ext4: release page cache in ext4_mb_load_buddy error path
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
28
29 /*
30 * MUSTDO:
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
33 *
34 * TODO v4:
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
38 * - quota
39 * - reservation for superuser
40 *
41 * TODO v3:
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
46 * - error handling
47 */
48
49 /*
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
52 *
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
62 *
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
65 *
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
69 * represented as:
70 *
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space
74 * pa_free -> free space available in this prealloc space
75 *
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This make sure that
79 * that the we have contiguous physical blocks representing the file blocks
80 *
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
83 * pa_free.
84 *
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list repreasented as
88 *
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 *
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
93 *
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) within the prealloc space.
96 *
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
105 * inode as:
106 *
107 * { page }
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 *
110 *
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
115 *
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
118 *
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
122 *
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * stripe value (sbi->s_stripe)
135 *
136 * The regular allocator(using the buddy cache) supports few tunables.
137 *
138 * /sys/fs/ext4/<partition>/mb_min_to_scan
139 * /sys/fs/ext4/<partition>/mb_max_to_scan
140 * /sys/fs/ext4/<partition>/mb_order2_req
141 *
142 * The regular allocator uses buddy scan only if the request len is power of
143 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
144 * value of s_mb_order2_reqs can be tuned via
145 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
146 * stripe size (sbi->s_stripe), we try to search for contiguous block in
147 * stripe size. This should result in better allocation on RAID setups. If
148 * not, we search in the specific group using bitmap for best extents. The
149 * tunable min_to_scan and max_to_scan control the behaviour here.
150 * min_to_scan indicate how long the mballoc __must__ look for a best
151 * extent and max_to_scan indicates how long the mballoc __can__ look for a
152 * best extent in the found extents. Searching for the blocks starts with
153 * the group specified as the goal value in allocation context via
154 * ac_g_ex. Each group is first checked based on the criteria whether it
155 * can used for allocation. ext4_mb_good_group explains how the groups are
156 * checked.
157 *
158 * Both the prealloc space are getting populated as above. So for the first
159 * request we will hit the buddy cache which will result in this prealloc
160 * space getting filled. The prealloc space is then later used for the
161 * subsequent request.
162 */
163
164 /*
165 * mballoc operates on the following data:
166 * - on-disk bitmap
167 * - in-core buddy (actually includes buddy and bitmap)
168 * - preallocation descriptors (PAs)
169 *
170 * there are two types of preallocations:
171 * - inode
172 * assiged to specific inode and can be used for this inode only.
173 * it describes part of inode's space preallocated to specific
174 * physical blocks. any block from that preallocated can be used
175 * independent. the descriptor just tracks number of blocks left
176 * unused. so, before taking some block from descriptor, one must
177 * make sure corresponded logical block isn't allocated yet. this
178 * also means that freeing any block within descriptor's range
179 * must discard all preallocated blocks.
180 * - locality group
181 * assigned to specific locality group which does not translate to
182 * permanent set of inodes: inode can join and leave group. space
183 * from this type of preallocation can be used for any inode. thus
184 * it's consumed from the beginning to the end.
185 *
186 * relation between them can be expressed as:
187 * in-core buddy = on-disk bitmap + preallocation descriptors
188 *
189 * this mean blocks mballoc considers used are:
190 * - allocated blocks (persistent)
191 * - preallocated blocks (non-persistent)
192 *
193 * consistency in mballoc world means that at any time a block is either
194 * free or used in ALL structures. notice: "any time" should not be read
195 * literally -- time is discrete and delimited by locks.
196 *
197 * to keep it simple, we don't use block numbers, instead we count number of
198 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
199 *
200 * all operations can be expressed as:
201 * - init buddy: buddy = on-disk + PAs
202 * - new PA: buddy += N; PA = N
203 * - use inode PA: on-disk += N; PA -= N
204 * - discard inode PA buddy -= on-disk - PA; PA = 0
205 * - use locality group PA on-disk += N; PA -= N
206 * - discard locality group PA buddy -= PA; PA = 0
207 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
208 * is used in real operation because we can't know actual used
209 * bits from PA, only from on-disk bitmap
210 *
211 * if we follow this strict logic, then all operations above should be atomic.
212 * given some of them can block, we'd have to use something like semaphores
213 * killing performance on high-end SMP hardware. let's try to relax it using
214 * the following knowledge:
215 * 1) if buddy is referenced, it's already initialized
216 * 2) while block is used in buddy and the buddy is referenced,
217 * nobody can re-allocate that block
218 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
219 * bit set and PA claims same block, it's OK. IOW, one can set bit in
220 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
221 * block
222 *
223 * so, now we're building a concurrency table:
224 * - init buddy vs.
225 * - new PA
226 * blocks for PA are allocated in the buddy, buddy must be referenced
227 * until PA is linked to allocation group to avoid concurrent buddy init
228 * - use inode PA
229 * we need to make sure that either on-disk bitmap or PA has uptodate data
230 * given (3) we care that PA-=N operation doesn't interfere with init
231 * - discard inode PA
232 * the simplest way would be to have buddy initialized by the discard
233 * - use locality group PA
234 * again PA-=N must be serialized with init
235 * - discard locality group PA
236 * the simplest way would be to have buddy initialized by the discard
237 * - new PA vs.
238 * - use inode PA
239 * i_data_sem serializes them
240 * - discard inode PA
241 * discard process must wait until PA isn't used by another process
242 * - use locality group PA
243 * some mutex should serialize them
244 * - discard locality group PA
245 * discard process must wait until PA isn't used by another process
246 * - use inode PA
247 * - use inode PA
248 * i_data_sem or another mutex should serializes them
249 * - discard inode PA
250 * discard process must wait until PA isn't used by another process
251 * - use locality group PA
252 * nothing wrong here -- they're different PAs covering different blocks
253 * - discard locality group PA
254 * discard process must wait until PA isn't used by another process
255 *
256 * now we're ready to make few consequences:
257 * - PA is referenced and while it is no discard is possible
258 * - PA is referenced until block isn't marked in on-disk bitmap
259 * - PA changes only after on-disk bitmap
260 * - discard must not compete with init. either init is done before
261 * any discard or they're serialized somehow
262 * - buddy init as sum of on-disk bitmap and PAs is done atomically
263 *
264 * a special case when we've used PA to emptiness. no need to modify buddy
265 * in this case, but we should care about concurrent init
266 *
267 */
268
269 /*
270 * Logic in few words:
271 *
272 * - allocation:
273 * load group
274 * find blocks
275 * mark bits in on-disk bitmap
276 * release group
277 *
278 * - use preallocation:
279 * find proper PA (per-inode or group)
280 * load group
281 * mark bits in on-disk bitmap
282 * release group
283 * release PA
284 *
285 * - free:
286 * load group
287 * mark bits in on-disk bitmap
288 * release group
289 *
290 * - discard preallocations in group:
291 * mark PAs deleted
292 * move them onto local list
293 * load on-disk bitmap
294 * load group
295 * remove PA from object (inode or locality group)
296 * mark free blocks in-core
297 *
298 * - discard inode's preallocations:
299 */
300
301 /*
302 * Locking rules
303 *
304 * Locks:
305 * - bitlock on a group (group)
306 * - object (inode/locality) (object)
307 * - per-pa lock (pa)
308 *
309 * Paths:
310 * - new pa
311 * object
312 * group
313 *
314 * - find and use pa:
315 * pa
316 *
317 * - release consumed pa:
318 * pa
319 * group
320 * object
321 *
322 * - generate in-core bitmap:
323 * group
324 * pa
325 *
326 * - discard all for given object (inode, locality group):
327 * object
328 * pa
329 * group
330 *
331 * - discard all for given group:
332 * group
333 * pa
334 * group
335 * object
336 *
337 */
338 static struct kmem_cache *ext4_pspace_cachep;
339 static struct kmem_cache *ext4_ac_cachep;
340 static struct kmem_cache *ext4_free_ext_cachep;
341
342 /* We create slab caches for groupinfo data structures based on the
343 * superblock block size. There will be one per mounted filesystem for
344 * each unique s_blocksize_bits */
345 #define NR_GRPINFO_CACHES 8
346 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
347
348 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
349 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
350 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
351 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
352 };
353
354 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
355 ext4_group_t group);
356 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
357 ext4_group_t group);
358 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
359
360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
361 {
362 #if BITS_PER_LONG == 64
363 *bit += ((unsigned long) addr & 7UL) << 3;
364 addr = (void *) ((unsigned long) addr & ~7UL);
365 #elif BITS_PER_LONG == 32
366 *bit += ((unsigned long) addr & 3UL) << 3;
367 addr = (void *) ((unsigned long) addr & ~3UL);
368 #else
369 #error "how many bits you are?!"
370 #endif
371 return addr;
372 }
373
374 static inline int mb_test_bit(int bit, void *addr)
375 {
376 /*
377 * ext4_test_bit on architecture like powerpc
378 * needs unsigned long aligned address
379 */
380 addr = mb_correct_addr_and_bit(&bit, addr);
381 return ext4_test_bit(bit, addr);
382 }
383
384 static inline void mb_set_bit(int bit, void *addr)
385 {
386 addr = mb_correct_addr_and_bit(&bit, addr);
387 ext4_set_bit(bit, addr);
388 }
389
390 static inline void mb_clear_bit(int bit, void *addr)
391 {
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 ext4_clear_bit(bit, addr);
394 }
395
396 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
397 {
398 int fix = 0, ret, tmpmax;
399 addr = mb_correct_addr_and_bit(&fix, addr);
400 tmpmax = max + fix;
401 start += fix;
402
403 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
404 if (ret > max)
405 return max;
406 return ret;
407 }
408
409 static inline int mb_find_next_bit(void *addr, int max, int start)
410 {
411 int fix = 0, ret, tmpmax;
412 addr = mb_correct_addr_and_bit(&fix, addr);
413 tmpmax = max + fix;
414 start += fix;
415
416 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
417 if (ret > max)
418 return max;
419 return ret;
420 }
421
422 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
423 {
424 char *bb;
425
426 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
427 BUG_ON(max == NULL);
428
429 if (order > e4b->bd_blkbits + 1) {
430 *max = 0;
431 return NULL;
432 }
433
434 /* at order 0 we see each particular block */
435 if (order == 0) {
436 *max = 1 << (e4b->bd_blkbits + 3);
437 return EXT4_MB_BITMAP(e4b);
438 }
439
440 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
441 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
442
443 return bb;
444 }
445
446 #ifdef DOUBLE_CHECK
447 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
448 int first, int count)
449 {
450 int i;
451 struct super_block *sb = e4b->bd_sb;
452
453 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
454 return;
455 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
456 for (i = 0; i < count; i++) {
457 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
458 ext4_fsblk_t blocknr;
459
460 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
461 blocknr += first + i;
462 ext4_grp_locked_error(sb, e4b->bd_group,
463 inode ? inode->i_ino : 0,
464 blocknr,
465 "freeing block already freed "
466 "(bit %u)",
467 first + i);
468 }
469 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
470 }
471 }
472
473 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
474 {
475 int i;
476
477 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
478 return;
479 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
480 for (i = 0; i < count; i++) {
481 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
482 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
483 }
484 }
485
486 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
487 {
488 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
489 unsigned char *b1, *b2;
490 int i;
491 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
492 b2 = (unsigned char *) bitmap;
493 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
494 if (b1[i] != b2[i]) {
495 printk(KERN_ERR "corruption in group %u "
496 "at byte %u(%u): %x in copy != %x "
497 "on disk/prealloc\n",
498 e4b->bd_group, i, i * 8, b1[i], b2[i]);
499 BUG();
500 }
501 }
502 }
503 }
504
505 #else
506 static inline void mb_free_blocks_double(struct inode *inode,
507 struct ext4_buddy *e4b, int first, int count)
508 {
509 return;
510 }
511 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
512 int first, int count)
513 {
514 return;
515 }
516 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
517 {
518 return;
519 }
520 #endif
521
522 #ifdef AGGRESSIVE_CHECK
523
524 #define MB_CHECK_ASSERT(assert) \
525 do { \
526 if (!(assert)) { \
527 printk(KERN_EMERG \
528 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
529 function, file, line, # assert); \
530 BUG(); \
531 } \
532 } while (0)
533
534 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
535 const char *function, int line)
536 {
537 struct super_block *sb = e4b->bd_sb;
538 int order = e4b->bd_blkbits + 1;
539 int max;
540 int max2;
541 int i;
542 int j;
543 int k;
544 int count;
545 struct ext4_group_info *grp;
546 int fragments = 0;
547 int fstart;
548 struct list_head *cur;
549 void *buddy;
550 void *buddy2;
551
552 {
553 static int mb_check_counter;
554 if (mb_check_counter++ % 100 != 0)
555 return 0;
556 }
557
558 while (order > 1) {
559 buddy = mb_find_buddy(e4b, order, &max);
560 MB_CHECK_ASSERT(buddy);
561 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
562 MB_CHECK_ASSERT(buddy2);
563 MB_CHECK_ASSERT(buddy != buddy2);
564 MB_CHECK_ASSERT(max * 2 == max2);
565
566 count = 0;
567 for (i = 0; i < max; i++) {
568
569 if (mb_test_bit(i, buddy)) {
570 /* only single bit in buddy2 may be 1 */
571 if (!mb_test_bit(i << 1, buddy2)) {
572 MB_CHECK_ASSERT(
573 mb_test_bit((i<<1)+1, buddy2));
574 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
575 MB_CHECK_ASSERT(
576 mb_test_bit(i << 1, buddy2));
577 }
578 continue;
579 }
580
581 /* both bits in buddy2 must be 0 */
582 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
583 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
584
585 for (j = 0; j < (1 << order); j++) {
586 k = (i * (1 << order)) + j;
587 MB_CHECK_ASSERT(
588 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
589 }
590 count++;
591 }
592 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
593 order--;
594 }
595
596 fstart = -1;
597 buddy = mb_find_buddy(e4b, 0, &max);
598 for (i = 0; i < max; i++) {
599 if (!mb_test_bit(i, buddy)) {
600 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
601 if (fstart == -1) {
602 fragments++;
603 fstart = i;
604 }
605 continue;
606 }
607 fstart = -1;
608 /* check used bits only */
609 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
610 buddy2 = mb_find_buddy(e4b, j, &max2);
611 k = i >> j;
612 MB_CHECK_ASSERT(k < max2);
613 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
614 }
615 }
616 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
617 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
618
619 grp = ext4_get_group_info(sb, e4b->bd_group);
620 list_for_each(cur, &grp->bb_prealloc_list) {
621 ext4_group_t groupnr;
622 struct ext4_prealloc_space *pa;
623 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
624 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
625 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
626 for (i = 0; i < pa->pa_len; i++)
627 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
628 }
629 return 0;
630 }
631 #undef MB_CHECK_ASSERT
632 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
633 __FILE__, __func__, __LINE__)
634 #else
635 #define mb_check_buddy(e4b)
636 #endif
637
638 /*
639 * Divide blocks started from @first with length @len into
640 * smaller chunks with power of 2 blocks.
641 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
642 * then increase bb_counters[] for corresponded chunk size.
643 */
644 static void ext4_mb_mark_free_simple(struct super_block *sb,
645 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
646 struct ext4_group_info *grp)
647 {
648 struct ext4_sb_info *sbi = EXT4_SB(sb);
649 ext4_grpblk_t min;
650 ext4_grpblk_t max;
651 ext4_grpblk_t chunk;
652 unsigned short border;
653
654 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
655
656 border = 2 << sb->s_blocksize_bits;
657
658 while (len > 0) {
659 /* find how many blocks can be covered since this position */
660 max = ffs(first | border) - 1;
661
662 /* find how many blocks of power 2 we need to mark */
663 min = fls(len) - 1;
664
665 if (max < min)
666 min = max;
667 chunk = 1 << min;
668
669 /* mark multiblock chunks only */
670 grp->bb_counters[min]++;
671 if (min > 0)
672 mb_clear_bit(first >> min,
673 buddy + sbi->s_mb_offsets[min]);
674
675 len -= chunk;
676 first += chunk;
677 }
678 }
679
680 /*
681 * Cache the order of the largest free extent we have available in this block
682 * group.
683 */
684 static void
685 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
686 {
687 int i;
688 int bits;
689
690 grp->bb_largest_free_order = -1; /* uninit */
691
692 bits = sb->s_blocksize_bits + 1;
693 for (i = bits; i >= 0; i--) {
694 if (grp->bb_counters[i] > 0) {
695 grp->bb_largest_free_order = i;
696 break;
697 }
698 }
699 }
700
701 static noinline_for_stack
702 void ext4_mb_generate_buddy(struct super_block *sb,
703 void *buddy, void *bitmap, ext4_group_t group)
704 {
705 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
706 ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
707 ext4_grpblk_t i = 0;
708 ext4_grpblk_t first;
709 ext4_grpblk_t len;
710 unsigned free = 0;
711 unsigned fragments = 0;
712 unsigned long long period = get_cycles();
713
714 /* initialize buddy from bitmap which is aggregation
715 * of on-disk bitmap and preallocations */
716 i = mb_find_next_zero_bit(bitmap, max, 0);
717 grp->bb_first_free = i;
718 while (i < max) {
719 fragments++;
720 first = i;
721 i = mb_find_next_bit(bitmap, max, i);
722 len = i - first;
723 free += len;
724 if (len > 1)
725 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
726 else
727 grp->bb_counters[0]++;
728 if (i < max)
729 i = mb_find_next_zero_bit(bitmap, max, i);
730 }
731 grp->bb_fragments = fragments;
732
733 if (free != grp->bb_free) {
734 ext4_grp_locked_error(sb, group, 0, 0,
735 "%u blocks in bitmap, %u in gd",
736 free, grp->bb_free);
737 /*
738 * If we intent to continue, we consider group descritor
739 * corrupt and update bb_free using bitmap value
740 */
741 grp->bb_free = free;
742 }
743 mb_set_largest_free_order(sb, grp);
744
745 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
746
747 period = get_cycles() - period;
748 spin_lock(&EXT4_SB(sb)->s_bal_lock);
749 EXT4_SB(sb)->s_mb_buddies_generated++;
750 EXT4_SB(sb)->s_mb_generation_time += period;
751 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
752 }
753
754 /* The buddy information is attached the buddy cache inode
755 * for convenience. The information regarding each group
756 * is loaded via ext4_mb_load_buddy. The information involve
757 * block bitmap and buddy information. The information are
758 * stored in the inode as
759 *
760 * { page }
761 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
762 *
763 *
764 * one block each for bitmap and buddy information.
