Merge tag 'v3.10.74' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49 #include <linux/blkdev.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u16 csum_lo;
58 __u16 csum_hi = 0;
59 __u32 csum;
60
61 csum_lo = le16_to_cpu(raw->i_checksum_lo);
62 raw->i_checksum_lo = 0;
63 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
64 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
65 csum_hi = le16_to_cpu(raw->i_checksum_hi);
66 raw->i_checksum_hi = 0;
67 }
68
69 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
70 EXT4_INODE_SIZE(inode->i_sb));
71
72 raw->i_checksum_lo = cpu_to_le16(csum_lo);
73 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
74 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
75 raw->i_checksum_hi = cpu_to_le16(csum_hi);
76
77 return csum;
78 }
79
80 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
81 struct ext4_inode_info *ei)
82 {
83 __u32 provided, calculated;
84
85 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
86 cpu_to_le32(EXT4_OS_LINUX) ||
87 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
88 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 return 1;
90
91 provided = le16_to_cpu(raw->i_checksum_lo);
92 calculated = ext4_inode_csum(inode, raw, ei);
93 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
94 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
95 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
96 else
97 calculated &= 0xFFFF;
98
99 return provided == calculated;
100 }
101
102 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
103 struct ext4_inode_info *ei)
104 {
105 __u32 csum;
106
107 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
108 cpu_to_le32(EXT4_OS_LINUX) ||
109 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
110 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
111 return;
112
113 csum = ext4_inode_csum(inode, raw, ei);
114 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 }
119
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 loff_t new_size)
122 {
123 trace_ext4_begin_ordered_truncate(inode, new_size);
124 /*
125 * If jinode is zero, then we never opened the file for
126 * writing, so there's no need to call
127 * jbd2_journal_begin_ordered_truncate() since there's no
128 * outstanding writes we need to flush.
129 */
130 if (!EXT4_I(inode)->jinode)
131 return 0;
132 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133 EXT4_I(inode)->jinode,
134 new_size);
135 }
136
137 static void ext4_invalidatepage(struct page *page, unsigned long offset);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
141 struct inode *inode, struct page *page, loff_t from,
142 loff_t length, int flags);
143
144 /*
145 * Test whether an inode is a fast symlink.
146 */
147 static int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 (inode->i_sb->s_blocksize >> 9) : 0;
151
152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188
189 trace_ext4_evict_inode(inode);
190
191 if (inode->i_nlink) {
192 /*
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
206 *
207 * Note that directories do not have this problem because they
208 * don't use page cache.
209 */
210 if (ext4_should_journal_data(inode) &&
211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 inode->i_ino != EXT4_JOURNAL_INO) {
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216 jbd2_complete_transaction(journal, commit_tid);
217 filemap_write_and_wait(&inode->i_data);
218 }
219 truncate_inode_pages(&inode->i_data, 0);
220 ext4_ioend_shutdown(inode);
221 goto no_delete;
222 }
223
224 if (!is_bad_inode(inode))
225 dquot_initialize(inode);
226
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages(&inode->i_data, 0);
230 ext4_ioend_shutdown(inode);
231
232 if (is_bad_inode(inode))
233 goto no_delete;
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Calculate the number of metadata blocks need to reserve
326 * to allocate a block located at @lblock
327 */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333 return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
342 {
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 struct ext4_inode_info *ei = EXT4_I(inode);
345
346 spin_lock(&ei->i_block_reservation_lock);
347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350 "with only %d reserved data blocks",
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
356
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode->i_ino, ei->i_allocated_meta_blocks,
362 ei->i_reserved_meta_blocks, used,
363 ei->i_reserved_data_blocks);
364 WARN_ON(1);
365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366 }
367
368 /* Update per-inode reservations */
369 ei->i_reserved_data_blocks -= used;
370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372 used + ei->i_allocated_meta_blocks);
373 ei->i_allocated_meta_blocks = 0;
374
375 if (ei->i_reserved_data_blocks == 0) {
376 /*
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
379 * allocation blocks.
380 */
381 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382 ei->i_reserved_meta_blocks);
383 ei->i_reserved_meta_blocks = 0;
384 ei->i_da_metadata_calc_len = 0;
385 }
386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388 /* Update quota subsystem for data blocks */
389 if (quota_claim)
390 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391 else {
392 /*
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
395 * not re-claim the quota for fallocated blocks.
396 */
397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398 }
399
400 /*
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
404 */
405 if ((ei->i_reserved_data_blocks == 0) &&
406 (atomic_read(&inode->i_writecount) == 0))
407 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411 unsigned int line,
412 struct ext4_map_blocks *map)
413 {
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_len);
420 return -EIO;
421 }
422 return 0;
423 }
424
425 #define check_block_validity(inode, map) \
426 __check_block_validity((inode), __func__, __LINE__, (map))
427
428 /*
429 * Return the number of contiguous dirty pages in a given inode
430 * starting at page frame idx.
431 */
432 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
433 unsigned int max_pages)
434 {
435 struct address_space *mapping = inode->i_mapping;
436 pgoff_t index;
437 struct pagevec pvec;
438 pgoff_t num = 0;
439 int i, nr_pages, done = 0;
440
441 if (max_pages == 0)
442 return 0;
443 pagevec_init(&pvec, 0);
444 while (!done) {
445 index = idx;
446 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
447 PAGECACHE_TAG_DIRTY,
448 (pgoff_t)PAGEVEC_SIZE);
449 if (nr_pages == 0)
450 break;
451 for (i = 0; i < nr_pages; i++) {
452 struct page *page = pvec.pages[i];
453 struct buffer_head *bh, *head;
454
455 lock_page(page);
456 if (unlikely(page->mapping != mapping) ||
457 !PageDirty(page) ||
458 PageWriteback(page) ||
459 page->index != idx) {
460 done = 1;
461 unlock_page(page);
462 break;
463 }
464 if (page_has_buffers(page)) {
465 bh = head = page_buffers(page);
466 do {
467 if (!buffer_delay(bh) &&
468 !buffer_unwritten(bh))
469 done = 1;
470 bh = bh->b_this_page;
471 } while (!done && (bh != head));
472 }
473 unlock_page(page);
474 if (done)
475 break;
476 idx++;
477 num++;
478 if (num >= max_pages) {
479 done = 1;
480 break;
481 }
482 }
483 pagevec_release(&pvec);
484 }
485 return num;
486 }
487
488 #ifdef ES_AGGRESSIVE_TEST
489 static void ext4_map_blocks_es_recheck(handle_t *handle,
490 struct inode *inode,
491 struct ext4_map_blocks *es_map,
492 struct ext4_map_blocks *map,
493 int flags)
494 {
495 int retval;
496
497 map->m_flags = 0;
498 /*
499 * There is a race window that the result is not the same.
500 * e.g. xfstests #223 when dioread_nolock enables. The reason
501 * is that we lookup a block mapping in extent status tree with
502 * out taking i_data_sem. So at the time the unwritten extent
503 * could be converted.
504 */
505 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
506 down_read((&EXT4_I(inode)->i_data_sem));
507 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
508 retval = ext4_ext_map_blocks(handle, inode, map, flags &
509 EXT4_GET_BLOCKS_KEEP_SIZE);
510 } else {
511 retval = ext4_ind_map_blocks(handle, inode, map, flags &
512 EXT4_GET_BLOCKS_KEEP_SIZE);
513 }
514 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515 up_read((&EXT4_I(inode)->i_data_sem));
516 /*
517 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
518 * because it shouldn't be marked in es_map->m_flags.
519 */
520 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
521
522 /*
523 * We don't check m_len because extent will be collpased in status
524 * tree. So the m_len might not equal.
525 */
526 if (es_map->m_lblk != map->m_lblk ||
527 es_map->m_flags != map->m_flags ||
528 es_map->m_pblk != map->m_pblk) {
529 printk("ES cache assertation failed for inode: %lu "
530 "es_cached ex [%d/%d/%llu/%x] != "
531 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
532 inode->i_ino, es_map->m_lblk, es_map->m_len,
533 es_map->m_pblk, es_map->m_flags, map->m_lblk,
534 map->m_len, map->m_pblk, map->m_flags,
535 retval, flags);
536 }
537 }
538 #endif /* ES_AGGRESSIVE_TEST */
539
540 /*
541 * The ext4_map_blocks() function tries to look up the requested blocks,
542 * and returns if the blocks are already mapped.
543 *
544 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
545 * and store the allocated blocks in the result buffer head and mark it
546 * mapped.
547 *
548 * If file type is extents based, it will call ext4_ext_map_blocks(),
549 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
550 * based files
551 *
552 * On success, it returns the number of blocks being mapped or allocate.
553 * if create==0 and the blocks are pre-allocated and uninitialized block,
554 * the result buffer head is unmapped. If the create ==1, it will make sure
555 * the buffer head is mapped.
556 *
557 * It returns 0 if plain look up failed (blocks have not been allocated), in
558 * that case, buffer head is unmapped
559 *
560 * It returns the error in case of allocation failure.
561 */
562 int ext4_map_blocks(handle_t *handle, struct inode *inode,
563 struct ext4_map_blocks *map, int flags)
564 {
565 struct extent_status es;
566 int retval;
567 #ifdef ES_AGGRESSIVE_TEST
568 struct ext4_map_blocks orig_map;
569
570 memcpy(&orig_map, map, sizeof(*map));
571 #endif
572
573 map->m_flags = 0;
574 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
575 "logical block %lu\n", inode->i_ino, flags, map->m_len,
576 (unsigned long) map->m_lblk);
577
578 /* Lookup extent status tree firstly */
579 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
580 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
581 map->m_pblk = ext4_es_pblock(&es) +
582 map->m_lblk - es.es_lblk;
583 map->m_flags |= ext4_es_is_written(&es) ?
584 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
585 retval = es.es_len - (map->m_lblk - es.es_lblk);
586 if (retval > map->m_len)
587 retval = map->m_len;
588 map->m_len = retval;
589 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
590 retval = 0;
591 } else {
592 BUG_ON(1);
593 }
594 #ifdef ES_AGGRESSIVE_TEST
595 ext4_map_blocks_es_recheck(handle, inode, map,
596 &orig_map, flags);
597 #endif
598 goto found;
599 }
600
601 /*
602 * Try to see if we can get the block without requesting a new
603 * file system block.
604 */
605 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
606 down_read((&EXT4_I(inode)->i_data_sem));
607 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
608 retval = ext4_ext_map_blocks(handle, inode, map, flags &
609 EXT4_GET_BLOCKS_KEEP_SIZE);
610 } else {
611 retval = ext4_ind_map_blocks(handle, inode, map, flags &
612 EXT4_GET_BLOCKS_KEEP_SIZE);
613 }
614 if (retval > 0) {
615 int ret;
616 unsigned long long status;
617
618 #ifdef ES_AGGRESSIVE_TEST
619 if (retval != map->m_len) {
620 printk("ES len assertation failed for inode: %lu "
621 "retval %d != map->m_len %d "
622 "in %s (lookup)\n", inode->i_ino, retval,
623 map->m_len, __func__);
624 }
625 #endif
626
627 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
628 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
629 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
630 ext4_find_delalloc_range(inode, map->m_lblk,
631 map->m_lblk + map->m_len - 1))
632 status |= EXTENT_STATUS_DELAYED;
633 ret = ext4_es_insert_extent(inode, map->m_lblk,
634 map->m_len, map->m_pblk, status);
635 if (ret < 0)
636 retval = ret;
637 }
638 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
639 up_read((&EXT4_I(inode)->i_data_sem));
640
641 found:
642 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
643 int ret = check_block_validity(inode, map);
644 if (ret != 0)
645 return ret;
646 }
647
648 /* If it is only a block(s) look up */
649 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
650 return retval;
651
652 /*
653 * Returns if the blocks have already allocated
654 *
655 * Note that if blocks have been preallocated
656 * ext4_ext_get_block() returns the create = 0
657 * with buffer head unmapped.
658 */
659 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660 return retval;
661
662 /*
663 * Here we clear m_flags because after allocating an new extent,
664 * it will be set again.
665 */
666 map->m_flags &= ~EXT4_MAP_FLAGS;
667
668 /*
669 * New blocks allocate and/or writing to uninitialized extent
670 * will possibly result in updating i_data, so we take
671 * the write lock of i_data_sem, and call get_blocks()
672 * with create == 1 flag.
673 */
674 down_write((&EXT4_I(inode)->i_data_sem));
675
676 /*
677 * if the caller is from delayed allocation writeout path
678 * we have already reserved fs blocks for allocation
679 * let the underlying get_block() function know to
680 * avoid double accounting
681 */
682 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
683 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
684 /*
685 * We need to check for EXT4 here because migrate
686 * could have changed the inode type in between
687 */
688 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
689 retval = ext4_ext_map_blocks(handle, inode, map, flags);
690 } else {
691 retval = ext4_ind_map_blocks(handle, inode, map, flags);
692
693 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
694 /*
695 * We allocated new blocks which will result in
696 * i_data's format changing. Force the migrate
697 * to fail by clearing migrate flags
698 */
699 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
700 }
701
702 /*
703 * Update reserved blocks/metadata blocks after successful
704 * block allocation which had been deferred till now. We don't
705 * support fallocate for non extent files. So we can update
706 * reserve space here.
707 */
708 if ((retval > 0) &&
709 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
710 ext4_da_update_reserve_space(inode, retval, 1);
711 }
712 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
713 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
714
715 if (retval > 0) {
716 int ret;
717 unsigned long long status;
718
719 #ifdef ES_AGGRESSIVE_TEST
720 if (retval != map->m_len) {
721 printk("ES len assertation failed for inode: %lu "
722 "retval %d != map->m_len %d "
723 "in %s (allocation)\n", inode->i_ino, retval,
724 map->m_len, __func__);
725 }
726 #endif
727
728 /*
729 * If the extent has been zeroed out, we don't need to update
730 * extent status tree.
731 */
732 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
733 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
734 if (ext4_es_is_written(&es))
735 goto has_zeroout;
736 }
737 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
738 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
739 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
740 ext4_find_delalloc_range(inode, map->m_lblk,
741 map->m_lblk + map->m_len - 1))
742 status |= EXTENT_STATUS_DELAYED;
743 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
744 map->m_pblk, status);
745 if (ret < 0)
746 retval = ret;
747 }
748
749 has_zeroout:
750 up_write((&EXT4_I(inode)->i_data_sem));
751 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
752 int ret = check_block_validity(inode, map);
753 if (ret != 0)
754 return ret;
755 }
756 return retval;
757 }
758
759 /* Maximum number of blocks we map for direct IO at once. */
760 #define DIO_MAX_BLOCKS 4096
761
762 static int _ext4_get_block(struct inode *inode, sector_t iblock,
763 struct buffer_head *bh, int flags)
764 {
765 handle_t *handle = ext4_journal_current_handle();
766 struct ext4_map_blocks map;
767 int ret = 0, started = 0;
768 int dio_credits;
769
770 if (ext4_has_inline_data(inode))
771 return -ERANGE;
772
773 map.m_lblk = iblock;
774 map.m_len = bh->b_size >> inode->i_blkbits;
775
776 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
777 /* Direct IO write... */
778 if (map.m_len > DIO_MAX_BLOCKS)
779 map.m_len = DIO_MAX_BLOCKS;
780 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
781 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
782 dio_credits);
783 if (IS_ERR(handle)) {
784 ret = PTR_ERR(handle);
785 return ret;
786 }
787 started = 1;
788 }
789
790 ret = ext4_map_blocks(handle, inode, &map, flags);
791 if (ret > 0) {
792 map_bh(bh, inode->i_sb, map.m_pblk);
793 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
794 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
795 ret = 0;
796 }
797 if (started)
798 ext4_journal_stop(handle);
799 return ret;
800 }
801
802 int ext4_get_block(struct inode *inode, sector_t iblock,
803 struct buffer_head *bh, int create)
804 {
805 return _ext4_get_block(inode, iblock, bh,
806 create ? EXT4_GET_BLOCKS_CREATE : 0);
807 }
808
809 /*
810 * `handle' can be NULL if create is zero
811 */
812 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
813 ext4_lblk_t block, int create, int *errp)
814 {
815 struct ext4_map_blocks map;
816 struct buffer_head *bh;
817 int fatal = 0, err;
818
819 J_ASSERT(handle != NULL || create == 0);
820
821 map.m_lblk = block;
822 map.m_len = 1;
823 err = ext4_map_blocks(handle, inode, &map,
824 create ? EXT4_GET_BLOCKS_CREATE : 0);
825
826 /* ensure we send some value back into *errp */
827 *errp = 0;
828
829 if (create && err == 0)
830 err = -ENOSPC; /* should never happen */
831 if (err < 0)
832 *errp = err;
833 if (err <= 0)
834 return NULL;
835
836 bh = sb_getblk(inode->i_sb, map.m_pblk);
837 if (unlikely(!bh)) {
838 *errp = -ENOMEM;
839 return NULL;
840 }
841 if (map.m_flags & EXT4_MAP_NEW) {
842 J_ASSERT(create != 0);
843 J_ASSERT(handle != NULL);
844
845 /*
846 * Now that we do not always journal data, we should
847 * keep in mind whether this should always journal the
848 * new buffer as metadata. For now, regular file
849 * writes use ext4_get_block instead, so it's not a
850 * problem.
851 */
852 lock_buffer(bh);
853 BUFFER_TRACE(bh, "call get_create_access");
854 fatal = ext4_journal_get_create_access(handle, bh);
855 if (!fatal && !buffer_uptodate(bh)) {
856 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
857 set_buffer_uptodate(bh);
858 }
859 unlock_buffer(bh);
860 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
861 err = ext4_handle_dirty_metadata(handle, inode, bh);
862 if (!fatal)
863 fatal = err;
864 } else {
865 BUFFER_TRACE(bh, "not a new buffer");
866 }
867 if (fatal) {
868 *errp = fatal;
869 brelse(bh);
870 bh = NULL;
871 }
872 return bh;
873 }
874
875 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
876 ext4_lblk_t block, int create, int *err)
877 {
878 struct buffer_head *bh;
879
880 bh = ext4_getblk(handle, inode, block, create, err);
881 if (!bh)
882 return bh;
883 if (buffer_uptodate(bh))
884 return bh;
885 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
886 wait_on_buffer(bh);
887 if (buffer_uptodate(bh))
888 return bh;
889 put_bh(bh);
890 *err = -EIO;
891 return NULL;
892 }
893
894 int ext4_walk_page_buffers(handle_t *handle,
895 struct buffer_head *head,
896 unsigned from,
897 unsigned to,
898 int *partial,
899 int (*fn)(handle_t *handle,
900 struct buffer_head *bh))
901 {
902 struct buffer_head *bh;
903 unsigned block_start, block_end;
904 unsigned blocksize = head->b_size;
905 int err, ret = 0;
906 struct buffer_head *next;
907
908 for (bh = head, block_start = 0;
909 ret == 0 && (bh != head || !block_start);
910 block_start = block_end, bh = next) {
911 next = bh->b_this_page;
912 block_end = block_start + blocksize;
913 if (block_end <= from || block_start >= to) {
914 if (partial && !buffer_uptodate(bh))
915 *partial = 1;
916 continue;
917 }
918 err = (*fn)(handle, bh);
919 if (!ret)
920 ret = err;
921 }
922 return ret;
923 }
924
925 /*
926 * To preserve ordering, it is essential that the hole instantiation and
927 * the data write be encapsulated in a single transaction. We cannot
928 * close off a transaction and start a new one between the ext4_get_block()
929 * and the commit_write(). So doing the jbd2_journal_start at the start of
930 * prepare_write() is the right place.
931 *
932 * Also, this function can nest inside ext4_writepage(). In that case, we
933 * *know* that ext4_writepage() has generated enough buffer credits to do the
934 * whole page. So we won't block on the journal in that case, which is good,
935 * because the caller may be PF_MEMALLOC.
936 *
937 * By accident, ext4 can be reentered when a transaction is open via
938 * quota file writes. If we were to commit the transaction while thus
939 * reentered, there can be a deadlock - we would be holding a quota
940 * lock, and the commit would never complete if another thread had a
941 * transaction open and was blocking on the quota lock - a ranking
942 * violation.
