ext4: simplify truncation code in ext4_setattr()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75 return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80 {
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120 {
121 trace_ext4_begin_ordered_truncate(inode, new_size);
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned long offset);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
139 struct inode *inode, struct page *page, loff_t from,
140 loff_t length, int flags);
141
142 /*
143 * Test whether an inode is a fast symlink.
144 */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages(&inode->i_data, 0);
218 ext4_ioend_shutdown(inode);
219 goto no_delete;
220 }
221
222 if (!is_bad_inode(inode))
223 dquot_initialize(inode);
224
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
228 ext4_ioend_shutdown(inode);
229
230 if (is_bad_inode(inode))
231 goto no_delete;
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
240 if (IS_ERR(handle)) {
241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
247 ext4_orphan_del(NULL, inode);
248 sb_end_intwrite(inode->i_sb);
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
253 ext4_handle_sync(handle);
254 inode->i_size = 0;
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
257 ext4_warning(inode->i_sb,
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
261 if (inode->i_blocks)
262 ext4_truncate(inode);
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
270 if (!ext4_handle_has_enough_credits(handle, 3)) {
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
275 ext4_warning(inode->i_sb,
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
279 ext4_orphan_del(NULL, inode);
280 sb_end_intwrite(inode->i_sb);
281 goto no_delete;
282 }
283 }
284
285 /*
286 * Kill off the orphan record which ext4_truncate created.
287 * AKPM: I think this can be inside the above `if'.
288 * Note that ext4_orphan_del() has to be able to cope with the
289 * deletion of a non-existent orphan - this is because we don't
290 * know if ext4_truncate() actually created an orphan record.
291 * (Well, we could do this if we need to, but heck - it works)
292 */
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
303 if (ext4_mark_inode_dirty(handle, inode))
304 /* If that failed, just do the required in-core inode clear. */
305 ext4_clear_inode(inode);
306 else
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
309 sb_end_intwrite(inode->i_sb);
310 return;
311 no_delete:
312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323 * Calculate the number of metadata blocks need to reserve
324 * to allocate a block located at @lblock
325 */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331 return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335 * Called with i_data_sem down, which is important since we can call
336 * ext4_discard_preallocations() from here.
337 */
338 void ext4_da_update_reserve_space(struct inode *inode,
339 int used, int quota_claim)
340 {
341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 struct ext4_inode_info *ei = EXT4_I(inode);
343
344 spin_lock(&ei->i_block_reservation_lock);
345 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346 if (unlikely(used > ei->i_reserved_data_blocks)) {
347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348 "with only %d reserved data blocks",
349 __func__, inode->i_ino, used,
350 ei->i_reserved_data_blocks);
351 WARN_ON(1);
352 used = ei->i_reserved_data_blocks;
353 }
354
355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357 "with only %d reserved metadata blocks "
358 "(releasing %d blocks with reserved %d data blocks)",
359 inode->i_ino, ei->i_allocated_meta_blocks,
360 ei->i_reserved_meta_blocks, used,
361 ei->i_reserved_data_blocks);
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370 used + ei->i_allocated_meta_blocks);
371 ei->i_allocated_meta_blocks = 0;
372
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380 ei->i_reserved_meta_blocks);
381 ei->i_reserved_meta_blocks = 0;
382 ei->i_da_metadata_calc_len = 0;
383 }
384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 else {
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
393 * not re-claim the quota for fallocated blocks.
394 */
395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 }
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
405 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409 unsigned int line,
410 struct ext4_map_blocks *map)
411 {
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
418 return -EIO;
419 }
420 return 0;
421 }
422
423 #define check_block_validity(inode, map) \
424 __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
429 */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432 {
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
476 if (num >= max_pages) {
477 done = 1;
478 break;
479 }
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484 }
485
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488 struct inode *inode,
489 struct ext4_map_blocks *es_map,
490 struct ext4_map_blocks *map,
491 int flags)
492 {
493 int retval;
494
495 map->m_flags = 0;
496 /*
497 * There is a race window that the result is not the same.
498 * e.g. xfstests #223 when dioread_nolock enables. The reason
499 * is that we lookup a block mapping in extent status tree with
500 * out taking i_data_sem. So at the time the unwritten extent
501 * could be converted.
502 */
503 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504 down_read((&EXT4_I(inode)->i_data_sem));
505 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506 retval = ext4_ext_map_blocks(handle, inode, map, flags &
507 EXT4_GET_BLOCKS_KEEP_SIZE);
508 } else {
509 retval = ext4_ind_map_blocks(handle, inode, map, flags &
510 EXT4_GET_BLOCKS_KEEP_SIZE);
511 }
512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 up_read((&EXT4_I(inode)->i_data_sem));
514 /*
515 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516 * because it shouldn't be marked in es_map->m_flags.
517 */
518 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519
520 /*
521 * We don't check m_len because extent will be collpased in status
522 * tree. So the m_len might not equal.
523 */
524 if (es_map->m_lblk != map->m_lblk ||
525 es_map->m_flags != map->m_flags ||
526 es_map->m_pblk != map->m_pblk) {
527 printk("ES cache assertation failed for inode: %lu "
528 "es_cached ex [%d/%d/%llu/%x] != "
529 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530 inode->i_ino, es_map->m_lblk, es_map->m_len,
531 es_map->m_pblk, es_map->m_flags, map->m_lblk,
532 map->m_len, map->m_pblk, map->m_flags,
533 retval, flags);
534 }
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537
538 /*
539 * The ext4_map_blocks() function tries to look up the requested blocks,
540 * and returns if the blocks are already mapped.
541 *
542 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543 * and store the allocated blocks in the result buffer head and mark it
544 * mapped.
545 *
546 * If file type is extents based, it will call ext4_ext_map_blocks(),
547 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548 * based files
549 *
550 * On success, it returns the number of blocks being mapped or allocate.
551 * if create==0 and the blocks are pre-allocated and uninitialized block,
552 * the result buffer head is unmapped. If the create ==1, it will make sure
553 * the buffer head is mapped.
554 *
555 * It returns 0 if plain look up failed (blocks have not been allocated), in
556 * that case, buffer head is unmapped
557 *
558 * It returns the error in case of allocation failure.
559 */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561 struct ext4_map_blocks *map, int flags)
562 {
563 struct extent_status es;
564 int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566 struct ext4_map_blocks orig_map;
567
568 memcpy(&orig_map, map, sizeof(*map));
569 #endif
570
571 map->m_flags = 0;
572 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573 "logical block %lu\n", inode->i_ino, flags, map->m_len,
574 (unsigned long) map->m_lblk);
575
576 /* Lookup extent status tree firstly */
577 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579 map->m_pblk = ext4_es_pblock(&es) +
580 map->m_lblk - es.es_lblk;
581 map->m_flags |= ext4_es_is_written(&es) ?
582 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583 retval = es.es_len - (map->m_lblk - es.es_lblk);
584 if (retval > map->m_len)
585 retval = map->m_len;
586 map->m_len = retval;
587 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588 retval = 0;
589 } else {
590 BUG_ON(1);
591 }
592 #ifdef ES_AGGRESSIVE_TEST
593 ext4_map_blocks_es_recheck(handle, inode, map,
594 &orig_map, flags);
595 #endif
596 goto found;
597 }
598
599 /*
600 * Try to see if we can get the block without requesting a new
601 * file system block.
602 */
603 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604 down_read((&EXT4_I(inode)->i_data_sem));
605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 retval = ext4_ext_map_blocks(handle, inode, map, flags &
607 EXT4_GET_BLOCKS_KEEP_SIZE);
608 } else {
609 retval = ext4_ind_map_blocks(handle, inode, map, flags &
610 EXT4_GET_BLOCKS_KEEP_SIZE);
611 }
612 if (retval > 0) {
613 int ret;
614 unsigned long long status;
615
616 #ifdef ES_AGGRESSIVE_TEST
617 if (retval != map->m_len) {
618 printk("ES len assertation failed for inode: %lu "
619 "retval %d != map->m_len %d "
620 "in %s (lookup)\n", inode->i_ino, retval,
621 map->m_len, __func__);
622 }
623 #endif
624
625 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628 ext4_find_delalloc_range(inode, map->m_lblk,
629 map->m_lblk + map->m_len - 1))
630 status |= EXTENT_STATUS_DELAYED;
631 ret = ext4_es_insert_extent(inode, map->m_lblk,
632 map->m_len, map->m_pblk, status);
633 if (ret < 0)
634 retval = ret;
635 }
636 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637 up_read((&EXT4_I(inode)->i_data_sem));
638
639 found:
640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641 int ret = check_block_validity(inode, map);
642 if (ret != 0)
643 return ret;
644 }
645
646 /* If it is only a block(s) look up */
647 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648 return retval;
649
650 /*
651 * Returns if the blocks have already allocated
652 *
653 * Note that if blocks have been preallocated
654 * ext4_ext_get_block() returns the create = 0
655 * with buffer head unmapped.
