ext4: add ext4_iget_normal() which is to be used for dir tree lookups
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76 return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81 {
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103 {
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121 {
122 trace_ext4_begin_ordered_truncate(inode, new_size);
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned long offset);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140 struct inode *inode, struct page *page, loff_t from,
141 loff_t length, int flags);
142
143 /*
144 * Test whether an inode is a fast symlink.
145 */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 (inode->i_sb->s_blocksize >> 9) : 0;
150
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
157 * this transaction.
158 */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160 int nblocks)
161 {
162 int ret;
163
164 /*
165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
169 */
170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
171 jbd_debug(2, "restarting handle %p\n", handle);
172 up_write(&EXT4_I(inode)->i_data_sem);
173 ret = ext4_journal_restart(handle, nblocks);
174 down_write(&EXT4_I(inode)->i_data_sem);
175 ext4_discard_preallocations(inode);
176
177 return ret;
178 }
179
180 /*
181 * Called at the last iput() if i_nlink is zero.
182 */
183 void ext4_evict_inode(struct inode *inode)
184 {
185 handle_t *handle;
186 int err;
187
188 trace_ext4_evict_inode(inode);
189
190 if (inode->i_nlink) {
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215 jbd2_complete_transaction(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
217 }
218 truncate_inode_pages(&inode->i_data, 0);
219 ext4_ioend_shutdown(inode);
220 goto no_delete;
221 }
222
223 if (!is_bad_inode(inode))
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
229 ext4_ioend_shutdown(inode);
230
231 if (is_bad_inode(inode))
232 goto no_delete;
233
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
254 ext4_handle_sync(handle);
255 inode->i_size = 0;
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
262 if (inode->i_blocks)
263 ext4_truncate(inode);
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
282 goto no_delete;
283 }
284 }
285
286 /*
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
293 */
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
307 else
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
311 return;
312 no_delete:
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
326 */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332 return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
341 {
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 struct ext4_inode_info *ei = EXT4_I(inode);
344
345 spin_lock(&ei->i_block_reservation_lock);
346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 if (unlikely(used > ei->i_reserved_data_blocks)) {
348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
355
356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 used + ei->i_allocated_meta_blocks);
372 ei->i_allocated_meta_blocks = 0;
373
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 ei->i_reserved_meta_blocks);
382 ei->i_reserved_meta_blocks = 0;
383 ei->i_da_metadata_calc_len = 0;
384 }
385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 else {
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
395 */
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 }
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
406 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410 unsigned int line,
411 struct ext4_map_blocks *map)
412 {
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
419 return -EIO;
420 }
421 return 0;
422 }
423
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
426
427 /*
428 * Return the number of contiguous dirty pages in a given inode
429 * starting at page frame idx.
430 */
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432 unsigned int max_pages)
433 {
434 struct address_space *mapping = inode->i_mapping;
435 pgoff_t index;
436 struct pagevec pvec;
437 pgoff_t num = 0;
438 int i, nr_pages, done = 0;
439
440 if (max_pages == 0)
441 return 0;
442 pagevec_init(&pvec, 0);
443 while (!done) {
444 index = idx;
445 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446 PAGECACHE_TAG_DIRTY,
447 (pgoff_t)PAGEVEC_SIZE);
448 if (nr_pages == 0)
449 break;
450 for (i = 0; i < nr_pages; i++) {
451 struct page *page = pvec.pages[i];
452 struct buffer_head *bh, *head;
453
454 lock_page(page);
455 if (unlikely(page->mapping != mapping) ||
456 !PageDirty(page) ||
457 PageWriteback(page) ||
458 page->index != idx) {
459 done = 1;
460 unlock_page(page);
461 break;
462 }
463 if (page_has_buffers(page)) {
464 bh = head = page_buffers(page);
465 do {
466 if (!buffer_delay(bh) &&
467 !buffer_unwritten(bh))
468 done = 1;
469 bh = bh->b_this_page;
470 } while (!done && (bh != head));
471 }
472 unlock_page(page);
473 if (done)
474 break;
475 idx++;
476 num++;
477 if (num >= max_pages) {
478 done = 1;
479 break;
480 }
481 }
482 pagevec_release(&pvec);
483 }
484 return num;
485 }
486
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
489 struct inode *inode,
490 struct ext4_map_blocks *es_map,
491 struct ext4_map_blocks *map,
492 int flags)
493 {
494 int retval;
495
496 map->m_flags = 0;
497 /*
498 * There is a race window that the result is not the same.
499 * e.g. xfstests #223 when dioread_nolock enables. The reason
500 * is that we lookup a block mapping in extent status tree with
501 * out taking i_data_sem. So at the time the unwritten extent
502 * could be converted.
503 */
504 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505 down_read((&EXT4_I(inode)->i_data_sem));
506 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508 EXT4_GET_BLOCKS_KEEP_SIZE);
509 } else {
510 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511 EXT4_GET_BLOCKS_KEEP_SIZE);
512 }
513 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514 up_read((&EXT4_I(inode)->i_data_sem));
515 /*
516 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517 * because it shouldn't be marked in es_map->m_flags.
518 */
519 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521 /*
522 * We don't check m_len because extent will be collpased in status
523 * tree. So the m_len might not equal.
524 */
525 if (es_map->m_lblk != map->m_lblk ||
526 es_map->m_flags != map->m_flags ||
527 es_map->m_pblk != map->m_pblk) {
528 printk("ES cache assertation failed for inode: %lu "
529 "es_cached ex [%d/%d/%llu/%x] != "
530 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531 inode->i_ino, es_map->m_lblk, es_map->m_len,
532 es_map->m_pblk, es_map->m_flags, map->m_lblk,
533 map->m_len, map->m_pblk, map->m_flags,
534 retval, flags);
535 }
536 }
537 #endif /* ES_AGGRESSIVE_TEST */
538
539 /*
540 * The ext4_map_blocks() function tries to look up the requested blocks,
541 * and returns if the blocks are already mapped.
542 *
543 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544 * and store the allocated blocks in the result buffer head and mark it
545 * mapped.
546 *
547 * If file type is extents based, it will call ext4_ext_map_blocks(),
548 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549 * based files
550 *
551 * On success, it returns the number of blocks being mapped or allocate.
552 * if create==0 and the blocks are pre-allocated and uninitialized block,
553 * the result buffer head is unmapped. If the create ==1, it will make sure
554 * the buffer head is mapped.
555 *
556 * It returns 0 if plain look up failed (blocks have not been allocated), in
557 * that case, buffer head is unmapped
558 *
559 * It returns the error in case of allocation failure.
560 */
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562 struct ext4_map_blocks *map, int flags)
563 {
564 struct extent_status es;
565 int retval;
566 #ifdef ES_AGGRESSIVE_TEST
567 struct ext4_map_blocks orig_map;
568
569 memcpy(&orig_map, map, sizeof(*map));
570 #endif
571
572 map->m_flags = 0;
573 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574 "logical block %lu\n", inode->i_ino, flags, map->m_len,
575 (unsigned long) map->m_lblk);
576
577 /* Lookup extent status tree firstly */
578 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580 map->m_pblk = ext4_es_pblock(&es) +
581 map->m_lblk - es.es_lblk;
582 map->m_flags |= ext4_es_is_written(&es) ?
583 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584 retval = es.es_len - (map->m_lblk - es.es_lblk);
585 if (retval > map->m_len)
586 retval = map->m_len;
587 map->m_len = retval;
588 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589 retval = 0;
590 } else {
591 BUG_ON(1);
592 }
593 #ifdef ES_AGGRESSIVE_TEST
594 ext4_map_blocks_es_recheck(handle, inode, map,
595 &orig_map, flags);
596 #endif
597 goto found;
598 }
599
600 /*
601 * Try to see if we can get the block without requesting a new
602 * file system block.
603 */
604 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605 down_read((&EXT4_I(inode)->i_data_sem));
606 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608 EXT4_GET_BLOCKS_KEEP_SIZE);
609 } else {
610 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611 EXT4_GET_BLOCKS_KEEP_SIZE);
612 }
613 if (retval > 0) {
614 int ret;
615 unsigned long long status;
616
617 #ifdef ES_AGGRESSIVE_TEST
618 if (retval != map->m_len) {
619 printk("ES len assertation failed for inode: %lu "
620 "retval %d != map->m_len %d "
621 "in %s (lookup)\n", inode->i_ino, retval,
622 map->m_len, __func__);
623 }
624 #endif
625
626 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629 ext4_find_delalloc_range(inode, map->m_lblk,
630 map->m_lblk + map->m_len - 1))
631 status |= EXTENT_STATUS_DELAYED;
632 ret = ext4_es_insert_extent(inode, map->m_lblk,
633 map->m_len, map->m_pblk, status);
634 if (ret < 0)
635 retval = ret;
636 }
637 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
638 up_read((&EXT4_I(inode)->i_data_sem));
639
640 found:
641 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
642 int ret = check_block_validity(inode, map);
643 if (ret != 0)
644 return ret;
645 }
646
647 /* If it is only a block(s) look up */
648 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
649 return retval;
650
651 /*
652 * Returns if the blocks have already allocated
653 *
654 * Note that if blocks have been preallocated
655 * ext4_ext_get_block() returns the create = 0
656 * with buffer head unmapped.
657 */
658 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
659 return retval;
660
661 /*
662 * Here we clear m_flags because after allocating an new extent,
663 * it will be set again.
664 */
665 map->m_flags &= ~EXT4_MAP_FLAGS;
666
667 /*
668 * New blocks allocate and/or writing to uninitialized extent
669 * will possibly result in updating i_data, so we take
670 * the write lock of i_data_sem, and call get_blocks()
671 * with create == 1 flag.
672 */
673 down_write((&EXT4_I(inode)->i_data_sem));
674
675 /*
676 * if the caller is from delayed allocation writeout path
677 * we have already reserved fs blocks for allocation
678 * let the underlying get_block() function know to
679 * avoid double accounting
680 */
681 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
682 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
683 /*
684 * We need to check for EXT4 here because migrate
685 * could have changed the inode type in between
686 */
687 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
688 retval = ext4_ext_map_blocks(handle, inode, map, flags);
689 } else {
690 retval = ext4_ind_map_blocks(handle, inode, map, flags);
691
692 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
693 /*
694 * We allocated new blocks which will result in
695 * i_data's format changing. Force the migrate
696 * to fail by clearing migrate flags
697 */
698 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
699 }
700
701 /*
702 * Update reserved blocks/metadata blocks after successful
703 * block allocation which had been deferred till now. We don't
704 * support fallocate for non extent files. So we can update
705 * reserve space here.
706 */
707 if ((retval > 0) &&
708 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
709 ext4_da_update_reserve_space(inode, retval, 1);
710 }
711 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
712 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
713
714 if (retval > 0) {
715 int ret;
716 unsigned long long status;
717
718 #ifdef ES_AGGRESSIVE_TEST
719 if (retval != map->m_len) {
720 printk("ES len assertation failed for inode: %lu "
721 "retval %d != map->m_len %d "
722 "in %s (allocation)\n", inode->i_ino, retval,
723 map->m_len, __func__);
724 }
725 #endif
726
727 /*
728 * If the extent has been zeroed out, we don't need to update
729 * extent status tree.
730 */
731 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
732 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
733 if (ext4_es_is_written(&es))
734 goto has_zeroout;
735 }
736 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
737 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
738 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
739 ext4_find_delalloc_range(inode, map->m_lblk,
740 map->m_lblk + map->m_len - 1))
741 status |= EXTENT_STATUS_DELAYED;
742 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
743 map->m_pblk, status);
744 if (ret < 0)
745 retval = ret;
746 }
747
748 has_zeroout:
749 up_write((&EXT4_I(inode)->i_data_sem));
750 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
751 int ret = check_block_validity(inode, map);
752 if (ret != 0)
753 return ret;
754 }
755 return retval;
756 }
757
758 /* Maximum number of blocks we map for direct IO at once. */
759 #define DIO_MAX_BLOCKS 4096
760
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762 struct buffer_head *bh, int flags)
763 {
764 handle_t *handle = ext4_journal_current_handle();
765 struct ext4_map_blocks map;
766 int ret = 0, started = 0;
767 int dio_credits;
768
769 if (ext4_has_inline_data(inode))
770 return -ERANGE;
771
772 map.m_lblk = iblock;
773 map.m_len = bh->b_size >> inode->i_blkbits;
774
775 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
776 /* Direct IO write... */
777 if (map.m_len > DIO_MAX_BLOCKS)
778 map.m_len = DIO_MAX_BLOCKS;
779 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
780 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
781 dio_credits);
782 if (IS_ERR(handle)) {
783 ret = PTR_ERR(handle);
784 return ret;
785 }
786 started = 1;
787 }
788
789 ret = ext4_map_blocks(handle, inode, &map, flags);
790 if (ret > 0) {
791 map_bh(bh, inode->i_sb, map.m_pblk);
792 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
793 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
794 ret = 0;
795 }
796 if (started)
797 ext4_journal_stop(handle);
798 return ret;
799 }
800
801 int ext4_get_block(struct inode *inode, sector_t iblock,
802 struct buffer_head *bh, int create)
803 {
804 return _ext4_get_block(inode, iblock, bh,
805 create ? EXT4_GET_BLOCKS_CREATE : 0);
806 }
807
808 /*
809 * `handle' can be NULL if create is zero
810 */
811 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
812 ext4_lblk_t block, int create, int *errp)
813 {
814 struct ext4_map_blocks map;
815 struct buffer_head *bh;
816 int fatal = 0, err;
817
818 J_ASSERT(handle != NULL || create == 0);
819
820 map.m_lblk = block;
821 map.m_len = 1;
822 err = ext4_map_blocks(handle, inode, &map,
823 create ? EXT4_GET_BLOCKS_CREATE : 0);
824
825 /* ensure we send some value back into *errp */
826 *errp = 0;
827
828 if (create && err == 0)
829 err = -ENOSPC; /* should never happen */
830 if (err < 0)
831 *errp = err;
832 if (err <= 0)
833 return NULL;
834
835 bh = sb_getblk(inode->i_sb, map.m_pblk);
836 if (unlikely(!bh)) {
837 *errp = -ENOMEM;
838 return NULL;
839 }
840 if (map.m_flags & EXT4_MAP_NEW) {
841 J_ASSERT(create != 0);
842 J_ASSERT(handle != NULL);
843
844 /*
845 * Now that we do not always journal data, we should
846 * keep in mind whether this should always journal the
847 * new buffer as metadata. For now, regular file
848 * writes use ext4_get_block instead, so it's not a
849 * problem.
850 */
851 lock_buffer(bh);
852 BUFFER_TRACE(bh, "call get_create_access");
853 fatal = ext4_journal_get_create_access(handle, bh);
854 if (!fatal && !buffer_uptodate(bh)) {
855 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856 set_buffer_uptodate(bh);
857 }
858 unlock_buffer(bh);
859 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860 err = ext4_handle_dirty_metadata(handle, inode, bh);
861 if (!fatal)
862 fatal = err;
863 } else {
864 BUFFER_TRACE(bh, "not a new buffer");
865 }
866 if (fatal) {
867 *errp = fatal;
868 brelse(bh);
869 bh = NULL;
870 }
871 return bh;
872 }
873
874 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
875 ext4_lblk_t block, int create, int *err)
876 {
877 struct buffer_head *bh;
878
879 bh = ext4_getblk(handle, inode, block, create, err);
880 if (!bh)
881 return bh;
882 if (buffer_uptodate(bh))
883 return bh;
884 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
885 wait_on_buffer(bh);
886 if (buffer_uptodate(bh))
887 return bh;
888 put_bh(bh);
889 *err = -EIO;
890 return NULL;
891 }
892
893 int ext4_walk_page_buffers(handle_t *handle,
894 struct buffer_head *head,
895 unsigned from,
896 unsigned to,
897 int *partial,
898 int (*fn)(handle_t *handle,
899 struct buffer_head *bh))
900 {
901 struct buffer_head *bh;
902 unsigned block_start, block_end;
903 unsigned blocksize = head->b_size;
904 int err, ret = 0;
905 struct buffer_head *next;
906
907 for (bh = head, block_start = 0;
908 ret == 0 && (bh != head || !block_start);
909 block_start = block_end, bh = next) {
910 next = bh->b_this_page;
911 block_end = block_start + blocksize;
912 if (block_end <= from || block_start >= to) {
913 if (partial && !buffer_uptodate(bh))
914 *partial = 1;
915 continue;
916 }
917 err = (*fn)(handle, bh);
918 if (!ret)
919 ret = err;
920 }
921 return ret;
922 }
923
924 /*
925 * To preserve ordering, it is essential that the hole instantiation and
926 * the data write be encapsulated in a single transaction. We cannot
927 * close off a transaction and start a new one between the ext4_get_block()
928 * and the commit_write(). So doing the jbd2_journal_start at the start of
929 * prepare_write() is the right place.
930 *
931 * Also, this function can nest inside ext4_writepage(). In that case, we
932 * *know* that ext4_writepage() has generated enough buffer credits to do the
933 * whole page. So we won't block on the journal in that case, which is good,
934 * because the caller may be PF_MEMALLOC.
935 *
936 * By accident, ext4 can be reentered when a transaction is open via
937 * quota file writes. If we were to commit the transaction while thus
938 * reentered, there can be a deadlock - we would be holding a quota
939 * lock, and the commit would never complete if another thread had a
940 * transaction open and was blocking on the quota lock - a ranking
941 * violation.
942 *
943 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
944 * will _not_ run commit under these circumstances because handle->h_ref
945 * is elevated. We'll still have enough credits for the tiny quotafile
946 * write.
947 */
948 int do_journal_get_write_access(handle_t *handle,
949 struct buffer_head *bh)
950 {
951 int dirty = buffer_dirty(bh);
952 int ret;
953
954 if (!buffer_mapped(bh) || buffer_freed(bh))
955 return 0;
956 /*
957 * __block_write_begin() could have dirtied some buffers. Clean
958 * the dirty bit as jbd2_journal_get_write_access() could complain
959 * otherwise about fs integrity issues. Setting of the dirty bit
960 * by __block_write_begin() isn't a real problem here as we clear
961 * the bit before releasing a page lock and thus writeback cannot
962 * ever write the buffer.
963 */
964 if (dirty)
965 clear_buffer_dirty(bh);
966 ret = ext4_journal_get_write_access(handle, bh);
967 if (!ret && dirty)
968 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
969 return ret;
970 }
971
972 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
973 struct buffer_head *bh_result, int create);
974 static int ext4_write_begin(struct file *file, struct address_space *mapping,
975 loff_t pos, unsigned len, unsigned flags,
976 struct page **pagep, void **fsdata)
977 {
978 struct inode *inode = mapping->host;
979 int ret, needed_blocks;
980 handle_t *handle;
981 int retries = 0;
982 struct page *page;
983 pgoff_t index;
984 unsigned from, to;
985
986 trace_ext4_write_begin(inode, pos, len, flags);
987 /*
988 * Reserve one block more for addition to orphan list in case
989 * we allocate blocks but write fails for some reason
990 */
991 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
992 index = pos >> PAGE_CACHE_SHIFT;
993 from = pos & (PAGE_CACHE_SIZE - 1);
994 to = from + len;
995
996 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
997 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
998 flags, pagep);
999 if (ret < 0)
1000 return ret;
1001 if (ret == 1)
1002 return 0;
1003 }
1004
1005 /*
1006 * grab_cache_page_write_begin() can take a long time if the
1007 * system is thrashing due to memory pressure, or if the page
1008 * is being written back. So grab it first before we start
1009 * the transaction handle. This also allows us to allocate
1010 * the page (if needed) without using GFP_NOFS.