943 *
944 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
945 * will _not_ run commit under these circumstances because handle->h_ref
946 * is elevated. We'll still have enough credits for the tiny quotafile
947 * write.
948 */
949 int do_journal_get_write_access(handle_t *handle,
950 struct buffer_head *bh)
951 {
952 int dirty = buffer_dirty(bh);
953 int ret;
954
955 if (!buffer_mapped(bh) || buffer_freed(bh))
956 return 0;
957 /*
958 * __block_write_begin() could have dirtied some buffers. Clean
959 * the dirty bit as jbd2_journal_get_write_access() could complain
960 * otherwise about fs integrity issues. Setting of the dirty bit
961 * by __block_write_begin() isn't a real problem here as we clear
962 * the bit before releasing a page lock and thus writeback cannot
963 * ever write the buffer.
964 */
965 if (dirty)
966 clear_buffer_dirty(bh);
967 ret = ext4_journal_get_write_access(handle, bh);
968 if (!ret && dirty)
969 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
970 return ret;
971 }
972
973 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
974 struct buffer_head *bh_result, int create);
975 static int ext4_write_begin(struct file *file, struct address_space *mapping,
976 loff_t pos, unsigned len, unsigned flags,
977 struct page **pagep, void **fsdata)
978 {
979 struct inode *inode = mapping->host;
980 int ret, needed_blocks;
981 handle_t *handle;
982 int retries = 0;
983 struct page *page;
984 pgoff_t index;
985 unsigned from, to;
986 #if defined(FEATURE_STORAGE_PID_LOGGER)
987 extern unsigned char *page_logger;
988 struct page_pid_logger *tmp_logger;
989 unsigned long page_index;
990 extern spinlock_t g_locker;
991 unsigned long g_flags;
992 #endif
993
994 trace_ext4_write_begin(inode, pos, len, flags);
995 /*
996 * Reserve one block more for addition to orphan list in case
997 * we allocate blocks but write fails for some reason
998 */
999 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1000 index = pos >> PAGE_CACHE_SHIFT;
1001 from = pos & (PAGE_CACHE_SIZE - 1);
1002 to = from + len;
1003
1004 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1005 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1006 flags, pagep);
1007 if (ret < 0)
1008 return ret;
1009 if (ret == 1)
1010 return 0;
1011 }
1012
1013 /*
1014 * grab_cache_page_write_begin() can take a long time if the
1015 * system is thrashing due to memory pressure, or if the page
1016 * is being written back. So grab it first before we start
1017 * the transaction handle. This also allows us to allocate
1018 * the page (if needed) without using GFP_NOFS.
1019 */
1020 retry_grab:
1021 page = grab_cache_page_write_begin(mapping, index, flags);
1022 if (!page)
1023 return -ENOMEM;
1024 unlock_page(page);
1025
1026 retry_journal:
1027 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1028 if (IS_ERR(handle)) {
1029 page_cache_release(page);
1030 return PTR_ERR(handle);
1031 }
1032
1033 lock_page(page);
1034 if (page->mapping != mapping) {
1035 /* The page got truncated from under us */
1036 unlock_page(page);
1037 page_cache_release(page);
1038 ext4_journal_stop(handle);
1039 goto retry_grab;
1040 }
1041 wait_on_page_writeback(page);
1042
1043 if (ext4_should_dioread_nolock(inode))
1044 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1045 else
1046 ret = __block_write_begin(page, pos, len, ext4_get_block);
1047
1048 if (!ret && ext4_should_journal_data(inode)) {
1049 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1050 from, to, NULL,
1051 do_journal_get_write_access);
1052 }
1053
1054 if (ret) {
1055 unlock_page(page);
1056 /*
1057 * __block_write_begin may have instantiated a few blocks
1058 * outside i_size. Trim these off again. Don't need
1059 * i_size_read because we hold i_mutex.
1060 *
1061 * Add inode to orphan list in case we crash before
1062 * truncate finishes
1063 */
1064 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1065 ext4_orphan_add(handle, inode);
1066
1067 ext4_journal_stop(handle);
1068 if (pos + len > inode->i_size) {
1069 ext4_truncate_failed_write(inode);
1070 /*
1071 * If truncate failed early the inode might
1072 * still be on the orphan list; we need to
1073 * make sure the inode is removed from the
1074 * orphan list in that case.
1075 */
1076 if (inode->i_nlink)
1077 ext4_orphan_del(NULL, inode);
1078 }
1079
1080 if (ret == -ENOSPC &&
1081 ext4_should_retry_alloc(inode->i_sb, &retries))
1082 goto retry_journal;
1083 page_cache_release(page);
1084 return ret;
1085 }
1086 *pagep = page;
1087 #if defined(FEATURE_STORAGE_PID_LOGGER)
1088 if( page_logger && (*pagep)) {
1089 //#if defined(CONFIG_FLATMEM)
1090 //page_index = (unsigned long)((*pagep) - mem_map) ;
1091 //#else
1092 page_index = (unsigned long)(__page_to_pfn(*pagep))- PHYS_PFN_OFFSET;
1093 //#endif
1094 tmp_logger =((struct page_pid_logger *)page_logger) + page_index;
1095 spin_lock_irqsave(&g_locker, g_flags);
1096 if( page_index < num_physpages) {
1097 if( tmp_logger->pid1 == 0XFFFF)
1098 tmp_logger->pid1 = current->pid;
1099 else if( tmp_logger->pid1 != current->pid)
1100 tmp_logger->pid2 = current->pid;
1101 }
1102 spin_unlock_irqrestore(&g_locker, g_flags);
1103 }
1104 #endif
1105 return ret;
1106 }
1107
1108 /* For write_end() in data=journal mode */
1109 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1110 {
1111 int ret;
1112 if (!buffer_mapped(bh) || buffer_freed(bh))
1113 return 0;
1114 set_buffer_uptodate(bh);
1115 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1116 clear_buffer_meta(bh);
1117 clear_buffer_prio(bh);
1118 return ret;
1119 }
1120
1121 /*
1122 * We need to pick up the new inode size which generic_commit_write gave us
1123 * `file' can be NULL - eg, when called from page_symlink().
1124 *
1125 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1126 * buffers are managed internally.
1127 */
1128 static int ext4_write_end(struct file *file,
1129 struct address_space *mapping,
1130 loff_t pos, unsigned len, unsigned copied,
1131 struct page *page, void *fsdata)
1132 {
1133 handle_t *handle = ext4_journal_current_handle();
1134 struct inode *inode = mapping->host;
1135 int ret = 0, ret2;
1136 int i_size_changed = 0;
1137
1138 trace_ext4_write_end(inode, pos, len, copied);
1139 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1140 ret = ext4_jbd2_file_inode(handle, inode);
1141 if (ret) {
1142 unlock_page(page);
1143 page_cache_release(page);
1144 goto errout;
1145 }
1146 }
1147
1148 if (ext4_has_inline_data(inode)) {
1149 ret = ext4_write_inline_data_end(inode, pos, len,
1150 copied, page);
1151 if (ret < 0)
1152 goto errout;
1153 copied = ret;
1154 } else
1155 copied = block_write_end(file, mapping, pos,
1156 len, copied, page, fsdata);
1157
1158 /*
1159 * No need to use i_size_read() here, the i_size
1160 * cannot change under us because we hole i_mutex.
1161 *
1162 * But it's important to update i_size while still holding page lock:
1163 * page writeout could otherwise come in and zero beyond i_size.
1164 */
1165 if (pos + copied > inode->i_size) {
1166 i_size_write(inode, pos + copied);
1167 i_size_changed = 1;
1168 }
1169
1170 if (pos + copied > EXT4_I(inode)->i_disksize) {
1171 /* We need to mark inode dirty even if
1172 * new_i_size is less that inode->i_size
1173 * but greater than i_disksize. (hint delalloc)
1174 */
1175 ext4_update_i_disksize(inode, (pos + copied));
1176 i_size_changed = 1;
1177 }
1178 unlock_page(page);
1179 page_cache_release(page);
1180
1181 /*
1182 * Don't mark the inode dirty under page lock. First, it unnecessarily
1183 * makes the holding time of page lock longer. Second, it forces lock
1184 * ordering of page lock and transaction start for journaling
1185 * filesystems.
1186 */
1187 if (i_size_changed)
1188 ext4_mark_inode_dirty(handle, inode);
1189
1190 if (copied < 0)
1191 ret = copied;
1192 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1193 /* if we have allocated more blocks and copied
1194 * less. We will have blocks allocated outside
1195 * inode->i_size. So truncate them
1196 */
1197 ext4_orphan_add(handle, inode);
1198 errout:
1199 ret2 = ext4_journal_stop(handle);
1200 if (!ret)
1201 ret = ret2;
1202
1203 if (pos + len > inode->i_size) {
1204 ext4_truncate_failed_write(inode);
1205 /*
1206 * If truncate failed early the inode might still be
1207 * on the orphan list; we need to make sure the inode
1208 * is removed from the orphan list in that case.
1209 */
1210 if (inode->i_nlink)
1211 ext4_orphan_del(NULL, inode);
1212 }
1213
1214 return ret ? ret : copied;
1215 }
1216
1217 static int ext4_journalled_write_end(struct file *file,
1218 struct address_space *mapping,
1219 loff_t pos, unsigned len, unsigned copied,
1220 struct page *page, void *fsdata)
1221 {
1222 handle_t *handle = ext4_journal_current_handle();
1223 struct inode *inode = mapping->host;
1224 int ret = 0, ret2;
1225 int partial = 0;
1226 unsigned from, to;
1227 loff_t new_i_size;
1228
1229 trace_ext4_journalled_write_end(inode, pos, len, copied);
1230 from = pos & (PAGE_CACHE_SIZE - 1);
1231 to = from + len;
1232
1233 BUG_ON(!ext4_handle_valid(handle));
1234
1235 if (ext4_has_inline_data(inode))
1236 copied = ext4_write_inline_data_end(inode, pos, len,
1237 copied, page);
1238 else {
1239 if (copied < len) {
1240 if (!PageUptodate(page))
1241 copied = 0;
1242 page_zero_new_buffers(page, from+copied, to);
1243 }
1244
1245 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1246 to, &partial, write_end_fn);
1247 if (!partial)
1248 SetPageUptodate(page);
1249 }
1250 new_i_size = pos + copied;
1251 if (new_i_size > inode->i_size)
1252 i_size_write(inode, pos+copied);
1253 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1254 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1255 if (new_i_size > EXT4_I(inode)->i_disksize) {
1256 ext4_update_i_disksize(inode, new_i_size);
1257 ret2 = ext4_mark_inode_dirty(handle, inode);
1258 if (!ret)
1259 ret = ret2;
1260 }
1261
1262 unlock_page(page);
1263 page_cache_release(page);
1264 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1265 /* if we have allocated more blocks and copied
1266 * less. We will have blocks allocated outside
1267 * inode->i_size. So truncate them
1268 */
1269 ext4_orphan_add(handle, inode);
1270
1271 ret2 = ext4_journal_stop(handle);
1272 if (!ret)
1273 ret = ret2;
1274 if (pos + len > inode->i_size) {
1275 ext4_truncate_failed_write(inode);
1276 /*
1277 * If truncate failed early the inode might still be
1278 * on the orphan list; we need to make sure the inode
1279 * is removed from the orphan list in that case.
1280 */
1281 if (inode->i_nlink)
1282 ext4_orphan_del(NULL, inode);
1283 }
1284
1285 return ret ? ret : copied;
1286 }
1287
1288 /*
1289 * Reserve a metadata for a single block located at lblock
1290 */
1291 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1292 {
1293 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1294 struct ext4_inode_info *ei = EXT4_I(inode);
1295 unsigned int md_needed;
1296 ext4_lblk_t save_last_lblock;
1297 int save_len;
1298
1299 /*
1300 * recalculate the amount of metadata blocks to reserve
1301 * in order to allocate nrblocks
1302 * worse case is one extent per block
1303 */
1304 spin_lock(&ei->i_block_reservation_lock);
1305 /*
1306 * ext4_calc_metadata_amount() has side effects, which we have
1307 * to be prepared undo if we fail to claim space.
1308 */
1309 save_len = ei->i_da_metadata_calc_len;
1310 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1311 md_needed = EXT4_NUM_B2C(sbi,
1312 ext4_calc_metadata_amount(inode, lblock));
1313 trace_ext4_da_reserve_space(inode, md_needed);
1314
1315 /*
1316 * We do still charge estimated metadata to the sb though;
1317 * we cannot afford to run out of free blocks.
1318 */
1319 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1320 ei->i_da_metadata_calc_len = save_len;
1321 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1322 spin_unlock(&ei->i_block_reservation_lock);
1323 return -ENOSPC;
1324 }
1325 ei->i_reserved_meta_blocks += md_needed;
1326 spin_unlock(&ei->i_block_reservation_lock);
1327
1328 return 0; /* success */
1329 }
1330
1331 /*
1332 * Reserve a single cluster located at lblock
1333 */
1334 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1335 {
1336 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1337 struct ext4_inode_info *ei = EXT4_I(inode);
1338 unsigned int md_needed;
1339 int ret;
1340 ext4_lblk_t save_last_lblock;
1341 int save_len;
1342
1343 /*
1344 * We will charge metadata quota at writeout time; this saves
1345 * us from metadata over-estimation, though we may go over by
1346 * a small amount in the end. Here we just reserve for data.
1347 */
1348 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1349 if (ret)
1350 return ret;
1351
1352 /*
1353 * recalculate the amount of metadata blocks to reserve
1354 * in order to allocate nrblocks
1355 * worse case is one extent per block
1356 */
1357 spin_lock(&ei->i_block_reservation_lock);
1358 /*
1359 * ext4_calc_metadata_amount() has side effects, which we have
1360 * to be prepared undo if we fail to claim space.
1361 */
1362 save_len = ei->i_da_metadata_calc_len;
1363 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1364 md_needed = EXT4_NUM_B2C(sbi,
1365 ext4_calc_metadata_amount(inode, lblock));
1366 trace_ext4_da_reserve_space(inode, md_needed);
1367
1368 /*
1369 * We do still charge estimated metadata to the sb though;
1370 * we cannot afford to run out of free blocks.
1371 */
1372 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1373 ei->i_da_metadata_calc_len = save_len;
1374 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1375 spin_unlock(&ei->i_block_reservation_lock);
1376 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1377 return -ENOSPC;
1378 }
1379 ei->i_reserved_data_blocks++;
1380 ei->i_reserved_meta_blocks += md_needed;
1381 spin_unlock(&ei->i_block_reservation_lock);
1382
1383 return 0; /* success */
1384 }
1385
1386 static void ext4_da_release_space(struct inode *inode, int to_free)
1387 {
1388 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1389 struct ext4_inode_info *ei = EXT4_I(inode);
1390
1391 if (!to_free)
1392 return; /* Nothing to release, exit */
1393
1394 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1395
1396 trace_ext4_da_release_space(inode, to_free);
1397 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1398 /*
1399 * if there aren't enough reserved blocks, then the
1400 * counter is messed up somewhere. Since this
1401 * function is called from invalidate page, it's
1402 * harmless to return without any action.
1403 */
1404 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1405 "ino %lu, to_free %d with only %d reserved "
1406 "data blocks", inode->i_ino, to_free,
1407 ei->i_reserved_data_blocks);
1408 WARN_ON(1);
1409 to_free = ei->i_reserved_data_blocks;
1410 }
1411 ei->i_reserved_data_blocks -= to_free;
1412
1413 if (ei->i_reserved_data_blocks == 0) {
1414 /*
1415 * We can release all of the reserved metadata blocks
1416 * only when we have written all of the delayed
1417 * allocation blocks.
1418 * Note that in case of bigalloc, i_reserved_meta_blocks,
1419 * i_reserved_data_blocks, etc. refer to number of clusters.
1420 */
1421 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1422 ei->i_reserved_meta_blocks);
1423 ei->i_reserved_meta_blocks = 0;
1424 ei->i_da_metadata_calc_len = 0;
1425 }
1426
1427 /* update fs dirty data blocks counter */
1428 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1429
1430 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1431
1432 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1433 }
1434
1435 static void ext4_da_page_release_reservation(struct page *page,
1436 unsigned long offset)
1437 {
1438 int to_release = 0;
1439 struct buffer_head *head, *bh;
1440 unsigned int curr_off = 0;
1441 struct inode *inode = page->mapping->host;
1442 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1443 int num_clusters;
1444 ext4_fsblk_t lblk;
1445
1446 head = page_buffers(page);
1447 bh = head;
1448 do {
1449 unsigned int next_off = curr_off + bh->b_size;
1450
1451 if ((offset <= curr_off) && (buffer_delay(bh))) {
1452 to_release++;
1453 clear_buffer_delay(bh);
1454 }
1455 curr_off = next_off;
1456 } while ((bh = bh->b_this_page) != head);
1457
1458 if (to_release) {
1459 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1460 ext4_es_remove_extent(inode, lblk, to_release);
1461 }
1462
1463 /* If we have released all the blocks belonging to a cluster, then we
1464 * need to release the reserved space for that cluster. */
1465 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1466 while (num_clusters > 0) {
1467 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1468 ((num_clusters - 1) << sbi->s_cluster_bits);
1469 if (sbi->s_cluster_ratio == 1 ||
1470 !ext4_find_delalloc_cluster(inode, lblk))
1471 ext4_da_release_space(inode, 1);
1472
1473 num_clusters--;
1474 }
1475 }
1476
1477 /*
1478 * Delayed allocation stuff
1479 */
1480
1481 /*
1482 * mpage_da_submit_io - walks through extent of pages and try to write
1483 * them with writepage() call back
1484 *
1485 * @mpd->inode: inode
1486 * @mpd->first_page: first page of the extent
1487 * @mpd->next_page: page after the last page of the extent
1488 *
1489 * By the time mpage_da_submit_io() is called we expect all blocks
1490 * to be allocated. this may be wrong if allocation failed.
1491 *
1492 * As pages are already locked by write_cache_pages(), we can't use it
1493 */
1494 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1495 struct ext4_map_blocks *map)
1496 {
1497 struct pagevec pvec;
1498 unsigned long index, end;
1499 int ret = 0, err, nr_pages, i;
1500 struct inode *inode = mpd->inode;
1501 struct address_space *mapping = inode->i_mapping;
1502 loff_t size = i_size_read(inode);
1503 unsigned int len, block_start;
1504 struct buffer_head *bh, *page_bufs = NULL;
1505 sector_t pblock = 0, cur_logical = 0;
1506 struct ext4_io_submit io_submit;
1507
1508 BUG_ON(mpd->next_page <= mpd->first_page);
1509 memset(&io_submit, 0, sizeof(io_submit));
1510 /*
1511 * We need to start from the first_page to the next_page - 1
1512 * to make sure we also write the mapped dirty buffer_heads.
1513 * If we look at mpd->b_blocknr we would only be looking
1514 * at the currently mapped buffer_heads.