656 */
657 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658 return retval;
659
660 /*
661 * Here we clear m_flags because after allocating an new extent,
662 * it will be set again.
663 */
664 map->m_flags &= ~EXT4_MAP_FLAGS;
665
666 /*
667 * New blocks allocate and/or writing to uninitialized extent
668 * will possibly result in updating i_data, so we take
669 * the write lock of i_data_sem, and call get_blocks()
670 * with create == 1 flag.
671 */
672 down_write((&EXT4_I(inode)->i_data_sem));
673
674 /*
675 * if the caller is from delayed allocation writeout path
676 * we have already reserved fs blocks for allocation
677 * let the underlying get_block() function know to
678 * avoid double accounting
679 */
680 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682 /*
683 * We need to check for EXT4 here because migrate
684 * could have changed the inode type in between
685 */
686 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687 retval = ext4_ext_map_blocks(handle, inode, map, flags);
688 } else {
689 retval = ext4_ind_map_blocks(handle, inode, map, flags);
690
691 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692 /*
693 * We allocated new blocks which will result in
694 * i_data's format changing. Force the migrate
695 * to fail by clearing migrate flags
696 */
697 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698 }
699
700 /*
701 * Update reserved blocks/metadata blocks after successful
702 * block allocation which had been deferred till now. We don't
703 * support fallocate for non extent files. So we can update
704 * reserve space here.
705 */
706 if ((retval > 0) &&
707 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708 ext4_da_update_reserve_space(inode, retval, 1);
709 }
710 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712
713 if (retval > 0) {
714 int ret;
715 unsigned long long status;
716
717 #ifdef ES_AGGRESSIVE_TEST
718 if (retval != map->m_len) {
719 printk("ES len assertation failed for inode: %lu "
720 "retval %d != map->m_len %d "
721 "in %s (allocation)\n", inode->i_ino, retval,
722 map->m_len, __func__);
723 }
724 #endif
725
726 /*
727 * If the extent has been zeroed out, we don't need to update
728 * extent status tree.
729 */
730 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732 if (ext4_es_is_written(&es))
733 goto has_zeroout;
734 }
735 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738 ext4_find_delalloc_range(inode, map->m_lblk,
739 map->m_lblk + map->m_len - 1))
740 status |= EXTENT_STATUS_DELAYED;
741 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742 map->m_pblk, status);
743 if (ret < 0)
744 retval = ret;
745 }
746
747 has_zeroout:
748 up_write((&EXT4_I(inode)->i_data_sem));
749 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750 int ret = check_block_validity(inode, map);
751 if (ret != 0)
752 return ret;
753 }
754 return retval;
755 }
756
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
762 {
763 handle_t *handle = ext4_journal_current_handle();
764 struct ext4_map_blocks map;
765 int ret = 0, started = 0;
766 int dio_credits;
767
768 if (ext4_has_inline_data(inode))
769 return -ERANGE;
770
771 map.m_lblk = iblock;
772 map.m_len = bh->b_size >> inode->i_blkbits;
773
774 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775 /* Direct IO write... */
776 if (map.m_len > DIO_MAX_BLOCKS)
777 map.m_len = DIO_MAX_BLOCKS;
778 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780 dio_credits);
781 if (IS_ERR(handle)) {
782 ret = PTR_ERR(handle);
783 return ret;
784 }
785 started = 1;
786 }
787
788 ret = ext4_map_blocks(handle, inode, &map, flags);
789 if (ret > 0) {
790 map_bh(bh, inode->i_sb, map.m_pblk);
791 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 ret = 0;
794 }
795 if (started)
796 ext4_journal_stop(handle);
797 return ret;
798 }
799
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801 struct buffer_head *bh, int create)
802 {
803 return _ext4_get_block(inode, iblock, bh,
804 create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806
807 /*
808 * `handle' can be NULL if create is zero
809 */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811 ext4_lblk_t block, int create, int *errp)
812 {
813 struct ext4_map_blocks map;
814 struct buffer_head *bh;
815 int fatal = 0, err;
816
817 J_ASSERT(handle != NULL || create == 0);
818
819 map.m_lblk = block;
820 map.m_len = 1;
821 err = ext4_map_blocks(handle, inode, &map,
822 create ? EXT4_GET_BLOCKS_CREATE : 0);
823
824 /* ensure we send some value back into *errp */
825 *errp = 0;
826
827 if (create && err == 0)
828 err = -ENOSPC; /* should never happen */
829 if (err < 0)
830 *errp = err;
831 if (err <= 0)
832 return NULL;
833
834 bh = sb_getblk(inode->i_sb, map.m_pblk);
835 if (unlikely(!bh)) {
836 *errp = -ENOMEM;
837 return NULL;
838 }
839 if (map.m_flags & EXT4_MAP_NEW) {
840 J_ASSERT(create != 0);
841 J_ASSERT(handle != NULL);
842
843 /*
844 * Now that we do not always journal data, we should
845 * keep in mind whether this should always journal the
846 * new buffer as metadata. For now, regular file
847 * writes use ext4_get_block instead, so it's not a
848 * problem.
849 */
850 lock_buffer(bh);
851 BUFFER_TRACE(bh, "call get_create_access");
852 fatal = ext4_journal_get_create_access(handle, bh);
853 if (!fatal && !buffer_uptodate(bh)) {
854 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 set_buffer_uptodate(bh);
856 }
857 unlock_buffer(bh);
858 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 err = ext4_handle_dirty_metadata(handle, inode, bh);
860 if (!fatal)
861 fatal = err;
862 } else {
863 BUFFER_TRACE(bh, "not a new buffer");
864 }
865 if (fatal) {
866 *errp = fatal;
867 brelse(bh);
868 bh = NULL;
869 }
870 return bh;
871 }
872
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874 ext4_lblk_t block, int create, int *err)
875 {
876 struct buffer_head *bh;
877
878 bh = ext4_getblk(handle, inode, block, create, err);
879 if (!bh)
880 return bh;
881 if (buffer_uptodate(bh))
882 return bh;
883 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884 wait_on_buffer(bh);
885 if (buffer_uptodate(bh))
886 return bh;
887 put_bh(bh);
888 *err = -EIO;
889 return NULL;
890 }
891
892 int ext4_walk_page_buffers(handle_t *handle,
893 struct buffer_head *head,
894 unsigned from,
895 unsigned to,
896 int *partial,
897 int (*fn)(handle_t *handle,
898 struct buffer_head *bh))
899 {
900 struct buffer_head *bh;
901 unsigned block_start, block_end;
902 unsigned blocksize = head->b_size;
903 int err, ret = 0;
904 struct buffer_head *next;
905
906 for (bh = head, block_start = 0;
907 ret == 0 && (bh != head || !block_start);
908 block_start = block_end, bh = next) {
909 next = bh->b_this_page;
910 block_end = block_start + blocksize;
911 if (block_end <= from || block_start >= to) {
912 if (partial && !buffer_uptodate(bh))
913 *partial = 1;
914 continue;
915 }
916 err = (*fn)(handle, bh);
917 if (!ret)
918 ret = err;
919 }
920 return ret;
921 }
922
923 /*
924 * To preserve ordering, it is essential that the hole instantiation and
925 * the data write be encapsulated in a single transaction. We cannot
926 * close off a transaction and start a new one between the ext4_get_block()
927 * and the commit_write(). So doing the jbd2_journal_start at the start of
928 * prepare_write() is the right place.
