Merge tag 'v3.10.80' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49 #include <linux/blkdev.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u16 csum_lo;
58 __u16 csum_hi = 0;
59 __u32 csum;
60
61 csum_lo = le16_to_cpu(raw->i_checksum_lo);
62 raw->i_checksum_lo = 0;
63 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
64 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
65 csum_hi = le16_to_cpu(raw->i_checksum_hi);
66 raw->i_checksum_hi = 0;
67 }
68
69 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
70 EXT4_INODE_SIZE(inode->i_sb));
71
72 raw->i_checksum_lo = cpu_to_le16(csum_lo);
73 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
74 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
75 raw->i_checksum_hi = cpu_to_le16(csum_hi);
76
77 return csum;
78 }
79
80 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
81 struct ext4_inode_info *ei)
82 {
83 __u32 provided, calculated;
84
85 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
86 cpu_to_le32(EXT4_OS_LINUX) ||
87 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
88 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 return 1;
90
91 provided = le16_to_cpu(raw->i_checksum_lo);
92 calculated = ext4_inode_csum(inode, raw, ei);
93 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
94 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
95 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
96 else
97 calculated &= 0xFFFF;
98
99 return provided == calculated;
100 }
101
102 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
103 struct ext4_inode_info *ei)
104 {
105 __u32 csum;
106
107 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
108 cpu_to_le32(EXT4_OS_LINUX) ||
109 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
110 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
111 return;
112
113 csum = ext4_inode_csum(inode, raw, ei);
114 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 }
119
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 loff_t new_size)
122 {
123 trace_ext4_begin_ordered_truncate(inode, new_size);
124 /*
125 * If jinode is zero, then we never opened the file for
126 * writing, so there's no need to call
127 * jbd2_journal_begin_ordered_truncate() since there's no
128 * outstanding writes we need to flush.
129 */
130 if (!EXT4_I(inode)->jinode)
131 return 0;
132 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133 EXT4_I(inode)->jinode,
134 new_size);
135 }
136
137 static void ext4_invalidatepage(struct page *page, unsigned long offset);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
141 struct inode *inode, struct page *page, loff_t from,
142 loff_t length, int flags);
143
144 /*
145 * Test whether an inode is a fast symlink.
146 */
147 static int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 (inode->i_sb->s_blocksize >> 9) : 0;
151
152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188
189 trace_ext4_evict_inode(inode);
190
191 if (inode->i_nlink) {
192 /*
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
206 *
207 * Note that directories do not have this problem because they
208 * don't use page cache.
209 */
210 if (ext4_should_journal_data(inode) &&
211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 inode->i_ino != EXT4_JOURNAL_INO) {
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216 jbd2_complete_transaction(journal, commit_tid);
217 filemap_write_and_wait(&inode->i_data);
218 }
219 truncate_inode_pages(&inode->i_data, 0);
220 ext4_ioend_shutdown(inode);
221 goto no_delete;
222 }
223
224 if (!is_bad_inode(inode))
225 dquot_initialize(inode);
226
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages(&inode->i_data, 0);
230 ext4_ioend_shutdown(inode);
231
232 if (is_bad_inode(inode))
233 goto no_delete;
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Calculate the number of metadata blocks need to reserve
326 * to allocate a block located at @lblock
327 */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333 return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
342 {
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 struct ext4_inode_info *ei = EXT4_I(inode);
345
346 spin_lock(&ei->i_block_reservation_lock);
347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350 "with only %d reserved data blocks",
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
356
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode->i_ino, ei->i_allocated_meta_blocks,
362 ei->i_reserved_meta_blocks, used,
363 ei->i_reserved_data_blocks);
364 WARN_ON(1);
365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366 }
367
368 /* Update per-inode reservations */
369 ei->i_reserved_data_blocks -= used;
370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372 used + ei->i_allocated_meta_blocks);
373 ei->i_allocated_meta_blocks = 0;
374
375 if (ei->i_reserved_data_blocks == 0) {
376 /*
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
379 * allocation blocks.
380 */
381 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382 ei->i_reserved_meta_blocks);
383 ei->i_reserved_meta_blocks = 0;
384 ei->i_da_metadata_calc_len = 0;
385 }
386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388 /* Update quota subsystem for data blocks */
389 if (quota_claim)
390 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391 else {
392 /*
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
395 * not re-claim the quota for fallocated blocks.
396 */
397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398 }
399
400 /*
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
404 */
405 if ((ei->i_reserved_data_blocks == 0) &&
406 (atomic_read(&inode->i_writecount) == 0))
407 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411 unsigned int line,
412 struct ext4_map_blocks *map)
413 {
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_len);
420 return -EIO;
421 }
422 return 0;
423 }
424
425 #define check_block_validity(inode, map) \
426 __check_block_validity((inode), __func__, __LINE__, (map))
427
428 /*
429 * Return the number of contiguous dirty pages in a given inode
430 * starting at page frame idx.
431 */
432 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
433 unsigned int max_pages)
434 {
435 struct address_space *mapping = inode->i_mapping;
436 pgoff_t index;
437 struct pagevec pvec;
438 pgoff_t num = 0;
439 int i, nr_pages, done = 0;
440
441 if (max_pages == 0)
442 return 0;
443 pagevec_init(&pvec, 0);
444 while (!done) {
445 index = idx;
446 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
447 PAGECACHE_TAG_DIRTY,
448 (pgoff_t)PAGEVEC_SIZE);
449 if (nr_pages == 0)
450 break;
451 for (i = 0; i < nr_pages; i++) {
452 struct page *page = pvec.pages[i];
453 struct buffer_head *bh, *head;
454
455 lock_page(page);
456 if (unlikely(page->mapping != mapping) ||
457 !PageDirty(page) ||
458 PageWriteback(page) ||
459 page->index != idx) {
460 done = 1;
461 unlock_page(page);
462 break;
463 }
464 if (page_has_buffers(page)) {
465 bh = head = page_buffers(page);
466 do {
467 if (!buffer_delay(bh) &&
468 !buffer_unwritten(bh))
469 done = 1;
470 bh = bh->b_this_page;
471 } while (!done && (bh != head));
472 }
473 unlock_page(page);
474 if (done)
475 break;
476 idx++;
477 num++;
478 if (num >= max_pages) {
479 done = 1;
480 break;
481 }
482 }
483 pagevec_release(&pvec);
484 }
485 return num;
486 }
487
488 #ifdef ES_AGGRESSIVE_TEST
489 static void ext4_map_blocks_es_recheck(handle_t *handle,
490 struct inode *inode,
491 struct ext4_map_blocks *es_map,
492 struct ext4_map_blocks *map,
493 int flags)
494 {
495 int retval;
496
497 map->m_flags = 0;
498 /*
499 * There is a race window that the result is not the same.
500 * e.g. xfstests #223 when dioread_nolock enables. The reason
501 * is that we lookup a block mapping in extent status tree with
502 * out taking i_data_sem. So at the time the unwritten extent
503 * could be converted.
504 */
505 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
506 down_read((&EXT4_I(inode)->i_data_sem));
507 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
508 retval = ext4_ext_map_blocks(handle, inode, map, flags &
509 EXT4_GET_BLOCKS_KEEP_SIZE);
510 } else {
511 retval = ext4_ind_map_blocks(handle, inode, map, flags &
512 EXT4_GET_BLOCKS_KEEP_SIZE);
513 }
514 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515 up_read((&EXT4_I(inode)->i_data_sem));
516 /*
517 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
518 * because it shouldn't be marked in es_map->m_flags.
519 */
520 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
521
522 /*
523 * We don't check m_len because extent will be collpased in status
524 * tree. So the m_len might not equal.
525 */
526 if (es_map->m_lblk != map->m_lblk ||
527 es_map->m_flags != map->m_flags ||
528 es_map->m_pblk != map->m_pblk) {
529 printk("ES cache assertation failed for inode: %lu "
530 "es_cached ex [%d/%d/%llu/%x] != "
531 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
532 inode->i_ino, es_map->m_lblk, es_map->m_len,
533 es_map->m_pblk, es_map->m_flags, map->m_lblk,
534 map->m_len, map->m_pblk, map->m_flags,
535 retval, flags);
536 }
537 }
538 #endif /* ES_AGGRESSIVE_TEST */
539
540 /*
541 * The ext4_map_blocks() function tries to look up the requested blocks,
542 * and returns if the blocks are already mapped.
543 *
544 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
545 * and store the allocated blocks in the result buffer head and mark it
546 * mapped.
547 *
548 * If file type is extents based, it will call ext4_ext_map_blocks(),
549 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
550 * based files
551 *
552 * On success, it returns the number of blocks being mapped or allocate.
553 * if create==0 and the blocks are pre-allocated and uninitialized block,
554 * the result buffer head is unmapped. If the create ==1, it will make sure
555 * the buffer head is mapped.
556 *
557 * It returns 0 if plain look up failed (blocks have not been allocated), in
558 * that case, buffer head is unmapped
559 *
560 * It returns the error in case of allocation failure.
561 */
562 int ext4_map_blocks(handle_t *handle, struct inode *inode,
563 struct ext4_map_blocks *map, int flags)
564 {
565 struct extent_status es;
566 int retval;
567 #ifdef ES_AGGRESSIVE_TEST
568 struct ext4_map_blocks orig_map;
569
570 memcpy(&orig_map, map, sizeof(*map));
571 #endif
572
573 map->m_flags = 0;
574 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
575 "logical block %lu\n", inode->i_ino, flags, map->m_len,
576 (unsigned long) map->m_lblk);
577
578 /* Lookup extent status tree firstly */
579 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
580 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
581 map->m_pblk = ext4_es_pblock(&es) +
582 map->m_lblk - es.es_lblk;
583 map->m_flags |= ext4_es_is_written(&es) ?
584 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
585 retval = es.es_len - (map->m_lblk - es.es_lblk);
586 if (retval > map->m_len)
587 retval = map->m_len;
588 map->m_len = retval;
589 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
590 retval = 0;
591 } else {
592 BUG_ON(1);
593 }
594 #ifdef ES_AGGRESSIVE_TEST
595 ext4_map_blocks_es_recheck(handle, inode, map,
596 &orig_map, flags);
597 #endif
598 goto found;
599 }
600
601 /*
602 * Try to see if we can get the block without requesting a new
603 * file system block.
604 */
605 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
606 down_read((&EXT4_I(inode)->i_data_sem));
607 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
608 retval = ext4_ext_map_blocks(handle, inode, map, flags &
609 EXT4_GET_BLOCKS_KEEP_SIZE);
610 } else {
611 retval = ext4_ind_map_blocks(handle, inode, map, flags &
612 EXT4_GET_BLOCKS_KEEP_SIZE);
613 }
614 if (retval > 0) {
615 int ret;
616 unsigned long long status;
617
618 #ifdef ES_AGGRESSIVE_TEST
619 if (retval != map->m_len) {
620 printk("ES len assertation failed for inode: %lu "
621 "retval %d != map->m_len %d "
622 "in %s (lookup)\n", inode->i_ino, retval,
623 map->m_len, __func__);
624 }
625 #endif
626
627 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
628 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
629 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
630 !(status & EXTENT_STATUS_WRITTEN) &&
631 ext4_find_delalloc_range(inode, map->m_lblk,
632 map->m_lblk + map->m_len - 1))
633 status |= EXTENT_STATUS_DELAYED;
634 ret = ext4_es_insert_extent(inode, map->m_lblk,
635 map->m_len, map->m_pblk, status);
636 if (ret < 0)
637 retval = ret;
638 }
639 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
640 up_read((&EXT4_I(inode)->i_data_sem));
641
642 found:
643 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
644 int ret = check_block_validity(inode, map);
645 if (ret != 0)
646 return ret;
647 }
648
649 /* If it is only a block(s) look up */
650 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
651 return retval;
652
653 /*
654 * Returns if the blocks have already allocated
655 *
656 * Note that if blocks have been preallocated
657 * ext4_ext_get_block() returns the create = 0
658 * with buffer head unmapped.
659 */
660 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
661 return retval;
662
663 /*
664 * Here we clear m_flags because after allocating an new extent,
665 * it will be set again.
666 */
667 map->m_flags &= ~EXT4_MAP_FLAGS;
668
669 /*
670 * New blocks allocate and/or writing to uninitialized extent
671 * will possibly result in updating i_data, so we take
672 * the write lock of i_data_sem, and call get_blocks()
673 * with create == 1 flag.
674 */
675 down_write((&EXT4_I(inode)->i_data_sem));
676
677 /*
678 * if the caller is from delayed allocation writeout path
679 * we have already reserved fs blocks for allocation
680 * let the underlying get_block() function know to
681 * avoid double accounting
682 */
683 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
684 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
685 /*
686 * We need to check for EXT4 here because migrate
687 * could have changed the inode type in between
688 */
689 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
690 retval = ext4_ext_map_blocks(handle, inode, map, flags);
691 } else {
692 retval = ext4_ind_map_blocks(handle, inode, map, flags);
693
694 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
695 /*
696 * We allocated new blocks which will result in
697 * i_data's format changing. Force the migrate
698 * to fail by clearing migrate flags
699 */
700 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
701 }
702
703 /*
704 * Update reserved blocks/metadata blocks after successful
705 * block allocation which had been deferred till now. We don't
706 * support fallocate for non extent files. So we can update
707 * reserve space here.
708 */
709 if ((retval > 0) &&
710 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
711 ext4_da_update_reserve_space(inode, retval, 1);
712 }
713 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
714 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
715
716 if (retval > 0) {
717 int ret;
718 unsigned long long status;
719
720 #ifdef ES_AGGRESSIVE_TEST
721 if (retval != map->m_len) {
722 printk("ES len assertation failed for inode: %lu "
723 "retval %d != map->m_len %d "
724 "in %s (allocation)\n", inode->i_ino, retval,
725 map->m_len, __func__);
726 }
727 #endif
728
729 /*
730 * If the extent has been zeroed out, we don't need to update
731 * extent status tree.
732 */
733 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
734 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
735 if (ext4_es_is_written(&es))
736 goto has_zeroout;
737 }
738 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
739 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
740 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
741 !(status & EXTENT_STATUS_WRITTEN) &&
742 ext4_find_delalloc_range(inode, map->m_lblk,
743 map->m_lblk + map->m_len - 1))
744 status |= EXTENT_STATUS_DELAYED;
745 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
746 map->m_pblk, status);
747 if (ret < 0)
748 retval = ret;
749 }
750
751 has_zeroout:
752 up_write((&EXT4_I(inode)->i_data_sem));
753 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
754 int ret = check_block_validity(inode, map);
755 if (ret != 0)
756 return ret;
757 }
758 return retval;
759 }
760
761 /* Maximum number of blocks we map for direct IO at once. */
762 #define DIO_MAX_BLOCKS 4096
763
764 static int _ext4_get_block(struct inode *inode, sector_t iblock,
765 struct buffer_head *bh, int flags)
766 {
767 handle_t *handle = ext4_journal_current_handle();
768 struct ext4_map_blocks map;
769 int ret = 0, started = 0;
770 int dio_credits;
771
772 if (ext4_has_inline_data(inode))
773 return -ERANGE;
774
775 map.m_lblk = iblock;
776 map.m_len = bh->b_size >> inode->i_blkbits;
777
778 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
779 /* Direct IO write... */
780 if (map.m_len > DIO_MAX_BLOCKS)
781 map.m_len = DIO_MAX_BLOCKS;
782 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
783 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
784 dio_credits);
785 if (IS_ERR(handle)) {
786 ret = PTR_ERR(handle);
787 return ret;
788 }
789 started = 1;
790 }
791
792 ret = ext4_map_blocks(handle, inode, &map, flags);
793 if (ret > 0) {
794 map_bh(bh, inode->i_sb, map.m_pblk);
795 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
796 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797 ret = 0;
798 }
799 if (started)
800 ext4_journal_stop(handle);
801 return ret;
802 }
803
804 int ext4_get_block(struct inode *inode, sector_t iblock,
805 struct buffer_head *bh, int create)
806 {
807 return _ext4_get_block(inode, iblock, bh,
808 create ? EXT4_GET_BLOCKS_CREATE : 0);
809 }
810
811 /*
812 * `handle' can be NULL if create is zero
813 */
814 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
815 ext4_lblk_t block, int create, int *errp)
816 {
817 struct ext4_map_blocks map;
818 struct buffer_head *bh;
819 int fatal = 0, err;
820
821 J_ASSERT(handle != NULL || create == 0);
822
823 map.m_lblk = block;
824 map.m_len = 1;
825 err = ext4_map_blocks(handle, inode, &map,
826 create ? EXT4_GET_BLOCKS_CREATE : 0);
827
828 /* ensure we send some value back into *errp */
829 *errp = 0;
830
831 if (create && err == 0)
832 err = -ENOSPC; /* should never happen */
833 if (err < 0)
834 *errp = err;
835 if (err <= 0)
836 return NULL;
837
838 bh = sb_getblk(inode->i_sb, map.m_pblk);
839 if (unlikely(!bh)) {
840 *errp = -ENOMEM;
841 return NULL;
842 }
843 if (map.m_flags & EXT4_MAP_NEW) {
844 J_ASSERT(create != 0);
845 J_ASSERT(handle != NULL);
846
847 /*
848 * Now that we do not always journal data, we should
849 * keep in mind whether this should always journal the
850 * new buffer as metadata. For now, regular file
851 * writes use ext4_get_block instead, so it's not a
852 * problem.
853 */
854 lock_buffer(bh);
855 BUFFER_TRACE(bh, "call get_create_access");
856 fatal = ext4_journal_get_create_access(handle, bh);
857 if (!fatal && !buffer_uptodate(bh)) {
858 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
859 set_buffer_uptodate(bh);
860 }
861 unlock_buffer(bh);
862 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
863 err = ext4_handle_dirty_metadata(handle, inode, bh);
864 if (!fatal)
865 fatal = err;
866 } else {
867 BUFFER_TRACE(bh, "not a new buffer");
868 }
869 if (fatal) {
870 *errp = fatal;
871 brelse(bh);
872 bh = NULL;
873 }
874 return bh;
875 }
876
877 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
878 ext4_lblk_t block, int create, int *err)
879 {
880 struct buffer_head *bh;
881
882 bh = ext4_getblk(handle, inode, block, create, err);
883 if (!bh)
884 return bh;
885 if (buffer_uptodate(bh))
886 return bh;
887 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
888 wait_on_buffer(bh);
889 if (buffer_uptodate(bh))
890 return bh;
891 put_bh(bh);
892 *err = -EIO;
893 return NULL;
894 }
895
896 int ext4_walk_page_buffers(handle_t *handle,
897 struct buffer_head *head,
898 unsigned from,
899 unsigned to,
900 int *partial,
901 int (*fn)(handle_t *handle,
902 struct buffer_head *bh))
903 {
904 struct buffer_head *bh;
905 unsigned block_start, block_end;
906 unsigned blocksize = head->b_size;
907 int err, ret = 0;
908 struct buffer_head *next;
909
910 for (bh = head, block_start = 0;
911 ret == 0 && (bh != head || !block_start);
912 block_start = block_end, bh = next) {
913 next = bh->b_this_page;
914 block_end = block_start + blocksize;
915 if (block_end <= from || block_start >= to) {
916 if (partial && !buffer_uptodate(bh))
917 *partial = 1;
918 continue;
919 }
920 err = (*fn)(handle, bh);
921 if (!ret)
922 ret = err;
923 }
924 return ret;
925 }
926
927 /*
928 * To preserve ordering, it is essential that the hole instantiation and
929 * the data write be encapsulated in a single transaction. We cannot
930 * close off a transaction and start a new one between the ext4_get_block()
931 * and the commit_write(). So doing the jbd2_journal_start at the start of
932 * prepare_write() is the right place.
933 *
934 * Also, this function can nest inside ext4_writepage(). In that case, we
935 * *know* that ext4_writepage() has generated enough buffer credits to do the
936 * whole page. So we won't block on the journal in that case, which is good,
937 * because the caller may be PF_MEMALLOC.