1515 */
1516 index = mpd->first_page;
1517 end = mpd->next_page - 1;
1518
1519 pagevec_init(&pvec, 0);
1520 while (index <= end) {
1521 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1522 if (nr_pages == 0)
1523 break;
1524 for (i = 0; i < nr_pages; i++) {
1525 int skip_page = 0;
1526 struct page *page = pvec.pages[i];
1527
1528 index = page->index;
1529 if (index > end)
1530 break;
1531
1532 if (index == size >> PAGE_CACHE_SHIFT)
1533 len = size & ~PAGE_CACHE_MASK;
1534 else
1535 len = PAGE_CACHE_SIZE;
1536 if (map) {
1537 cur_logical = index << (PAGE_CACHE_SHIFT -
1538 inode->i_blkbits);
1539 pblock = map->m_pblk + (cur_logical -
1540 map->m_lblk);
1541 }
1542 index++;
1543
1544 BUG_ON(!PageLocked(page));
1545 BUG_ON(PageWriteback(page));
1546
1547 bh = page_bufs = page_buffers(page);
1548 block_start = 0;
1549 do {
1550 if (map && (cur_logical >= map->m_lblk) &&
1551 (cur_logical <= (map->m_lblk +
1552 (map->m_len - 1)))) {
1553 if (buffer_delay(bh)) {
1554 clear_buffer_delay(bh);
1555 bh->b_blocknr = pblock;
1556 }
1557 if (buffer_unwritten(bh) ||
1558 buffer_mapped(bh))
1559 BUG_ON(bh->b_blocknr != pblock);
1560 if (map->m_flags & EXT4_MAP_UNINIT)
1561 set_buffer_uninit(bh);
1562 clear_buffer_unwritten(bh);
1563 }
1564
1565 /*
1566 * skip page if block allocation undone and
1567 * block is dirty
1568 */
1569 if (ext4_bh_delay_or_unwritten(NULL, bh))
1570 skip_page = 1;
1571 bh = bh->b_this_page;
1572 block_start += bh->b_size;
1573 cur_logical++;
1574 pblock++;
1575 } while (bh != page_bufs);
1576
1577 if (skip_page) {
1578 unlock_page(page);
1579 continue;
1580 }
1581
1582 clear_page_dirty_for_io(page);
1583 err = ext4_bio_write_page(&io_submit, page, len,
1584 mpd->wbc);
1585 if (!err)
1586 mpd->pages_written++;
1587 /*
1588 * In error case, we have to continue because
1589 * remaining pages are still locked
1590 */
1591 if (ret == 0)
1592 ret = err;
1593 }
1594 pagevec_release(&pvec);
1595 }
1596 ext4_io_submit(&io_submit);
1597 return ret;
1598 }
1599
1600 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1601 {
1602 int nr_pages, i;
1603 pgoff_t index, end;
1604 struct pagevec pvec;
1605 struct inode *inode = mpd->inode;
1606 struct address_space *mapping = inode->i_mapping;
1607 ext4_lblk_t start, last;
1608
1609 index = mpd->first_page;
1610 end = mpd->next_page - 1;
1611
1612 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1613 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1614 ext4_es_remove_extent(inode, start, last - start + 1);
1615
1616 pagevec_init(&pvec, 0);
1617 while (index <= end) {
1618 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1619 if (nr_pages == 0)
1620 break;
1621 for (i = 0; i < nr_pages; i++) {
1622 struct page *page = pvec.pages[i];
1623 if (page->index > end)
1624 break;
1625 BUG_ON(!PageLocked(page));
1626 BUG_ON(PageWriteback(page));
1627 block_invalidatepage(page, 0);
1628 ClearPageUptodate(page);
1629 unlock_page(page);
1630 }
1631 index = pvec.pages[nr_pages - 1]->index + 1;
1632 pagevec_release(&pvec);
1633 }
1634 return;
1635 }
1636
1637 static void ext4_print_free_blocks(struct inode *inode)
1638 {
1639 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640 struct super_block *sb = inode->i_sb;
1641 struct ext4_inode_info *ei = EXT4_I(inode);
1642
1643 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1644 EXT4_C2B(EXT4_SB(inode->i_sb),
1645 ext4_count_free_clusters(sb)));
1646 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1647 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1648 (long long) EXT4_C2B(EXT4_SB(sb),
1649 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1650 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1651 (long long) EXT4_C2B(EXT4_SB(sb),
1652 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1653 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1654 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1655 ei->i_reserved_data_blocks);
1656 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1657 ei->i_reserved_meta_blocks);
1658 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1659 ei->i_allocated_meta_blocks);
1660 return;
1661 }
1662
1663 /*
1664 * mpage_da_map_and_submit - go through given space, map them
1665 * if necessary, and then submit them for I/O
1666 *
1667 * @mpd - bh describing space
1668 *
1669 * The function skips space we know is already mapped to disk blocks.
1670 *
1671 */
1672 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1673 {
1674 int err, blks, get_blocks_flags;
1675 struct ext4_map_blocks map, *mapp = NULL;
1676 sector_t next = mpd->b_blocknr;
1677 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1678 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1679 handle_t *handle = NULL;
1680
1681 /*
1682 * If the blocks are mapped already, or we couldn't accumulate
1683 * any blocks, then proceed immediately to the submission stage.
1684 */
1685 if ((mpd->b_size == 0) ||
1686 ((mpd->b_state & (1 << BH_Mapped)) &&
1687 !(mpd->b_state & (1 << BH_Delay)) &&
1688 !(mpd->b_state & (1 << BH_Unwritten))))
1689 goto submit_io;
1690
1691 handle = ext4_journal_current_handle();
1692 BUG_ON(!handle);
1693
1694 /*
1695 * Call ext4_map_blocks() to allocate any delayed allocation
1696 * blocks, or to convert an uninitialized extent to be
1697 * initialized (in the case where we have written into
1698 * one or more preallocated blocks).
1699 *
1700 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1701 * indicate that we are on the delayed allocation path. This
1702 * affects functions in many different parts of the allocation
1703 * call path. This flag exists primarily because we don't
1704 * want to change *many* call functions, so ext4_map_blocks()
1705 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1706 * inode's allocation semaphore is taken.
1707 *
1708 * If the blocks in questions were delalloc blocks, set
1709 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1710 * variables are updated after the blocks have been allocated.
1711 */
1712 map.m_lblk = next;
1713 map.m_len = max_blocks;
1714 /*
1715 * We're in delalloc path and it is possible that we're going to
1716 * need more metadata blocks than previously reserved. However
1717 * we must not fail because we're in writeback and there is
1718 * nothing we can do about it so it might result in data loss.
1719 * So use reserved blocks to allocate metadata if possible.
1720 */
1721 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1722 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1723 if (ext4_should_dioread_nolock(mpd->inode))
1724 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1725 if (mpd->b_state & (1 << BH_Delay))
1726 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1727
1728
1729 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1730 if (blks < 0) {
1731 struct super_block *sb = mpd->inode->i_sb;
1732
1733 err = blks;
1734 /*
1735 * If get block returns EAGAIN or ENOSPC and there
1736 * appears to be free blocks we will just let
1737 * mpage_da_submit_io() unlock all of the pages.
1738 */
1739 if (err == -EAGAIN)
1740 goto submit_io;
1741
1742 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1743 mpd->retval = err;
1744 goto submit_io;
1745 }
1746
1747 /*
1748 * get block failure will cause us to loop in
1749 * writepages, because a_ops->writepage won't be able
1750 * to make progress. The page will be redirtied by
1751 * writepage and writepages will again try to write
1752 * the same.
1753 */
1754 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1755 ext4_msg(sb, KERN_CRIT,
1756 "delayed block allocation failed for inode %lu "
1757 "at logical offset %llu with max blocks %zd "
1758 "with error %d", mpd->inode->i_ino,
1759 (unsigned long long) next,
1760 mpd->b_size >> mpd->inode->i_blkbits, err);
1761 ext4_msg(sb, KERN_CRIT,
1762 "This should not happen!! Data will be lost");
1763 if (err == -ENOSPC)
1764 ext4_print_free_blocks(mpd->inode);
1765 }
1766 /* invalidate all the pages */
1767 ext4_da_block_invalidatepages(mpd);
1768
1769 /* Mark this page range as having been completed */
1770 mpd->io_done = 1;
1771 return;
1772 }
1773 BUG_ON(blks == 0);
1774
1775 mapp = &map;
1776 if (map.m_flags & EXT4_MAP_NEW) {
1777 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1778 int i;
1779
1780 for (i = 0; i < map.m_len; i++)
1781 unmap_underlying_metadata(bdev, map.m_pblk + i);
1782 }
1783
1784 /*
1785 * Update on-disk size along with block allocation.
1786 */
1787 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1788 if (disksize > i_size_read(mpd->inode))
1789 disksize = i_size_read(mpd->inode);
1790 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1791 ext4_update_i_disksize(mpd->inode, disksize);
1792 err = ext4_mark_inode_dirty(handle, mpd->inode);
1793 if (err)
1794 ext4_error(mpd->inode->i_sb,
1795 "Failed to mark inode %lu dirty",
1796 mpd->inode->i_ino);
1797 }
1798
1799 submit_io:
1800 mpage_da_submit_io(mpd, mapp);
1801 mpd->io_done = 1;
1802 }
1803
1804 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1805 (1 << BH_Delay) | (1 << BH_Unwritten))
1806
1807 /*
1808 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1809 *
1810 * @mpd->lbh - extent of blocks
1811 * @logical - logical number of the block in the file
1812 * @b_state - b_state of the buffer head added
1813 *
1814 * the function is used to collect contig. blocks in same state
1815 */
1816 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1817 unsigned long b_state)
1818 {
1819 sector_t next;
1820 int blkbits = mpd->inode->i_blkbits;
1821 int nrblocks = mpd->b_size >> blkbits;
1822
1823 /*
1824 * XXX Don't go larger than mballoc is willing to allocate
1825 * This is a stopgap solution. We eventually need to fold
1826 * mpage_da_submit_io() into this function and then call
1827 * ext4_map_blocks() multiple times in a loop
1828 */
1829 if (nrblocks >= (8*1024*1024 >> blkbits))
1830 goto flush_it;
1831
1832 /* check if the reserved journal credits might overflow */
1833 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1834 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1835 /*
1836 * With non-extent format we are limited by the journal
1837 * credit available. Total credit needed to insert
1838 * nrblocks contiguous blocks is dependent on the
1839 * nrblocks. So limit nrblocks.
1840 */
1841 goto flush_it;
1842 }
1843 }
1844 /*
1845 * First block in the extent
1846 */
1847 if (mpd->b_size == 0) {
1848 mpd->b_blocknr = logical;
1849 mpd->b_size = 1 << blkbits;
1850 mpd->b_state = b_state & BH_FLAGS;
1851 return;
1852 }
1853
1854 next = mpd->b_blocknr + nrblocks;
1855 /*
1856 * Can we merge the block to our big extent?
1857 */
1858 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1859 mpd->b_size += 1 << blkbits;
1860 return;
1861 }
1862
1863 flush_it:
1864 /*
1865 * We couldn't merge the block to our extent, so we
1866 * need to flush current extent and start new one
1867 */
1868 mpage_da_map_and_submit(mpd);
1869 return;
1870 }
1871
1872 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1873 {
1874 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1875 }
1876
1877 /*
1878 * This function is grabs code from the very beginning of
1879 * ext4_map_blocks, but assumes that the caller is from delayed write
1880 * time. This function looks up the requested blocks and sets the
1881 * buffer delay bit under the protection of i_data_sem.
1882 */
1883 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1884 struct ext4_map_blocks *map,
1885 struct buffer_head *bh)
1886 {
1887 struct extent_status es;
1888 int retval;
1889 sector_t invalid_block = ~((sector_t) 0xffff);
1890 #ifdef ES_AGGRESSIVE_TEST
1891 struct ext4_map_blocks orig_map;
1892
1893 memcpy(&orig_map, map, sizeof(*map));
1894 #endif
1895
1896 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1897 invalid_block = ~0;
1898
1899 map->m_flags = 0;
1900 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1901 "logical block %lu\n", inode->i_ino, map->m_len,
1902 (unsigned long) map->m_lblk);
1903
1904 /* Lookup extent status tree firstly */
1905 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1906
1907 if (ext4_es_is_hole(&es)) {
1908 retval = 0;
1909 down_read((&EXT4_I(inode)->i_data_sem));
1910 goto add_delayed;
1911 }
1912
1913 /*
1914 * Delayed extent could be allocated by fallocate.
1915 * So we need to check it.
1916 */
1917 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1918 map_bh(bh, inode->i_sb, invalid_block);
1919 set_buffer_new(bh);
1920 set_buffer_delay(bh);
1921 return 0;
1922 }
1923
1924 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1925 retval = es.es_len - (iblock - es.es_lblk);
1926 if (retval > map->m_len)
1927 retval = map->m_len;
1928 map->m_len = retval;
1929 if (ext4_es_is_written(&es))
1930 map->m_flags |= EXT4_MAP_MAPPED;
1931 else if (ext4_es_is_unwritten(&es))
1932 map->m_flags |= EXT4_MAP_UNWRITTEN;
1933 else
1934 BUG_ON(1);
1935
1936 #ifdef ES_AGGRESSIVE_TEST
1937 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1938 #endif
1939 return retval;
1940 }
1941
1942 /*
1943 * Try to see if we can get the block without requesting a new
1944 * file system block.
1945 */
1946 down_read((&EXT4_I(inode)->i_data_sem));
1947 if (ext4_has_inline_data(inode)) {
1948 /*
1949 * We will soon create blocks for this page, and let
1950 * us pretend as if the blocks aren't allocated yet.
1951 * In case of clusters, we have to handle the work
1952 * of mapping from cluster so that the reserved space
1953 * is calculated properly.
1954 */
1955 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1956 ext4_find_delalloc_cluster(inode, map->m_lblk))
1957 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1958 retval = 0;
1959 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1960 retval = ext4_ext_map_blocks(NULL, inode, map,
1961 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1962 else
1963 retval = ext4_ind_map_blocks(NULL, inode, map,
1964 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1965
1966 add_delayed:
1967 if (retval == 0) {
1968 int ret;
1969 /*
1970 * XXX: __block_prepare_write() unmaps passed block,
1971 * is it OK?
1972 */
1973 /*
1974 * If the block was allocated from previously allocated cluster,
1975 * then we don't need to reserve it again. However we still need
1976 * to reserve metadata for every block we're going to write.
1977 */
1978 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1979 ret = ext4_da_reserve_space(inode, iblock);
1980 if (ret) {
1981 /* not enough space to reserve */
1982 retval = ret;
1983 goto out_unlock;
1984 }
1985 } else {
1986 ret = ext4_da_reserve_metadata(inode, iblock);
1987 if (ret) {
1988 /* not enough space to reserve */
1989 retval = ret;
1990 goto out_unlock;
1991 }
1992 }
1993
1994 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1995 ~0, EXTENT_STATUS_DELAYED);
1996 if (ret) {
1997 retval = ret;
1998 goto out_unlock;
1999 }
2000
2001 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
2002 * and it should not appear on the bh->b_state.
2003 */
2004 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
2005
2006 map_bh(bh, inode->i_sb, invalid_block);
2007 set_buffer_new(bh);
2008 set_buffer_delay(bh);
2009 } else if (retval > 0) {
2010 int ret;
2011 unsigned long long status;
2012
2013 #ifdef ES_AGGRESSIVE_TEST
2014 if (retval != map->m_len) {
2015 printk("ES len assertation failed for inode: %lu "
2016 "retval %d != map->m_len %d "
2017 "in %s (lookup)\n", inode->i_ino, retval,
2018 map->m_len, __func__);
2019 }
2020 #endif
2021
2022 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2023 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2024 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2025 map->m_pblk, status);
2026 if (ret != 0)
2027 retval = ret;
2028 }
2029
2030 out_unlock:
2031 up_read((&EXT4_I(inode)->i_data_sem));
2032
2033 return retval;
2034 }
2035
2036 /*
2037 * This is a special get_blocks_t callback which is used by
2038 * ext4_da_write_begin(). It will either return mapped block or
2039 * reserve space for a single block.
2040 *
2041 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2042 * We also have b_blocknr = -1 and b_bdev initialized properly
2043 *
2044 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2045 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2046 * initialized properly.
2047 */
2048 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2049 struct buffer_head *bh, int create)
2050 {
2051 struct ext4_map_blocks map;
2052 int ret = 0;
2053
2054 BUG_ON(create == 0);
2055 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2056
2057 map.m_lblk = iblock;
2058 map.m_len = 1;
2059
2060 /*
2061 * first, we need to know whether the block is allocated already
2062 * preallocated blocks are unmapped but should treated
2063 * the same as allocated blocks.
2064 */
2065 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2066 if (ret <= 0)
2067 return ret;
2068
2069 map_bh(bh, inode->i_sb, map.m_pblk);
2070 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2071
2072 if (buffer_unwritten(bh)) {
2073 /* A delayed write to unwritten bh should be marked
2074 * new and mapped. Mapped ensures that we don't do
2075 * get_block multiple times when we write to the same
2076 * offset and new ensures that we do proper zero out
2077 * for partial write.
2078 */
2079 set_buffer_new(bh);
2080 set_buffer_mapped(bh);
2081 }
2082 return 0;
2083 }
2084
2085 static int bget_one(handle_t *handle, struct buffer_head *bh)
2086 {
2087 get_bh(bh);
2088 return 0;
2089 }
2090
2091 static int bput_one(handle_t *handle, struct buffer_head *bh)
2092 {
2093 put_bh(bh);
2094 return 0;
2095 }
2096
2097 static int __ext4_journalled_writepage(struct page *page,
2098 unsigned int len)
2099 {
2100 struct address_space *mapping = page->mapping;
2101 struct inode *inode = mapping->host;
2102 struct buffer_head *page_bufs = NULL;
2103 handle_t *handle = NULL;
2104 int ret = 0, err = 0;
2105 int inline_data = ext4_has_inline_data(inode);
2106 struct buffer_head *inode_bh = NULL;
2107
2108 ClearPageChecked(page);
2109
2110 if (inline_data) {
2111 BUG_ON(page->index != 0);
2112 BUG_ON(len > ext4_get_max_inline_size(inode));
2113 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2114 if (inode_bh == NULL)
2115 goto out;
2116 } else {
2117 page_bufs = page_buffers(page);
2118 if (!page_bufs) {
2119 BUG();
2120 goto out;
2121 }
2122 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2123 NULL, bget_one);
2124 }
2125 /* As soon as we unlock the page, it can go away, but we have
2126 * references to buffers so we are safe */
2127 unlock_page(page);
2128
2129 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2130 ext4_writepage_trans_blocks(inode));
2131 if (IS_ERR(handle)) {
2132 ret = PTR_ERR(handle);
2133 goto out;
2134 }
2135
2136 BUG_ON(!ext4_handle_valid(handle));
2137
2138 if (inline_data) {
2139 ret = ext4_journal_get_write_access(handle, inode_bh);
2140
2141 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2142
2143 } else {
2144 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2145 do_journal_get_write_access);
2146
2147 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2148 write_end_fn);
2149 }
2150 if (ret == 0)
2151 ret = err;
2152 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2153 err = ext4_journal_stop(handle);
2154 if (!ret)
2155 ret = err;
2156
2157 if (!ext4_has_inline_data(inode))
2158 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2159 NULL, bput_one);
2160 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2161 out:
2162 brelse(inode_bh);
2163 return ret;
2164 }
2165
2166 /*
2167 * Note that we don't need to start a transaction unless we're journaling data
2168 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2169 * need to file the inode to the transaction's list in ordered mode because if
2170 * we are writing back data added by write(), the inode is already there and if
2171 * we are writing back data modified via mmap(), no one guarantees in which
2172 * transaction the data will hit the disk. In case we are journaling data, we
2173 * cannot start transaction directly because transaction start ranks above page
2174 * lock so we have to do some magic.
2175 *
2176 * This function can get called via...
2177 * - ext4_da_writepages after taking page lock (have journal handle)
2178 * - journal_submit_inode_data_buffers (no journal handle)
2179 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2180 * - grab_page_cache when doing write_begin (have journal handle)
2181 *
2182 * We don't do any block allocation in this function. If we have page with
2183 * multiple blocks we need to write those buffer_heads that are mapped. This
2184 * is important for mmaped based write. So if we do with blocksize 1K
2185 * truncate(f, 1024);
2186 * a = mmap(f, 0, 4096);
2187 * a[0] = 'a';
2188 * truncate(f, 4096);
2189 * we have in the page first buffer_head mapped via page_mkwrite call back
2190 * but other buffer_heads would be unmapped but dirty (dirty done via the
2191 * do_wp_page). So writepage should write the first block. If we modify
2192 * the mmap area beyond 1024 we will again get a page_fault and the
2193 * page_mkwrite callback will do the block allocation and mark the
2194 * buffer_heads mapped.
2195 *
2196 * We redirty the page if we have any buffer_heads that is either delay or
2197 * unwritten in the page.