765 * So for each group we take up 2 blocks. A page can
766 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
767 * So it can have information regarding groups_per_page which
768 * is blocks_per_page/2
769 *
770 * Locking note: This routine takes the block group lock of all groups
771 * for this page; do not hold this lock when calling this routine!
772 */
773
774 static int ext4_mb_init_cache(struct page *page, char *incore)
775 {
776 ext4_group_t ngroups;
777 int blocksize;
778 int blocks_per_page;
779 int groups_per_page;
780 int err = 0;
781 int i;
782 ext4_group_t first_group;
783 int first_block;
784 struct super_block *sb;
785 struct buffer_head *bhs;
786 struct buffer_head **bh;
787 struct inode *inode;
788 char *data;
789 char *bitmap;
790
791 mb_debug(1, "init page %lu\n", page->index);
792
793 inode = page->mapping->host;
794 sb = inode->i_sb;
795 ngroups = ext4_get_groups_count(sb);
796 blocksize = 1 << inode->i_blkbits;
797 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
798
799 groups_per_page = blocks_per_page >> 1;
800 if (groups_per_page == 0)
801 groups_per_page = 1;
802
803 /* allocate buffer_heads to read bitmaps */
804 if (groups_per_page > 1) {
805 err = -ENOMEM;
806 i = sizeof(struct buffer_head *) * groups_per_page;
807 bh = kzalloc(i, GFP_NOFS);
808 if (bh == NULL)
809 goto out;
810 } else
811 bh = &bhs;
812
813 first_group = page->index * blocks_per_page / 2;
814
815 /* read all groups the page covers into the cache */
816 for (i = 0; i < groups_per_page; i++) {
817 struct ext4_group_desc *desc;
818
819 if (first_group + i >= ngroups)
820 break;
821
822 err = -EIO;
823 desc = ext4_get_group_desc(sb, first_group + i, NULL);
824 if (desc == NULL)
825 goto out;
826
827 err = -ENOMEM;
828 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
829 if (bh[i] == NULL)
830 goto out;
831
832 if (bitmap_uptodate(bh[i]))
833 continue;
834
835 lock_buffer(bh[i]);
836 if (bitmap_uptodate(bh[i])) {
837 unlock_buffer(bh[i]);
838 continue;
839 }
840 ext4_lock_group(sb, first_group + i);
841 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
842 ext4_init_block_bitmap(sb, bh[i],
843 first_group + i, desc);
844 set_bitmap_uptodate(bh[i]);
845 set_buffer_uptodate(bh[i]);
846 ext4_unlock_group(sb, first_group + i);
847 unlock_buffer(bh[i]);
848 continue;
849 }
850 ext4_unlock_group(sb, first_group + i);
851 if (buffer_uptodate(bh[i])) {
852 /*
853 * if not uninit if bh is uptodate,
854 * bitmap is also uptodate
855 */
856 set_bitmap_uptodate(bh[i]);
857 unlock_buffer(bh[i]);
858 continue;
859 }
860 get_bh(bh[i]);
861 /*
862 * submit the buffer_head for read. We can
863 * safely mark the bitmap as uptodate now.
864 * We do it here so the bitmap uptodate bit
865 * get set with buffer lock held.
866 */
867 set_bitmap_uptodate(bh[i]);
868 bh[i]->b_end_io = end_buffer_read_sync;
869 submit_bh(READ, bh[i]);
870 mb_debug(1, "read bitmap for group %u\n", first_group + i);
871 }
872
873 /* wait for I/O completion */
874 for (i = 0; i < groups_per_page && bh[i]; i++)
875 wait_on_buffer(bh[i]);
876
877 err = -EIO;
878 for (i = 0; i < groups_per_page && bh[i]; i++)
879 if (!buffer_uptodate(bh[i]))
880 goto out;
881
882 err = 0;
883 first_block = page->index * blocks_per_page;
884 /* init the page */
885 memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
886 for (i = 0; i < blocks_per_page; i++) {
887 int group;
888 struct ext4_group_info *grinfo;
889
890 group = (first_block + i) >> 1;
891 if (group >= ngroups)
892 break;
893
894 /*
895 * data carry information regarding this
896 * particular group in the format specified
897 * above
898 *
899 */
900 data = page_address(page) + (i * blocksize);
901 bitmap = bh[group - first_group]->b_data;
902
903 /*
904 * We place the buddy block and bitmap block
905 * close together
906 */
907 if ((first_block + i) & 1) {
908 /* this is block of buddy */
909 BUG_ON(incore == NULL);
910 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
911 group, page->index, i * blocksize);
912 trace_ext4_mb_buddy_bitmap_load(sb, group);
913 grinfo = ext4_get_group_info(sb, group);
914 grinfo->bb_fragments = 0;
915 memset(grinfo->bb_counters, 0,
916 sizeof(*grinfo->bb_counters) *
917 (sb->s_blocksize_bits+2));
918 /*
919 * incore got set to the group block bitmap below
920 */
921 ext4_lock_group(sb, group);
922 ext4_mb_generate_buddy(sb, data, incore, group);
923 ext4_unlock_group(sb, group);
924 incore = NULL;
925 } else {
926 /* this is block of bitmap */
927 BUG_ON(incore != NULL);
928 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
929 group, page->index, i * blocksize);
930 trace_ext4_mb_bitmap_load(sb, group);
931
932 /* see comments in ext4_mb_put_pa() */
933 ext4_lock_group(sb, group);
934 memcpy(data, bitmap, blocksize);
935
936 /* mark all preallocated blks used in in-core bitmap */
937 ext4_mb_generate_from_pa(sb, data, group);
938 ext4_mb_generate_from_freelist(sb, data, group);
939 ext4_unlock_group(sb, group);
940
941 /* set incore so that the buddy information can be
942 * generated using this
943 */
944 incore = data;
945 }
946 }
947 SetPageUptodate(page);
948
949 out:
950 if (bh) {
951 for (i = 0; i < groups_per_page && bh[i]; i++)
952 brelse(bh[i]);
953 if (bh != &bhs)
954 kfree(bh);
955 }
956 return err;
957 }
958
959 /*
960 * lock the group_info alloc_sem of all the groups
961 * belonging to the same buddy cache page. This
962 * make sure other parallel operation on the buddy
963 * cache doesn't happen whild holding the buddy cache
964 * lock
965 */
966 static int ext4_mb_get_buddy_cache_lock(struct super_block *sb,
967 ext4_group_t group)
968 {
969 int i;
970 int block, pnum;
971 int blocks_per_page;
972 int groups_per_page;
973 ext4_group_t ngroups = ext4_get_groups_count(sb);
974 ext4_group_t first_group;
975 struct ext4_group_info *grp;
976
977 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
978 /*
979 * the buddy cache inode stores the block bitmap
980 * and buddy information in consecutive blocks.
981 * So for each group we need two blocks.
982 */
983 block = group * 2;
984 pnum = block / blocks_per_page;
985 first_group = pnum * blocks_per_page / 2;
986
987 groups_per_page = blocks_per_page >> 1;
988 if (groups_per_page == 0)
989 groups_per_page = 1;
990 /* read all groups the page covers into the cache */
991 for (i = 0; i < groups_per_page; i++) {
992
993 if ((first_group + i) >= ngroups)
994 break;
995 grp = ext4_get_group_info(sb, first_group + i);
996 /* take all groups write allocation
997 * semaphore. This make sure there is
998 * no block allocation going on in any
999 * of that groups
1000 */
1001 down_write_nested(&grp->alloc_sem, i);
1002 }
1003 return i;
1004 }
1005
1006 static void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1007 ext4_group_t group, int locked_group)
1008 {
1009 int i;
1010 int block, pnum;
1011 int blocks_per_page;
1012 ext4_group_t first_group;
1013 struct ext4_group_info *grp;
1014
1015 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1016 /*
1017 * the buddy cache inode stores the block bitmap
1018 * and buddy information in consecutive blocks.
1019 * So for each group we need two blocks.
1020 */
1021 block = group * 2;
1022 pnum = block / blocks_per_page;
1023 first_group = pnum * blocks_per_page / 2;
1024 /* release locks on all the groups */
1025 for (i = 0; i < locked_group; i++) {
1026
1027 grp = ext4_get_group_info(sb, first_group + i);
1028 /* take all groups write allocation
1029 * semaphore. This make sure there is
1030 * no block allocation going on in any
1031 * of that groups
1032 */
1033 up_write(&grp->alloc_sem);
1034 }
1035
1036 }
1037
1038 /*
1039 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1040 * block group lock of all groups for this page; do not hold the BG lock when
1041 * calling this routine!
1042 */
1043 static noinline_for_stack
1044 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1045 {
1046
1047 int ret = 0;
1048 void *bitmap;
1049 int blocks_per_page;
1050 int block, pnum, poff;
1051 int num_grp_locked = 0;
1052 struct ext4_group_info *this_grp;
1053 struct ext4_sb_info *sbi = EXT4_SB(sb);
1054 struct inode *inode = sbi->s_buddy_cache;
1055 struct page *page = NULL, *bitmap_page = NULL;
1056
1057 mb_debug(1, "init group %u\n", group);
1058 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1059 this_grp = ext4_get_group_info(sb, group);
1060 /*
1061 * This ensures that we don't reinit the buddy cache
1062 * page which map to the group from which we are already
1063 * allocating. If we are looking at the buddy cache we would
1064 * have taken a reference using ext4_mb_load_buddy and that
1065 * would have taken the alloc_sem lock.
1066 */
1067 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group);
1068 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1069 /*
1070 * somebody initialized the group
1071 * return without doing anything
1072 */
1073 ret = 0;
1074 goto err;
1075 }
1076 /*
1077 * the buddy cache inode stores the block bitmap
1078 * and buddy information in consecutive blocks.
1079 * So for each group we need two blocks.
1080 */
1081 block = group * 2;
1082 pnum = block / blocks_per_page;
1083 poff = block % blocks_per_page;
1084 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1085 if (page) {
1086 BUG_ON(page->mapping != inode->i_mapping);
1087 ret = ext4_mb_init_cache(page, NULL);
1088 if (ret) {
1089 unlock_page(page);
1090 goto err;
1091 }
1092 unlock_page(page);
1093 }
1094 if (page == NULL || !PageUptodate(page)) {
1095 ret = -EIO;
1096 goto err;
1097 }
1098 mark_page_accessed(page);
1099 bitmap_page = page;
1100 bitmap = page_address(page) + (poff * sb->s_blocksize);
1101
1102 /* init buddy cache */
1103 block++;
1104 pnum = block / blocks_per_page;
1105 poff = block % blocks_per_page;
1106 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1107 if (page == bitmap_page) {
1108 /*
1109 * If both the bitmap and buddy are in
1110 * the same page we don't need to force
1111 * init the buddy
1112 */
1113 unlock_page(page);
1114 } else if (page) {
1115 BUG_ON(page->mapping != inode->i_mapping);
1116 ret = ext4_mb_init_cache(page, bitmap);
1117 if (ret) {
1118 unlock_page(page);
1119 goto err;
1120 }
1121 unlock_page(page);
1122 }
1123 if (page == NULL || !PageUptodate(page)) {
1124 ret = -EIO;
1125 goto err;
1126 }
1127 mark_page_accessed(page);
1128 err:
1129 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1130 if (bitmap_page)
1131 page_cache_release(bitmap_page);
1132 if (page)
1133 page_cache_release(page);
1134 return ret;
1135 }
1136
1137 /*
1138 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1139 * block group lock of all groups for this page; do not hold the BG lock when
1140 * calling this routine!
1141 */
1142 static noinline_for_stack int
1143 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1144 struct ext4_buddy *e4b)
1145 {
1146 int blocks_per_page;
1147 int block;
1148 int pnum;
1149 int poff;
1150 struct page *page;
1151 int ret;
1152 struct ext4_group_info *grp;
1153 struct ext4_sb_info *sbi = EXT4_SB(sb);
1154 struct inode *inode = sbi->s_buddy_cache;
1155
1156 mb_debug(1, "load group %u\n", group);
1157
1158 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1159 grp = ext4_get_group_info(sb, group);
1160
1161 e4b->bd_blkbits = sb->s_blocksize_bits;
1162 e4b->bd_info = ext4_get_group_info(sb, group);
1163 e4b->bd_sb = sb;
1164 e4b->bd_group = group;
1165 e4b->bd_buddy_page = NULL;
1166 e4b->bd_bitmap_page = NULL;
1167 e4b->alloc_semp = &grp->alloc_sem;
1168
1169 /* Take the read lock on the group alloc
1170 * sem. This would make sure a parallel
1171 * ext4_mb_init_group happening on other
1172 * groups mapped by the page is blocked
1173 * till we are done with allocation
1174 */
1175 repeat_load_buddy:
1176 down_read(e4b->alloc_semp);
1177
1178 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1179 /* we need to check for group need init flag
1180 * with alloc_semp held so that we can be sure
1181 * that new blocks didn't get added to the group
1182 * when we are loading the buddy cache
1183 */
1184 up_read(e4b->alloc_semp);
1185 /*
1186 * we need full data about the group
1187 * to make a good selection
1188 */
1189 ret = ext4_mb_init_group(sb, group);
1190 if (ret)
1191 return ret;
1192 goto repeat_load_buddy;
1193 }
1194
1195 /*
1196 * the buddy cache inode stores the block bitmap
1197 * and buddy information in consecutive blocks.
1198 * So for each group we need two blocks.
1199 */
1200 block = group * 2;
1201 pnum = block / blocks_per_page;
1202 poff = block % blocks_per_page;
1203
1204 /* we could use find_or_create_page(), but it locks page
1205 * what we'd like to avoid in fast path ... */
1206 page = find_get_page(inode->i_mapping, pnum);
1207 if (page == NULL || !PageUptodate(page)) {
1208 if (page)
1209 /*
1210 * drop the page reference and try
1211 * to get the page with lock. If we
1212 * are not uptodate that implies
1213 * somebody just created the page but
1214 * is yet to initialize the same. So
1215 * wait for it to initialize.