938 *
939 * By accident, ext4 can be reentered when a transaction is open via
940 * quota file writes. If we were to commit the transaction while thus
941 * reentered, there can be a deadlock - we would be holding a quota
942 * lock, and the commit would never complete if another thread had a
943 * transaction open and was blocking on the quota lock - a ranking
944 * violation.
945 *
946 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
947 * will _not_ run commit under these circumstances because handle->h_ref
948 * is elevated. We'll still have enough credits for the tiny quotafile
949 * write.
950 */
951 int do_journal_get_write_access(handle_t *handle,
952 struct buffer_head *bh)
953 {
954 int dirty = buffer_dirty(bh);
955 int ret;
956
957 if (!buffer_mapped(bh) || buffer_freed(bh))
958 return 0;
959 /*
960 * __block_write_begin() could have dirtied some buffers. Clean
961 * the dirty bit as jbd2_journal_get_write_access() could complain
962 * otherwise about fs integrity issues. Setting of the dirty bit
963 * by __block_write_begin() isn't a real problem here as we clear
964 * the bit before releasing a page lock and thus writeback cannot
965 * ever write the buffer.
966 */
967 if (dirty)
968 clear_buffer_dirty(bh);
969 ret = ext4_journal_get_write_access(handle, bh);
970 if (!ret && dirty)
971 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
972 return ret;
973 }
974
975 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
976 struct buffer_head *bh_result, int create);
977 static int ext4_write_begin(struct file *file, struct address_space *mapping,
978 loff_t pos, unsigned len, unsigned flags,
979 struct page **pagep, void **fsdata)
980 {
981 struct inode *inode = mapping->host;
982 int ret, needed_blocks;
983 handle_t *handle;
984 int retries = 0;
985 struct page *page;
986 pgoff_t index;
987 unsigned from, to;
988 #if defined(FEATURE_STORAGE_PID_LOGGER)
989 extern unsigned char *page_logger;
990 struct page_pid_logger *tmp_logger;
991 unsigned long page_index;
992 extern spinlock_t g_locker;
993 unsigned long g_flags;
994 #endif
995
996 trace_ext4_write_begin(inode, pos, len, flags);
997 /*
998 * Reserve one block more for addition to orphan list in case
999 * we allocate blocks but write fails for some reason
1000 */
1001 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1002 index = pos >> PAGE_CACHE_SHIFT;
1003 from = pos & (PAGE_CACHE_SIZE - 1);
1004 to = from + len;
1005
1006 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1007 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1008 flags, pagep);
1009 if (ret < 0)
1010 return ret;
1011 if (ret == 1)
1012 return 0;
1013 }
1014
1015 /*
1016 * grab_cache_page_write_begin() can take a long time if the
1017 * system is thrashing due to memory pressure, or if the page
1018 * is being written back. So grab it first before we start
1019 * the transaction handle. This also allows us to allocate
1020 * the page (if needed) without using GFP_NOFS.
1021 */
1022 retry_grab:
1023 page = grab_cache_page_write_begin(mapping, index, flags);
1024 if (!page)
1025 return -ENOMEM;
1026 unlock_page(page);
1027
1028 retry_journal:
1029 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1030 if (IS_ERR(handle)) {
1031 page_cache_release(page);
1032 return PTR_ERR(handle);
1033 }
1034
1035 lock_page(page);
1036 if (page->mapping != mapping) {
1037 /* The page got truncated from under us */
1038 unlock_page(page);
1039 page_cache_release(page);
1040 ext4_journal_stop(handle);
1041 goto retry_grab;
1042 }
1043 /* In case writeback began while the page was unlocked */
1044 wait_for_stable_page(page);
1045
1046 if (ext4_should_dioread_nolock(inode))
1047 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1048 else
1049 ret = __block_write_begin(page, pos, len, ext4_get_block);
1050
1051 if (!ret && ext4_should_journal_data(inode)) {
1052 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1053 from, to, NULL,
1054 do_journal_get_write_access);
1055 }
1056
1057 if (ret) {
1058 unlock_page(page);
1059 /*
1060 * __block_write_begin may have instantiated a few blocks
1061 * outside i_size. Trim these off again. Don't need
1062 * i_size_read because we hold i_mutex.
1063 *
1064 * Add inode to orphan list in case we crash before
1065 * truncate finishes
1066 */
1067 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1068 ext4_orphan_add(handle, inode);
1069
1070 ext4_journal_stop(handle);
1071 if (pos + len > inode->i_size) {
1072 ext4_truncate_failed_write(inode);
1073 /*
1074 * If truncate failed early the inode might
1075 * still be on the orphan list; we need to
1076 * make sure the inode is removed from the
1077 * orphan list in that case.
1078 */
1079 if (inode->i_nlink)
1080 ext4_orphan_del(NULL, inode);
1081 }
1082
1083 if (ret == -ENOSPC &&
1084 ext4_should_retry_alloc(inode->i_sb, &retries))
1085 goto retry_journal;
1086 page_cache_release(page);
1087 return ret;
1088 }
1089 *pagep = page;
1090 #if defined(FEATURE_STORAGE_PID_LOGGER)
1091 if( page_logger && (*pagep)) {
1092 //#if defined(CONFIG_FLATMEM)
1093 //page_index = (unsigned long)((*pagep) - mem_map) ;
1094 //#else
1095 page_index = (unsigned long)(__page_to_pfn(*pagep))- PHYS_PFN_OFFSET;
1096 //#endif
1097 tmp_logger =((struct page_pid_logger *)page_logger) + page_index;
1098 spin_lock_irqsave(&g_locker, g_flags);
1099 if( page_index < num_physpages) {
1100 if( tmp_logger->pid1 == 0XFFFF)
1101 tmp_logger->pid1 = current->pid;
1102 else if( tmp_logger->pid1 != current->pid)
1103 tmp_logger->pid2 = current->pid;
1104 }
1105 spin_unlock_irqrestore(&g_locker, g_flags);
1106 }
1107 #endif
1108 return ret;
1109 }
1110
1111 /* For write_end() in data=journal mode */
1112 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1113 {
1114 int ret;
1115 if (!buffer_mapped(bh) || buffer_freed(bh))
1116 return 0;
1117 set_buffer_uptodate(bh);
1118 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1119 clear_buffer_meta(bh);
1120 clear_buffer_prio(bh);
1121 return ret;
1122 }
1123
1124 /*
1125 * We need to pick up the new inode size which generic_commit_write gave us
1126 * `file' can be NULL - eg, when called from page_symlink().
1127 *
1128 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1129 * buffers are managed internally.
1130 */
1131 static int ext4_write_end(struct file *file,
1132 struct address_space *mapping,
1133 loff_t pos, unsigned len, unsigned copied,
1134 struct page *page, void *fsdata)
1135 {
1136 handle_t *handle = ext4_journal_current_handle();
1137 struct inode *inode = mapping->host;
1138 int ret = 0, ret2;
1139 int i_size_changed = 0;
1140
1141 trace_ext4_write_end(inode, pos, len, copied);
1142 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1143 ret = ext4_jbd2_file_inode(handle, inode);
1144 if (ret) {
1145 unlock_page(page);
1146 page_cache_release(page);
1147 goto errout;
1148 }
1149 }
1150
1151 if (ext4_has_inline_data(inode)) {
1152 ret = ext4_write_inline_data_end(inode, pos, len,
1153 copied, page);
1154 if (ret < 0)
1155 goto errout;
1156 copied = ret;
1157 } else
1158 copied = block_write_end(file, mapping, pos,
1159 len, copied, page, fsdata);
1160
1161 /*
1162 * No need to use i_size_read() here, the i_size
1163 * cannot change under us because we hole i_mutex.
1164 *
1165 * But it's important to update i_size while still holding page lock:
1166 * page writeout could otherwise come in and zero beyond i_size.
1167 */
1168 if (pos + copied > inode->i_size) {
1169 i_size_write(inode, pos + copied);
1170 i_size_changed = 1;
1171 }
1172
1173 if (pos + copied > EXT4_I(inode)->i_disksize) {
1174 /* We need to mark inode dirty even if
1175 * new_i_size is less that inode->i_size
1176 * but greater than i_disksize. (hint delalloc)
1177 */
1178 ext4_update_i_disksize(inode, (pos + copied));
1179 i_size_changed = 1;
1180 }
1181 unlock_page(page);
1182 page_cache_release(page);
1183
1184 /*
1185 * Don't mark the inode dirty under page lock. First, it unnecessarily
1186 * makes the holding time of page lock longer. Second, it forces lock
1187 * ordering of page lock and transaction start for journaling
1188 * filesystems.
1189 */
1190 if (i_size_changed)
1191 ext4_mark_inode_dirty(handle, inode);
1192
1193 if (copied < 0)
1194 ret = copied;
1195 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1196 /* if we have allocated more blocks and copied
1197 * less. We will have blocks allocated outside
1198 * inode->i_size. So truncate them
1199 */
1200 ext4_orphan_add(handle, inode);
1201 errout:
1202 ret2 = ext4_journal_stop(handle);
1203 if (!ret)
1204 ret = ret2;
1205
1206 if (pos + len > inode->i_size) {
1207 ext4_truncate_failed_write(inode);
1208 /*
1209 * If truncate failed early the inode might still be
1210 * on the orphan list; we need to make sure the inode
1211 * is removed from the orphan list in that case.
1212 */
1213 if (inode->i_nlink)
1214 ext4_orphan_del(NULL, inode);
1215 }
1216
1217 return ret ? ret : copied;
1218 }
1219
1220 static int ext4_journalled_write_end(struct file *file,
1221 struct address_space *mapping,
1222 loff_t pos, unsigned len, unsigned copied,
1223 struct page *page, void *fsdata)
1224 {
1225 handle_t *handle = ext4_journal_current_handle();
1226 struct inode *inode = mapping->host;
1227 int ret = 0, ret2;
1228 int partial = 0;
1229 unsigned from, to;
1230 loff_t new_i_size;
1231
1232 trace_ext4_journalled_write_end(inode, pos, len, copied);
1233 from = pos & (PAGE_CACHE_SIZE - 1);
1234 to = from + len;
1235
1236 BUG_ON(!ext4_handle_valid(handle));
1237
1238 if (ext4_has_inline_data(inode))
1239 copied = ext4_write_inline_data_end(inode, pos, len,
1240 copied, page);
1241 else {
1242 if (copied < len) {
1243 if (!PageUptodate(page))
1244 copied = 0;
1245 page_zero_new_buffers(page, from+copied, to);
1246 }
1247
1248 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1249 to, &partial, write_end_fn);
1250 if (!partial)
1251 SetPageUptodate(page);
1252 }
1253 new_i_size = pos + copied;
1254 if (new_i_size > inode->i_size)
1255 i_size_write(inode, pos+copied);
1256 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1257 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1258 if (new_i_size > EXT4_I(inode)->i_disksize) {
1259 ext4_update_i_disksize(inode, new_i_size);
1260 ret2 = ext4_mark_inode_dirty(handle, inode);
1261 if (!ret)
1262 ret = ret2;
1263 }
1264
1265 unlock_page(page);
1266 page_cache_release(page);
1267 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1268 /* if we have allocated more blocks and copied
1269 * less. We will have blocks allocated outside
1270 * inode->i_size. So truncate them
1271 */
1272 ext4_orphan_add(handle, inode);
1273
1274 ret2 = ext4_journal_stop(handle);
1275 if (!ret)
1276 ret = ret2;
1277 if (pos + len > inode->i_size) {
1278 ext4_truncate_failed_write(inode);
1279 /*
1280 * If truncate failed early the inode might still be
1281 * on the orphan list; we need to make sure the inode
1282 * is removed from the orphan list in that case.
1283 */
1284 if (inode->i_nlink)
1285 ext4_orphan_del(NULL, inode);
1286 }
1287
1288 return ret ? ret : copied;
1289 }
1290
1291 /*
1292 * Reserve a metadata for a single block located at lblock
1293 */
1294 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1295 {
1296 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1297 struct ext4_inode_info *ei = EXT4_I(inode);
1298 unsigned int md_needed;
1299 ext4_lblk_t save_last_lblock;
1300 int save_len;
1301
1302 /*
1303 * recalculate the amount of metadata blocks to reserve
1304 * in order to allocate nrblocks
1305 * worse case is one extent per block
1306 */
1307 spin_lock(&ei->i_block_reservation_lock);
1308 /*
1309 * ext4_calc_metadata_amount() has side effects, which we have
1310 * to be prepared undo if we fail to claim space.
1311 */
1312 save_len = ei->i_da_metadata_calc_len;
1313 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1314 md_needed = EXT4_NUM_B2C(sbi,
1315 ext4_calc_metadata_amount(inode, lblock));
1316 trace_ext4_da_reserve_space(inode, md_needed);
1317
1318 /*
1319 * We do still charge estimated metadata to the sb though;
1320 * we cannot afford to run out of free blocks.
1321 */
1322 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1323 ei->i_da_metadata_calc_len = save_len;
1324 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1325 spin_unlock(&ei->i_block_reservation_lock);
1326 return -ENOSPC;
1327 }
1328 ei->i_reserved_meta_blocks += md_needed;
1329 spin_unlock(&ei->i_block_reservation_lock);
1330
1331 return 0; /* success */
1332 }
1333
1334 /*
1335 * Reserve a single cluster located at lblock
1336 */
1337 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1338 {
1339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1340 struct ext4_inode_info *ei = EXT4_I(inode);
1341 unsigned int md_needed;
1342 int ret;
1343 ext4_lblk_t save_last_lblock;
1344 int save_len;
1345
1346 /*
1347 * We will charge metadata quota at writeout time; this saves
1348 * us from metadata over-estimation, though we may go over by
1349 * a small amount in the end. Here we just reserve for data.
1350 */
1351 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1352 if (ret)
1353 return ret;
1354
1355 /*
1356 * recalculate the amount of metadata blocks to reserve
1357 * in order to allocate nrblocks
1358 * worse case is one extent per block
1359 */
1360 spin_lock(&ei->i_block_reservation_lock);
1361 /*
1362 * ext4_calc_metadata_amount() has side effects, which we have
1363 * to be prepared undo if we fail to claim space.
1364 */
1365 save_len = ei->i_da_metadata_calc_len;
1366 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1367 md_needed = EXT4_NUM_B2C(sbi,
1368 ext4_calc_metadata_amount(inode, lblock));
1369 trace_ext4_da_reserve_space(inode, md_needed);
1370
1371 /*
1372 * We do still charge estimated metadata to the sb though;
1373 * we cannot afford to run out of free blocks.
1374 */
1375 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1376 ei->i_da_metadata_calc_len = save_len;
1377 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1378 spin_unlock(&ei->i_block_reservation_lock);
1379 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1380 return -ENOSPC;
1381 }
1382 ei->i_reserved_data_blocks++;
1383 ei->i_reserved_meta_blocks += md_needed;
1384 spin_unlock(&ei->i_block_reservation_lock);
1385
1386 return 0; /* success */
1387 }
1388
1389 static void ext4_da_release_space(struct inode *inode, int to_free)
1390 {
1391 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1392 struct ext4_inode_info *ei = EXT4_I(inode);
1393
1394 if (!to_free)
1395 return; /* Nothing to release, exit */
1396
1397 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1398
1399 trace_ext4_da_release_space(inode, to_free);
1400 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1401 /*
1402 * if there aren't enough reserved blocks, then the
1403 * counter is messed up somewhere. Since this
1404 * function is called from invalidate page, it's
1405 * harmless to return without any action.
1406 */
1407 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1408 "ino %lu, to_free %d with only %d reserved "
1409 "data blocks", inode->i_ino, to_free,
1410 ei->i_reserved_data_blocks);
1411 WARN_ON(1);
1412 to_free = ei->i_reserved_data_blocks;
1413 }
1414 ei->i_reserved_data_blocks -= to_free;
1415
1416 if (ei->i_reserved_data_blocks == 0) {
1417 /*
1418 * We can release all of the reserved metadata blocks
1419 * only when we have written all of the delayed
1420 * allocation blocks.
1421 * Note that in case of bigalloc, i_reserved_meta_blocks,
1422 * i_reserved_data_blocks, etc. refer to number of clusters.
1423 */
1424 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1425 ei->i_reserved_meta_blocks);
1426 ei->i_reserved_meta_blocks = 0;
1427 ei->i_da_metadata_calc_len = 0;
1428 }
1429
1430 /* update fs dirty data blocks counter */
1431 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1432
1433 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1434
1435 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1436 }
1437
1438 static void ext4_da_page_release_reservation(struct page *page,
1439 unsigned long offset)
1440 {
1441 int to_release = 0;
1442 struct buffer_head *head, *bh;
1443 unsigned int curr_off = 0;
1444 struct inode *inode = page->mapping->host;
1445 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1446 int num_clusters;
1447 ext4_fsblk_t lblk;
1448
1449 head = page_buffers(page);
1450 bh = head;
1451 do {
1452 unsigned int next_off = curr_off + bh->b_size;
1453
1454 if ((offset <= curr_off) && (buffer_delay(bh))) {
1455 to_release++;
1456 clear_buffer_delay(bh);
1457 }
1458 curr_off = next_off;
1459 } while ((bh = bh->b_this_page) != head);
1460
1461 if (to_release) {
1462 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1463 ext4_es_remove_extent(inode, lblk, to_release);
1464 }
1465
1466 /* If we have released all the blocks belonging to a cluster, then we
1467 * need to release the reserved space for that cluster. */
1468 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1469 while (num_clusters > 0) {
1470 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1471 ((num_clusters - 1) << sbi->s_cluster_bits);
1472 if (sbi->s_cluster_ratio == 1 ||
1473 !ext4_find_delalloc_cluster(inode, lblk))
1474 ext4_da_release_space(inode, 1);
1475
1476 num_clusters--;
1477 }
1478 }
1479
1480 /*
1481 * Delayed allocation stuff
1482 */
1483
1484 /*
1485 * mpage_da_submit_io - walks through extent of pages and try to write
1486 * them with writepage() call back
1487 *
1488 * @mpd->inode: inode
1489 * @mpd->first_page: first page of the extent
1490 * @mpd->next_page: page after the last page of the extent
1491 *
1492 * By the time mpage_da_submit_io() is called we expect all blocks
1493 * to be allocated. this may be wrong if allocation failed.
1494 *
1495 * As pages are already locked by write_cache_pages(), we can't use it
1496 */
1497 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1498 struct ext4_map_blocks *map)
1499 {
1500 struct pagevec pvec;
1501 unsigned long index, end;
1502 int ret = 0, err, nr_pages, i;
1503 struct inode *inode = mpd->inode;
1504 struct address_space *mapping = inode->i_mapping;
1505 loff_t size = i_size_read(inode);
1506 unsigned int len, block_start;
1507 struct buffer_head *bh, *page_bufs = NULL;
1508 sector_t pblock = 0, cur_logical = 0;
1509 struct ext4_io_submit io_submit;
1510
1511 BUG_ON(mpd->next_page <= mpd->first_page);
1512 memset(&io_submit, 0, sizeof(io_submit));
1513 /*
1514 * We need to start from the first_page to the next_page - 1
1515 * to make sure we also write the mapped dirty buffer_heads.
1516 * If we look at mpd->b_blocknr we would only be looking
1517 * at the currently mapped buffer_heads.