2198 *
2199 * We can get recursively called as show below.
2200 *
2201 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2202 * ext4_writepage()
2203 *
2204 * But since we don't do any block allocation we should not deadlock.
2205 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2206 */
2207 static int ext4_writepage(struct page *page,
2208 struct writeback_control *wbc)
2209 {
2210 int ret = 0;
2211 loff_t size;
2212 unsigned int len;
2213 struct buffer_head *page_bufs = NULL;
2214 struct inode *inode = page->mapping->host;
2215 struct ext4_io_submit io_submit;
2216
2217 trace_ext4_writepage(page);
2218 size = i_size_read(inode);
2219 if (page->index == size >> PAGE_CACHE_SHIFT)
2220 len = size & ~PAGE_CACHE_MASK;
2221 else
2222 len = PAGE_CACHE_SIZE;
2223
2224 page_bufs = page_buffers(page);
2225 /*
2226 * We cannot do block allocation or other extent handling in this
2227 * function. If there are buffers needing that, we have to redirty
2228 * the page. But we may reach here when we do a journal commit via
2229 * journal_submit_inode_data_buffers() and in that case we must write
2230 * allocated buffers to achieve data=ordered mode guarantees.
2231 */
2232 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2233 ext4_bh_delay_or_unwritten)) {
2234 redirty_page_for_writepage(wbc, page);
2235 if (current->flags & PF_MEMALLOC) {
2236 /*
2237 * For memory cleaning there's no point in writing only
2238 * some buffers. So just bail out. Warn if we came here
2239 * from direct reclaim.
2240 */
2241 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2242 == PF_MEMALLOC);
2243 unlock_page(page);
2244 return 0;
2245 }
2246 }
2247
2248 if (PageChecked(page) && ext4_should_journal_data(inode))
2249 /*
2250 * It's mmapped pagecache. Add buffers and journal it. There
2251 * doesn't seem much point in redirtying the page here.
2252 */
2253 return __ext4_journalled_writepage(page, len);
2254
2255 memset(&io_submit, 0, sizeof(io_submit));
2256 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2257 ext4_io_submit(&io_submit);
2258 return ret;
2259 }
2260
2261 /*
2262 * This is called via ext4_da_writepages() to
2263 * calculate the total number of credits to reserve to fit
2264 * a single extent allocation into a single transaction,
2265 * ext4_da_writpeages() will loop calling this before
2266 * the block allocation.
2267 */
2268
2269 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2270 {
2271 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2272
2273 /*
2274 * With non-extent format the journal credit needed to
2275 * insert nrblocks contiguous block is dependent on
2276 * number of contiguous block. So we will limit
2277 * number of contiguous block to a sane value
2278 */
2279 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2280 (max_blocks > EXT4_MAX_TRANS_DATA))
2281 max_blocks = EXT4_MAX_TRANS_DATA;
2282
2283 return ext4_chunk_trans_blocks(inode, max_blocks);
2284 }
2285
2286 /*
2287 * write_cache_pages_da - walk the list of dirty pages of the given
2288 * address space and accumulate pages that need writing, and call
2289 * mpage_da_map_and_submit to map a single contiguous memory region
2290 * and then write them.
2291 */
2292 static int write_cache_pages_da(handle_t *handle,
2293 struct address_space *mapping,
2294 struct writeback_control *wbc,
2295 struct mpage_da_data *mpd,
2296 pgoff_t *done_index)
2297 {
2298 struct buffer_head *bh, *head;
2299 struct inode *inode = mapping->host;
2300 struct pagevec pvec;
2301 unsigned int nr_pages;
2302 sector_t logical;
2303 pgoff_t index, end;
2304 long nr_to_write = wbc->nr_to_write;
2305 int i, tag, ret = 0;
2306
2307 memset(mpd, 0, sizeof(struct mpage_da_data));
2308 mpd->wbc = wbc;
2309 mpd->inode = inode;
2310 pagevec_init(&pvec, 0);
2311 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2312 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2313
2314 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2315 tag = PAGECACHE_TAG_TOWRITE;
2316 else
2317 tag = PAGECACHE_TAG_DIRTY;
2318
2319 *done_index = index;
2320 while (index <= end) {
2321 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2322 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2323 if (nr_pages == 0)
2324 return 0;
2325
2326 for (i = 0; i < nr_pages; i++) {
2327 struct page *page = pvec.pages[i];
2328
2329 /*
2330 * At this point, the page may be truncated or
2331 * invalidated (changing page->mapping to NULL), or
2332 * even swizzled back from swapper_space to tmpfs file
2333 * mapping. However, page->index will not change
2334 * because we have a reference on the page.
2335 */
2336 if (page->index > end)
2337 goto out;
2338
2339 *done_index = page->index + 1;
2340
2341 /*
2342 * If we can't merge this page, and we have
2343 * accumulated an contiguous region, write it
2344 */
2345 if ((mpd->next_page != page->index) &&
2346 (mpd->next_page != mpd->first_page)) {
2347 mpage_da_map_and_submit(mpd);
2348 goto ret_extent_tail;
2349 }
2350
2351 lock_page(page);
2352
2353 /*
2354 * If the page is no longer dirty, or its
2355 * mapping no longer corresponds to inode we
2356 * are writing (which means it has been
2357 * truncated or invalidated), or the page is
2358 * already under writeback and we are not
2359 * doing a data integrity writeback, skip the page
2360 */
2361 if (!PageDirty(page) ||
2362 (PageWriteback(page) &&
2363 (wbc->sync_mode == WB_SYNC_NONE)) ||
2364 unlikely(page->mapping != mapping)) {
2365 unlock_page(page);
2366 continue;
2367 }
2368
2369 wait_on_page_writeback(page);
2370 BUG_ON(PageWriteback(page));
2371
2372 /*
2373 * If we have inline data and arrive here, it means that
2374 * we will soon create the block for the 1st page, so
2375 * we'd better clear the inline data here.
2376 */
2377 if (ext4_has_inline_data(inode)) {
2378 BUG_ON(ext4_test_inode_state(inode,
2379 EXT4_STATE_MAY_INLINE_DATA));
2380 ext4_destroy_inline_data(handle, inode);
2381 }
2382
2383 if (mpd->next_page != page->index)
2384 mpd->first_page = page->index;
2385 mpd->next_page = page->index + 1;
2386 logical = (sector_t) page->index <<
2387 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2388
2389 /* Add all dirty buffers to mpd */
2390 head = page_buffers(page);
2391 bh = head;
2392 do {
2393 BUG_ON(buffer_locked(bh));
2394 /*
2395 * We need to try to allocate unmapped blocks
2396 * in the same page. Otherwise we won't make
2397 * progress with the page in ext4_writepage
2398 */
2399 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2400 mpage_add_bh_to_extent(mpd, logical,
2401 bh->b_state);
2402 if (mpd->io_done)
2403 goto ret_extent_tail;
2404 } else if (buffer_dirty(bh) &&
2405 buffer_mapped(bh)) {
2406 /*
2407 * mapped dirty buffer. We need to
2408 * update the b_state because we look
2409 * at b_state in mpage_da_map_blocks.
2410 * We don't update b_size because if we
2411 * find an unmapped buffer_head later
2412 * we need to use the b_state flag of
2413 * that buffer_head.
2414 */
2415 if (mpd->b_size == 0)
2416 mpd->b_state =
2417 bh->b_state & BH_FLAGS;
2418 }
2419 logical++;
2420 } while ((bh = bh->b_this_page) != head);
2421
2422 if (nr_to_write > 0) {
2423 nr_to_write--;
2424 if (nr_to_write == 0 &&
2425 wbc->sync_mode == WB_SYNC_NONE)
2426 /*
2427 * We stop writing back only if we are
2428 * not doing integrity sync. In case of
2429 * integrity sync we have to keep going
2430 * because someone may be concurrently
2431 * dirtying pages, and we might have
2432 * synced a lot of newly appeared dirty
2433 * pages, but have not synced all of the
2434 * old dirty pages.
2435 */
2436 goto out;
2437 }
2438 }
2439 pagevec_release(&pvec);
2440 cond_resched();
2441 }
2442 return 0;
2443 ret_extent_tail:
2444 ret = MPAGE_DA_EXTENT_TAIL;
2445 out:
2446 pagevec_release(&pvec);
2447 cond_resched();
2448 return ret;
2449 }
2450
2451
2452 static int ext4_da_writepages(struct address_space *mapping,
2453 struct writeback_control *wbc)
2454 {
2455 pgoff_t index;
2456 int range_whole = 0;
2457 handle_t *handle = NULL;
2458 struct mpage_da_data mpd;
2459 struct inode *inode = mapping->host;
2460 int pages_written = 0;
2461 unsigned int max_pages;
2462 int range_cyclic, cycled = 1, io_done = 0;
2463 int needed_blocks, ret = 0;
2464 long desired_nr_to_write, nr_to_writebump = 0;
2465 loff_t range_start = wbc->range_start;
2466 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2467 pgoff_t done_index = 0;
2468 pgoff_t end;
2469 struct blk_plug plug;
2470
2471 trace_ext4_da_writepages(inode, wbc);
2472
2473 /*
2474 * No pages to write? This is mainly a kludge to avoid starting
2475 * a transaction for special inodes like journal inode on last iput()
2476 * because that could violate lock ordering on umount
2477 */
2478 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2479 return 0;
2480
2481 /*
2482 * If the filesystem has aborted, it is read-only, so return
2483 * right away instead of dumping stack traces later on that
2484 * will obscure the real source of the problem. We test
2485 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2486 * the latter could be true if the filesystem is mounted
2487 * read-only, and in that case, ext4_da_writepages should
2488 * *never* be called, so if that ever happens, we would want
2489 * the stack trace.
2490 */
2491 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2492 return -EROFS;
2493
2494 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2495 range_whole = 1;
2496
2497 range_cyclic = wbc->range_cyclic;
2498 if (wbc->range_cyclic) {
2499 index = mapping->writeback_index;
2500 if (index)
2501 cycled = 0;
2502 wbc->range_start = index << PAGE_CACHE_SHIFT;
2503 wbc->range_end = LLONG_MAX;
2504 wbc->range_cyclic = 0;
2505 end = -1;
2506 } else {
2507 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2508 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2509 }
2510
2511 /*
2512 * This works around two forms of stupidity. The first is in
2513 * the writeback code, which caps the maximum number of pages
2514 * written to be 1024 pages. This is wrong on multiple
2515 * levels; different architectues have a different page size,
2516 * which changes the maximum amount of data which gets
2517 * written. Secondly, 4 megabytes is way too small. XFS
2518 * forces this value to be 16 megabytes by multiplying
2519 * nr_to_write parameter by four, and then relies on its
2520 * allocator to allocate larger extents to make them
2521 * contiguous. Unfortunately this brings us to the second
2522 * stupidity, which is that ext4's mballoc code only allocates
2523 * at most 2048 blocks. So we force contiguous writes up to
2524 * the number of dirty blocks in the inode, or
2525 * sbi->max_writeback_mb_bump whichever is smaller.
2526 */
2527 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2528 if (!range_cyclic && range_whole) {
2529 if (wbc->nr_to_write == LONG_MAX)
2530 desired_nr_to_write = wbc->nr_to_write;
2531 else
2532 desired_nr_to_write = wbc->nr_to_write * 8;
2533 } else
2534 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2535 max_pages);
2536 if (desired_nr_to_write > max_pages)
2537 desired_nr_to_write = max_pages;
2538
2539 if (wbc->nr_to_write < desired_nr_to_write) {
2540 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2541 wbc->nr_to_write = desired_nr_to_write;
2542 }
2543
2544 retry:
2545 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2546 tag_pages_for_writeback(mapping, index, end);
2547
2548 blk_start_plug(&plug);
2549 while (!ret && wbc->nr_to_write > 0) {
2550
2551 /*
2552 * we insert one extent at a time. So we need
2553 * credit needed for single extent allocation.
2554 * journalled mode is currently not supported
2555 * by delalloc
2556 */
2557 BUG_ON(ext4_should_journal_data(inode));
2558 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2559
2560 /* start a new transaction*/
2561 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2562 needed_blocks);
2563 if (IS_ERR(handle)) {
2564 ret = PTR_ERR(handle);
2565 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2566 "%ld pages, ino %lu; err %d", __func__,
2567 wbc->nr_to_write, inode->i_ino, ret);
2568 blk_finish_plug(&plug);
2569 goto out_writepages;
2570 }
2571
2572 /*
2573 * Now call write_cache_pages_da() to find the next
2574 * contiguous region of logical blocks that need
2575 * blocks to be allocated by ext4 and submit them.
2576 */
2577 ret = write_cache_pages_da(handle, mapping,
2578 wbc, &mpd, &done_index);
2579 /*
2580 * If we have a contiguous extent of pages and we
2581 * haven't done the I/O yet, map the blocks and submit
2582 * them for I/O.
2583 */
2584 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2585 mpage_da_map_and_submit(&mpd);
2586 ret = MPAGE_DA_EXTENT_TAIL;
2587 }
2588 trace_ext4_da_write_pages(inode, &mpd);
2589 wbc->nr_to_write -= mpd.pages_written;
2590
2591 ext4_journal_stop(handle);
2592
2593 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2594 /* commit the transaction which would
2595 * free blocks released in the transaction
2596 * and try again
2597 */
2598 jbd2_journal_force_commit_nested(sbi->s_journal);
2599 ret = 0;
2600 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2601 /*
2602 * Got one extent now try with rest of the pages.
2603 * If mpd.retval is set -EIO, journal is aborted.
2604 * So we don't need to write any more.
2605 */
2606 pages_written += mpd.pages_written;
2607 ret = mpd.retval;
2608 io_done = 1;
2609 } else if (wbc->nr_to_write)
2610 /*
2611 * There is no more writeout needed
2612 * or we requested for a noblocking writeout
2613 * and we found the device congested
2614 */
2615 break;
2616 }
2617 blk_finish_plug(&plug);
2618 if (!io_done && !cycled) {
2619 cycled = 1;
2620 index = 0;
2621 wbc->range_start = index << PAGE_CACHE_SHIFT;
2622 wbc->range_end = mapping->writeback_index - 1;
2623 goto retry;
2624 }
2625
2626 /* Update index */
2627 wbc->range_cyclic = range_cyclic;
2628 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2629 /*
2630 * set the writeback_index so that range_cyclic
2631 * mode will write it back later
2632 */
2633 mapping->writeback_index = done_index;
2634
2635 out_writepages:
2636 wbc->nr_to_write -= nr_to_writebump;
2637 wbc->range_start = range_start;
2638 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2639 return ret;
2640 }
2641
2642 static int ext4_nonda_switch(struct super_block *sb)
2643 {
2644 s64 free_clusters, dirty_clusters;
2645 struct ext4_sb_info *sbi = EXT4_SB(sb);
2646
2647 /*
2648 * switch to non delalloc mode if we are running low
2649 * on free block. The free block accounting via percpu
2650 * counters can get slightly wrong with percpu_counter_batch getting
2651 * accumulated on each CPU without updating global counters
2652 * Delalloc need an accurate free block accounting. So switch
2653 * to non delalloc when we are near to error range.
2654 */
2655 free_clusters =
2656 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2657 dirty_clusters =
2658 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2659 /*
2660 * Start pushing delalloc when 1/2 of free blocks are dirty.
2661 */
2662 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2663 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2664
2665 if (2 * free_clusters < 3 * dirty_clusters ||
2666 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2667 /*
2668 * free block count is less than 150% of dirty blocks
2669 * or free blocks is less than watermark
2670 */
2671 return 1;
2672 }
2673 return 0;
2674 }
2675
2676 /* We always reserve for an inode update; the superblock could be there too */
2677 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2678 {
2679 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2680 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2681 return 1;
2682
2683 if (pos + len <= 0x7fffffffULL)
2684 return 1;
2685
2686 /* We might need to update the superblock to set LARGE_FILE */
2687 return 2;
2688 }
2689
2690 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2691 loff_t pos, unsigned len, unsigned flags,
2692 struct page **pagep, void **fsdata)
2693 {
2694 int ret, retries = 0;
2695 struct page *page;
2696 pgoff_t index;
2697 struct inode *inode = mapping->host;
2698 handle_t *handle;
2699
2700 index = pos >> PAGE_CACHE_SHIFT;
2701
2702 if (ext4_nonda_switch(inode->i_sb)) {
2703 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2704 return ext4_write_begin(file, mapping, pos,
2705 len, flags, pagep, fsdata);
2706 }
2707 *fsdata = (void *)0;
2708 trace_ext4_da_write_begin(inode, pos, len, flags);
2709
2710 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2711 ret = ext4_da_write_inline_data_begin(mapping, inode,
2712 pos, len, flags,
2713 pagep, fsdata);
2714 if (ret < 0)
2715 return ret;
2716 if (ret == 1)
2717 return 0;
2718 }
2719
2720 /*
2721 * grab_cache_page_write_begin() can take a long time if the
2722 * system is thrashing due to memory pressure, or if the page
2723 * is being written back. So grab it first before we start
2724 * the transaction handle. This also allows us to allocate
2725 * the page (if needed) without using GFP_NOFS.
2726 */
2727 retry_grab:
2728 page = grab_cache_page_write_begin(mapping, index, flags);
2729 if (!page)
2730 return -ENOMEM;
2731 unlock_page(page);
2732
2733 /*
2734 * With delayed allocation, we don't log the i_disksize update
2735 * if there is delayed block allocation. But we still need
2736 * to journalling the i_disksize update if writes to the end
2737 * of file which has an already mapped buffer.
2738 */
2739 retry_journal:
2740 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2741 ext4_da_write_credits(inode, pos, len));
2742 if (IS_ERR(handle)) {
2743 page_cache_release(page);
2744 return PTR_ERR(handle);
2745 }
2746
2747 lock_page(page);
2748 if (page->mapping != mapping) {
2749 /* The page got truncated from under us */
2750 unlock_page(page);
2751 page_cache_release(page);
2752 ext4_journal_stop(handle);
2753 goto retry_grab;
2754 }
2755 /* In case writeback began while the page was unlocked */
2756 wait_on_page_writeback(page);
2757
2758 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2759 if (ret < 0) {
2760 unlock_page(page);
2761 ext4_journal_stop(handle);
2762 /*
2763 * block_write_begin may have instantiated a few blocks
2764 * outside i_size. Trim these off again. Don't need
2765 * i_size_read because we hold i_mutex.
2766 */
2767 if (pos + len > inode->i_size)
2768 ext4_truncate_failed_write(inode);
2769
2770 if (ret == -ENOSPC &&
2771 ext4_should_retry_alloc(inode->i_sb, &retries))
2772 goto retry_journal;
2773
2774 page_cache_release(page);
2775 return ret;
2776 }
2777
2778 *pagep = page;
2779 return ret;
2780 }
2781
2782 /*
2783 * Check if we should update i_disksize
2784 * when write to the end of file but not require block allocation
2785 */
2786 static int ext4_da_should_update_i_disksize(struct page *page,
2787 unsigned long offset)
2788 {
2789 struct buffer_head *bh;
2790 struct inode *inode = page->mapping->host;
2791 unsigned int idx;
2792 int i;
2793
2794 bh = page_buffers(page);
2795 idx = offset >> inode->i_blkbits;
2796
2797 for (i = 0; i < idx; i++)
2798 bh = bh->b_this_page;
2799
2800 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2801 return 0;
2802 return 1;
2803 }
2804
2805 static int ext4_da_write_end(struct file *file,
2806 struct address_space *mapping,
2807 loff_t pos, unsigned len, unsigned copied,
2808 struct page *page, void *fsdata)
2809 {
2810 struct inode *inode = mapping->host;
2811 int ret = 0, ret2;
2812 handle_t *handle = ext4_journal_current_handle();
2813 loff_t new_i_size;
2814 unsigned long start, end;
2815 int write_mode = (int)(unsigned long)fsdata;
2816
2817 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2818 return ext4_write_end(file, mapping, pos,
2819 len, copied, page, fsdata);
2820
2821 trace_ext4_da_write_end(inode, pos, len, copied);
2822 start = pos & (PAGE_CACHE_SIZE - 1);
2823 end = start + copied - 1;
2824
2825 /*
2826 * generic_write_end() will run mark_inode_dirty() if i_size
2827 * changes. So let's piggyback the i_disksize mark_inode_dirty
2828 * into that.