929 *
930 * Also, this function can nest inside ext4_writepage(). In that case, we
931 * *know* that ext4_writepage() has generated enough buffer credits to do the
932 * whole page. So we won't block on the journal in that case, which is good,
933 * because the caller may be PF_MEMALLOC.
934 *
935 * By accident, ext4 can be reentered when a transaction is open via
936 * quota file writes. If we were to commit the transaction while thus
937 * reentered, there can be a deadlock - we would be holding a quota
938 * lock, and the commit would never complete if another thread had a
939 * transaction open and was blocking on the quota lock - a ranking
940 * violation.
941 *
942 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943 * will _not_ run commit under these circumstances because handle->h_ref
944 * is elevated. We'll still have enough credits for the tiny quotafile
945 * write.
946 */
947 int do_journal_get_write_access(handle_t *handle,
948 struct buffer_head *bh)
949 {
950 int dirty = buffer_dirty(bh);
951 int ret;
952
953 if (!buffer_mapped(bh) || buffer_freed(bh))
954 return 0;
955 /*
956 * __block_write_begin() could have dirtied some buffers. Clean
957 * the dirty bit as jbd2_journal_get_write_access() could complain
958 * otherwise about fs integrity issues. Setting of the dirty bit
959 * by __block_write_begin() isn't a real problem here as we clear
960 * the bit before releasing a page lock and thus writeback cannot
961 * ever write the buffer.
962 */
963 if (dirty)
964 clear_buffer_dirty(bh);
965 ret = ext4_journal_get_write_access(handle, bh);
966 if (!ret && dirty)
967 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968 return ret;
969 }
970
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972 struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 loff_t pos, unsigned len, unsigned flags,
975 struct page **pagep, void **fsdata)
976 {
977 struct inode *inode = mapping->host;
978 int ret, needed_blocks;
979 handle_t *handle;
980 int retries = 0;
981 struct page *page;
982 pgoff_t index;
983 unsigned from, to;
984
985 trace_ext4_write_begin(inode, pos, len, flags);
986 /*
987 * Reserve one block more for addition to orphan list in case
988 * we allocate blocks but write fails for some reason
989 */
990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991 index = pos >> PAGE_CACHE_SHIFT;
992 from = pos & (PAGE_CACHE_SIZE - 1);
993 to = from + len;
994
995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 flags, pagep);
998 if (ret < 0)
999 return ret;
1000 if (ret == 1)
1001 return 0;
1002 }
1003
1004 /*
1005 * grab_cache_page_write_begin() can take a long time if the
1006 * system is thrashing due to memory pressure, or if the page
1007 * is being written back. So grab it first before we start
1008 * the transaction handle. This also allows us to allocate
1009 * the page (if needed) without using GFP_NOFS.
1010 */
1011 retry_grab:
1012 page = grab_cache_page_write_begin(mapping, index, flags);
1013 if (!page)
1014 return -ENOMEM;
1015 unlock_page(page);
1016
1017 retry_journal:
1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019 if (IS_ERR(handle)) {
1020 page_cache_release(page);
1021 return PTR_ERR(handle);
1022 }
1023
1024 lock_page(page);
1025 if (page->mapping != mapping) {
1026 /* The page got truncated from under us */
1027 unlock_page(page);
1028 page_cache_release(page);
1029 ext4_journal_stop(handle);
1030 goto retry_grab;
1031 }
1032 wait_on_page_writeback(page);
1033
1034 if (ext4_should_dioread_nolock(inode))
1035 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036 else
1037 ret = __block_write_begin(page, pos, len, ext4_get_block);
1038
1039 if (!ret && ext4_should_journal_data(inode)) {
1040 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041 from, to, NULL,
1042 do_journal_get_write_access);
1043 }
1044
1045 if (ret) {
1046 unlock_page(page);
1047 /*
1048 * __block_write_begin may have instantiated a few blocks
1049 * outside i_size. Trim these off again. Don't need
1050 * i_size_read because we hold i_mutex.
1051 *
1052 * Add inode to orphan list in case we crash before
1053 * truncate finishes
1054 */
1055 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056 ext4_orphan_add(handle, inode);
1057
1058 ext4_journal_stop(handle);
1059 if (pos + len > inode->i_size) {
1060 ext4_truncate_failed_write(inode);
1061 /*
1062 * If truncate failed early the inode might
1063 * still be on the orphan list; we need to
1064 * make sure the inode is removed from the
1065 * orphan list in that case.
1066 */
1067 if (inode->i_nlink)
1068 ext4_orphan_del(NULL, inode);
1069 }
1070
1071 if (ret == -ENOSPC &&
1072 ext4_should_retry_alloc(inode->i_sb, &retries))
1073 goto retry_journal;
1074 page_cache_release(page);
1075 return ret;
1076 }
1077 *pagep = page;
1078 return ret;
1079 }
1080
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084 int ret;
1085 if (!buffer_mapped(bh) || buffer_freed(bh))
1086 return 0;
1087 set_buffer_uptodate(bh);
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 clear_buffer_meta(bh);
1090 clear_buffer_prio(bh);
1091 return ret;
1092 }
1093
1094 /*
1095 * We need to pick up the new inode size which generic_commit_write gave us
1096 * `file' can be NULL - eg, when called from page_symlink().
1097 *
1098 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1099 * buffers are managed internally.
1100 */
1101 static int ext4_write_end(struct file *file,
1102 struct address_space *mapping,
1103 loff_t pos, unsigned len, unsigned copied,
1104 struct page *page, void *fsdata)
1105 {
1106 handle_t *handle = ext4_journal_current_handle();
1107 struct inode *inode = mapping->host;
1108 int ret = 0, ret2;
1109 int i_size_changed = 0;
1110
1111 trace_ext4_write_end(inode, pos, len, copied);
1112 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1113 ret = ext4_jbd2_file_inode(handle, inode);
1114 if (ret) {
1115 unlock_page(page);
1116 page_cache_release(page);
1117 goto errout;
1118 }
1119 }
1120
1121 if (ext4_has_inline_data(inode)) {
1122 ret = ext4_write_inline_data_end(inode, pos, len,
1123 copied, page);
1124 if (ret < 0)
1125 goto errout;
1126 copied = ret;
1127 } else
1128 copied = block_write_end(file, mapping, pos,
1129 len, copied, page, fsdata);
1130
1131 /*
1132 * No need to use i_size_read() here, the i_size
1133 * cannot change under us because we hole i_mutex.
1134 *
1135 * But it's important to update i_size while still holding page lock:
1136 * page writeout could otherwise come in and zero beyond i_size.
1137 */
1138 if (pos + copied > inode->i_size) {
1139 i_size_write(inode, pos + copied);
1140 i_size_changed = 1;
1141 }
1142
1143 if (pos + copied > EXT4_I(inode)->i_disksize) {
1144 /* We need to mark inode dirty even if
1145 * new_i_size is less that inode->i_size
1146 * but greater than i_disksize. (hint delalloc)
1147 */
1148 ext4_update_i_disksize(inode, (pos + copied));
1149 i_size_changed = 1;
1150 }
1151 unlock_page(page);
1152 page_cache_release(page);
1153
1154 /*
1155 * Don't mark the inode dirty under page lock. First, it unnecessarily
1156 * makes the holding time of page lock longer. Second, it forces lock
1157 * ordering of page lock and transaction start for journaling
1158 * filesystems.
1159 */
1160 if (i_size_changed)
1161 ext4_mark_inode_dirty(handle, inode);
1162
1163 if (copied < 0)
1164 ret = copied;
1165 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166 /* if we have allocated more blocks and copied
1167 * less. We will have blocks allocated outside
1168 * inode->i_size. So truncate them
1169 */
1170 ext4_orphan_add(handle, inode);
1171 errout:
1172 ret2 = ext4_journal_stop(handle);
1173 if (!ret)
1174 ret = ret2;
1175
1176 if (pos + len > inode->i_size) {
1177 ext4_truncate_failed_write(inode);
1178 /*
1179 * If truncate failed early the inode might still be
1180 * on the orphan list; we need to make sure the inode
1181 * is removed from the orphan list in that case.