1518 */
1519 index = mpd->first_page;
1520 end = mpd->next_page - 1;
1521
1522 pagevec_init(&pvec, 0);
1523 while (index <= end) {
1524 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1525 if (nr_pages == 0)
1526 break;
1527 for (i = 0; i < nr_pages; i++) {
1528 int skip_page = 0;
1529 struct page *page = pvec.pages[i];
1530
1531 index = page->index;
1532 if (index > end)
1533 break;
1534
1535 if (index == size >> PAGE_CACHE_SHIFT)
1536 len = size & ~PAGE_CACHE_MASK;
1537 else
1538 len = PAGE_CACHE_SIZE;
1539 if (map) {
1540 cur_logical = index << (PAGE_CACHE_SHIFT -
1541 inode->i_blkbits);
1542 pblock = map->m_pblk + (cur_logical -
1543 map->m_lblk);
1544 }
1545 index++;
1546
1547 BUG_ON(!PageLocked(page));
1548 BUG_ON(PageWriteback(page));
1549
1550 bh = page_bufs = page_buffers(page);
1551 block_start = 0;
1552 do {
1553 if (map && (cur_logical >= map->m_lblk) &&
1554 (cur_logical <= (map->m_lblk +
1555 (map->m_len - 1)))) {
1556 if (buffer_delay(bh)) {
1557 clear_buffer_delay(bh);
1558 bh->b_blocknr = pblock;
1559 }
1560 if (buffer_unwritten(bh) ||
1561 buffer_mapped(bh))
1562 BUG_ON(bh->b_blocknr != pblock);
1563 if (map->m_flags & EXT4_MAP_UNINIT)
1564 set_buffer_uninit(bh);
1565 clear_buffer_unwritten(bh);
1566 }
1567
1568 /*
1569 * skip page if block allocation undone and
1570 * block is dirty
1571 */
1572 if (ext4_bh_delay_or_unwritten(NULL, bh))
1573 skip_page = 1;
1574 bh = bh->b_this_page;
1575 block_start += bh->b_size;
1576 cur_logical++;
1577 pblock++;
1578 } while (bh != page_bufs);
1579
1580 if (skip_page) {
1581 unlock_page(page);
1582 continue;
1583 }
1584
1585 clear_page_dirty_for_io(page);
1586 err = ext4_bio_write_page(&io_submit, page, len,
1587 mpd->wbc);
1588 if (!err)
1589 mpd->pages_written++;
1590 /*
1591 * In error case, we have to continue because
1592 * remaining pages are still locked
1593 */
1594 if (ret == 0)
1595 ret = err;
1596 }
1597 pagevec_release(&pvec);
1598 }
1599 ext4_io_submit(&io_submit);
1600 return ret;
1601 }
1602
1603 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1604 {
1605 int nr_pages, i;
1606 pgoff_t index, end;
1607 struct pagevec pvec;
1608 struct inode *inode = mpd->inode;
1609 struct address_space *mapping = inode->i_mapping;
1610 ext4_lblk_t start, last;
1611
1612 index = mpd->first_page;
1613 end = mpd->next_page - 1;
1614
1615 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1616 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1617 ext4_es_remove_extent(inode, start, last - start + 1);
1618
1619 pagevec_init(&pvec, 0);
1620 while (index <= end) {
1621 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1622 if (nr_pages == 0)
1623 break;
1624 for (i = 0; i < nr_pages; i++) {
1625 struct page *page = pvec.pages[i];
1626 if (page->index > end)
1627 break;
1628 BUG_ON(!PageLocked(page));
1629 BUG_ON(PageWriteback(page));
1630 block_invalidatepage(page, 0);
1631 ClearPageUptodate(page);
1632 unlock_page(page);
1633 }
1634 index = pvec.pages[nr_pages - 1]->index + 1;
1635 pagevec_release(&pvec);
1636 }
1637 return;
1638 }
1639
1640 static void ext4_print_free_blocks(struct inode *inode)
1641 {
1642 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1643 struct super_block *sb = inode->i_sb;
1644 struct ext4_inode_info *ei = EXT4_I(inode);
1645
1646 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1647 EXT4_C2B(EXT4_SB(inode->i_sb),
1648 ext4_count_free_clusters(sb)));
1649 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1650 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1651 (long long) EXT4_C2B(EXT4_SB(sb),
1652 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1653 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1654 (long long) EXT4_C2B(EXT4_SB(sb),
1655 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1656 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1657 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1658 ei->i_reserved_data_blocks);
1659 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1660 ei->i_reserved_meta_blocks);
1661 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1662 ei->i_allocated_meta_blocks);
1663 return;
1664 }
1665
1666 /*
1667 * mpage_da_map_and_submit - go through given space, map them
1668 * if necessary, and then submit them for I/O
1669 *
1670 * @mpd - bh describing space
1671 *
1672 * The function skips space we know is already mapped to disk blocks.
1673 *
1674 */
1675 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1676 {
1677 int err, blks, get_blocks_flags;
1678 struct ext4_map_blocks map, *mapp = NULL;
1679 sector_t next = mpd->b_blocknr;
1680 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1681 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1682 handle_t *handle = NULL;
1683
1684 /*
1685 * If the blocks are mapped already, or we couldn't accumulate
1686 * any blocks, then proceed immediately to the submission stage.
1687 */
1688 if ((mpd->b_size == 0) ||
1689 ((mpd->b_state & (1 << BH_Mapped)) &&
1690 !(mpd->b_state & (1 << BH_Delay)) &&
1691 !(mpd->b_state & (1 << BH_Unwritten))))
1692 goto submit_io;
1693
1694 handle = ext4_journal_current_handle();
1695 BUG_ON(!handle);
1696
1697 /*
1698 * Call ext4_map_blocks() to allocate any delayed allocation
1699 * blocks, or to convert an uninitialized extent to be
1700 * initialized (in the case where we have written into
1701 * one or more preallocated blocks).
1702 *
1703 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1704 * indicate that we are on the delayed allocation path. This
1705 * affects functions in many different parts of the allocation
1706 * call path. This flag exists primarily because we don't
1707 * want to change *many* call functions, so ext4_map_blocks()
1708 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1709 * inode's allocation semaphore is taken.
1710 *
1711 * If the blocks in questions were delalloc blocks, set
1712 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1713 * variables are updated after the blocks have been allocated.
1714 */
1715 map.m_lblk = next;
1716 map.m_len = max_blocks;
1717 /*
1718 * We're in delalloc path and it is possible that we're going to
1719 * need more metadata blocks than previously reserved. However
1720 * we must not fail because we're in writeback and there is
1721 * nothing we can do about it so it might result in data loss.
1722 * So use reserved blocks to allocate metadata if possible.
1723 */
1724 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1725 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1726 if (ext4_should_dioread_nolock(mpd->inode))
1727 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1728 if (mpd->b_state & (1 << BH_Delay))
1729 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1730
1731
1732 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1733 if (blks < 0) {
1734 struct super_block *sb = mpd->inode->i_sb;
1735
1736 err = blks;
1737 /*
1738 * If get block returns EAGAIN or ENOSPC and there
1739 * appears to be free blocks we will just let
1740 * mpage_da_submit_io() unlock all of the pages.
1741 */
1742 if (err == -EAGAIN)
1743 goto submit_io;
1744
1745 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1746 mpd->retval = err;
1747 goto submit_io;
1748 }
1749
1750 /*
1751 * get block failure will cause us to loop in
1752 * writepages, because a_ops->writepage won't be able
1753 * to make progress. The page will be redirtied by
1754 * writepage and writepages will again try to write
1755 * the same.
1756 */
1757 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1758 ext4_msg(sb, KERN_CRIT,
1759 "delayed block allocation failed for inode %lu "
1760 "at logical offset %llu with max blocks %zd "
1761 "with error %d", mpd->inode->i_ino,
1762 (unsigned long long) next,
1763 mpd->b_size >> mpd->inode->i_blkbits, err);
1764 ext4_msg(sb, KERN_CRIT,
1765 "This should not happen!! Data will be lost");
1766 if (err == -ENOSPC)
1767 ext4_print_free_blocks(mpd->inode);
1768 }
1769 /* invalidate all the pages */
1770 ext4_da_block_invalidatepages(mpd);
1771
1772 /* Mark this page range as having been completed */
1773 mpd->io_done = 1;
1774 return;
1775 }
1776 BUG_ON(blks == 0);
1777
1778 mapp = &map;
1779 if (map.m_flags & EXT4_MAP_NEW) {
1780 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1781 int i;
1782
1783 for (i = 0; i < map.m_len; i++)
1784 unmap_underlying_metadata(bdev, map.m_pblk + i);
1785 }
1786
1787 /*
1788 * Update on-disk size along with block allocation.
1789 */
1790 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1791 if (disksize > i_size_read(mpd->inode))
1792 disksize = i_size_read(mpd->inode);
1793 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1794 ext4_update_i_disksize(mpd->inode, disksize);
1795 err = ext4_mark_inode_dirty(handle, mpd->inode);
1796 if (err)
1797 ext4_error(mpd->inode->i_sb,
1798 "Failed to mark inode %lu dirty",
1799 mpd->inode->i_ino);
1800 }
1801
1802 submit_io:
1803 mpage_da_submit_io(mpd, mapp);
1804 mpd->io_done = 1;
1805 }
1806
1807 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1808 (1 << BH_Delay) | (1 << BH_Unwritten))
1809
1810 /*
1811 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1812 *
1813 * @mpd->lbh - extent of blocks
1814 * @logical - logical number of the block in the file
1815 * @b_state - b_state of the buffer head added
1816 *
1817 * the function is used to collect contig. blocks in same state
1818 */
1819 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1820 unsigned long b_state)
1821 {
1822 sector_t next;
1823 int blkbits = mpd->inode->i_blkbits;
1824 int nrblocks = mpd->b_size >> blkbits;
1825
1826 /*
1827 * XXX Don't go larger than mballoc is willing to allocate
1828 * This is a stopgap solution. We eventually need to fold
1829 * mpage_da_submit_io() into this function and then call
1830 * ext4_map_blocks() multiple times in a loop
1831 */
1832 if (nrblocks >= (8*1024*1024 >> blkbits))
1833 goto flush_it;
1834
1835 /* check if the reserved journal credits might overflow */
1836 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1837 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1838 /*
1839 * With non-extent format we are limited by the journal
1840 * credit available. Total credit needed to insert
1841 * nrblocks contiguous blocks is dependent on the
1842 * nrblocks. So limit nrblocks.
1843 */
1844 goto flush_it;
1845 }
1846 }
1847 /*
1848 * First block in the extent
1849 */
1850 if (mpd->b_size == 0) {
1851 mpd->b_blocknr = logical;
1852 mpd->b_size = 1 << blkbits;
1853 mpd->b_state = b_state & BH_FLAGS;
1854 return;
1855 }
1856
1857 next = mpd->b_blocknr + nrblocks;
1858 /*
1859 * Can we merge the block to our big extent?
1860 */
1861 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1862 mpd->b_size += 1 << blkbits;
1863 return;
1864 }
1865
1866 flush_it:
1867 /*
1868 * We couldn't merge the block to our extent, so we
1869 * need to flush current extent and start new one
1870 */
1871 mpage_da_map_and_submit(mpd);
1872 return;
1873 }
1874
1875 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1876 {
1877 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1878 }
1879
1880 /*
1881 * This function is grabs code from the very beginning of
1882 * ext4_map_blocks, but assumes that the caller is from delayed write
1883 * time. This function looks up the requested blocks and sets the
1884 * buffer delay bit under the protection of i_data_sem.
1885 */
1886 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1887 struct ext4_map_blocks *map,
1888 struct buffer_head *bh)
1889 {
1890 struct extent_status es;
1891 int retval;
1892 sector_t invalid_block = ~((sector_t) 0xffff);
1893 #ifdef ES_AGGRESSIVE_TEST
1894 struct ext4_map_blocks orig_map;
1895
1896 memcpy(&orig_map, map, sizeof(*map));
1897 #endif
1898
1899 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1900 invalid_block = ~0;
1901
1902 map->m_flags = 0;
1903 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1904 "logical block %lu\n", inode->i_ino, map->m_len,
1905 (unsigned long) map->m_lblk);
1906
1907 /* Lookup extent status tree firstly */
1908 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1909
1910 if (ext4_es_is_hole(&es)) {
1911 retval = 0;
1912 down_read((&EXT4_I(inode)->i_data_sem));
1913 goto add_delayed;
1914 }
1915
1916 /*
1917 * Delayed extent could be allocated by fallocate.
1918 * So we need to check it.
1919 */
1920 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1921 map_bh(bh, inode->i_sb, invalid_block);
1922 set_buffer_new(bh);
1923 set_buffer_delay(bh);
1924 return 0;
1925 }
1926
1927 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1928 retval = es.es_len - (iblock - es.es_lblk);
1929 if (retval > map->m_len)
1930 retval = map->m_len;
1931 map->m_len = retval;
1932 if (ext4_es_is_written(&es))
1933 map->m_flags |= EXT4_MAP_MAPPED;
1934 else if (ext4_es_is_unwritten(&es))
1935 map->m_flags |= EXT4_MAP_UNWRITTEN;
1936 else
1937 BUG_ON(1);
1938
1939 #ifdef ES_AGGRESSIVE_TEST
1940 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1941 #endif
1942 return retval;
1943 }
1944
1945 /*
1946 * Try to see if we can get the block without requesting a new
1947 * file system block.
1948 */
1949 down_read((&EXT4_I(inode)->i_data_sem));
1950 if (ext4_has_inline_data(inode)) {
1951 /*
1952 * We will soon create blocks for this page, and let
1953 * us pretend as if the blocks aren't allocated yet.
1954 * In case of clusters, we have to handle the work
1955 * of mapping from cluster so that the reserved space
1956 * is calculated properly.
1957 */
1958 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1959 ext4_find_delalloc_cluster(inode, map->m_lblk))
1960 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1961 retval = 0;
1962 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1963 retval = ext4_ext_map_blocks(NULL, inode, map,
1964 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1965 else
1966 retval = ext4_ind_map_blocks(NULL, inode, map,
1967 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1968
1969 add_delayed:
1970 if (retval == 0) {
1971 int ret;
1972 /*
1973 * XXX: __block_prepare_write() unmaps passed block,
1974 * is it OK?
1975 */
1976 /*
1977 * If the block was allocated from previously allocated cluster,
1978 * then we don't need to reserve it again. However we still need
1979 * to reserve metadata for every block we're going to write.
1980 */
1981 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1982 ret = ext4_da_reserve_space(inode, iblock);
1983 if (ret) {
1984 /* not enough space to reserve */
1985 retval = ret;
1986 goto out_unlock;
1987 }
1988 } else {
1989 ret = ext4_da_reserve_metadata(inode, iblock);
1990 if (ret) {
1991 /* not enough space to reserve */
1992 retval = ret;
1993 goto out_unlock;
1994 }
1995 }
1996
1997 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1998 ~0, EXTENT_STATUS_DELAYED);
1999 if (ret) {
2000 retval = ret;
2001 goto out_unlock;
2002 }
2003
2004 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
2005 * and it should not appear on the bh->b_state.
2006 */
2007 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
2008
2009 map_bh(bh, inode->i_sb, invalid_block);
2010 set_buffer_new(bh);
2011 set_buffer_delay(bh);
2012 } else if (retval > 0) {
2013 int ret;
2014 unsigned long long status;
2015
2016 #ifdef ES_AGGRESSIVE_TEST
2017 if (retval != map->m_len) {
2018 printk("ES len assertation failed for inode: %lu "
2019 "retval %d != map->m_len %d "
2020 "in %s (lookup)\n", inode->i_ino, retval,
2021 map->m_len, __func__);
2022 }
2023 #endif
2024
2025 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2026 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2027 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2028 map->m_pblk, status);
2029 if (ret != 0)
2030 retval = ret;
2031 }
2032
2033 out_unlock:
2034 up_read((&EXT4_I(inode)->i_data_sem));
2035
2036 return retval;
2037 }
2038
2039 /*
2040 * This is a special get_blocks_t callback which is used by
2041 * ext4_da_write_begin(). It will either return mapped block or
2042 * reserve space for a single block.
2043 *
2044 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2045 * We also have b_blocknr = -1 and b_bdev initialized properly
2046 *
2047 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2048 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2049 * initialized properly.
2050 */
2051 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2052 struct buffer_head *bh, int create)
2053 {
2054 struct ext4_map_blocks map;
2055 int ret = 0;
2056
2057 BUG_ON(create == 0);
2058 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2059
2060 map.m_lblk = iblock;
2061 map.m_len = 1;
2062
2063 /*
2064 * first, we need to know whether the block is allocated already
2065 * preallocated blocks are unmapped but should treated
2066 * the same as allocated blocks.
2067 */
2068 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2069 if (ret <= 0)
2070 return ret;
2071
2072 map_bh(bh, inode->i_sb, map.m_pblk);
2073 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2074
2075 if (buffer_unwritten(bh)) {
2076 /* A delayed write to unwritten bh should be marked
2077 * new and mapped. Mapped ensures that we don't do
2078 * get_block multiple times when we write to the same
2079 * offset and new ensures that we do proper zero out
2080 * for partial write.
2081 */
2082 set_buffer_new(bh);
2083 set_buffer_mapped(bh);
2084 }
2085 return 0;
2086 }
2087
2088 static int bget_one(handle_t *handle, struct buffer_head *bh)
2089 {
2090 get_bh(bh);
2091 return 0;
2092 }
2093
2094 static int bput_one(handle_t *handle, struct buffer_head *bh)
2095 {
2096 put_bh(bh);
2097 return 0;
2098 }
2099
2100 static int __ext4_journalled_writepage(struct page *page,
2101 unsigned int len)
2102 {
2103 struct address_space *mapping = page->mapping;
2104 struct inode *inode = mapping->host;
2105 struct buffer_head *page_bufs = NULL;
2106 handle_t *handle = NULL;
2107 int ret = 0, err = 0;
2108 int inline_data = ext4_has_inline_data(inode);
2109 struct buffer_head *inode_bh = NULL;
2110
2111 ClearPageChecked(page);
2112
2113 if (inline_data) {
2114 BUG_ON(page->index != 0);
2115 BUG_ON(len > ext4_get_max_inline_size(inode));
2116 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2117 if (inode_bh == NULL)
2118 goto out;
2119 } else {
2120 page_bufs = page_buffers(page);
2121 if (!page_bufs) {
2122 BUG();
2123 goto out;
2124 }
2125 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2126 NULL, bget_one);
2127 }
2128 /* As soon as we unlock the page, it can go away, but we have
2129 * references to buffers so we are safe */
2130 unlock_page(page);
2131
2132 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2133 ext4_writepage_trans_blocks(inode));
2134 if (IS_ERR(handle)) {
2135 ret = PTR_ERR(handle);
2136 goto out;
2137 }
2138
2139 BUG_ON(!ext4_handle_valid(handle));
2140
2141 if (inline_data) {
2142 ret = ext4_journal_get_write_access(handle, inode_bh);
2143
2144 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2145
2146 } else {
2147 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2148 do_journal_get_write_access);
2149
2150 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2151 write_end_fn);
2152 }
2153 if (ret == 0)
2154 ret = err;
2155 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2156 err = ext4_journal_stop(handle);
2157 if (!ret)
2158 ret = err;
2159
2160 if (!ext4_has_inline_data(inode))
2161 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2162 NULL, bput_one);
2163 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2164 out:
2165 brelse(inode_bh);
2166 return ret;
2167 }
2168
2169 /*
2170 * Note that we don't need to start a transaction unless we're journaling data
2171 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2172 * need to file the inode to the transaction's list in ordered mode because if
2173 * we are writing back data added by write(), the inode is already there and if
2174 * we are writing back data modified via mmap(), no one guarantees in which
2175 * transaction the data will hit the disk. In case we are journaling data, we
2176 * cannot start transaction directly because transaction start ranks above page
2177 * lock so we have to do some magic.
2178 *
2179 * This function can get called via...
2180 * - ext4_da_writepages after taking page lock (have journal handle)
2181 * - journal_submit_inode_data_buffers (no journal handle)
2182 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2183 * - grab_page_cache when doing write_begin (have journal handle)
2184 *
2185 * We don't do any block allocation in this function. If we have page with
2186 * multiple blocks we need to write those buffer_heads that are mapped. This
2187 * is important for mmaped based write. So if we do with blocksize 1K
2188 * truncate(f, 1024);
2189 * a = mmap(f, 0, 4096);
2190 * a[0] = 'a';
2191 * truncate(f, 4096);
2192 * we have in the page first buffer_head mapped via page_mkwrite call back
2193 * but other buffer_heads would be unmapped but dirty (dirty done via the
2194 * do_wp_page). So writepage should write the first block. If we modify
2195 * the mmap area beyond 1024 we will again get a page_fault and the
2196 * page_mkwrite callback will do the block allocation and mark the
2197 * buffer_heads mapped.