2829 */
2830 new_i_size = pos + copied;
2831 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2832 if (ext4_has_inline_data(inode) ||
2833 ext4_da_should_update_i_disksize(page, end)) {
2834 down_write(&EXT4_I(inode)->i_data_sem);
2835 if (new_i_size > EXT4_I(inode)->i_disksize)
2836 EXT4_I(inode)->i_disksize = new_i_size;
2837 up_write(&EXT4_I(inode)->i_data_sem);
2838 /* We need to mark inode dirty even if
2839 * new_i_size is less that inode->i_size
2840 * bu greater than i_disksize.(hint delalloc)
2841 */
2842 ext4_mark_inode_dirty(handle, inode);
2843 }
2844 }
2845
2846 if (write_mode != CONVERT_INLINE_DATA &&
2847 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2848 ext4_has_inline_data(inode))
2849 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2850 page);
2851 else
2852 ret2 = generic_write_end(file, mapping, pos, len, copied,
2853 page, fsdata);
2854
2855 copied = ret2;
2856 if (ret2 < 0)
2857 ret = ret2;
2858 ret2 = ext4_journal_stop(handle);
2859 if (!ret)
2860 ret = ret2;
2861
2862 return ret ? ret : copied;
2863 }
2864
2865 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2866 {
2867 /*
2868 * Drop reserved blocks
2869 */
2870 BUG_ON(!PageLocked(page));
2871 if (!page_has_buffers(page))
2872 goto out;
2873
2874 ext4_da_page_release_reservation(page, offset);
2875
2876 out:
2877 ext4_invalidatepage(page, offset);
2878
2879 return;
2880 }
2881
2882 /*
2883 * Force all delayed allocation blocks to be allocated for a given inode.
2884 */
2885 int ext4_alloc_da_blocks(struct inode *inode)
2886 {
2887 trace_ext4_alloc_da_blocks(inode);
2888
2889 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2890 !EXT4_I(inode)->i_reserved_meta_blocks)
2891 return 0;
2892
2893 /*
2894 * We do something simple for now. The filemap_flush() will
2895 * also start triggering a write of the data blocks, which is
2896 * not strictly speaking necessary (and for users of
2897 * laptop_mode, not even desirable). However, to do otherwise
2898 * would require replicating code paths in:
2899 *
2900 * ext4_da_writepages() ->
2901 * write_cache_pages() ---> (via passed in callback function)
2902 * __mpage_da_writepage() -->
2903 * mpage_add_bh_to_extent()
2904 * mpage_da_map_blocks()
2905 *
2906 * The problem is that write_cache_pages(), located in
2907 * mm/page-writeback.c, marks pages clean in preparation for
2908 * doing I/O, which is not desirable if we're not planning on
2909 * doing I/O at all.
2910 *
2911 * We could call write_cache_pages(), and then redirty all of
2912 * the pages by calling redirty_page_for_writepage() but that
2913 * would be ugly in the extreme. So instead we would need to
2914 * replicate parts of the code in the above functions,
2915 * simplifying them because we wouldn't actually intend to
2916 * write out the pages, but rather only collect contiguous
2917 * logical block extents, call the multi-block allocator, and
2918 * then update the buffer heads with the block allocations.
2919 *
2920 * For now, though, we'll cheat by calling filemap_flush(),
2921 * which will map the blocks, and start the I/O, but not
2922 * actually wait for the I/O to complete.
2923 */
2924 return filemap_flush(inode->i_mapping);
2925 }
2926
2927 /*
2928 * bmap() is special. It gets used by applications such as lilo and by
2929 * the swapper to find the on-disk block of a specific piece of data.
2930 *
2931 * Naturally, this is dangerous if the block concerned is still in the
2932 * journal. If somebody makes a swapfile on an ext4 data-journaling
2933 * filesystem and enables swap, then they may get a nasty shock when the
2934 * data getting swapped to that swapfile suddenly gets overwritten by
2935 * the original zero's written out previously to the journal and
2936 * awaiting writeback in the kernel's buffer cache.
2937 *
2938 * So, if we see any bmap calls here on a modified, data-journaled file,
2939 * take extra steps to flush any blocks which might be in the cache.
2940 */
2941 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2942 {
2943 struct inode *inode = mapping->host;
2944 journal_t *journal;
2945 int err;
2946
2947 /*
2948 * We can get here for an inline file via the FIBMAP ioctl
2949 */
2950 if (ext4_has_inline_data(inode))
2951 return 0;
2952
2953 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2954 test_opt(inode->i_sb, DELALLOC)) {
2955 /*
2956 * With delalloc we want to sync the file
2957 * so that we can make sure we allocate
2958 * blocks for file
2959 */
2960 filemap_write_and_wait(mapping);
2961 }
2962
2963 if (EXT4_JOURNAL(inode) &&
2964 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2965 /*
2966 * This is a REALLY heavyweight approach, but the use of
2967 * bmap on dirty files is expected to be extremely rare:
2968 * only if we run lilo or swapon on a freshly made file
2969 * do we expect this to happen.
2970 *
2971 * (bmap requires CAP_SYS_RAWIO so this does not
2972 * represent an unprivileged user DOS attack --- we'd be
2973 * in trouble if mortal users could trigger this path at
2974 * will.)
2975 *
2976 * NB. EXT4_STATE_JDATA is not set on files other than
2977 * regular files. If somebody wants to bmap a directory
2978 * or symlink and gets confused because the buffer
2979 * hasn't yet been flushed to disk, they deserve
2980 * everything they get.
2981 */
2982
2983 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2984 journal = EXT4_JOURNAL(inode);
2985 jbd2_journal_lock_updates(journal);
2986 err = jbd2_journal_flush(journal);
2987 jbd2_journal_unlock_updates(journal);
2988
2989 if (err)
2990 return 0;
2991 }
2992
2993 return generic_block_bmap(mapping, block, ext4_get_block);
2994 }
2995
2996 static int ext4_readpage(struct file *file, struct page *page)
2997 {
2998 int ret = -EAGAIN;
2999 struct inode *inode = page->mapping->host;
3000
3001 trace_ext4_readpage(page);
3002
3003 if (ext4_has_inline_data(inode))
3004 ret = ext4_readpage_inline(inode, page);
3005
3006 if (ret == -EAGAIN)
3007 return mpage_readpage(page, ext4_get_block);
3008
3009 return ret;
3010 }
3011
3012 static int
3013 ext4_readpages(struct file *file, struct address_space *mapping,
3014 struct list_head *pages, unsigned nr_pages)
3015 {
3016 struct inode *inode = mapping->host;
3017
3018 /* If the file has inline data, no need to do readpages. */
3019 if (ext4_has_inline_data(inode))
3020 return 0;
3021
3022 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3023 }
3024
3025 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3026 {
3027 trace_ext4_invalidatepage(page, offset);
3028
3029 /* No journalling happens on data buffers when this function is used */
3030 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3031
3032 block_invalidatepage(page, offset);
3033 }
3034
3035 static int __ext4_journalled_invalidatepage(struct page *page,
3036 unsigned long offset)
3037 {
3038 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3039
3040 trace_ext4_journalled_invalidatepage(page, offset);
3041
3042 /*
3043 * If it's a full truncate we just forget about the pending dirtying
3044 */
3045 if (offset == 0)
3046 ClearPageChecked(page);
3047
3048 return jbd2_journal_invalidatepage(journal, page, offset);
3049 }
3050
3051 /* Wrapper for aops... */
3052 static void ext4_journalled_invalidatepage(struct page *page,
3053 unsigned long offset)
3054 {
3055 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3056 }
3057
3058 static int ext4_releasepage(struct page *page, gfp_t wait)
3059 {
3060 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3061
3062 trace_ext4_releasepage(page);
3063
3064 /* Page has dirty journalled data -> cannot release */
3065 if (PageChecked(page))
3066 return 0;
3067 if (journal)
3068 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3069 else
3070 return try_to_free_buffers(page);
3071 }
3072
3073 /*
3074 * ext4_get_block used when preparing for a DIO write or buffer write.
3075 * We allocate an uinitialized extent if blocks haven't been allocated.
3076 * The extent will be converted to initialized after the IO is complete.
3077 */
3078 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3079 struct buffer_head *bh_result, int create)
3080 {
3081 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3082 inode->i_ino, create);
3083 return _ext4_get_block(inode, iblock, bh_result,
3084 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3085 }
3086
3087 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3088 struct buffer_head *bh_result, int create)
3089 {
3090 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3091 inode->i_ino, create);
3092 return _ext4_get_block(inode, iblock, bh_result,
3093 EXT4_GET_BLOCKS_NO_LOCK);
3094 }
3095
3096 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3097 ssize_t size, void *private, int ret,
3098 bool is_async)
3099 {
3100 struct inode *inode = file_inode(iocb->ki_filp);
3101 ext4_io_end_t *io_end = iocb->private;
3102
3103 /* if not async direct IO or dio with 0 bytes write, just return */
3104 if (!io_end || !size)
3105 goto out;
3106
3107 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3108 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3109 iocb->private, io_end->inode->i_ino, iocb, offset,
3110 size);
3111
3112 iocb->private = NULL;
3113
3114 /* if not aio dio with unwritten extents, just free io and return */
3115 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3116 ext4_free_io_end(io_end);
3117 out:
3118 inode_dio_done(inode);
3119 if (is_async)
3120 aio_complete(iocb, ret, 0);
3121 return;
3122 }
3123
3124 io_end->offset = offset;
3125 io_end->size = size;
3126 if (is_async) {
3127 io_end->iocb = iocb;
3128 io_end->result = ret;
3129 }
3130
3131 ext4_add_complete_io(io_end);
3132 }
3133
3134 /*
3135 * For ext4 extent files, ext4 will do direct-io write to holes,
3136 * preallocated extents, and those write extend the file, no need to
3137 * fall back to buffered IO.
3138 *
3139 * For holes, we fallocate those blocks, mark them as uninitialized
3140 * If those blocks were preallocated, we mark sure they are split, but
3141 * still keep the range to write as uninitialized.
3142 *
3143 * The unwritten extents will be converted to written when DIO is completed.
3144 * For async direct IO, since the IO may still pending when return, we
3145 * set up an end_io call back function, which will do the conversion
3146 * when async direct IO completed.
3147 *
3148 * If the O_DIRECT write will extend the file then add this inode to the
3149 * orphan list. So recovery will truncate it back to the original size
3150 * if the machine crashes during the write.
3151 *
3152 */
3153 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3154 const struct iovec *iov, loff_t offset,
3155 unsigned long nr_segs)
3156 {
3157 struct file *file = iocb->ki_filp;
3158 struct inode *inode = file->f_mapping->host;
3159 ssize_t ret;
3160 size_t count = iov_length(iov, nr_segs);
3161 int overwrite = 0;
3162 get_block_t *get_block_func = NULL;
3163 int dio_flags = 0;
3164 loff_t final_size = offset + count;
3165
3166 /* Use the old path for reads and writes beyond i_size. */
3167 if (rw != WRITE || final_size > inode->i_size)
3168 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3169
3170 BUG_ON(iocb->private == NULL);
3171
3172 /* If we do a overwrite dio, i_mutex locking can be released */
3173 overwrite = *((int *)iocb->private);
3174
3175 if (overwrite) {
3176 atomic_inc(&inode->i_dio_count);
3177 down_read(&EXT4_I(inode)->i_data_sem);
3178 mutex_unlock(&inode->i_mutex);
3179 }
3180
3181 /*
3182 * We could direct write to holes and fallocate.
3183 *
3184 * Allocated blocks to fill the hole are marked as
3185 * uninitialized to prevent parallel buffered read to expose
3186 * the stale data before DIO complete the data IO.
3187 *
3188 * As to previously fallocated extents, ext4 get_block will
3189 * just simply mark the buffer mapped but still keep the
3190 * extents uninitialized.
3191 *
3192 * For non AIO case, we will convert those unwritten extents
3193 * to written after return back from blockdev_direct_IO.
3194 *
3195 * For async DIO, the conversion needs to be deferred when the
3196 * IO is completed. The ext4 end_io callback function will be
3197 * called to take care of the conversion work. Here for async
3198 * case, we allocate an io_end structure to hook to the iocb.
3199 */
3200 iocb->private = NULL;
3201 ext4_inode_aio_set(inode, NULL);
3202 if (!is_sync_kiocb(iocb)) {
3203 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3204 if (!io_end) {
3205 ret = -ENOMEM;
3206 goto retake_lock;
3207 }
3208 io_end->flag |= EXT4_IO_END_DIRECT;
3209 iocb->private = io_end;
3210 /*
3211 * we save the io structure for current async direct
3212 * IO, so that later ext4_map_blocks() could flag the
3213 * io structure whether there is a unwritten extents
3214 * needs to be converted when IO is completed.
3215 */
3216 ext4_inode_aio_set(inode, io_end);
3217 }
3218
3219 if (overwrite) {
3220 get_block_func = ext4_get_block_write_nolock;
3221 } else {
3222 get_block_func = ext4_get_block_write;
3223 dio_flags = DIO_LOCKING;
3224 }
3225 ret = __blockdev_direct_IO(rw, iocb, inode,
3226 inode->i_sb->s_bdev, iov,
3227 offset, nr_segs,
3228 get_block_func,
3229 ext4_end_io_dio,
3230 NULL,
3231 dio_flags);
3232
3233 if (iocb->private)
3234 ext4_inode_aio_set(inode, NULL);
3235 /*
3236 * The io_end structure takes a reference to the inode, that
3237 * structure needs to be destroyed and the reference to the
3238 * inode need to be dropped, when IO is complete, even with 0
3239 * byte write, or failed.
3240 *
3241 * In the successful AIO DIO case, the io_end structure will
3242 * be destroyed and the reference to the inode will be dropped
3243 * after the end_io call back function is called.
3244 *
3245 * In the case there is 0 byte write, or error case, since VFS
3246 * direct IO won't invoke the end_io call back function, we
3247 * need to free the end_io structure here.
3248 */
3249 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3250 ext4_free_io_end(iocb->private);
3251 iocb->private = NULL;
3252 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3253 EXT4_STATE_DIO_UNWRITTEN)) {
3254 int err;
3255 /*
3256 * for non AIO case, since the IO is already
3257 * completed, we could do the conversion right here
3258 */
3259 err = ext4_convert_unwritten_extents(inode,
3260 offset, ret);
3261 if (err < 0)
3262 ret = err;
3263 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3264 }
3265
3266 retake_lock:
3267 /* take i_mutex locking again if we do a ovewrite dio */
3268 if (overwrite) {
3269 inode_dio_done(inode);
3270 up_read(&EXT4_I(inode)->i_data_sem);
3271 mutex_lock(&inode->i_mutex);
3272 }
3273
3274 return ret;
3275 }
3276
3277 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3278 const struct iovec *iov, loff_t offset,
3279 unsigned long nr_segs)
3280 {
3281 struct file *file = iocb->ki_filp;
3282 struct inode *inode = file->f_mapping->host;
3283 ssize_t ret;
3284
3285 /*
3286 * If we are doing data journalling we don't support O_DIRECT
3287 */
3288 if (ext4_should_journal_data(inode))
3289 return 0;
3290
3291 /* Let buffer I/O handle the inline data case. */
3292 if (ext4_has_inline_data(inode))
3293 return 0;
3294
3295 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3296 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3297 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3298 else
3299 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3300 trace_ext4_direct_IO_exit(inode, offset,
3301 iov_length(iov, nr_segs), rw, ret);
3302 return ret;
3303 }
3304
3305 /*
3306 * Pages can be marked dirty completely asynchronously from ext4's journalling
3307 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3308 * much here because ->set_page_dirty is called under VFS locks. The page is
3309 * not necessarily locked.
3310 *
3311 * We cannot just dirty the page and leave attached buffers clean, because the
3312 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3313 * or jbddirty because all the journalling code will explode.
3314 *
3315 * So what we do is to mark the page "pending dirty" and next time writepage
3316 * is called, propagate that into the buffers appropriately.
3317 */
3318 static int ext4_journalled_set_page_dirty(struct page *page)
3319 {
3320 SetPageChecked(page);
3321 return __set_page_dirty_nobuffers(page);
3322 }
3323
3324 static const struct address_space_operations ext4_aops = {
3325 .readpage = ext4_readpage,
3326 .readpages = ext4_readpages,
3327 .writepage = ext4_writepage,
3328 .write_begin = ext4_write_begin,
3329 .write_end = ext4_write_end,
3330 .bmap = ext4_bmap,
3331 .invalidatepage = ext4_invalidatepage,
3332 .releasepage = ext4_releasepage,
3333 .direct_IO = ext4_direct_IO,
3334 .migratepage = buffer_migrate_page,
3335 .is_partially_uptodate = block_is_partially_uptodate,
3336 .error_remove_page = generic_error_remove_page,
3337 };
3338
3339 static const struct address_space_operations ext4_journalled_aops = {
3340 .readpage = ext4_readpage,
3341 .readpages = ext4_readpages,
3342 .writepage = ext4_writepage,
3343 .write_begin = ext4_write_begin,
3344 .write_end = ext4_journalled_write_end,
3345 .set_page_dirty = ext4_journalled_set_page_dirty,
3346 .bmap = ext4_bmap,
3347 .invalidatepage = ext4_journalled_invalidatepage,
3348 .releasepage = ext4_releasepage,
3349 .direct_IO = ext4_direct_IO,
3350 .is_partially_uptodate = block_is_partially_uptodate,
3351 .error_remove_page = generic_error_remove_page,
3352 };
3353
3354 static const struct address_space_operations ext4_da_aops = {
3355 .readpage = ext4_readpage,
3356 .readpages = ext4_readpages,
3357 .writepage = ext4_writepage,
3358 .writepages = ext4_da_writepages,
3359 .write_begin = ext4_da_write_begin,
3360 .write_end = ext4_da_write_end,
3361 .bmap = ext4_bmap,
3362 .invalidatepage = ext4_da_invalidatepage,
3363 .releasepage = ext4_releasepage,
3364 .direct_IO = ext4_direct_IO,
3365 .migratepage = buffer_migrate_page,
3366 .is_partially_uptodate = block_is_partially_uptodate,
3367 .error_remove_page = generic_error_remove_page,
3368 };
3369
3370 void ext4_set_aops(struct inode *inode)
3371 {
3372 switch (ext4_inode_journal_mode(inode)) {
3373 case EXT4_INODE_ORDERED_DATA_MODE:
3374 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3375 break;
3376 case EXT4_INODE_WRITEBACK_DATA_MODE:
3377 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3378 break;
3379 case EXT4_INODE_JOURNAL_DATA_MODE:
3380 inode->i_mapping->a_ops = &ext4_journalled_aops;
3381 return;
3382 default:
3383 BUG();
3384 }
3385 if (test_opt(inode->i_sb, DELALLOC))
3386 inode->i_mapping->a_ops = &ext4_da_aops;
3387 else
3388 inode->i_mapping->a_ops = &ext4_aops;
3389 }
3390
3391
3392 /*
3393 * ext4_discard_partial_page_buffers()
3394 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3395 * This function finds and locks the page containing the offset
3396 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3397 * Calling functions that already have the page locked should call
3398 * ext4_discard_partial_page_buffers_no_lock directly.
3399 */
3400 int ext4_discard_partial_page_buffers(handle_t *handle,
3401 struct address_space *mapping, loff_t from,
3402 loff_t length, int flags)
3403 {
3404 struct inode *inode = mapping->host;
3405 struct page *page;
3406 int err = 0;
3407
3408 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3409 mapping_gfp_mask(mapping) & ~__GFP_FS);
3410 if (!page)
3411 return -ENOMEM;
3412
3413 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3414 from, length, flags);
3415
3416 unlock_page(page);
3417 page_cache_release(page);
3418 return err;
3419 }
3420
3421 /*
3422 * ext4_discard_partial_page_buffers_no_lock()
3423 * Zeros a page range of length 'length' starting from offset 'from'.