1182 */
1183 if (inode->i_nlink)
1184 ext4_orphan_del(NULL, inode);
1185 }
1186
1187 return ret ? ret : copied;
1188 }
1189
1190 static int ext4_journalled_write_end(struct file *file,
1191 struct address_space *mapping,
1192 loff_t pos, unsigned len, unsigned copied,
1193 struct page *page, void *fsdata)
1194 {
1195 handle_t *handle = ext4_journal_current_handle();
1196 struct inode *inode = mapping->host;
1197 int ret = 0, ret2;
1198 int partial = 0;
1199 unsigned from, to;
1200 loff_t new_i_size;
1201
1202 trace_ext4_journalled_write_end(inode, pos, len, copied);
1203 from = pos & (PAGE_CACHE_SIZE - 1);
1204 to = from + len;
1205
1206 BUG_ON(!ext4_handle_valid(handle));
1207
1208 if (ext4_has_inline_data(inode))
1209 copied = ext4_write_inline_data_end(inode, pos, len,
1210 copied, page);
1211 else {
1212 if (copied < len) {
1213 if (!PageUptodate(page))
1214 copied = 0;
1215 page_zero_new_buffers(page, from+copied, to);
1216 }
1217
1218 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1219 to, &partial, write_end_fn);
1220 if (!partial)
1221 SetPageUptodate(page);
1222 }
1223 new_i_size = pos + copied;
1224 if (new_i_size > inode->i_size)
1225 i_size_write(inode, pos+copied);
1226 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1227 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1228 if (new_i_size > EXT4_I(inode)->i_disksize) {
1229 ext4_update_i_disksize(inode, new_i_size);
1230 ret2 = ext4_mark_inode_dirty(handle, inode);
1231 if (!ret)
1232 ret = ret2;
1233 }
1234
1235 unlock_page(page);
1236 page_cache_release(page);
1237 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1238 /* if we have allocated more blocks and copied
1239 * less. We will have blocks allocated outside
1240 * inode->i_size. So truncate them
1241 */
1242 ext4_orphan_add(handle, inode);
1243
1244 ret2 = ext4_journal_stop(handle);
1245 if (!ret)
1246 ret = ret2;
1247 if (pos + len > inode->i_size) {
1248 ext4_truncate_failed_write(inode);
1249 /*
1250 * If truncate failed early the inode might still be
1251 * on the orphan list; we need to make sure the inode
1252 * is removed from the orphan list in that case.
1253 */
1254 if (inode->i_nlink)
1255 ext4_orphan_del(NULL, inode);
1256 }
1257
1258 return ret ? ret : copied;
1259 }
1260
1261 /*
1262 * Reserve a metadata for a single block located at lblock
1263 */
1264 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1265 {
1266 int retries = 0;
1267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1268 struct ext4_inode_info *ei = EXT4_I(inode);
1269 unsigned int md_needed;
1270 ext4_lblk_t save_last_lblock;
1271 int save_len;
1272
1273 /*
1274 * recalculate the amount of metadata blocks to reserve
1275 * in order to allocate nrblocks
1276 * worse case is one extent per block
1277 */
1278 repeat:
1279 spin_lock(&ei->i_block_reservation_lock);
1280 /*
1281 * ext4_calc_metadata_amount() has side effects, which we have
1282 * to be prepared undo if we fail to claim space.
1283 */
1284 save_len = ei->i_da_metadata_calc_len;
1285 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1286 md_needed = EXT4_NUM_B2C(sbi,
1287 ext4_calc_metadata_amount(inode, lblock));
1288 trace_ext4_da_reserve_space(inode, md_needed);
1289
1290 /*
1291 * We do still charge estimated metadata to the sb though;
1292 * we cannot afford to run out of free blocks.
1293 */
1294 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1295 ei->i_da_metadata_calc_len = save_len;
1296 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1297 spin_unlock(&ei->i_block_reservation_lock);
1298 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1299 cond_resched();
1300 goto repeat;
1301 }
1302 return -ENOSPC;
1303 }
1304 ei->i_reserved_meta_blocks += md_needed;
1305 spin_unlock(&ei->i_block_reservation_lock);
1306
1307 return 0; /* success */
1308 }
1309
1310 /*
1311 * Reserve a single cluster located at lblock
1312 */
1313 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1314 {
1315 int retries = 0;
1316 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1317 struct ext4_inode_info *ei = EXT4_I(inode);
1318 unsigned int md_needed;
1319 int ret;
1320 ext4_lblk_t save_last_lblock;
1321 int save_len;
1322
1323 /*
1324 * We will charge metadata quota at writeout time; this saves
1325 * us from metadata over-estimation, though we may go over by
1326 * a small amount in the end. Here we just reserve for data.
1327 */
1328 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1329 if (ret)
1330 return ret;
1331
1332 /*
1333 * recalculate the amount of metadata blocks to reserve
1334 * in order to allocate nrblocks
1335 * worse case is one extent per block
1336 */
1337 repeat:
1338 spin_lock(&ei->i_block_reservation_lock);
1339 /*
1340 * ext4_calc_metadata_amount() has side effects, which we have
1341 * to be prepared undo if we fail to claim space.
1342 */
1343 save_len = ei->i_da_metadata_calc_len;
1344 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1345 md_needed = EXT4_NUM_B2C(sbi,
1346 ext4_calc_metadata_amount(inode, lblock));
1347 trace_ext4_da_reserve_space(inode, md_needed);
1348
1349 /*
1350 * We do still charge estimated metadata to the sb though;
1351 * we cannot afford to run out of free blocks.
1352 */
1353 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1354 ei->i_da_metadata_calc_len = save_len;
1355 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1356 spin_unlock(&ei->i_block_reservation_lock);
1357 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1358 cond_resched();
1359 goto repeat;
1360 }
1361 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1362 return -ENOSPC;
1363 }
1364 ei->i_reserved_data_blocks++;
1365 ei->i_reserved_meta_blocks += md_needed;
1366 spin_unlock(&ei->i_block_reservation_lock);
1367
1368 return 0; /* success */
1369 }
1370
1371 static void ext4_da_release_space(struct inode *inode, int to_free)
1372 {
1373 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1374 struct ext4_inode_info *ei = EXT4_I(inode);
1375
1376 if (!to_free)
1377 return; /* Nothing to release, exit */
1378
1379 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1380
1381 trace_ext4_da_release_space(inode, to_free);
1382 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1383 /*
1384 * if there aren't enough reserved blocks, then the
1385 * counter is messed up somewhere. Since this
1386 * function is called from invalidate page, it's
1387 * harmless to return without any action.
1388 */
1389 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1390 "ino %lu, to_free %d with only %d reserved "
1391 "data blocks", inode->i_ino, to_free,
1392 ei->i_reserved_data_blocks);
1393 WARN_ON(1);
1394 to_free = ei->i_reserved_data_blocks;
1395 }
1396 ei->i_reserved_data_blocks -= to_free;
1397
1398 if (ei->i_reserved_data_blocks == 0) {
1399 /*
1400 * We can release all of the reserved metadata blocks
1401 * only when we have written all of the delayed
1402 * allocation blocks.
1403 * Note that in case of bigalloc, i_reserved_meta_blocks,
1404 * i_reserved_data_blocks, etc. refer to number of clusters.
1405 */
1406 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1407 ei->i_reserved_meta_blocks);
1408 ei->i_reserved_meta_blocks = 0;
1409 ei->i_da_metadata_calc_len = 0;
1410 }
1411
1412 /* update fs dirty data blocks counter */
1413 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1414
1415 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1416
1417 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1418 }
1419
1420 static void ext4_da_page_release_reservation(struct page *page,
1421 unsigned long offset)
1422 {
1423 int to_release = 0;
1424 struct buffer_head *head, *bh;
1425 unsigned int curr_off = 0;
1426 struct inode *inode = page->mapping->host;
1427 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1428 int num_clusters;
1429 ext4_fsblk_t lblk;
1430
1431 head = page_buffers(page);
1432 bh = head;
1433 do {
1434 unsigned int next_off = curr_off + bh->b_size;
1435
1436 if ((offset <= curr_off) && (buffer_delay(bh))) {
1437 to_release++;
1438 clear_buffer_delay(bh);
1439 }
1440 curr_off = next_off;
1441 } while ((bh = bh->b_this_page) != head);
1442
1443 if (to_release) {
1444 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445 ext4_es_remove_extent(inode, lblk, to_release);
1446 }
1447
1448 /* If we have released all the blocks belonging to a cluster, then we
1449 * need to release the reserved space for that cluster. */
1450 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1451 while (num_clusters > 0) {
1452 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1453 ((num_clusters - 1) << sbi->s_cluster_bits);
1454 if (sbi->s_cluster_ratio == 1 ||
1455 !ext4_find_delalloc_cluster(inode, lblk))
1456 ext4_da_release_space(inode, 1);
1457
1458 num_clusters--;
1459 }
1460 }
1461
1462 /*
1463 * Delayed allocation stuff
1464 */
1465
1466 /*
1467 * mpage_da_submit_io - walks through extent of pages and try to write
1468 * them with writepage() call back
1469 *
1470 * @mpd->inode: inode
1471 * @mpd->first_page: first page of the extent
1472 * @mpd->next_page: page after the last page of the extent
1473 *
1474 * By the time mpage_da_submit_io() is called we expect all blocks
1475 * to be allocated. this may be wrong if allocation failed.