2198 *
2199 * We redirty the page if we have any buffer_heads that is either delay or
2200 * unwritten in the page.
2201 *
2202 * We can get recursively called as show below.
2203 *
2204 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2205 * ext4_writepage()
2206 *
2207 * But since we don't do any block allocation we should not deadlock.
2208 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2209 */
2210 static int ext4_writepage(struct page *page,
2211 struct writeback_control *wbc)
2212 {
2213 int ret = 0;
2214 loff_t size;
2215 unsigned int len;
2216 struct buffer_head *page_bufs = NULL;
2217 struct inode *inode = page->mapping->host;
2218 struct ext4_io_submit io_submit;
2219
2220 trace_ext4_writepage(page);
2221 size = i_size_read(inode);
2222 if (page->index == size >> PAGE_CACHE_SHIFT)
2223 len = size & ~PAGE_CACHE_MASK;
2224 else
2225 len = PAGE_CACHE_SIZE;
2226
2227 page_bufs = page_buffers(page);
2228 /*
2229 * We cannot do block allocation or other extent handling in this
2230 * function. If there are buffers needing that, we have to redirty
2231 * the page. But we may reach here when we do a journal commit via
2232 * journal_submit_inode_data_buffers() and in that case we must write
2233 * allocated buffers to achieve data=ordered mode guarantees.
2234 */
2235 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2236 ext4_bh_delay_or_unwritten)) {
2237 redirty_page_for_writepage(wbc, page);
2238 if (current->flags & PF_MEMALLOC) {
2239 /*
2240 * For memory cleaning there's no point in writing only
2241 * some buffers. So just bail out. Warn if we came here
2242 * from direct reclaim.
2243 */
2244 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2245 == PF_MEMALLOC);
2246 unlock_page(page);
2247 return 0;
2248 }
2249 }
2250
2251 if (PageChecked(page) && ext4_should_journal_data(inode))
2252 /*
2253 * It's mmapped pagecache. Add buffers and journal it. There
2254 * doesn't seem much point in redirtying the page here.
2255 */
2256 return __ext4_journalled_writepage(page, len);
2257
2258 memset(&io_submit, 0, sizeof(io_submit));
2259 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2260 ext4_io_submit(&io_submit);
2261 return ret;
2262 }
2263
2264 /*
2265 * This is called via ext4_da_writepages() to
2266 * calculate the total number of credits to reserve to fit
2267 * a single extent allocation into a single transaction,
2268 * ext4_da_writpeages() will loop calling this before
2269 * the block allocation.
2270 */
2271
2272 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2273 {
2274 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2275
2276 /*
2277 * With non-extent format the journal credit needed to
2278 * insert nrblocks contiguous block is dependent on
2279 * number of contiguous block. So we will limit
2280 * number of contiguous block to a sane value
2281 */
2282 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2283 (max_blocks > EXT4_MAX_TRANS_DATA))
2284 max_blocks = EXT4_MAX_TRANS_DATA;
2285
2286 return ext4_chunk_trans_blocks(inode, max_blocks);
2287 }
2288
2289 /*
2290 * write_cache_pages_da - walk the list of dirty pages of the given
2291 * address space and accumulate pages that need writing, and call
2292 * mpage_da_map_and_submit to map a single contiguous memory region
2293 * and then write them.
2294 */
2295 static int write_cache_pages_da(handle_t *handle,
2296 struct address_space *mapping,
2297 struct writeback_control *wbc,
2298 struct mpage_da_data *mpd,
2299 pgoff_t *done_index)
2300 {
2301 struct buffer_head *bh, *head;
2302 struct inode *inode = mapping->host;
2303 struct pagevec pvec;
2304 unsigned int nr_pages;
2305 sector_t logical;
2306 pgoff_t index, end;
2307 long nr_to_write = wbc->nr_to_write;
2308 int i, tag, ret = 0;
2309
2310 memset(mpd, 0, sizeof(struct mpage_da_data));
2311 mpd->wbc = wbc;
2312 mpd->inode = inode;
2313 pagevec_init(&pvec, 0);
2314 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2315 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2316
2317 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2318 tag = PAGECACHE_TAG_TOWRITE;
2319 else
2320 tag = PAGECACHE_TAG_DIRTY;
2321
2322 *done_index = index;
2323 while (index <= end) {
2324 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2325 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2326 if (nr_pages == 0)
2327 return 0;
2328
2329 for (i = 0; i < nr_pages; i++) {
2330 struct page *page = pvec.pages[i];
2331
2332 /*
2333 * At this point, the page may be truncated or
2334 * invalidated (changing page->mapping to NULL), or
2335 * even swizzled back from swapper_space to tmpfs file
2336 * mapping. However, page->index will not change
2337 * because we have a reference on the page.
2338 */
2339 if (page->index > end)
2340 goto out;
2341
2342 *done_index = page->index + 1;
2343
2344 /*
2345 * If we can't merge this page, and we have
2346 * accumulated an contiguous region, write it
2347 */
2348 if ((mpd->next_page != page->index) &&
2349 (mpd->next_page != mpd->first_page)) {
2350 mpage_da_map_and_submit(mpd);
2351 goto ret_extent_tail;
2352 }
2353
2354 lock_page(page);
2355
2356 /*
2357 * If the page is no longer dirty, or its
2358 * mapping no longer corresponds to inode we
2359 * are writing (which means it has been
2360 * truncated or invalidated), or the page is
2361 * already under writeback and we are not
2362 * doing a data integrity writeback, skip the page
2363 */
2364 if (!PageDirty(page) ||
2365 (PageWriteback(page) &&
2366 (wbc->sync_mode == WB_SYNC_NONE)) ||
2367 unlikely(page->mapping != mapping)) {
2368 unlock_page(page);
2369 continue;
2370 }
2371
2372 wait_on_page_writeback(page);
2373 BUG_ON(PageWriteback(page));
2374
2375 /*
2376 * If we have inline data and arrive here, it means that
2377 * we will soon create the block for the 1st page, so
2378 * we'd better clear the inline data here.
2379 */
2380 if (ext4_has_inline_data(inode)) {
2381 BUG_ON(ext4_test_inode_state(inode,
2382 EXT4_STATE_MAY_INLINE_DATA));
2383 ext4_destroy_inline_data(handle, inode);
2384 }
2385
2386 if (mpd->next_page != page->index)
2387 mpd->first_page = page->index;
2388 mpd->next_page = page->index + 1;
2389 logical = (sector_t) page->index <<
2390 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2391
2392 /* Add all dirty buffers to mpd */
2393 head = page_buffers(page);
2394 bh = head;
2395 do {
2396 BUG_ON(buffer_locked(bh));
2397 /*
2398 * We need to try to allocate unmapped blocks
2399 * in the same page. Otherwise we won't make
2400 * progress with the page in ext4_writepage
2401 */
2402 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2403 mpage_add_bh_to_extent(mpd, logical,
2404 bh->b_state);
2405 if (mpd->io_done)
2406 goto ret_extent_tail;
2407 } else if (buffer_dirty(bh) &&
2408 buffer_mapped(bh)) {
2409 /*
2410 * mapped dirty buffer. We need to
2411 * update the b_state because we look
2412 * at b_state in mpage_da_map_blocks.
2413 * We don't update b_size because if we
2414 * find an unmapped buffer_head later
2415 * we need to use the b_state flag of
2416 * that buffer_head.
2417 */
2418 if (mpd->b_size == 0)
2419 mpd->b_state =
2420 bh->b_state & BH_FLAGS;
2421 }
2422 logical++;
2423 } while ((bh = bh->b_this_page) != head);
2424
2425 if (nr_to_write > 0) {
2426 nr_to_write--;
2427 if (nr_to_write == 0 &&
2428 wbc->sync_mode == WB_SYNC_NONE)
2429 /*
2430 * We stop writing back only if we are
2431 * not doing integrity sync. In case of
2432 * integrity sync we have to keep going
2433 * because someone may be concurrently
2434 * dirtying pages, and we might have
2435 * synced a lot of newly appeared dirty
2436 * pages, but have not synced all of the
2437 * old dirty pages.
2438 */
2439 goto out;
2440 }
2441 }
2442 pagevec_release(&pvec);
2443 cond_resched();
2444 }
2445 return 0;
2446 ret_extent_tail:
2447 ret = MPAGE_DA_EXTENT_TAIL;
2448 out:
2449 pagevec_release(&pvec);
2450 cond_resched();
2451 return ret;
2452 }
2453
2454
2455 static int ext4_da_writepages(struct address_space *mapping,
2456 struct writeback_control *wbc)
2457 {
2458 pgoff_t index;
2459 int range_whole = 0;
2460 handle_t *handle = NULL;
2461 struct mpage_da_data mpd;
2462 struct inode *inode = mapping->host;
2463 int pages_written = 0;
2464 unsigned int max_pages;
2465 int range_cyclic, cycled = 1, io_done = 0;
2466 int needed_blocks, ret = 0;
2467 long desired_nr_to_write, nr_to_writebump = 0;
2468 loff_t range_start = wbc->range_start;
2469 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2470 pgoff_t done_index = 0;
2471 pgoff_t end;
2472 struct blk_plug plug;
2473
2474 trace_ext4_da_writepages(inode, wbc);
2475
2476 /*
2477 * No pages to write? This is mainly a kludge to avoid starting
2478 * a transaction for special inodes like journal inode on last iput()
2479 * because that could violate lock ordering on umount
2480 */
2481 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2482 return 0;
2483
2484 /*
2485 * If the filesystem has aborted, it is read-only, so return
2486 * right away instead of dumping stack traces later on that
2487 * will obscure the real source of the problem. We test
2488 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2489 * the latter could be true if the filesystem is mounted
2490 * read-only, and in that case, ext4_da_writepages should
2491 * *never* be called, so if that ever happens, we would want
2492 * the stack trace.
2493 */
2494 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2495 return -EROFS;
2496
2497 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2498 range_whole = 1;
2499
2500 range_cyclic = wbc->range_cyclic;
2501 if (wbc->range_cyclic) {
2502 index = mapping->writeback_index;
2503 if (index)
2504 cycled = 0;
2505 wbc->range_start = index << PAGE_CACHE_SHIFT;
2506 wbc->range_end = LLONG_MAX;
2507 wbc->range_cyclic = 0;
2508 end = -1;
2509 } else {
2510 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2511 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2512 }
2513
2514 /*
2515 * This works around two forms of stupidity. The first is in
2516 * the writeback code, which caps the maximum number of pages
2517 * written to be 1024 pages. This is wrong on multiple
2518 * levels; different architectues have a different page size,
2519 * which changes the maximum amount of data which gets
2520 * written. Secondly, 4 megabytes is way too small. XFS
2521 * forces this value to be 16 megabytes by multiplying
2522 * nr_to_write parameter by four, and then relies on its
2523 * allocator to allocate larger extents to make them
2524 * contiguous. Unfortunately this brings us to the second
2525 * stupidity, which is that ext4's mballoc code only allocates
2526 * at most 2048 blocks. So we force contiguous writes up to
2527 * the number of dirty blocks in the inode, or
2528 * sbi->max_writeback_mb_bump whichever is smaller.
2529 */
2530 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2531 if (!range_cyclic && range_whole) {
2532 if (wbc->nr_to_write == LONG_MAX)
2533 desired_nr_to_write = wbc->nr_to_write;
2534 else
2535 desired_nr_to_write = wbc->nr_to_write * 8;
2536 } else
2537 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2538 max_pages);
2539 if (desired_nr_to_write > max_pages)
2540 desired_nr_to_write = max_pages;
2541
2542 if (wbc->nr_to_write < desired_nr_to_write) {
2543 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2544 wbc->nr_to_write = desired_nr_to_write;
2545 }
2546
2547 retry:
2548 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2549 tag_pages_for_writeback(mapping, index, end);
2550
2551 blk_start_plug(&plug);
2552 while (!ret && wbc->nr_to_write > 0) {
2553
2554 /*
2555 * we insert one extent at a time. So we need
2556 * credit needed for single extent allocation.
2557 * journalled mode is currently not supported
2558 * by delalloc
2559 */
2560 BUG_ON(ext4_should_journal_data(inode));
2561 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2562
2563 /* start a new transaction*/
2564 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2565 needed_blocks);
2566 if (IS_ERR(handle)) {
2567 ret = PTR_ERR(handle);
2568 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2569 "%ld pages, ino %lu; err %d", __func__,
2570 wbc->nr_to_write, inode->i_ino, ret);
2571 blk_finish_plug(&plug);
2572 goto out_writepages;
2573 }
2574
2575 /*
2576 * Now call write_cache_pages_da() to find the next
2577 * contiguous region of logical blocks that need
2578 * blocks to be allocated by ext4 and submit them.
2579 */
2580 ret = write_cache_pages_da(handle, mapping,
2581 wbc, &mpd, &done_index);
2582 /*
2583 * If we have a contiguous extent of pages and we
2584 * haven't done the I/O yet, map the blocks and submit
2585 * them for I/O.
2586 */
2587 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2588 mpage_da_map_and_submit(&mpd);
2589 ret = MPAGE_DA_EXTENT_TAIL;
2590 }
2591 trace_ext4_da_write_pages(inode, &mpd);
2592 wbc->nr_to_write -= mpd.pages_written;
2593
2594 ext4_journal_stop(handle);
2595
2596 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2597 /* commit the transaction which would
2598 * free blocks released in the transaction
2599 * and try again
2600 */
2601 jbd2_journal_force_commit_nested(sbi->s_journal);
2602 ret = 0;
2603 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2604 /*
2605 * Got one extent now try with rest of the pages.
2606 * If mpd.retval is set -EIO, journal is aborted.
2607 * So we don't need to write any more.
2608 */
2609 pages_written += mpd.pages_written;
2610 ret = mpd.retval;
2611 io_done = 1;
2612 } else if (wbc->nr_to_write)
2613 /*
2614 * There is no more writeout needed
2615 * or we requested for a noblocking writeout
2616 * and we found the device congested
2617 */
2618 break;
2619 }
2620 blk_finish_plug(&plug);
2621 if (!io_done && !cycled) {
2622 cycled = 1;
2623 index = 0;
2624 wbc->range_start = index << PAGE_CACHE_SHIFT;
2625 wbc->range_end = mapping->writeback_index - 1;
2626 goto retry;
2627 }
2628
2629 /* Update index */
2630 wbc->range_cyclic = range_cyclic;
2631 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2632 /*
2633 * set the writeback_index so that range_cyclic
2634 * mode will write it back later
2635 */
2636 mapping->writeback_index = done_index;
2637
2638 out_writepages:
2639 wbc->nr_to_write -= nr_to_writebump;
2640 wbc->range_start = range_start;
2641 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2642 return ret;
2643 }
2644
2645 static int ext4_nonda_switch(struct super_block *sb)
2646 {
2647 s64 free_clusters, dirty_clusters;
2648 struct ext4_sb_info *sbi = EXT4_SB(sb);
2649
2650 /*
2651 * switch to non delalloc mode if we are running low
2652 * on free block. The free block accounting via percpu
2653 * counters can get slightly wrong with percpu_counter_batch getting
2654 * accumulated on each CPU without updating global counters
2655 * Delalloc need an accurate free block accounting. So switch
2656 * to non delalloc when we are near to error range.
2657 */
2658 free_clusters =
2659 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2660 dirty_clusters =
2661 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2662 /*
2663 * Start pushing delalloc when 1/2 of free blocks are dirty.
2664 */
2665 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2666 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2667
2668 if (2 * free_clusters < 3 * dirty_clusters ||
2669 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2670 /*
2671 * free block count is less than 150% of dirty blocks
2672 * or free blocks is less than watermark
2673 */
2674 return 1;
2675 }
2676 return 0;
2677 }
2678
2679 /* We always reserve for an inode update; the superblock could be there too */
2680 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2681 {
2682 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2683 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2684 return 1;
2685
2686 if (pos + len <= 0x7fffffffULL)
2687 return 1;
2688
2689 /* We might need to update the superblock to set LARGE_FILE */
2690 return 2;
2691 }
2692
2693 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2694 loff_t pos, unsigned len, unsigned flags,
2695 struct page **pagep, void **fsdata)
2696 {
2697 int ret, retries = 0;
2698 struct page *page;
2699 pgoff_t index;
2700 struct inode *inode = mapping->host;
2701 handle_t *handle;
2702
2703 index = pos >> PAGE_CACHE_SHIFT;
2704
2705 if (ext4_nonda_switch(inode->i_sb)) {
2706 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2707 return ext4_write_begin(file, mapping, pos,
2708 len, flags, pagep, fsdata);
2709 }
2710 *fsdata = (void *)0;
2711 trace_ext4_da_write_begin(inode, pos, len, flags);
2712
2713 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2714 ret = ext4_da_write_inline_data_begin(mapping, inode,
2715 pos, len, flags,
2716 pagep, fsdata);
2717 if (ret < 0)
2718 return ret;
2719 if (ret == 1)
2720 return 0;
2721 }
2722
2723 /*
2724 * grab_cache_page_write_begin() can take a long time if the
2725 * system is thrashing due to memory pressure, or if the page
2726 * is being written back. So grab it first before we start
2727 * the transaction handle. This also allows us to allocate
2728 * the page (if needed) without using GFP_NOFS.
2729 */
2730 retry_grab:
2731 page = grab_cache_page_write_begin(mapping, index, flags);
2732 if (!page)
2733 return -ENOMEM;
2734 unlock_page(page);
2735
2736 /*
2737 * With delayed allocation, we don't log the i_disksize update
2738 * if there is delayed block allocation. But we still need
2739 * to journalling the i_disksize update if writes to the end
2740 * of file which has an already mapped buffer.
2741 */
2742 retry_journal:
2743 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2744 ext4_da_write_credits(inode, pos, len));
2745 if (IS_ERR(handle)) {
2746 page_cache_release(page);
2747 return PTR_ERR(handle);
2748 }
2749
2750 lock_page(page);
2751 if (page->mapping != mapping) {
2752 /* The page got truncated from under us */
2753 unlock_page(page);
2754 page_cache_release(page);
2755 ext4_journal_stop(handle);
2756 goto retry_grab;
2757 }
2758 /* In case writeback began while the page was unlocked */
2759 wait_for_stable_page(page);
2760
2761 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2762 if (ret < 0) {
2763 unlock_page(page);
2764 ext4_journal_stop(handle);
2765 /*
2766 * block_write_begin may have instantiated a few blocks
2767 * outside i_size. Trim these off again. Don't need
2768 * i_size_read because we hold i_mutex.
2769 */
2770 if (pos + len > inode->i_size)
2771 ext4_truncate_failed_write(inode);
2772
2773 if (ret == -ENOSPC &&
2774 ext4_should_retry_alloc(inode->i_sb, &retries))
2775 goto retry_journal;
2776
2777 page_cache_release(page);
2778 return ret;
2779 }
2780
2781 *pagep = page;
2782 return ret;
2783 }
2784
2785 /*
2786 * Check if we should update i_disksize
2787 * when write to the end of file but not require block allocation
2788 */
2789 static int ext4_da_should_update_i_disksize(struct page *page,
2790 unsigned long offset)
2791 {
2792 struct buffer_head *bh;
2793 struct inode *inode = page->mapping->host;
2794 unsigned int idx;
2795 int i;
2796
2797 bh = page_buffers(page);
2798 idx = offset >> inode->i_blkbits;
2799
2800 for (i = 0; i < idx; i++)
2801 bh = bh->b_this_page;
2802
2803 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2804 return 0;
2805 return 1;
2806 }
2807
2808 static int ext4_da_write_end(struct file *file,
2809 struct address_space *mapping,
2810 loff_t pos, unsigned len, unsigned copied,
2811 struct page *page, void *fsdata)
2812 {
2813 struct inode *inode = mapping->host;
2814 int ret = 0, ret2;
2815 handle_t *handle = ext4_journal_current_handle();
2816 loff_t new_i_size;
2817 unsigned long start, end;
2818 int write_mode = (int)(unsigned long)fsdata;
2819
2820 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2821 return ext4_write_end(file, mapping, pos,
2822 len, copied, page, fsdata);
2823
2824 trace_ext4_da_write_end(inode, pos, len, copied);
2825 start = pos & (PAGE_CACHE_SIZE - 1);
2826 end = start + copied - 1;
2827
2828 /*
2829 * generic_write_end() will run mark_inode_dirty() if i_size
2830 * changes. So let's piggyback the i_disksize mark_inode_dirty
2831 * into that.