1011 */
1012 retry_grab:
1013 page = grab_cache_page_write_begin(mapping, index, flags);
1014 if (!page)
1015 return -ENOMEM;
1016 unlock_page(page);
1017
1018 retry_journal:
1019 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1020 if (IS_ERR(handle)) {
1021 page_cache_release(page);
1022 return PTR_ERR(handle);
1023 }
1024
1025 lock_page(page);
1026 if (page->mapping != mapping) {
1027 /* The page got truncated from under us */
1028 unlock_page(page);
1029 page_cache_release(page);
1030 ext4_journal_stop(handle);
1031 goto retry_grab;
1032 }
1033 wait_on_page_writeback(page);
1034
1035 if (ext4_should_dioread_nolock(inode))
1036 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1037 else
1038 ret = __block_write_begin(page, pos, len, ext4_get_block);
1039
1040 if (!ret && ext4_should_journal_data(inode)) {
1041 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1042 from, to, NULL,
1043 do_journal_get_write_access);
1044 }
1045
1046 if (ret) {
1047 unlock_page(page);
1048 /*
1049 * __block_write_begin may have instantiated a few blocks
1050 * outside i_size. Trim these off again. Don't need
1051 * i_size_read because we hold i_mutex.
1052 *
1053 * Add inode to orphan list in case we crash before
1054 * truncate finishes
1055 */
1056 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1057 ext4_orphan_add(handle, inode);
1058
1059 ext4_journal_stop(handle);
1060 if (pos + len > inode->i_size) {
1061 ext4_truncate_failed_write(inode);
1062 /*
1063 * If truncate failed early the inode might
1064 * still be on the orphan list; we need to
1065 * make sure the inode is removed from the
1066 * orphan list in that case.
1067 */
1068 if (inode->i_nlink)
1069 ext4_orphan_del(NULL, inode);
1070 }
1071
1072 if (ret == -ENOSPC &&
1073 ext4_should_retry_alloc(inode->i_sb, &retries))
1074 goto retry_journal;
1075 page_cache_release(page);
1076 return ret;
1077 }
1078 *pagep = page;
1079 return ret;
1080 }
1081
1082 /* For write_end() in data=journal mode */
1083 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1084 {
1085 int ret;
1086 if (!buffer_mapped(bh) || buffer_freed(bh))
1087 return 0;
1088 set_buffer_uptodate(bh);
1089 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1090 clear_buffer_meta(bh);
1091 clear_buffer_prio(bh);
1092 return ret;
1093 }
1094
1095 /*
1096 * We need to pick up the new inode size which generic_commit_write gave us
1097 * `file' can be NULL - eg, when called from page_symlink().
1098 *
1099 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1100 * buffers are managed internally.
1101 */
1102 static int ext4_write_end(struct file *file,
1103 struct address_space *mapping,
1104 loff_t pos, unsigned len, unsigned copied,
1105 struct page *page, void *fsdata)
1106 {
1107 handle_t *handle = ext4_journal_current_handle();
1108 struct inode *inode = mapping->host;
1109 int ret = 0, ret2;
1110 int i_size_changed = 0;
1111
1112 trace_ext4_write_end(inode, pos, len, copied);
1113 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1114 ret = ext4_jbd2_file_inode(handle, inode);
1115 if (ret) {
1116 unlock_page(page);
1117 page_cache_release(page);
1118 goto errout;
1119 }
1120 }
1121
1122 if (ext4_has_inline_data(inode)) {
1123 ret = ext4_write_inline_data_end(inode, pos, len,
1124 copied, page);
1125 if (ret < 0)
1126 goto errout;
1127 copied = ret;
1128 } else
1129 copied = block_write_end(file, mapping, pos,
1130 len, copied, page, fsdata);
1131
1132 /*
1133 * No need to use i_size_read() here, the i_size
1134 * cannot change under us because we hole i_mutex.
1135 *
1136 * But it's important to update i_size while still holding page lock:
1137 * page writeout could otherwise come in and zero beyond i_size.
1138 */
1139 if (pos + copied > inode->i_size) {
1140 i_size_write(inode, pos + copied);
1141 i_size_changed = 1;
1142 }
1143
1144 if (pos + copied > EXT4_I(inode)->i_disksize) {
1145 /* We need to mark inode dirty even if
1146 * new_i_size is less that inode->i_size
1147 * but greater than i_disksize. (hint delalloc)
1148 */
1149 ext4_update_i_disksize(inode, (pos + copied));
1150 i_size_changed = 1;
1151 }
1152 unlock_page(page);
1153 page_cache_release(page);
1154
1155 /*
1156 * Don't mark the inode dirty under page lock. First, it unnecessarily
1157 * makes the holding time of page lock longer. Second, it forces lock
1158 * ordering of page lock and transaction start for journaling
1159 * filesystems.
1160 */
1161 if (i_size_changed)
1162 ext4_mark_inode_dirty(handle, inode);
1163
1164 if (copied < 0)
1165 ret = copied;
1166 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1167 /* if we have allocated more blocks and copied
1168 * less. We will have blocks allocated outside
1169 * inode->i_size. So truncate them
1170 */
1171 ext4_orphan_add(handle, inode);
1172 errout:
1173 ret2 = ext4_journal_stop(handle);
1174 if (!ret)
1175 ret = ret2;
1176
1177 if (pos + len > inode->i_size) {
1178 ext4_truncate_failed_write(inode);
1179 /*
1180 * If truncate failed early the inode might still be
1181 * on the orphan list; we need to make sure the inode
1182 * is removed from the orphan list in that case.
1183 */
1184 if (inode->i_nlink)
1185 ext4_orphan_del(NULL, inode);
1186 }
1187
1188 return ret ? ret : copied;
1189 }
1190
1191 static int ext4_journalled_write_end(struct file *file,
1192 struct address_space *mapping,
1193 loff_t pos, unsigned len, unsigned copied,
1194 struct page *page, void *fsdata)
1195 {
1196 handle_t *handle = ext4_journal_current_handle();
1197 struct inode *inode = mapping->host;
1198 int ret = 0, ret2;
1199 int partial = 0;
1200 unsigned from, to;
1201 loff_t new_i_size;
1202
1203 trace_ext4_journalled_write_end(inode, pos, len, copied);
1204 from = pos & (PAGE_CACHE_SIZE - 1);
1205 to = from + len;
1206
1207 BUG_ON(!ext4_handle_valid(handle));
1208
1209 if (ext4_has_inline_data(inode))
1210 copied = ext4_write_inline_data_end(inode, pos, len,
1211 copied, page);
1212 else {
1213 if (copied < len) {
1214 if (!PageUptodate(page))
1215 copied = 0;
1216 page_zero_new_buffers(page, from+copied, to);
1217 }
1218
1219 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1220 to, &partial, write_end_fn);
1221 if (!partial)
1222 SetPageUptodate(page);
1223 }
1224 new_i_size = pos + copied;
1225 if (new_i_size > inode->i_size)
1226 i_size_write(inode, pos+copied);
1227 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1228 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1229 if (new_i_size > EXT4_I(inode)->i_disksize) {
1230 ext4_update_i_disksize(inode, new_i_size);
1231 ret2 = ext4_mark_inode_dirty(handle, inode);
1232 if (!ret)
1233 ret = ret2;
1234 }
1235
1236 unlock_page(page);
1237 page_cache_release(page);
1238 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1239 /* if we have allocated more blocks and copied
1240 * less. We will have blocks allocated outside
1241 * inode->i_size. So truncate them
1242 */
1243 ext4_orphan_add(handle, inode);
1244
1245 ret2 = ext4_journal_stop(handle);
1246 if (!ret)
1247 ret = ret2;
1248 if (pos + len > inode->i_size) {
1249 ext4_truncate_failed_write(inode);
1250 /*
1251 * If truncate failed early the inode might still be
1252 * on the orphan list; we need to make sure the inode
1253 * is removed from the orphan list in that case.
1254 */
1255 if (inode->i_nlink)
1256 ext4_orphan_del(NULL, inode);
1257 }
1258
1259 return ret ? ret : copied;
1260 }
1261
1262 /*
1263 * Reserve a metadata for a single block located at lblock
1264 */
1265 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1266 {
1267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1268 struct ext4_inode_info *ei = EXT4_I(inode);
1269 unsigned int md_needed;
1270 ext4_lblk_t save_last_lblock;
1271 int save_len;
1272
1273 /*
1274 * recalculate the amount of metadata blocks to reserve
1275 * in order to allocate nrblocks
1276 * worse case is one extent per block
1277 */
1278 spin_lock(&ei->i_block_reservation_lock);
1279 /*
1280 * ext4_calc_metadata_amount() has side effects, which we have
1281 * to be prepared undo if we fail to claim space.
1282 */
1283 save_len = ei->i_da_metadata_calc_len;
1284 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1285 md_needed = EXT4_NUM_B2C(sbi,
1286 ext4_calc_metadata_amount(inode, lblock));
1287 trace_ext4_da_reserve_space(inode, md_needed);
1288
1289 /*
1290 * We do still charge estimated metadata to the sb though;
1291 * we cannot afford to run out of free blocks.
1292 */
1293 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1294 ei->i_da_metadata_calc_len = save_len;
1295 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1296 spin_unlock(&ei->i_block_reservation_lock);
1297 return -ENOSPC;
1298 }
1299 ei->i_reserved_meta_blocks += md_needed;
1300 spin_unlock(&ei->i_block_reservation_lock);
1301
1302 return 0; /* success */
1303 }
1304
1305 /*
1306 * Reserve a single cluster located at lblock
1307 */
1308 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1309 {
1310 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1311 struct ext4_inode_info *ei = EXT4_I(inode);
1312 unsigned int md_needed;
1313 int ret;
1314 ext4_lblk_t save_last_lblock;
1315 int save_len;
1316
1317 /*
1318 * We will charge metadata quota at writeout time; this saves
1319 * us from metadata over-estimation, though we may go over by
1320 * a small amount in the end. Here we just reserve for data.
1321 */
1322 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1323 if (ret)
1324 return ret;
1325
1326 /*
1327 * recalculate the amount of metadata blocks to reserve
1328 * in order to allocate nrblocks
1329 * worse case is one extent per block
1330 */
1331 spin_lock(&ei->i_block_reservation_lock);
1332 /*
1333 * ext4_calc_metadata_amount() has side effects, which we have
1334 * to be prepared undo if we fail to claim space.
1335 */
1336 save_len = ei->i_da_metadata_calc_len;
1337 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1338 md_needed = EXT4_NUM_B2C(sbi,
1339 ext4_calc_metadata_amount(inode, lblock));
1340 trace_ext4_da_reserve_space(inode, md_needed);
1341
1342 /*
1343 * We do still charge estimated metadata to the sb though;
1344 * we cannot afford to run out of free blocks.
1345 */
1346 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1347 ei->i_da_metadata_calc_len = save_len;
1348 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1349 spin_unlock(&ei->i_block_reservation_lock);
1350 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1351 return -ENOSPC;
1352 }
1353 ei->i_reserved_data_blocks++;
1354 ei->i_reserved_meta_blocks += md_needed;
1355 spin_unlock(&ei->i_block_reservation_lock);
1356
1357 return 0; /* success */
1358 }
1359
1360 static void ext4_da_release_space(struct inode *inode, int to_free)
1361 {
1362 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1363 struct ext4_inode_info *ei = EXT4_I(inode);
1364
1365 if (!to_free)
1366 return; /* Nothing to release, exit */
1367
1368 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1369
1370 trace_ext4_da_release_space(inode, to_free);
1371 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1372 /*
1373 * if there aren't enough reserved blocks, then the
1374 * counter is messed up somewhere. Since this
1375 * function is called from invalidate page, it's
1376 * harmless to return without any action.
1377 */
1378 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1379 "ino %lu, to_free %d with only %d reserved "
1380 "data blocks", inode->i_ino, to_free,
1381 ei->i_reserved_data_blocks);
1382 WARN_ON(1);
1383 to_free = ei->i_reserved_data_blocks;
1384 }
1385 ei->i_reserved_data_blocks -= to_free;
1386
1387 if (ei->i_reserved_data_blocks == 0) {
1388 /*
1389 * We can release all of the reserved metadata blocks
1390 * only when we have written all of the delayed
1391 * allocation blocks.
1392 * Note that in case of bigalloc, i_reserved_meta_blocks,
1393 * i_reserved_data_blocks, etc. refer to number of clusters.
1394 */
1395 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1396 ei->i_reserved_meta_blocks);
1397 ei->i_reserved_meta_blocks = 0;
1398 ei->i_da_metadata_calc_len = 0;
1399 }
1400
1401 /* update fs dirty data blocks counter */
1402 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1403
1404 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1405
1406 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1407 }
1408
1409 static void ext4_da_page_release_reservation(struct page *page,
1410 unsigned long offset)
1411 {
1412 int to_release = 0;
1413 struct buffer_head *head, *bh;
1414 unsigned int curr_off = 0;
1415 struct inode *inode = page->mapping->host;
1416 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1417 int num_clusters;
1418 ext4_fsblk_t lblk;
1419
1420 head = page_buffers(page);
1421 bh = head;
1422 do {
1423 unsigned int next_off = curr_off + bh->b_size;
1424
1425 if ((offset <= curr_off) && (buffer_delay(bh))) {
1426 to_release++;
1427 clear_buffer_delay(bh);
1428 }
1429 curr_off = next_off;
1430 } while ((bh = bh->b_this_page) != head);
1431
1432 if (to_release) {
1433 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1434 ext4_es_remove_extent(inode, lblk, to_release);
1435 }
1436
1437 /* If we have released all the blocks belonging to a cluster, then we
1438 * need to release the reserved space for that cluster. */
1439 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1440 while (num_clusters > 0) {
1441 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1442 ((num_clusters - 1) << sbi->s_cluster_bits);
1443 if (sbi->s_cluster_ratio == 1 ||
1444 !ext4_find_delalloc_cluster(inode, lblk))
1445 ext4_da_release_space(inode, 1);
1446
1447 num_clusters--;
1448 }
1449 }
1450
1451 /*
1452 * Delayed allocation stuff
1453 */
1454
1455 /*
1456 * mpage_da_submit_io - walks through extent of pages and try to write
1457 * them with writepage() call back
1458 *
1459 * @mpd->inode: inode
1460 * @mpd->first_page: first page of the extent
1461 * @mpd->next_page: page after the last page of the extent
1462 *
1463 * By the time mpage_da_submit_io() is called we expect all blocks
1464 * to be allocated. this may be wrong if allocation failed.
1465 *
1466 * As pages are already locked by write_cache_pages(), we can't use it
1467 */
1468 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1469 struct ext4_map_blocks *map)
1470 {
1471 struct pagevec pvec;
1472 unsigned long index, end;
1473 int ret = 0, err, nr_pages, i;
1474 struct inode *inode = mpd->inode;
1475 struct address_space *mapping = inode->i_mapping;
1476 loff_t size = i_size_read(inode);
1477 unsigned int len, block_start;
1478 struct buffer_head *bh, *page_bufs = NULL;
1479 sector_t pblock = 0, cur_logical = 0;
1480 struct ext4_io_submit io_submit;
1481
1482 BUG_ON(mpd->next_page <= mpd->first_page);
1483 memset(&io_submit, 0, sizeof(io_submit));
1484 /*
1485 * We need to start from the first_page to the next_page - 1
1486 * to make sure we also write the mapped dirty buffer_heads.
1487 * If we look at mpd->b_blocknr we would only be looking
1488 * at the currently mapped buffer_heads.
1489 */
1490 index = mpd->first_page;
1491 end = mpd->next_page - 1;
1492
1493 pagevec_init(&pvec, 0);
1494 while (index <= end) {
1495 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1496 if (nr_pages == 0)
1497 break;
1498 for (i = 0; i < nr_pages; i++) {
1499 int skip_page = 0;
1500 struct page *page = pvec.pages[i];
1501
1502 index = page->index;
1503 if (index > end)
1504 break;
1505
1506 if (index == size >> PAGE_CACHE_SHIFT)
1507 len = size & ~PAGE_CACHE_MASK;
1508 else
1509 len = PAGE_CACHE_SIZE;
1510 if (map) {
1511 cur_logical = index << (PAGE_CACHE_SHIFT -
1512 inode->i_blkbits);
1513 pblock = map->m_pblk + (cur_logical -
1514 map->m_lblk);
1515 }
1516 index++;
1517
1518 BUG_ON(!PageLocked(page));
1519 BUG_ON(PageWriteback(page));
1520
1521 bh = page_bufs = page_buffers(page);
1522 block_start = 0;
1523 do {
1524 if (map && (cur_logical >= map->m_lblk) &&
1525 (cur_logical <= (map->m_lblk +
1526 (map->m_len - 1)))) {
1527 if (buffer_delay(bh)) {
1528 clear_buffer_delay(bh);
1529 bh->b_blocknr = pblock;
1530 }
1531 if (buffer_unwritten(bh) ||
1532 buffer_mapped(bh))
1533 BUG_ON(bh->b_blocknr != pblock);
1534 if (map->m_flags & EXT4_MAP_UNINIT)
1535 set_buffer_uninit(bh);
1536 clear_buffer_unwritten(bh);
1537 }
1538
1539 /*
1540 * skip page if block allocation undone and
1541 * block is dirty
1542 */
1543 if (ext4_bh_delay_or_unwritten(NULL, bh))
1544 skip_page = 1;
1545 bh = bh->b_this_page;
1546 block_start += bh->b_size;
1547 cur_logical++;
1548 pblock++;
1549 } while (bh != page_bufs);
1550
1551 if (skip_page) {
1552 unlock_page(page);
1553 continue;
1554 }
1555
1556 clear_page_dirty_for_io(page);
1557 err = ext4_bio_write_page(&io_submit, page, len,
1558 mpd->wbc);
1559 if (!err)
1560 mpd->pages_written++;
1561 /*
1562 * In error case, we have to continue because
1563 * remaining pages are still locked
1564 */
1565 if (ret == 0)
1566 ret = err;
1567 }
1568 pagevec_release(&pvec);
1569 }
1570 ext4_io_submit(&io_submit);
1571 return ret;
1572 }
1573
1574 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1575 {
1576 int nr_pages, i;
1577 pgoff_t index, end;
1578 struct pagevec pvec;
1579 struct inode *inode = mpd->inode;
1580 struct address_space *mapping = inode->i_mapping;
1581 ext4_lblk_t start, last;
1582
1583 index = mpd->first_page;
1584 end = mpd->next_page - 1;
1585
1586 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1587 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1588 ext4_es_remove_extent(inode, start, last - start + 1);
1589
1590 pagevec_init(&pvec, 0);
1591 while (index <= end) {
1592 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1593 if (nr_pages == 0)
1594 break;
1595 for (i = 0; i < nr_pages; i++) {
1596 struct page *page = pvec.pages[i];
1597 if (page->index > end)
1598 break;
1599 BUG_ON(!PageLocked(page));
1600 BUG_ON(PageWriteback(page));
1601 block_invalidatepage(page, 0);
1602 ClearPageUptodate(page);
1603 unlock_page(page);
1604 }
1605 index = pvec.pages[nr_pages - 1]->index + 1;
1606 pagevec_release(&pvec);
1607 }
1608 return;
1609 }
1610
1611 static void ext4_print_free_blocks(struct inode *inode)
1612 {
1613 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1614 struct super_block *sb = inode->i_sb;
1615 struct ext4_inode_info *ei = EXT4_I(inode);
1616
1617 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1618 EXT4_C2B(EXT4_SB(inode->i_sb),
1619 ext4_count_free_clusters(sb)));
1620 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1621 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1622 (long long) EXT4_C2B(EXT4_SB(sb),
1623 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1624 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1625 (long long) EXT4_C2B(EXT4_SB(sb),
1626 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1627 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1628 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1629 ei->i_reserved_data_blocks);
1630 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1631 ei->i_reserved_meta_blocks);
1632 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1633 ei->i_allocated_meta_blocks);
1634 return;
1635 }
1636
1637 /*
1638 * mpage_da_map_and_submit - go through given space, map them
1639 * if necessary, and then submit them for I/O
1640 *
1641 * @mpd - bh describing space
1642 *
1643 * The function skips space we know is already mapped to disk blocks.