1476 *
1477 * As pages are already locked by write_cache_pages(), we can't use it
1478 */
1479 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1480 struct ext4_map_blocks *map)
1481 {
1482 struct pagevec pvec;
1483 unsigned long index, end;
1484 int ret = 0, err, nr_pages, i;
1485 struct inode *inode = mpd->inode;
1486 struct address_space *mapping = inode->i_mapping;
1487 loff_t size = i_size_read(inode);
1488 unsigned int len, block_start;
1489 struct buffer_head *bh, *page_bufs = NULL;
1490 sector_t pblock = 0, cur_logical = 0;
1491 struct ext4_io_submit io_submit;
1492
1493 BUG_ON(mpd->next_page <= mpd->first_page);
1494 memset(&io_submit, 0, sizeof(io_submit));
1495 /*
1496 * We need to start from the first_page to the next_page - 1
1497 * to make sure we also write the mapped dirty buffer_heads.
1498 * If we look at mpd->b_blocknr we would only be looking
1499 * at the currently mapped buffer_heads.
1500 */
1501 index = mpd->first_page;
1502 end = mpd->next_page - 1;
1503
1504 pagevec_init(&pvec, 0);
1505 while (index <= end) {
1506 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1507 if (nr_pages == 0)
1508 break;
1509 for (i = 0; i < nr_pages; i++) {
1510 int skip_page = 0;
1511 struct page *page = pvec.pages[i];
1512
1513 index = page->index;
1514 if (index > end)
1515 break;
1516
1517 if (index == size >> PAGE_CACHE_SHIFT)
1518 len = size & ~PAGE_CACHE_MASK;
1519 else
1520 len = PAGE_CACHE_SIZE;
1521 if (map) {
1522 cur_logical = index << (PAGE_CACHE_SHIFT -
1523 inode->i_blkbits);
1524 pblock = map->m_pblk + (cur_logical -
1525 map->m_lblk);
1526 }
1527 index++;
1528
1529 BUG_ON(!PageLocked(page));
1530 BUG_ON(PageWriteback(page));
1531
1532 bh = page_bufs = page_buffers(page);
1533 block_start = 0;
1534 do {
1535 if (map && (cur_logical >= map->m_lblk) &&
1536 (cur_logical <= (map->m_lblk +
1537 (map->m_len - 1)))) {
1538 if (buffer_delay(bh)) {
1539 clear_buffer_delay(bh);
1540 bh->b_blocknr = pblock;
1541 }
1542 if (buffer_unwritten(bh) ||
1543 buffer_mapped(bh))
1544 BUG_ON(bh->b_blocknr != pblock);
1545 if (map->m_flags & EXT4_MAP_UNINIT)
1546 set_buffer_uninit(bh);
1547 clear_buffer_unwritten(bh);
1548 }
1549
1550 /*
1551 * skip page if block allocation undone and
1552 * block is dirty
1553 */
1554 if (ext4_bh_delay_or_unwritten(NULL, bh))
1555 skip_page = 1;
1556 bh = bh->b_this_page;
1557 block_start += bh->b_size;
1558 cur_logical++;
1559 pblock++;
1560 } while (bh != page_bufs);
1561
1562 if (skip_page) {
1563 unlock_page(page);
1564 continue;
1565 }
1566
1567 clear_page_dirty_for_io(page);
1568 err = ext4_bio_write_page(&io_submit, page, len,
1569 mpd->wbc);
1570 if (!err)
1571 mpd->pages_written++;
1572 /*
1573 * In error case, we have to continue because
1574 * remaining pages are still locked
1575 */
1576 if (ret == 0)
1577 ret = err;
1578 }
1579 pagevec_release(&pvec);
1580 }
1581 ext4_io_submit(&io_submit);
1582 return ret;
1583 }
1584
1585 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1586 {
1587 int nr_pages, i;
1588 pgoff_t index, end;
1589 struct pagevec pvec;
1590 struct inode *inode = mpd->inode;
1591 struct address_space *mapping = inode->i_mapping;
1592 ext4_lblk_t start, last;
1593
1594 index = mpd->first_page;
1595 end = mpd->next_page - 1;
1596
1597 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1598 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1599 ext4_es_remove_extent(inode, start, last - start + 1);
1600
1601 pagevec_init(&pvec, 0);
1602 while (index <= end) {
1603 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1604 if (nr_pages == 0)
1605 break;
1606 for (i = 0; i < nr_pages; i++) {
1607 struct page *page = pvec.pages[i];
1608 if (page->index > end)
1609 break;
1610 BUG_ON(!PageLocked(page));
1611 BUG_ON(PageWriteback(page));
1612 block_invalidatepage(page, 0);
1613 ClearPageUptodate(page);
1614 unlock_page(page);
1615 }
1616 index = pvec.pages[nr_pages - 1]->index + 1;
1617 pagevec_release(&pvec);
1618 }
1619 return;
1620 }
1621
1622 static void ext4_print_free_blocks(struct inode *inode)
1623 {
1624 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1625 struct super_block *sb = inode->i_sb;
1626 struct ext4_inode_info *ei = EXT4_I(inode);
1627
1628 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1629 EXT4_C2B(EXT4_SB(inode->i_sb),
1630 ext4_count_free_clusters(sb)));
1631 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1632 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1633 (long long) EXT4_C2B(EXT4_SB(sb),
1634 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1635 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1636 (long long) EXT4_C2B(EXT4_SB(sb),
1637 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1638 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1639 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1640 ei->i_reserved_data_blocks);
1641 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1642 ei->i_reserved_meta_blocks);
1643 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1644 ei->i_allocated_meta_blocks);
1645 return;
1646 }
1647
1648 /*
1649 * mpage_da_map_and_submit - go through given space, map them
1650 * if necessary, and then submit them for I/O
1651 *
1652 * @mpd - bh describing space
1653 *
1654 * The function skips space we know is already mapped to disk blocks.
1655 *
1656 */
1657 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1658 {
1659 int err, blks, get_blocks_flags;
1660 struct ext4_map_blocks map, *mapp = NULL;
1661 sector_t next = mpd->b_blocknr;
1662 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1663 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1664 handle_t *handle = NULL;
1665
1666 /*
1667 * If the blocks are mapped already, or we couldn't accumulate
1668 * any blocks, then proceed immediately to the submission stage.
1669 */
1670 if ((mpd->b_size == 0) ||
1671 ((mpd->b_state & (1 << BH_Mapped)) &&
1672 !(mpd->b_state & (1 << BH_Delay)) &&
1673 !(mpd->b_state & (1 << BH_Unwritten))))
1674 goto submit_io;
1675
1676 handle = ext4_journal_current_handle();
1677 BUG_ON(!handle);
1678
1679 /*
1680 * Call ext4_map_blocks() to allocate any delayed allocation
1681 * blocks, or to convert an uninitialized extent to be
1682 * initialized (in the case where we have written into
1683 * one or more preallocated blocks).
1684 *
1685 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1686 * indicate that we are on the delayed allocation path. This
1687 * affects functions in many different parts of the allocation
1688 * call path. This flag exists primarily because we don't
1689 * want to change *many* call functions, so ext4_map_blocks()
1690 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1691 * inode's allocation semaphore is taken.