2832 */
2833 new_i_size = pos + copied;
2834 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2835 if (ext4_has_inline_data(inode) ||
2836 ext4_da_should_update_i_disksize(page, end)) {
2837 down_write(&EXT4_I(inode)->i_data_sem);
2838 if (new_i_size > EXT4_I(inode)->i_disksize)
2839 EXT4_I(inode)->i_disksize = new_i_size;
2840 up_write(&EXT4_I(inode)->i_data_sem);
2841 /* We need to mark inode dirty even if
2842 * new_i_size is less that inode->i_size
2843 * bu greater than i_disksize.(hint delalloc)
2844 */
2845 ext4_mark_inode_dirty(handle, inode);
2846 }
2847 }
2848
2849 if (write_mode != CONVERT_INLINE_DATA &&
2850 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2851 ext4_has_inline_data(inode))
2852 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2853 page);
2854 else
2855 ret2 = generic_write_end(file, mapping, pos, len, copied,
2856 page, fsdata);
2857
2858 copied = ret2;
2859 if (ret2 < 0)
2860 ret = ret2;
2861 ret2 = ext4_journal_stop(handle);
2862 if (!ret)
2863 ret = ret2;
2864
2865 return ret ? ret : copied;
2866 }
2867
2868 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2869 {
2870 /*
2871 * Drop reserved blocks
2872 */
2873 BUG_ON(!PageLocked(page));
2874 if (!page_has_buffers(page))
2875 goto out;
2876
2877 ext4_da_page_release_reservation(page, offset);
2878
2879 out:
2880 ext4_invalidatepage(page, offset);
2881
2882 return;
2883 }
2884
2885 /*
2886 * Force all delayed allocation blocks to be allocated for a given inode.
2887 */
2888 int ext4_alloc_da_blocks(struct inode *inode)
2889 {
2890 trace_ext4_alloc_da_blocks(inode);
2891
2892 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2893 !EXT4_I(inode)->i_reserved_meta_blocks)
2894 return 0;
2895
2896 /*
2897 * We do something simple for now. The filemap_flush() will
2898 * also start triggering a write of the data blocks, which is
2899 * not strictly speaking necessary (and for users of
2900 * laptop_mode, not even desirable). However, to do otherwise
2901 * would require replicating code paths in:
2902 *
2903 * ext4_da_writepages() ->
2904 * write_cache_pages() ---> (via passed in callback function)
2905 * __mpage_da_writepage() -->
2906 * mpage_add_bh_to_extent()
2907 * mpage_da_map_blocks()
2908 *
2909 * The problem is that write_cache_pages(), located in
2910 * mm/page-writeback.c, marks pages clean in preparation for
2911 * doing I/O, which is not desirable if we're not planning on
2912 * doing I/O at all.
2913 *
2914 * We could call write_cache_pages(), and then redirty all of
2915 * the pages by calling redirty_page_for_writepage() but that
2916 * would be ugly in the extreme. So instead we would need to
2917 * replicate parts of the code in the above functions,
2918 * simplifying them because we wouldn't actually intend to
2919 * write out the pages, but rather only collect contiguous
2920 * logical block extents, call the multi-block allocator, and
2921 * then update the buffer heads with the block allocations.
2922 *
2923 * For now, though, we'll cheat by calling filemap_flush(),
2924 * which will map the blocks, and start the I/O, but not
2925 * actually wait for the I/O to complete.
2926 */
2927 return filemap_flush(inode->i_mapping);
2928 }
2929
2930 /*
2931 * bmap() is special. It gets used by applications such as lilo and by
2932 * the swapper to find the on-disk block of a specific piece of data.
2933 *
2934 * Naturally, this is dangerous if the block concerned is still in the
2935 * journal. If somebody makes a swapfile on an ext4 data-journaling
2936 * filesystem and enables swap, then they may get a nasty shock when the
2937 * data getting swapped to that swapfile suddenly gets overwritten by
2938 * the original zero's written out previously to the journal and
2939 * awaiting writeback in the kernel's buffer cache.
2940 *
2941 * So, if we see any bmap calls here on a modified, data-journaled file,
2942 * take extra steps to flush any blocks which might be in the cache.
2943 */
2944 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2945 {
2946 struct inode *inode = mapping->host;
2947 journal_t *journal;
2948 int err;
2949
2950 /*
2951 * We can get here for an inline file via the FIBMAP ioctl
2952 */
2953 if (ext4_has_inline_data(inode))
2954 return 0;
2955
2956 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2957 test_opt(inode->i_sb, DELALLOC)) {
2958 /*
2959 * With delalloc we want to sync the file
2960 * so that we can make sure we allocate
2961 * blocks for file
2962 */
2963 filemap_write_and_wait(mapping);
2964 }
2965
2966 if (EXT4_JOURNAL(inode) &&
2967 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2968 /*
2969 * This is a REALLY heavyweight approach, but the use of
2970 * bmap on dirty files is expected to be extremely rare:
2971 * only if we run lilo or swapon on a freshly made file
2972 * do we expect this to happen.
2973 *
2974 * (bmap requires CAP_SYS_RAWIO so this does not
2975 * represent an unprivileged user DOS attack --- we'd be
2976 * in trouble if mortal users could trigger this path at
2977 * will.)
2978 *
2979 * NB. EXT4_STATE_JDATA is not set on files other than
2980 * regular files. If somebody wants to bmap a directory
2981 * or symlink and gets confused because the buffer
2982 * hasn't yet been flushed to disk, they deserve
2983 * everything they get.
2984 */
2985
2986 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2987 journal = EXT4_JOURNAL(inode);
2988 jbd2_journal_lock_updates(journal);
2989 err = jbd2_journal_flush(journal);
2990 jbd2_journal_unlock_updates(journal);
2991
2992 if (err)
2993 return 0;
2994 }
2995
2996 return generic_block_bmap(mapping, block, ext4_get_block);
2997 }
2998
2999 static int ext4_readpage(struct file *file, struct page *page)
3000 {
3001 int ret = -EAGAIN;
3002 struct inode *inode = page->mapping->host;
3003
3004 trace_ext4_readpage(page);
3005
3006 if (ext4_has_inline_data(inode))
3007 ret = ext4_readpage_inline(inode, page);
3008
3009 if (ret == -EAGAIN)
3010 return mpage_readpage(page, ext4_get_block);
3011
3012 return ret;
3013 }
3014
3015 static int
3016 ext4_readpages(struct file *file, struct address_space *mapping,
3017 struct list_head *pages, unsigned nr_pages)
3018 {
3019 struct inode *inode = mapping->host;
3020
3021 /* If the file has inline data, no need to do readpages. */
3022 if (ext4_has_inline_data(inode))
3023 return 0;
3024
3025 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3026 }
3027
3028 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3029 {
3030 trace_ext4_invalidatepage(page, offset);
3031
3032 /* No journalling happens on data buffers when this function is used */
3033 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3034
3035 block_invalidatepage(page, offset);
3036 }
3037
3038 static int __ext4_journalled_invalidatepage(struct page *page,
3039 unsigned long offset)
3040 {
3041 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3042
3043 trace_ext4_journalled_invalidatepage(page, offset);
3044
3045 /*
3046 * If it's a full truncate we just forget about the pending dirtying
3047 */
3048 if (offset == 0)
3049 ClearPageChecked(page);
3050
3051 return jbd2_journal_invalidatepage(journal, page, offset);
3052 }
3053
3054 /* Wrapper for aops... */
3055 static void ext4_journalled_invalidatepage(struct page *page,
3056 unsigned long offset)
3057 {
3058 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3059 }
3060
3061 static int ext4_releasepage(struct page *page, gfp_t wait)
3062 {
3063 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3064
3065 trace_ext4_releasepage(page);
3066
3067 /* Page has dirty journalled data -> cannot release */
3068 if (PageChecked(page))
3069 return 0;
3070 if (journal)
3071 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3072 else
3073 return try_to_free_buffers(page);
3074 }
3075
3076 /*
3077 * ext4_get_block used when preparing for a DIO write or buffer write.
3078 * We allocate an uinitialized extent if blocks haven't been allocated.
3079 * The extent will be converted to initialized after the IO is complete.
3080 */
3081 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3082 struct buffer_head *bh_result, int create)
3083 {
3084 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3085 inode->i_ino, create);
3086 return _ext4_get_block(inode, iblock, bh_result,
3087 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3088 }
3089
3090 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3091 struct buffer_head *bh_result, int create)
3092 {
3093 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3094 inode->i_ino, create);
3095 return _ext4_get_block(inode, iblock, bh_result,
3096 EXT4_GET_BLOCKS_NO_LOCK);
3097 }
3098
3099 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3100 ssize_t size, void *private, int ret,
3101 bool is_async)
3102 {
3103 struct inode *inode = file_inode(iocb->ki_filp);
3104 ext4_io_end_t *io_end = iocb->private;
3105
3106 /* if not async direct IO or dio with 0 bytes write, just return */
3107 if (!io_end || !size)
3108 goto out;
3109
3110 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3111 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3112 iocb->private, io_end->inode->i_ino, iocb, offset,
3113 size);
3114
3115 iocb->private = NULL;
3116
3117 /* if not aio dio with unwritten extents, just free io and return */
3118 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3119 ext4_free_io_end(io_end);
3120 out:
3121 inode_dio_done(inode);
3122 if (is_async)
3123 aio_complete(iocb, ret, 0);
3124 return;
3125 }
3126
3127 io_end->offset = offset;
3128 io_end->size = size;
3129 if (is_async) {
3130 io_end->iocb = iocb;
3131 io_end->result = ret;
3132 }
3133
3134 ext4_add_complete_io(io_end);
3135 }
3136
3137 /*
3138 * For ext4 extent files, ext4 will do direct-io write to holes,
3139 * preallocated extents, and those write extend the file, no need to
3140 * fall back to buffered IO.
3141 *
3142 * For holes, we fallocate those blocks, mark them as uninitialized
3143 * If those blocks were preallocated, we mark sure they are split, but
3144 * still keep the range to write as uninitialized.
3145 *
3146 * The unwritten extents will be converted to written when DIO is completed.
3147 * For async direct IO, since the IO may still pending when return, we
3148 * set up an end_io call back function, which will do the conversion
3149 * when async direct IO completed.
3150 *
3151 * If the O_DIRECT write will extend the file then add this inode to the
3152 * orphan list. So recovery will truncate it back to the original size
3153 * if the machine crashes during the write.
3154 *
3155 */
3156 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3157 const struct iovec *iov, loff_t offset,
3158 unsigned long nr_segs)
3159 {
3160 struct file *file = iocb->ki_filp;
3161 struct inode *inode = file->f_mapping->host;
3162 ssize_t ret;
3163 size_t count = iov_length(iov, nr_segs);
3164 int overwrite = 0;
3165 get_block_t *get_block_func = NULL;
3166 int dio_flags = 0;
3167 loff_t final_size = offset + count;
3168
3169 /* Use the old path for reads and writes beyond i_size. */
3170 if (rw != WRITE || final_size > inode->i_size)
3171 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3172
3173 BUG_ON(iocb->private == NULL);
3174
3175 /* If we do a overwrite dio, i_mutex locking can be released */
3176 overwrite = *((int *)iocb->private);
3177
3178 if (overwrite) {
3179 atomic_inc(&inode->i_dio_count);
3180 down_read(&EXT4_I(inode)->i_data_sem);
3181 mutex_unlock(&inode->i_mutex);
3182 }
3183
3184 /*
3185 * We could direct write to holes and fallocate.
3186 *
3187 * Allocated blocks to fill the hole are marked as
3188 * uninitialized to prevent parallel buffered read to expose
3189 * the stale data before DIO complete the data IO.
3190 *
3191 * As to previously fallocated extents, ext4 get_block will
3192 * just simply mark the buffer mapped but still keep the
3193 * extents uninitialized.
3194 *
3195 * For non AIO case, we will convert those unwritten extents
3196 * to written after return back from blockdev_direct_IO.
3197 *
3198 * For async DIO, the conversion needs to be deferred when the
3199 * IO is completed. The ext4 end_io callback function will be
3200 * called to take care of the conversion work. Here for async
3201 * case, we allocate an io_end structure to hook to the iocb.
3202 */
3203 iocb->private = NULL;
3204 ext4_inode_aio_set(inode, NULL);
3205 if (!is_sync_kiocb(iocb)) {
3206 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3207 if (!io_end) {
3208 ret = -ENOMEM;
3209 goto retake_lock;
3210 }
3211 io_end->flag |= EXT4_IO_END_DIRECT;
3212 iocb->private = io_end;
3213 /*
3214 * we save the io structure for current async direct
3215 * IO, so that later ext4_map_blocks() could flag the
3216 * io structure whether there is a unwritten extents
3217 * needs to be converted when IO is completed.
3218 */
3219 ext4_inode_aio_set(inode, io_end);
3220 }
3221
3222 if (overwrite) {
3223 get_block_func = ext4_get_block_write_nolock;
3224 } else {
3225 get_block_func = ext4_get_block_write;
3226 dio_flags = DIO_LOCKING;
3227 }
3228 ret = __blockdev_direct_IO(rw, iocb, inode,
3229 inode->i_sb->s_bdev, iov,
3230 offset, nr_segs,
3231 get_block_func,
3232 ext4_end_io_dio,
3233 NULL,
3234 dio_flags);
3235
3236 if (iocb->private)
3237 ext4_inode_aio_set(inode, NULL);
3238 /*
3239 * The io_end structure takes a reference to the inode, that
3240 * structure needs to be destroyed and the reference to the
3241 * inode need to be dropped, when IO is complete, even with 0
3242 * byte write, or failed.
3243 *
3244 * In the successful AIO DIO case, the io_end structure will
3245 * be destroyed and the reference to the inode will be dropped
3246 * after the end_io call back function is called.
3247 *
3248 * In the case there is 0 byte write, or error case, since VFS
3249 * direct IO won't invoke the end_io call back function, we
3250 * need to free the end_io structure here.
3251 */
3252 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3253 ext4_free_io_end(iocb->private);
3254 iocb->private = NULL;
3255 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3256 EXT4_STATE_DIO_UNWRITTEN)) {
3257 int err;
3258 /*
3259 * for non AIO case, since the IO is already
3260 * completed, we could do the conversion right here
3261 */
3262 err = ext4_convert_unwritten_extents(inode,
3263 offset, ret);
3264 if (err < 0)
3265 ret = err;
3266 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3267 }
3268
3269 retake_lock:
3270 /* take i_mutex locking again if we do a ovewrite dio */
3271 if (overwrite) {
3272 inode_dio_done(inode);
3273 up_read(&EXT4_I(inode)->i_data_sem);
3274 mutex_lock(&inode->i_mutex);
3275 }
3276
3277 return ret;
3278 }
3279
3280 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3281 const struct iovec *iov, loff_t offset,
3282 unsigned long nr_segs)
3283 {
3284 struct file *file = iocb->ki_filp;
3285 struct inode *inode = file->f_mapping->host;
3286 ssize_t ret;
3287
3288 /*
3289 * If we are doing data journalling we don't support O_DIRECT
3290 */
3291 if (ext4_should_journal_data(inode))
3292 return 0;
3293
3294 /* Let buffer I/O handle the inline data case. */
3295 if (ext4_has_inline_data(inode))
3296 return 0;
3297
3298 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3299 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3300 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3301 else
3302 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3303 trace_ext4_direct_IO_exit(inode, offset,
3304 iov_length(iov, nr_segs), rw, ret);
3305 return ret;
3306 }
3307
3308 /*
3309 * Pages can be marked dirty completely asynchronously from ext4's journalling
3310 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3311 * much here because ->set_page_dirty is called under VFS locks. The page is
3312 * not necessarily locked.
3313 *
3314 * We cannot just dirty the page and leave attached buffers clean, because the
3315 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3316 * or jbddirty because all the journalling code will explode.
3317 *
3318 * So what we do is to mark the page "pending dirty" and next time writepage
3319 * is called, propagate that into the buffers appropriately.
3320 */
3321 static int ext4_journalled_set_page_dirty(struct page *page)
3322 {
3323 SetPageChecked(page);
3324 return __set_page_dirty_nobuffers(page);
3325 }
3326
3327 static const struct address_space_operations ext4_aops = {
3328 .readpage = ext4_readpage,
3329 .readpages = ext4_readpages,
3330 .writepage = ext4_writepage,
3331 .write_begin = ext4_write_begin,
3332 .write_end = ext4_write_end,
3333 .bmap = ext4_bmap,
3334 .invalidatepage = ext4_invalidatepage,
3335 .releasepage = ext4_releasepage,
3336 .direct_IO = ext4_direct_IO,
3337 .migratepage = buffer_migrate_page,
3338 .is_partially_uptodate = block_is_partially_uptodate,
3339 .error_remove_page = generic_error_remove_page,
3340 };
3341
3342 static const struct address_space_operations ext4_journalled_aops = {
3343 .readpage = ext4_readpage,
3344 .readpages = ext4_readpages,
3345 .writepage = ext4_writepage,
3346 .write_begin = ext4_write_begin,
3347 .write_end = ext4_journalled_write_end,
3348 .set_page_dirty = ext4_journalled_set_page_dirty,
3349 .bmap = ext4_bmap,
3350 .invalidatepage = ext4_journalled_invalidatepage,
3351 .releasepage = ext4_releasepage,
3352 .direct_IO = ext4_direct_IO,
3353 .is_partially_uptodate = block_is_partially_uptodate,
3354 .error_remove_page = generic_error_remove_page,
3355 };
3356
3357 static const struct address_space_operations ext4_da_aops = {
3358 .readpage = ext4_readpage,
3359 .readpages = ext4_readpages,
3360 .writepage = ext4_writepage,
3361 .writepages = ext4_da_writepages,
3362 .write_begin = ext4_da_write_begin,
3363 .write_end = ext4_da_write_end,
3364 .bmap = ext4_bmap,
3365 .invalidatepage = ext4_da_invalidatepage,
3366 .releasepage = ext4_releasepage,
3367 .direct_IO = ext4_direct_IO,
3368 .migratepage = buffer_migrate_page,
3369 .is_partially_uptodate = block_is_partially_uptodate,
3370 .error_remove_page = generic_error_remove_page,
3371 };
3372
3373 void ext4_set_aops(struct inode *inode)
3374 {
3375 switch (ext4_inode_journal_mode(inode)) {
3376 case EXT4_INODE_ORDERED_DATA_MODE:
3377 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3378 break;
3379 case EXT4_INODE_WRITEBACK_DATA_MODE:
3380 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3381 break;
3382 case EXT4_INODE_JOURNAL_DATA_MODE:
3383 inode->i_mapping->a_ops = &ext4_journalled_aops;
3384 return;
3385 default:
3386 BUG();
3387 }
3388 if (test_opt(inode->i_sb, DELALLOC))
3389 inode->i_mapping->a_ops = &ext4_da_aops;
3390 else
3391 inode->i_mapping->a_ops = &ext4_aops;
3392 }
3393
3394
3395 /*
3396 * ext4_discard_partial_page_buffers()
3397 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3398 * This function finds and locks the page containing the offset
3399 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3400 * Calling functions that already have the page locked should call
3401 * ext4_discard_partial_page_buffers_no_lock directly.
3402 */
3403 int ext4_discard_partial_page_buffers(handle_t *handle,
3404 struct address_space *mapping, loff_t from,
3405 loff_t length, int flags)
3406 {
3407 struct inode *inode = mapping->host;
3408 struct page *page;
3409 int err = 0;
3410
3411 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3412 mapping_gfp_mask(mapping) & ~__GFP_FS);
3413 if (!page)
3414 return -ENOMEM;
3415
3416 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3417 from, length, flags);
3418
3419 unlock_page(page);
3420 page_cache_release(page);
3421 return err;
3422 }
3423
3424 /*
3425 * ext4_discard_partial_page_buffers_no_lock()
3426 * Zeros a page range of length 'length' starting from offset 'from'.