1644 *
1645 */
1646 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1647 {
1648 int err, blks, get_blocks_flags;
1649 struct ext4_map_blocks map, *mapp = NULL;
1650 sector_t next = mpd->b_blocknr;
1651 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1652 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1653 handle_t *handle = NULL;
1654
1655 /*
1656 * If the blocks are mapped already, or we couldn't accumulate
1657 * any blocks, then proceed immediately to the submission stage.
1658 */
1659 if ((mpd->b_size == 0) ||
1660 ((mpd->b_state & (1 << BH_Mapped)) &&
1661 !(mpd->b_state & (1 << BH_Delay)) &&
1662 !(mpd->b_state & (1 << BH_Unwritten))))
1663 goto submit_io;
1664
1665 handle = ext4_journal_current_handle();
1666 BUG_ON(!handle);
1667
1668 /*
1669 * Call ext4_map_blocks() to allocate any delayed allocation
1670 * blocks, or to convert an uninitialized extent to be
1671 * initialized (in the case where we have written into
1672 * one or more preallocated blocks).
1673 *
1674 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1675 * indicate that we are on the delayed allocation path. This
1676 * affects functions in many different parts of the allocation
1677 * call path. This flag exists primarily because we don't
1678 * want to change *many* call functions, so ext4_map_blocks()
1679 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1680 * inode's allocation semaphore is taken.
1681 *
1682 * If the blocks in questions were delalloc blocks, set
1683 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1684 * variables are updated after the blocks have been allocated.
1685 */
1686 map.m_lblk = next;
1687 map.m_len = max_blocks;
1688 /*
1689 * We're in delalloc path and it is possible that we're going to
1690 * need more metadata blocks than previously reserved. However
1691 * we must not fail because we're in writeback and there is
1692 * nothing we can do about it so it might result in data loss.
1693 * So use reserved blocks to allocate metadata if possible.
1694 */
1695 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1696 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1697 if (ext4_should_dioread_nolock(mpd->inode))
1698 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1699 if (mpd->b_state & (1 << BH_Delay))
1700 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1701
1702
1703 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1704 if (blks < 0) {
1705 struct super_block *sb = mpd->inode->i_sb;
1706
1707 err = blks;
1708 /*
1709 * If get block returns EAGAIN or ENOSPC and there
1710 * appears to be free blocks we will just let
1711 * mpage_da_submit_io() unlock all of the pages.
1712 */
1713 if (err == -EAGAIN)
1714 goto submit_io;
1715
1716 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1717 mpd->retval = err;
1718 goto submit_io;
1719 }
1720
1721 /*
1722 * get block failure will cause us to loop in
1723 * writepages, because a_ops->writepage won't be able
1724 * to make progress. The page will be redirtied by
1725 * writepage and writepages will again try to write
1726 * the same.
1727 */
1728 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1729 ext4_msg(sb, KERN_CRIT,
1730 "delayed block allocation failed for inode %lu "
1731 "at logical offset %llu with max blocks %zd "
1732 "with error %d", mpd->inode->i_ino,
1733 (unsigned long long) next,
1734 mpd->b_size >> mpd->inode->i_blkbits, err);
1735 ext4_msg(sb, KERN_CRIT,
1736 "This should not happen!! Data will be lost");
1737 if (err == -ENOSPC)
1738 ext4_print_free_blocks(mpd->inode);
1739 }
1740 /* invalidate all the pages */
1741 ext4_da_block_invalidatepages(mpd);
1742
1743 /* Mark this page range as having been completed */
1744 mpd->io_done = 1;
1745 return;
1746 }
1747 BUG_ON(blks == 0);
1748
1749 mapp = &map;
1750 if (map.m_flags & EXT4_MAP_NEW) {
1751 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1752 int i;
1753
1754 for (i = 0; i < map.m_len; i++)
1755 unmap_underlying_metadata(bdev, map.m_pblk + i);
1756 }
1757
1758 /*
1759 * Update on-disk size along with block allocation.
1760 */
1761 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1762 if (disksize > i_size_read(mpd->inode))
1763 disksize = i_size_read(mpd->inode);
1764 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1765 ext4_update_i_disksize(mpd->inode, disksize);
1766 err = ext4_mark_inode_dirty(handle, mpd->inode);
1767 if (err)
1768 ext4_error(mpd->inode->i_sb,
1769 "Failed to mark inode %lu dirty",
1770 mpd->inode->i_ino);
1771 }
1772
1773 submit_io:
1774 mpage_da_submit_io(mpd, mapp);
1775 mpd->io_done = 1;
1776 }
1777
1778 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1779 (1 << BH_Delay) | (1 << BH_Unwritten))
1780
1781 /*
1782 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1783 *
1784 * @mpd->lbh - extent of blocks
1785 * @logical - logical number of the block in the file
1786 * @b_state - b_state of the buffer head added
1787 *
1788 * the function is used to collect contig. blocks in same state
1789 */
1790 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1791 unsigned long b_state)
1792 {
1793 sector_t next;
1794 int blkbits = mpd->inode->i_blkbits;
1795 int nrblocks = mpd->b_size >> blkbits;
1796
1797 /*
1798 * XXX Don't go larger than mballoc is willing to allocate
1799 * This is a stopgap solution. We eventually need to fold
1800 * mpage_da_submit_io() into this function and then call
1801 * ext4_map_blocks() multiple times in a loop
1802 */
1803 if (nrblocks >= (8*1024*1024 >> blkbits))
1804 goto flush_it;
1805
1806 /* check if the reserved journal credits might overflow */
1807 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1808 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1809 /*
1810 * With non-extent format we are limited by the journal
1811 * credit available. Total credit needed to insert
1812 * nrblocks contiguous blocks is dependent on the
1813 * nrblocks. So limit nrblocks.
1814 */
1815 goto flush_it;
1816 }
1817 }
1818 /*
1819 * First block in the extent
1820 */
1821 if (mpd->b_size == 0) {
1822 mpd->b_blocknr = logical;
1823 mpd->b_size = 1 << blkbits;
1824 mpd->b_state = b_state & BH_FLAGS;
1825 return;
1826 }
1827
1828 next = mpd->b_blocknr + nrblocks;
1829 /*
1830 * Can we merge the block to our big extent?
1831 */
1832 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1833 mpd->b_size += 1 << blkbits;
1834 return;
1835 }
1836
1837 flush_it:
1838 /*
1839 * We couldn't merge the block to our extent, so we
1840 * need to flush current extent and start new one
1841 */
1842 mpage_da_map_and_submit(mpd);
1843 return;
1844 }
1845
1846 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1847 {
1848 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1849 }
1850
1851 /*
1852 * This function is grabs code from the very beginning of
1853 * ext4_map_blocks, but assumes that the caller is from delayed write
1854 * time. This function looks up the requested blocks and sets the
1855 * buffer delay bit under the protection of i_data_sem.
1856 */
1857 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1858 struct ext4_map_blocks *map,
1859 struct buffer_head *bh)
1860 {
1861 struct extent_status es;
1862 int retval;
1863 sector_t invalid_block = ~((sector_t) 0xffff);
1864 #ifdef ES_AGGRESSIVE_TEST
1865 struct ext4_map_blocks orig_map;
1866
1867 memcpy(&orig_map, map, sizeof(*map));
1868 #endif
1869
1870 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1871 invalid_block = ~0;
1872
1873 map->m_flags = 0;
1874 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1875 "logical block %lu\n", inode->i_ino, map->m_len,
1876 (unsigned long) map->m_lblk);
1877
1878 /* Lookup extent status tree firstly */
1879 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1880
1881 if (ext4_es_is_hole(&es)) {
1882 retval = 0;
1883 down_read((&EXT4_I(inode)->i_data_sem));
1884 goto add_delayed;
1885 }
1886
1887 /*
1888 * Delayed extent could be allocated by fallocate.
1889 * So we need to check it.
1890 */
1891 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1892 map_bh(bh, inode->i_sb, invalid_block);
1893 set_buffer_new(bh);
1894 set_buffer_delay(bh);
1895 return 0;
1896 }
1897
1898 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1899 retval = es.es_len - (iblock - es.es_lblk);
1900 if (retval > map->m_len)
1901 retval = map->m_len;
1902 map->m_len = retval;
1903 if (ext4_es_is_written(&es))
1904 map->m_flags |= EXT4_MAP_MAPPED;
1905 else if (ext4_es_is_unwritten(&es))
1906 map->m_flags |= EXT4_MAP_UNWRITTEN;
1907 else
1908 BUG_ON(1);
1909
1910 #ifdef ES_AGGRESSIVE_TEST
1911 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1912 #endif
1913 return retval;
1914 }
1915
1916 /*
1917 * Try to see if we can get the block without requesting a new
1918 * file system block.
1919 */
1920 down_read((&EXT4_I(inode)->i_data_sem));
1921 if (ext4_has_inline_data(inode)) {
1922 /*
1923 * We will soon create blocks for this page, and let
1924 * us pretend as if the blocks aren't allocated yet.
1925 * In case of clusters, we have to handle the work
1926 * of mapping from cluster so that the reserved space
1927 * is calculated properly.
1928 */
1929 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1930 ext4_find_delalloc_cluster(inode, map->m_lblk))
1931 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1932 retval = 0;
1933 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1934 retval = ext4_ext_map_blocks(NULL, inode, map,
1935 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1936 else
1937 retval = ext4_ind_map_blocks(NULL, inode, map,
1938 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1939
1940 add_delayed:
1941 if (retval == 0) {
1942 int ret;
1943 /*
1944 * XXX: __block_prepare_write() unmaps passed block,
1945 * is it OK?
1946 */
1947 /*
1948 * If the block was allocated from previously allocated cluster,
1949 * then we don't need to reserve it again. However we still need
1950 * to reserve metadata for every block we're going to write.
1951 */
1952 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1953 ret = ext4_da_reserve_space(inode, iblock);
1954 if (ret) {
1955 /* not enough space to reserve */
1956 retval = ret;
1957 goto out_unlock;
1958 }
1959 } else {
1960 ret = ext4_da_reserve_metadata(inode, iblock);
1961 if (ret) {
1962 /* not enough space to reserve */
1963 retval = ret;
1964 goto out_unlock;
1965 }
1966 }
1967
1968 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1969 ~0, EXTENT_STATUS_DELAYED);
1970 if (ret) {
1971 retval = ret;
1972 goto out_unlock;
1973 }
1974
1975 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1976 * and it should not appear on the bh->b_state.
1977 */
1978 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1979
1980 map_bh(bh, inode->i_sb, invalid_block);
1981 set_buffer_new(bh);
1982 set_buffer_delay(bh);
1983 } else if (retval > 0) {
1984 int ret;
1985 unsigned long long status;
1986
1987 #ifdef ES_AGGRESSIVE_TEST
1988 if (retval != map->m_len) {
1989 printk("ES len assertation failed for inode: %lu "
1990 "retval %d != map->m_len %d "
1991 "in %s (lookup)\n", inode->i_ino, retval,
1992 map->m_len, __func__);
1993 }
1994 #endif
1995
1996 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1997 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1998 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1999 map->m_pblk, status);
2000 if (ret != 0)
2001 retval = ret;
2002 }
2003
2004 out_unlock:
2005 up_read((&EXT4_I(inode)->i_data_sem));
2006
2007 return retval;
2008 }
2009
2010 /*
2011 * This is a special get_blocks_t callback which is used by
2012 * ext4_da_write_begin(). It will either return mapped block or
2013 * reserve space for a single block.
2014 *
2015 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2016 * We also have b_blocknr = -1 and b_bdev initialized properly
2017 *
2018 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2019 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2020 * initialized properly.
2021 */
2022 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2023 struct buffer_head *bh, int create)
2024 {
2025 struct ext4_map_blocks map;
2026 int ret = 0;
2027
2028 BUG_ON(create == 0);
2029 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2030
2031 map.m_lblk = iblock;
2032 map.m_len = 1;
2033
2034 /*
2035 * first, we need to know whether the block is allocated already
2036 * preallocated blocks are unmapped but should treated
2037 * the same as allocated blocks.
2038 */
2039 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2040 if (ret <= 0)
2041 return ret;
2042
2043 map_bh(bh, inode->i_sb, map.m_pblk);
2044 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2045
2046 if (buffer_unwritten(bh)) {
2047 /* A delayed write to unwritten bh should be marked
2048 * new and mapped. Mapped ensures that we don't do
2049 * get_block multiple times when we write to the same
2050 * offset and new ensures that we do proper zero out
2051 * for partial write.
2052 */
2053 set_buffer_new(bh);
2054 set_buffer_mapped(bh);
2055 }
2056 return 0;
2057 }
2058
2059 static int bget_one(handle_t *handle, struct buffer_head *bh)
2060 {
2061 get_bh(bh);
2062 return 0;
2063 }
2064
2065 static int bput_one(handle_t *handle, struct buffer_head *bh)
2066 {
2067 put_bh(bh);
2068 return 0;
2069 }
2070
2071 static int __ext4_journalled_writepage(struct page *page,
2072 unsigned int len)
2073 {
2074 struct address_space *mapping = page->mapping;
2075 struct inode *inode = mapping->host;
2076 struct buffer_head *page_bufs = NULL;
2077 handle_t *handle = NULL;
2078 int ret = 0, err = 0;
2079 int inline_data = ext4_has_inline_data(inode);
2080 struct buffer_head *inode_bh = NULL;
2081
2082 ClearPageChecked(page);
2083
2084 if (inline_data) {
2085 BUG_ON(page->index != 0);
2086 BUG_ON(len > ext4_get_max_inline_size(inode));
2087 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2088 if (inode_bh == NULL)
2089 goto out;
2090 } else {
2091 page_bufs = page_buffers(page);
2092 if (!page_bufs) {
2093 BUG();
2094 goto out;
2095 }
2096 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2097 NULL, bget_one);
2098 }
2099 /* As soon as we unlock the page, it can go away, but we have
2100 * references to buffers so we are safe */
2101 unlock_page(page);
2102
2103 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2104 ext4_writepage_trans_blocks(inode));
2105 if (IS_ERR(handle)) {
2106 ret = PTR_ERR(handle);
2107 goto out;
2108 }
2109
2110 BUG_ON(!ext4_handle_valid(handle));
2111
2112 if (inline_data) {
2113 ret = ext4_journal_get_write_access(handle, inode_bh);
2114
2115 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2116
2117 } else {
2118 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2119 do_journal_get_write_access);
2120
2121 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2122 write_end_fn);
2123 }
2124 if (ret == 0)
2125 ret = err;
2126 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2127 err = ext4_journal_stop(handle);
2128 if (!ret)
2129 ret = err;
2130
2131 if (!ext4_has_inline_data(inode))
2132 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2133 NULL, bput_one);
2134 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2135 out:
2136 brelse(inode_bh);
2137 return ret;
2138 }
2139
2140 /*
2141 * Note that we don't need to start a transaction unless we're journaling data
2142 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2143 * need to file the inode to the transaction's list in ordered mode because if
2144 * we are writing back data added by write(), the inode is already there and if
2145 * we are writing back data modified via mmap(), no one guarantees in which
2146 * transaction the data will hit the disk. In case we are journaling data, we
2147 * cannot start transaction directly because transaction start ranks above page
2148 * lock so we have to do some magic.
2149 *
2150 * This function can get called via...
2151 * - ext4_da_writepages after taking page lock (have journal handle)
2152 * - journal_submit_inode_data_buffers (no journal handle)
2153 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2154 * - grab_page_cache when doing write_begin (have journal handle)
2155 *
2156 * We don't do any block allocation in this function. If we have page with
2157 * multiple blocks we need to write those buffer_heads that are mapped. This
2158 * is important for mmaped based write. So if we do with blocksize 1K
2159 * truncate(f, 1024);
2160 * a = mmap(f, 0, 4096);
2161 * a[0] = 'a';
2162 * truncate(f, 4096);
2163 * we have in the page first buffer_head mapped via page_mkwrite call back
2164 * but other buffer_heads would be unmapped but dirty (dirty done via the
2165 * do_wp_page). So writepage should write the first block. If we modify
2166 * the mmap area beyond 1024 we will again get a page_fault and the
2167 * page_mkwrite callback will do the block allocation and mark the
2168 * buffer_heads mapped.
2169 *
2170 * We redirty the page if we have any buffer_heads that is either delay or
2171 * unwritten in the page.
2172 *
2173 * We can get recursively called as show below.
2174 *
2175 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2176 * ext4_writepage()
2177 *
2178 * But since we don't do any block allocation we should not deadlock.
2179 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2180 */
2181 static int ext4_writepage(struct page *page,
2182 struct writeback_control *wbc)
2183 {
2184 int ret = 0;
2185 loff_t size;
2186 unsigned int len;
2187 struct buffer_head *page_bufs = NULL;
2188 struct inode *inode = page->mapping->host;
2189 struct ext4_io_submit io_submit;
2190
2191 trace_ext4_writepage(page);
2192 size = i_size_read(inode);
2193 if (page->index == size >> PAGE_CACHE_SHIFT)
2194 len = size & ~PAGE_CACHE_MASK;
2195 else
2196 len = PAGE_CACHE_SIZE;
2197
2198 page_bufs = page_buffers(page);
2199 /*
2200 * We cannot do block allocation or other extent handling in this
2201 * function. If there are buffers needing that, we have to redirty
2202 * the page. But we may reach here when we do a journal commit via
2203 * journal_submit_inode_data_buffers() and in that case we must write
2204 * allocated buffers to achieve data=ordered mode guarantees.
2205 */
2206 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2207 ext4_bh_delay_or_unwritten)) {
2208 redirty_page_for_writepage(wbc, page);
2209 if (current->flags & PF_MEMALLOC) {
2210 /*
2211 * For memory cleaning there's no point in writing only
2212 * some buffers. So just bail out. Warn if we came here
2213 * from direct reclaim.
2214 */
2215 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2216 == PF_MEMALLOC);
2217 unlock_page(page);
2218 return 0;
2219 }
2220 }
2221
2222 if (PageChecked(page) && ext4_should_journal_data(inode))
2223 /*
2224 * It's mmapped pagecache. Add buffers and journal it. There
2225 * doesn't seem much point in redirtying the page here.
2226 */
2227 return __ext4_journalled_writepage(page, len);
2228
2229 memset(&io_submit, 0, sizeof(io_submit));
2230 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2231 ext4_io_submit(&io_submit);
2232 return ret;
2233 }
2234
2235 /*
2236 * This is called via ext4_da_writepages() to
2237 * calculate the total number of credits to reserve to fit
2238 * a single extent allocation into a single transaction,
2239 * ext4_da_writpeages() will loop calling this before
2240 * the block allocation.