1216 */
1217 page_cache_release(page);
1218 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1219 if (page) {
1220 BUG_ON(page->mapping != inode->i_mapping);
1221 if (!PageUptodate(page)) {
1222 ret = ext4_mb_init_cache(page, NULL);
1223 if (ret) {
1224 unlock_page(page);
1225 goto err;
1226 }
1227 mb_cmp_bitmaps(e4b, page_address(page) +
1228 (poff * sb->s_blocksize));
1229 }
1230 unlock_page(page);
1231 }
1232 }
1233 if (page == NULL || !PageUptodate(page)) {
1234 ret = -EIO;
1235 goto err;
1236 }
1237 e4b->bd_bitmap_page = page;
1238 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1239 mark_page_accessed(page);
1240
1241 block++;
1242 pnum = block / blocks_per_page;
1243 poff = block % blocks_per_page;
1244
1245 page = find_get_page(inode->i_mapping, pnum);
1246 if (page == NULL || !PageUptodate(page)) {
1247 if (page)
1248 page_cache_release(page);
1249 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1250 if (page) {
1251 BUG_ON(page->mapping != inode->i_mapping);
1252 if (!PageUptodate(page)) {
1253 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1254 if (ret) {
1255 unlock_page(page);
1256 goto err;
1257 }
1258 }
1259 unlock_page(page);
1260 }
1261 }
1262 if (page == NULL || !PageUptodate(page)) {
1263 ret = -EIO;
1264 goto err;
1265 }
1266 e4b->bd_buddy_page = page;
1267 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1268 mark_page_accessed(page);
1269
1270 BUG_ON(e4b->bd_bitmap_page == NULL);
1271 BUG_ON(e4b->bd_buddy_page == NULL);
1272
1273 return 0;
1274
1275 err:
1276 if (page)
1277 page_cache_release(page);
1278 if (e4b->bd_bitmap_page)
1279 page_cache_release(e4b->bd_bitmap_page);
1280 if (e4b->bd_buddy_page)
1281 page_cache_release(e4b->bd_buddy_page);
1282 e4b->bd_buddy = NULL;
1283 e4b->bd_bitmap = NULL;
1284
1285 /* Done with the buddy cache */
1286 up_read(e4b->alloc_semp);
1287 return ret;
1288 }
1289
1290 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1291 {
1292 if (e4b->bd_bitmap_page)
1293 page_cache_release(e4b->bd_bitmap_page);
1294 if (e4b->bd_buddy_page)
1295 page_cache_release(e4b->bd_buddy_page);
1296 /* Done with the buddy cache */
1297 if (e4b->alloc_semp)
1298 up_read(e4b->alloc_semp);
1299 }
1300
1301
1302 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1303 {
1304 int order = 1;
1305 void *bb;
1306
1307 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1308 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1309
1310 bb = EXT4_MB_BUDDY(e4b);
1311 while (order <= e4b->bd_blkbits + 1) {
1312 block = block >> 1;
1313 if (!mb_test_bit(block, bb)) {
1314 /* this block is part of buddy of order 'order' */
1315 return order;
1316 }
1317 bb += 1 << (e4b->bd_blkbits - order);
1318 order++;
1319 }
1320 return 0;
1321 }
1322
1323 static void mb_clear_bits(void *bm, int cur, int len)
1324 {
1325 __u32 *addr;
1326
1327 len = cur + len;
1328 while (cur < len) {
1329 if ((cur & 31) == 0 && (len - cur) >= 32) {
1330 /* fast path: clear whole word at once */
1331 addr = bm + (cur >> 3);
1332 *addr = 0;
1333 cur += 32;
1334 continue;
1335 }
1336 mb_clear_bit(cur, bm);
1337 cur++;
1338 }
1339 }
1340
1341 static void mb_set_bits(void *bm, int cur, int len)
1342 {
1343 __u32 *addr;
1344
1345 len = cur + len;
1346 while (cur < len) {
1347 if ((cur & 31) == 0 && (len - cur) >= 32) {
1348 /* fast path: set whole word at once */
1349 addr = bm + (cur >> 3);
1350 *addr = 0xffffffff;
1351 cur += 32;
1352 continue;
1353 }
1354 mb_set_bit(cur, bm);
1355 cur++;
1356 }
1357 }
1358
1359 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1360 int first, int count)
1361 {
1362 int block = 0;
1363 int max = 0;
1364 int order;
1365 void *buddy;
1366 void *buddy2;
1367 struct super_block *sb = e4b->bd_sb;
1368
1369 BUG_ON(first + count > (sb->s_blocksize << 3));
1370 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1371 mb_check_buddy(e4b);
1372 mb_free_blocks_double(inode, e4b, first, count);
1373
1374 e4b->bd_info->bb_free += count;
1375 if (first < e4b->bd_info->bb_first_free)
1376 e4b->bd_info->bb_first_free = first;
1377
1378 /* let's maintain fragments counter */
1379 if (first != 0)
1380 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1381 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1382 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1383 if (block && max)
1384 e4b->bd_info->bb_fragments--;
1385 else if (!block && !max)
1386 e4b->bd_info->bb_fragments++;
1387
1388 /* let's maintain buddy itself */
1389 while (count-- > 0) {
1390 block = first++;
1391 order = 0;
1392
1393 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1394 ext4_fsblk_t blocknr;
1395
1396 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1397 blocknr += block;
1398 ext4_grp_locked_error(sb, e4b->bd_group,
1399 inode ? inode->i_ino : 0,
1400 blocknr,
1401 "freeing already freed block "
1402 "(bit %u)", block);
1403 }
1404 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1405 e4b->bd_info->bb_counters[order]++;
1406
1407 /* start of the buddy */
1408 buddy = mb_find_buddy(e4b, order, &max);
1409
1410 do {
1411 block &= ~1UL;
1412 if (mb_test_bit(block, buddy) ||
1413 mb_test_bit(block + 1, buddy))
1414 break;
1415
1416 /* both the buddies are free, try to coalesce them */
1417 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1418
1419 if (!buddy2)
1420 break;
1421
1422 if (order > 0) {
1423 /* for special purposes, we don't set
1424 * free bits in bitmap */
1425 mb_set_bit(block, buddy);
1426 mb_set_bit(block + 1, buddy);
1427 }
1428 e4b->bd_info->bb_counters[order]--;
1429 e4b->bd_info->bb_counters[order]--;
1430
1431 block = block >> 1;
1432 order++;
1433 e4b->bd_info->bb_counters[order]++;
1434
1435 mb_clear_bit(block, buddy2);
1436 buddy = buddy2;
1437 } while (1);
1438 }
1439 mb_set_largest_free_order(sb, e4b->bd_info);
1440 mb_check_buddy(e4b);
1441 }
1442
1443 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1444 int needed, struct ext4_free_extent *ex)
1445 {
1446 int next = block;
1447 int max;
1448 int ord;
1449 void *buddy;
1450
1451 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1452 BUG_ON(ex == NULL);
1453
1454 buddy = mb_find_buddy(e4b, order, &max);
1455 BUG_ON(buddy == NULL);
1456 BUG_ON(block >= max);
1457 if (mb_test_bit(block, buddy)) {
1458 ex->fe_len = 0;
1459 ex->fe_start = 0;
1460 ex->fe_group = 0;
1461 return 0;
1462 }
1463
1464 /* FIXME dorp order completely ? */
1465 if (likely(order == 0)) {
1466 /* find actual order */
1467 order = mb_find_order_for_block(e4b, block);
1468 block = block >> order;
1469 }
1470
1471 ex->fe_len = 1 << order;
1472 ex->fe_start = block << order;
1473 ex->fe_group = e4b->bd_group;
1474
1475 /* calc difference from given start */
1476 next = next - ex->fe_start;
1477 ex->fe_len -= next;
1478 ex->fe_start += next;
1479
1480 while (needed > ex->fe_len &&
1481 (buddy = mb_find_buddy(e4b, order, &max))) {
1482
1483 if (block + 1 >= max)
1484 break;
1485
1486 next = (block + 1) * (1 << order);
1487 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1488 break;
1489
1490 ord = mb_find_order_for_block(e4b, next);
1491
1492 order = ord;
1493 block = next >> order;
1494 ex->fe_len += 1 << order;
1495 }
1496
1497 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1498 return ex->fe_len;
1499 }
1500
1501 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1502 {
1503 int ord;
1504 int mlen = 0;
1505 int max = 0;
1506 int cur;
1507 int start = ex->fe_start;
1508 int len = ex->fe_len;
1509 unsigned ret = 0;
1510 int len0 = len;
1511 void *buddy;
1512
1513 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1514 BUG_ON(e4b->bd_group != ex->fe_group);
1515 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1516 mb_check_buddy(e4b);
1517 mb_mark_used_double(e4b, start, len);
1518
1519 e4b->bd_info->bb_free -= len;
1520 if (e4b->bd_info->bb_first_free == start)
1521 e4b->bd_info->bb_first_free += len;
1522
1523 /* let's maintain fragments counter */
1524 if (start != 0)
1525 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1526 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1527 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1528 if (mlen && max)
1529 e4b->bd_info->bb_fragments++;
1530 else if (!mlen && !max)
1531 e4b->bd_info->bb_fragments--;
1532
1533 /* let's maintain buddy itself */
1534 while (len) {
1535 ord = mb_find_order_for_block(e4b, start);
1536
1537 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1538 /* the whole chunk may be allocated at once! */
1539 mlen = 1 << ord;
1540 buddy = mb_find_buddy(e4b, ord, &max);
1541 BUG_ON((start >> ord) >= max);
1542 mb_set_bit(start >> ord, buddy);
1543 e4b->bd_info->bb_counters[ord]--;
1544 start += mlen;
1545 len -= mlen;
1546 BUG_ON(len < 0);
1547 continue;
1548 }
1549
1550 /* store for history */
1551 if (ret == 0)
1552 ret = len | (ord << 16);
1553
1554 /* we have to split large buddy */
1555 BUG_ON(ord <= 0);
1556 buddy = mb_find_buddy(e4b, ord, &max);
1557 mb_set_bit(start >> ord, buddy);
1558 e4b->bd_info->bb_counters[ord]--;
1559
1560 ord--;
1561 cur = (start >> ord) & ~1U;
1562 buddy = mb_find_buddy(e4b, ord, &max);
1563 mb_clear_bit(cur, buddy);
1564 mb_clear_bit(cur + 1, buddy);
1565 e4b->bd_info->bb_counters[ord]++;
1566 e4b->bd_info->bb_counters[ord]++;
1567 }
1568 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1569
1570 mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1571 mb_check_buddy(e4b);
1572
1573 return ret;
1574 }
1575
1576 /*
1577 * Must be called under group lock!
1578 */
1579 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1580 struct ext4_buddy *e4b)
1581 {
1582 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1583 int ret;
1584
1585 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1586 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1587
1588 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1589 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1590 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1591
1592 /* preallocation can change ac_b_ex, thus we store actually
1593 * allocated blocks for history */
1594 ac->ac_f_ex = ac->ac_b_ex;
1595
1596 ac->ac_status = AC_STATUS_FOUND;
1597 ac->ac_tail = ret & 0xffff;
1598 ac->ac_buddy = ret >> 16;
1599
1600 /*
1601 * take the page reference. We want the page to be pinned
1602 * so that we don't get a ext4_mb_init_cache_call for this
1603 * group until we update the bitmap. That would mean we
1604 * double allocate blocks. The reference is dropped
1605 * in ext4_mb_release_context
1606 */
1607 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1608 get_page(ac->ac_bitmap_page);
1609 ac->ac_buddy_page = e4b->bd_buddy_page;
1610 get_page(ac->ac_buddy_page);
1611 /* on allocation we use ac to track the held semaphore */
1612 ac->alloc_semp = e4b->alloc_semp;
1613 e4b->alloc_semp = NULL;
1614 /* store last allocated for subsequent stream allocation */
1615 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1616 spin_lock(&sbi->s_md_lock);
1617 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1618 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1619 spin_unlock(&sbi->s_md_lock);
1620 }
1621 }
1622
1623 /*
1624 * regular allocator, for general purposes allocation
1625 */
1626
1627 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1628 struct ext4_buddy *e4b,
1629 int finish_group)
1630 {
1631 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1632 struct ext4_free_extent *bex = &ac->ac_b_ex;
1633 struct ext4_free_extent *gex = &ac->ac_g_ex;
1634 struct ext4_free_extent ex;
1635 int max;
1636
1637 if (ac->ac_status == AC_STATUS_FOUND)
1638 return;
1639 /*
1640 * We don't want to scan for a whole year
1641 */
1642 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1643 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1644 ac->ac_status = AC_STATUS_BREAK;
1645 return;
1646 }
1647
1648 /*
1649 * Haven't found good chunk so far, let's continue
1650 */
1651 if (bex->fe_len < gex->fe_len)
1652 return;
1653
1654 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1655 && bex->fe_group == e4b->bd_group) {
1656 /* recheck chunk's availability - we don't know
1657 * when it was found (within this lock-unlock
1658 * period or not) */
1659 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1660 if (max >= gex->fe_len) {
1661 ext4_mb_use_best_found(ac, e4b);
1662 return;
1663 }
1664 }
1665 }
1666
1667 /*
1668 * The routine checks whether found extent is good enough. If it is,
1669 * then the extent gets marked used and flag is set to the context
1670 * to stop scanning. Otherwise, the extent is compared with the
1671 * previous found extent and if new one is better, then it's stored
1672 * in the context. Later, the best found extent will be used, if
1673 * mballoc can't find good enough extent.
1674 *
1675 * FIXME: real allocation policy is to be designed yet!
1676 */
1677 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1678 struct ext4_free_extent *ex,
1679 struct ext4_buddy *e4b)
1680 {
1681 struct ext4_free_extent *bex = &ac->ac_b_ex;
1682 struct ext4_free_extent *gex = &ac->ac_g_ex;
1683
1684 BUG_ON(ex->fe_len <= 0);
1685 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1686 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1687 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1688
1689 ac->ac_found++;
1690
1691 /*
1692 * The special case - take what you catch first
1693 */
1694 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1695 *bex = *ex;
1696 ext4_mb_use_best_found(ac, e4b);
1697 return;
1698 }
1699
1700 /*
1701 * Let's check whether the chuck is good enough
1702 */
1703 if (ex->fe_len == gex->fe_len) {
1704 *bex = *ex;
1705 ext4_mb_use_best_found(ac, e4b);
1706 return;
1707 }
1708
1709 /*
1710 * If this is first found extent, just store it in the context
1711 */
1712 if (bex->fe_len == 0) {
1713 *bex = *ex;
1714 return;
1715 }
1716
1717 /*
1718 * If new found extent is better, store it in the context
1719 */
1720 if (bex->fe_len < gex->fe_len) {
1721 /* if the request isn't satisfied, any found extent
1722 * larger than previous best one is better */
1723 if (ex->fe_len > bex->fe_len)
1724 *bex = *ex;
1725 } else if (ex->fe_len > gex->fe_len) {
1726 /* if the request is satisfied, then we try to find
1727 * an extent that still satisfy the request, but is
1728 * smaller than previous one */
1729 if (ex->fe_len < bex->fe_len)
1730 *bex = *ex;
1731 }
1732
1733 ext4_mb_check_limits(ac, e4b, 0);
1734 }
1735
1736 static noinline_for_stack
1737 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1738 struct ext4_buddy *e4b)
1739 {
1740 struct ext4_free_extent ex = ac->ac_b_ex;
1741 ext4_group_t group = ex.fe_group;
1742 int max;
1743 int err;
1744
1745 BUG_ON(ex.fe_len <= 0);
1746 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1747 if (err)
1748 return err;
1749
1750 ext4_lock_group(ac->ac_sb, group);
1751 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1752
1753 if (max > 0) {
1754 ac->ac_b_ex = ex;
1755 ext4_mb_use_best_found(ac, e4b);
1756 }
1757
1758 ext4_unlock_group(ac->ac_sb, group);
1759 ext4_mb_unload_buddy(e4b);
1760
1761 return 0;
1762 }
1763
1764 static noinline_for_stack
1765 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1766 struct ext4_buddy *e4b)
1767 {
1768 ext4_group_t group = ac->ac_g_ex.fe_group;
1769 int max;
1770 int err;
1771 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1772 struct ext4_free_extent ex;
1773
1774 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1775 return 0;
1776
1777 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1778 if (err)
1779 return err;
1780
1781 ext4_lock_group(ac->ac_sb, group);
1782 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1783 ac->ac_g_ex.fe_len, &ex);
1784
1785 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1786 ext4_fsblk_t start;
1787
1788 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1789 ex.fe_start;
1790 /* use do_div to get remainder (would be 64-bit modulo) */
1791 if (do_div(start, sbi->s_stripe) == 0) {
1792 ac->ac_found++;
1793 ac->ac_b_ex = ex;
1794 ext4_mb_use_best_found(ac, e4b);
1795 }
1796 } else if (max >= ac->ac_g_ex.fe_len) {
1797 BUG_ON(ex.fe_len <= 0);
1798 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1799 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1800 ac->ac_found++;
1801 ac->ac_b_ex = ex;
1802 ext4_mb_use_best_found(ac, e4b);
1803 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1804 /* Sometimes, caller may want to merge even small
1805 * number of blocks to an existing extent */
1806 BUG_ON(ex.fe_len <= 0);
1807 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1808 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1809 ac->ac_found++;
1810 ac->ac_b_ex = ex;
1811 ext4_mb_use_best_found(ac, e4b);
1812 }
1813 ext4_unlock_group(ac->ac_sb, group);
1814 ext4_mb_unload_buddy(e4b);
1815
1816 return 0;
1817 }
1818
1819 /*
1820 * The routine scans buddy structures (not bitmap!) from given order
1821 * to max order and tries to find big enough chunk to satisfy the req
1822 */
1823 static noinline_for_stack
1824 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1825 struct ext4_buddy *e4b)
1826 {
1827 struct super_block *sb = ac->ac_sb;
1828 struct ext4_group_info *grp = e4b->bd_info;
1829 void *buddy;
1830 int i;
1831 int k;
1832 int max;
1833
1834 BUG_ON(ac->ac_2order <= 0);
1835 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1836 if (grp->bb_counters[i] == 0)
1837 continue;
1838
1839 buddy = mb_find_buddy(e4b, i, &max);
1840 BUG_ON(buddy == NULL);
1841
1842 k = mb_find_next_zero_bit(buddy, max, 0);
1843 BUG_ON(k >= max);
1844
1845 ac->ac_found++;
1846
1847 ac->ac_b_ex.fe_len = 1 << i;
1848 ac->ac_b_ex.fe_start = k << i;
1849 ac->ac_b_ex.fe_group = e4b->bd_group;
1850
1851 ext4_mb_use_best_found(ac, e4b);
1852
1853 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1854
1855 if (EXT4_SB(sb)->s_mb_stats)
1856 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1857
1858 break;
1859 }
1860 }
1861
1862 /*
1863 * The routine scans the group and measures all found extents.
1864 * In order to optimize scanning, caller must pass number of
1865 * free blocks in the group, so the routine can know upper limit.
1866 */
1867 static noinline_for_stack
1868 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1869 struct ext4_buddy *e4b)
1870 {
1871 struct super_block *sb = ac->ac_sb;
1872 void *bitmap = EXT4_MB_BITMAP(e4b);
1873 struct ext4_free_extent ex;
1874 int i;
1875 int free;
1876
1877 free = e4b->bd_info->bb_free;
1878 BUG_ON(free <= 0);
1879
1880 i = e4b->bd_info->bb_first_free;
1881
1882 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1883 i = mb_find_next_zero_bit(bitmap,
1884 EXT4_BLOCKS_PER_GROUP(sb), i);
1885 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1886 /*
1887 * IF we have corrupt bitmap, we won't find any
1888 * free blocks even though group info says we
1889 * we have free blocks
1890 */
1891 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1892 "%d free blocks as per "
1893 "group info. But bitmap says 0",
1894 free);
1895 break;
1896 }
1897
1898 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1899 BUG_ON(ex.fe_len <= 0);
1900 if (free < ex.fe_len) {
1901 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1902 "%d free blocks as per "
1903 "group info. But got %d blocks",
1904 free, ex.fe_len);
1905 /*
1906 * The number of free blocks differs. This mostly
1907 * indicate that the bitmap is corrupt. So exit
1908 * without claiming the space.