3427 * Buffer heads that correspond to the block aligned regions of the
3428 * zeroed range will be unmapped. Unblock aligned regions
3429 * will have the corresponding buffer head mapped if needed so that
3430 * that region of the page can be updated with the partial zero out.
3431 *
3432 * This function assumes that the page has already been locked. The
3433 * The range to be discarded must be contained with in the given page.
3434 * If the specified range exceeds the end of the page it will be shortened
3435 * to the end of the page that corresponds to 'from'. This function is
3436 * appropriate for updating a page and it buffer heads to be unmapped and
3437 * zeroed for blocks that have been either released, or are going to be
3438 * released.
3439 *
3440 * handle: The journal handle
3441 * inode: The files inode
3442 * page: A locked page that contains the offset "from"
3443 * from: The starting byte offset (from the beginning of the file)
3444 * to begin discarding
3445 * len: The length of bytes to discard
3446 * flags: Optional flags that may be used:
3447 *
3448 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3449 * Only zero the regions of the page whose buffer heads
3450 * have already been unmapped. This flag is appropriate
3451 * for updating the contents of a page whose blocks may
3452 * have already been released, and we only want to zero
3453 * out the regions that correspond to those released blocks.
3454 *
3455 * Returns zero on success or negative on failure.
3456 */
3457 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3458 struct inode *inode, struct page *page, loff_t from,
3459 loff_t length, int flags)
3460 {
3461 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3462 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3463 unsigned int blocksize, max, pos;
3464 ext4_lblk_t iblock;
3465 struct buffer_head *bh;
3466 int err = 0;
3467
3468 blocksize = inode->i_sb->s_blocksize;
3469 max = PAGE_CACHE_SIZE - offset;
3470
3471 if (index != page->index)
3472 return -EINVAL;
3473
3474 /*
3475 * correct length if it does not fall between
3476 * 'from' and the end of the page
3477 */
3478 if (length > max || length < 0)
3479 length = max;
3480
3481 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3482
3483 if (!page_has_buffers(page))
3484 create_empty_buffers(page, blocksize, 0);
3485
3486 /* Find the buffer that contains "offset" */
3487 bh = page_buffers(page);
3488 pos = blocksize;
3489 while (offset >= pos) {
3490 bh = bh->b_this_page;
3491 iblock++;
3492 pos += blocksize;
3493 }
3494
3495 pos = offset;
3496 while (pos < offset + length) {
3497 unsigned int end_of_block, range_to_discard;
3498
3499 err = 0;
3500
3501 /* The length of space left to zero and unmap */
3502 range_to_discard = offset + length - pos;
3503
3504 /* The length of space until the end of the block */
3505 end_of_block = blocksize - (pos & (blocksize-1));
3506
3507 /*
3508 * Do not unmap or zero past end of block
3509 * for this buffer head
3510 */
3511 if (range_to_discard > end_of_block)
3512 range_to_discard = end_of_block;
3513
3514
3515 /*
3516 * Skip this buffer head if we are only zeroing unampped
3517 * regions of the page
3518 */
3519 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3520 buffer_mapped(bh))
3521 goto next;
3522
3523 /* If the range is block aligned, unmap */
3524 if (range_to_discard == blocksize) {
3525 clear_buffer_dirty(bh);
3526 bh->b_bdev = NULL;
3527 clear_buffer_mapped(bh);
3528 clear_buffer_req(bh);
3529 clear_buffer_new(bh);
3530 clear_buffer_delay(bh);
3531 clear_buffer_unwritten(bh);
3532 clear_buffer_uptodate(bh);
3533 zero_user(page, pos, range_to_discard);
3534 BUFFER_TRACE(bh, "Buffer discarded");
3535 goto next;
3536 }
3537
3538 /*
3539 * If this block is not completely contained in the range
3540 * to be discarded, then it is not going to be released. Because
3541 * we need to keep this block, we need to make sure this part
3542 * of the page is uptodate before we modify it by writeing
3543 * partial zeros on it.
3544 */
3545 if (!buffer_mapped(bh)) {
3546 /*
3547 * Buffer head must be mapped before we can read
3548 * from the block
3549 */
3550 BUFFER_TRACE(bh, "unmapped");
3551 ext4_get_block(inode, iblock, bh, 0);
3552 /* unmapped? It's a hole - nothing to do */
3553 if (!buffer_mapped(bh)) {
3554 BUFFER_TRACE(bh, "still unmapped");
3555 goto next;
3556 }
3557 }
3558
3559 /* Ok, it's mapped. Make sure it's up-to-date */
3560 if (PageUptodate(page))
3561 set_buffer_uptodate(bh);
3562
3563 if (!buffer_uptodate(bh)) {
3564 err = -EIO;
3565 ll_rw_block(READ, 1, &bh);
3566 wait_on_buffer(bh);
3567 /* Uhhuh. Read error. Complain and punt.*/
3568 if (!buffer_uptodate(bh))
3569 goto next;
3570 }
3571
3572 if (ext4_should_journal_data(inode)) {
3573 BUFFER_TRACE(bh, "get write access");
3574 err = ext4_journal_get_write_access(handle, bh);
3575 if (err)
3576 goto next;
3577 }
3578
3579 zero_user(page, pos, range_to_discard);
3580
3581 err = 0;
3582 if (ext4_should_journal_data(inode)) {
3583 err = ext4_handle_dirty_metadata(handle, inode, bh);
3584 } else
3585 mark_buffer_dirty(bh);
3586
3587 BUFFER_TRACE(bh, "Partial buffer zeroed");
3588 next:
3589 bh = bh->b_this_page;
3590 iblock++;
3591 pos += range_to_discard;
3592 }
3593
3594 return err;
3595 }
3596
3597 int ext4_can_truncate(struct inode *inode)
3598 {
3599 if (S_ISREG(inode->i_mode))
3600 return 1;
3601 if (S_ISDIR(inode->i_mode))
3602 return 1;
3603 if (S_ISLNK(inode->i_mode))
3604 return !ext4_inode_is_fast_symlink(inode);
3605 return 0;
3606 }
3607
3608 /*
3609 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3610 * associated with the given offset and length
3611 *
3612 * @inode: File inode
3613 * @offset: The offset where the hole will begin
3614 * @len: The length of the hole
3615 *
3616 * Returns: 0 on success or negative on failure
3617 */
3618
3619 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3620 {
3621 #if 0
3622 struct inode *inode = file_inode(file);
3623 struct super_block *sb = inode->i_sb;
3624 ext4_lblk_t first_block, stop_block;
3625 struct address_space *mapping = inode->i_mapping;
3626 loff_t first_page, last_page, page_len;
3627 loff_t first_page_offset, last_page_offset;
3628 handle_t *handle;
3629 unsigned int credits;
3630 int ret = 0;
3631
3632 if (!S_ISREG(inode->i_mode))
3633 return -EOPNOTSUPP;
3634
3635 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3636 /* TODO: Add support for bigalloc file systems */
3637 return -EOPNOTSUPP;
3638 }
3639
3640 trace_ext4_punch_hole(inode, offset, length);
3641
3642 /*
3643 * Write out all dirty pages to avoid race conditions
3644 * Then release them.
3645 */
3646 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3647 ret = filemap_write_and_wait_range(mapping, offset,
3648 offset + length - 1);
3649 if (ret)
3650 return ret;
3651 }
3652
3653 mutex_lock(&inode->i_mutex);
3654 /* It's not possible punch hole on append only file */
3655 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3656 ret = -EPERM;
3657 goto out_mutex;
3658 }
3659 if (IS_SWAPFILE(inode)) {
3660 ret = -ETXTBSY;
3661 goto out_mutex;
3662 }
3663
3664 /* No need to punch hole beyond i_size */
3665 if (offset >= inode->i_size)
3666 goto out_mutex;
3667
3668 /*
3669 * If the hole extends beyond i_size, set the hole
3670 * to end after the page that contains i_size
3671 */
3672 if (offset + length > inode->i_size) {
3673 length = inode->i_size +
3674 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3675 offset;
3676 }
3677
3678 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3679 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3680
3681 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3682 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3683
3684 /* Now release the pages */
3685 if (last_page_offset > first_page_offset) {
3686 truncate_pagecache_range(inode, first_page_offset,
3687 last_page_offset - 1);
3688 }
3689
3690 /* Wait all existing dio workers, newcomers will block on i_mutex */
3691 ext4_inode_block_unlocked_dio(inode);
3692 ret = ext4_flush_unwritten_io(inode);
3693 if (ret)
3694 goto out_dio;
3695 inode_dio_wait(inode);
3696
3697 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3698 credits = ext4_writepage_trans_blocks(inode);
3699 else
3700 credits = ext4_blocks_for_truncate(inode);
3701 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3702 if (IS_ERR(handle)) {
3703 ret = PTR_ERR(handle);
3704 ext4_std_error(sb, ret);
3705 goto out_dio;
3706 }
3707
3708 /*
3709 * Now we need to zero out the non-page-aligned data in the
3710 * pages at the start and tail of the hole, and unmap the
3711 * buffer heads for the block aligned regions of the page that
3712 * were completely zeroed.
3713 */
3714 if (first_page > last_page) {
3715 /*
3716 * If the file space being truncated is contained
3717 * within a page just zero out and unmap the middle of
3718 * that page
3719 */
3720 ret = ext4_discard_partial_page_buffers(handle,
3721 mapping, offset, length, 0);
3722
3723 if (ret)
3724 goto out_stop;
3725 } else {
3726 /*
3727 * zero out and unmap the partial page that contains
3728 * the start of the hole
3729 */
3730 page_len = first_page_offset - offset;
3731 if (page_len > 0) {
3732 ret = ext4_discard_partial_page_buffers(handle, mapping,
3733 offset, page_len, 0);
3734 if (ret)
3735 goto out_stop;
3736 }
3737
3738 /*
3739 * zero out and unmap the partial page that contains
3740 * the end of the hole
3741 */
3742 page_len = offset + length - last_page_offset;
3743 if (page_len > 0) {
3744 ret = ext4_discard_partial_page_buffers(handle, mapping,
3745 last_page_offset, page_len, 0);
3746 if (ret)
3747 goto out_stop;
3748 }
3749 }
3750
3751 /*
3752 * If i_size is contained in the last page, we need to
3753 * unmap and zero the partial page after i_size
3754 */
3755 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3756 inode->i_size % PAGE_CACHE_SIZE != 0) {
3757 page_len = PAGE_CACHE_SIZE -
3758 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3759
3760 if (page_len > 0) {
3761 ret = ext4_discard_partial_page_buffers(handle,
3762 mapping, inode->i_size, page_len, 0);
3763
3764 if (ret)
3765 goto out_stop;
3766 }
3767 }
3768
3769 first_block = (offset + sb->s_blocksize - 1) >>
3770 EXT4_BLOCK_SIZE_BITS(sb);
3771 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3772
3773 /* If there are no blocks to remove, return now */
3774 if (first_block >= stop_block)
3775 goto out_stop;
3776
3777 down_write(&EXT4_I(inode)->i_data_sem);
3778 ext4_discard_preallocations(inode);
3779
3780 ret = ext4_es_remove_extent(inode, first_block,
3781 stop_block - first_block);
3782 if (ret) {
3783 up_write(&EXT4_I(inode)->i_data_sem);
3784 goto out_stop;
3785 }
3786
3787 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3788 ret = ext4_ext_remove_space(inode, first_block,
3789 stop_block - 1);
3790 else
3791 ret = ext4_free_hole_blocks(handle, inode, first_block,
3792 stop_block);
3793
3794 ext4_discard_preallocations(inode);
3795 up_write(&EXT4_I(inode)->i_data_sem);
3796 if (IS_SYNC(inode))
3797 ext4_handle_sync(handle);
3798 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3799 ext4_mark_inode_dirty(handle, inode);
3800 out_stop:
3801 ext4_journal_stop(handle);
3802 out_dio:
3803 ext4_inode_resume_unlocked_dio(inode);
3804 out_mutex:
3805 mutex_unlock(&inode->i_mutex);
3806 return ret;
3807 #else
3808 /*
3809 * Disabled as per b/28760453
3810 */
3811 return -EOPNOTSUPP;
3812 #endif
3813 }
3814
3815 /*
3816 * ext4_truncate()
3817 *
3818 * We block out ext4_get_block() block instantiations across the entire
3819 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3820 * simultaneously on behalf of the same inode.
3821 *
3822 * As we work through the truncate and commit bits of it to the journal there
3823 * is one core, guiding principle: the file's tree must always be consistent on
3824 * disk. We must be able to restart the truncate after a crash.
3825 *
3826 * The file's tree may be transiently inconsistent in memory (although it
3827 * probably isn't), but whenever we close off and commit a journal transaction,
3828 * the contents of (the filesystem + the journal) must be consistent and
3829 * restartable. It's pretty simple, really: bottom up, right to left (although
3830 * left-to-right works OK too).
3831 *
3832 * Note that at recovery time, journal replay occurs *before* the restart of
3833 * truncate against the orphan inode list.
3834 *
3835 * The committed inode has the new, desired i_size (which is the same as
3836 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3837 * that this inode's truncate did not complete and it will again call
3838 * ext4_truncate() to have another go. So there will be instantiated blocks
3839 * to the right of the truncation point in a crashed ext4 filesystem. But
3840 * that's fine - as long as they are linked from the inode, the post-crash
3841 * ext4_truncate() run will find them and release them.
3842 */
3843 void ext4_truncate(struct inode *inode)
3844 {
3845 struct ext4_inode_info *ei = EXT4_I(inode);
3846 unsigned int credits;
3847 handle_t *handle;
3848 struct address_space *mapping = inode->i_mapping;
3849 loff_t page_len;
3850
3851 /*
3852 * There is a possibility that we're either freeing the inode
3853 * or it completely new indode. In those cases we might not
3854 * have i_mutex locked because it's not necessary.
3855 */
3856 if (!(inode->i_state & (I_NEW|I_FREEING)))
3857 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3858 trace_ext4_truncate_enter(inode);
3859
3860 if (!ext4_can_truncate(inode))
3861 return;
3862
3863 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3864
3865 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3866 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3867
3868 if (ext4_has_inline_data(inode)) {
3869 int has_inline = 1;
3870
3871 ext4_inline_data_truncate(inode, &has_inline);
3872 if (has_inline)
3873 return;
3874 }
3875
3876 /*
3877 * finish any pending end_io work so we won't run the risk of
3878 * converting any truncated blocks to initialized later
3879 */
3880 ext4_flush_unwritten_io(inode);
3881
3882 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3883 credits = ext4_writepage_trans_blocks(inode);
3884 else
3885 credits = ext4_blocks_for_truncate(inode);
3886
3887 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3888 if (IS_ERR(handle)) {
3889 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3890 return;
3891 }
3892
3893 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3894 page_len = PAGE_CACHE_SIZE -
3895 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3896
3897 if (ext4_discard_partial_page_buffers(handle,
3898 mapping, inode->i_size, page_len, 0))
3899 goto out_stop;
3900 }
3901
3902 /*
3903 * We add the inode to the orphan list, so that if this
3904 * truncate spans multiple transactions, and we crash, we will
3905 * resume the truncate when the filesystem recovers. It also
3906 * marks the inode dirty, to catch the new size.
3907 *
3908 * Implication: the file must always be in a sane, consistent
3909 * truncatable state while each transaction commits.
3910 */
3911 if (ext4_orphan_add(handle, inode))
3912 goto out_stop;
3913
3914 down_write(&EXT4_I(inode)->i_data_sem);
3915
3916 ext4_discard_preallocations(inode);
3917
3918 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3919 ext4_ext_truncate(handle, inode);
3920 else
3921 ext4_ind_truncate(handle, inode);
3922
3923 up_write(&ei->i_data_sem);
3924
3925 if (IS_SYNC(inode))
3926 ext4_handle_sync(handle);
3927
3928 out_stop:
3929 /*
3930 * If this was a simple ftruncate() and the file will remain alive,
3931 * then we need to clear up the orphan record which we created above.
3932 * However, if this was a real unlink then we were called by
3933 * ext4_delete_inode(), and we allow that function to clean up the
3934 * orphan info for us.
3935 */
3936 if (inode->i_nlink)
3937 ext4_orphan_del(handle, inode);
3938
3939 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3940 ext4_mark_inode_dirty(handle, inode);
3941 ext4_journal_stop(handle);
3942
3943 trace_ext4_truncate_exit(inode);
3944 }
3945
3946 /*
3947 * ext4_get_inode_loc returns with an extra refcount against the inode's
3948 * underlying buffer_head on success. If 'in_mem' is true, we have all
3949 * data in memory that is needed to recreate the on-disk version of this
3950 * inode.
3951 */
3952 static int __ext4_get_inode_loc(struct inode *inode,
3953 struct ext4_iloc *iloc, int in_mem)
3954 {
3955 struct ext4_group_desc *gdp;
3956 struct buffer_head *bh;
3957 struct super_block *sb = inode->i_sb;
3958 ext4_fsblk_t block;
3959 int inodes_per_block, inode_offset;
3960
3961 iloc->bh = NULL;
3962 if (!ext4_valid_inum(sb, inode->i_ino))
3963 return -EIO;
3964
3965 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3966 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3967 if (!gdp)
3968 return -EIO;
3969
3970 /*
3971 * Figure out the offset within the block group inode table
3972 */
3973 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3974 inode_offset = ((inode->i_ino - 1) %
3975 EXT4_INODES_PER_GROUP(sb));
3976 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3977 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3978
3979 bh = sb_getblk(sb, block);
3980 if (unlikely(!bh))
3981 return -ENOMEM;
3982 if (!buffer_uptodate(bh)) {
3983 lock_buffer(bh);
3984
3985 /*
3986 * If the buffer has the write error flag, we have failed
3987 * to write out another inode in the same block. In this
3988 * case, we don't have to read the block because we may
3989 * read the old inode data successfully.
3990 */
3991 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3992 set_buffer_uptodate(bh);
3993
3994 if (buffer_uptodate(bh)) {
3995 /* someone brought it uptodate while we waited */
3996 unlock_buffer(bh);
3997 goto has_buffer;
3998 }
3999
4000 /*
4001 * If we have all information of the inode in memory and this
4002 * is the only valid inode in the block, we need not read the
4003 * block.
4004 */
4005 if (in_mem) {
4006 struct buffer_head *bitmap_bh;
4007 int i, start;
4008
4009 start = inode_offset & ~(inodes_per_block - 1);
4010
4011 /* Is the inode bitmap in cache? */
4012 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4013 if (unlikely(!bitmap_bh))
4014 goto make_io;
4015
4016 /*
4017 * If the inode bitmap isn't in cache then the
4018 * optimisation may end up performing two reads instead
4019 * of one, so skip it.
4020 */
4021 if (!buffer_uptodate(bitmap_bh)) {
4022 brelse(bitmap_bh);
4023 goto make_io;
4024 }
4025 for (i = start; i < start + inodes_per_block; i++) {
4026 if (i == inode_offset)
4027 continue;
4028 if (ext4_test_bit(i, bitmap_bh->b_data))
4029 break;
4030 }
4031 brelse(bitmap_bh);
4032 if (i == start + inodes_per_block) {
4033 /* all other inodes are free, so skip I/O */
4034 memset(bh->b_data, 0, bh->b_size);
4035 set_buffer_uptodate(bh);
4036 unlock_buffer(bh);
4037 goto has_buffer;
4038 }
4039 }
4040
4041 make_io:
4042 /*
4043 * If we need to do any I/O, try to pre-readahead extra
4044 * blocks from the inode table.