2241 */
2242
2243 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2244 {
2245 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2246
2247 /*
2248 * With non-extent format the journal credit needed to
2249 * insert nrblocks contiguous block is dependent on
2250 * number of contiguous block. So we will limit
2251 * number of contiguous block to a sane value
2252 */
2253 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2254 (max_blocks > EXT4_MAX_TRANS_DATA))
2255 max_blocks = EXT4_MAX_TRANS_DATA;
2256
2257 return ext4_chunk_trans_blocks(inode, max_blocks);
2258 }
2259
2260 /*
2261 * write_cache_pages_da - walk the list of dirty pages of the given
2262 * address space and accumulate pages that need writing, and call
2263 * mpage_da_map_and_submit to map a single contiguous memory region
2264 * and then write them.
2265 */
2266 static int write_cache_pages_da(handle_t *handle,
2267 struct address_space *mapping,
2268 struct writeback_control *wbc,
2269 struct mpage_da_data *mpd,
2270 pgoff_t *done_index)
2271 {
2272 struct buffer_head *bh, *head;
2273 struct inode *inode = mapping->host;
2274 struct pagevec pvec;
2275 unsigned int nr_pages;
2276 sector_t logical;
2277 pgoff_t index, end;
2278 long nr_to_write = wbc->nr_to_write;
2279 int i, tag, ret = 0;
2280
2281 memset(mpd, 0, sizeof(struct mpage_da_data));
2282 mpd->wbc = wbc;
2283 mpd->inode = inode;
2284 pagevec_init(&pvec, 0);
2285 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2286 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2287
2288 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2289 tag = PAGECACHE_TAG_TOWRITE;
2290 else
2291 tag = PAGECACHE_TAG_DIRTY;
2292
2293 *done_index = index;
2294 while (index <= end) {
2295 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2296 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2297 if (nr_pages == 0)
2298 return 0;
2299
2300 for (i = 0; i < nr_pages; i++) {
2301 struct page *page = pvec.pages[i];
2302
2303 /*
2304 * At this point, the page may be truncated or
2305 * invalidated (changing page->mapping to NULL), or
2306 * even swizzled back from swapper_space to tmpfs file
2307 * mapping. However, page->index will not change
2308 * because we have a reference on the page.
2309 */
2310 if (page->index > end)
2311 goto out;
2312
2313 *done_index = page->index + 1;
2314
2315 /*
2316 * If we can't merge this page, and we have
2317 * accumulated an contiguous region, write it
2318 */
2319 if ((mpd->next_page != page->index) &&
2320 (mpd->next_page != mpd->first_page)) {
2321 mpage_da_map_and_submit(mpd);
2322 goto ret_extent_tail;
2323 }
2324
2325 lock_page(page);
2326
2327 /*
2328 * If the page is no longer dirty, or its
2329 * mapping no longer corresponds to inode we
2330 * are writing (which means it has been
2331 * truncated or invalidated), or the page is
2332 * already under writeback and we are not
2333 * doing a data integrity writeback, skip the page
2334 */
2335 if (!PageDirty(page) ||
2336 (PageWriteback(page) &&
2337 (wbc->sync_mode == WB_SYNC_NONE)) ||
2338 unlikely(page->mapping != mapping)) {
2339 unlock_page(page);
2340 continue;
2341 }
2342
2343 wait_on_page_writeback(page);
2344 BUG_ON(PageWriteback(page));
2345
2346 /*
2347 * If we have inline data and arrive here, it means that
2348 * we will soon create the block for the 1st page, so
2349 * we'd better clear the inline data here.
2350 */
2351 if (ext4_has_inline_data(inode)) {
2352 BUG_ON(ext4_test_inode_state(inode,
2353 EXT4_STATE_MAY_INLINE_DATA));
2354 ext4_destroy_inline_data(handle, inode);
2355 }
2356
2357 if (mpd->next_page != page->index)
2358 mpd->first_page = page->index;
2359 mpd->next_page = page->index + 1;
2360 logical = (sector_t) page->index <<
2361 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2362
2363 /* Add all dirty buffers to mpd */
2364 head = page_buffers(page);
2365 bh = head;
2366 do {
2367 BUG_ON(buffer_locked(bh));
2368 /*
2369 * We need to try to allocate unmapped blocks
2370 * in the same page. Otherwise we won't make
2371 * progress with the page in ext4_writepage
2372 */
2373 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2374 mpage_add_bh_to_extent(mpd, logical,
2375 bh->b_state);
2376 if (mpd->io_done)
2377 goto ret_extent_tail;
2378 } else if (buffer_dirty(bh) &&
2379 buffer_mapped(bh)) {
2380 /*
2381 * mapped dirty buffer. We need to
2382 * update the b_state because we look
2383 * at b_state in mpage_da_map_blocks.
2384 * We don't update b_size because if we
2385 * find an unmapped buffer_head later
2386 * we need to use the b_state flag of
2387 * that buffer_head.
2388 */
2389 if (mpd->b_size == 0)
2390 mpd->b_state =
2391 bh->b_state & BH_FLAGS;
2392 }
2393 logical++;
2394 } while ((bh = bh->b_this_page) != head);
2395
2396 if (nr_to_write > 0) {
2397 nr_to_write--;
2398 if (nr_to_write == 0 &&
2399 wbc->sync_mode == WB_SYNC_NONE)
2400 /*
2401 * We stop writing back only if we are
2402 * not doing integrity sync. In case of
2403 * integrity sync we have to keep going
2404 * because someone may be concurrently
2405 * dirtying pages, and we might have
2406 * synced a lot of newly appeared dirty
2407 * pages, but have not synced all of the
2408 * old dirty pages.
2409 */
2410 goto out;
2411 }
2412 }
2413 pagevec_release(&pvec);
2414 cond_resched();
2415 }
2416 return 0;
2417 ret_extent_tail:
2418 ret = MPAGE_DA_EXTENT_TAIL;
2419 out:
2420 pagevec_release(&pvec);
2421 cond_resched();
2422 return ret;
2423 }
2424
2425
2426 static int ext4_da_writepages(struct address_space *mapping,
2427 struct writeback_control *wbc)
2428 {
2429 pgoff_t index;
2430 int range_whole = 0;
2431 handle_t *handle = NULL;
2432 struct mpage_da_data mpd;
2433 struct inode *inode = mapping->host;
2434 int pages_written = 0;
2435 unsigned int max_pages;
2436 int range_cyclic, cycled = 1, io_done = 0;
2437 int needed_blocks, ret = 0;
2438 long desired_nr_to_write, nr_to_writebump = 0;
2439 loff_t range_start = wbc->range_start;
2440 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2441 pgoff_t done_index = 0;
2442 pgoff_t end;
2443 struct blk_plug plug;
2444
2445 trace_ext4_da_writepages(inode, wbc);
2446
2447 /*
2448 * No pages to write? This is mainly a kludge to avoid starting
2449 * a transaction for special inodes like journal inode on last iput()
2450 * because that could violate lock ordering on umount
2451 */
2452 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2453 return 0;
2454
2455 /*
2456 * If the filesystem has aborted, it is read-only, so return
2457 * right away instead of dumping stack traces later on that
2458 * will obscure the real source of the problem. We test
2459 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2460 * the latter could be true if the filesystem is mounted
2461 * read-only, and in that case, ext4_da_writepages should
2462 * *never* be called, so if that ever happens, we would want
2463 * the stack trace.
2464 */
2465 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2466 return -EROFS;
2467
2468 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2469 range_whole = 1;
2470
2471 range_cyclic = wbc->range_cyclic;
2472 if (wbc->range_cyclic) {
2473 index = mapping->writeback_index;
2474 if (index)
2475 cycled = 0;
2476 wbc->range_start = index << PAGE_CACHE_SHIFT;
2477 wbc->range_end = LLONG_MAX;
2478 wbc->range_cyclic = 0;
2479 end = -1;
2480 } else {
2481 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2482 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2483 }
2484
2485 /*
2486 * This works around two forms of stupidity. The first is in
2487 * the writeback code, which caps the maximum number of pages
2488 * written to be 1024 pages. This is wrong on multiple
2489 * levels; different architectues have a different page size,
2490 * which changes the maximum amount of data which gets
2491 * written. Secondly, 4 megabytes is way too small. XFS
2492 * forces this value to be 16 megabytes by multiplying
2493 * nr_to_write parameter by four, and then relies on its
2494 * allocator to allocate larger extents to make them
2495 * contiguous. Unfortunately this brings us to the second
2496 * stupidity, which is that ext4's mballoc code only allocates
2497 * at most 2048 blocks. So we force contiguous writes up to
2498 * the number of dirty blocks in the inode, or
2499 * sbi->max_writeback_mb_bump whichever is smaller.
2500 */
2501 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2502 if (!range_cyclic && range_whole) {
2503 if (wbc->nr_to_write == LONG_MAX)
2504 desired_nr_to_write = wbc->nr_to_write;
2505 else
2506 desired_nr_to_write = wbc->nr_to_write * 8;
2507 } else
2508 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2509 max_pages);
2510 if (desired_nr_to_write > max_pages)
2511 desired_nr_to_write = max_pages;
2512
2513 if (wbc->nr_to_write < desired_nr_to_write) {
2514 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2515 wbc->nr_to_write = desired_nr_to_write;
2516 }
2517
2518 retry:
2519 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2520 tag_pages_for_writeback(mapping, index, end);
2521
2522 blk_start_plug(&plug);
2523 while (!ret && wbc->nr_to_write > 0) {
2524
2525 /*
2526 * we insert one extent at a time. So we need
2527 * credit needed for single extent allocation.
2528 * journalled mode is currently not supported
2529 * by delalloc
2530 */
2531 BUG_ON(ext4_should_journal_data(inode));
2532 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2533
2534 /* start a new transaction*/
2535 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2536 needed_blocks);
2537 if (IS_ERR(handle)) {
2538 ret = PTR_ERR(handle);
2539 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2540 "%ld pages, ino %lu; err %d", __func__,
2541 wbc->nr_to_write, inode->i_ino, ret);
2542 blk_finish_plug(&plug);
2543 goto out_writepages;
2544 }
2545
2546 /*
2547 * Now call write_cache_pages_da() to find the next
2548 * contiguous region of logical blocks that need
2549 * blocks to be allocated by ext4 and submit them.
2550 */
2551 ret = write_cache_pages_da(handle, mapping,
2552 wbc, &mpd, &done_index);
2553 /*
2554 * If we have a contiguous extent of pages and we
2555 * haven't done the I/O yet, map the blocks and submit
2556 * them for I/O.
2557 */
2558 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2559 mpage_da_map_and_submit(&mpd);
2560 ret = MPAGE_DA_EXTENT_TAIL;
2561 }
2562 trace_ext4_da_write_pages(inode, &mpd);
2563 wbc->nr_to_write -= mpd.pages_written;
2564
2565 ext4_journal_stop(handle);
2566
2567 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2568 /* commit the transaction which would
2569 * free blocks released in the transaction
2570 * and try again
2571 */
2572 jbd2_journal_force_commit_nested(sbi->s_journal);
2573 ret = 0;
2574 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2575 /*
2576 * Got one extent now try with rest of the pages.
2577 * If mpd.retval is set -EIO, journal is aborted.
2578 * So we don't need to write any more.
2579 */
2580 pages_written += mpd.pages_written;
2581 ret = mpd.retval;
2582 io_done = 1;
2583 } else if (wbc->nr_to_write)
2584 /*
2585 * There is no more writeout needed
2586 * or we requested for a noblocking writeout
2587 * and we found the device congested
2588 */
2589 break;
2590 }
2591 blk_finish_plug(&plug);
2592 if (!io_done && !cycled) {
2593 cycled = 1;
2594 index = 0;
2595 wbc->range_start = index << PAGE_CACHE_SHIFT;
2596 wbc->range_end = mapping->writeback_index - 1;
2597 goto retry;
2598 }
2599
2600 /* Update index */
2601 wbc->range_cyclic = range_cyclic;
2602 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2603 /*
2604 * set the writeback_index so that range_cyclic
2605 * mode will write it back later
2606 */
2607 mapping->writeback_index = done_index;
2608
2609 out_writepages:
2610 wbc->nr_to_write -= nr_to_writebump;
2611 wbc->range_start = range_start;
2612 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2613 return ret;
2614 }
2615
2616 static int ext4_nonda_switch(struct super_block *sb)
2617 {
2618 s64 free_clusters, dirty_clusters;
2619 struct ext4_sb_info *sbi = EXT4_SB(sb);
2620
2621 /*
2622 * switch to non delalloc mode if we are running low
2623 * on free block. The free block accounting via percpu
2624 * counters can get slightly wrong with percpu_counter_batch getting
2625 * accumulated on each CPU without updating global counters
2626 * Delalloc need an accurate free block accounting. So switch
2627 * to non delalloc when we are near to error range.
2628 */
2629 free_clusters =
2630 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2631 dirty_clusters =
2632 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2633 /*
2634 * Start pushing delalloc when 1/2 of free blocks are dirty.
2635 */
2636 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2637 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2638
2639 if (2 * free_clusters < 3 * dirty_clusters ||
2640 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2641 /*
2642 * free block count is less than 150% of dirty blocks
2643 * or free blocks is less than watermark
2644 */
2645 return 1;
2646 }
2647 return 0;
2648 }
2649
2650 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2651 loff_t pos, unsigned len, unsigned flags,
2652 struct page **pagep, void **fsdata)
2653 {
2654 int ret, retries = 0;
2655 struct page *page;
2656 pgoff_t index;
2657 struct inode *inode = mapping->host;
2658 handle_t *handle;
2659
2660 index = pos >> PAGE_CACHE_SHIFT;
2661
2662 if (ext4_nonda_switch(inode->i_sb)) {
2663 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2664 return ext4_write_begin(file, mapping, pos,
2665 len, flags, pagep, fsdata);
2666 }
2667 *fsdata = (void *)0;
2668 trace_ext4_da_write_begin(inode, pos, len, flags);
2669
2670 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2671 ret = ext4_da_write_inline_data_begin(mapping, inode,
2672 pos, len, flags,
2673 pagep, fsdata);
2674 if (ret < 0)
2675 return ret;
2676 if (ret == 1)
2677 return 0;
2678 }
2679
2680 /*
2681 * grab_cache_page_write_begin() can take a long time if the
2682 * system is thrashing due to memory pressure, or if the page
2683 * is being written back. So grab it first before we start
2684 * the transaction handle. This also allows us to allocate
2685 * the page (if needed) without using GFP_NOFS.
2686 */
2687 retry_grab:
2688 page = grab_cache_page_write_begin(mapping, index, flags);
2689 if (!page)
2690 return -ENOMEM;
2691 unlock_page(page);
2692
2693 /*
2694 * With delayed allocation, we don't log the i_disksize update
2695 * if there is delayed block allocation. But we still need
2696 * to journalling the i_disksize update if writes to the end
2697 * of file which has an already mapped buffer.
2698 */
2699 retry_journal:
2700 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2701 if (IS_ERR(handle)) {
2702 page_cache_release(page);
2703 return PTR_ERR(handle);
2704 }
2705
2706 lock_page(page);
2707 if (page->mapping != mapping) {
2708 /* The page got truncated from under us */
2709 unlock_page(page);
2710 page_cache_release(page);
2711 ext4_journal_stop(handle);
2712 goto retry_grab;
2713 }
2714 /* In case writeback began while the page was unlocked */
2715 wait_on_page_writeback(page);
2716
2717 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2718 if (ret < 0) {
2719 unlock_page(page);
2720 ext4_journal_stop(handle);
2721 /*
2722 * block_write_begin may have instantiated a few blocks
2723 * outside i_size. Trim these off again. Don't need
2724 * i_size_read because we hold i_mutex.
2725 */
2726 if (pos + len > inode->i_size)
2727 ext4_truncate_failed_write(inode);
2728
2729 if (ret == -ENOSPC &&
2730 ext4_should_retry_alloc(inode->i_sb, &retries))
2731 goto retry_journal;
2732
2733 page_cache_release(page);
2734 return ret;
2735 }
2736
2737 *pagep = page;
2738 return ret;
2739 }
2740
2741 /*
2742 * Check if we should update i_disksize
2743 * when write to the end of file but not require block allocation
2744 */
2745 static int ext4_da_should_update_i_disksize(struct page *page,
2746 unsigned long offset)
2747 {
2748 struct buffer_head *bh;
2749 struct inode *inode = page->mapping->host;
2750 unsigned int idx;
2751 int i;
2752
2753 bh = page_buffers(page);
2754 idx = offset >> inode->i_blkbits;
2755
2756 for (i = 0; i < idx; i++)
2757 bh = bh->b_this_page;
2758
2759 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2760 return 0;
2761 return 1;
2762 }
2763
2764 static int ext4_da_write_end(struct file *file,
2765 struct address_space *mapping,
2766 loff_t pos, unsigned len, unsigned copied,
2767 struct page *page, void *fsdata)
2768 {
2769 struct inode *inode = mapping->host;
2770 int ret = 0, ret2;
2771 handle_t *handle = ext4_journal_current_handle();
2772 loff_t new_i_size;
2773 unsigned long start, end;
2774 int write_mode = (int)(unsigned long)fsdata;
2775
2776 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2777 return ext4_write_end(file, mapping, pos,
2778 len, copied, page, fsdata);
2779
2780 trace_ext4_da_write_end(inode, pos, len, copied);
2781 start = pos & (PAGE_CACHE_SIZE - 1);
2782 end = start + copied - 1;
2783
2784 /*
2785 * generic_write_end() will run mark_inode_dirty() if i_size
2786 * changes. So let's piggyback the i_disksize mark_inode_dirty
2787 * into that.
2788 */
2789 new_i_size = pos + copied;
2790 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2791 if (ext4_has_inline_data(inode) ||
2792 ext4_da_should_update_i_disksize(page, end)) {
2793 down_write(&EXT4_I(inode)->i_data_sem);
2794 if (new_i_size > EXT4_I(inode)->i_disksize)
2795 EXT4_I(inode)->i_disksize = new_i_size;
2796 up_write(&EXT4_I(inode)->i_data_sem);
2797 /* We need to mark inode dirty even if
2798 * new_i_size is less that inode->i_size
2799 * bu greater than i_disksize.(hint delalloc)
2800 */
2801 ext4_mark_inode_dirty(handle, inode);
2802 }
2803 }
2804
2805 if (write_mode != CONVERT_INLINE_DATA &&
2806 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2807 ext4_has_inline_data(inode))
2808 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2809 page);
2810 else
2811 ret2 = generic_write_end(file, mapping, pos, len, copied,
2812 page, fsdata);
2813
2814 copied = ret2;
2815 if (ret2 < 0)
2816 ret = ret2;
2817 ret2 = ext4_journal_stop(handle);
2818 if (!ret)
2819 ret = ret2;
2820
2821 return ret ? ret : copied;
2822 }
2823
2824 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2825 {
2826 /*
2827 * Drop reserved blocks
2828 */
2829 BUG_ON(!PageLocked(page));
2830 if (!page_has_buffers(page))
2831 goto out;
2832
2833 ext4_da_page_release_reservation(page, offset);
2834
2835 out:
2836 ext4_invalidatepage(page, offset);
2837
2838 return;
2839 }
2840
2841 /*
2842 * Force all delayed allocation blocks to be allocated for a given inode.