1692 *
1693 * If the blocks in questions were delalloc blocks, set
1694 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1695 * variables are updated after the blocks have been allocated.
1696 */
1697 map.m_lblk = next;
1698 map.m_len = max_blocks;
1699 /*
1700 * We're in delalloc path and it is possible that we're going to
1701 * need more metadata blocks than previously reserved. However
1702 * we must not fail because we're in writeback and there is
1703 * nothing we can do about it so it might result in data loss.
1704 * So use reserved blocks to allocate metadata if possible.
1705 */
1706 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1707 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1708 if (ext4_should_dioread_nolock(mpd->inode))
1709 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1710 if (mpd->b_state & (1 << BH_Delay))
1711 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1712
1713
1714 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1715 if (blks < 0) {
1716 struct super_block *sb = mpd->inode->i_sb;
1717
1718 err = blks;
1719 /*
1720 * If get block returns EAGAIN or ENOSPC and there
1721 * appears to be free blocks we will just let
1722 * mpage_da_submit_io() unlock all of the pages.
1723 */
1724 if (err == -EAGAIN)
1725 goto submit_io;
1726
1727 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1728 mpd->retval = err;
1729 goto submit_io;
1730 }
1731
1732 /*
1733 * get block failure will cause us to loop in
1734 * writepages, because a_ops->writepage won't be able
1735 * to make progress. The page will be redirtied by
1736 * writepage and writepages will again try to write
1737 * the same.
1738 */
1739 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1740 ext4_msg(sb, KERN_CRIT,
1741 "delayed block allocation failed for inode %lu "
1742 "at logical offset %llu with max blocks %zd "
1743 "with error %d", mpd->inode->i_ino,
1744 (unsigned long long) next,
1745 mpd->b_size >> mpd->inode->i_blkbits, err);
1746 ext4_msg(sb, KERN_CRIT,
1747 "This should not happen!! Data will be lost");
1748 if (err == -ENOSPC)
1749 ext4_print_free_blocks(mpd->inode);
1750 }
1751 /* invalidate all the pages */
1752 ext4_da_block_invalidatepages(mpd);
1753
1754 /* Mark this page range as having been completed */
1755 mpd->io_done = 1;
1756 return;
1757 }
1758 BUG_ON(blks == 0);
1759
1760 mapp = &map;
1761 if (map.m_flags & EXT4_MAP_NEW) {
1762 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1763 int i;
1764
1765 for (i = 0; i < map.m_len; i++)
1766 unmap_underlying_metadata(bdev, map.m_pblk + i);
1767 }
1768
1769 /*
1770 * Update on-disk size along with block allocation.
1771 */
1772 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1773 if (disksize > i_size_read(mpd->inode))
1774 disksize = i_size_read(mpd->inode);
1775 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1776 ext4_update_i_disksize(mpd->inode, disksize);
1777 err = ext4_mark_inode_dirty(handle, mpd->inode);
1778 if (err)
1779 ext4_error(mpd->inode->i_sb,
1780 "Failed to mark inode %lu dirty",
1781 mpd->inode->i_ino);
1782 }
1783
1784 submit_io:
1785 mpage_da_submit_io(mpd, mapp);
1786 mpd->io_done = 1;
1787 }
1788
1789 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1790 (1 << BH_Delay) | (1 << BH_Unwritten))
1791
1792 /*
1793 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1794 *
1795 * @mpd->lbh - extent of blocks
1796 * @logical - logical number of the block in the file
1797 * @b_state - b_state of the buffer head added
1798 *
1799 * the function is used to collect contig. blocks in same state
1800 */
1801 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1802 unsigned long b_state)
1803 {
1804 sector_t next;
1805 int blkbits = mpd->inode->i_blkbits;
1806 int nrblocks = mpd->b_size >> blkbits;
1807
1808 /*
1809 * XXX Don't go larger than mballoc is willing to allocate
1810 * This is a stopgap solution. We eventually need to fold
1811 * mpage_da_submit_io() into this function and then call
1812 * ext4_map_blocks() multiple times in a loop
1813 */
1814 if (nrblocks >= (8*1024*1024 >> blkbits))
1815 goto flush_it;
1816
1817 /* check if the reserved journal credits might overflow */
1818 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1819 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1820 /*
1821 * With non-extent format we are limited by the journal
1822 * credit available. Total credit needed to insert
1823 * nrblocks contiguous blocks is dependent on the
1824 * nrblocks. So limit nrblocks.
1825 */
1826 goto flush_it;
1827 }
1828 }
1829 /*
1830 * First block in the extent
1831 */
1832 if (mpd->b_size == 0) {
1833 mpd->b_blocknr = logical;
1834 mpd->b_size = 1 << blkbits;
1835 mpd->b_state = b_state & BH_FLAGS;
1836 return;
1837 }
1838
1839 next = mpd->b_blocknr + nrblocks;
1840 /*
1841 * Can we merge the block to our big extent?
1842 */
1843 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1844 mpd->b_size += 1 << blkbits;
1845 return;
1846 }
1847
1848 flush_it:
1849 /*
1850 * We couldn't merge the block to our extent, so we
1851 * need to flush current extent and start new one
1852 */
1853 mpage_da_map_and_submit(mpd);
1854 return;
1855 }
1856
1857 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1858 {
1859 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1860 }
1861
1862 /*
1863 * This function is grabs code from the very beginning of
1864 * ext4_map_blocks, but assumes that the caller is from delayed write
1865 * time. This function looks up the requested blocks and sets the
1866 * buffer delay bit under the protection of i_data_sem.
1867 */
1868 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1869 struct ext4_map_blocks *map,
1870 struct buffer_head *bh)
1871 {
1872 struct extent_status es;
1873 int retval;
1874 sector_t invalid_block = ~((sector_t) 0xffff);
1875 #ifdef ES_AGGRESSIVE_TEST
1876 struct ext4_map_blocks orig_map;
1877
1878 memcpy(&orig_map, map, sizeof(*map));
1879 #endif
1880
1881 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1882 invalid_block = ~0;
1883
1884 map->m_flags = 0;
1885 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1886 "logical block %lu\n", inode->i_ino, map->m_len,
1887 (unsigned long) map->m_lblk);
1888
1889 /* Lookup extent status tree firstly */
1890 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1891
1892 if (ext4_es_is_hole(&es)) {
1893 retval = 0;
1894 down_read((&EXT4_I(inode)->i_data_sem));
1895 goto add_delayed;
1896 }
1897
1898 /*
1899 * Delayed extent could be allocated by fallocate.
1900 * So we need to check it.
1901 */
1902 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1903 map_bh(bh, inode->i_sb, invalid_block);
1904 set_buffer_new(bh);
1905 set_buffer_delay(bh);
1906 return 0;
1907 }
1908
1909 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1910 retval = es.es_len - (iblock - es.es_lblk);
1911 if (retval > map->m_len)
1912 retval = map->m_len;
1913 map->m_len = retval;
1914 if (ext4_es_is_written(&es))
1915 map->m_flags |= EXT4_MAP_MAPPED;
1916 else if (ext4_es_is_unwritten(&es))
1917 map->m_flags |= EXT4_MAP_UNWRITTEN;
1918 else
1919 BUG_ON(1);
1920
1921 #ifdef ES_AGGRESSIVE_TEST
1922 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1923 #endif
1924 return retval;
1925 }
1926
1927 /*
1928 * Try to see if we can get the block without requesting a new
1929 * file system block.
1930 */
1931 down_read((&EXT4_I(inode)->i_data_sem));
1932 if (ext4_has_inline_data(inode)) {
1933 /*
1934 * We will soon create blocks for this page, and let
1935 * us pretend as if the blocks aren't allocated yet.
1936 * In case of clusters, we have to handle the work
1937 * of mapping from cluster so that the reserved space
1938 * is calculated properly.
1939 */
1940 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1941 ext4_find_delalloc_cluster(inode, map->m_lblk))
1942 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1943 retval = 0;
1944 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1945 retval = ext4_ext_map_blocks(NULL, inode, map,
1946 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1947 else
1948 retval = ext4_ind_map_blocks(NULL, inode, map,
1949 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1950
1951 add_delayed:
1952 if (retval == 0) {
1953 int ret;
1954 /*
1955 * XXX: __block_prepare_write() unmaps passed block,
1956 * is it OK?