4045 */
4046 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4047 ext4_fsblk_t b, end, table;
4048 unsigned num;
4049 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4050
4051 table = ext4_inode_table(sb, gdp);
4052 /* s_inode_readahead_blks is always a power of 2 */
4053 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4054 if (table > b)
4055 b = table;
4056 end = b + ra_blks;
4057 num = EXT4_INODES_PER_GROUP(sb);
4058 if (ext4_has_group_desc_csum(sb))
4059 num -= ext4_itable_unused_count(sb, gdp);
4060 table += num / inodes_per_block;
4061 if (end > table)
4062 end = table;
4063 while (b <= end)
4064 sb_breadahead(sb, b++);
4065 }
4066
4067 /*
4068 * There are other valid inodes in the buffer, this inode
4069 * has in-inode xattrs, or we don't have this inode in memory.
4070 * Read the block from disk.
4071 */
4072 trace_ext4_load_inode(inode);
4073 get_bh(bh);
4074 bh->b_end_io = end_buffer_read_sync;
4075 #ifdef FEATURE_STORAGE_META_LOG
4076 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
4077 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_READ_CNT);
4078 #endif
4079 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4080 wait_on_buffer(bh);
4081 if (!buffer_uptodate(bh)) {
4082 EXT4_ERROR_INODE_BLOCK(inode, block,
4083 "unable to read itable block");
4084 brelse(bh);
4085 return -EIO;
4086 }
4087 }
4088 has_buffer:
4089 iloc->bh = bh;
4090 return 0;
4091 }
4092
4093 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4094 {
4095 /* We have all inode data except xattrs in memory here. */
4096 return __ext4_get_inode_loc(inode, iloc,
4097 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4098 }
4099
4100 void ext4_set_inode_flags(struct inode *inode)
4101 {
4102 unsigned int flags = EXT4_I(inode)->i_flags;
4103 unsigned int new_fl = 0;
4104
4105 if (flags & EXT4_SYNC_FL)
4106 new_fl |= S_SYNC;
4107 if (flags & EXT4_APPEND_FL)
4108 new_fl |= S_APPEND;
4109 if (flags & EXT4_IMMUTABLE_FL)
4110 new_fl |= S_IMMUTABLE;
4111 if (flags & EXT4_NOATIME_FL)
4112 new_fl |= S_NOATIME;
4113 if (flags & EXT4_DIRSYNC_FL)
4114 new_fl |= S_DIRSYNC;
4115 set_mask_bits(&inode->i_flags,
4116 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4117 }
4118
4119 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4120 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4121 {
4122 unsigned int vfs_fl;
4123 unsigned long old_fl, new_fl;
4124
4125 do {
4126 vfs_fl = ei->vfs_inode.i_flags;
4127 old_fl = ei->i_flags;
4128 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4129 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4130 EXT4_DIRSYNC_FL);
4131 if (vfs_fl & S_SYNC)
4132 new_fl |= EXT4_SYNC_FL;
4133 if (vfs_fl & S_APPEND)
4134 new_fl |= EXT4_APPEND_FL;
4135 if (vfs_fl & S_IMMUTABLE)
4136 new_fl |= EXT4_IMMUTABLE_FL;
4137 if (vfs_fl & S_NOATIME)
4138 new_fl |= EXT4_NOATIME_FL;
4139 if (vfs_fl & S_DIRSYNC)
4140 new_fl |= EXT4_DIRSYNC_FL;
4141 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4142 }
4143
4144 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4145 struct ext4_inode_info *ei)
4146 {
4147 blkcnt_t i_blocks ;
4148 struct inode *inode = &(ei->vfs_inode);
4149 struct super_block *sb = inode->i_sb;
4150
4151 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4152 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4153 /* we are using combined 48 bit field */
4154 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4155 le32_to_cpu(raw_inode->i_blocks_lo);
4156 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4157 /* i_blocks represent file system block size */
4158 return i_blocks << (inode->i_blkbits - 9);
4159 } else {
4160 return i_blocks;
4161 }
4162 } else {
4163 return le32_to_cpu(raw_inode->i_blocks_lo);
4164 }
4165 }
4166
4167 static inline void ext4_iget_extra_inode(struct inode *inode,
4168 struct ext4_inode *raw_inode,
4169 struct ext4_inode_info *ei)
4170 {
4171 __le32 *magic = (void *)raw_inode +
4172 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4173 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4174 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4175 ext4_find_inline_data_nolock(inode);
4176 } else
4177 EXT4_I(inode)->i_inline_off = 0;
4178 }
4179
4180 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4181 {
4182 struct ext4_iloc iloc;
4183 struct ext4_inode *raw_inode;
4184 struct ext4_inode_info *ei;
4185 struct inode *inode;
4186 journal_t *journal = EXT4_SB(sb)->s_journal;
4187 long ret;
4188 int block;
4189 uid_t i_uid;
4190 gid_t i_gid;
4191
4192 inode = iget_locked(sb, ino);
4193 if (!inode)
4194 return ERR_PTR(-ENOMEM);
4195 if (!(inode->i_state & I_NEW))
4196 return inode;
4197
4198 ei = EXT4_I(inode);
4199 iloc.bh = NULL;
4200
4201 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4202 if (ret < 0)
4203 goto bad_inode;
4204 raw_inode = ext4_raw_inode(&iloc);
4205
4206 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4207 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4208 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4209 EXT4_INODE_SIZE(inode->i_sb)) {
4210 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4211 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4212 EXT4_INODE_SIZE(inode->i_sb));
4213 ret = -EIO;
4214 goto bad_inode;
4215 }
4216 } else
4217 ei->i_extra_isize = 0;
4218
4219 /* Precompute checksum seed for inode metadata */
4220 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4221 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4222 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4223 __u32 csum;
4224 __le32 inum = cpu_to_le32(inode->i_ino);
4225 __le32 gen = raw_inode->i_generation;
4226 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4227 sizeof(inum));
4228 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4229 sizeof(gen));
4230 }
4231
4232 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4233 EXT4_ERROR_INODE(inode, "checksum invalid");
4234 ret = -EIO;
4235 goto bad_inode;
4236 }
4237
4238 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4239 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4240 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4241 if (!(test_opt(inode->i_sb, NO_UID32))) {
4242 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4243 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4244 }
4245 i_uid_write(inode, i_uid);
4246 i_gid_write(inode, i_gid);
4247 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4248
4249 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4250 ei->i_inline_off = 0;
4251 ei->i_dir_start_lookup = 0;
4252 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4253 /* We now have enough fields to check if the inode was active or not.
4254 * This is needed because nfsd might try to access dead inodes
4255 * the test is that same one that e2fsck uses
4256 * NeilBrown 1999oct15
4257 */
4258 if (inode->i_nlink == 0) {
4259 if ((inode->i_mode == 0 ||
4260 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4261 ino != EXT4_BOOT_LOADER_INO) {
4262 /* this inode is deleted */
4263 ret = -ESTALE;
4264 goto bad_inode;
4265 }
4266 /* The only unlinked inodes we let through here have
4267 * valid i_mode and are being read by the orphan
4268 * recovery code: that's fine, we're about to complete
4269 * the process of deleting those.
4270 * OR it is the EXT4_BOOT_LOADER_INO which is
4271 * not initialized on a new filesystem. */
4272 }
4273 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4274 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4275 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4276 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4277 ei->i_file_acl |=
4278 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4279 inode->i_size = ext4_isize(raw_inode);
4280 ei->i_disksize = inode->i_size;
4281 #ifdef CONFIG_QUOTA
4282 ei->i_reserved_quota = 0;
4283 #endif
4284 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4285 ei->i_block_group = iloc.block_group;
4286 ei->i_last_alloc_group = ~0;
4287 /*
4288 * NOTE! The in-memory inode i_data array is in little-endian order
4289 * even on big-endian machines: we do NOT byteswap the block numbers!
4290 */
4291 for (block = 0; block < EXT4_N_BLOCKS; block++)
4292 ei->i_data[block] = raw_inode->i_block[block];
4293 INIT_LIST_HEAD(&ei->i_orphan);
4294
4295 /*
4296 * Set transaction id's of transactions that have to be committed
4297 * to finish f[data]sync. We set them to currently running transaction
4298 * as we cannot be sure that the inode or some of its metadata isn't
4299 * part of the transaction - the inode could have been reclaimed and
4300 * now it is reread from disk.
4301 */
4302 if (journal) {
4303 transaction_t *transaction;
4304 tid_t tid;
4305
4306 read_lock(&journal->j_state_lock);
4307 if (journal->j_running_transaction)
4308 transaction = journal->j_running_transaction;
4309 else
4310 transaction = journal->j_committing_transaction;
4311 if (transaction)
4312 tid = transaction->t_tid;
4313 else
4314 tid = journal->j_commit_sequence;
4315 read_unlock(&journal->j_state_lock);
4316 ei->i_sync_tid = tid;
4317 ei->i_datasync_tid = tid;
4318 }
4319
4320 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4321 if (ei->i_extra_isize == 0) {
4322 /* The extra space is currently unused. Use it. */
4323 ei->i_extra_isize = sizeof(struct ext4_inode) -
4324 EXT4_GOOD_OLD_INODE_SIZE;
4325 } else {
4326 ext4_iget_extra_inode(inode, raw_inode, ei);
4327 }
4328 }
4329
4330 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4331 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4332 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4333 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4334
4335 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4336 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4337 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4338 inode->i_version |=
4339 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4340 }
4341
4342 ret = 0;
4343 if (ei->i_file_acl &&
4344 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4345 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4346 ei->i_file_acl);
4347 ret = -EIO;
4348 goto bad_inode;
4349 } else if (!ext4_has_inline_data(inode)) {
4350 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4351 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4352 (S_ISLNK(inode->i_mode) &&
4353 !ext4_inode_is_fast_symlink(inode))))
4354 /* Validate extent which is part of inode */
4355 ret = ext4_ext_check_inode(inode);
4356 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4357 (S_ISLNK(inode->i_mode) &&
4358 !ext4_inode_is_fast_symlink(inode))) {
4359 /* Validate block references which are part of inode */
4360 ret = ext4_ind_check_inode(inode);
4361 }
4362 }
4363 if (ret)
4364 goto bad_inode;
4365
4366 if (S_ISREG(inode->i_mode)) {
4367 inode->i_op = &ext4_file_inode_operations;
4368 inode->i_fop = &ext4_file_operations;
4369 ext4_set_aops(inode);
4370 } else if (S_ISDIR(inode->i_mode)) {
4371 inode->i_op = &ext4_dir_inode_operations;
4372 inode->i_fop = &ext4_dir_operations;
4373 } else if (S_ISLNK(inode->i_mode)) {
4374 if (ext4_inode_is_fast_symlink(inode)) {
4375 inode->i_op = &ext4_fast_symlink_inode_operations;
4376 nd_terminate_link(ei->i_data, inode->i_size,
4377 sizeof(ei->i_data) - 1);
4378 } else {
4379 inode->i_op = &ext4_symlink_inode_operations;
4380 ext4_set_aops(inode);
4381 }
4382 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4383 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4384 inode->i_op = &ext4_special_inode_operations;
4385 if (raw_inode->i_block[0])
4386 init_special_inode(inode, inode->i_mode,
4387 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4388 else
4389 init_special_inode(inode, inode->i_mode,
4390 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4391 } else if (ino == EXT4_BOOT_LOADER_INO) {
4392 make_bad_inode(inode);
4393 } else {
4394 ret = -EIO;
4395 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4396 goto bad_inode;
4397 }
4398 brelse(iloc.bh);
4399 ext4_set_inode_flags(inode);
4400 unlock_new_inode(inode);
4401 return inode;
4402
4403 bad_inode:
4404 brelse(iloc.bh);
4405 iget_failed(inode);
4406 return ERR_PTR(ret);
4407 }
4408
4409 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4410 {
4411 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4412 return ERR_PTR(-EIO);
4413 return ext4_iget(sb, ino);
4414 }
4415
4416 static int ext4_inode_blocks_set(handle_t *handle,
4417 struct ext4_inode *raw_inode,
4418 struct ext4_inode_info *ei)
4419 {
4420 struct inode *inode = &(ei->vfs_inode);
4421 u64 i_blocks = inode->i_blocks;
4422 struct super_block *sb = inode->i_sb;
4423
4424 if (i_blocks <= ~0U) {
4425 /*
4426 * i_blocks can be represented in a 32 bit variable
4427 * as multiple of 512 bytes
4428 */
4429 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4430 raw_inode->i_blocks_high = 0;
4431 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4432 return 0;
4433 }
4434 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4435 return -EFBIG;
4436
4437 if (i_blocks <= 0xffffffffffffULL) {
4438 /*
4439 * i_blocks can be represented in a 48 bit variable
4440 * as multiple of 512 bytes
4441 */
4442 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4443 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4444 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4445 } else {
4446 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4447 /* i_block is stored in file system block size */
4448 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4449 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4450 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4451 }
4452 return 0;
4453 }
4454
4455 /*
4456 * Post the struct inode info into an on-disk inode location in the
4457 * buffer-cache. This gobbles the caller's reference to the
4458 * buffer_head in the inode location struct.
4459 *
4460 * The caller must have write access to iloc->bh.
4461 */
4462 static int ext4_do_update_inode(handle_t *handle,
4463 struct inode *inode,
4464 struct ext4_iloc *iloc)
4465 {
4466 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4467 struct ext4_inode_info *ei = EXT4_I(inode);
4468 struct buffer_head *bh = iloc->bh;
4469 int err = 0, rc, block;
4470 int need_datasync = 0;
4471 uid_t i_uid;
4472 gid_t i_gid;
4473
4474 /* For fields not not tracking in the in-memory inode,
4475 * initialise them to zero for new inodes. */
4476 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4477 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4478
4479 ext4_get_inode_flags(ei);
4480 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4481 i_uid = i_uid_read(inode);
4482 i_gid = i_gid_read(inode);
4483 if (!(test_opt(inode->i_sb, NO_UID32))) {
4484 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4485 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4486 /*
4487 * Fix up interoperability with old kernels. Otherwise, old inodes get
4488 * re-used with the upper 16 bits of the uid/gid intact
4489 */
4490 if (!ei->i_dtime) {
4491 raw_inode->i_uid_high =
4492 cpu_to_le16(high_16_bits(i_uid));
4493 raw_inode->i_gid_high =
4494 cpu_to_le16(high_16_bits(i_gid));
4495 } else {
4496 raw_inode->i_uid_high = 0;
4497 raw_inode->i_gid_high = 0;
4498 }
4499 } else {
4500 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4501 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4502 raw_inode->i_uid_high = 0;
4503 raw_inode->i_gid_high = 0;
4504 }
4505 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4506
4507 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4508 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4509 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4510 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4511
4512 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4513 goto out_brelse;
4514 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4515 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4516 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4517 cpu_to_le32(EXT4_OS_HURD))
4518 raw_inode->i_file_acl_high =
4519 cpu_to_le16(ei->i_file_acl >> 32);
4520 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4521 if (ei->i_disksize != ext4_isize(raw_inode)) {
4522 ext4_isize_set(raw_inode, ei->i_disksize);
4523 need_datasync = 1;
4524 }
4525 if (ei->i_disksize > 0x7fffffffULL) {
4526 struct super_block *sb = inode->i_sb;
4527 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4528 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4529 EXT4_SB(sb)->s_es->s_rev_level ==
4530 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4531 /* If this is the first large file
4532 * created, add a flag to the superblock.
4533 */
4534 err = ext4_journal_get_write_access(handle,
4535 EXT4_SB(sb)->s_sbh);
4536 if (err)
4537 goto out_brelse;
4538 ext4_update_dynamic_rev(sb);
4539 EXT4_SET_RO_COMPAT_FEATURE(sb,
4540 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4541 ext4_handle_sync(handle);
4542 err = ext4_handle_dirty_super(handle, sb);
4543 }
4544 }
4545 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4546 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4547 if (old_valid_dev(inode->i_rdev)) {
4548 raw_inode->i_block[0] =
4549 cpu_to_le32(old_encode_dev(inode->i_rdev));
4550 raw_inode->i_block[1] = 0;
4551 } else {
4552 raw_inode->i_block[0] = 0;
4553 raw_inode->i_block[1] =
4554 cpu_to_le32(new_encode_dev(inode->i_rdev));
4555 raw_inode->i_block[2] = 0;
4556 }
4557 } else if (!ext4_has_inline_data(inode)) {
4558 for (block = 0; block < EXT4_N_BLOCKS; block++)
4559 raw_inode->i_block[block] = ei->i_data[block];
4560 }
4561
4562 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4563 if (ei->i_extra_isize) {
4564 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4565 raw_inode->i_version_hi =
4566 cpu_to_le32(inode->i_version >> 32);
4567 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4568 }
4569
4570 ext4_inode_csum_set(inode, raw_inode, ei);
4571
4572 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4573 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4574 if (!err)
4575 err = rc;
4576 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4577
4578 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4579 out_brelse:
4580 brelse(bh);
4581 ext4_std_error(inode->i_sb, err);
4582 return err;
4583 }
4584
4585 /*
4586 * ext4_write_inode()
4587 *
4588 * We are called from a few places:
4589 *
4590 * - Within generic_file_write() for O_SYNC files.
4591 * Here, there will be no transaction running. We wait for any running
4592 * transaction to commit.
4593 *
4594 * - Within sys_sync(), kupdate and such.
4595 * We wait on commit, if tol to.
4596 *
4597 * - Within prune_icache() (PF_MEMALLOC == true)
4598 * Here we simply return. We can't afford to block kswapd on the
4599 * journal commit.
4600 *
4601 * In all cases it is actually safe for us to return without doing anything,
4602 * because the inode has been copied into a raw inode buffer in
4603 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4604 * knfsd.
4605 *
4606 * Note that we are absolutely dependent upon all inode dirtiers doing the
4607 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4608 * which we are interested.
4609 *
4610 * It would be a bug for them to not do this. The code:
4611 *
4612 * mark_inode_dirty(inode)
4613 * stuff();
4614 * inode->i_size = expr;
4615 *
4616 * is in error because a kswapd-driven write_inode() could occur while
4617 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4618 * will no longer be on the superblock's dirty inode list.
4619 */
4620 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4621 {
4622 int err;
4623
4624 if (current->flags & PF_MEMALLOC)
4625 return 0;
4626
4627 if (EXT4_SB(inode->i_sb)->s_journal) {
4628 if (ext4_journal_current_handle()) {
4629 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4630 dump_stack();
4631 return -EIO;
4632 }
4633
4634 if (wbc->sync_mode != WB_SYNC_ALL)
4635 return 0;
4636
4637 err = ext4_force_commit(inode->i_sb);
4638 } else {
4639 struct ext4_iloc iloc;
4640
4641 err = __ext4_get_inode_loc(inode, &iloc, 0);
4642 if (err)
4643 return err;
4644 if (wbc->sync_mode == WB_SYNC_ALL)
4645 sync_dirty_buffer(iloc.bh);
4646 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4647 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4648 "IO error syncing inode");
4649 err = -EIO;
4650 }
4651 brelse(iloc.bh);
4652 }
4653 return err;
4654 }
4655
4656 /*
4657 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4658 * buffers that are attached to a page stradding i_size and are undergoing
4659 * commit. In that case we have to wait for commit to finish and try again.
4660 */
4661 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4662 {
4663 struct page *page;
4664 unsigned offset;
4665 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4666 tid_t commit_tid = 0;
4667 int ret;
4668
4669 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4670 /*
4671 * All buffers in the last page remain valid? Then there's nothing to
4672 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4673 * blocksize case
4674 */
4675 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4676 return;
4677 while (1) {
4678 page = find_lock_page(inode->i_mapping,
4679 inode->i_size >> PAGE_CACHE_SHIFT);
4680 if (!page)
4681 return;
4682 ret = __ext4_journalled_invalidatepage(page, offset);
4683 unlock_page(page);
4684 page_cache_release(page);
4685 if (ret != -EBUSY)
4686 return;
4687 commit_tid = 0;
4688 read_lock(&journal->j_state_lock);
4689 if (journal->j_committing_transaction)
4690 commit_tid = journal->j_committing_transaction->t_tid;
4691 read_unlock(&journal->j_state_lock);
4692 if (commit_tid)
4693 jbd2_log_wait_commit(journal, commit_tid);
4694 }
4695 }
4696
4697 /*
4698 * ext4_setattr()
4699 *
4700 * Called from notify_change.