1909 */
1910 break;
1911 }
1912
1913 ext4_mb_measure_extent(ac, &ex, e4b);
1914
1915 i += ex.fe_len;
1916 free -= ex.fe_len;
1917 }
1918
1919 ext4_mb_check_limits(ac, e4b, 1);
1920 }
1921
1922 /*
1923 * This is a special case for storages like raid5
1924 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1925 */
1926 static noinline_for_stack
1927 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1928 struct ext4_buddy *e4b)
1929 {
1930 struct super_block *sb = ac->ac_sb;
1931 struct ext4_sb_info *sbi = EXT4_SB(sb);
1932 void *bitmap = EXT4_MB_BITMAP(e4b);
1933 struct ext4_free_extent ex;
1934 ext4_fsblk_t first_group_block;
1935 ext4_fsblk_t a;
1936 ext4_grpblk_t i;
1937 int max;
1938
1939 BUG_ON(sbi->s_stripe == 0);
1940
1941 /* find first stripe-aligned block in group */
1942 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1943
1944 a = first_group_block + sbi->s_stripe - 1;
1945 do_div(a, sbi->s_stripe);
1946 i = (a * sbi->s_stripe) - first_group_block;
1947
1948 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1949 if (!mb_test_bit(i, bitmap)) {
1950 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1951 if (max >= sbi->s_stripe) {
1952 ac->ac_found++;
1953 ac->ac_b_ex = ex;
1954 ext4_mb_use_best_found(ac, e4b);
1955 break;
1956 }
1957 }
1958 i += sbi->s_stripe;
1959 }
1960 }
1961
1962 /* This is now called BEFORE we load the buddy bitmap. */
1963 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1964 ext4_group_t group, int cr)
1965 {
1966 unsigned free, fragments;
1967 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1968 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1969
1970 BUG_ON(cr < 0 || cr >= 4);
1971
1972 /* We only do this if the grp has never been initialized */
1973 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1974 int ret = ext4_mb_init_group(ac->ac_sb, group);
1975 if (ret)
1976 return 0;
1977 }
1978
1979 free = grp->bb_free;
1980 fragments = grp->bb_fragments;
1981 if (free == 0)
1982 return 0;
1983 if (fragments == 0)
1984 return 0;
1985
1986 switch (cr) {
1987 case 0:
1988 BUG_ON(ac->ac_2order == 0);
1989
1990 if (grp->bb_largest_free_order < ac->ac_2order)
1991 return 0;
1992
1993 /* Avoid using the first bg of a flexgroup for data files */
1994 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1995 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1996 ((group % flex_size) == 0))
1997 return 0;
1998
1999 return 1;
2000 case 1:
2001 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2002 return 1;
2003 break;
2004 case 2:
2005 if (free >= ac->ac_g_ex.fe_len)
2006 return 1;
2007 break;
2008 case 3:
2009 return 1;
2010 default:
2011 BUG();
2012 }
2013
2014 return 0;
2015 }
2016
2017 static noinline_for_stack int
2018 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2019 {
2020 ext4_group_t ngroups, group, i;
2021 int cr;
2022 int err = 0;
2023 struct ext4_sb_info *sbi;
2024 struct super_block *sb;
2025 struct ext4_buddy e4b;
2026
2027 sb = ac->ac_sb;
2028 sbi = EXT4_SB(sb);
2029 ngroups = ext4_get_groups_count(sb);
2030 /* non-extent files are limited to low blocks/groups */
2031 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2032 ngroups = sbi->s_blockfile_groups;
2033
2034 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2035
2036 /* first, try the goal */
2037 err = ext4_mb_find_by_goal(ac, &e4b);
2038 if (err || ac->ac_status == AC_STATUS_FOUND)
2039 goto out;
2040
2041 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2042 goto out;
2043
2044 /*
2045 * ac->ac2_order is set only if the fe_len is a power of 2
2046 * if ac2_order is set we also set criteria to 0 so that we
2047 * try exact allocation using buddy.
2048 */
2049 i = fls(ac->ac_g_ex.fe_len);
2050 ac->ac_2order = 0;
2051 /*
2052 * We search using buddy data only if the order of the request
2053 * is greater than equal to the sbi_s_mb_order2_reqs
2054 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2055 */
2056 if (i >= sbi->s_mb_order2_reqs) {
2057 /*
2058 * This should tell if fe_len is exactly power of 2
2059 */
2060 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2061 ac->ac_2order = i - 1;
2062 }
2063
2064 /* if stream allocation is enabled, use global goal */
2065 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2066 /* TBD: may be hot point */
2067 spin_lock(&sbi->s_md_lock);
2068 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2069 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2070 spin_unlock(&sbi->s_md_lock);
2071 }
2072
2073 /* Let's just scan groups to find more-less suitable blocks */
2074 cr = ac->ac_2order ? 0 : 1;
2075 /*
2076 * cr == 0 try to get exact allocation,
2077 * cr == 3 try to get anything
2078 */
2079 repeat:
2080 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2081 ac->ac_criteria = cr;
2082 /*
2083 * searching for the right group start
2084 * from the goal value specified
2085 */
2086 group = ac->ac_g_ex.fe_group;
2087
2088 for (i = 0; i < ngroups; group++, i++) {
2089 if (group == ngroups)
2090 group = 0;
2091
2092 /* This now checks without needing the buddy page */
2093 if (!ext4_mb_good_group(ac, group, cr))
2094 continue;
2095
2096 err = ext4_mb_load_buddy(sb, group, &e4b);
2097 if (err)
2098 goto out;
2099
2100 ext4_lock_group(sb, group);
2101
2102 /*
2103 * We need to check again after locking the
2104 * block group
2105 */
2106 if (!ext4_mb_good_group(ac, group, cr)) {
2107 ext4_unlock_group(sb, group);
2108 ext4_mb_unload_buddy(&e4b);
2109 continue;
2110 }
2111
2112 ac->ac_groups_scanned++;
2113 if (cr == 0)
2114 ext4_mb_simple_scan_group(ac, &e4b);
2115 else if (cr == 1 && sbi->s_stripe &&
2116 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2117 ext4_mb_scan_aligned(ac, &e4b);
2118 else
2119 ext4_mb_complex_scan_group(ac, &e4b);
2120
2121 ext4_unlock_group(sb, group);
2122 ext4_mb_unload_buddy(&e4b);
2123
2124 if (ac->ac_status != AC_STATUS_CONTINUE)
2125 break;
2126 }
2127 }
2128
2129 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2130 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2131 /*
2132 * We've been searching too long. Let's try to allocate
2133 * the best chunk we've found so far
2134 */
2135
2136 ext4_mb_try_best_found(ac, &e4b);
2137 if (ac->ac_status != AC_STATUS_FOUND) {
2138 /*
2139 * Someone more lucky has already allocated it.
2140 * The only thing we can do is just take first
2141 * found block(s)
2142 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2143 */
2144 ac->ac_b_ex.fe_group = 0;
2145 ac->ac_b_ex.fe_start = 0;
2146 ac->ac_b_ex.fe_len = 0;
2147 ac->ac_status = AC_STATUS_CONTINUE;
2148 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2149 cr = 3;
2150 atomic_inc(&sbi->s_mb_lost_chunks);
2151 goto repeat;
2152 }
2153 }
2154 out:
2155 return err;
2156 }
2157
2158 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2159 {
2160 struct super_block *sb = seq->private;
2161 ext4_group_t group;
2162
2163 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2164 return NULL;
2165 group = *pos + 1;
2166 return (void *) ((unsigned long) group);
2167 }
2168
2169 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2170 {
2171 struct super_block *sb = seq->private;
2172 ext4_group_t group;
2173
2174 ++*pos;
2175 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2176 return NULL;
2177 group = *pos + 1;
2178 return (void *) ((unsigned long) group);
2179 }
2180
2181 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2182 {
2183 struct super_block *sb = seq->private;
2184 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2185 int i;
2186 int err;
2187 struct ext4_buddy e4b;
2188 struct sg {
2189 struct ext4_group_info info;
2190 ext4_grpblk_t counters[16];
2191 } sg;
2192
2193 group--;
2194 if (group == 0)
2195 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2196 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2197 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2198 "group", "free", "frags", "first",
2199 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2200 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2201
2202 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2203 sizeof(struct ext4_group_info);
2204 err = ext4_mb_load_buddy(sb, group, &e4b);
2205 if (err) {
2206 seq_printf(seq, "#%-5u: I/O error\n", group);
2207 return 0;
2208 }
2209 ext4_lock_group(sb, group);
2210 memcpy(&sg, ext4_get_group_info(sb, group), i);
2211 ext4_unlock_group(sb, group);
2212 ext4_mb_unload_buddy(&e4b);
2213
2214 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2215 sg.info.bb_fragments, sg.info.bb_first_free);
2216 for (i = 0; i <= 13; i++)
2217 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2218 sg.info.bb_counters[i] : 0);
2219 seq_printf(seq, " ]\n");
2220
2221 return 0;
2222 }
2223
2224 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2225 {
2226 }
2227
2228 static const struct seq_operations ext4_mb_seq_groups_ops = {
2229 .start = ext4_mb_seq_groups_start,
2230 .next = ext4_mb_seq_groups_next,
2231 .stop = ext4_mb_seq_groups_stop,
2232 .show = ext4_mb_seq_groups_show,
2233 };
2234
2235 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2236 {
2237 struct super_block *sb = PDE(inode)->data;
2238 int rc;
2239
2240 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2241 if (rc == 0) {
2242 struct seq_file *m = file->private_data;
2243 m->private = sb;
2244 }
2245 return rc;
2246
2247 }
2248
2249 static const struct file_operations ext4_mb_seq_groups_fops = {
2250 .owner = THIS_MODULE,
2251 .open = ext4_mb_seq_groups_open,
2252 .read = seq_read,
2253 .llseek = seq_lseek,
2254 .release = seq_release,
2255 };
2256
2257 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2258 {
2259 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2260 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2261
2262 BUG_ON(!cachep);
2263 return cachep;
2264 }
2265
2266 /* Create and initialize ext4_group_info data for the given group. */
2267 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2268 struct ext4_group_desc *desc)
2269 {
2270 int i;
2271 int metalen = 0;
2272 struct ext4_sb_info *sbi = EXT4_SB(sb);
2273 struct ext4_group_info **meta_group_info;
2274 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2275
2276 /*
2277 * First check if this group is the first of a reserved block.
2278 * If it's true, we have to allocate a new table of pointers
2279 * to ext4_group_info structures
2280 */
2281 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2282 metalen = sizeof(*meta_group_info) <<
2283 EXT4_DESC_PER_BLOCK_BITS(sb);
2284 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2285 if (meta_group_info == NULL) {
2286 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2287 "buddy group\n");
2288 goto exit_meta_group_info;
2289 }
2290 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2291 meta_group_info;
2292 }
2293
2294 meta_group_info =
2295 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2296 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2297
2298 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2299 if (meta_group_info[i] == NULL) {
2300 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2301 goto exit_group_info;
2302 }
2303 memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2304 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2305 &(meta_group_info[i]->bb_state));
2306
2307 /*
2308 * initialize bb_free to be able to skip
2309 * empty groups without initialization
2310 */
2311 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2312 meta_group_info[i]->bb_free =
2313 ext4_free_blocks_after_init(sb, group, desc);
2314 } else {
2315 meta_group_info[i]->bb_free =
2316 ext4_free_blks_count(sb, desc);
2317 }
2318
2319 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2320 init_rwsem(&meta_group_info[i]->alloc_sem);
2321 meta_group_info[i]->bb_free_root = RB_ROOT;
2322 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2323
2324 #ifdef DOUBLE_CHECK
2325 {
2326 struct buffer_head *bh;
2327 meta_group_info[i]->bb_bitmap =
2328 kmalloc(sb->s_blocksize, GFP_KERNEL);
2329 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2330 bh = ext4_read_block_bitmap(sb, group);
2331 BUG_ON(bh == NULL);
2332 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2333 sb->s_blocksize);
2334 put_bh(bh);
2335 }
2336 #endif
2337
2338 return 0;
2339
2340 exit_group_info:
2341 /* If a meta_group_info table has been allocated, release it now */
2342 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2343 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2344 exit_meta_group_info:
2345 return -ENOMEM;
2346 } /* ext4_mb_add_groupinfo */
2347
2348 static int ext4_mb_init_backend(struct super_block *sb)
2349 {
2350 ext4_group_t ngroups = ext4_get_groups_count(sb);
2351 ext4_group_t i;
2352 struct ext4_sb_info *sbi = EXT4_SB(sb);
2353 struct ext4_super_block *es = sbi->s_es;
2354 int num_meta_group_infos;
2355 int num_meta_group_infos_max;
2356 int array_size;
2357 struct ext4_group_desc *desc;
2358 struct kmem_cache *cachep;
2359
2360 /* This is the number of blocks used by GDT */
2361 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2362 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2363
2364 /*
2365 * This is the total number of blocks used by GDT including
2366 * the number of reserved blocks for GDT.
2367 * The s_group_info array is allocated with this value
2368 * to allow a clean online resize without a complex
2369 * manipulation of pointer.
2370 * The drawback is the unused memory when no resize
2371 * occurs but it's very low in terms of pages
2372 * (see comments below)
2373 * Need to handle this properly when META_BG resizing is allowed
2374 */
2375 num_meta_group_infos_max = num_meta_group_infos +
2376 le16_to_cpu(es->s_reserved_gdt_blocks);
2377
2378 /*
2379 * array_size is the size of s_group_info array. We round it
2380 * to the next power of two because this approximation is done
2381 * internally by kmalloc so we can have some more memory
2382 * for free here (e.g. may be used for META_BG resize).
2383 */
2384 array_size = 1;
2385 while (array_size < sizeof(*sbi->s_group_info) *
2386 num_meta_group_infos_max)
2387 array_size = array_size << 1;
2388 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2389 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2390 * So a two level scheme suffices for now. */
2391 sbi->s_group_info = kzalloc(array_size, GFP_KERNEL);
2392 if (sbi->s_group_info == NULL) {
2393 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2394 return -ENOMEM;
2395 }
2396 sbi->s_buddy_cache = new_inode(sb);
2397 if (sbi->s_buddy_cache == NULL) {
2398 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2399 goto err_freesgi;
2400 }
2401 sbi->s_buddy_cache->i_ino = get_next_ino();
2402 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2403 for (i = 0; i < ngroups; i++) {
2404 desc = ext4_get_group_desc(sb, i, NULL);
2405 if (desc == NULL) {
2406 printk(KERN_ERR
2407 "EXT4-fs: can't read descriptor %u\n", i);
2408 goto err_freebuddy;
2409 }
2410 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2411 goto err_freebuddy;
2412 }
2413
2414 return 0;
2415
2416 err_freebuddy:
2417 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2418 while (i-- > 0)
2419 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2420 i = num_meta_group_infos;
2421 while (i-- > 0)
2422 kfree(sbi->s_group_info[i]);
2423 iput(sbi->s_buddy_cache);
2424 err_freesgi:
2425 kfree(sbi->s_group_info);
2426 return -ENOMEM;
2427 }
2428
2429 static void ext4_groupinfo_destroy_slabs(void)
2430 {
2431 int i;
2432
2433 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2434 if (ext4_groupinfo_caches[i])
2435 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2436 ext4_groupinfo_caches[i] = NULL;
2437 }
2438 }
2439
2440 static int ext4_groupinfo_create_slab(size_t size)
2441 {
2442 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2443 int slab_size;
2444 int blocksize_bits = order_base_2(size);
2445 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2446 struct kmem_cache *cachep;
2447
2448 if (cache_index >= NR_GRPINFO_CACHES)
2449 return -EINVAL;
2450
2451 if (unlikely(cache_index < 0))
2452 cache_index = 0;
2453
2454 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2455 if (ext4_groupinfo_caches[cache_index]) {
2456 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2457 return 0; /* Already created */
2458 }
2459
2460 slab_size = offsetof(struct ext4_group_info,
2461 bb_counters[blocksize_bits + 2]);
2462
2463 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2464 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2465 NULL);
2466
2467 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2468 if (!cachep) {
2469 printk(KERN_EMERG "EXT4: no memory for groupinfo slab cache\n");
2470 return -ENOMEM;
2471 }
2472
2473 ext4_groupinfo_caches[cache_index] = cachep;
2474
2475 return 0;
2476 }
2477
2478 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2479 {
2480 struct ext4_sb_info *sbi = EXT4_SB(sb);
2481 unsigned i, j;
2482 unsigned offset;
2483 unsigned max;
2484 int ret;
2485
2486 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2487
2488 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2489 if (sbi->s_mb_offsets == NULL) {
2490 ret = -ENOMEM;
2491 goto out;
2492 }
2493
2494 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2495 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2496 if (sbi->s_mb_maxs == NULL) {
2497 ret = -ENOMEM;
2498 goto out;
2499 }
2500
2501 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2502 if (ret < 0)
2503 goto out;
2504
2505 /* order 0 is regular bitmap */
2506 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2507 sbi->s_mb_offsets[0] = 0;
2508
2509 i = 1;
2510 offset = 0;
2511 max = sb->s_blocksize << 2;
2512 do {
2513 sbi->s_mb_offsets[i] = offset;
2514 sbi->s_mb_maxs[i] = max;
2515 offset += 1 << (sb->s_blocksize_bits - i);
2516 max = max >> 1;
2517 i++;
2518 } while (i <= sb->s_blocksize_bits + 1);
2519
2520 /* init file for buddy data */
2521 ret = ext4_mb_init_backend(sb);
2522 if (ret != 0) {
2523 goto out;
2524 }
2525
2526 spin_lock_init(&sbi->s_md_lock);
2527 spin_lock_init(&sbi->s_bal_lock);
2528
2529 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2530 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2531 sbi->s_mb_stats = MB_DEFAULT_STATS;
2532 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2533 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2534 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2535
2536 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2537 if (sbi->s_locality_groups == NULL) {
2538 ret = -ENOMEM;
2539 goto out;
2540 }
2541 for_each_possible_cpu(i) {
2542 struct ext4_locality_group *lg;
2543 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2544 mutex_init(&lg->lg_mutex);
2545 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2546 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2547 spin_lock_init(&lg->lg_prealloc_lock);
2548 }
2549
2550 if (sbi->s_proc)
2551 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2552 &ext4_mb_seq_groups_fops, sb);
2553
2554 if (sbi->s_journal)
2555 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2556 out:
2557 if (ret) {
2558 kfree(sbi->s_mb_offsets);
2559 kfree(sbi->s_mb_maxs);
2560 }
2561 return ret;
2562 }
2563
2564 /* need to called with the ext4 group lock held */
2565 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2566 {
2567 struct ext4_prealloc_space *pa;
2568 struct list_head *cur, *tmp;
2569 int count = 0;
2570
2571 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2572 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2573 list_del(&pa->pa_group_list);
2574 count++;
2575 kmem_cache_free(ext4_pspace_cachep, pa);
2576 }
2577 if (count)
2578 mb_debug(1, "mballoc: %u PAs left\n", count);
2579
2580 }
2581
2582 int ext4_mb_release(struct super_block *sb)
2583 {
2584 ext4_group_t ngroups = ext4_get_groups_count(sb);
2585 ext4_group_t i;
2586 int num_meta_group_infos;
2587 struct ext4_group_info *grinfo;
2588 struct ext4_sb_info *sbi = EXT4_SB(sb);
2589 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2590
2591 if (sbi->s_group_info) {
2592 for (i = 0; i < ngroups; i++) {
2593 grinfo = ext4_get_group_info(sb, i);
2594 #ifdef DOUBLE_CHECK
2595 kfree(grinfo->bb_bitmap);
2596 #endif
2597 ext4_lock_group(sb, i);
2598 ext4_mb_cleanup_pa(grinfo);
2599 ext4_unlock_group(sb, i);
2600 kmem_cache_free(cachep, grinfo);
2601 }
2602 num_meta_group_infos = (ngroups +
2603 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2604 EXT4_DESC_PER_BLOCK_BITS(sb);
2605 for (i = 0; i < num_meta_group_infos; i++)
2606 kfree(sbi->s_group_info[i]);
2607 kfree(sbi->s_group_info);
2608 }
2609 kfree(sbi->s_mb_offsets);
2610 kfree(sbi->s_mb_maxs);
2611 if (sbi->s_buddy_cache)
2612 iput(sbi->s_buddy_cache);
2613 if (sbi->s_mb_stats) {
2614 printk(KERN_INFO
2615 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2616 atomic_read(&sbi->s_bal_allocated),
2617 atomic_read(&sbi->s_bal_reqs),
2618 atomic_read(&sbi->s_bal_success));
2619 printk(KERN_INFO
2620 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2621 "%u 2^N hits, %u breaks, %u lost\n",
2622 atomic_read(&sbi->s_bal_ex_scanned),
2623 atomic_read(&sbi->s_bal_goals),
2624 atomic_read(&sbi->s_bal_2orders),
2625 atomic_read(&sbi->s_bal_breaks),
2626 atomic_read(&sbi->s_mb_lost_chunks));
2627 printk(KERN_INFO
2628 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2629 sbi->s_mb_buddies_generated++,
2630 sbi->s_mb_generation_time);
2631 printk(KERN_INFO
2632 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2633 atomic_read(&sbi->s_mb_preallocated),
2634 atomic_read(&sbi->s_mb_discarded));
2635 }
2636
2637 free_percpu(sbi->s_locality_groups);
2638 if (sbi->s_proc)
2639 remove_proc_entry("mb_groups", sbi->s_proc);
2640
2641 return 0;
2642 }
2643
2644 static inline int ext4_issue_discard(struct super_block *sb,
2645 ext4_group_t block_group, ext4_grpblk_t block, int count)
2646 {
2647 ext4_fsblk_t discard_block;
2648
2649 discard_block = block + ext4_group_first_block_no(sb, block_group);
2650 trace_ext4_discard_blocks(sb,
2651 (unsigned long long) discard_block, count);
2652 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2653 }
2654
2655 /*
2656 * This function is called by the jbd2 layer once the commit has finished,
2657 * so we know we can free the blocks that were released with that commit.