1957 */
1958 /*
1959 * If the block was allocated from previously allocated cluster,
1960 * then we don't need to reserve it again. However we still need
1961 * to reserve metadata for every block we're going to write.
1962 */
1963 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1964 ret = ext4_da_reserve_space(inode, iblock);
1965 if (ret) {
1966 /* not enough space to reserve */
1967 retval = ret;
1968 goto out_unlock;
1969 }
1970 } else {
1971 ret = ext4_da_reserve_metadata(inode, iblock);
1972 if (ret) {
1973 /* not enough space to reserve */
1974 retval = ret;
1975 goto out_unlock;
1976 }
1977 }
1978
1979 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1980 ~0, EXTENT_STATUS_DELAYED);
1981 if (ret) {
1982 retval = ret;
1983 goto out_unlock;
1984 }
1985
1986 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1987 * and it should not appear on the bh->b_state.
1988 */
1989 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1990
1991 map_bh(bh, inode->i_sb, invalid_block);
1992 set_buffer_new(bh);
1993 set_buffer_delay(bh);
1994 } else if (retval > 0) {
1995 int ret;
1996 unsigned long long status;
1997
1998 #ifdef ES_AGGRESSIVE_TEST
1999 if (retval != map->m_len) {
2000 printk("ES len assertation failed for inode: %lu "
2001 "retval %d != map->m_len %d "
2002 "in %s (lookup)\n", inode->i_ino, retval,
2003 map->m_len, __func__);
2004 }
2005 #endif
2006
2007 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2008 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2009 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2010 map->m_pblk, status);
2011 if (ret != 0)
2012 retval = ret;
2013 }
2014
2015 out_unlock:
2016 up_read((&EXT4_I(inode)->i_data_sem));
2017
2018 return retval;
2019 }
2020
2021 /*
2022 * This is a special get_blocks_t callback which is used by
2023 * ext4_da_write_begin(). It will either return mapped block or
2024 * reserve space for a single block.
2025 *
2026 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2027 * We also have b_blocknr = -1 and b_bdev initialized properly
2028 *
2029 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2030 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2031 * initialized properly.
2032 */
2033 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2034 struct buffer_head *bh, int create)
2035 {
2036 struct ext4_map_blocks map;
2037 int ret = 0;
2038
2039 BUG_ON(create == 0);
2040 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2041
2042 map.m_lblk = iblock;
2043 map.m_len = 1;
2044
2045 /*
2046 * first, we need to know whether the block is allocated already
2047 * preallocated blocks are unmapped but should treated
2048 * the same as allocated blocks.
2049 */
2050 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2051 if (ret <= 0)
2052 return ret;
2053
2054 map_bh(bh, inode->i_sb, map.m_pblk);
2055 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2056
2057 if (buffer_unwritten(bh)) {
2058 /* A delayed write to unwritten bh should be marked
2059 * new and mapped. Mapped ensures that we don't do
2060 * get_block multiple times when we write to the same
2061 * offset and new ensures that we do proper zero out
2062 * for partial write.
2063 */
2064 set_buffer_new(bh);
2065 set_buffer_mapped(bh);
2066 }
2067 return 0;
2068 }
2069
2070 static int bget_one(handle_t *handle, struct buffer_head *bh)
2071 {
2072 get_bh(bh);
2073 return 0;
2074 }
2075
2076 static int bput_one(handle_t *handle, struct buffer_head *bh)
2077 {
2078 put_bh(bh);
2079 return 0;
2080 }
2081
2082 static int __ext4_journalled_writepage(struct page *page,
2083 unsigned int len)
2084 {
2085 struct address_space *mapping = page->mapping;
2086 struct inode *inode = mapping->host;
2087 struct buffer_head *page_bufs = NULL;
2088 handle_t *handle = NULL;
2089 int ret = 0, err = 0;
2090 int inline_data = ext4_has_inline_data(inode);
2091 struct buffer_head *inode_bh = NULL;
2092
2093 ClearPageChecked(page);
2094
2095 if (inline_data) {
2096 BUG_ON(page->index != 0);
2097 BUG_ON(len > ext4_get_max_inline_size(inode));
2098 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2099 if (inode_bh == NULL)
2100 goto out;
2101 } else {
2102 page_bufs = page_buffers(page);
2103 if (!page_bufs) {
2104 BUG();
2105 goto out;
2106 }
2107 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2108 NULL, bget_one);
2109 }
2110 /* As soon as we unlock the page, it can go away, but we have
2111 * references to buffers so we are safe */
2112 unlock_page(page);
2113
2114 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2115 ext4_writepage_trans_blocks(inode));
2116 if (IS_ERR(handle)) {
2117 ret = PTR_ERR(handle);
2118 goto out;
2119 }
2120
2121 BUG_ON(!ext4_handle_valid(handle));
2122
2123 if (inline_data) {
2124 ret = ext4_journal_get_write_access(handle, inode_bh);
2125
2126 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2127
2128 } else {
2129 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2130 do_journal_get_write_access);
2131
2132 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2133 write_end_fn);
2134 }
2135 if (ret == 0)
2136 ret = err;
2137 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2138 err = ext4_journal_stop(handle);
2139 if (!ret)
2140 ret = err;
2141
2142 if (!ext4_has_inline_data(inode))
2143 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2144 NULL, bput_one);
2145 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2146 out:
2147 brelse(inode_bh);
2148 return ret;
2149 }
2150
2151 /*
2152 * Note that we don't need to start a transaction unless we're journaling data
2153 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2154 * need to file the inode to the transaction's list in ordered mode because if
2155 * we are writing back data added by write(), the inode is already there and if
2156 * we are writing back data modified via mmap(), no one guarantees in which
2157 * transaction the data will hit the disk. In case we are journaling data, we
2158 * cannot start transaction directly because transaction start ranks above page
2159 * lock so we have to do some magic.
2160 *
2161 * This function can get called via...
2162 * - ext4_da_writepages after taking page lock (have journal handle)
2163 * - journal_submit_inode_data_buffers (no journal handle)
2164 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2165 * - grab_page_cache when doing write_begin (have journal handle)
2166 *
2167 * We don't do any block allocation in this function. If we have page with
2168 * multiple blocks we need to write those buffer_heads that are mapped. This
2169 * is important for mmaped based write. So if we do with blocksize 1K
2170 * truncate(f, 1024);
2171 * a = mmap(f, 0, 4096);
2172 * a[0] = 'a';
2173 * truncate(f, 4096);
2174 * we have in the page first buffer_head mapped via page_mkwrite call back
2175 * but other buffer_heads would be unmapped but dirty (dirty done via the
2176 * do_wp_page). So writepage should write the first block. If we modify
2177 * the mmap area beyond 1024 we will again get a page_fault and the
2178 * page_mkwrite callback will do the block allocation and mark the
2179 * buffer_heads mapped.
2180 *
2181 * We redirty the page if we have any buffer_heads that is either delay or
2182 * unwritten in the page.
2183 *
2184 * We can get recursively called as show below.
2185 *
2186 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2187 * ext4_writepage()
2188 *
2189 * But since we don't do any block allocation we should not deadlock.
2190 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2191 */
2192 static int ext4_writepage(struct page *page,
2193 struct writeback_control *wbc)
2194 {
2195 int ret = 0;
2196 loff_t size;
2197 unsigned int len;
2198 struct buffer_head *page_bufs = NULL;
2199 struct inode *inode = page->mapping->host;
2200 struct ext4_io_submit io_submit;
2201
2202 trace_ext4_writepage(page);
2203 size = i_size_read(inode);
2204 if (page->index == size >> PAGE_CACHE_SHIFT)
2205 len = size & ~PAGE_CACHE_MASK;
2206 else
2207 len = PAGE_CACHE_SIZE;
2208
2209 page_bufs = page_buffers(page);
2210 /*
2211 * We cannot do block allocation or other extent handling in this
2212 * function. If there are buffers needing that, we have to redirty
2213 * the page. But we may reach here when we do a journal commit via
2214 * journal_submit_inode_data_buffers() and in that case we must write
2215 * allocated buffers to achieve data=ordered mode guarantees.