3424 * Buffer heads that correspond to the block aligned regions of the
3425 * zeroed range will be unmapped. Unblock aligned regions
3426 * will have the corresponding buffer head mapped if needed so that
3427 * that region of the page can be updated with the partial zero out.
3428 *
3429 * This function assumes that the page has already been locked. The
3430 * The range to be discarded must be contained with in the given page.
3431 * If the specified range exceeds the end of the page it will be shortened
3432 * to the end of the page that corresponds to 'from'. This function is
3433 * appropriate for updating a page and it buffer heads to be unmapped and
3434 * zeroed for blocks that have been either released, or are going to be
3435 * released.
3436 *
3437 * handle: The journal handle
3438 * inode: The files inode
3439 * page: A locked page that contains the offset "from"
3440 * from: The starting byte offset (from the beginning of the file)
3441 * to begin discarding
3442 * len: The length of bytes to discard
3443 * flags: Optional flags that may be used:
3444 *
3445 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3446 * Only zero the regions of the page whose buffer heads
3447 * have already been unmapped. This flag is appropriate
3448 * for updating the contents of a page whose blocks may
3449 * have already been released, and we only want to zero
3450 * out the regions that correspond to those released blocks.
3451 *
3452 * Returns zero on success or negative on failure.
3453 */
3454 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3455 struct inode *inode, struct page *page, loff_t from,
3456 loff_t length, int flags)
3457 {
3458 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3459 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3460 unsigned int blocksize, max, pos;
3461 ext4_lblk_t iblock;
3462 struct buffer_head *bh;
3463 int err = 0;
3464
3465 blocksize = inode->i_sb->s_blocksize;
3466 max = PAGE_CACHE_SIZE - offset;
3467
3468 if (index != page->index)
3469 return -EINVAL;
3470
3471 /*
3472 * correct length if it does not fall between
3473 * 'from' and the end of the page
3474 */
3475 if (length > max || length < 0)
3476 length = max;
3477
3478 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3479
3480 if (!page_has_buffers(page))
3481 create_empty_buffers(page, blocksize, 0);
3482
3483 /* Find the buffer that contains "offset" */
3484 bh = page_buffers(page);
3485 pos = blocksize;
3486 while (offset >= pos) {
3487 bh = bh->b_this_page;
3488 iblock++;
3489 pos += blocksize;
3490 }
3491
3492 pos = offset;
3493 while (pos < offset + length) {
3494 unsigned int end_of_block, range_to_discard;
3495
3496 err = 0;
3497
3498 /* The length of space left to zero and unmap */
3499 range_to_discard = offset + length - pos;
3500
3501 /* The length of space until the end of the block */
3502 end_of_block = blocksize - (pos & (blocksize-1));
3503
3504 /*
3505 * Do not unmap or zero past end of block
3506 * for this buffer head
3507 */
3508 if (range_to_discard > end_of_block)
3509 range_to_discard = end_of_block;
3510
3511
3512 /*
3513 * Skip this buffer head if we are only zeroing unampped
3514 * regions of the page
3515 */
3516 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3517 buffer_mapped(bh))
3518 goto next;
3519
3520 /* If the range is block aligned, unmap */
3521 if (range_to_discard == blocksize) {
3522 clear_buffer_dirty(bh);
3523 bh->b_bdev = NULL;
3524 clear_buffer_mapped(bh);
3525 clear_buffer_req(bh);
3526 clear_buffer_new(bh);
3527 clear_buffer_delay(bh);
3528 clear_buffer_unwritten(bh);
3529 clear_buffer_uptodate(bh);
3530 zero_user(page, pos, range_to_discard);
3531 BUFFER_TRACE(bh, "Buffer discarded");
3532 goto next;
3533 }
3534
3535 /*
3536 * If this block is not completely contained in the range
3537 * to be discarded, then it is not going to be released. Because
3538 * we need to keep this block, we need to make sure this part
3539 * of the page is uptodate before we modify it by writeing
3540 * partial zeros on it.
3541 */
3542 if (!buffer_mapped(bh)) {
3543 /*
3544 * Buffer head must be mapped before we can read
3545 * from the block
3546 */
3547 BUFFER_TRACE(bh, "unmapped");
3548 ext4_get_block(inode, iblock, bh, 0);
3549 /* unmapped? It's a hole - nothing to do */
3550 if (!buffer_mapped(bh)) {
3551 BUFFER_TRACE(bh, "still unmapped");
3552 goto next;
3553 }
3554 }
3555
3556 /* Ok, it's mapped. Make sure it's up-to-date */
3557 if (PageUptodate(page))
3558 set_buffer_uptodate(bh);
3559
3560 if (!buffer_uptodate(bh)) {
3561 err = -EIO;
3562 ll_rw_block(READ, 1, &bh);
3563 wait_on_buffer(bh);
3564 /* Uhhuh. Read error. Complain and punt.*/
3565 if (!buffer_uptodate(bh))
3566 goto next;
3567 }
3568
3569 if (ext4_should_journal_data(inode)) {
3570 BUFFER_TRACE(bh, "get write access");
3571 err = ext4_journal_get_write_access(handle, bh);
3572 if (err)
3573 goto next;
3574 }
3575
3576 zero_user(page, pos, range_to_discard);
3577
3578 err = 0;
3579 if (ext4_should_journal_data(inode)) {
3580 err = ext4_handle_dirty_metadata(handle, inode, bh);
3581 } else
3582 mark_buffer_dirty(bh);
3583
3584 BUFFER_TRACE(bh, "Partial buffer zeroed");
3585 next:
3586 bh = bh->b_this_page;
3587 iblock++;
3588 pos += range_to_discard;
3589 }
3590
3591 return err;
3592 }
3593
3594 int ext4_can_truncate(struct inode *inode)
3595 {
3596 if (S_ISREG(inode->i_mode))
3597 return 1;
3598 if (S_ISDIR(inode->i_mode))
3599 return 1;
3600 if (S_ISLNK(inode->i_mode))
3601 return !ext4_inode_is_fast_symlink(inode);
3602 return 0;
3603 }
3604
3605 /*
3606 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3607 * associated with the given offset and length
3608 *
3609 * @inode: File inode
3610 * @offset: The offset where the hole will begin
3611 * @len: The length of the hole
3612 *
3613 * Returns: 0 on success or negative on failure
3614 */
3615
3616 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3617 {
3618 #if 0
3619 struct inode *inode = file_inode(file);
3620 struct super_block *sb = inode->i_sb;
3621 ext4_lblk_t first_block, stop_block;
3622 struct address_space *mapping = inode->i_mapping;
3623 loff_t first_page, last_page, page_len;
3624 loff_t first_page_offset, last_page_offset;
3625 handle_t *handle;
3626 unsigned int credits;
3627 int ret = 0;
3628
3629 if (!S_ISREG(inode->i_mode))
3630 return -EOPNOTSUPP;
3631
3632 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3633 /* TODO: Add support for bigalloc file systems */
3634 return -EOPNOTSUPP;
3635 }
3636
3637 trace_ext4_punch_hole(inode, offset, length);
3638
3639 /*
3640 * Write out all dirty pages to avoid race conditions
3641 * Then release them.
3642 */
3643 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3644 ret = filemap_write_and_wait_range(mapping, offset,
3645 offset + length - 1);
3646 if (ret)
3647 return ret;
3648 }
3649
3650 mutex_lock(&inode->i_mutex);
3651 /* It's not possible punch hole on append only file */
3652 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3653 ret = -EPERM;
3654 goto out_mutex;
3655 }
3656 if (IS_SWAPFILE(inode)) {
3657 ret = -ETXTBSY;
3658 goto out_mutex;
3659 }
3660
3661 /* No need to punch hole beyond i_size */
3662 if (offset >= inode->i_size)
3663 goto out_mutex;
3664
3665 /*
3666 * If the hole extends beyond i_size, set the hole
3667 * to end after the page that contains i_size
3668 */
3669 if (offset + length > inode->i_size) {
3670 length = inode->i_size +
3671 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3672 offset;
3673 }
3674
3675 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3676 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3677
3678 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3679 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3680
3681 /* Now release the pages */
3682 if (last_page_offset > first_page_offset) {
3683 truncate_pagecache_range(inode, first_page_offset,
3684 last_page_offset - 1);
3685 }
3686
3687 /* Wait all existing dio workers, newcomers will block on i_mutex */
3688 ext4_inode_block_unlocked_dio(inode);
3689 ret = ext4_flush_unwritten_io(inode);
3690 if (ret)
3691 goto out_dio;
3692 inode_dio_wait(inode);
3693
3694 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3695 credits = ext4_writepage_trans_blocks(inode);
3696 else
3697 credits = ext4_blocks_for_truncate(inode);
3698 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3699 if (IS_ERR(handle)) {
3700 ret = PTR_ERR(handle);
3701 ext4_std_error(sb, ret);
3702 goto out_dio;
3703 }
3704
3705 /*
3706 * Now we need to zero out the non-page-aligned data in the
3707 * pages at the start and tail of the hole, and unmap the
3708 * buffer heads for the block aligned regions of the page that
3709 * were completely zeroed.
3710 */
3711 if (first_page > last_page) {
3712 /*
3713 * If the file space being truncated is contained
3714 * within a page just zero out and unmap the middle of
3715 * that page
3716 */
3717 ret = ext4_discard_partial_page_buffers(handle,
3718 mapping, offset, length, 0);
3719
3720 if (ret)
3721 goto out_stop;
3722 } else {
3723 /*
3724 * zero out and unmap the partial page that contains
3725 * the start of the hole
3726 */
3727 page_len = first_page_offset - offset;
3728 if (page_len > 0) {
3729 ret = ext4_discard_partial_page_buffers(handle, mapping,
3730 offset, page_len, 0);
3731 if (ret)
3732 goto out_stop;
3733 }
3734
3735 /*
3736 * zero out and unmap the partial page that contains
3737 * the end of the hole
3738 */
3739 page_len = offset + length - last_page_offset;
3740 if (page_len > 0) {
3741 ret = ext4_discard_partial_page_buffers(handle, mapping,
3742 last_page_offset, page_len, 0);
3743 if (ret)
3744 goto out_stop;
3745 }
3746 }
3747
3748 /*
3749 * If i_size is contained in the last page, we need to
3750 * unmap and zero the partial page after i_size
3751 */
3752 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3753 inode->i_size % PAGE_CACHE_SIZE != 0) {
3754 page_len = PAGE_CACHE_SIZE -
3755 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3756
3757 if (page_len > 0) {
3758 ret = ext4_discard_partial_page_buffers(handle,
3759 mapping, inode->i_size, page_len, 0);
3760
3761 if (ret)
3762 goto out_stop;
3763 }
3764 }
3765
3766 first_block = (offset + sb->s_blocksize - 1) >>
3767 EXT4_BLOCK_SIZE_BITS(sb);
3768 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3769
3770 /* If there are no blocks to remove, return now */
3771 if (first_block >= stop_block)
3772 goto out_stop;
3773
3774 down_write(&EXT4_I(inode)->i_data_sem);
3775 ext4_discard_preallocations(inode);
3776
3777 ret = ext4_es_remove_extent(inode, first_block,
3778 stop_block - first_block);
3779 if (ret) {
3780 up_write(&EXT4_I(inode)->i_data_sem);
3781 goto out_stop;
3782 }
3783
3784 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3785 ret = ext4_ext_remove_space(inode, first_block,
3786 stop_block - 1);
3787 else
3788 ret = ext4_free_hole_blocks(handle, inode, first_block,
3789 stop_block);
3790
3791 ext4_discard_preallocations(inode);
3792 up_write(&EXT4_I(inode)->i_data_sem);
3793 if (IS_SYNC(inode))
3794 ext4_handle_sync(handle);
3795 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3796 ext4_mark_inode_dirty(handle, inode);
3797 out_stop:
3798 ext4_journal_stop(handle);
3799 out_dio:
3800 ext4_inode_resume_unlocked_dio(inode);
3801 out_mutex:
3802 mutex_unlock(&inode->i_mutex);
3803 return ret;
3804 #else
3805 /*
3806 * Disabled as per b/28760453
3807 */
3808 return -EOPNOTSUPP;
3809 #endif
3810 }
3811
3812 /*
3813 * ext4_truncate()
3814 *
3815 * We block out ext4_get_block() block instantiations across the entire
3816 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3817 * simultaneously on behalf of the same inode.
3818 *
3819 * As we work through the truncate and commit bits of it to the journal there
3820 * is one core, guiding principle: the file's tree must always be consistent on
3821 * disk. We must be able to restart the truncate after a crash.
3822 *
3823 * The file's tree may be transiently inconsistent in memory (although it
3824 * probably isn't), but whenever we close off and commit a journal transaction,
3825 * the contents of (the filesystem + the journal) must be consistent and
3826 * restartable. It's pretty simple, really: bottom up, right to left (although
3827 * left-to-right works OK too).
3828 *
3829 * Note that at recovery time, journal replay occurs *before* the restart of
3830 * truncate against the orphan inode list.
3831 *
3832 * The committed inode has the new, desired i_size (which is the same as
3833 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3834 * that this inode's truncate did not complete and it will again call
3835 * ext4_truncate() to have another go. So there will be instantiated blocks
3836 * to the right of the truncation point in a crashed ext4 filesystem. But
3837 * that's fine - as long as they are linked from the inode, the post-crash
3838 * ext4_truncate() run will find them and release them.
3839 */
3840 void ext4_truncate(struct inode *inode)
3841 {
3842 struct ext4_inode_info *ei = EXT4_I(inode);
3843 unsigned int credits;
3844 handle_t *handle;
3845 struct address_space *mapping = inode->i_mapping;
3846 loff_t page_len;
3847
3848 /*
3849 * There is a possibility that we're either freeing the inode
3850 * or it completely new indode. In those cases we might not
3851 * have i_mutex locked because it's not necessary.
3852 */
3853 if (!(inode->i_state & (I_NEW|I_FREEING)))
3854 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3855 trace_ext4_truncate_enter(inode);
3856
3857 if (!ext4_can_truncate(inode))
3858 return;
3859
3860 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3861
3862 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3863 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3864
3865 if (ext4_has_inline_data(inode)) {
3866 int has_inline = 1;
3867
3868 ext4_inline_data_truncate(inode, &has_inline);
3869 if (has_inline)
3870 return;
3871 }
3872
3873 /*
3874 * finish any pending end_io work so we won't run the risk of
3875 * converting any truncated blocks to initialized later
3876 */
3877 ext4_flush_unwritten_io(inode);
3878
3879 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3880 credits = ext4_writepage_trans_blocks(inode);
3881 else
3882 credits = ext4_blocks_for_truncate(inode);
3883
3884 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3885 if (IS_ERR(handle)) {
3886 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3887 return;
3888 }
3889
3890 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3891 page_len = PAGE_CACHE_SIZE -
3892 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3893
3894 if (ext4_discard_partial_page_buffers(handle,
3895 mapping, inode->i_size, page_len, 0))
3896 goto out_stop;
3897 }
3898
3899 /*
3900 * We add the inode to the orphan list, so that if this
3901 * truncate spans multiple transactions, and we crash, we will
3902 * resume the truncate when the filesystem recovers. It also
3903 * marks the inode dirty, to catch the new size.
3904 *
3905 * Implication: the file must always be in a sane, consistent
3906 * truncatable state while each transaction commits.
3907 */
3908 if (ext4_orphan_add(handle, inode))
3909 goto out_stop;
3910
3911 down_write(&EXT4_I(inode)->i_data_sem);
3912
3913 ext4_discard_preallocations(inode);
3914
3915 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3916 ext4_ext_truncate(handle, inode);
3917 else
3918 ext4_ind_truncate(handle, inode);
3919
3920 up_write(&ei->i_data_sem);
3921
3922 if (IS_SYNC(inode))
3923 ext4_handle_sync(handle);
3924
3925 out_stop:
3926 /*
3927 * If this was a simple ftruncate() and the file will remain alive,
3928 * then we need to clear up the orphan record which we created above.
3929 * However, if this was a real unlink then we were called by
3930 * ext4_delete_inode(), and we allow that function to clean up the
3931 * orphan info for us.
3932 */
3933 if (inode->i_nlink)
3934 ext4_orphan_del(handle, inode);
3935
3936 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3937 ext4_mark_inode_dirty(handle, inode);
3938 ext4_journal_stop(handle);
3939
3940 trace_ext4_truncate_exit(inode);
3941 }
3942
3943 /*
3944 * ext4_get_inode_loc returns with an extra refcount against the inode's
3945 * underlying buffer_head on success. If 'in_mem' is true, we have all
3946 * data in memory that is needed to recreate the on-disk version of this
3947 * inode.
3948 */
3949 static int __ext4_get_inode_loc(struct inode *inode,
3950 struct ext4_iloc *iloc, int in_mem)
3951 {
3952 struct ext4_group_desc *gdp;
3953 struct buffer_head *bh;
3954 struct super_block *sb = inode->i_sb;
3955 ext4_fsblk_t block;
3956 int inodes_per_block, inode_offset;
3957
3958 iloc->bh = NULL;
3959 if (!ext4_valid_inum(sb, inode->i_ino))
3960 return -EIO;
3961
3962 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3963 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3964 if (!gdp)
3965 return -EIO;
3966
3967 /*
3968 * Figure out the offset within the block group inode table
3969 */
3970 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3971 inode_offset = ((inode->i_ino - 1) %
3972 EXT4_INODES_PER_GROUP(sb));
3973 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3974 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3975
3976 bh = sb_getblk(sb, block);
3977 if (unlikely(!bh))
3978 return -ENOMEM;
3979 if (!buffer_uptodate(bh)) {
3980 lock_buffer(bh);
3981
3982 /*
3983 * If the buffer has the write error flag, we have failed
3984 * to write out another inode in the same block. In this
3985 * case, we don't have to read the block because we may
3986 * read the old inode data successfully.
3987 */
3988 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3989 set_buffer_uptodate(bh);
3990
3991 if (buffer_uptodate(bh)) {
3992 /* someone brought it uptodate while we waited */
3993 unlock_buffer(bh);
3994 goto has_buffer;
3995 }
3996
3997 /*
3998 * If we have all information of the inode in memory and this
3999 * is the only valid inode in the block, we need not read the
4000 * block.
4001 */
4002 if (in_mem) {
4003 struct buffer_head *bitmap_bh;
4004 int i, start;
4005
4006 start = inode_offset & ~(inodes_per_block - 1);
4007
4008 /* Is the inode bitmap in cache? */
4009 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4010 if (unlikely(!bitmap_bh))
4011 goto make_io;
4012
4013 /*
4014 * If the inode bitmap isn't in cache then the
4015 * optimisation may end up performing two reads instead
4016 * of one, so skip it.
4017 */
4018 if (!buffer_uptodate(bitmap_bh)) {
4019 brelse(bitmap_bh);
4020 goto make_io;
4021 }
4022 for (i = start; i < start + inodes_per_block; i++) {
4023 if (i == inode_offset)
4024 continue;
4025 if (ext4_test_bit(i, bitmap_bh->b_data))
4026 break;
4027 }
4028 brelse(bitmap_bh);
4029 if (i == start + inodes_per_block) {
4030 /* all other inodes are free, so skip I/O */
4031 memset(bh->b_data, 0, bh->b_size);
4032 set_buffer_uptodate(bh);
4033 unlock_buffer(bh);
4034 goto has_buffer;
4035 }
4036 }
4037
4038 make_io:
4039 /*
4040 * If we need to do any I/O, try to pre-readahead extra
4041 * blocks from the inode table.