2658 */
2659 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2660 {
2661 struct super_block *sb = journal->j_private;
2662 struct ext4_buddy e4b;
2663 struct ext4_group_info *db;
2664 int err, ret, count = 0, count2 = 0;
2665 struct ext4_free_data *entry;
2666 struct list_head *l, *ltmp;
2667
2668 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2669 entry = list_entry(l, struct ext4_free_data, list);
2670
2671 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2672 entry->count, entry->group, entry);
2673
2674 if (test_opt(sb, DISCARD)) {
2675 ret = ext4_issue_discard(sb, entry->group,
2676 entry->start_blk, entry->count);
2677 if (unlikely(ret == -EOPNOTSUPP)) {
2678 ext4_warning(sb, "discard not supported, "
2679 "disabling");
2680 clear_opt(sb, DISCARD);
2681 }
2682 }
2683
2684 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2685 /* we expect to find existing buddy because it's pinned */
2686 BUG_ON(err != 0);
2687
2688 db = e4b.bd_info;
2689 /* there are blocks to put in buddy to make them really free */
2690 count += entry->count;
2691 count2++;
2692 ext4_lock_group(sb, entry->group);
2693 /* Take it out of per group rb tree */
2694 rb_erase(&entry->node, &(db->bb_free_root));
2695 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2696
2697 if (!db->bb_free_root.rb_node) {
2698 /* No more items in the per group rb tree
2699 * balance refcounts from ext4_mb_free_metadata()
2700 */
2701 page_cache_release(e4b.bd_buddy_page);
2702 page_cache_release(e4b.bd_bitmap_page);
2703 }
2704 ext4_unlock_group(sb, entry->group);
2705 kmem_cache_free(ext4_free_ext_cachep, entry);
2706 ext4_mb_unload_buddy(&e4b);
2707 }
2708
2709 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2710 }
2711
2712 #ifdef CONFIG_EXT4_DEBUG
2713 u8 mb_enable_debug __read_mostly;
2714
2715 static struct dentry *debugfs_dir;
2716 static struct dentry *debugfs_debug;
2717
2718 static void __init ext4_create_debugfs_entry(void)
2719 {
2720 debugfs_dir = debugfs_create_dir("ext4", NULL);
2721 if (debugfs_dir)
2722 debugfs_debug = debugfs_create_u8("mballoc-debug",
2723 S_IRUGO | S_IWUSR,
2724 debugfs_dir,
2725 &mb_enable_debug);
2726 }
2727
2728 static void ext4_remove_debugfs_entry(void)
2729 {
2730 debugfs_remove(debugfs_debug);
2731 debugfs_remove(debugfs_dir);
2732 }
2733
2734 #else
2735
2736 static void __init ext4_create_debugfs_entry(void)
2737 {
2738 }
2739
2740 static void ext4_remove_debugfs_entry(void)
2741 {
2742 }
2743
2744 #endif
2745
2746 int __init ext4_init_mballoc(void)
2747 {
2748 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2749 SLAB_RECLAIM_ACCOUNT);
2750 if (ext4_pspace_cachep == NULL)
2751 return -ENOMEM;
2752
2753 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2754 SLAB_RECLAIM_ACCOUNT);
2755 if (ext4_ac_cachep == NULL) {
2756 kmem_cache_destroy(ext4_pspace_cachep);
2757 return -ENOMEM;
2758 }
2759
2760 ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
2761 SLAB_RECLAIM_ACCOUNT);
2762 if (ext4_free_ext_cachep == NULL) {
2763 kmem_cache_destroy(ext4_pspace_cachep);
2764 kmem_cache_destroy(ext4_ac_cachep);
2765 return -ENOMEM;
2766 }
2767 ext4_create_debugfs_entry();
2768 return 0;
2769 }
2770
2771 void ext4_exit_mballoc(void)
2772 {
2773 /*
2774 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2775 * before destroying the slab cache.
2776 */
2777 rcu_barrier();
2778 kmem_cache_destroy(ext4_pspace_cachep);
2779 kmem_cache_destroy(ext4_ac_cachep);
2780 kmem_cache_destroy(ext4_free_ext_cachep);
2781 ext4_groupinfo_destroy_slabs();
2782 ext4_remove_debugfs_entry();
2783 }
2784
2785
2786 /*
2787 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2788 * Returns 0 if success or error code
2789 */
2790 static noinline_for_stack int
2791 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2792 handle_t *handle, unsigned int reserv_blks)
2793 {
2794 struct buffer_head *bitmap_bh = NULL;
2795 struct ext4_group_desc *gdp;
2796 struct buffer_head *gdp_bh;
2797 struct ext4_sb_info *sbi;
2798 struct super_block *sb;
2799 ext4_fsblk_t block;
2800 int err, len;
2801
2802 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2803 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2804
2805 sb = ac->ac_sb;
2806 sbi = EXT4_SB(sb);
2807
2808 err = -EIO;
2809 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2810 if (!bitmap_bh)
2811 goto out_err;
2812
2813 err = ext4_journal_get_write_access(handle, bitmap_bh);
2814 if (err)
2815 goto out_err;
2816
2817 err = -EIO;
2818 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2819 if (!gdp)
2820 goto out_err;
2821
2822 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2823 ext4_free_blks_count(sb, gdp));
2824
2825 err = ext4_journal_get_write_access(handle, gdp_bh);
2826 if (err)
2827 goto out_err;
2828
2829 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2830
2831 len = ac->ac_b_ex.fe_len;
2832 if (!ext4_data_block_valid(sbi, block, len)) {
2833 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2834 "fs metadata\n", block, block+len);
2835 /* File system mounted not to panic on error
2836 * Fix the bitmap and repeat the block allocation
2837 * We leak some of the blocks here.
2838 */
2839 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2840 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2841 ac->ac_b_ex.fe_len);
2842 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2843 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2844 if (!err)
2845 err = -EAGAIN;
2846 goto out_err;
2847 }
2848
2849 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2850 #ifdef AGGRESSIVE_CHECK
2851 {
2852 int i;
2853 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2854 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2855 bitmap_bh->b_data));
2856 }
2857 }
2858 #endif
2859 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2860 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2861 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2862 ext4_free_blks_set(sb, gdp,
2863 ext4_free_blocks_after_init(sb,
2864 ac->ac_b_ex.fe_group, gdp));
2865 }
2866 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2867 ext4_free_blks_set(sb, gdp, len);
2868 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2869
2870 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2871 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2872 /*
2873 * Now reduce the dirty block count also. Should not go negative
2874 */
2875 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2876 /* release all the reserved blocks if non delalloc */
2877 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2878
2879 if (sbi->s_log_groups_per_flex) {
2880 ext4_group_t flex_group = ext4_flex_group(sbi,
2881 ac->ac_b_ex.fe_group);
2882 atomic_sub(ac->ac_b_ex.fe_len,
2883 &sbi->s_flex_groups[flex_group].free_blocks);
2884 }
2885
2886 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2887 if (err)
2888 goto out_err;
2889 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2890
2891 out_err:
2892 ext4_mark_super_dirty(sb);
2893 brelse(bitmap_bh);
2894 return err;
2895 }
2896
2897 /*
2898 * here we normalize request for locality group
2899 * Group request are normalized to s_strip size if we set the same via mount
2900 * option. If not we set it to s_mb_group_prealloc which can be configured via
2901 * /sys/fs/ext4/<partition>/mb_group_prealloc
2902 *
2903 * XXX: should we try to preallocate more than the group has now?
2904 */
2905 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2906 {
2907 struct super_block *sb = ac->ac_sb;
2908 struct ext4_locality_group *lg = ac->ac_lg;
2909
2910 BUG_ON(lg == NULL);
2911 if (EXT4_SB(sb)->s_stripe)
2912 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
2913 else
2914 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2915 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2916 current->pid, ac->ac_g_ex.fe_len);
2917 }
2918
2919 /*
2920 * Normalization means making request better in terms of
2921 * size and alignment
2922 */
2923 static noinline_for_stack void
2924 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2925 struct ext4_allocation_request *ar)
2926 {
2927 int bsbits, max;
2928 ext4_lblk_t end;
2929 loff_t size, orig_size, start_off;
2930 ext4_lblk_t start;
2931 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2932 struct ext4_prealloc_space *pa;
2933
2934 /* do normalize only data requests, metadata requests
2935 do not need preallocation */
2936 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2937 return;
2938
2939 /* sometime caller may want exact blocks */
2940 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2941 return;
2942
2943 /* caller may indicate that preallocation isn't
2944 * required (it's a tail, for example) */
2945 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2946 return;
2947
2948 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2949 ext4_mb_normalize_group_request(ac);
2950 return ;
2951 }
2952
2953 bsbits = ac->ac_sb->s_blocksize_bits;
2954
2955 /* first, let's learn actual file size
2956 * given current request is allocated */
2957 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2958 size = size << bsbits;
2959 if (size < i_size_read(ac->ac_inode))
2960 size = i_size_read(ac->ac_inode);
2961 orig_size = size;
2962
2963 /* max size of free chunks */
2964 max = 2 << bsbits;
2965
2966 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2967 (req <= (size) || max <= (chunk_size))
2968
2969 /* first, try to predict filesize */
2970 /* XXX: should this table be tunable? */
2971 start_off = 0;
2972 if (size <= 16 * 1024) {
2973 size = 16 * 1024;
2974 } else if (size <= 32 * 1024) {
2975 size = 32 * 1024;
2976 } else if (size <= 64 * 1024) {
2977 size = 64 * 1024;
2978 } else if (size <= 128 * 1024) {
2979 size = 128 * 1024;
2980 } else if (size <= 256 * 1024) {
2981 size = 256 * 1024;
2982 } else if (size <= 512 * 1024) {
2983 size = 512 * 1024;
2984 } else if (size <= 1024 * 1024) {
2985 size = 1024 * 1024;
2986 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2987 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2988 (21 - bsbits)) << 21;
2989 size = 2 * 1024 * 1024;
2990 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2991 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2992 (22 - bsbits)) << 22;
2993 size = 4 * 1024 * 1024;
2994 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2995 (8<<20)>>bsbits, max, 8 * 1024)) {
2996 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2997 (23 - bsbits)) << 23;
2998 size = 8 * 1024 * 1024;
2999 } else {
3000 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3001 size = ac->ac_o_ex.fe_len << bsbits;
3002 }
3003 size = size >> bsbits;
3004 start = start_off >> bsbits;
3005
3006 /* don't cover already allocated blocks in selected range */
3007 if (ar->pleft && start <= ar->lleft) {
3008 size -= ar->lleft + 1 - start;
3009 start = ar->lleft + 1;
3010 }
3011 if (ar->pright && start + size - 1 >= ar->lright)
3012 size -= start + size - ar->lright;
3013
3014 end = start + size;
3015
3016 /* check we don't cross already preallocated blocks */
3017 rcu_read_lock();
3018 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3019 ext4_lblk_t pa_end;
3020
3021 if (pa->pa_deleted)
3022 continue;
3023 spin_lock(&pa->pa_lock);
3024 if (pa->pa_deleted) {
3025 spin_unlock(&pa->pa_lock);
3026 continue;
3027 }
3028
3029 pa_end = pa->pa_lstart + pa->pa_len;
3030
3031 /* PA must not overlap original request */
3032 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3033 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3034
3035 /* skip PAs this normalized request doesn't overlap with */
3036 if (pa->pa_lstart >= end || pa_end <= start) {
3037 spin_unlock(&pa->pa_lock);
3038 continue;
3039 }
3040 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3041
3042 /* adjust start or end to be adjacent to this pa */
3043 if (pa_end <= ac->ac_o_ex.fe_logical) {
3044 BUG_ON(pa_end < start);
3045 start = pa_end;
3046 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3047 BUG_ON(pa->pa_lstart > end);
3048 end = pa->pa_lstart;
3049 }
3050 spin_unlock(&pa->pa_lock);
3051 }
3052 rcu_read_unlock();
3053 size = end - start;
3054
3055 /* XXX: extra loop to check we really don't overlap preallocations */
3056 rcu_read_lock();
3057 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3058 ext4_lblk_t pa_end;
3059 spin_lock(&pa->pa_lock);
3060 if (pa->pa_deleted == 0) {
3061 pa_end = pa->pa_lstart + pa->pa_len;
3062 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3063 }
3064 spin_unlock(&pa->pa_lock);
3065 }
3066 rcu_read_unlock();
3067
3068 if (start + size <= ac->ac_o_ex.fe_logical &&
3069 start > ac->ac_o_ex.fe_logical) {
3070 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3071 (unsigned long) start, (unsigned long) size,
3072 (unsigned long) ac->ac_o_ex.fe_logical);
3073 }
3074 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3075 start > ac->ac_o_ex.fe_logical);
3076 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3077
3078 /* now prepare goal request */
3079
3080 /* XXX: is it better to align blocks WRT to logical
3081 * placement or satisfy big request as is */
3082 ac->ac_g_ex.fe_logical = start;
3083 ac->ac_g_ex.fe_len = size;
3084
3085 /* define goal start in order to merge */
3086 if (ar->pright && (ar->lright == (start + size))) {
3087 /* merge to the right */
3088 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3089 &ac->ac_f_ex.fe_group,
3090 &ac->ac_f_ex.fe_start);
3091 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3092 }
3093 if (ar->pleft && (ar->lleft + 1 == start)) {
3094 /* merge to the left */
3095 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3096 &ac->ac_f_ex.fe_group,
3097 &ac->ac_f_ex.fe_start);
3098 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3099 }
3100
3101 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3102 (unsigned) orig_size, (unsigned) start);
3103 }
3104
3105 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3106 {
3107 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3108
3109 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3110 atomic_inc(&sbi->s_bal_reqs);
3111 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3112 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3113 atomic_inc(&sbi->s_bal_success);
3114 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3115 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3116 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3117 atomic_inc(&sbi->s_bal_goals);
3118 if (ac->ac_found > sbi->s_mb_max_to_scan)
3119 atomic_inc(&sbi->s_bal_breaks);
3120 }
3121
3122 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3123 trace_ext4_mballoc_alloc(ac);
3124 else
3125 trace_ext4_mballoc_prealloc(ac);
3126 }
3127
3128 /*
3129 * Called on failure; free up any blocks from the inode PA for this
3130 * context. We don't need this for MB_GROUP_PA because we only change
3131 * pa_free in ext4_mb_release_context(), but on failure, we've already
3132 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3133 */
3134 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3135 {
3136 struct ext4_prealloc_space *pa = ac->ac_pa;
3137 int len;
3138
3139 if (pa && pa->pa_type == MB_INODE_PA) {
3140 len = ac->ac_b_ex.fe_len;
3141 pa->pa_free += len;
3142 }
3143
3144 }
3145
3146 /*
3147 * use blocks preallocated to inode
3148 */
3149 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3150 struct ext4_prealloc_space *pa)
3151 {
3152 ext4_fsblk_t start;
3153 ext4_fsblk_t end;
3154 int len;
3155
3156 /* found preallocated blocks, use them */
3157 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3158 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3159 len = end - start;
3160 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3161 &ac->ac_b_ex.fe_start);
3162 ac->ac_b_ex.fe_len = len;
3163 ac->ac_status = AC_STATUS_FOUND;
3164 ac->ac_pa = pa;
3165
3166 BUG_ON(start < pa->pa_pstart);
3167 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3168 BUG_ON(pa->pa_free < len);
3169 pa->pa_free -= len;
3170
3171 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3172 }
3173
3174 /*
3175 * use blocks preallocated to locality group
3176 */
3177 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3178 struct ext4_prealloc_space *pa)
3179 {
3180 unsigned int len = ac->ac_o_ex.fe_len;
3181
3182 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3183 &ac->ac_b_ex.fe_group,
3184 &ac->ac_b_ex.fe_start);
3185 ac->ac_b_ex.fe_len = len;
3186 ac->ac_status = AC_STATUS_FOUND;
3187 ac->ac_pa = pa;
3188
3189 /* we don't correct pa_pstart or pa_plen here to avoid
3190 * possible race when the group is being loaded concurrently
3191 * instead we correct pa later, after blocks are marked
3192 * in on-disk bitmap -- see ext4_mb_release_context()
3193 * Other CPUs are prevented from allocating from this pa by lg_mutex
3194 */
3195 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3196 }
3197
3198 /*
3199 * Return the prealloc space that have minimal distance
3200 * from the goal block. @cpa is the prealloc
3201 * space that is having currently known minimal distance
3202 * from the goal block.