2843 */
2844 int ext4_alloc_da_blocks(struct inode *inode)
2845 {
2846 trace_ext4_alloc_da_blocks(inode);
2847
2848 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2849 !EXT4_I(inode)->i_reserved_meta_blocks)
2850 return 0;
2851
2852 /*
2853 * We do something simple for now. The filemap_flush() will
2854 * also start triggering a write of the data blocks, which is
2855 * not strictly speaking necessary (and for users of
2856 * laptop_mode, not even desirable). However, to do otherwise
2857 * would require replicating code paths in:
2858 *
2859 * ext4_da_writepages() ->
2860 * write_cache_pages() ---> (via passed in callback function)
2861 * __mpage_da_writepage() -->
2862 * mpage_add_bh_to_extent()
2863 * mpage_da_map_blocks()
2864 *
2865 * The problem is that write_cache_pages(), located in
2866 * mm/page-writeback.c, marks pages clean in preparation for
2867 * doing I/O, which is not desirable if we're not planning on
2868 * doing I/O at all.
2869 *
2870 * We could call write_cache_pages(), and then redirty all of
2871 * the pages by calling redirty_page_for_writepage() but that
2872 * would be ugly in the extreme. So instead we would need to
2873 * replicate parts of the code in the above functions,
2874 * simplifying them because we wouldn't actually intend to
2875 * write out the pages, but rather only collect contiguous
2876 * logical block extents, call the multi-block allocator, and
2877 * then update the buffer heads with the block allocations.
2878 *
2879 * For now, though, we'll cheat by calling filemap_flush(),
2880 * which will map the blocks, and start the I/O, but not
2881 * actually wait for the I/O to complete.
2882 */
2883 return filemap_flush(inode->i_mapping);
2884 }
2885
2886 /*
2887 * bmap() is special. It gets used by applications such as lilo and by
2888 * the swapper to find the on-disk block of a specific piece of data.
2889 *
2890 * Naturally, this is dangerous if the block concerned is still in the
2891 * journal. If somebody makes a swapfile on an ext4 data-journaling
2892 * filesystem and enables swap, then they may get a nasty shock when the
2893 * data getting swapped to that swapfile suddenly gets overwritten by
2894 * the original zero's written out previously to the journal and
2895 * awaiting writeback in the kernel's buffer cache.
2896 *
2897 * So, if we see any bmap calls here on a modified, data-journaled file,
2898 * take extra steps to flush any blocks which might be in the cache.
2899 */
2900 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2901 {
2902 struct inode *inode = mapping->host;
2903 journal_t *journal;
2904 int err;
2905
2906 /*
2907 * We can get here for an inline file via the FIBMAP ioctl
2908 */
2909 if (ext4_has_inline_data(inode))
2910 return 0;
2911
2912 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2913 test_opt(inode->i_sb, DELALLOC)) {
2914 /*
2915 * With delalloc we want to sync the file
2916 * so that we can make sure we allocate
2917 * blocks for file
2918 */
2919 filemap_write_and_wait(mapping);
2920 }
2921
2922 if (EXT4_JOURNAL(inode) &&
2923 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2924 /*
2925 * This is a REALLY heavyweight approach, but the use of
2926 * bmap on dirty files is expected to be extremely rare:
2927 * only if we run lilo or swapon on a freshly made file
2928 * do we expect this to happen.
2929 *
2930 * (bmap requires CAP_SYS_RAWIO so this does not
2931 * represent an unprivileged user DOS attack --- we'd be
2932 * in trouble if mortal users could trigger this path at
2933 * will.)
2934 *
2935 * NB. EXT4_STATE_JDATA is not set on files other than
2936 * regular files. If somebody wants to bmap a directory
2937 * or symlink and gets confused because the buffer
2938 * hasn't yet been flushed to disk, they deserve
2939 * everything they get.
2940 */
2941
2942 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2943 journal = EXT4_JOURNAL(inode);
2944 jbd2_journal_lock_updates(journal);
2945 err = jbd2_journal_flush(journal);
2946 jbd2_journal_unlock_updates(journal);
2947
2948 if (err)
2949 return 0;
2950 }
2951
2952 return generic_block_bmap(mapping, block, ext4_get_block);
2953 }
2954
2955 static int ext4_readpage(struct file *file, struct page *page)
2956 {
2957 int ret = -EAGAIN;
2958 struct inode *inode = page->mapping->host;
2959
2960 trace_ext4_readpage(page);
2961
2962 if (ext4_has_inline_data(inode))
2963 ret = ext4_readpage_inline(inode, page);
2964
2965 if (ret == -EAGAIN)
2966 return mpage_readpage(page, ext4_get_block);
2967
2968 return ret;
2969 }
2970
2971 static int
2972 ext4_readpages(struct file *file, struct address_space *mapping,
2973 struct list_head *pages, unsigned nr_pages)
2974 {
2975 struct inode *inode = mapping->host;
2976
2977 /* If the file has inline data, no need to do readpages. */
2978 if (ext4_has_inline_data(inode))
2979 return 0;
2980
2981 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2982 }
2983
2984 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2985 {
2986 trace_ext4_invalidatepage(page, offset);
2987
2988 /* No journalling happens on data buffers when this function is used */
2989 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2990
2991 block_invalidatepage(page, offset);
2992 }
2993
2994 static int __ext4_journalled_invalidatepage(struct page *page,
2995 unsigned long offset)
2996 {
2997 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2998
2999 trace_ext4_journalled_invalidatepage(page, offset);
3000
3001 /*
3002 * If it's a full truncate we just forget about the pending dirtying
3003 */
3004 if (offset == 0)
3005 ClearPageChecked(page);
3006
3007 return jbd2_journal_invalidatepage(journal, page, offset);
3008 }
3009
3010 /* Wrapper for aops... */
3011 static void ext4_journalled_invalidatepage(struct page *page,
3012 unsigned long offset)
3013 {
3014 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3015 }
3016
3017 static int ext4_releasepage(struct page *page, gfp_t wait)
3018 {
3019 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3020
3021 trace_ext4_releasepage(page);
3022
3023 /* Page has dirty journalled data -> cannot release */
3024 if (PageChecked(page))
3025 return 0;
3026 if (journal)
3027 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3028 else
3029 return try_to_free_buffers(page);
3030 }
3031
3032 /*
3033 * ext4_get_block used when preparing for a DIO write or buffer write.
3034 * We allocate an uinitialized extent if blocks haven't been allocated.
3035 * The extent will be converted to initialized after the IO is complete.
3036 */
3037 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3038 struct buffer_head *bh_result, int create)
3039 {
3040 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3041 inode->i_ino, create);
3042 return _ext4_get_block(inode, iblock, bh_result,
3043 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3044 }
3045
3046 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3047 struct buffer_head *bh_result, int create)
3048 {
3049 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3050 inode->i_ino, create);
3051 return _ext4_get_block(inode, iblock, bh_result,
3052 EXT4_GET_BLOCKS_NO_LOCK);
3053 }
3054
3055 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3056 ssize_t size, void *private, int ret,
3057 bool is_async)
3058 {
3059 struct inode *inode = file_inode(iocb->ki_filp);
3060 ext4_io_end_t *io_end = iocb->private;
3061
3062 /* if not async direct IO or dio with 0 bytes write, just return */
3063 if (!io_end || !size)
3064 goto out;
3065
3066 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3067 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3068 iocb->private, io_end->inode->i_ino, iocb, offset,
3069 size);
3070
3071 iocb->private = NULL;
3072
3073 /* if not aio dio with unwritten extents, just free io and return */
3074 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3075 ext4_free_io_end(io_end);
3076 out:
3077 inode_dio_done(inode);
3078 if (is_async)
3079 aio_complete(iocb, ret, 0);
3080 return;
3081 }
3082
3083 io_end->offset = offset;
3084 io_end->size = size;
3085 if (is_async) {
3086 io_end->iocb = iocb;
3087 io_end->result = ret;
3088 }
3089
3090 ext4_add_complete_io(io_end);
3091 }
3092
3093 /*
3094 * For ext4 extent files, ext4 will do direct-io write to holes,
3095 * preallocated extents, and those write extend the file, no need to
3096 * fall back to buffered IO.
3097 *
3098 * For holes, we fallocate those blocks, mark them as uninitialized
3099 * If those blocks were preallocated, we mark sure they are split, but
3100 * still keep the range to write as uninitialized.
3101 *
3102 * The unwritten extents will be converted to written when DIO is completed.
3103 * For async direct IO, since the IO may still pending when return, we
3104 * set up an end_io call back function, which will do the conversion
3105 * when async direct IO completed.
3106 *
3107 * If the O_DIRECT write will extend the file then add this inode to the
3108 * orphan list. So recovery will truncate it back to the original size
3109 * if the machine crashes during the write.
3110 *
3111 */
3112 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3113 const struct iovec *iov, loff_t offset,
3114 unsigned long nr_segs)
3115 {
3116 struct file *file = iocb->ki_filp;
3117 struct inode *inode = file->f_mapping->host;
3118 ssize_t ret;
3119 size_t count = iov_length(iov, nr_segs);
3120 int overwrite = 0;
3121 get_block_t *get_block_func = NULL;
3122 int dio_flags = 0;
3123 loff_t final_size = offset + count;
3124
3125 /* Use the old path for reads and writes beyond i_size. */
3126 if (rw != WRITE || final_size > inode->i_size)
3127 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3128
3129 BUG_ON(iocb->private == NULL);
3130
3131 /* If we do a overwrite dio, i_mutex locking can be released */
3132 overwrite = *((int *)iocb->private);
3133
3134 if (overwrite) {
3135 atomic_inc(&inode->i_dio_count);
3136 down_read(&EXT4_I(inode)->i_data_sem);
3137 mutex_unlock(&inode->i_mutex);
3138 }
3139
3140 /*
3141 * We could direct write to holes and fallocate.
3142 *
3143 * Allocated blocks to fill the hole are marked as
3144 * uninitialized to prevent parallel buffered read to expose
3145 * the stale data before DIO complete the data IO.
3146 *
3147 * As to previously fallocated extents, ext4 get_block will
3148 * just simply mark the buffer mapped but still keep the
3149 * extents uninitialized.
3150 *
3151 * For non AIO case, we will convert those unwritten extents
3152 * to written after return back from blockdev_direct_IO.
3153 *
3154 * For async DIO, the conversion needs to be deferred when the
3155 * IO is completed. The ext4 end_io callback function will be
3156 * called to take care of the conversion work. Here for async
3157 * case, we allocate an io_end structure to hook to the iocb.
3158 */
3159 iocb->private = NULL;
3160 ext4_inode_aio_set(inode, NULL);
3161 if (!is_sync_kiocb(iocb)) {
3162 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3163 if (!io_end) {
3164 ret = -ENOMEM;
3165 goto retake_lock;
3166 }
3167 io_end->flag |= EXT4_IO_END_DIRECT;
3168 iocb->private = io_end;
3169 /*
3170 * we save the io structure for current async direct
3171 * IO, so that later ext4_map_blocks() could flag the
3172 * io structure whether there is a unwritten extents
3173 * needs to be converted when IO is completed.
3174 */
3175 ext4_inode_aio_set(inode, io_end);
3176 }
3177
3178 if (overwrite) {
3179 get_block_func = ext4_get_block_write_nolock;
3180 } else {
3181 get_block_func = ext4_get_block_write;
3182 dio_flags = DIO_LOCKING;
3183 }
3184 ret = __blockdev_direct_IO(rw, iocb, inode,
3185 inode->i_sb->s_bdev, iov,
3186 offset, nr_segs,
3187 get_block_func,
3188 ext4_end_io_dio,
3189 NULL,
3190 dio_flags);
3191
3192 if (iocb->private)
3193 ext4_inode_aio_set(inode, NULL);
3194 /*
3195 * The io_end structure takes a reference to the inode, that
3196 * structure needs to be destroyed and the reference to the
3197 * inode need to be dropped, when IO is complete, even with 0
3198 * byte write, or failed.
3199 *
3200 * In the successful AIO DIO case, the io_end structure will
3201 * be destroyed and the reference to the inode will be dropped
3202 * after the end_io call back function is called.
3203 *
3204 * In the case there is 0 byte write, or error case, since VFS
3205 * direct IO won't invoke the end_io call back function, we
3206 * need to free the end_io structure here.
3207 */
3208 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3209 ext4_free_io_end(iocb->private);
3210 iocb->private = NULL;
3211 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3212 EXT4_STATE_DIO_UNWRITTEN)) {
3213 int err;
3214 /*
3215 * for non AIO case, since the IO is already
3216 * completed, we could do the conversion right here
3217 */
3218 err = ext4_convert_unwritten_extents(inode,
3219 offset, ret);
3220 if (err < 0)
3221 ret = err;
3222 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3223 }
3224
3225 retake_lock:
3226 /* take i_mutex locking again if we do a ovewrite dio */
3227 if (overwrite) {
3228 inode_dio_done(inode);
3229 up_read(&EXT4_I(inode)->i_data_sem);
3230 mutex_lock(&inode->i_mutex);
3231 }
3232
3233 return ret;
3234 }
3235
3236 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3237 const struct iovec *iov, loff_t offset,
3238 unsigned long nr_segs)
3239 {
3240 struct file *file = iocb->ki_filp;
3241 struct inode *inode = file->f_mapping->host;
3242 ssize_t ret;
3243
3244 /*
3245 * If we are doing data journalling we don't support O_DIRECT
3246 */
3247 if (ext4_should_journal_data(inode))
3248 return 0;
3249
3250 /* Let buffer I/O handle the inline data case. */
3251 if (ext4_has_inline_data(inode))
3252 return 0;
3253
3254 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3255 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3256 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3257 else
3258 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3259 trace_ext4_direct_IO_exit(inode, offset,
3260 iov_length(iov, nr_segs), rw, ret);
3261 return ret;
3262 }
3263
3264 /*
3265 * Pages can be marked dirty completely asynchronously from ext4's journalling
3266 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3267 * much here because ->set_page_dirty is called under VFS locks. The page is
3268 * not necessarily locked.
3269 *
3270 * We cannot just dirty the page and leave attached buffers clean, because the
3271 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3272 * or jbddirty because all the journalling code will explode.
3273 *
3274 * So what we do is to mark the page "pending dirty" and next time writepage
3275 * is called, propagate that into the buffers appropriately.
3276 */
3277 static int ext4_journalled_set_page_dirty(struct page *page)
3278 {
3279 SetPageChecked(page);
3280 return __set_page_dirty_nobuffers(page);
3281 }
3282
3283 static const struct address_space_operations ext4_aops = {
3284 .readpage = ext4_readpage,
3285 .readpages = ext4_readpages,
3286 .writepage = ext4_writepage,
3287 .write_begin = ext4_write_begin,
3288 .write_end = ext4_write_end,
3289 .bmap = ext4_bmap,
3290 .invalidatepage = ext4_invalidatepage,
3291 .releasepage = ext4_releasepage,
3292 .direct_IO = ext4_direct_IO,
3293 .migratepage = buffer_migrate_page,
3294 .is_partially_uptodate = block_is_partially_uptodate,
3295 .error_remove_page = generic_error_remove_page,
3296 };
3297
3298 static const struct address_space_operations ext4_journalled_aops = {
3299 .readpage = ext4_readpage,
3300 .readpages = ext4_readpages,
3301 .writepage = ext4_writepage,
3302 .write_begin = ext4_write_begin,
3303 .write_end = ext4_journalled_write_end,
3304 .set_page_dirty = ext4_journalled_set_page_dirty,
3305 .bmap = ext4_bmap,
3306 .invalidatepage = ext4_journalled_invalidatepage,
3307 .releasepage = ext4_releasepage,
3308 .direct_IO = ext4_direct_IO,
3309 .is_partially_uptodate = block_is_partially_uptodate,
3310 .error_remove_page = generic_error_remove_page,
3311 };
3312
3313 static const struct address_space_operations ext4_da_aops = {
3314 .readpage = ext4_readpage,
3315 .readpages = ext4_readpages,
3316 .writepage = ext4_writepage,
3317 .writepages = ext4_da_writepages,
3318 .write_begin = ext4_da_write_begin,
3319 .write_end = ext4_da_write_end,
3320 .bmap = ext4_bmap,
3321 .invalidatepage = ext4_da_invalidatepage,
3322 .releasepage = ext4_releasepage,
3323 .direct_IO = ext4_direct_IO,
3324 .migratepage = buffer_migrate_page,
3325 .is_partially_uptodate = block_is_partially_uptodate,
3326 .error_remove_page = generic_error_remove_page,
3327 };
3328
3329 void ext4_set_aops(struct inode *inode)
3330 {
3331 switch (ext4_inode_journal_mode(inode)) {
3332 case EXT4_INODE_ORDERED_DATA_MODE:
3333 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3334 break;
3335 case EXT4_INODE_WRITEBACK_DATA_MODE:
3336 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3337 break;
3338 case EXT4_INODE_JOURNAL_DATA_MODE:
3339 inode->i_mapping->a_ops = &ext4_journalled_aops;
3340 return;
3341 default:
3342 BUG();
3343 }
3344 if (test_opt(inode->i_sb, DELALLOC))
3345 inode->i_mapping->a_ops = &ext4_da_aops;
3346 else
3347 inode->i_mapping->a_ops = &ext4_aops;
3348 }
3349
3350
3351 /*
3352 * ext4_discard_partial_page_buffers()
3353 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3354 * This function finds and locks the page containing the offset
3355 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3356 * Calling functions that already have the page locked should call
3357 * ext4_discard_partial_page_buffers_no_lock directly.
3358 */
3359 int ext4_discard_partial_page_buffers(handle_t *handle,
3360 struct address_space *mapping, loff_t from,
3361 loff_t length, int flags)
3362 {
3363 struct inode *inode = mapping->host;
3364 struct page *page;
3365 int err = 0;
3366
3367 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3368 mapping_gfp_mask(mapping) & ~__GFP_FS);
3369 if (!page)
3370 return -ENOMEM;
3371
3372 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3373 from, length, flags);
3374
3375 unlock_page(page);
3376 page_cache_release(page);
3377 return err;
3378 }
3379
3380 /*
3381 * ext4_discard_partial_page_buffers_no_lock()
3382 * Zeros a page range of length 'length' starting from offset 'from'.
3383 * Buffer heads that correspond to the block aligned regions of the
3384 * zeroed range will be unmapped. Unblock aligned regions
3385 * will have the corresponding buffer head mapped if needed so that
3386 * that region of the page can be updated with the partial zero out.
3387 *
3388 * This function assumes that the page has already been locked. The
3389 * The range to be discarded must be contained with in the given page.
3390 * If the specified range exceeds the end of the page it will be shortened
3391 * to the end of the page that corresponds to 'from'. This function is
3392 * appropriate for updating a page and it buffer heads to be unmapped and
3393 * zeroed for blocks that have been either released, or are going to be
3394 * released.
3395 *
3396 * handle: The journal handle
3397 * inode: The files inode
3398 * page: A locked page that contains the offset "from"
3399 * from: The starting byte offset (from the beginning of the file)
3400 * to begin discarding
3401 * len: The length of bytes to discard
3402 * flags: Optional flags that may be used:
3403 *
3404 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3405 * Only zero the regions of the page whose buffer heads
3406 * have already been unmapped. This flag is appropriate
3407 * for updating the contents of a page whose blocks may
3408 * have already been released, and we only want to zero
3409 * out the regions that correspond to those released blocks.
3410 *
3411 * Returns zero on success or negative on failure.