4042 */
4043 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4044 ext4_fsblk_t b, end, table;
4045 unsigned num;
4046 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4047
4048 table = ext4_inode_table(sb, gdp);
4049 /* s_inode_readahead_blks is always a power of 2 */
4050 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4051 if (table > b)
4052 b = table;
4053 end = b + ra_blks;
4054 num = EXT4_INODES_PER_GROUP(sb);
4055 if (ext4_has_group_desc_csum(sb))
4056 num -= ext4_itable_unused_count(sb, gdp);
4057 table += num / inodes_per_block;
4058 if (end > table)
4059 end = table;
4060 while (b <= end)
4061 sb_breadahead(sb, b++);
4062 }
4063
4064 /*
4065 * There are other valid inodes in the buffer, this inode
4066 * has in-inode xattrs, or we don't have this inode in memory.
4067 * Read the block from disk.
4068 */
4069 trace_ext4_load_inode(inode);
4070 get_bh(bh);
4071 bh->b_end_io = end_buffer_read_sync;
4072 #ifdef FEATURE_STORAGE_META_LOG
4073 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
4074 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_READ_CNT);
4075 #endif
4076 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4077 wait_on_buffer(bh);
4078 if (!buffer_uptodate(bh)) {
4079 EXT4_ERROR_INODE_BLOCK(inode, block,
4080 "unable to read itable block");
4081 brelse(bh);
4082 return -EIO;
4083 }
4084 }
4085 has_buffer:
4086 iloc->bh = bh;
4087 return 0;
4088 }
4089
4090 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4091 {
4092 /* We have all inode data except xattrs in memory here. */
4093 return __ext4_get_inode_loc(inode, iloc,
4094 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4095 }
4096
4097 void ext4_set_inode_flags(struct inode *inode)
4098 {
4099 unsigned int flags = EXT4_I(inode)->i_flags;
4100 unsigned int new_fl = 0;
4101
4102 if (flags & EXT4_SYNC_FL)
4103 new_fl |= S_SYNC;
4104 if (flags & EXT4_APPEND_FL)
4105 new_fl |= S_APPEND;
4106 if (flags & EXT4_IMMUTABLE_FL)
4107 new_fl |= S_IMMUTABLE;
4108 if (flags & EXT4_NOATIME_FL)
4109 new_fl |= S_NOATIME;
4110 if (flags & EXT4_DIRSYNC_FL)
4111 new_fl |= S_DIRSYNC;
4112 set_mask_bits(&inode->i_flags,
4113 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4114 }
4115
4116 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4117 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4118 {
4119 unsigned int vfs_fl;
4120 unsigned long old_fl, new_fl;
4121
4122 do {
4123 vfs_fl = ei->vfs_inode.i_flags;
4124 old_fl = ei->i_flags;
4125 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4126 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4127 EXT4_DIRSYNC_FL);
4128 if (vfs_fl & S_SYNC)
4129 new_fl |= EXT4_SYNC_FL;
4130 if (vfs_fl & S_APPEND)
4131 new_fl |= EXT4_APPEND_FL;
4132 if (vfs_fl & S_IMMUTABLE)
4133 new_fl |= EXT4_IMMUTABLE_FL;
4134 if (vfs_fl & S_NOATIME)
4135 new_fl |= EXT4_NOATIME_FL;
4136 if (vfs_fl & S_DIRSYNC)
4137 new_fl |= EXT4_DIRSYNC_FL;
4138 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4139 }
4140
4141 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4142 struct ext4_inode_info *ei)
4143 {
4144 blkcnt_t i_blocks ;
4145 struct inode *inode = &(ei->vfs_inode);
4146 struct super_block *sb = inode->i_sb;
4147
4148 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4149 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4150 /* we are using combined 48 bit field */
4151 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4152 le32_to_cpu(raw_inode->i_blocks_lo);
4153 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4154 /* i_blocks represent file system block size */
4155 return i_blocks << (inode->i_blkbits - 9);
4156 } else {
4157 return i_blocks;
4158 }
4159 } else {
4160 return le32_to_cpu(raw_inode->i_blocks_lo);
4161 }
4162 }
4163
4164 static inline void ext4_iget_extra_inode(struct inode *inode,
4165 struct ext4_inode *raw_inode,
4166 struct ext4_inode_info *ei)
4167 {
4168 __le32 *magic = (void *)raw_inode +
4169 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4170 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4171 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4172 ext4_find_inline_data_nolock(inode);
4173 } else
4174 EXT4_I(inode)->i_inline_off = 0;
4175 }
4176
4177 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4178 {
4179 struct ext4_iloc iloc;
4180 struct ext4_inode *raw_inode;
4181 struct ext4_inode_info *ei;
4182 struct inode *inode;
4183 journal_t *journal = EXT4_SB(sb)->s_journal;
4184 long ret;
4185 int block;
4186 uid_t i_uid;
4187 gid_t i_gid;
4188
4189 inode = iget_locked(sb, ino);
4190 if (!inode)
4191 return ERR_PTR(-ENOMEM);
4192 if (!(inode->i_state & I_NEW))
4193 return inode;
4194
4195 ei = EXT4_I(inode);
4196 iloc.bh = NULL;
4197
4198 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4199 if (ret < 0)
4200 goto bad_inode;
4201 raw_inode = ext4_raw_inode(&iloc);
4202
4203 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4204 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4205 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4206 EXT4_INODE_SIZE(inode->i_sb)) {
4207 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4208 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4209 EXT4_INODE_SIZE(inode->i_sb));
4210 ret = -EIO;
4211 goto bad_inode;
4212 }
4213 } else
4214 ei->i_extra_isize = 0;
4215
4216 /* Precompute checksum seed for inode metadata */
4217 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4218 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4219 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4220 __u32 csum;
4221 __le32 inum = cpu_to_le32(inode->i_ino);
4222 __le32 gen = raw_inode->i_generation;
4223 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4224 sizeof(inum));
4225 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4226 sizeof(gen));
4227 }
4228
4229 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4230 EXT4_ERROR_INODE(inode, "checksum invalid");
4231 ret = -EIO;
4232 goto bad_inode;
4233 }
4234
4235 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4236 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4237 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4238 if (!(test_opt(inode->i_sb, NO_UID32))) {
4239 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4240 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4241 }
4242 i_uid_write(inode, i_uid);
4243 i_gid_write(inode, i_gid);
4244 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4245
4246 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4247 ei->i_inline_off = 0;
4248 ei->i_dir_start_lookup = 0;
4249 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4250 /* We now have enough fields to check if the inode was active or not.
4251 * This is needed because nfsd might try to access dead inodes
4252 * the test is that same one that e2fsck uses
4253 * NeilBrown 1999oct15
4254 */
4255 if (inode->i_nlink == 0) {
4256 if ((inode->i_mode == 0 ||
4257 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4258 ino != EXT4_BOOT_LOADER_INO) {
4259 /* this inode is deleted */
4260 ret = -ESTALE;
4261 goto bad_inode;
4262 }
4263 /* The only unlinked inodes we let through here have
4264 * valid i_mode and are being read by the orphan
4265 * recovery code: that's fine, we're about to complete
4266 * the process of deleting those.
4267 * OR it is the EXT4_BOOT_LOADER_INO which is
4268 * not initialized on a new filesystem. */
4269 }
4270 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4271 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4272 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4273 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4274 ei->i_file_acl |=
4275 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4276 inode->i_size = ext4_isize(raw_inode);
4277 ei->i_disksize = inode->i_size;
4278 #ifdef CONFIG_QUOTA
4279 ei->i_reserved_quota = 0;
4280 #endif
4281 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4282 ei->i_block_group = iloc.block_group;
4283 ei->i_last_alloc_group = ~0;
4284 /*
4285 * NOTE! The in-memory inode i_data array is in little-endian order
4286 * even on big-endian machines: we do NOT byteswap the block numbers!
4287 */
4288 for (block = 0; block < EXT4_N_BLOCKS; block++)
4289 ei->i_data[block] = raw_inode->i_block[block];
4290 INIT_LIST_HEAD(&ei->i_orphan);
4291
4292 /*
4293 * Set transaction id's of transactions that have to be committed
4294 * to finish f[data]sync. We set them to currently running transaction
4295 * as we cannot be sure that the inode or some of its metadata isn't
4296 * part of the transaction - the inode could have been reclaimed and
4297 * now it is reread from disk.
4298 */
4299 if (journal) {
4300 transaction_t *transaction;
4301 tid_t tid;
4302
4303 read_lock(&journal->j_state_lock);
4304 if (journal->j_running_transaction)
4305 transaction = journal->j_running_transaction;
4306 else
4307 transaction = journal->j_committing_transaction;
4308 if (transaction)
4309 tid = transaction->t_tid;
4310 else
4311 tid = journal->j_commit_sequence;
4312 read_unlock(&journal->j_state_lock);
4313 ei->i_sync_tid = tid;
4314 ei->i_datasync_tid = tid;
4315 }
4316
4317 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4318 if (ei->i_extra_isize == 0) {
4319 /* The extra space is currently unused. Use it. */
4320 ei->i_extra_isize = sizeof(struct ext4_inode) -
4321 EXT4_GOOD_OLD_INODE_SIZE;
4322 } else {
4323 ext4_iget_extra_inode(inode, raw_inode, ei);
4324 }
4325 }
4326
4327 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4328 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4329 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4330 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4331
4332 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4333 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4334 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4335 inode->i_version |=
4336 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4337 }
4338
4339 ret = 0;
4340 if (ei->i_file_acl &&
4341 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4342 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4343 ei->i_file_acl);
4344 ret = -EIO;
4345 goto bad_inode;
4346 } else if (!ext4_has_inline_data(inode)) {
4347 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4348 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4349 (S_ISLNK(inode->i_mode) &&
4350 !ext4_inode_is_fast_symlink(inode))))
4351 /* Validate extent which is part of inode */
4352 ret = ext4_ext_check_inode(inode);
4353 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4354 (S_ISLNK(inode->i_mode) &&
4355 !ext4_inode_is_fast_symlink(inode))) {
4356 /* Validate block references which are part of inode */
4357 ret = ext4_ind_check_inode(inode);
4358 }
4359 }
4360 if (ret)
4361 goto bad_inode;
4362
4363 if (S_ISREG(inode->i_mode)) {
4364 inode->i_op = &ext4_file_inode_operations;
4365 inode->i_fop = &ext4_file_operations;
4366 ext4_set_aops(inode);
4367 } else if (S_ISDIR(inode->i_mode)) {
4368 inode->i_op = &ext4_dir_inode_operations;
4369 inode->i_fop = &ext4_dir_operations;
4370 } else if (S_ISLNK(inode->i_mode)) {
4371 if (ext4_inode_is_fast_symlink(inode)) {
4372 inode->i_op = &ext4_fast_symlink_inode_operations;
4373 nd_terminate_link(ei->i_data, inode->i_size,
4374 sizeof(ei->i_data) - 1);
4375 } else {
4376 inode->i_op = &ext4_symlink_inode_operations;
4377 ext4_set_aops(inode);
4378 }
4379 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4380 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4381 inode->i_op = &ext4_special_inode_operations;
4382 if (raw_inode->i_block[0])
4383 init_special_inode(inode, inode->i_mode,
4384 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4385 else
4386 init_special_inode(inode, inode->i_mode,
4387 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4388 } else if (ino == EXT4_BOOT_LOADER_INO) {
4389 make_bad_inode(inode);
4390 } else {
4391 ret = -EIO;
4392 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4393 goto bad_inode;
4394 }
4395 brelse(iloc.bh);
4396 ext4_set_inode_flags(inode);
4397 unlock_new_inode(inode);
4398 return inode;
4399
4400 bad_inode:
4401 brelse(iloc.bh);
4402 iget_failed(inode);
4403 return ERR_PTR(ret);
4404 }
4405
4406 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4407 {
4408 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4409 return ERR_PTR(-EIO);
4410 return ext4_iget(sb, ino);
4411 }
4412
4413 static int ext4_inode_blocks_set(handle_t *handle,
4414 struct ext4_inode *raw_inode,
4415 struct ext4_inode_info *ei)
4416 {
4417 struct inode *inode = &(ei->vfs_inode);
4418 u64 i_blocks = inode->i_blocks;
4419 struct super_block *sb = inode->i_sb;
4420
4421 if (i_blocks <= ~0U) {
4422 /*
4423 * i_blocks can be represented in a 32 bit variable
4424 * as multiple of 512 bytes
4425 */
4426 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4427 raw_inode->i_blocks_high = 0;
4428 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4429 return 0;
4430 }
4431 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4432 return -EFBIG;
4433
4434 if (i_blocks <= 0xffffffffffffULL) {
4435 /*
4436 * i_blocks can be represented in a 48 bit variable
4437 * as multiple of 512 bytes
4438 */
4439 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4440 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4441 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4442 } else {
4443 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4444 /* i_block is stored in file system block size */
4445 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4446 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4447 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4448 }
4449 return 0;
4450 }
4451
4452 /*
4453 * Post the struct inode info into an on-disk inode location in the
4454 * buffer-cache. This gobbles the caller's reference to the
4455 * buffer_head in the inode location struct.
4456 *
4457 * The caller must have write access to iloc->bh.
4458 */
4459 static int ext4_do_update_inode(handle_t *handle,
4460 struct inode *inode,
4461 struct ext4_iloc *iloc)
4462 {
4463 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4464 struct ext4_inode_info *ei = EXT4_I(inode);
4465 struct buffer_head *bh = iloc->bh;
4466 int err = 0, rc, block;
4467 int need_datasync = 0;
4468 uid_t i_uid;
4469 gid_t i_gid;
4470
4471 /* For fields not not tracking in the in-memory inode,
4472 * initialise them to zero for new inodes. */
4473 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4474 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4475
4476 ext4_get_inode_flags(ei);
4477 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4478 i_uid = i_uid_read(inode);
4479 i_gid = i_gid_read(inode);
4480 if (!(test_opt(inode->i_sb, NO_UID32))) {
4481 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4482 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4483 /*
4484 * Fix up interoperability with old kernels. Otherwise, old inodes get
4485 * re-used with the upper 16 bits of the uid/gid intact
4486 */
4487 if (!ei->i_dtime) {
4488 raw_inode->i_uid_high =
4489 cpu_to_le16(high_16_bits(i_uid));
4490 raw_inode->i_gid_high =
4491 cpu_to_le16(high_16_bits(i_gid));
4492 } else {
4493 raw_inode->i_uid_high = 0;
4494 raw_inode->i_gid_high = 0;
4495 }
4496 } else {
4497 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4498 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4499 raw_inode->i_uid_high = 0;
4500 raw_inode->i_gid_high = 0;
4501 }
4502 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4503
4504 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4505 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4506 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4507 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4508
4509 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4510 goto out_brelse;
4511 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4512 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4513 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4514 cpu_to_le32(EXT4_OS_HURD))
4515 raw_inode->i_file_acl_high =
4516 cpu_to_le16(ei->i_file_acl >> 32);
4517 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4518 if (ei->i_disksize != ext4_isize(raw_inode)) {
4519 ext4_isize_set(raw_inode, ei->i_disksize);
4520 need_datasync = 1;
4521 }
4522 if (ei->i_disksize > 0x7fffffffULL) {
4523 struct super_block *sb = inode->i_sb;
4524 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4525 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4526 EXT4_SB(sb)->s_es->s_rev_level ==
4527 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4528 /* If this is the first large file
4529 * created, add a flag to the superblock.
4530 */
4531 err = ext4_journal_get_write_access(handle,
4532 EXT4_SB(sb)->s_sbh);
4533 if (err)
4534 goto out_brelse;
4535 ext4_update_dynamic_rev(sb);
4536 EXT4_SET_RO_COMPAT_FEATURE(sb,
4537 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4538 ext4_handle_sync(handle);
4539 err = ext4_handle_dirty_super(handle, sb);
4540 }
4541 }
4542 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4543 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4544 if (old_valid_dev(inode->i_rdev)) {
4545 raw_inode->i_block[0] =
4546 cpu_to_le32(old_encode_dev(inode->i_rdev));
4547 raw_inode->i_block[1] = 0;
4548 } else {
4549 raw_inode->i_block[0] = 0;
4550 raw_inode->i_block[1] =
4551 cpu_to_le32(new_encode_dev(inode->i_rdev));
4552 raw_inode->i_block[2] = 0;
4553 }
4554 } else if (!ext4_has_inline_data(inode)) {
4555 for (block = 0; block < EXT4_N_BLOCKS; block++)
4556 raw_inode->i_block[block] = ei->i_data[block];
4557 }
4558
4559 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4560 if (ei->i_extra_isize) {
4561 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4562 raw_inode->i_version_hi =
4563 cpu_to_le32(inode->i_version >> 32);
4564 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4565 }
4566
4567 ext4_inode_csum_set(inode, raw_inode, ei);
4568
4569 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4570 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4571 if (!err)
4572 err = rc;
4573 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4574
4575 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4576 out_brelse:
4577 brelse(bh);
4578 ext4_std_error(inode->i_sb, err);
4579 return err;
4580 }
4581
4582 /*
4583 * ext4_write_inode()
4584 *
4585 * We are called from a few places:
4586 *
4587 * - Within generic_file_write() for O_SYNC files.
4588 * Here, there will be no transaction running. We wait for any running
4589 * transaction to commit.
4590 *
4591 * - Within sys_sync(), kupdate and such.
4592 * We wait on commit, if tol to.
4593 *
4594 * - Within prune_icache() (PF_MEMALLOC == true)
4595 * Here we simply return. We can't afford to block kswapd on the
4596 * journal commit.
4597 *
4598 * In all cases it is actually safe for us to return without doing anything,
4599 * because the inode has been copied into a raw inode buffer in
4600 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4601 * knfsd.
4602 *
4603 * Note that we are absolutely dependent upon all inode dirtiers doing the
4604 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4605 * which we are interested.
4606 *
4607 * It would be a bug for them to not do this. The code:
4608 *
4609 * mark_inode_dirty(inode)
4610 * stuff();
4611 * inode->i_size = expr;
4612 *
4613 * is in error because a kswapd-driven write_inode() could occur while
4614 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4615 * will no longer be on the superblock's dirty inode list.
4616 */
4617 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4618 {
4619 int err;
4620
4621 if (current->flags & PF_MEMALLOC)
4622 return 0;
4623
4624 if (EXT4_SB(inode->i_sb)->s_journal) {
4625 if (ext4_journal_current_handle()) {
4626 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4627 dump_stack();
4628 return -EIO;
4629 }
4630
4631 if (wbc->sync_mode != WB_SYNC_ALL)
4632 return 0;
4633
4634 err = ext4_force_commit(inode->i_sb);
4635 } else {
4636 struct ext4_iloc iloc;
4637
4638 err = __ext4_get_inode_loc(inode, &iloc, 0);
4639 if (err)
4640 return err;
4641 if (wbc->sync_mode == WB_SYNC_ALL)
4642 sync_dirty_buffer(iloc.bh);
4643 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4644 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4645 "IO error syncing inode");
4646 err = -EIO;
4647 }
4648 brelse(iloc.bh);
4649 }
4650 return err;
4651 }
4652
4653 /*
4654 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4655 * buffers that are attached to a page stradding i_size and are undergoing
4656 * commit. In that case we have to wait for commit to finish and try again.
4657 */
4658 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4659 {
4660 struct page *page;
4661 unsigned offset;
4662 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4663 tid_t commit_tid = 0;
4664 int ret;
4665
4666 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4667 /*
4668 * All buffers in the last page remain valid? Then there's nothing to
4669 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4670 * blocksize case
4671 */
4672 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4673 return;
4674 while (1) {
4675 page = find_lock_page(inode->i_mapping,
4676 inode->i_size >> PAGE_CACHE_SHIFT);
4677 if (!page)
4678 return;
4679 ret = __ext4_journalled_invalidatepage(page, offset);
4680 unlock_page(page);
4681 page_cache_release(page);
4682 if (ret != -EBUSY)
4683 return;
4684 commit_tid = 0;
4685 read_lock(&journal->j_state_lock);
4686 if (journal->j_committing_transaction)
4687 commit_tid = journal->j_committing_transaction->t_tid;
4688 read_unlock(&journal->j_state_lock);
4689 if (commit_tid)
4690 jbd2_log_wait_commit(journal, commit_tid);
4691 }
4692 }
4693
4694 /*
4695 * ext4_setattr()
4696 *
4697 * Called from notify_change.