3203 */
3204 static struct ext4_prealloc_space *
3205 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3206 struct ext4_prealloc_space *pa,
3207 struct ext4_prealloc_space *cpa)
3208 {
3209 ext4_fsblk_t cur_distance, new_distance;
3210
3211 if (cpa == NULL) {
3212 atomic_inc(&pa->pa_count);
3213 return pa;
3214 }
3215 cur_distance = abs(goal_block - cpa->pa_pstart);
3216 new_distance = abs(goal_block - pa->pa_pstart);
3217
3218 if (cur_distance <= new_distance)
3219 return cpa;
3220
3221 /* drop the previous reference */
3222 atomic_dec(&cpa->pa_count);
3223 atomic_inc(&pa->pa_count);
3224 return pa;
3225 }
3226
3227 /*
3228 * search goal blocks in preallocated space
3229 */
3230 static noinline_for_stack int
3231 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3232 {
3233 int order, i;
3234 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3235 struct ext4_locality_group *lg;
3236 struct ext4_prealloc_space *pa, *cpa = NULL;
3237 ext4_fsblk_t goal_block;
3238
3239 /* only data can be preallocated */
3240 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3241 return 0;
3242
3243 /* first, try per-file preallocation */
3244 rcu_read_lock();
3245 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3246
3247 /* all fields in this condition don't change,
3248 * so we can skip locking for them */
3249 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3250 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3251 continue;
3252
3253 /* non-extent files can't have physical blocks past 2^32 */
3254 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3255 pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3256 continue;
3257
3258 /* found preallocated blocks, use them */
3259 spin_lock(&pa->pa_lock);
3260 if (pa->pa_deleted == 0 && pa->pa_free) {
3261 atomic_inc(&pa->pa_count);
3262 ext4_mb_use_inode_pa(ac, pa);
3263 spin_unlock(&pa->pa_lock);
3264 ac->ac_criteria = 10;
3265 rcu_read_unlock();
3266 return 1;
3267 }
3268 spin_unlock(&pa->pa_lock);
3269 }
3270 rcu_read_unlock();
3271
3272 /* can we use group allocation? */
3273 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3274 return 0;
3275
3276 /* inode may have no locality group for some reason */
3277 lg = ac->ac_lg;
3278 if (lg == NULL)
3279 return 0;
3280 order = fls(ac->ac_o_ex.fe_len) - 1;
3281 if (order > PREALLOC_TB_SIZE - 1)
3282 /* The max size of hash table is PREALLOC_TB_SIZE */
3283 order = PREALLOC_TB_SIZE - 1;
3284
3285 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3286 /*
3287 * search for the prealloc space that is having
3288 * minimal distance from the goal block.
3289 */
3290 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3291 rcu_read_lock();
3292 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3293 pa_inode_list) {
3294 spin_lock(&pa->pa_lock);
3295 if (pa->pa_deleted == 0 &&
3296 pa->pa_free >= ac->ac_o_ex.fe_len) {
3297
3298 cpa = ext4_mb_check_group_pa(goal_block,
3299 pa, cpa);
3300 }
3301 spin_unlock(&pa->pa_lock);
3302 }
3303 rcu_read_unlock();
3304 }
3305 if (cpa) {
3306 ext4_mb_use_group_pa(ac, cpa);
3307 ac->ac_criteria = 20;
3308 return 1;
3309 }
3310 return 0;
3311 }
3312
3313 /*
3314 * the function goes through all block freed in the group
3315 * but not yet committed and marks them used in in-core bitmap.
3316 * buddy must be generated from this bitmap
3317 * Need to be called with the ext4 group lock held
3318 */
3319 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3320 ext4_group_t group)
3321 {
3322 struct rb_node *n;
3323 struct ext4_group_info *grp;
3324 struct ext4_free_data *entry;
3325
3326 grp = ext4_get_group_info(sb, group);
3327 n = rb_first(&(grp->bb_free_root));
3328
3329 while (n) {
3330 entry = rb_entry(n, struct ext4_free_data, node);
3331 mb_set_bits(bitmap, entry->start_blk, entry->count);
3332 n = rb_next(n);
3333 }
3334 return;
3335 }
3336
3337 /*
3338 * the function goes through all preallocation in this group and marks them
3339 * used in in-core bitmap. buddy must be generated from this bitmap
3340 * Need to be called with ext4 group lock held
3341 */
3342 static noinline_for_stack
3343 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3344 ext4_group_t group)
3345 {
3346 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3347 struct ext4_prealloc_space *pa;
3348 struct list_head *cur;
3349 ext4_group_t groupnr;
3350 ext4_grpblk_t start;
3351 int preallocated = 0;
3352 int count = 0;
3353 int len;
3354
3355 /* all form of preallocation discards first load group,
3356 * so the only competing code is preallocation use.
3357 * we don't need any locking here
3358 * notice we do NOT ignore preallocations with pa_deleted
3359 * otherwise we could leave used blocks available for
3360 * allocation in buddy when concurrent ext4_mb_put_pa()
3361 * is dropping preallocation
3362 */
3363 list_for_each(cur, &grp->bb_prealloc_list) {
3364 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3365 spin_lock(&pa->pa_lock);
3366 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3367 &groupnr, &start);
3368 len = pa->pa_len;
3369 spin_unlock(&pa->pa_lock);
3370 if (unlikely(len == 0))
3371 continue;
3372 BUG_ON(groupnr != group);
3373 mb_set_bits(bitmap, start, len);
3374 preallocated += len;
3375 count++;
3376 }
3377 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3378 }
3379
3380 static void ext4_mb_pa_callback(struct rcu_head *head)
3381 {
3382 struct ext4_prealloc_space *pa;
3383 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3384 kmem_cache_free(ext4_pspace_cachep, pa);
3385 }
3386
3387 /*
3388 * drops a reference to preallocated space descriptor
3389 * if this was the last reference and the space is consumed
3390 */
3391 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3392 struct super_block *sb, struct ext4_prealloc_space *pa)
3393 {
3394 ext4_group_t grp;
3395 ext4_fsblk_t grp_blk;
3396
3397 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3398 return;
3399
3400 /* in this short window concurrent discard can set pa_deleted */
3401 spin_lock(&pa->pa_lock);
3402 if (pa->pa_deleted == 1) {
3403 spin_unlock(&pa->pa_lock);
3404 return;
3405 }
3406
3407 pa->pa_deleted = 1;
3408 spin_unlock(&pa->pa_lock);
3409
3410 grp_blk = pa->pa_pstart;
3411 /*
3412 * If doing group-based preallocation, pa_pstart may be in the
3413 * next group when pa is used up
3414 */
3415 if (pa->pa_type == MB_GROUP_PA)
3416 grp_blk--;
3417
3418 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3419
3420 /*
3421 * possible race:
3422 *
3423 * P1 (buddy init) P2 (regular allocation)
3424 * find block B in PA
3425 * copy on-disk bitmap to buddy
3426 * mark B in on-disk bitmap
3427 * drop PA from group
3428 * mark all PAs in buddy
3429 *
3430 * thus, P1 initializes buddy with B available. to prevent this
3431 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3432 * against that pair
3433 */
3434 ext4_lock_group(sb, grp);
3435 list_del(&pa->pa_group_list);
3436 ext4_unlock_group(sb, grp);
3437
3438 spin_lock(pa->pa_obj_lock);
3439 list_del_rcu(&pa->pa_inode_list);
3440 spin_unlock(pa->pa_obj_lock);
3441
3442 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3443 }
3444
3445 /*
3446 * creates new preallocated space for given inode
3447 */
3448 static noinline_for_stack int
3449 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3450 {
3451 struct super_block *sb = ac->ac_sb;
3452 struct ext4_prealloc_space *pa;
3453 struct ext4_group_info *grp;
3454 struct ext4_inode_info *ei;
3455
3456 /* preallocate only when found space is larger then requested */
3457 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3458 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3459 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3460
3461 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3462 if (pa == NULL)
3463 return -ENOMEM;
3464
3465 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3466 int winl;
3467 int wins;
3468 int win;
3469 int offs;
3470
3471 /* we can't allocate as much as normalizer wants.
3472 * so, found space must get proper lstart
3473 * to cover original request */
3474 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3475 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3476
3477 /* we're limited by original request in that
3478 * logical block must be covered any way
3479 * winl is window we can move our chunk within */
3480 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3481
3482 /* also, we should cover whole original request */
3483 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3484
3485 /* the smallest one defines real window */
3486 win = min(winl, wins);
3487
3488 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3489 if (offs && offs < win)
3490 win = offs;
3491
3492 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3493 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3494 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3495 }
3496
3497 /* preallocation can change ac_b_ex, thus we store actually
3498 * allocated blocks for history */
3499 ac->ac_f_ex = ac->ac_b_ex;
3500
3501 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3502 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3503 pa->pa_len = ac->ac_b_ex.fe_len;
3504 pa->pa_free = pa->pa_len;
3505 atomic_set(&pa->pa_count, 1);
3506 spin_lock_init(&pa->pa_lock);
3507 INIT_LIST_HEAD(&pa->pa_inode_list);
3508 INIT_LIST_HEAD(&pa->pa_group_list);
3509 pa->pa_deleted = 0;
3510 pa->pa_type = MB_INODE_PA;
3511
3512 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3513 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3514 trace_ext4_mb_new_inode_pa(ac, pa);
3515
3516 ext4_mb_use_inode_pa(ac, pa);
3517 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3518
3519 ei = EXT4_I(ac->ac_inode);
3520 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3521
3522 pa->pa_obj_lock = &ei->i_prealloc_lock;
3523 pa->pa_inode = ac->ac_inode;
3524
3525 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3526 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3527 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3528
3529 spin_lock(pa->pa_obj_lock);
3530 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3531 spin_unlock(pa->pa_obj_lock);
3532
3533 return 0;
3534 }
3535
3536 /*
3537 * creates new preallocated space for locality group inodes belongs to
3538 */
3539 static noinline_for_stack int
3540 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3541 {
3542 struct super_block *sb = ac->ac_sb;
3543 struct ext4_locality_group *lg;
3544 struct ext4_prealloc_space *pa;
3545 struct ext4_group_info *grp;
3546
3547 /* preallocate only when found space is larger then requested */
3548 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3549 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3550 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3551
3552 BUG_ON(ext4_pspace_cachep == NULL);
3553 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3554 if (pa == NULL)
3555 return -ENOMEM;
3556
3557 /* preallocation can change ac_b_ex, thus we store actually
3558 * allocated blocks for history */
3559 ac->ac_f_ex = ac->ac_b_ex;
3560
3561 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3562 pa->pa_lstart = pa->pa_pstart;
3563 pa->pa_len = ac->ac_b_ex.fe_len;
3564 pa->pa_free = pa->pa_len;
3565 atomic_set(&pa->pa_count, 1);
3566 spin_lock_init(&pa->pa_lock);
3567 INIT_LIST_HEAD(&pa->pa_inode_list);
3568 INIT_LIST_HEAD(&pa->pa_group_list);
3569 pa->pa_deleted = 0;
3570 pa->pa_type = MB_GROUP_PA;
3571
3572 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3573 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3574 trace_ext4_mb_new_group_pa(ac, pa);
3575
3576 ext4_mb_use_group_pa(ac, pa);
3577 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3578
3579 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3580 lg = ac->ac_lg;
3581 BUG_ON(lg == NULL);
3582
3583 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3584 pa->pa_inode = NULL;
3585
3586 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3587 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3588 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3589
3590 /*
3591 * We will later add the new pa to the right bucket
3592 * after updating the pa_free in ext4_mb_release_context
3593 */
3594 return 0;
3595 }
3596
3597 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3598 {
3599 int err;
3600
3601 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3602 err = ext4_mb_new_group_pa(ac);
3603 else
3604 err = ext4_mb_new_inode_pa(ac);
3605 return err;
3606 }
3607
3608 /*
3609 * finds all unused blocks in on-disk bitmap, frees them in
3610 * in-core bitmap and buddy.
3611 * @pa must be unlinked from inode and group lists, so that
3612 * nobody else can find/use it.
3613 * the caller MUST hold group/inode locks.
3614 * TODO: optimize the case when there are no in-core structures yet
3615 */
3616 static noinline_for_stack int
3617 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3618 struct ext4_prealloc_space *pa)
3619 {
3620 struct super_block *sb = e4b->bd_sb;
3621 struct ext4_sb_info *sbi = EXT4_SB(sb);
3622 unsigned int end;
3623 unsigned int next;
3624 ext4_group_t group;
3625 ext4_grpblk_t bit;
3626 unsigned long long grp_blk_start;
3627 int err = 0;
3628 int free = 0;
3629
3630 BUG_ON(pa->pa_deleted == 0);
3631 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3632 grp_blk_start = pa->pa_pstart - bit;
3633 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3634 end = bit + pa->pa_len;
3635
3636 while (bit < end) {
3637 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3638 if (bit >= end)
3639 break;
3640 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3641 mb_debug(1, " free preallocated %u/%u in group %u\n",
3642 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3643 (unsigned) next - bit, (unsigned) group);
3644 free += next - bit;
3645
3646 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3647 trace_ext4_mb_release_inode_pa(sb, pa->pa_inode, pa,
3648 grp_blk_start + bit, next - bit);
3649 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3650 bit = next + 1;
3651 }
3652 if (free != pa->pa_free) {
3653 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3654 pa, (unsigned long) pa->pa_lstart,
3655 (unsigned long) pa->pa_pstart,
3656 (unsigned long) pa->pa_len);
3657 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3658 free, pa->pa_free);
3659 /*
3660 * pa is already deleted so we use the value obtained
3661 * from the bitmap and continue.
3662 */
3663 }
3664 atomic_add(free, &sbi->s_mb_discarded);
3665
3666 return err;
3667 }
3668
3669 static noinline_for_stack int
3670 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3671 struct ext4_prealloc_space *pa)
3672 {
3673 struct super_block *sb = e4b->bd_sb;
3674 ext4_group_t group;
3675 ext4_grpblk_t bit;
3676
3677 trace_ext4_mb_release_group_pa(sb, pa);
3678 BUG_ON(pa->pa_deleted == 0);
3679 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3680 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3681 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3682 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3683 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3684
3685 return 0;
3686 }
3687
3688 /*
3689 * releases all preallocations in given group
3690 *
3691 * first, we need to decide discard policy:
3692 * - when do we discard
3693 * 1) ENOSPC
3694 * - how many do we discard
3695 * 1) how many requested
3696 */
3697 static noinline_for_stack int
3698 ext4_mb_discard_group_preallocations(struct super_block *sb,
3699 ext4_group_t group, int needed)
3700 {
3701 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3702 struct buffer_head *bitmap_bh = NULL;
3703 struct ext4_prealloc_space *pa, *tmp;
3704 struct list_head list;
3705 struct ext4_buddy e4b;
3706 int err;
3707 int busy = 0;
3708 int free = 0;
3709
3710 mb_debug(1, "discard preallocation for group %u\n", group);
3711
3712 if (list_empty(&grp->bb_prealloc_list))
3713 return 0;
3714
3715 bitmap_bh = ext4_read_block_bitmap(sb, group);
3716 if (bitmap_bh == NULL) {
3717 ext4_error(sb, "Error reading block bitmap for %u", group);
3718 return 0;
3719 }
3720
3721 err = ext4_mb_load_buddy(sb, group, &e4b);
3722 if (err) {
3723 ext4_error(sb, "Error loading buddy information for %u", group);
3724 put_bh(bitmap_bh);
3725 return 0;
3726 }
3727
3728 if (needed == 0)
3729 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3730
3731 INIT_LIST_HEAD(&list);
3732 repeat:
3733 ext4_lock_group(sb, group);
3734 list_for_each_entry_safe(pa, tmp,
3735 &grp->bb_prealloc_list, pa_group_list) {
3736 spin_lock(&pa->pa_lock);
3737 if (atomic_read(&pa->pa_count)) {
3738 spin_unlock(&pa->pa_lock);
3739 busy = 1;
3740 continue;
3741 }
3742 if (pa->pa_deleted) {
3743 spin_unlock(&pa->pa_lock);
3744 continue;
3745 }
3746
3747 /* seems this one can be freed ... */
3748 pa->pa_deleted = 1;
3749
3750 /* we can trust pa_free ... */
3751 free += pa->pa_free;
3752
3753 spin_unlock(&pa->pa_lock);
3754
3755 list_del(&pa->pa_group_list);
3756 list_add(&pa->u.pa_tmp_list, &list);
3757 }
3758
3759 /* if we still need more blocks and some PAs were used, try again */
3760 if (free < needed && busy) {
3761 busy = 0;
3762 ext4_unlock_group(sb, group);
3763 /*
3764 * Yield the CPU here so that we don't get soft lockup
3765 * in non preempt case.
3766 */
3767 yield();
3768 goto repeat;
3769 }
3770
3771 /* found anything to free? */
3772 if (list_empty(&list)) {
3773 BUG_ON(free != 0);
3774 goto out;
3775 }
3776
3777 /* now free all selected PAs */
3778 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3779
3780 /* remove from object (inode or locality group) */
3781 spin_lock(pa->pa_obj_lock);
3782 list_del_rcu(&pa->pa_inode_list);
3783 spin_unlock(pa->pa_obj_lock);
3784
3785 if (pa->pa_type == MB_GROUP_PA)
3786 ext4_mb_release_group_pa(&e4b, pa);
3787 else
3788 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3789
3790 list_del(&pa->u.pa_tmp_list);
3791 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3792 }
3793
3794 out:
3795 ext4_unlock_group(sb, group);
3796 ext4_mb_unload_buddy(&e4b);
3797 put_bh(bitmap_bh);
3798 return free;
3799 }
3800
3801 /*
3802 * releases all non-used preallocated blocks for given inode
3803 *
3804 * It's important to discard preallocations under i_data_sem
3805 * We don't want another block to be served from the prealloc
3806 * space when we are discarding the inode prealloc space.
