dquot_reclaim_block(inode,
4828 EXT4_C2B(sbi, count_clusters));
4829 } else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4830 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4831 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4832
4833 ext4_mb_unload_buddy(&e4b);
4834
4835 /* We dirtied the bitmap block */
4836 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4837 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4838
4839 /* And the group descriptor block */
4840 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4841 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4842 if (!err)
4843 err = ret;
4844
4845 if (overflow && !err) {
4846 block += count;
4847 count = overflow;
4848 put_bh(bitmap_bh);
4849 goto do_more;
4850 }
4851 error_return:
4852 brelse(bitmap_bh);
4853 ext4_std_error(sb, err);
4854 return;
4855 }
4856
4857 /**
4858 * ext4_group_add_blocks() -- Add given blocks to an existing group
4859 * @handle: handle to this transaction
4860 * @sb: super block
4861 * @block: start physical block to add to the block group
4862 * @count: number of blocks to free
4863 *
4864 * This marks the blocks as free in the bitmap and buddy.
4865 */
4866 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4867 ext4_fsblk_t block, unsigned long count)
4868 {
4869 struct buffer_head *bitmap_bh = NULL;
4870 struct buffer_head *gd_bh;
4871 ext4_group_t block_group;
4872 ext4_grpblk_t bit;
4873 unsigned int i;
4874 struct ext4_group_desc *desc;
4875 struct ext4_sb_info *sbi = EXT4_SB(sb);
4876 struct ext4_buddy e4b;
4877 int err = 0, ret, blk_free_count;
4878 ext4_grpblk_t blocks_freed;
4879
4880 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4881
4882 if (count == 0)
4883 return 0;
4884
4885 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4886 /*
4887 * Check to see if we are freeing blocks across a group
4888 * boundary.
4889 */
4890 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4891 ext4_warning(sb, "too much blocks added to group %u\n",
4892 block_group);
4893 err = -EINVAL;
4894 goto error_return;
4895 }
4896
4897 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4898 if (!bitmap_bh) {
4899 err = -EIO;
4900 goto error_return;
4901 }
4902
4903 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4904 if (!desc) {
4905 err = -EIO;
4906 goto error_return;
4907 }
4908
4909 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4910 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4911 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4912 in_range(block + count - 1, ext4_inode_table(sb, desc),
4913 sbi->s_itb_per_group)) {
4914 ext4_error(sb, "Adding blocks in system zones - "
4915 "Block = %llu, count = %lu",
4916 block, count);
4917 err = -EINVAL;
4918 goto error_return;
4919 }
4920
4921 BUFFER_TRACE(bitmap_bh, "getting write access");
4922 err = ext4_journal_get_write_access(handle, bitmap_bh);
4923 if (err)
4924 goto error_return;
4925
4926 /*
4927 * We are about to modify some metadata. Call the journal APIs
4928 * to unshare ->b_data if a currently-committing transaction is
4929 * using it
4930 */
4931 BUFFER_TRACE(gd_bh, "get_write_access");
4932 err = ext4_journal_get_write_access(handle, gd_bh);
4933 if (err)
4934 goto error_return;
4935
4936 for (i = 0, blocks_freed = 0; i < count; i++) {
4937 BUFFER_TRACE(bitmap_bh, "clear bit");
4938 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4939 ext4_error(sb, "bit already cleared for block %llu",
4940 (ext4_fsblk_t)(block + i));
4941 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4942 } else {
4943 blocks_freed++;
4944 }
4945 }
4946
4947 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4948 if (err)
4949 goto error_return;
4950
4951 /*
4952 * need to update group_info->bb_free and bitmap
4953 * with group lock held. generate_buddy look at
4954 * them with group lock_held
4955 */
4956 ext4_lock_group(sb, block_group);
4957 mb_clear_bits(bitmap_bh->b_data, bit, count);
4958 mb_free_blocks(NULL, &e4b, bit, count);
4959 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4960 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4961 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4962 ext4_group_desc_csum_set(sb, block_group, desc);
4963 ext4_unlock_group(sb, block_group);
4964 percpu_counter_add(&sbi->s_freeclusters_counter,
4965 EXT4_NUM_B2C(sbi, blocks_freed));
4966
4967 if (sbi->s_log_groups_per_flex) {
4968 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4969 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4970 &sbi->s_flex_groups[flex_group].free_clusters);
4971 }
4972
4973 ext4_mb_unload_buddy(&e4b);
4974
4975 /* We dirtied the bitmap block */
4976 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4977 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4978
4979 /* And the group descriptor block */
4980 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4981 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4982 if (!err)
4983 err = ret;
4984
4985 error_return:
4986 brelse(bitmap_bh);
4987 ext4_std_error(sb, err);
4988 return err;
4989 }
4990
4991 /**
4992 * ext4_trim_extent -- function to TRIM one single free extent in the group
4993 * @sb: super block for the file system
4994 * @start: starting block of the free extent in the alloc. group
4995 * @count: number of blocks to TRIM
4996 * @group: alloc. group we are working with
4997 * @e4b: ext4 buddy for the group
4998 *
4999 * Trim "count" blocks starting at "start" in the "group". To assure that no
5000 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5001 * be called with under the group lock.
5002 */
5003 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5004 ext4_group_t group, struct ext4_buddy *e4b)
5005 {
5006 struct ext4_free_extent ex;
5007 int ret = 0;
5008
5009 trace_ext4_trim_extent(sb, group, start, count);
5010
5011 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5012
5013 ex.fe_start = start;
5014 ex.fe_group = group;
5015 ex.fe_len = count;
5016
5017 /*
5018 * Mark blocks used, so no one can reuse them while
5019 * being trimmed.