3412 */
3413 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3414 struct inode *inode, struct page *page, loff_t from,
3415 loff_t length, int flags)
3416 {
3417 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3418 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3419 unsigned int blocksize, max, pos;
3420 ext4_lblk_t iblock;
3421 struct buffer_head *bh;
3422 int err = 0;
3423
3424 blocksize = inode->i_sb->s_blocksize;
3425 max = PAGE_CACHE_SIZE - offset;
3426
3427 if (index != page->index)
3428 return -EINVAL;
3429
3430 /*
3431 * correct length if it does not fall between
3432 * 'from' and the end of the page
3433 */
3434 if (length > max || length < 0)
3435 length = max;
3436
3437 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3438
3439 if (!page_has_buffers(page))
3440 create_empty_buffers(page, blocksize, 0);
3441
3442 /* Find the buffer that contains "offset" */
3443 bh = page_buffers(page);
3444 pos = blocksize;
3445 while (offset >= pos) {
3446 bh = bh->b_this_page;
3447 iblock++;
3448 pos += blocksize;
3449 }
3450
3451 pos = offset;
3452 while (pos < offset + length) {
3453 unsigned int end_of_block, range_to_discard;
3454
3455 err = 0;
3456
3457 /* The length of space left to zero and unmap */
3458 range_to_discard = offset + length - pos;
3459
3460 /* The length of space until the end of the block */
3461 end_of_block = blocksize - (pos & (blocksize-1));
3462
3463 /*
3464 * Do not unmap or zero past end of block
3465 * for this buffer head
3466 */
3467 if (range_to_discard > end_of_block)
3468 range_to_discard = end_of_block;
3469
3470
3471 /*
3472 * Skip this buffer head if we are only zeroing unampped
3473 * regions of the page
3474 */
3475 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3476 buffer_mapped(bh))
3477 goto next;
3478
3479 /* If the range is block aligned, unmap */
3480 if (range_to_discard == blocksize) {
3481 clear_buffer_dirty(bh);
3482 bh->b_bdev = NULL;
3483 clear_buffer_mapped(bh);
3484 clear_buffer_req(bh);
3485 clear_buffer_new(bh);
3486 clear_buffer_delay(bh);
3487 clear_buffer_unwritten(bh);
3488 clear_buffer_uptodate(bh);
3489 zero_user(page, pos, range_to_discard);
3490 BUFFER_TRACE(bh, "Buffer discarded");
3491 goto next;
3492 }
3493
3494 /*
3495 * If this block is not completely contained in the range
3496 * to be discarded, then it is not going to be released. Because
3497 * we need to keep this block, we need to make sure this part
3498 * of the page is uptodate before we modify it by writeing
3499 * partial zeros on it.
3500 */
3501 if (!buffer_mapped(bh)) {
3502 /*
3503 * Buffer head must be mapped before we can read
3504 * from the block
3505 */
3506 BUFFER_TRACE(bh, "unmapped");
3507 ext4_get_block(inode, iblock, bh, 0);
3508 /* unmapped? It's a hole - nothing to do */
3509 if (!buffer_mapped(bh)) {
3510 BUFFER_TRACE(bh, "still unmapped");
3511 goto next;
3512 }
3513 }
3514
3515 /* Ok, it's mapped. Make sure it's up-to-date */
3516 if (PageUptodate(page))
3517 set_buffer_uptodate(bh);
3518
3519 if (!buffer_uptodate(bh)) {
3520 err = -EIO;
3521 ll_rw_block(READ, 1, &bh);
3522 wait_on_buffer(bh);
3523 /* Uhhuh. Read error. Complain and punt.*/
3524 if (!buffer_uptodate(bh))
3525 goto next;
3526 }
3527
3528 if (ext4_should_journal_data(inode)) {
3529 BUFFER_TRACE(bh, "get write access");
3530 err = ext4_journal_get_write_access(handle, bh);
3531 if (err)
3532 goto next;
3533 }
3534
3535 zero_user(page, pos, range_to_discard);
3536
3537 err = 0;
3538 if (ext4_should_journal_data(inode)) {
3539 err = ext4_handle_dirty_metadata(handle, inode, bh);
3540 } else
3541 mark_buffer_dirty(bh);
3542
3543 BUFFER_TRACE(bh, "Partial buffer zeroed");
3544 next:
3545 bh = bh->b_this_page;
3546 iblock++;
3547 pos += range_to_discard;
3548 }
3549
3550 return err;
3551 }
3552
3553 int ext4_can_truncate(struct inode *inode)
3554 {
3555 if (S_ISREG(inode->i_mode))
3556 return 1;
3557 if (S_ISDIR(inode->i_mode))
3558 return 1;
3559 if (S_ISLNK(inode->i_mode))
3560 return !ext4_inode_is_fast_symlink(inode);
3561 return 0;
3562 }
3563
3564 /*
3565 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3566 * associated with the given offset and length
3567 *
3568 * @inode: File inode
3569 * @offset: The offset where the hole will begin
3570 * @len: The length of the hole
3571 *
3572 * Returns: 0 on success or negative on failure
3573 */
3574
3575 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3576 {
3577 struct inode *inode = file_inode(file);
3578 struct super_block *sb = inode->i_sb;
3579 ext4_lblk_t first_block, stop_block;
3580 struct address_space *mapping = inode->i_mapping;
3581 loff_t first_page, last_page, page_len;
3582 loff_t first_page_offset, last_page_offset;
3583 handle_t *handle;
3584 unsigned int credits;
3585 int ret = 0;
3586
3587 if (!S_ISREG(inode->i_mode))
3588 return -EOPNOTSUPP;
3589
3590 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3591 /* TODO: Add support for bigalloc file systems */
3592 return -EOPNOTSUPP;
3593 }
3594
3595 trace_ext4_punch_hole(inode, offset, length);
3596
3597 /*
3598 * Write out all dirty pages to avoid race conditions
3599 * Then release them.
3600 */
3601 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3602 ret = filemap_write_and_wait_range(mapping, offset,
3603 offset + length - 1);
3604 if (ret)
3605 return ret;
3606 }
3607
3608 mutex_lock(&inode->i_mutex);
3609 /* It's not possible punch hole on append only file */
3610 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3611 ret = -EPERM;
3612 goto out_mutex;
3613 }
3614 if (IS_SWAPFILE(inode)) {
3615 ret = -ETXTBSY;
3616 goto out_mutex;
3617 }
3618
3619 /* No need to punch hole beyond i_size */
3620 if (offset >= inode->i_size)
3621 goto out_mutex;
3622
3623 /*
3624 * If the hole extends beyond i_size, set the hole
3625 * to end after the page that contains i_size
3626 */
3627 if (offset + length > inode->i_size) {
3628 length = inode->i_size +
3629 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3630 offset;
3631 }
3632
3633 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3634 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3635
3636 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3637 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3638
3639 /* Now release the pages */
3640 if (last_page_offset > first_page_offset) {
3641 truncate_pagecache_range(inode, first_page_offset,
3642 last_page_offset - 1);
3643 }
3644
3645 /* Wait all existing dio workers, newcomers will block on i_mutex */
3646 ext4_inode_block_unlocked_dio(inode);
3647 ret = ext4_flush_unwritten_io(inode);
3648 if (ret)
3649 goto out_dio;
3650 inode_dio_wait(inode);
3651
3652 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3653 credits = ext4_writepage_trans_blocks(inode);
3654 else
3655 credits = ext4_blocks_for_truncate(inode);
3656 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3657 if (IS_ERR(handle)) {
3658 ret = PTR_ERR(handle);
3659 ext4_std_error(sb, ret);
3660 goto out_dio;
3661 }
3662
3663 /*
3664 * Now we need to zero out the non-page-aligned data in the
3665 * pages at the start and tail of the hole, and unmap the
3666 * buffer heads for the block aligned regions of the page that
3667 * were completely zeroed.
3668 */
3669 if (first_page > last_page) {
3670 /*
3671 * If the file space being truncated is contained
3672 * within a page just zero out and unmap the middle of
3673 * that page
3674 */
3675 ret = ext4_discard_partial_page_buffers(handle,
3676 mapping, offset, length, 0);
3677
3678 if (ret)
3679 goto out_stop;
3680 } else {
3681 /*
3682 * zero out and unmap the partial page that contains
3683 * the start of the hole
3684 */
3685 page_len = first_page_offset - offset;
3686 if (page_len > 0) {
3687 ret = ext4_discard_partial_page_buffers(handle, mapping,
3688 offset, page_len, 0);
3689 if (ret)
3690 goto out_stop;
3691 }
3692
3693 /*
3694 * zero out and unmap the partial page that contains
3695 * the end of the hole
3696 */
3697 page_len = offset + length - last_page_offset;
3698 if (page_len > 0) {
3699 ret = ext4_discard_partial_page_buffers(handle, mapping,
3700 last_page_offset, page_len, 0);
3701 if (ret)
3702 goto out_stop;
3703 }
3704 }
3705
3706 /*
3707 * If i_size is contained in the last page, we need to
3708 * unmap and zero the partial page after i_size
3709 */
3710 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3711 inode->i_size % PAGE_CACHE_SIZE != 0) {
3712 page_len = PAGE_CACHE_SIZE -
3713 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3714
3715 if (page_len > 0) {
3716 ret = ext4_discard_partial_page_buffers(handle,
3717 mapping, inode->i_size, page_len, 0);
3718
3719 if (ret)
3720 goto out_stop;
3721 }
3722 }
3723
3724 first_block = (offset + sb->s_blocksize - 1) >>
3725 EXT4_BLOCK_SIZE_BITS(sb);
3726 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3727
3728 /* If there are no blocks to remove, return now */
3729 if (first_block >= stop_block)
3730 goto out_stop;
3731
3732 down_write(&EXT4_I(inode)->i_data_sem);
3733 ext4_discard_preallocations(inode);
3734
3735 ret = ext4_es_remove_extent(inode, first_block,
3736 stop_block - first_block);
3737 if (ret) {
3738 up_write(&EXT4_I(inode)->i_data_sem);
3739 goto out_stop;
3740 }
3741
3742 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3743 ret = ext4_ext_remove_space(inode, first_block,
3744 stop_block - 1);
3745 else
3746 ret = ext4_free_hole_blocks(handle, inode, first_block,
3747 stop_block);
3748
3749 ext4_discard_preallocations(inode);
3750 up_write(&EXT4_I(inode)->i_data_sem);
3751 if (IS_SYNC(inode))
3752 ext4_handle_sync(handle);
3753 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3754 ext4_mark_inode_dirty(handle, inode);
3755 out_stop:
3756 ext4_journal_stop(handle);
3757 out_dio:
3758 ext4_inode_resume_unlocked_dio(inode);
3759 out_mutex:
3760 mutex_unlock(&inode->i_mutex);
3761 return ret;
3762 }
3763
3764 /*
3765 * ext4_truncate()
3766 *
3767 * We block out ext4_get_block() block instantiations across the entire
3768 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3769 * simultaneously on behalf of the same inode.
3770 *
3771 * As we work through the truncate and commit bits of it to the journal there
3772 * is one core, guiding principle: the file's tree must always be consistent on
3773 * disk. We must be able to restart the truncate after a crash.
3774 *
3775 * The file's tree may be transiently inconsistent in memory (although it
3776 * probably isn't), but whenever we close off and commit a journal transaction,
3777 * the contents of (the filesystem + the journal) must be consistent and
3778 * restartable. It's pretty simple, really: bottom up, right to left (although
3779 * left-to-right works OK too).
3780 *
3781 * Note that at recovery time, journal replay occurs *before* the restart of
3782 * truncate against the orphan inode list.
3783 *
3784 * The committed inode has the new, desired i_size (which is the same as
3785 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3786 * that this inode's truncate did not complete and it will again call
3787 * ext4_truncate() to have another go. So there will be instantiated blocks
3788 * to the right of the truncation point in a crashed ext4 filesystem. But
3789 * that's fine - as long as they are linked from the inode, the post-crash
3790 * ext4_truncate() run will find them and release them.
3791 */
3792 void ext4_truncate(struct inode *inode)
3793 {
3794 struct ext4_inode_info *ei = EXT4_I(inode);
3795 unsigned int credits;
3796 handle_t *handle;
3797 struct address_space *mapping = inode->i_mapping;
3798 loff_t page_len;
3799
3800 /*
3801 * There is a possibility that we're either freeing the inode
3802 * or it completely new indode. In those cases we might not
3803 * have i_mutex locked because it's not necessary.
3804 */
3805 if (!(inode->i_state & (I_NEW|I_FREEING)))
3806 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3807 trace_ext4_truncate_enter(inode);
3808
3809 if (!ext4_can_truncate(inode))
3810 return;
3811
3812 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3813
3814 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3815 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3816
3817 if (ext4_has_inline_data(inode)) {
3818 int has_inline = 1;
3819
3820 ext4_inline_data_truncate(inode, &has_inline);
3821 if (has_inline)
3822 return;
3823 }
3824
3825 /*
3826 * finish any pending end_io work so we won't run the risk of
3827 * converting any truncated blocks to initialized later
3828 */
3829 ext4_flush_unwritten_io(inode);
3830
3831 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3832 credits = ext4_writepage_trans_blocks(inode);
3833 else
3834 credits = ext4_blocks_for_truncate(inode);
3835
3836 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3837 if (IS_ERR(handle)) {
3838 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3839 return;
3840 }
3841
3842 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3843 page_len = PAGE_CACHE_SIZE -
3844 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3845
3846 if (ext4_discard_partial_page_buffers(handle,
3847 mapping, inode->i_size, page_len, 0))
3848 goto out_stop;
3849 }
3850
3851 /*
3852 * We add the inode to the orphan list, so that if this
3853 * truncate spans multiple transactions, and we crash, we will
3854 * resume the truncate when the filesystem recovers. It also
3855 * marks the inode dirty, to catch the new size.
3856 *
3857 * Implication: the file must always be in a sane, consistent
3858 * truncatable state while each transaction commits.
3859 */
3860 if (ext4_orphan_add(handle, inode))
3861 goto out_stop;
3862
3863 down_write(&EXT4_I(inode)->i_data_sem);
3864
3865 ext4_discard_preallocations(inode);
3866
3867 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3868 ext4_ext_truncate(handle, inode);
3869 else
3870 ext4_ind_truncate(handle, inode);
3871
3872 up_write(&ei->i_data_sem);
3873
3874 if (IS_SYNC(inode))
3875 ext4_handle_sync(handle);
3876
3877 out_stop:
3878 /*
3879 * If this was a simple ftruncate() and the file will remain alive,
3880 * then we need to clear up the orphan record which we created above.
3881 * However, if this was a real unlink then we were called by
3882 * ext4_delete_inode(), and we allow that function to clean up the
3883 * orphan info for us.
3884 */
3885 if (inode->i_nlink)
3886 ext4_orphan_del(handle, inode);
3887
3888 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3889 ext4_mark_inode_dirty(handle, inode);
3890 ext4_journal_stop(handle);
3891
3892 trace_ext4_truncate_exit(inode);
3893 }
3894
3895 /*
3896 * ext4_get_inode_loc returns with an extra refcount against the inode's
3897 * underlying buffer_head on success. If 'in_mem' is true, we have all
3898 * data in memory that is needed to recreate the on-disk version of this
3899 * inode.
3900 */
3901 static int __ext4_get_inode_loc(struct inode *inode,
3902 struct ext4_iloc *iloc, int in_mem)
3903 {
3904 struct ext4_group_desc *gdp;
3905 struct buffer_head *bh;
3906 struct super_block *sb = inode->i_sb;
3907 ext4_fsblk_t block;
3908 int inodes_per_block, inode_offset;
3909
3910 iloc->bh = NULL;
3911 if (!ext4_valid_inum(sb, inode->i_ino))
3912 return -EIO;
3913
3914 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3915 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3916 if (!gdp)
3917 return -EIO;
3918
3919 /*
3920 * Figure out the offset within the block group inode table
3921 */
3922 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3923 inode_offset = ((inode->i_ino - 1) %
3924 EXT4_INODES_PER_GROUP(sb));
3925 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3926 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3927
3928 bh = sb_getblk(sb, block);
3929 if (unlikely(!bh))
3930 return -ENOMEM;
3931 if (!buffer_uptodate(bh)) {
3932 lock_buffer(bh);
3933
3934 /*
3935 * If the buffer has the write error flag, we have failed
3936 * to write out another inode in the same block. In this
3937 * case, we don't have to read the block because we may
3938 * read the old inode data successfully.
3939 */
3940 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3941 set_buffer_uptodate(bh);
3942
3943 if (buffer_uptodate(bh)) {
3944 /* someone brought it uptodate while we waited */
3945 unlock_buffer(bh);
3946 goto has_buffer;
3947 }
3948
3949 /*
3950 * If we have all information of the inode in memory and this
3951 * is the only valid inode in the block, we need not read the
3952 * block.
3953 */
3954 if (in_mem) {
3955 struct buffer_head *bitmap_bh;
3956 int i, start;
3957
3958 start = inode_offset & ~(inodes_per_block - 1);
3959
3960 /* Is the inode bitmap in cache? */
3961 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3962 if (unlikely(!bitmap_bh))
3963 goto make_io;
3964
3965 /*
3966 * If the inode bitmap isn't in cache then the
3967 * optimisation may end up performing two reads instead
3968 * of one, so skip it.
3969 */
3970 if (!buffer_uptodate(bitmap_bh)) {
3971 brelse(bitmap_bh);
3972 goto make_io;
3973 }
3974 for (i = start; i < start + inodes_per_block; i++) {
3975 if (i == inode_offset)
3976 continue;
3977 if (ext4_test_bit(i, bitmap_bh->b_data))
3978 break;
3979 }
3980 brelse(bitmap_bh);
3981 if (i == start + inodes_per_block) {
3982 /* all other inodes are free, so skip I/O */
3983 memset(bh->b_data, 0, bh->b_size);
3984 set_buffer_uptodate(bh);
3985 unlock_buffer(bh);
3986 goto has_buffer;
3987 }
3988 }
3989
3990 make_io:
3991 /*
3992 * If we need to do any I/O, try to pre-readahead extra
3993 * blocks from the inode table.
3994 */
3995 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3996 ext4_fsblk_t b, end, table;
3997 unsigned num;
3998 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3999
4000 table = ext4_inode_table(sb, gdp);
4001 /* s_inode_readahead_blks is always a power of 2 */
4002 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4003 if (table > b)
4004 b = table;
4005 end = b + ra_blks;
4006 num = EXT4_INODES_PER_GROUP(sb);
4007 if (ext4_has_group_desc_csum(sb))
4008 num -= ext4_itable_unused_count(sb, gdp);
4009 table += num / inodes_per_block;
4010 if (end > table)
4011 end = table;
4012 while (b <= end)
4013 sb_breadahead(sb, b++);
4014 }
4015
4016 /*
4017 * There are other valid inodes in the buffer, this inode
4018 * has in-inode xattrs, or we don't have this inode in memory.
4019 * Read the block from disk.