3807 *
3808 * FIXME!! Make sure it is valid at all the call sites
3809 */
3810 void ext4_discard_preallocations(struct inode *inode)
3811 {
3812 struct ext4_inode_info *ei = EXT4_I(inode);
3813 struct super_block *sb = inode->i_sb;
3814 struct buffer_head *bitmap_bh = NULL;
3815 struct ext4_prealloc_space *pa, *tmp;
3816 ext4_group_t group = 0;
3817 struct list_head list;
3818 struct ext4_buddy e4b;
3819 int err;
3820
3821 if (!S_ISREG(inode->i_mode)) {
3822 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3823 return;
3824 }
3825
3826 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3827 trace_ext4_discard_preallocations(inode);
3828
3829 INIT_LIST_HEAD(&list);
3830
3831 repeat:
3832 /* first, collect all pa's in the inode */
3833 spin_lock(&ei->i_prealloc_lock);
3834 while (!list_empty(&ei->i_prealloc_list)) {
3835 pa = list_entry(ei->i_prealloc_list.next,
3836 struct ext4_prealloc_space, pa_inode_list);
3837 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3838 spin_lock(&pa->pa_lock);
3839 if (atomic_read(&pa->pa_count)) {
3840 /* this shouldn't happen often - nobody should
3841 * use preallocation while we're discarding it */
3842 spin_unlock(&pa->pa_lock);
3843 spin_unlock(&ei->i_prealloc_lock);
3844 printk(KERN_ERR "uh-oh! used pa while discarding\n");
3845 WARN_ON(1);
3846 schedule_timeout_uninterruptible(HZ);
3847 goto repeat;
3848
3849 }
3850 if (pa->pa_deleted == 0) {
3851 pa->pa_deleted = 1;
3852 spin_unlock(&pa->pa_lock);
3853 list_del_rcu(&pa->pa_inode_list);
3854 list_add(&pa->u.pa_tmp_list, &list);
3855 continue;
3856 }
3857
3858 /* someone is deleting pa right now */
3859 spin_unlock(&pa->pa_lock);
3860 spin_unlock(&ei->i_prealloc_lock);
3861
3862 /* we have to wait here because pa_deleted
3863 * doesn't mean pa is already unlinked from
3864 * the list. as we might be called from
3865 * ->clear_inode() the inode will get freed
3866 * and concurrent thread which is unlinking
3867 * pa from inode's list may access already
3868 * freed memory, bad-bad-bad */
3869
3870 /* XXX: if this happens too often, we can
3871 * add a flag to force wait only in case
3872 * of ->clear_inode(), but not in case of
3873 * regular truncate */
3874 schedule_timeout_uninterruptible(HZ);
3875 goto repeat;
3876 }
3877 spin_unlock(&ei->i_prealloc_lock);
3878
3879 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3880 BUG_ON(pa->pa_type != MB_INODE_PA);
3881 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3882
3883 err = ext4_mb_load_buddy(sb, group, &e4b);
3884 if (err) {
3885 ext4_error(sb, "Error loading buddy information for %u",
3886 group);
3887 continue;
3888 }
3889
3890 bitmap_bh = ext4_read_block_bitmap(sb, group);
3891 if (bitmap_bh == NULL) {
3892 ext4_error(sb, "Error reading block bitmap for %u",
3893 group);
3894 ext4_mb_unload_buddy(&e4b);
3895 continue;
3896 }
3897
3898 ext4_lock_group(sb, group);
3899 list_del(&pa->pa_group_list);
3900 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3901 ext4_unlock_group(sb, group);
3902
3903 ext4_mb_unload_buddy(&e4b);
3904 put_bh(bitmap_bh);
3905
3906 list_del(&pa->u.pa_tmp_list);
3907 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3908 }
3909 }
3910
3911 #ifdef CONFIG_EXT4_DEBUG
3912 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3913 {
3914 struct super_block *sb = ac->ac_sb;
3915 ext4_group_t ngroups, i;
3916
3917 if (!mb_enable_debug ||
3918 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3919 return;
3920
3921 printk(KERN_ERR "EXT4-fs: Can't allocate:"
3922 " Allocation context details:\n");
3923 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3924 ac->ac_status, ac->ac_flags);
3925 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3926 "best %lu/%lu/%lu@%lu cr %d\n",
3927 (unsigned long)ac->ac_o_ex.fe_group,
3928 (unsigned long)ac->ac_o_ex.fe_start,
3929 (unsigned long)ac->ac_o_ex.fe_len,
3930 (unsigned long)ac->ac_o_ex.fe_logical,
3931 (unsigned long)ac->ac_g_ex.fe_group,
3932 (unsigned long)ac->ac_g_ex.fe_start,
3933 (unsigned long)ac->ac_g_ex.fe_len,
3934 (unsigned long)ac->ac_g_ex.fe_logical,
3935 (unsigned long)ac->ac_b_ex.fe_group,
3936 (unsigned long)ac->ac_b_ex.fe_start,
3937 (unsigned long)ac->ac_b_ex.fe_len,
3938 (unsigned long)ac->ac_b_ex.fe_logical,
3939 (int)ac->ac_criteria);
3940 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3941 ac->ac_found);
3942 printk(KERN_ERR "EXT4-fs: groups: \n");
3943 ngroups = ext4_get_groups_count(sb);
3944 for (i = 0; i < ngroups; i++) {
3945 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3946 struct ext4_prealloc_space *pa;
3947 ext4_grpblk_t start;
3948 struct list_head *cur;
3949 ext4_lock_group(sb, i);
3950 list_for_each(cur, &grp->bb_prealloc_list) {
3951 pa = list_entry(cur, struct ext4_prealloc_space,
3952 pa_group_list);
3953 spin_lock(&pa->pa_lock);
3954 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3955 NULL, &start);
3956 spin_unlock(&pa->pa_lock);
3957 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3958 start, pa->pa_len);
3959 }
3960 ext4_unlock_group(sb, i);
3961
3962 if (grp->bb_free == 0)
3963 continue;
3964 printk(KERN_ERR "%u: %d/%d \n",
3965 i, grp->bb_free, grp->bb_fragments);
3966 }
3967 printk(KERN_ERR "\n");
3968 }
3969 #else
3970 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3971 {
3972 return;
3973 }
3974 #endif
3975
3976 /*
3977 * We use locality group preallocation for small size file. The size of the
3978 * file is determined by the current size or the resulting size after
3979 * allocation which ever is larger
3980 *
3981 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3982 */
3983 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3984 {
3985 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3986 int bsbits = ac->ac_sb->s_blocksize_bits;
3987 loff_t size, isize;
3988
3989 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3990 return;
3991
3992 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3993 return;
3994
3995 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3996 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3997 >> bsbits;
3998
3999 if ((size == isize) &&
4000 !ext4_fs_is_busy(sbi) &&
4001 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4002 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4003 return;
4004 }
4005
4006 /* don't use group allocation for large files */
4007 size = max(size, isize);
4008 if (size > sbi->s_mb_stream_request) {
4009 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4010 return;
4011 }
4012
4013 BUG_ON(ac->ac_lg != NULL);
4014 /*
4015 * locality group prealloc space are per cpu. The reason for having
4016 * per cpu locality group is to reduce the contention between block
4017 * request from multiple CPUs.
4018 */
4019 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4020
4021 /* we're going to use group allocation */
4022 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4023
4024 /* serialize all allocations in the group */
4025 mutex_lock(&ac->ac_lg->lg_mutex);
4026 }
4027
4028 static noinline_for_stack int
4029 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4030 struct ext4_allocation_request *ar)
4031 {
4032 struct super_block *sb = ar->inode->i_sb;
4033 struct ext4_sb_info *sbi = EXT4_SB(sb);
4034 struct ext4_super_block *es = sbi->s_es;
4035 ext4_group_t group;
4036 unsigned int len;
4037 ext4_fsblk_t goal;
4038 ext4_grpblk_t block;
4039
4040 /* we can't allocate > group size */
4041 len = ar->len;
4042
4043 /* just a dirty hack to filter too big requests */
4044 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4045 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4046
4047 /* start searching from the goal */
4048 goal = ar->goal;
4049 if (goal < le32_to_cpu(es->s_first_data_block) ||
4050 goal >= ext4_blocks_count(es))
4051 goal = le32_to_cpu(es->s_first_data_block);
4052 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4053
4054 /* set up allocation goals */
4055 memset(ac, 0, sizeof(struct ext4_allocation_context));
4056 ac->ac_b_ex.fe_logical = ar->logical;
4057 ac->ac_status = AC_STATUS_CONTINUE;
4058 ac->ac_sb = sb;
4059 ac->ac_inode = ar->inode;
4060 ac->ac_o_ex.fe_logical = ar->logical;
4061 ac->ac_o_ex.fe_group = group;
4062 ac->ac_o_ex.fe_start = block;
4063 ac->ac_o_ex.fe_len = len;
4064 ac->ac_g_ex.fe_logical = ar->logical;
4065 ac->ac_g_ex.fe_group = group;
4066 ac->ac_g_ex.fe_start = block;
4067 ac->ac_g_ex.fe_len = len;
4068 ac->ac_flags = ar->flags;
4069
4070 /* we have to define context: we'll we work with a file or
4071 * locality group. this is a policy, actually */
4072 ext4_mb_group_or_file(ac);
4073
4074 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4075 "left: %u/%u, right %u/%u to %swritable\n",
4076 (unsigned) ar->len, (unsigned) ar->logical,
4077 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4078 (unsigned) ar->lleft, (unsigned) ar->pleft,
4079 (unsigned) ar->lright, (unsigned) ar->pright,
4080 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4081 return 0;
4082
4083 }
4084
4085 static noinline_for_stack void
4086 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4087 struct ext4_locality_group *lg,
4088 int order, int total_entries)
4089 {
4090 ext4_group_t group = 0;
4091 struct ext4_buddy e4b;
4092 struct list_head discard_list;
4093 struct ext4_prealloc_space *pa, *tmp;
4094
4095 mb_debug(1, "discard locality group preallocation\n");
4096
4097 INIT_LIST_HEAD(&discard_list);
4098
4099 spin_lock(&lg->lg_prealloc_lock);
4100 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4101 pa_inode_list) {
4102 spin_lock(&pa->pa_lock);
4103 if (atomic_read(&pa->pa_count)) {
4104 /*
4105 * This is the pa that we just used
4106 * for block allocation. So don't
4107 * free that
4108 */
4109 spin_unlock(&pa->pa_lock);
4110 continue;
4111 }
4112 if (pa->pa_deleted) {
4113 spin_unlock(&pa->pa_lock);
4114 continue;
4115 }
4116 /* only lg prealloc space */
4117 BUG_ON(pa->pa_type != MB_GROUP_PA);
4118
4119 /* seems this one can be freed ... */
4120 pa->pa_deleted = 1;
4121 spin_unlock(&pa->pa_lock);
4122
4123 list_del_rcu(&pa->pa_inode_list);
4124 list_add(&pa->u.pa_tmp_list, &discard_list);
4125
4126 total_entries--;
4127 if (total_entries <= 5) {
4128 /*
4129 * we want to keep only 5 entries
4130 * allowing it to grow to 8. This
4131 * mak sure we don't call discard
4132 * soon for this list.
4133 */
4134 break;
4135 }
4136 }
4137 spin_unlock(&lg->lg_prealloc_lock);
4138
4139 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4140
4141 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4142 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4143 ext4_error(sb, "Error loading buddy information for %u",
4144 group);
4145 continue;
4146 }
4147 ext4_lock_group(sb, group);
4148 list_del(&pa->pa_group_list);
4149 ext4_mb_release_group_pa(&e4b, pa);
4150 ext4_unlock_group(sb, group);
4151
4152 ext4_mb_unload_buddy(&e4b);
4153 list_del(&pa->u.pa_tmp_list);
4154 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4155 }
4156 }
4157
4158 /*
4159 * We have incremented pa_count. So it cannot be freed at this
4160 * point. Also we hold lg_mutex. So no parallel allocation is
4161 * possible from this lg. That means pa_free cannot be updated.
4162 *
4163 * A parallel ext4_mb_discard_group_preallocations is possible.
4164 * which can cause the lg_prealloc_list to be updated.
4165 */
4166
4167 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4168 {
4169 int order, added = 0, lg_prealloc_count = 1;
4170 struct super_block *sb = ac->ac_sb;
4171 struct ext4_locality_group *lg = ac->ac_lg;
4172 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4173
4174 order = fls(pa->pa_free) - 1;
4175 if (order > PREALLOC_TB_SIZE - 1)
4176 /* The max size of hash table is PREALLOC_TB_SIZE */
4177 order = PREALLOC_TB_SIZE - 1;
4178 /* Add the prealloc space to lg */
4179 rcu_read_lock();
4180 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4181 pa_inode_list) {
4182 spin_lock(&tmp_pa->pa_lock);
4183 if (tmp_pa->pa_deleted) {
4184 spin_unlock(&tmp_pa->pa_lock);
4185 continue;
4186 }
4187 if (!added && pa->pa_free < tmp_pa->pa_free) {
4188 /* Add to the tail of the previous entry */
4189 list_add_tail_rcu(&pa->pa_inode_list,
4190 &tmp_pa->pa_inode_list);
4191 added = 1;
4192 /*
4193 * we want to count the total
4194 * number of entries in the list
4195 */
4196 }
4197 spin_unlock(&tmp_pa->pa_lock);
4198 lg_prealloc_count++;
4199 }
4200 if (!added)
4201 list_add_tail_rcu(&pa->pa_inode_list,
4202 &lg->lg_prealloc_list[order]);
4203 rcu_read_unlock();
4204
4205 /* Now trim the list to be not more than 8 elements */
4206 if (lg_prealloc_count > 8) {
4207 ext4_mb_discard_lg_preallocations(sb, lg,
4208 order, lg_prealloc_count);
4209 return;
4210 }
4211 return ;
4212 }
4213
4214 /*
4215 * release all resource we used in allocation
4216 */
4217 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4218 {
4219 struct ext4_prealloc_space *pa = ac->ac_pa;
4220 if (pa) {
4221 if (pa->pa_type == MB_GROUP_PA) {
4222 /* see comment in ext4_mb_use_group_pa() */
4223 spin_lock(&pa->pa_lock);
4224 pa->pa_pstart += ac->ac_b_ex.fe_len;
4225 pa->pa_lstart += ac->ac_b_ex.fe_len;
4226 pa->pa_free -= ac->ac_b_ex.fe_len;
4227 pa->pa_len -= ac->ac_b_ex.fe_len;
4228 spin_unlock(&pa->pa_lock);
4229 }
4230 }
4231 if (ac->alloc_semp)
4232 up_read(ac->alloc_semp);
4233 if (pa) {
4234 /*
4235 * We want to add the pa to the right bucket.
4236 * Remove it from the list and while adding
4237 * make sure the list to which we are adding
4238 * doesn't grow big. We need to release
4239 * alloc_semp before calling ext4_mb_add_n_trim()
4240 */
4241 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4242 spin_lock(pa->pa_obj_lock);
4243 list_del_rcu(&pa->pa_inode_list);
4244 spin_unlock(pa->pa_obj_lock);
4245 ext4_mb_add_n_trim(ac);
4246 }
4247 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4248 }
4249 if (ac->ac_bitmap_page)
4250 page_cache_release(ac->ac_bitmap_page);
4251 if (ac->ac_buddy_page)
4252 page_cache_release(ac->ac_buddy_page);
4253 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4254 mutex_unlock(&ac->ac_lg->lg_mutex);
4255 ext4_mb_collect_stats(ac);
4256 return 0;
4257 }
4258
4259 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4260 {
4261 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4262 int ret;
4263 int freed = 0;
4264
4265 trace_ext4_mb_discard_preallocations(sb, needed);
4266 for (i = 0; i < ngroups && needed > 0; i++) {
4267 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4268 freed += ret;
4269 needed -= ret;
4270 }
4271
4272 return freed;
4273 }
4274
4275 /*
4276 * Main entry point into mballoc to allocate blocks
4277 * it tries to use preallocation first, then falls back
4278 * to usual allocation
4279 */
4280 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4281 struct ext4_allocation_request *ar, int *errp)
4282 {
4283 int freed;
4284 struct ext4_allocation_context *ac = NULL;
4285 struct ext4_sb_info *sbi;
4286 struct super_block *sb;
4287 ext4_fsblk_t block = 0;
4288 unsigned int inquota = 0;
4289 unsigned int reserv_blks = 0;
4290
4291 sb = ar->inode->i_sb;
4292 sbi = EXT4_SB(sb);
4293
4294 trace_ext4_request_blocks(ar);
4295
4296 /*
4297 * For delayed allocation, we could skip the ENOSPC and
4298 * EDQUOT check, as blocks and quotas have been already
4299 * reserved when data being copied into pagecache.
4300 */
4301 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4302 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4303 else {
4304 /* Without delayed allocation we need to verify
4305 * there is enough free blocks to do block allocation
4306 * and verify allocation doesn't exceed the quota limits.