5020 */
5021 mb_mark_used(e4b, &ex);
5022 ext4_unlock_group(sb, group);
5023 ret = ext4_issue_discard(sb, group, start, count);
5024 ext4_lock_group(sb, group);
5025 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5026 return ret;
5027 }
5028
5029 /**
5030 * ext4_trim_all_free -- function to trim all free space in alloc. group
5031 * @sb: super block for file system
5032 * @group: group to be trimmed
5033 * @start: first group block to examine
5034 * @max: last group block to examine
5035 * @minblocks: minimum extent block count
5036 *
5037 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5038 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5039 * the extent.
5040 *
5041 *
5042 * ext4_trim_all_free walks through group's block bitmap searching for free
5043 * extents. When the free extent is found, mark it as used in group buddy
5044 * bitmap. Then issue a TRIM command on this extent and free the extent in
5045 * the group buddy bitmap. This is done until whole group is scanned.
5046 */
5047 static ext4_grpblk_t
5048 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5049 ext4_grpblk_t start, ext4_grpblk_t max,
5050 ext4_grpblk_t minblocks)
5051 {
5052 void *bitmap;
5053 ext4_grpblk_t next, count = 0, free_count = 0;
5054 struct ext4_buddy e4b;
5055 int ret = 0;
5056
5057 trace_ext4_trim_all_free(sb, group, start, max);
5058
5059 ret = ext4_mb_load_buddy(sb, group, &e4b);
5060 if (ret) {
5061 ext4_error(sb, "Error in loading buddy "
5062 "information for %u", group);
5063 return ret;
5064 }
5065 bitmap = e4b.bd_bitmap;
5066
5067 ext4_lock_group(sb, group);
5068 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5069 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5070 goto out;
5071
5072 start = (e4b.bd_info->bb_first_free > start) ?
5073 e4b.bd_info->bb_first_free : start;
5074
5075 while (start <= max) {
5076 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5077 if (start > max)
5078 break;
5079 next = mb_find_next_bit(bitmap, max + 1, start);
5080
5081 if ((next - start) >= minblocks) {
5082 ret = ext4_trim_extent(sb, start,
5083 next - start, group, &e4b);
5084 if (ret && ret != -EOPNOTSUPP)
5085 break;
5086 ret = 0;
5087 count += next - start;
5088 }
5089 free_count += next - start;
5090 start = next + 1;
5091
5092 if (fatal_signal_pending(current)) {
5093 count = -ERESTARTSYS;
5094 break;
5095 }
5096
5097 if (need_resched()) {
5098 ext4_unlock_group(sb, group);
5099 cond_resched();
5100 ext4_lock_group(sb, group);
5101 }
5102
5103 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5104 break;
5105 }
5106
5107 if (!ret) {
5108 ret = count;
5109 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5110 }
5111 out:
5112 ext4_unlock_group(sb, group);
5113 ext4_mb_unload_buddy(&e4b);
5114
5115 ext4_debug("trimmed %d blocks in the group %d\n",
5116 count, group);
5117
5118 return ret;
5119 }
5120
5121 /**
5122 * ext4_trim_fs() -- trim ioctl handle function
5123 * @sb: superblock for filesystem
5124 * @range: fstrim_range structure
5125 *
5126 * start: First Byte to trim
5127 * len: number of Bytes to trim from start
5128 * minlen: minimum extent length in Bytes
5129 * ext4_trim_fs goes through all allocation groups containing Bytes from
5130 * start to start+len. For each such a group ext4_trim_all_free function
5131 * is invoked to trim all free space.
5132 */
5133 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5134 {
5135 struct ext4_group_info *grp;
5136 ext4_group_t group, first_group, last_group;
5137 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5138 uint64_t start, end, minlen, trimmed = 0;
5139 ext4_fsblk_t first_data_blk =
5140 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5141 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5142 int ret = 0;
5143
5144 start = range->start >> sb->s_blocksize_bits;
5145 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5146 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5147 range->minlen >> sb->s_blocksize_bits);
5148
5149 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5150 start >= max_blks ||
5151 range->len < sb->s_blocksize)
5152 return -EINVAL;
5153 if (end >= max_blks)
5154 end = max_blks - 1;
5155 if (end <= first_data_blk)
5156 goto out;
5157 if (start < first_data_blk)
5158 start = first_data_blk;
5159
5160 /* Determine first and last group to examine based on start and end */
5161 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5162 &first_group, &first_cluster);
5163 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5164 &last_group, &last_cluster);
5165
5166 /* end now represents the last cluster to discard in this group */
5167 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5168
5169 for (group = first_group; group <= last_group; group++) {
5170 grp = ext4_get_group_info(sb, group);
5171 /* We only do this if the grp has never been initialized */
5172 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5173 ret = ext4_mb_init_group(sb, group);
5174 if (ret)
5175 break;
5176 }
5177
5178 /*
5179 * For all the groups except the last one, last cluster will
5180 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5181 * change it for the last group, note that last_cluster is
5182 * already computed earlier by ext4_get_group_no_and_offset()
5183 */
5184 if (group == last_group)
5185 end = last_cluster;
5186
5187 if (grp->bb_free >= minlen) {
5188 cnt = ext4_trim_all_free(sb, group, first_cluster,
5189 end, minlen);
5190 if (cnt < 0) {
5191 ret = cnt;
5192 break;
5193 }
5194 trimmed += cnt;
5195 }
5196
5197 /*
5198 * For every group except the first one, we are sure
5199 * that the first cluster to discard will be cluster #0.
5200 */
5201 first_cluster = 0;
5202 }
5203
5204 if (!ret)
5205 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5206
5207 out:
5208 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5209 return ret;
5210 }