4020 */
4021 trace_ext4_load_inode(inode);
4022 get_bh(bh);
4023 bh->b_end_io = end_buffer_read_sync;
4024 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4025 wait_on_buffer(bh);
4026 if (!buffer_uptodate(bh)) {
4027 EXT4_ERROR_INODE_BLOCK(inode, block,
4028 "unable to read itable block");
4029 brelse(bh);
4030 return -EIO;
4031 }
4032 }
4033 has_buffer:
4034 iloc->bh = bh;
4035 return 0;
4036 }
4037
4038 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4039 {
4040 /* We have all inode data except xattrs in memory here. */
4041 return __ext4_get_inode_loc(inode, iloc,
4042 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4043 }
4044
4045 void ext4_set_inode_flags(struct inode *inode)
4046 {
4047 unsigned int flags = EXT4_I(inode)->i_flags;
4048 unsigned int new_fl = 0;
4049
4050 if (flags & EXT4_SYNC_FL)
4051 new_fl |= S_SYNC;
4052 if (flags & EXT4_APPEND_FL)
4053 new_fl |= S_APPEND;
4054 if (flags & EXT4_IMMUTABLE_FL)
4055 new_fl |= S_IMMUTABLE;
4056 if (flags & EXT4_NOATIME_FL)
4057 new_fl |= S_NOATIME;
4058 if (flags & EXT4_DIRSYNC_FL)
4059 new_fl |= S_DIRSYNC;
4060 set_mask_bits(&inode->i_flags,
4061 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4062 }
4063
4064 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4065 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4066 {
4067 unsigned int vfs_fl;
4068 unsigned long old_fl, new_fl;
4069
4070 do {
4071 vfs_fl = ei->vfs_inode.i_flags;
4072 old_fl = ei->i_flags;
4073 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4074 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4075 EXT4_DIRSYNC_FL);
4076 if (vfs_fl & S_SYNC)
4077 new_fl |= EXT4_SYNC_FL;
4078 if (vfs_fl & S_APPEND)
4079 new_fl |= EXT4_APPEND_FL;
4080 if (vfs_fl & S_IMMUTABLE)
4081 new_fl |= EXT4_IMMUTABLE_FL;
4082 if (vfs_fl & S_NOATIME)
4083 new_fl |= EXT4_NOATIME_FL;
4084 if (vfs_fl & S_DIRSYNC)
4085 new_fl |= EXT4_DIRSYNC_FL;
4086 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4087 }
4088
4089 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4090 struct ext4_inode_info *ei)
4091 {
4092 blkcnt_t i_blocks ;
4093 struct inode *inode = &(ei->vfs_inode);
4094 struct super_block *sb = inode->i_sb;
4095
4096 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4097 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4098 /* we are using combined 48 bit field */
4099 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4100 le32_to_cpu(raw_inode->i_blocks_lo);
4101 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4102 /* i_blocks represent file system block size */
4103 return i_blocks << (inode->i_blkbits - 9);
4104 } else {
4105 return i_blocks;
4106 }
4107 } else {
4108 return le32_to_cpu(raw_inode->i_blocks_lo);
4109 }
4110 }
4111
4112 static inline void ext4_iget_extra_inode(struct inode *inode,
4113 struct ext4_inode *raw_inode,
4114 struct ext4_inode_info *ei)
4115 {
4116 __le32 *magic = (void *)raw_inode +
4117 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4118 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4119 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4120 ext4_find_inline_data_nolock(inode);
4121 } else
4122 EXT4_I(inode)->i_inline_off = 0;
4123 }
4124
4125 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4126 {
4127 struct ext4_iloc iloc;
4128 struct ext4_inode *raw_inode;
4129 struct ext4_inode_info *ei;
4130 struct inode *inode;
4131 journal_t *journal = EXT4_SB(sb)->s_journal;
4132 long ret;
4133 int block;
4134 uid_t i_uid;
4135 gid_t i_gid;
4136
4137 inode = iget_locked(sb, ino);
4138 if (!inode)
4139 return ERR_PTR(-ENOMEM);
4140 if (!(inode->i_state & I_NEW))
4141 return inode;
4142
4143 ei = EXT4_I(inode);
4144 iloc.bh = NULL;
4145
4146 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4147 if (ret < 0)
4148 goto bad_inode;
4149 raw_inode = ext4_raw_inode(&iloc);
4150
4151 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4152 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4153 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4154 EXT4_INODE_SIZE(inode->i_sb)) {
4155 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4156 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4157 EXT4_INODE_SIZE(inode->i_sb));
4158 ret = -EIO;
4159 goto bad_inode;
4160 }
4161 } else
4162 ei->i_extra_isize = 0;
4163
4164 /* Precompute checksum seed for inode metadata */
4165 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4166 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4167 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4168 __u32 csum;
4169 __le32 inum = cpu_to_le32(inode->i_ino);
4170 __le32 gen = raw_inode->i_generation;
4171 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4172 sizeof(inum));
4173 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4174 sizeof(gen));
4175 }
4176
4177 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4178 EXT4_ERROR_INODE(inode, "checksum invalid");
4179 ret = -EIO;
4180 goto bad_inode;
4181 }
4182
4183 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4184 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4185 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4186 if (!(test_opt(inode->i_sb, NO_UID32))) {
4187 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4188 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4189 }
4190 i_uid_write(inode, i_uid);
4191 i_gid_write(inode, i_gid);
4192 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4193
4194 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4195 ei->i_inline_off = 0;
4196 ei->i_dir_start_lookup = 0;
4197 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4198 /* We now have enough fields to check if the inode was active or not.
4199 * This is needed because nfsd might try to access dead inodes
4200 * the test is that same one that e2fsck uses
4201 * NeilBrown 1999oct15
4202 */
4203 if (inode->i_nlink == 0) {
4204 if ((inode->i_mode == 0 ||
4205 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4206 ino != EXT4_BOOT_LOADER_INO) {
4207 /* this inode is deleted */
4208 ret = -ESTALE;
4209 goto bad_inode;
4210 }
4211 /* The only unlinked inodes we let through here have
4212 * valid i_mode and are being read by the orphan
4213 * recovery code: that's fine, we're about to complete
4214 * the process of deleting those.
4215 * OR it is the EXT4_BOOT_LOADER_INO which is
4216 * not initialized on a new filesystem. */
4217 }
4218 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4219 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4220 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4221 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4222 ei->i_file_acl |=
4223 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4224 inode->i_size = ext4_isize(raw_inode);
4225 ei->i_disksize = inode->i_size;
4226 #ifdef CONFIG_QUOTA
4227 ei->i_reserved_quota = 0;
4228 #endif
4229 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4230 ei->i_block_group = iloc.block_group;
4231 ei->i_last_alloc_group = ~0;
4232 /*
4233 * NOTE! The in-memory inode i_data array is in little-endian order
4234 * even on big-endian machines: we do NOT byteswap the block numbers!
4235 */
4236 for (block = 0; block < EXT4_N_BLOCKS; block++)
4237 ei->i_data[block] = raw_inode->i_block[block];
4238 INIT_LIST_HEAD(&ei->i_orphan);
4239
4240 /*
4241 * Set transaction id's of transactions that have to be committed
4242 * to finish f[data]sync. We set them to currently running transaction
4243 * as we cannot be sure that the inode or some of its metadata isn't
4244 * part of the transaction - the inode could have been reclaimed and
4245 * now it is reread from disk.
4246 */
4247 if (journal) {
4248 transaction_t *transaction;
4249 tid_t tid;
4250
4251 read_lock(&journal->j_state_lock);
4252 if (journal->j_running_transaction)
4253 transaction = journal->j_running_transaction;
4254 else
4255 transaction = journal->j_committing_transaction;
4256 if (transaction)
4257 tid = transaction->t_tid;
4258 else
4259 tid = journal->j_commit_sequence;
4260 read_unlock(&journal->j_state_lock);
4261 ei->i_sync_tid = tid;
4262 ei->i_datasync_tid = tid;
4263 }
4264
4265 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4266 if (ei->i_extra_isize == 0) {
4267 /* The extra space is currently unused. Use it. */
4268 ei->i_extra_isize = sizeof(struct ext4_inode) -
4269 EXT4_GOOD_OLD_INODE_SIZE;
4270 } else {
4271 ext4_iget_extra_inode(inode, raw_inode, ei);
4272 }
4273 }
4274
4275 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4276 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4277 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4278 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4279
4280 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4281 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4282 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4283 inode->i_version |=
4284 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4285 }
4286
4287 ret = 0;
4288 if (ei->i_file_acl &&
4289 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4290 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4291 ei->i_file_acl);
4292 ret = -EIO;
4293 goto bad_inode;
4294 } else if (!ext4_has_inline_data(inode)) {
4295 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4296 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4297 (S_ISLNK(inode->i_mode) &&
4298 !ext4_inode_is_fast_symlink(inode))))
4299 /* Validate extent which is part of inode */
4300 ret = ext4_ext_check_inode(inode);
4301 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4302 (S_ISLNK(inode->i_mode) &&
4303 !ext4_inode_is_fast_symlink(inode))) {
4304 /* Validate block references which are part of inode */
4305 ret = ext4_ind_check_inode(inode);
4306 }
4307 }
4308 if (ret)
4309 goto bad_inode;
4310
4311 if (S_ISREG(inode->i_mode)) {
4312 inode->i_op = &ext4_file_inode_operations;
4313 inode->i_fop = &ext4_file_operations;
4314 ext4_set_aops(inode);
4315 } else if (S_ISDIR(inode->i_mode)) {
4316 inode->i_op = &ext4_dir_inode_operations;
4317 inode->i_fop = &ext4_dir_operations;
4318 } else if (S_ISLNK(inode->i_mode)) {
4319 if (ext4_inode_is_fast_symlink(inode)) {
4320 inode->i_op = &ext4_fast_symlink_inode_operations;
4321 nd_terminate_link(ei->i_data, inode->i_size,
4322 sizeof(ei->i_data) - 1);
4323 } else {
4324 inode->i_op = &ext4_symlink_inode_operations;
4325 ext4_set_aops(inode);
4326 }
4327 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4328 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4329 inode->i_op = &ext4_special_inode_operations;
4330 if (raw_inode->i_block[0])
4331 init_special_inode(inode, inode->i_mode,
4332 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4333 else
4334 init_special_inode(inode, inode->i_mode,
4335 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4336 } else if (ino == EXT4_BOOT_LOADER_INO) {
4337 make_bad_inode(inode);
4338 } else {
4339 ret = -EIO;
4340 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4341 goto bad_inode;
4342 }
4343 brelse(iloc.bh);
4344 ext4_set_inode_flags(inode);
4345 unlock_new_inode(inode);
4346 return inode;
4347
4348 bad_inode:
4349 brelse(iloc.bh);
4350 iget_failed(inode);
4351 return ERR_PTR(ret);
4352 }
4353
4354 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4355 {
4356 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4357 return ERR_PTR(-EIO);
4358 return ext4_iget(sb, ino);
4359 }
4360
4361 static int ext4_inode_blocks_set(handle_t *handle,
4362 struct ext4_inode *raw_inode,
4363 struct ext4_inode_info *ei)
4364 {
4365 struct inode *inode = &(ei->vfs_inode);
4366 u64 i_blocks = inode->i_blocks;
4367 struct super_block *sb = inode->i_sb;
4368
4369 if (i_blocks <= ~0U) {
4370 /*
4371 * i_blocks can be represented in a 32 bit variable
4372 * as multiple of 512 bytes
4373 */
4374 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4375 raw_inode->i_blocks_high = 0;
4376 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4377 return 0;
4378 }
4379 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4380 return -EFBIG;
4381
4382 if (i_blocks <= 0xffffffffffffULL) {
4383 /*
4384 * i_blocks can be represented in a 48 bit variable
4385 * as multiple of 512 bytes
4386 */
4387 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4388 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4389 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4390 } else {
4391 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4392 /* i_block is stored in file system block size */
4393 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4394 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4395 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4396 }
4397 return 0;
4398 }
4399
4400 /*
4401 * Post the struct inode info into an on-disk inode location in the
4402 * buffer-cache. This gobbles the caller's reference to the
4403 * buffer_head in the inode location struct.
4404 *
4405 * The caller must have write access to iloc->bh.
4406 */
4407 static int ext4_do_update_inode(handle_t *handle,
4408 struct inode *inode,
4409 struct ext4_iloc *iloc)
4410 {
4411 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4412 struct ext4_inode_info *ei = EXT4_I(inode);
4413 struct buffer_head *bh = iloc->bh;
4414 int err = 0, rc, block;
4415 int need_datasync = 0;
4416 uid_t i_uid;
4417 gid_t i_gid;
4418
4419 /* For fields not not tracking in the in-memory inode,
4420 * initialise them to zero for new inodes. */
4421 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4422 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4423
4424 ext4_get_inode_flags(ei);
4425 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4426 i_uid = i_uid_read(inode);
4427 i_gid = i_gid_read(inode);
4428 if (!(test_opt(inode->i_sb, NO_UID32))) {
4429 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4430 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4431 /*
4432 * Fix up interoperability with old kernels. Otherwise, old inodes get
4433 * re-used with the upper 16 bits of the uid/gid intact
4434 */
4435 if (!ei->i_dtime) {
4436 raw_inode->i_uid_high =
4437 cpu_to_le16(high_16_bits(i_uid));
4438 raw_inode->i_gid_high =
4439 cpu_to_le16(high_16_bits(i_gid));
4440 } else {
4441 raw_inode->i_uid_high = 0;
4442 raw_inode->i_gid_high = 0;
4443 }
4444 } else {
4445 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4446 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4447 raw_inode->i_uid_high = 0;
4448 raw_inode->i_gid_high = 0;
4449 }
4450 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4451
4452 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4453 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4454 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4455 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4456
4457 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4458 goto out_brelse;
4459 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4460 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4461 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4462 cpu_to_le32(EXT4_OS_HURD))
4463 raw_inode->i_file_acl_high =
4464 cpu_to_le16(ei->i_file_acl >> 32);
4465 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4466 if (ei->i_disksize != ext4_isize(raw_inode)) {
4467 ext4_isize_set(raw_inode, ei->i_disksize);
4468 need_datasync = 1;
4469 }
4470 if (ei->i_disksize > 0x7fffffffULL) {
4471 struct super_block *sb = inode->i_sb;
4472 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4473 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4474 EXT4_SB(sb)->s_es->s_rev_level ==
4475 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4476 /* If this is the first large file
4477 * created, add a flag to the superblock.
4478 */
4479 err = ext4_journal_get_write_access(handle,
4480 EXT4_SB(sb)->s_sbh);
4481 if (err)
4482 goto out_brelse;
4483 ext4_update_dynamic_rev(sb);
4484 EXT4_SET_RO_COMPAT_FEATURE(sb,
4485 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4486 ext4_handle_sync(handle);
4487 err = ext4_handle_dirty_super(handle, sb);
4488 }
4489 }
4490 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4491 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4492 if (old_valid_dev(inode->i_rdev)) {
4493 raw_inode->i_block[0] =
4494 cpu_to_le32(old_encode_dev(inode->i_rdev));
4495 raw_inode->i_block[1] = 0;
4496 } else {
4497 raw_inode->i_block[0] = 0;
4498 raw_inode->i_block[1] =
4499 cpu_to_le32(new_encode_dev(inode->i_rdev));
4500 raw_inode->i_block[2] = 0;
4501 }
4502 } else if (!ext4_has_inline_data(inode)) {
4503 for (block = 0; block < EXT4_N_BLOCKS; block++)
4504 raw_inode->i_block[block] = ei->i_data[block];
4505 }
4506
4507 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4508 if (ei->i_extra_isize) {
4509 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4510 raw_inode->i_version_hi =
4511 cpu_to_le32(inode->i_version >> 32);
4512 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4513 }
4514
4515 ext4_inode_csum_set(inode, raw_inode, ei);
4516
4517 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4518 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4519 if (!err)
4520 err = rc;
4521 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4522
4523 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4524 out_brelse:
4525 brelse(bh);
4526 ext4_std_error(inode->i_sb, err);
4527 return err;
4528 }
4529
4530 /*
4531 * ext4_write_inode()
4532 *
4533 * We are called from a few places:
4534 *
4535 * - Within generic_file_write() for O_SYNC files.
4536 * Here, there will be no transaction running. We wait for any running
4537 * transaction to commit.
4538 *
4539 * - Within sys_sync(), kupdate and such.
4540 * We wait on commit, if tol to.
4541 *
4542 * - Within prune_icache() (PF_MEMALLOC == true)
4543 * Here we simply return. We can't afford to block kswapd on the
4544 * journal commit.
4545 *
4546 * In all cases it is actually safe for us to return without doing anything,
4547 * because the inode has been copied into a raw inode buffer in
4548 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4549 * knfsd.
4550 *
4551 * Note that we are absolutely dependent upon all inode dirtiers doing the
4552 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4553 * which we are interested.
4554 *
4555 * It would be a bug for them to not do this. The code:
4556 *
4557 * mark_inode_dirty(inode)
4558 * stuff();
4559 * inode->i_size = expr;
4560 *
4561 * is in error because a kswapd-driven write_inode() could occur while
4562 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4563 * will no longer be on the superblock's dirty inode list.
4564 */
4565 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4566 {
4567 int err;
4568
4569 if (current->flags & PF_MEMALLOC)
4570 return 0;
4571
4572 if (EXT4_SB(inode->i_sb)->s_journal) {
4573 if (ext4_journal_current_handle()) {
4574 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4575 dump_stack();
4576 return -EIO;
4577 }
4578
4579 if (wbc->sync_mode != WB_SYNC_ALL)
4580 return 0;
4581
4582 err = ext4_force_commit(inode->i_sb);
4583 } else {
4584 struct ext4_iloc iloc;
4585
4586 err = __ext4_get_inode_loc(inode, &iloc, 0);
4587 if (err)
4588 return err;
4589 if (wbc->sync_mode == WB_SYNC_ALL)
4590 sync_dirty_buffer(iloc.bh);
4591 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4592 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4593 "IO error syncing inode");
4594 err = -EIO;
4595 }
4596 brelse(iloc.bh);
4597 }
4598 return err;
4599 }
4600
4601 /*
4602 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4603 * buffers that are attached to a page stradding i_size and are undergoing
4604 * commit. In that case we have to wait for commit to finish and try again.
4605 */
4606 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4607 {
4608 struct page *page;
4609 unsigned offset;
4610 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4611 tid_t commit_tid = 0;
4612 int ret;
4613
4614 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4615 /*
4616 * All buffers in the last page remain valid? Then there's nothing to
4617 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4618 * blocksize case
4619 */
4620 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4621 return;
4622 while (1) {
4623 page = find_lock_page(inode->i_mapping,
4624 inode->i_size >> PAGE_CACHE_SHIFT);
4625 if (!page)
4626 return;
4627 ret = __ext4_journalled_invalidatepage(page, offset);
4628 unlock_page(page);
4629 page_cache_release(page);
4630 if (ret != -EBUSY)
4631 return;
4632 commit_tid = 0;
4633 read_lock(&journal->j_state_lock);
4634 if (journal->j_committing_transaction)
4635 commit_tid = journal->j_committing_transaction->t_tid;
4636 read_unlock(&journal->j_state_lock);
4637 if (commit_tid)
4638 jbd2_log_wait_commit(journal, commit_tid);
4639 }
4640 }
4641
4642 /*
4643 * ext4_setattr()
4644 *
4645 * Called from notify_change.
4646 *
4647 * We want to trap VFS attempts to truncate the file as soon as
4648 * possible. In particular, we want to make sure that when the VFS
4649 * shrinks i_size, we put the inode on the orphan list and modify
4650 * i_disksize immediately, so that during the subsequent flushing of
4651 * dirty pages and freeing of disk blocks, we can guarantee that any
4652 * commit will leave the blocks being flushed in an unused state on
4653 * disk. (On recovery, the inode will get truncated and the blocks will
4654 * be freed, so we have a strong guarantee that no future commit will
4655 * leave these blocks visible to the user.)