4307 */
4308 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4309 /* let others to free the space */
4310 yield();
4311 ar->len = ar->len >> 1;
4312 }
4313 if (!ar->len) {
4314 *errp = -ENOSPC;
4315 return 0;
4316 }
4317 reserv_blks = ar->len;
4318 while (ar->len && dquot_alloc_block(ar->inode, ar->len)) {
4319 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4320 ar->len--;
4321 }
4322 inquota = ar->len;
4323 if (ar->len == 0) {
4324 *errp = -EDQUOT;
4325 goto out;
4326 }
4327 }
4328
4329 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4330 if (!ac) {
4331 ar->len = 0;
4332 *errp = -ENOMEM;
4333 goto out;
4334 }
4335
4336 *errp = ext4_mb_initialize_context(ac, ar);
4337 if (*errp) {
4338 ar->len = 0;
4339 goto out;
4340 }
4341
4342 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4343 if (!ext4_mb_use_preallocated(ac)) {
4344 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4345 ext4_mb_normalize_request(ac, ar);
4346 repeat:
4347 /* allocate space in core */
4348 *errp = ext4_mb_regular_allocator(ac);
4349 if (*errp)
4350 goto errout;
4351
4352 /* as we've just preallocated more space than
4353 * user requested orinally, we store allocated
4354 * space in a special descriptor */
4355 if (ac->ac_status == AC_STATUS_FOUND &&
4356 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4357 ext4_mb_new_preallocation(ac);
4358 }
4359 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4360 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4361 if (*errp == -EAGAIN) {
4362 /*
4363 * drop the reference that we took
4364 * in ext4_mb_use_best_found
4365 */
4366 ext4_mb_release_context(ac);
4367 ac->ac_b_ex.fe_group = 0;
4368 ac->ac_b_ex.fe_start = 0;
4369 ac->ac_b_ex.fe_len = 0;
4370 ac->ac_status = AC_STATUS_CONTINUE;
4371 goto repeat;
4372 } else if (*errp)
4373 errout:
4374 ext4_discard_allocated_blocks(ac);
4375 else {
4376 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4377 ar->len = ac->ac_b_ex.fe_len;
4378 }
4379 } else {
4380 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4381 if (freed)
4382 goto repeat;
4383 *errp = -ENOSPC;
4384 }
4385
4386 if (*errp) {
4387 ac->ac_b_ex.fe_len = 0;
4388 ar->len = 0;
4389 ext4_mb_show_ac(ac);
4390 }
4391 ext4_mb_release_context(ac);
4392 out:
4393 if (ac)
4394 kmem_cache_free(ext4_ac_cachep, ac);
4395 if (inquota && ar->len < inquota)
4396 dquot_free_block(ar->inode, inquota - ar->len);
4397 if (!ar->len) {
4398 if (!ext4_test_inode_state(ar->inode,
4399 EXT4_STATE_DELALLOC_RESERVED))
4400 /* release all the reserved blocks if non delalloc */
4401 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4402 reserv_blks);
4403 }
4404
4405 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4406
4407 return block;
4408 }
4409
4410 /*
4411 * We can merge two free data extents only if the physical blocks
4412 * are contiguous, AND the extents were freed by the same transaction,
4413 * AND the blocks are associated with the same group.
4414 */
4415 static int can_merge(struct ext4_free_data *entry1,
4416 struct ext4_free_data *entry2)
4417 {
4418 if ((entry1->t_tid == entry2->t_tid) &&
4419 (entry1->group == entry2->group) &&
4420 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4421 return 1;
4422 return 0;
4423 }
4424
4425 static noinline_for_stack int
4426 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4427 struct ext4_free_data *new_entry)
4428 {
4429 ext4_group_t group = e4b->bd_group;
4430 ext4_grpblk_t block;
4431 struct ext4_free_data *entry;
4432 struct ext4_group_info *db = e4b->bd_info;
4433 struct super_block *sb = e4b->bd_sb;
4434 struct ext4_sb_info *sbi = EXT4_SB(sb);
4435 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4436 struct rb_node *parent = NULL, *new_node;
4437
4438 BUG_ON(!ext4_handle_valid(handle));
4439 BUG_ON(e4b->bd_bitmap_page == NULL);
4440 BUG_ON(e4b->bd_buddy_page == NULL);
4441
4442 new_node = &new_entry->node;
4443 block = new_entry->start_blk;
4444
4445 if (!*n) {
4446 /* first free block exent. We need to
4447 protect buddy cache from being freed,
4448 * otherwise we'll refresh it from
4449 * on-disk bitmap and lose not-yet-available
4450 * blocks */
4451 page_cache_get(e4b->bd_buddy_page);
4452 page_cache_get(e4b->bd_bitmap_page);
4453 }
4454 while (*n) {
4455 parent = *n;
4456 entry = rb_entry(parent, struct ext4_free_data, node);
4457 if (block < entry->start_blk)
4458 n = &(*n)->rb_left;
4459 else if (block >= (entry->start_blk + entry->count))
4460 n = &(*n)->rb_right;
4461 else {
4462 ext4_grp_locked_error(sb, group, 0,
4463 ext4_group_first_block_no(sb, group) + block,
4464 "Block already on to-be-freed list");
4465 return 0;
4466 }
4467 }
4468
4469 rb_link_node(new_node, parent, n);
4470 rb_insert_color(new_node, &db->bb_free_root);
4471
4472 /* Now try to see the extent can be merged to left and right */
4473 node = rb_prev(new_node);
4474 if (node) {
4475 entry = rb_entry(node, struct ext4_free_data, node);
4476 if (can_merge(entry, new_entry)) {
4477 new_entry->start_blk = entry->start_blk;
4478 new_entry->count += entry->count;
4479 rb_erase(node, &(db->bb_free_root));
4480 spin_lock(&sbi->s_md_lock);
4481 list_del(&entry->list);
4482 spin_unlock(&sbi->s_md_lock);
4483 kmem_cache_free(ext4_free_ext_cachep, entry);
4484 }
4485 }
4486
4487 node = rb_next(new_node);
4488 if (node) {
4489 entry = rb_entry(node, struct ext4_free_data, node);
4490 if (can_merge(new_entry, entry)) {
4491 new_entry->count += entry->count;
4492 rb_erase(node, &(db->bb_free_root));
4493 spin_lock(&sbi->s_md_lock);
4494 list_del(&entry->list);
4495 spin_unlock(&sbi->s_md_lock);
4496 kmem_cache_free(ext4_free_ext_cachep, entry);
4497 }
4498 }
4499 /* Add the extent to transaction's private list */
4500 spin_lock(&sbi->s_md_lock);
4501 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4502 spin_unlock(&sbi->s_md_lock);
4503 return 0;
4504 }
4505
4506 /**
4507 * ext4_free_blocks() -- Free given blocks and update quota
4508 * @handle: handle for this transaction
4509 * @inode: inode
4510 * @block: start physical block to free
4511 * @count: number of blocks to count
4512 * @metadata: Are these metadata blocks
4513 */
4514 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4515 struct buffer_head *bh, ext4_fsblk_t block,
4516 unsigned long count, int flags)
4517 {
4518 struct buffer_head *bitmap_bh = NULL;
4519 struct super_block *sb = inode->i_sb;
4520 struct ext4_group_desc *gdp;
4521 unsigned long freed = 0;
4522 unsigned int overflow;
4523 ext4_grpblk_t bit;
4524 struct buffer_head *gd_bh;
4525 ext4_group_t block_group;
4526 struct ext4_sb_info *sbi;
4527 struct ext4_buddy e4b;
4528 int err = 0;
4529 int ret;
4530
4531 if (bh) {
4532 if (block)
4533 BUG_ON(block != bh->b_blocknr);
4534 else
4535 block = bh->b_blocknr;
4536 }
4537
4538 sbi = EXT4_SB(sb);
4539 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4540 !ext4_data_block_valid(sbi, block, count)) {
4541 ext4_error(sb, "Freeing blocks not in datazone - "
4542 "block = %llu, count = %lu", block, count);
4543 goto error_return;
4544 }
4545
4546 ext4_debug("freeing block %llu\n", block);
4547 trace_ext4_free_blocks(inode, block, count, flags);
4548
4549 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4550 struct buffer_head *tbh = bh;
4551 int i;
4552
4553 BUG_ON(bh && (count > 1));
4554
4555 for (i = 0; i < count; i++) {
4556 if (!bh)
4557 tbh = sb_find_get_block(inode->i_sb,
4558 block + i);
4559 if (unlikely(!tbh))
4560 continue;
4561 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4562 inode, tbh, block + i);
4563 }
4564 }
4565
4566 /*
4567 * We need to make sure we don't reuse the freed block until
4568 * after the transaction is committed, which we can do by
4569 * treating the block as metadata, below. We make an
4570 * exception if the inode is to be written in writeback mode
4571 * since writeback mode has weak data consistency guarantees.
4572 */
4573 if (!ext4_should_writeback_data(inode))
4574 flags |= EXT4_FREE_BLOCKS_METADATA;
4575
4576 do_more:
4577 overflow = 0;
4578 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4579
4580 /*
4581 * Check to see if we are freeing blocks across a group
4582 * boundary.
4583 */
4584 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4585 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4586 count -= overflow;
4587 }
4588 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4589 if (!bitmap_bh) {
4590 err = -EIO;
4591 goto error_return;
4592 }
4593 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4594 if (!gdp) {
4595 err = -EIO;
4596 goto error_return;
4597 }
4598
4599 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4600 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4601 in_range(block, ext4_inode_table(sb, gdp),
4602 EXT4_SB(sb)->s_itb_per_group) ||
4603 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4604 EXT4_SB(sb)->s_itb_per_group)) {
4605
4606 ext4_error(sb, "Freeing blocks in system zone - "
4607 "Block = %llu, count = %lu", block, count);
4608 /* err = 0. ext4_std_error should be a no op */
4609 goto error_return;
4610 }
4611
4612 BUFFER_TRACE(bitmap_bh, "getting write access");
4613 err = ext4_journal_get_write_access(handle, bitmap_bh);
4614 if (err)
4615 goto error_return;
4616
4617 /*
4618 * We are about to modify some metadata. Call the journal APIs
4619 * to unshare ->b_data if a currently-committing transaction is
4620 * using it
4621 */
4622 BUFFER_TRACE(gd_bh, "get_write_access");
4623 err = ext4_journal_get_write_access(handle, gd_bh);
4624 if (err)
4625 goto error_return;
4626 #ifdef AGGRESSIVE_CHECK
4627 {
4628 int i;
4629 for (i = 0; i < count; i++)
4630 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4631 }
4632 #endif
4633 trace_ext4_mballoc_free(sb, inode, block_group, bit, count);
4634
4635 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4636 if (err)
4637 goto error_return;
4638
4639 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4640 struct ext4_free_data *new_entry;
4641 /*
4642 * blocks being freed are metadata. these blocks shouldn't
4643 * be used until this transaction is committed
4644 */
4645 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4646 if (!new_entry) {
4647 err = -ENOMEM;
4648 goto error_return;
4649 }
4650 new_entry->start_blk = bit;
4651 new_entry->group = block_group;
4652 new_entry->count = count;
4653 new_entry->t_tid = handle->h_transaction->t_tid;
4654
4655 ext4_lock_group(sb, block_group);
4656 mb_clear_bits(bitmap_bh->b_data, bit, count);
4657 ext4_mb_free_metadata(handle, &e4b, new_entry);
4658 } else {
4659 /* need to update group_info->bb_free and bitmap
4660 * with group lock held. generate_buddy look at
4661 * them with group lock_held
4662 */
4663 ext4_lock_group(sb, block_group);
4664 mb_clear_bits(bitmap_bh->b_data, bit, count);
4665 mb_free_blocks(inode, &e4b, bit, count);
4666 }
4667
4668 ret = ext4_free_blks_count(sb, gdp) + count;
4669 ext4_free_blks_set(sb, gdp, ret);
4670 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4671 ext4_unlock_group(sb, block_group);
4672 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4673
4674 if (sbi->s_log_groups_per_flex) {
4675 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4676 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4677 }
4678
4679 ext4_mb_unload_buddy(&e4b);
4680
4681 freed += count;
4682
4683 /* We dirtied the bitmap block */
4684 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4685 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4686
4687 /* And the group descriptor block */
4688 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4689 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4690 if (!err)
4691 err = ret;
4692
4693 if (overflow && !err) {
4694 block += count;
4695 count = overflow;
4696 put_bh(bitmap_bh);
4697 goto do_more;
4698 }
4699 ext4_mark_super_dirty(sb);
4700 error_return:
4701 if (freed)
4702 dquot_free_block(inode, freed);
4703 brelse(bitmap_bh);
4704 ext4_std_error(sb, err);
4705 return;
4706 }
4707
4708 /**
4709 * ext4_trim_extent -- function to TRIM one single free extent in the group
4710 * @sb: super block for the file system
4711 * @start: starting block of the free extent in the alloc. group
4712 * @count: number of blocks to TRIM
4713 * @group: alloc. group we are working with
4714 * @e4b: ext4 buddy for the group
4715 *
4716 * Trim "count" blocks starting at "start" in the "group". To assure that no
4717 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4718 * be called with under the group lock.
4719 */
4720 static int ext4_trim_extent(struct super_block *sb, int start, int count,
4721 ext4_group_t group, struct ext4_buddy *e4b)
4722 {
4723 struct ext4_free_extent ex;
4724 int ret = 0;
4725
4726 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4727
4728 ex.fe_start = start;
4729 ex.fe_group = group;
4730 ex.fe_len = count;
4731
4732 /*
4733 * Mark blocks used, so no one can reuse them while
4734 * being trimmed.
4735 */
4736 mb_mark_used(e4b, &ex);
4737 ext4_unlock_group(sb, group);
4738
4739 ret = ext4_issue_discard(sb, group, start, count);
4740
4741 ext4_lock_group(sb, group);
4742 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4743 return ret;
4744 }
4745
4746 /**
4747 * ext4_trim_all_free -- function to trim all free space in alloc. group
4748 * @sb: super block for file system
4749 * @e4b: ext4 buddy
4750 * @start: first group block to examine
4751 * @max: last group block to examine
4752 * @minblocks: minimum extent block count
4753 *
4754 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4755 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4756 * the extent.
4757 *
4758 *
4759 * ext4_trim_all_free walks through group's block bitmap searching for free
4760 * extents. When the free extent is found, mark it as used in group buddy
4761 * bitmap. Then issue a TRIM command on this extent and free the extent in
4762 * the group buddy bitmap. This is done until whole group is scanned.
4763 */
4764 static ext4_grpblk_t
4765 ext4_trim_all_free(struct super_block *sb, struct ext4_buddy *e4b,
4766 ext4_grpblk_t start, ext4_grpblk_t max, ext4_grpblk_t minblocks)
4767 {
4768 void *bitmap;
4769 ext4_grpblk_t next, count = 0;
4770 ext4_group_t group;
4771 int ret = 0;
4772
4773 BUG_ON(e4b == NULL);
4774
4775 bitmap = e4b->bd_bitmap;
4776 group = e4b->bd_group;
4777 start = (e4b->bd_info->bb_first_free > start) ?
4778 e4b->bd_info->bb_first_free : start;
4779 ext4_lock_group(sb, group);
4780
4781 while (start < max) {
4782 start = mb_find_next_zero_bit(bitmap, max, start);
4783 if (start >= max)
4784 break;
4785 next = mb_find_next_bit(bitmap, max, start);
4786
4787 if ((next - start) >= minblocks) {
4788 ret = ext4_trim_extent(sb, start,
4789 next - start, group, e4b);
4790 if (ret < 0)
4791 break;
4792 count += next - start;
4793 }
4794 start = next + 1;
4795
4796 if (fatal_signal_pending(current)) {
4797 count = -ERESTARTSYS;
4798 break;
4799 }
4800
4801 if (need_resched()) {
4802 ext4_unlock_group(sb, group);
4803 cond_resched();
4804 ext4_lock_group(sb, group);
4805 }
4806
4807 if ((e4b->bd_info->bb_free - count) < minblocks)
4808 break;
4809 }
4810 ext4_unlock_group(sb, group);
4811
4812 ext4_debug("trimmed %d blocks in the group %d\n",
4813 count, group);
4814
4815 if (ret < 0)
4816 count = ret;
4817
4818 return count;
4819 }
4820
4821 /**
4822 * ext4_trim_fs() -- trim ioctl handle function
4823 * @sb: superblock for filesystem
4824 * @range: fstrim_range structure
4825 *
4826 * start: First Byte to trim
4827 * len: number of Bytes to trim from start
4828 * minlen: minimum extent length in Bytes
4829 * ext4_trim_fs goes through all allocation groups containing Bytes from
4830 * start to start+len. For each such a group ext4_trim_all_free function
4831 * is invoked to trim all free space.
4832 */
4833 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4834 {
4835 struct ext4_buddy e4b;
4836 ext4_group_t first_group, last_group;
4837 ext4_group_t group, ngroups = ext4_get_groups_count(sb);
4838 ext4_grpblk_t cnt = 0, first_block, last_block;
4839 uint64_t start, len, minlen, trimmed;
4840 ext4_fsblk_t first_data_blk =
4841 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4842 int ret = 0;
4843
4844 start = range->start >> sb->s_blocksize_bits;
4845 len = range->len >> sb->s_blocksize_bits;
4846 minlen = range->minlen >> sb->s_blocksize_bits;
4847 trimmed = 0;
4848
4849 if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb)))
4850 return -EINVAL;
4851 if (start < first_data_blk) {
4852 len -= first_data_blk - start;
4853 start = first_data_blk;
4854 }
4855
4856 /* Determine first and last group to examine based on start and len */
4857 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
4858 &first_group, &first_block);
4859 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
4860 &last_group, &last_block);
4861 last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
4862 last_block = EXT4_BLOCKS_PER_GROUP(sb);
4863
4864 if (first_group > last_group)
4865 return -EINVAL;
4866
4867 for (group = first_group; group <= last_group; group++) {
4868 ret = ext4_mb_load_buddy(sb, group, &e4b);
4869 if (ret) {
4870 ext4_error(sb, "Error in loading buddy "
4871 "information for %u", group);
4872 break;
4873 }
4874
4875 /*
4876 * For all the groups except the last one, last block will
4877 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
4878 * change it for the last group in which case start +
4879 * len < EXT4_BLOCKS_PER_GROUP(sb).
4880 */
4881 if (first_block + len < EXT4_BLOCKS_PER_GROUP(sb))
4882 last_block = first_block + len;
4883 len -= last_block - first_block;
4884
4885 if (e4b.bd_info->bb_free >= minlen) {
4886 cnt = ext4_trim_all_free(sb, &e4b, first_block,
4887 last_block, minlen);
4888 if (cnt < 0) {
4889 ret = cnt;
4890 ext4_mb_unload_buddy(&e4b);
4891 break;
4892 }
4893 }
4894 ext4_mb_unload_buddy(&e4b);
4895 trimmed += cnt;
4896 first_block = 0;
4897 }
4898 range->len = trimmed * sb->s_blocksize;
4899
4900 return ret;
4901 }