4698 *
4699 * We want to trap VFS attempts to truncate the file as soon as
4700 * possible. In particular, we want to make sure that when the VFS
4701 * shrinks i_size, we put the inode on the orphan list and modify
4702 * i_disksize immediately, so that during the subsequent flushing of
4703 * dirty pages and freeing of disk blocks, we can guarantee that any
4704 * commit will leave the blocks being flushed in an unused state on
4705 * disk. (On recovery, the inode will get truncated and the blocks will
4706 * be freed, so we have a strong guarantee that no future commit will
4707 * leave these blocks visible to the user.)
4708 *
4709 * Another thing we have to assure is that if we are in ordered mode
4710 * and inode is still attached to the committing transaction, we must
4711 * we start writeout of all the dirty pages which are being truncated.
4712 * This way we are sure that all the data written in the previous
4713 * transaction are already on disk (truncate waits for pages under
4714 * writeback).
4715 *
4716 * Called with inode->i_mutex down.
4717 */
4718 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4719 {
4720 struct inode *inode = dentry->d_inode;
4721 int error, rc = 0;
4722 int orphan = 0;
4723 const unsigned int ia_valid = attr->ia_valid;
4724
4725 error = inode_change_ok(inode, attr);
4726 if (error)
4727 return error;
4728
4729 if (is_quota_modification(inode, attr))
4730 dquot_initialize(inode);
4731 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4732 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4733 handle_t *handle;
4734
4735 /* (user+group)*(old+new) structure, inode write (sb,
4736 * inode block, ? - but truncate inode update has it) */
4737 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4738 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4739 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4740 if (IS_ERR(handle)) {
4741 error = PTR_ERR(handle);
4742 goto err_out;
4743 }
4744 error = dquot_transfer(inode, attr);
4745 if (error) {
4746 ext4_journal_stop(handle);
4747 return error;
4748 }
4749 /* Update corresponding info in inode so that everything is in
4750 * one transaction */
4751 if (attr->ia_valid & ATTR_UID)
4752 inode->i_uid = attr->ia_uid;
4753 if (attr->ia_valid & ATTR_GID)
4754 inode->i_gid = attr->ia_gid;
4755 error = ext4_mark_inode_dirty(handle, inode);
4756 ext4_journal_stop(handle);
4757 }
4758
4759 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4760 handle_t *handle;
4761 loff_t oldsize = inode->i_size;
4762
4763 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4764 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4765
4766 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4767 return -EFBIG;
4768 }
4769
4770 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4771 inode_inc_iversion(inode);
4772
4773 if (S_ISREG(inode->i_mode) &&
4774 (attr->ia_size < inode->i_size)) {
4775 if (ext4_should_order_data(inode)) {
4776 error = ext4_begin_ordered_truncate(inode,
4777 attr->ia_size);
4778 if (error)
4779 goto err_out;
4780 }
4781 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4782 if (IS_ERR(handle)) {
4783 error = PTR_ERR(handle);
4784 goto err_out;
4785 }
4786 if (ext4_handle_valid(handle)) {
4787 error = ext4_orphan_add(handle, inode);
4788 orphan = 1;
4789 }
4790 EXT4_I(inode)->i_disksize = attr->ia_size;
4791 rc = ext4_mark_inode_dirty(handle, inode);
4792 if (!error)
4793 error = rc;
4794 ext4_journal_stop(handle);
4795 if (error) {
4796 ext4_orphan_del(NULL, inode);
4797 goto err_out;
4798 }
4799 }
4800
4801 i_size_write(inode, attr->ia_size);
4802 /*
4803 * Blocks are going to be removed from the inode. Wait
4804 * for dio in flight. Temporarily disable
4805 * dioread_nolock to prevent livelock.
4806 */
4807 if (orphan) {
4808 if (!ext4_should_journal_data(inode)) {
4809 ext4_inode_block_unlocked_dio(inode);
4810 inode_dio_wait(inode);
4811 ext4_inode_resume_unlocked_dio(inode);
4812 } else
4813 ext4_wait_for_tail_page_commit(inode);
4814 }
4815 /*
4816 * Truncate pagecache after we've waited for commit
4817 * in data=journal mode to make pages freeable.
4818 */
4819 truncate_pagecache(inode, oldsize, inode->i_size);
4820 }
4821 /*
4822 * We want to call ext4_truncate() even if attr->ia_size ==
4823 * inode->i_size for cases like truncation of fallocated space
4824 */
4825 if (attr->ia_valid & ATTR_SIZE)
4826 ext4_truncate(inode);
4827
4828 if (!rc) {
4829 setattr_copy(inode, attr);
4830 mark_inode_dirty(inode);
4831 }
4832
4833 /*
4834 * If the call to ext4_truncate failed to get a transaction handle at
4835 * all, we need to clean up the in-core orphan list manually.
4836 */
4837 if (orphan && inode->i_nlink)
4838 ext4_orphan_del(NULL, inode);
4839
4840 if (!rc && (ia_valid & ATTR_MODE))
4841 rc = ext4_acl_chmod(inode);
4842
4843 err_out:
4844 ext4_std_error(inode->i_sb, error);
4845 if (!error)
4846 error = rc;
4847 return error;
4848 }
4849
4850 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4851 struct kstat *stat)
4852 {
4853 struct inode *inode;
4854 unsigned long long delalloc_blocks;
4855
4856 inode = dentry->d_inode;
4857 generic_fillattr(inode, stat);
4858
4859 /*
4860 * We can't update i_blocks if the block allocation is delayed
4861 * otherwise in the case of system crash before the real block
4862 * allocation is done, we will have i_blocks inconsistent with
4863 * on-disk file blocks.
4864 * We always keep i_blocks updated together with real
4865 * allocation. But to not confuse with user, stat
4866 * will return the blocks that include the delayed allocation
4867 * blocks for this file.
4868 */
4869 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4870 EXT4_I(inode)->i_reserved_data_blocks);
4871
4872 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4873 return 0;
4874 }
4875
4876 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4877 {
4878 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4879 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4880 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4881 }
4882
4883 /*
4884 * Account for index blocks, block groups bitmaps and block group
4885 * descriptor blocks if modify datablocks and index blocks
4886 * worse case, the indexs blocks spread over different block groups
4887 *
4888 * If datablocks are discontiguous, they are possible to spread over
4889 * different block groups too. If they are contiguous, with flexbg,
4890 * they could still across block group boundary.
4891 *
4892 * Also account for superblock, inode, quota and xattr blocks
4893 */
4894 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4895 {
4896 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4897 int gdpblocks;
4898 int idxblocks;
4899 int ret = 0;
4900
4901 /*
4902 * How many index blocks need to touch to modify nrblocks?
4903 * The "Chunk" flag indicating whether the nrblocks is
4904 * physically contiguous on disk
4905 *
4906 * For Direct IO and fallocate, they calls get_block to allocate
4907 * one single extent at a time, so they could set the "Chunk" flag
4908 */
4909 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4910
4911 ret = idxblocks;
4912
4913 /*
4914 * Now let's see how many group bitmaps and group descriptors need
4915 * to account
4916 */
4917 groups = idxblocks;
4918 if (chunk)
4919 groups += 1;
4920 else
4921 groups += nrblocks;
4922
4923 gdpblocks = groups;
4924 if (groups > ngroups)
4925 groups = ngroups;
4926 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4927 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4928
4929 /* bitmaps and block group descriptor blocks */
4930 ret += groups + gdpblocks;
4931
4932 /* Blocks for super block, inode, quota and xattr blocks */
4933 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4934
4935 return ret;
4936 }
4937
4938 /*
4939 * Calculate the total number of credits to reserve to fit
4940 * the modification of a single pages into a single transaction,
4941 * which may include multiple chunks of block allocations.
4942 *
4943 * This could be called via ext4_write_begin()
4944 *
4945 * We need to consider the worse case, when
4946 * one new block per extent.
4947 */
4948 int ext4_writepage_trans_blocks(struct inode *inode)
4949 {
4950 int bpp = ext4_journal_blocks_per_page(inode);
4951 int ret;
4952
4953 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4954
4955 /* Account for data blocks for journalled mode */
4956 if (ext4_should_journal_data(inode))
4957 ret += bpp;
4958 return ret;
4959 }
4960
4961 /*
4962 * Calculate the journal credits for a chunk of data modification.
4963 *
4964 * This is called from DIO, fallocate or whoever calling
4965 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4966 *
4967 * journal buffers for data blocks are not included here, as DIO
4968 * and fallocate do no need to journal data buffers.
4969 */
4970 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4971 {
4972 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4973 }
4974
4975 /*
4976 * The caller must have previously called ext4_reserve_inode_write().
4977 * Give this, we know that the caller already has write access to iloc->bh.
4978 */
4979 int ext4_mark_iloc_dirty(handle_t *handle,
4980 struct inode *inode, struct ext4_iloc *iloc)
4981 {
4982 int err = 0;
4983
4984 if (IS_I_VERSION(inode))
4985 inode_inc_iversion(inode);
4986
4987 /* the do_update_inode consumes one bh->b_count */
4988 get_bh(iloc->bh);
4989
4990 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4991 err = ext4_do_update_inode(handle, inode, iloc);
4992 put_bh(iloc->bh);
4993 return err;
4994 }
4995
4996 /*
4997 * On success, We end up with an outstanding reference count against
4998 * iloc->bh. This _must_ be cleaned up later.
4999 */
5000
5001 int
5002 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5003 struct ext4_iloc *iloc)
5004 {
5005 int err;
5006
5007 err = ext4_get_inode_loc(inode, iloc);
5008 if (!err) {
5009 BUFFER_TRACE(iloc->bh, "get_write_access");
5010 err = ext4_journal_get_write_access(handle, iloc->bh);
5011 if (err) {
5012 brelse(iloc->bh);
5013 iloc->bh = NULL;
5014 }
5015 }
5016 ext4_std_error(inode->i_sb, err);
5017 return err;
5018 }
5019
5020 /*
5021 * Expand an inode by new_extra_isize bytes.
5022 * Returns 0 on success or negative error number on failure.
5023 */
5024 static int ext4_expand_extra_isize(struct inode *inode,
5025 unsigned int new_extra_isize,
5026 struct ext4_iloc iloc,
5027 handle_t *handle)
5028 {
5029 struct ext4_inode *raw_inode;
5030 struct ext4_xattr_ibody_header *header;
5031
5032 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5033 return 0;
5034
5035 raw_inode = ext4_raw_inode(&iloc);
5036
5037 header = IHDR(inode, raw_inode);
5038
5039 /* No extended attributes present */
5040 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5041 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5042 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5043 new_extra_isize);
5044 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5045 return 0;
5046 }
5047
5048 /* try to expand with EAs present */
5049 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5050 raw_inode, handle);
5051 }
5052
5053 /*
5054 * What we do here is to mark the in-core inode as clean with respect to inode
5055 * dirtiness (it may still be data-dirty).
5056 * This means that the in-core inode may be reaped by prune_icache
5057 * without having to perform any I/O. This is a very good thing,
5058 * because *any* task may call prune_icache - even ones which
5059 * have a transaction open against a different journal.
5060 *
5061 * Is this cheating? Not really. Sure, we haven't written the
5062 * inode out, but prune_icache isn't a user-visible syncing function.
5063 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5064 * we start and wait on commits.
5065 */
5066 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5067 {
5068 struct ext4_iloc iloc;
5069 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5070 static unsigned int mnt_count;
5071 int err, ret;
5072
5073 might_sleep();
5074 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5075 err = ext4_reserve_inode_write(handle, inode, &iloc);
5076 if (ext4_handle_valid(handle) &&
5077 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5078 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5079 /*
5080 * We need extra buffer credits since we may write into EA block
5081 * with this same handle. If journal_extend fails, then it will
5082 * only result in a minor loss of functionality for that inode.
5083 * If this is felt to be critical, then e2fsck should be run to
5084 * force a large enough s_min_extra_isize.
5085 */
5086 if ((jbd2_journal_extend(handle,
5087 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5088 ret = ext4_expand_extra_isize(inode,
5089 sbi->s_want_extra_isize,
5090 iloc, handle);
5091 if (ret) {
5092 ext4_set_inode_state(inode,
5093 EXT4_STATE_NO_EXPAND);
5094 if (mnt_count !=
5095 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5096 ext4_warning(inode->i_sb,
5097 "Unable to expand inode %lu. Delete"
5098 " some EAs or run e2fsck.",
5099 inode->i_ino);
5100 mnt_count =
5101 le16_to_cpu(sbi->s_es->s_mnt_count);
5102 }
5103 }
5104 }
5105 }
5106 if (!err)
5107 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5108 return err;
5109 }
5110
5111 /*
5112 * ext4_dirty_inode() is called from __mark_inode_dirty()
5113 *
5114 * We're really interested in the case where a file is being extended.
5115 * i_size has been changed by generic_commit_write() and we thus need
5116 * to include the updated inode in the current transaction.
5117 *
5118 * Also, dquot_alloc_block() will always dirty the inode when blocks
5119 * are allocated to the file.
5120 *
5121 * If the inode is marked synchronous, we don't honour that here - doing
5122 * so would cause a commit on atime updates, which we don't bother doing.
5123 * We handle synchronous inodes at the highest possible level.
5124 */
5125 void ext4_dirty_inode(struct inode *inode, int flags)
5126 {
5127 handle_t *handle;
5128
5129 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5130 if (IS_ERR(handle))
5131 goto out;
5132
5133 ext4_mark_inode_dirty(handle, inode);
5134
5135 ext4_journal_stop(handle);
5136 out:
5137 return;
5138 }
5139
5140 #if 0
5141 /*
5142 * Bind an inode's backing buffer_head into this transaction, to prevent
5143 * it from being flushed to disk early. Unlike
5144 * ext4_reserve_inode_write, this leaves behind no bh reference and
5145 * returns no iloc structure, so the caller needs to repeat the iloc
5146 * lookup to mark the inode dirty later.
5147 */
5148 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5149 {
5150 struct ext4_iloc iloc;
5151
5152 int err = 0;
5153 if (handle) {
5154 err = ext4_get_inode_loc(inode, &iloc);
5155 if (!err) {
5156 BUFFER_TRACE(iloc.bh, "get_write_access");
5157 err = jbd2_journal_get_write_access(handle, iloc.bh);
5158 if (!err)
5159 err = ext4_handle_dirty_metadata(handle,
5160 NULL,
5161 iloc.bh);
5162 brelse(iloc.bh);
5163 }
5164 }
5165 ext4_std_error(inode->i_sb, err);
5166 return err;
5167 }
5168 #endif
5169
5170 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5171 {
5172 journal_t *journal;
5173 handle_t *handle;
5174 int err;
5175
5176 /*
5177 * We have to be very careful here: changing a data block's
5178 * journaling status dynamically is dangerous. If we write a
5179 * data block to the journal, change the status and then delete
5180 * that block, we risk forgetting to revoke the old log record
5181 * from the journal and so a subsequent replay can corrupt data.
5182 * So, first we make sure that the journal is empty and that
5183 * nobody is changing anything.
5184 */
5185
5186 journal = EXT4_JOURNAL(inode);
5187 if (!journal)
5188 return 0;
5189 if (is_journal_aborted(journal))
5190 return -EROFS;
5191 /* We have to allocate physical blocks for delalloc blocks
5192 * before flushing journal. otherwise delalloc blocks can not
5193 * be allocated any more. even more truncate on delalloc blocks
5194 * could trigger BUG by flushing delalloc blocks in journal.
5195 * There is no delalloc block in non-journal data mode.
5196 */
5197 if (val && test_opt(inode->i_sb, DELALLOC)) {
5198 err = ext4_alloc_da_blocks(inode);
5199 if (err < 0)
5200 return err;
5201 }
5202
5203 /* Wait for all existing dio workers */
5204 ext4_inode_block_unlocked_dio(inode);
5205 inode_dio_wait(inode);
5206
5207 jbd2_journal_lock_updates(journal);
5208
5209 /*
5210 * OK, there are no updates running now, and all cached data is
5211 * synced to disk. We are now in a completely consistent state
5212 * which doesn't have anything in the journal, and we know that
5213 * no filesystem updates are running, so it is safe to modify
5214 * the inode's in-core data-journaling state flag now.
5215 */
5216
5217 if (val)
5218 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5219 else {
5220 jbd2_journal_flush(journal);
5221 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5222 }
5223 ext4_set_aops(inode);
5224
5225 jbd2_journal_unlock_updates(journal);
5226 ext4_inode_resume_unlocked_dio(inode);
5227
5228 /* Finally we can mark the inode as dirty. */
5229
5230 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5231 if (IS_ERR(handle))
5232 return PTR_ERR(handle);
5233
5234 err = ext4_mark_inode_dirty(handle, inode);
5235 ext4_handle_sync(handle);
5236 ext4_journal_stop(handle);
5237 ext4_std_error(inode->i_sb, err);
5238
5239 return err;
5240 }
5241
5242 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5243 {
5244 return !buffer_mapped(bh);
5245 }
5246
5247 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5248 {
5249 struct page *page = vmf->page;
5250 loff_t size;
5251 unsigned long len;
5252 int ret;
5253 struct file *file = vma->vm_file;
5254 struct inode *inode = file_inode(file);
5255 struct address_space *mapping = inode->i_mapping;
5256 handle_t *handle;
5257 get_block_t *get_block;
5258 int retries = 0;
5259
5260 sb_start_pagefault(inode->i_sb);
5261 file_update_time(vma->vm_file);
5262 /* Delalloc case is easy... */
5263 if (test_opt(inode->i_sb, DELALLOC) &&
5264 !ext4_should_journal_data(inode) &&
5265 !ext4_nonda_switch(inode->i_sb)) {
5266 do {
5267 ret = __block_page_mkwrite(vma, vmf,
5268 ext4_da_get_block_prep);
5269 } while (ret == -ENOSPC &&
5270 ext4_should_retry_alloc(inode->i_sb, &retries));
5271 goto out_ret;
5272 }
5273
5274 lock_page(page);
5275 size = i_size_read(inode);
5276 /* Page got truncated from under us? */
5277 if (page->mapping != mapping || page_offset(page) > size) {
5278 unlock_page(page);
5279 ret = VM_FAULT_NOPAGE;
5280 goto out;
5281 }
5282
5283 if (page->index == size >> PAGE_CACHE_SHIFT)
5284 len = size & ~PAGE_CACHE_MASK;
5285 else
5286 len = PAGE_CACHE_SIZE;
5287 /*
5288 * Return if we have all the buffers mapped. This avoids the need to do
5289 * journal_start/journal_stop which can block and take a long time
5290 */
5291 if (page_has_buffers(page)) {
5292 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5293 0, len, NULL,
5294 ext4_bh_unmapped)) {
5295 /* Wait so that we don't change page under IO */
5296 wait_for_stable_page(page);
5297 ret = VM_FAULT_LOCKED;
5298 goto out;
5299 }
5300 }
5301 unlock_page(page);
5302 /* OK, we need to fill the hole... */
5303 if (ext4_should_dioread_nolock(inode))
5304 get_block = ext4_get_block_write;
5305 else
5306 get_block = ext4_get_block;
5307 retry_alloc:
5308 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5309 ext4_writepage_trans_blocks(inode));
5310 if (IS_ERR(handle)) {
5311 ret = VM_FAULT_SIGBUS;
5312 goto out;
5313 }
5314 ret = __block_page_mkwrite(vma, vmf, get_block);
5315 if (!ret && ext4_should_journal_data(inode)) {
5316 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5317 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5318 unlock_page(page);
5319 ret = VM_FAULT_SIGBUS;
5320 ext4_journal_stop(handle);
5321 goto out;
5322 }
5323 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5324 }
5325 ext4_journal_stop(handle);
5326 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5327 goto retry_alloc;
5328 out_ret:
5329 ret = block_page_mkwrite_return(ret);
5330 out:
5331 sb_end_pagefault(inode->i_sb);
5332 return ret;
5333 }