4656 *
4657 * Another thing we have to assure is that if we are in ordered mode
4658 * and inode is still attached to the committing transaction, we must
4659 * we start writeout of all the dirty pages which are being truncated.
4660 * This way we are sure that all the data written in the previous
4661 * transaction are already on disk (truncate waits for pages under
4662 * writeback).
4663 *
4664 * Called with inode->i_mutex down.
4665 */
4666 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4667 {
4668 struct inode *inode = dentry->d_inode;
4669 int error, rc = 0;
4670 int orphan = 0;
4671 const unsigned int ia_valid = attr->ia_valid;
4672
4673 error = inode_change_ok(inode, attr);
4674 if (error)
4675 return error;
4676
4677 if (is_quota_modification(inode, attr))
4678 dquot_initialize(inode);
4679 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4680 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4681 handle_t *handle;
4682
4683 /* (user+group)*(old+new) structure, inode write (sb,
4684 * inode block, ? - but truncate inode update has it) */
4685 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4686 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4687 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4688 if (IS_ERR(handle)) {
4689 error = PTR_ERR(handle);
4690 goto err_out;
4691 }
4692 error = dquot_transfer(inode, attr);
4693 if (error) {
4694 ext4_journal_stop(handle);
4695 return error;
4696 }
4697 /* Update corresponding info in inode so that everything is in
4698 * one transaction */
4699 if (attr->ia_valid & ATTR_UID)
4700 inode->i_uid = attr->ia_uid;
4701 if (attr->ia_valid & ATTR_GID)
4702 inode->i_gid = attr->ia_gid;
4703 error = ext4_mark_inode_dirty(handle, inode);
4704 ext4_journal_stop(handle);
4705 }
4706
4707 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4708 handle_t *handle;
4709 loff_t oldsize = inode->i_size;
4710
4711 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4712 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713
4714 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4715 return -EFBIG;
4716 }
4717
4718 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4719 inode_inc_iversion(inode);
4720
4721 if (S_ISREG(inode->i_mode) &&
4722 (attr->ia_size < inode->i_size)) {
4723 if (ext4_should_order_data(inode)) {
4724 error = ext4_begin_ordered_truncate(inode,
4725 attr->ia_size);
4726 if (error)
4727 goto err_out;
4728 }
4729 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4730 if (IS_ERR(handle)) {
4731 error = PTR_ERR(handle);
4732 goto err_out;
4733 }
4734 if (ext4_handle_valid(handle)) {
4735 error = ext4_orphan_add(handle, inode);
4736 orphan = 1;
4737 }
4738 EXT4_I(inode)->i_disksize = attr->ia_size;
4739 rc = ext4_mark_inode_dirty(handle, inode);
4740 if (!error)
4741 error = rc;
4742 ext4_journal_stop(handle);
4743 if (error) {
4744 ext4_orphan_del(NULL, inode);
4745 goto err_out;
4746 }
4747 }
4748
4749 i_size_write(inode, attr->ia_size);
4750 /*
4751 * Blocks are going to be removed from the inode. Wait
4752 * for dio in flight. Temporarily disable
4753 * dioread_nolock to prevent livelock.
4754 */
4755 if (orphan) {
4756 if (!ext4_should_journal_data(inode)) {
4757 ext4_inode_block_unlocked_dio(inode);
4758 inode_dio_wait(inode);
4759 ext4_inode_resume_unlocked_dio(inode);
4760 } else
4761 ext4_wait_for_tail_page_commit(inode);
4762 }
4763 /*
4764 * Truncate pagecache after we've waited for commit
4765 * in data=journal mode to make pages freeable.
4766 */
4767 truncate_pagecache(inode, oldsize, inode->i_size);
4768 }
4769 /*
4770 * We want to call ext4_truncate() even if attr->ia_size ==
4771 * inode->i_size for cases like truncation of fallocated space
4772 */
4773 if (attr->ia_valid & ATTR_SIZE)
4774 ext4_truncate(inode);
4775
4776 if (!rc) {
4777 setattr_copy(inode, attr);
4778 mark_inode_dirty(inode);
4779 }
4780
4781 /*
4782 * If the call to ext4_truncate failed to get a transaction handle at
4783 * all, we need to clean up the in-core orphan list manually.
4784 */
4785 if (orphan && inode->i_nlink)
4786 ext4_orphan_del(NULL, inode);
4787
4788 if (!rc && (ia_valid & ATTR_MODE))
4789 rc = ext4_acl_chmod(inode);
4790
4791 err_out:
4792 ext4_std_error(inode->i_sb, error);
4793 if (!error)
4794 error = rc;
4795 return error;
4796 }
4797
4798 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4799 struct kstat *stat)
4800 {
4801 struct inode *inode;
4802 unsigned long long delalloc_blocks;
4803
4804 inode = dentry->d_inode;
4805 generic_fillattr(inode, stat);
4806
4807 /*
4808 * We can't update i_blocks if the block allocation is delayed
4809 * otherwise in the case of system crash before the real block
4810 * allocation is done, we will have i_blocks inconsistent with
4811 * on-disk file blocks.
4812 * We always keep i_blocks updated together with real
4813 * allocation. But to not confuse with user, stat
4814 * will return the blocks that include the delayed allocation
4815 * blocks for this file.
4816 */
4817 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4818 EXT4_I(inode)->i_reserved_data_blocks);
4819
4820 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4821 return 0;
4822 }
4823
4824 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4825 {
4826 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4827 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4828 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4829 }
4830
4831 /*
4832 * Account for index blocks, block groups bitmaps and block group
4833 * descriptor blocks if modify datablocks and index blocks
4834 * worse case, the indexs blocks spread over different block groups
4835 *
4836 * If datablocks are discontiguous, they are possible to spread over
4837 * different block groups too. If they are contiguous, with flexbg,
4838 * they could still across block group boundary.
4839 *
4840 * Also account for superblock, inode, quota and xattr blocks
4841 */
4842 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4843 {
4844 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4845 int gdpblocks;
4846 int idxblocks;
4847 int ret = 0;
4848
4849 /*
4850 * How many index blocks need to touch to modify nrblocks?
4851 * The "Chunk" flag indicating whether the nrblocks is
4852 * physically contiguous on disk
4853 *
4854 * For Direct IO and fallocate, they calls get_block to allocate
4855 * one single extent at a time, so they could set the "Chunk" flag
4856 */
4857 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4858
4859 ret = idxblocks;
4860
4861 /*
4862 * Now let's see how many group bitmaps and group descriptors need
4863 * to account
4864 */
4865 groups = idxblocks;
4866 if (chunk)
4867 groups += 1;
4868 else
4869 groups += nrblocks;
4870
4871 gdpblocks = groups;
4872 if (groups > ngroups)
4873 groups = ngroups;
4874 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4875 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4876
4877 /* bitmaps and block group descriptor blocks */
4878 ret += groups + gdpblocks;
4879
4880 /* Blocks for super block, inode, quota and xattr blocks */
4881 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4882
4883 return ret;
4884 }
4885
4886 /*
4887 * Calculate the total number of credits to reserve to fit
4888 * the modification of a single pages into a single transaction,
4889 * which may include multiple chunks of block allocations.
4890 *
4891 * This could be called via ext4_write_begin()
4892 *
4893 * We need to consider the worse case, when
4894 * one new block per extent.
4895 */
4896 int ext4_writepage_trans_blocks(struct inode *inode)
4897 {
4898 int bpp = ext4_journal_blocks_per_page(inode);
4899 int ret;
4900
4901 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4902
4903 /* Account for data blocks for journalled mode */
4904 if (ext4_should_journal_data(inode))
4905 ret += bpp;
4906 return ret;
4907 }
4908
4909 /*
4910 * Calculate the journal credits for a chunk of data modification.
4911 *
4912 * This is called from DIO, fallocate or whoever calling
4913 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4914 *
4915 * journal buffers for data blocks are not included here, as DIO
4916 * and fallocate do no need to journal data buffers.
4917 */
4918 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4919 {
4920 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4921 }
4922
4923 /*
4924 * The caller must have previously called ext4_reserve_inode_write().
4925 * Give this, we know that the caller already has write access to iloc->bh.
4926 */
4927 int ext4_mark_iloc_dirty(handle_t *handle,
4928 struct inode *inode, struct ext4_iloc *iloc)
4929 {
4930 int err = 0;
4931
4932 if (IS_I_VERSION(inode))
4933 inode_inc_iversion(inode);
4934
4935 /* the do_update_inode consumes one bh->b_count */
4936 get_bh(iloc->bh);
4937
4938 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4939 err = ext4_do_update_inode(handle, inode, iloc);
4940 put_bh(iloc->bh);
4941 return err;
4942 }
4943
4944 /*
4945 * On success, We end up with an outstanding reference count against
4946 * iloc->bh. This _must_ be cleaned up later.
4947 */
4948
4949 int
4950 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4951 struct ext4_iloc *iloc)
4952 {
4953 int err;
4954
4955 err = ext4_get_inode_loc(inode, iloc);
4956 if (!err) {
4957 BUFFER_TRACE(iloc->bh, "get_write_access");
4958 err = ext4_journal_get_write_access(handle, iloc->bh);
4959 if (err) {
4960 brelse(iloc->bh);
4961 iloc->bh = NULL;
4962 }
4963 }
4964 ext4_std_error(inode->i_sb, err);
4965 return err;
4966 }
4967
4968 /*
4969 * Expand an inode by new_extra_isize bytes.
4970 * Returns 0 on success or negative error number on failure.
4971 */
4972 static int ext4_expand_extra_isize(struct inode *inode,
4973 unsigned int new_extra_isize,
4974 struct ext4_iloc iloc,
4975 handle_t *handle)
4976 {
4977 struct ext4_inode *raw_inode;
4978 struct ext4_xattr_ibody_header *header;
4979
4980 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4981 return 0;
4982
4983 raw_inode = ext4_raw_inode(&iloc);
4984
4985 header = IHDR(inode, raw_inode);
4986
4987 /* No extended attributes present */
4988 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4989 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4990 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4991 new_extra_isize);
4992 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4993 return 0;
4994 }
4995
4996 /* try to expand with EAs present */
4997 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4998 raw_inode, handle);
4999 }
5000
5001 /*
5002 * What we do here is to mark the in-core inode as clean with respect to inode
5003 * dirtiness (it may still be data-dirty).
5004 * This means that the in-core inode may be reaped by prune_icache
5005 * without having to perform any I/O. This is a very good thing,
5006 * because *any* task may call prune_icache - even ones which
5007 * have a transaction open against a different journal.
5008 *
5009 * Is this cheating? Not really. Sure, we haven't written the
5010 * inode out, but prune_icache isn't a user-visible syncing function.
5011 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5012 * we start and wait on commits.
5013 */
5014 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5015 {
5016 struct ext4_iloc iloc;
5017 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5018 static unsigned int mnt_count;
5019 int err, ret;
5020
5021 might_sleep();
5022 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5023 err = ext4_reserve_inode_write(handle, inode, &iloc);
5024 if (ext4_handle_valid(handle) &&
5025 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5026 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5027 /*
5028 * We need extra buffer credits since we may write into EA block
5029 * with this same handle. If journal_extend fails, then it will
5030 * only result in a minor loss of functionality for that inode.
5031 * If this is felt to be critical, then e2fsck should be run to
5032 * force a large enough s_min_extra_isize.
5033 */
5034 if ((jbd2_journal_extend(handle,
5035 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5036 ret = ext4_expand_extra_isize(inode,
5037 sbi->s_want_extra_isize,
5038 iloc, handle);
5039 if (ret) {
5040 ext4_set_inode_state(inode,
5041 EXT4_STATE_NO_EXPAND);
5042 if (mnt_count !=
5043 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5044 ext4_warning(inode->i_sb,
5045 "Unable to expand inode %lu. Delete"
5046 " some EAs or run e2fsck.",
5047 inode->i_ino);
5048 mnt_count =
5049 le16_to_cpu(sbi->s_es->s_mnt_count);
5050 }
5051 }
5052 }
5053 }
5054 if (!err)
5055 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5056 return err;
5057 }
5058
5059 /*
5060 * ext4_dirty_inode() is called from __mark_inode_dirty()
5061 *
5062 * We're really interested in the case where a file is being extended.
5063 * i_size has been changed by generic_commit_write() and we thus need
5064 * to include the updated inode in the current transaction.
5065 *
5066 * Also, dquot_alloc_block() will always dirty the inode when blocks
5067 * are allocated to the file.
5068 *
5069 * If the inode is marked synchronous, we don't honour that here - doing
5070 * so would cause a commit on atime updates, which we don't bother doing.
5071 * We handle synchronous inodes at the highest possible level.
5072 */
5073 void ext4_dirty_inode(struct inode *inode, int flags)
5074 {
5075 handle_t *handle;
5076
5077 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5078 if (IS_ERR(handle))
5079 goto out;
5080
5081 ext4_mark_inode_dirty(handle, inode);
5082
5083 ext4_journal_stop(handle);
5084 out:
5085 return;
5086 }
5087
5088 #if 0
5089 /*
5090 * Bind an inode's backing buffer_head into this transaction, to prevent
5091 * it from being flushed to disk early. Unlike
5092 * ext4_reserve_inode_write, this leaves behind no bh reference and
5093 * returns no iloc structure, so the caller needs to repeat the iloc
5094 * lookup to mark the inode dirty later.
5095 */
5096 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5097 {
5098 struct ext4_iloc iloc;
5099
5100 int err = 0;
5101 if (handle) {
5102 err = ext4_get_inode_loc(inode, &iloc);
5103 if (!err) {
5104 BUFFER_TRACE(iloc.bh, "get_write_access");
5105 err = jbd2_journal_get_write_access(handle, iloc.bh);
5106 if (!err)
5107 err = ext4_handle_dirty_metadata(handle,
5108 NULL,
5109 iloc.bh);
5110 brelse(iloc.bh);
5111 }
5112 }
5113 ext4_std_error(inode->i_sb, err);
5114 return err;
5115 }
5116 #endif
5117
5118 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5119 {
5120 journal_t *journal;
5121 handle_t *handle;
5122 int err;
5123
5124 /*
5125 * We have to be very careful here: changing a data block's
5126 * journaling status dynamically is dangerous. If we write a
5127 * data block to the journal, change the status and then delete
5128 * that block, we risk forgetting to revoke the old log record
5129 * from the journal and so a subsequent replay can corrupt data.
5130 * So, first we make sure that the journal is empty and that
5131 * nobody is changing anything.
5132 */
5133
5134 journal = EXT4_JOURNAL(inode);
5135 if (!journal)
5136 return 0;
5137 if (is_journal_aborted(journal))
5138 return -EROFS;
5139 /* We have to allocate physical blocks for delalloc blocks
5140 * before flushing journal. otherwise delalloc blocks can not
5141 * be allocated any more. even more truncate on delalloc blocks
5142 * could trigger BUG by flushing delalloc blocks in journal.
5143 * There is no delalloc block in non-journal data mode.
5144 */
5145 if (val && test_opt(inode->i_sb, DELALLOC)) {
5146 err = ext4_alloc_da_blocks(inode);
5147 if (err < 0)
5148 return err;
5149 }
5150
5151 /* Wait for all existing dio workers */
5152 ext4_inode_block_unlocked_dio(inode);
5153 inode_dio_wait(inode);
5154
5155 jbd2_journal_lock_updates(journal);
5156
5157 /*
5158 * OK, there are no updates running now, and all cached data is
5159 * synced to disk. We are now in a completely consistent state
5160 * which doesn't have anything in the journal, and we know that
5161 * no filesystem updates are running, so it is safe to modify
5162 * the inode's in-core data-journaling state flag now.
5163 */
5164
5165 if (val)
5166 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5167 else {
5168 jbd2_journal_flush(journal);
5169 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5170 }
5171 ext4_set_aops(inode);
5172
5173 jbd2_journal_unlock_updates(journal);
5174 ext4_inode_resume_unlocked_dio(inode);
5175
5176 /* Finally we can mark the inode as dirty. */
5177
5178 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5179 if (IS_ERR(handle))
5180 return PTR_ERR(handle);
5181
5182 err = ext4_mark_inode_dirty(handle, inode);
5183 ext4_handle_sync(handle);
5184 ext4_journal_stop(handle);
5185 ext4_std_error(inode->i_sb, err);
5186
5187 return err;
5188 }
5189
5190 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5191 {
5192 return !buffer_mapped(bh);
5193 }
5194
5195 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5196 {
5197 struct page *page = vmf->page;
5198 loff_t size;
5199 unsigned long len;
5200 int ret;
5201 struct file *file = vma->vm_file;
5202 struct inode *inode = file_inode(file);
5203 struct address_space *mapping = inode->i_mapping;
5204 handle_t *handle;
5205 get_block_t *get_block;
5206 int retries = 0;
5207
5208 sb_start_pagefault(inode->i_sb);
5209 file_update_time(vma->vm_file);
5210 /* Delalloc case is easy... */
5211 if (test_opt(inode->i_sb, DELALLOC) &&
5212 !ext4_should_journal_data(inode) &&
5213 !ext4_nonda_switch(inode->i_sb)) {
5214 do {
5215 ret = __block_page_mkwrite(vma, vmf,
5216 ext4_da_get_block_prep);
5217 } while (ret == -ENOSPC &&
5218 ext4_should_retry_alloc(inode->i_sb, &retries));
5219 goto out_ret;
5220 }
5221
5222 lock_page(page);
5223 size = i_size_read(inode);
5224 /* Page got truncated from under us? */
5225 if (page->mapping != mapping || page_offset(page) > size) {
5226 unlock_page(page);
5227 ret = VM_FAULT_NOPAGE;
5228 goto out;
5229 }
5230
5231 if (page->index == size >> PAGE_CACHE_SHIFT)
5232 len = size & ~PAGE_CACHE_MASK;
5233 else
5234 len = PAGE_CACHE_SIZE;
5235 /*
5236 * Return if we have all the buffers mapped. This avoids the need to do
5237 * journal_start/journal_stop which can block and take a long time
5238 */
5239 if (page_has_buffers(page)) {
5240 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5241 0, len, NULL,
5242 ext4_bh_unmapped)) {
5243 /* Wait so that we don't change page under IO */
5244 wait_for_stable_page(page);
5245 ret = VM_FAULT_LOCKED;
5246 goto out;
5247 }
5248 }
5249 unlock_page(page);
5250 /* OK, we need to fill the hole... */
5251 if (ext4_should_dioread_nolock(inode))
5252 get_block = ext4_get_block_write;
5253 else
5254 get_block = ext4_get_block;
5255 retry_alloc:
5256 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5257 ext4_writepage_trans_blocks(inode));
5258 if (IS_ERR(handle)) {
5259 ret = VM_FAULT_SIGBUS;
5260 goto out;
5261 }
5262 ret = __block_page_mkwrite(vma, vmf, get_block);
5263 if (!ret && ext4_should_journal_data(inode)) {
5264 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5265 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5266 unlock_page(page);
5267 ret = VM_FAULT_SIGBUS;
5268 ext4_journal_stop(handle);
5269 goto out;
5270 }
5271 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5272 }
5273 ext4_journal_stop(handle);
5274 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5275 goto retry_alloc;
5276 out_ret:
5277 ret = block_page_mkwrite_return(ret);
5278 out:
5279 sb_end_pagefault(inode->i_sb);
5280 return ret;
5281 }