4701 *
4702 * We want to trap VFS attempts to truncate the file as soon as
4703 * possible. In particular, we want to make sure that when the VFS
4704 * shrinks i_size, we put the inode on the orphan list and modify
4705 * i_disksize immediately, so that during the subsequent flushing of
4706 * dirty pages and freeing of disk blocks, we can guarantee that any
4707 * commit will leave the blocks being flushed in an unused state on
4708 * disk. (On recovery, the inode will get truncated and the blocks will
4709 * be freed, so we have a strong guarantee that no future commit will
4710 * leave these blocks visible to the user.)
4711 *
4712 * Another thing we have to assure is that if we are in ordered mode
4713 * and inode is still attached to the committing transaction, we must
4714 * we start writeout of all the dirty pages which are being truncated.
4715 * This way we are sure that all the data written in the previous
4716 * transaction are already on disk (truncate waits for pages under
4717 * writeback).
4718 *
4719 * Called with inode->i_mutex down.
4720 */
4721 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4722 {
4723 struct inode *inode = dentry->d_inode;
4724 int error, rc = 0;
4725 int orphan = 0;
4726 const unsigned int ia_valid = attr->ia_valid;
4727
4728 error = inode_change_ok(inode, attr);
4729 if (error)
4730 return error;
4731
4732 if (is_quota_modification(inode, attr))
4733 dquot_initialize(inode);
4734 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4735 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4736 handle_t *handle;
4737
4738 /* (user+group)*(old+new) structure, inode write (sb,
4739 * inode block, ? - but truncate inode update has it) */
4740 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4741 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4742 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4743 if (IS_ERR(handle)) {
4744 error = PTR_ERR(handle);
4745 goto err_out;
4746 }
4747 error = dquot_transfer(inode, attr);
4748 if (error) {
4749 ext4_journal_stop(handle);
4750 return error;
4751 }
4752 /* Update corresponding info in inode so that everything is in
4753 * one transaction */
4754 if (attr->ia_valid & ATTR_UID)
4755 inode->i_uid = attr->ia_uid;
4756 if (attr->ia_valid & ATTR_GID)
4757 inode->i_gid = attr->ia_gid;
4758 error = ext4_mark_inode_dirty(handle, inode);
4759 ext4_journal_stop(handle);
4760 }
4761
4762 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4763 handle_t *handle;
4764 loff_t oldsize = inode->i_size;
4765
4766 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4767 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4768
4769 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4770 return -EFBIG;
4771 }
4772
4773 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4774 inode_inc_iversion(inode);
4775
4776 if (S_ISREG(inode->i_mode) &&
4777 (attr->ia_size < inode->i_size)) {
4778 if (ext4_should_order_data(inode)) {
4779 error = ext4_begin_ordered_truncate(inode,
4780 attr->ia_size);
4781 if (error)
4782 goto err_out;
4783 }
4784 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4785 if (IS_ERR(handle)) {
4786 error = PTR_ERR(handle);
4787 goto err_out;
4788 }
4789 if (ext4_handle_valid(handle)) {
4790 error = ext4_orphan_add(handle, inode);
4791 orphan = 1;
4792 }
4793 EXT4_I(inode)->i_disksize = attr->ia_size;
4794 rc = ext4_mark_inode_dirty(handle, inode);
4795 if (!error)
4796 error = rc;
4797 ext4_journal_stop(handle);
4798 if (error) {
4799 ext4_orphan_del(NULL, inode);
4800 goto err_out;
4801 }
4802 }
4803
4804 i_size_write(inode, attr->ia_size);
4805 /*
4806 * Blocks are going to be removed from the inode. Wait
4807 * for dio in flight. Temporarily disable
4808 * dioread_nolock to prevent livelock.
4809 */
4810 if (orphan) {
4811 if (!ext4_should_journal_data(inode)) {
4812 ext4_inode_block_unlocked_dio(inode);
4813 inode_dio_wait(inode);
4814 ext4_inode_resume_unlocked_dio(inode);
4815 } else
4816 ext4_wait_for_tail_page_commit(inode);
4817 }
4818 /*
4819 * Truncate pagecache after we've waited for commit
4820 * in data=journal mode to make pages freeable.
4821 */
4822 truncate_pagecache(inode, oldsize, inode->i_size);
4823 }
4824 /*
4825 * We want to call ext4_truncate() even if attr->ia_size ==
4826 * inode->i_size for cases like truncation of fallocated space
4827 */
4828 if (attr->ia_valid & ATTR_SIZE)
4829 ext4_truncate(inode);
4830
4831 if (!rc) {
4832 setattr_copy(inode, attr);
4833 mark_inode_dirty(inode);
4834 }
4835
4836 /*
4837 * If the call to ext4_truncate failed to get a transaction handle at
4838 * all, we need to clean up the in-core orphan list manually.
4839 */
4840 if (orphan && inode->i_nlink)
4841 ext4_orphan_del(NULL, inode);
4842
4843 if (!rc && (ia_valid & ATTR_MODE))
4844 rc = ext4_acl_chmod(inode);
4845
4846 err_out:
4847 ext4_std_error(inode->i_sb, error);
4848 if (!error)
4849 error = rc;
4850 return error;
4851 }
4852
4853 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4854 struct kstat *stat)
4855 {
4856 struct inode *inode;
4857 unsigned long long delalloc_blocks;
4858
4859 inode = dentry->d_inode;
4860 generic_fillattr(inode, stat);
4861
4862 /*
4863 * We can't update i_blocks if the block allocation is delayed
4864 * otherwise in the case of system crash before the real block
4865 * allocation is done, we will have i_blocks inconsistent with
4866 * on-disk file blocks.
4867 * We always keep i_blocks updated together with real
4868 * allocation. But to not confuse with user, stat
4869 * will return the blocks that include the delayed allocation
4870 * blocks for this file.
4871 */
4872 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4873 EXT4_I(inode)->i_reserved_data_blocks);
4874
4875 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4876 return 0;
4877 }
4878
4879 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4880 {
4881 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4882 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4883 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4884 }
4885
4886 /*
4887 * Account for index blocks, block groups bitmaps and block group
4888 * descriptor blocks if modify datablocks and index blocks
4889 * worse case, the indexs blocks spread over different block groups
4890 *
4891 * If datablocks are discontiguous, they are possible to spread over
4892 * different block groups too. If they are contiguous, with flexbg,
4893 * they could still across block group boundary.
4894 *
4895 * Also account for superblock, inode, quota and xattr blocks
4896 */
4897 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4898 {
4899 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4900 int gdpblocks;
4901 int idxblocks;
4902 int ret = 0;
4903
4904 /*
4905 * How many index blocks need to touch to modify nrblocks?
4906 * The "Chunk" flag indicating whether the nrblocks is
4907 * physically contiguous on disk
4908 *
4909 * For Direct IO and fallocate, they calls get_block to allocate
4910 * one single extent at a time, so they could set the "Chunk" flag
4911 */
4912 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4913
4914 ret = idxblocks;
4915
4916 /*
4917 * Now let's see how many group bitmaps and group descriptors need
4918 * to account
4919 */
4920 groups = idxblocks;
4921 if (chunk)
4922 groups += 1;
4923 else
4924 groups += nrblocks;
4925
4926 gdpblocks = groups;
4927 if (groups > ngroups)
4928 groups = ngroups;
4929 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4930 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4931
4932 /* bitmaps and block group descriptor blocks */
4933 ret += groups + gdpblocks;
4934
4935 /* Blocks for super block, inode, quota and xattr blocks */
4936 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4937
4938 return ret;
4939 }
4940
4941 /*
4942 * Calculate the total number of credits to reserve to fit
4943 * the modification of a single pages into a single transaction,
4944 * which may include multiple chunks of block allocations.
4945 *
4946 * This could be called via ext4_write_begin()
4947 *
4948 * We need to consider the worse case, when
4949 * one new block per extent.
4950 */
4951 int ext4_writepage_trans_blocks(struct inode *inode)
4952 {
4953 int bpp = ext4_journal_blocks_per_page(inode);
4954 int ret;
4955
4956 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4957
4958 /* Account for data blocks for journalled mode */
4959 if (ext4_should_journal_data(inode))
4960 ret += bpp;
4961 return ret;
4962 }
4963
4964 /*
4965 * Calculate the journal credits for a chunk of data modification.
4966 *
4967 * This is called from DIO, fallocate or whoever calling
4968 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4969 *
4970 * journal buffers for data blocks are not included here, as DIO
4971 * and fallocate do no need to journal data buffers.
4972 */
4973 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4974 {
4975 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4976 }
4977
4978 /*
4979 * The caller must have previously called ext4_reserve_inode_write().
4980 * Give this, we know that the caller already has write access to iloc->bh.
4981 */
4982 int ext4_mark_iloc_dirty(handle_t *handle,
4983 struct inode *inode, struct ext4_iloc *iloc)
4984 {
4985 int err = 0;
4986
4987 if (IS_I_VERSION(inode))
4988 inode_inc_iversion(inode);
4989
4990 /* the do_update_inode consumes one bh->b_count */
4991 get_bh(iloc->bh);
4992
4993 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4994 err = ext4_do_update_inode(handle, inode, iloc);
4995 put_bh(iloc->bh);
4996 return err;
4997 }
4998
4999 /*
5000 * On success, We end up with an outstanding reference count against
5001 * iloc->bh. This _must_ be cleaned up later.
5002 */
5003
5004 int
5005 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5006 struct ext4_iloc *iloc)
5007 {
5008 int err;
5009
5010 err = ext4_get_inode_loc(inode, iloc);
5011 if (!err) {
5012 BUFFER_TRACE(iloc->bh, "get_write_access");
5013 err = ext4_journal_get_write_access(handle, iloc->bh);
5014 if (err) {
5015 brelse(iloc->bh);
5016 iloc->bh = NULL;
5017 }
5018 }
5019 ext4_std_error(inode->i_sb, err);
5020 return err;
5021 }
5022
5023 /*
5024 * Expand an inode by new_extra_isize bytes.
5025 * Returns 0 on success or negative error number on failure.
5026 */
5027 static int ext4_expand_extra_isize(struct inode *inode,
5028 unsigned int new_extra_isize,
5029 struct ext4_iloc iloc,
5030 handle_t *handle)
5031 {
5032 struct ext4_inode *raw_inode;
5033 struct ext4_xattr_ibody_header *header;
5034
5035 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5036 return 0;
5037
5038 raw_inode = ext4_raw_inode(&iloc);
5039
5040 header = IHDR(inode, raw_inode);
5041
5042 /* No extended attributes present */
5043 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5044 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5045 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5046 new_extra_isize);
5047 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5048 return 0;
5049 }
5050
5051 /* try to expand with EAs present */
5052 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5053 raw_inode, handle);
5054 }
5055
5056 /*
5057 * What we do here is to mark the in-core inode as clean with respect to inode
5058 * dirtiness (it may still be data-dirty).
5059 * This means that the in-core inode may be reaped by prune_icache
5060 * without having to perform any I/O. This is a very good thing,
5061 * because *any* task may call prune_icache - even ones which
5062 * have a transaction open against a different journal.
5063 *
5064 * Is this cheating? Not really. Sure, we haven't written the
5065 * inode out, but prune_icache isn't a user-visible syncing function.
5066 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5067 * we start and wait on commits.
5068 */
5069 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5070 {
5071 struct ext4_iloc iloc;
5072 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5073 static unsigned int mnt_count;
5074 int err, ret;
5075
5076 might_sleep();
5077 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5078 err = ext4_reserve_inode_write(handle, inode, &iloc);
5079 if (ext4_handle_valid(handle) &&
5080 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5081 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5082 /*
5083 * We need extra buffer credits since we may write into EA block
5084 * with this same handle. If journal_extend fails, then it will
5085 * only result in a minor loss of functionality for that inode.
5086 * If this is felt to be critical, then e2fsck should be run to
5087 * force a large enough s_min_extra_isize.
5088 */
5089 if ((jbd2_journal_extend(handle,
5090 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5091 ret = ext4_expand_extra_isize(inode,
5092 sbi->s_want_extra_isize,
5093 iloc, handle);
5094 if (ret) {
5095 ext4_set_inode_state(inode,
5096 EXT4_STATE_NO_EXPAND);
5097 if (mnt_count !=
5098 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5099 ext4_warning(inode->i_sb,
5100 "Unable to expand inode %lu. Delete"
5101 " some EAs or run e2fsck.",
5102 inode->i_ino);
5103 mnt_count =
5104 le16_to_cpu(sbi->s_es->s_mnt_count);
5105 }
5106 }
5107 }
5108 }
5109 if (!err)
5110 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5111 return err;
5112 }
5113
5114 /*
5115 * ext4_dirty_inode() is called from __mark_inode_dirty()
5116 *
5117 * We're really interested in the case where a file is being extended.
5118 * i_size has been changed by generic_commit_write() and we thus need
5119 * to include the updated inode in the current transaction.
5120 *
5121 * Also, dquot_alloc_block() will always dirty the inode when blocks
5122 * are allocated to the file.
5123 *
5124 * If the inode is marked synchronous, we don't honour that here - doing
5125 * so would cause a commit on atime updates, which we don't bother doing.
5126 * We handle synchronous inodes at the highest possible level.
5127 */
5128 void ext4_dirty_inode(struct inode *inode, int flags)
5129 {
5130 handle_t *handle;
5131
5132 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5133 if (IS_ERR(handle))
5134 goto out;
5135
5136 ext4_mark_inode_dirty(handle, inode);
5137
5138 ext4_journal_stop(handle);
5139 out:
5140 return;
5141 }
5142
5143 #if 0
5144 /*
5145 * Bind an inode's backing buffer_head into this transaction, to prevent
5146 * it from being flushed to disk early. Unlike
5147 * ext4_reserve_inode_write, this leaves behind no bh reference and
5148 * returns no iloc structure, so the caller needs to repeat the iloc
5149 * lookup to mark the inode dirty later.
5150 */
5151 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5152 {
5153 struct ext4_iloc iloc;
5154
5155 int err = 0;
5156 if (handle) {
5157 err = ext4_get_inode_loc(inode, &iloc);
5158 if (!err) {
5159 BUFFER_TRACE(iloc.bh, "get_write_access");
5160 err = jbd2_journal_get_write_access(handle, iloc.bh);
5161 if (!err)
5162 err = ext4_handle_dirty_metadata(handle,
5163 NULL,
5164 iloc.bh);
5165 brelse(iloc.bh);
5166 }
5167 }
5168 ext4_std_error(inode->i_sb, err);
5169 return err;
5170 }
5171 #endif
5172
5173 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5174 {
5175 journal_t *journal;
5176 handle_t *handle;
5177 int err;
5178
5179 /*
5180 * We have to be very careful here: changing a data block's
5181 * journaling status dynamically is dangerous. If we write a
5182 * data block to the journal, change the status and then delete
5183 * that block, we risk forgetting to revoke the old log record
5184 * from the journal and so a subsequent replay can corrupt data.
5185 * So, first we make sure that the journal is empty and that
5186 * nobody is changing anything.
5187 */
5188
5189 journal = EXT4_JOURNAL(inode);
5190 if (!journal)
5191 return 0;
5192 if (is_journal_aborted(journal))
5193 return -EROFS;
5194 /* We have to allocate physical blocks for delalloc blocks
5195 * before flushing journal. otherwise delalloc blocks can not
5196 * be allocated any more. even more truncate on delalloc blocks
5197 * could trigger BUG by flushing delalloc blocks in journal.
5198 * There is no delalloc block in non-journal data mode.
5199 */
5200 if (val && test_opt(inode->i_sb, DELALLOC)) {
5201 err = ext4_alloc_da_blocks(inode);
5202 if (err < 0)
5203 return err;
5204 }
5205
5206 /* Wait for all existing dio workers */
5207 ext4_inode_block_unlocked_dio(inode);
5208 inode_dio_wait(inode);
5209
5210 jbd2_journal_lock_updates(journal);
5211
5212 /*
5213 * OK, there are no updates running now, and all cached data is
5214 * synced to disk. We are now in a completely consistent state
5215 * which doesn't have anything in the journal, and we know that
5216 * no filesystem updates are running, so it is safe to modify
5217 * the inode's in-core data-journaling state flag now.
5218 */
5219
5220 if (val)
5221 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5222 else {
5223 jbd2_journal_flush(journal);
5224 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5225 }
5226 ext4_set_aops(inode);
5227
5228 jbd2_journal_unlock_updates(journal);
5229 ext4_inode_resume_unlocked_dio(inode);
5230
5231 /* Finally we can mark the inode as dirty. */
5232
5233 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5234 if (IS_ERR(handle))
5235 return PTR_ERR(handle);
5236
5237 err = ext4_mark_inode_dirty(handle, inode);
5238 ext4_handle_sync(handle);
5239 ext4_journal_stop(handle);
5240 ext4_std_error(inode->i_sb, err);
5241
5242 return err;
5243 }
5244
5245 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5246 {
5247 return !buffer_mapped(bh);
5248 }
5249
5250 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5251 {
5252 struct page *page = vmf->page;
5253 loff_t size;
5254 unsigned long len;
5255 int ret;
5256 struct file *file = vma->vm_file;
5257 struct inode *inode = file_inode(file);
5258 struct address_space *mapping = inode->i_mapping;
5259 handle_t *handle;
5260 get_block_t *get_block;
5261 int retries = 0;
5262
5263 sb_start_pagefault(inode->i_sb);
5264 file_update_time(vma->vm_file);
5265 /* Delalloc case is easy... */
5266 if (test_opt(inode->i_sb, DELALLOC) &&
5267 !ext4_should_journal_data(inode) &&
5268 !ext4_nonda_switch(inode->i_sb)) {
5269 do {
5270 ret = __block_page_mkwrite(vma, vmf,
5271 ext4_da_get_block_prep);
5272 } while (ret == -ENOSPC &&
5273 ext4_should_retry_alloc(inode->i_sb, &retries));
5274 goto out_ret;
5275 }
5276
5277 lock_page(page);
5278 size = i_size_read(inode);
5279 /* Page got truncated from under us? */
5280 if (page->mapping != mapping || page_offset(page) > size) {
5281 unlock_page(page);
5282 ret = VM_FAULT_NOPAGE;
5283 goto out;
5284 }
5285
5286 if (page->index == size >> PAGE_CACHE_SHIFT)
5287 len = size & ~PAGE_CACHE_MASK;
5288 else
5289 len = PAGE_CACHE_SIZE;
5290 /*
5291 * Return if we have all the buffers mapped. This avoids the need to do
5292 * journal_start/journal_stop which can block and take a long time
5293 */
5294 if (page_has_buffers(page)) {
5295 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5296 0, len, NULL,
5297 ext4_bh_unmapped)) {
5298 /* Wait so that we don't change page under IO */
5299 wait_for_stable_page(page);
5300 ret = VM_FAULT_LOCKED;
5301 goto out;
5302 }
5303 }
5304 unlock_page(page);
5305 /* OK, we need to fill the hole... */
5306 if (ext4_should_dioread_nolock(inode))
5307 get_block = ext4_get_block_write;
5308 else
5309 get_block = ext4_get_block;
5310 retry_alloc:
5311 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5312 ext4_writepage_trans_blocks(inode));
5313 if (IS_ERR(handle)) {
5314 ret = VM_FAULT_SIGBUS;
5315 goto out;
5316 }
5317 ret = __block_page_mkwrite(vma, vmf, get_block);
5318 if (!ret && ext4_should_journal_data(inode)) {
5319 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5320 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5321 unlock_page(page);
5322 ret = VM_FAULT_SIGBUS;
5323 ext4_journal_stop(handle);
5324 goto out;
5325 }
5326 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5327 }
5328 ext4_journal_stop(handle);
5329 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5330 goto retry_alloc;
5331 out_ret:
5332 ret = block_page_mkwrite_return(ret);
5333 out:
5334 sb_end_pagefault(inode->i_sb);
5335 return ret;
5336 }