2216 */
2217 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2218 ext4_bh_delay_or_unwritten)) {
2219 redirty_page_for_writepage(wbc, page);
2220 if (current->flags & PF_MEMALLOC) {
2221 /*
2222 * For memory cleaning there's no point in writing only
2223 * some buffers. So just bail out. Warn if we came here
2224 * from direct reclaim.
2225 */
2226 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2227 == PF_MEMALLOC);
2228 unlock_page(page);
2229 return 0;
2230 }
2231 }
2232
2233 if (PageChecked(page) && ext4_should_journal_data(inode))
2234 /*
2235 * It's mmapped pagecache. Add buffers and journal it. There
2236 * doesn't seem much point in redirtying the page here.
2237 */
2238 return __ext4_journalled_writepage(page, len);
2239
2240 memset(&io_submit, 0, sizeof(io_submit));
2241 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2242 ext4_io_submit(&io_submit);
2243 return ret;
2244 }
2245
2246 /*
2247 * This is called via ext4_da_writepages() to
2248 * calculate the total number of credits to reserve to fit
2249 * a single extent allocation into a single transaction,
2250 * ext4_da_writpeages() will loop calling this before
2251 * the block allocation.
2252 */
2253
2254 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2255 {
2256 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2257
2258 /*
2259 * With non-extent format the journal credit needed to
2260 * insert nrblocks contiguous block is dependent on
2261 * number of contiguous block. So we will limit
2262 * number of contiguous block to a sane value
2263 */
2264 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2265 (max_blocks > EXT4_MAX_TRANS_DATA))
2266 max_blocks = EXT4_MAX_TRANS_DATA;
2267
2268 return ext4_chunk_trans_blocks(inode, max_blocks);
2269 }
2270
2271 /*
2272 * write_cache_pages_da - walk the list of dirty pages of the given
2273 * address space and accumulate pages that need writing, and call
2274 * mpage_da_map_and_submit to map a single contiguous memory region
2275 * and then write them.
2276 */
2277 static int write_cache_pages_da(handle_t *handle,
2278 struct address_space *mapping,
2279 struct writeback_control *wbc,
2280 struct mpage_da_data *mpd,
2281 pgoff_t *done_index)
2282 {
2283 struct buffer_head *bh, *head;
2284 struct inode *inode = mapping->host;
2285 struct pagevec pvec;
2286 unsigned int nr_pages;
2287 sector_t logical;
2288 pgoff_t index, end;
2289 long nr_to_write = wbc->nr_to_write;
2290 int i, tag, ret = 0;
2291
2292 memset(mpd, 0, sizeof(struct mpage_da_data));
2293 mpd->wbc = wbc;
2294 mpd->inode = inode;
2295 pagevec_init(&pvec, 0);
2296 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2297 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2298
2299 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2300 tag = PAGECACHE_TAG_TOWRITE;
2301 else
2302 tag = PAGECACHE_TAG_DIRTY;
2303
2304 *done_index = index;
2305 while (index <= end) {
2306 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2307 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2308 if (nr_pages == 0)
2309 return 0;
2310
2311 for (i = 0; i < nr_pages; i++) {
2312 struct page *page = pvec.pages[i];
2313
2314 /*
2315 * At this point, the page may be truncated or
2316 * invalidated (changing page->mapping to NULL), or
2317 * even swizzled back from swapper_space to tmpfs file
2318 * mapping. However, page->index will not change
2319 * because we have a reference on the page.
2320 */
2321 if (page->index > end)
2322 goto out;
2323
2324 *done_index = page->index + 1;
2325
2326 /*
2327 * If we can't merge this page, and we have
2328 * accumulated an contiguous region, write it
2329 */
2330 if ((mpd->next_page != page->index) &&
2331 (mpd->next_page != mpd->first_page)) {
2332 mpage_da_map_and_submit(mpd);
2333 goto ret_extent_tail;
2334 }
2335
2336 lock_page(page);
2337
2338 /*
2339 * If the page is no longer dirty, or its
2340 * mapping no longer corresponds to inode we
2341 * are writing (which means it has been
2342 * truncated or invalidated), or the page is
2343 * already under writeback and we are not
2344 * doing a data integrity writeback, skip the page
2345 */
2346 if (!PageDirty(page) ||
2347 (PageWriteback(page) &&
2348 (wbc->sync_mode == WB_SYNC_NONE)) ||
2349 unlikely(page->mapping != mapping)) {
2350 unlock_page(page);
2351 continue;
2352 }
2353
2354 wait_on_page_writeback(page);
2355 BUG_ON(PageWriteback(page));
2356
2357 /*
2358 * If we have inline data and arrive here, it means that
2359 * we will soon create the block for the 1st page, so
2360 * we'd better clear the inline data here.
2361 */
2362 if (ext4_has_inline_data(inode)) {
2363 BUG_ON(ext4_test_inode_state(inode,
2364 EXT4_STATE_MAY_INLINE_DATA));
2365 ext4_destroy_inline_data(handle, inode);
2366 }
2367
2368 if (mpd->next_page != page->index)
2369 mpd->first_page = page->index;
2370 mpd->next_page = page->index + 1;
2371 logical = (sector_t) page->index <<
2372 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2373
2374 /* Add all dirty buffers to mpd */
2375 head = page_buffers(page);
2376 bh = head;
2377 do {
2378 BUG_ON(buffer_locked(bh));
2379 /*
2380 * We need to try to allocate unmapped blocks
2381 * in the same page. Otherwise we won't make
2382 * progress with the page in ext4_writepage
2383 */
2384 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2385 mpage_add_bh_to_extent(mpd, logical,
2386 bh->b_state);
2387 if (mpd->io_done)
2388 goto ret_extent_tail;
2389 } else if (buffer_dirty(bh) &&
2390 buffer_mapped(bh)) {
2391 /*
2392 * mapped dirty buffer. We need to
2393 * update the b_state because we look
2394 * at b_state in mpage_da_map_blocks.
2395 * We don't update b_size because if we
2396 * find an unmapped buffer_head later
2397 * we need to use the b_state flag of
2398 * that buffer_head.
2399 */
2400 if (mpd->b_size == 0)
2401 mpd->b_state =
2402 bh->b_state & BH_FLAGS;
2403 }
2404 logical++;
2405 } while ((bh = bh->b_this_page) != head);
2406
2407 if (nr_to_write > 0) {
2408 nr_to_write--;
2409 if (nr_to_write == 0 &&
2410 wbc->sync_mode == WB_SYNC_NONE)
2411 /*
2412 * We stop writing back only if we are
2413 * not doing integrity sync. In case of
2414 * integrity sync we have to keep going
2415 * because someone may be concurrently
2416 * dirtying pages, and we might have
2417 * synced a lot of newly appeared dirty
2418 * pages, but have not synced all of the
2419 * old dirty pages.
2420 */
2421 goto out;
2422 }
2423 }
2424 pagevec_release(&pvec);
2425 cond_resched();
2426 }
2427 return 0;
2428 ret_extent_tail:
2429 ret = MPAGE_DA_EXTENT_TAIL;
2430 out:
2431 pagevec_release(&pvec);
2432 cond_resched();
2433 return ret;
2434 }
2435
2436
2437 static int ext4_da_writepages(struct address_space *mapping,
2438 struct writeback_control *wbc)
2439 {
2440 pgoff_t index;
2441 int range_whole = 0;
2442 handle_t *handle = NULL;
2443 struct mpage_da_data mpd;
2444 struct inode *inode = mapping->host;
2445 int pages_written = 0;
2446 unsigned int max_pages;
2447 int range_cyclic, cycled = 1, io_done = 0;
2448 int needed_blocks, ret = 0;
2449 long desired_nr_to_write, nr_to_writebump = 0;
2450 loff_t range_start = wbc->range_start;
2451 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2452 pgoff_t done_index = 0;
2453 pgoff_t end;
2454 struct blk_plug plug;
2455
2456 trace_ext4_da_writepages(inode, wbc);
2457
2458 /*
2459 * No pages to write? This is mainly a kludge to avoid starting
2460 * a transaction for special inodes like journal inode on last iput()
2461 * because that could violate lock ordering on umount
2462 */
2463 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2464 return 0;
2465
2466 /*
2467 * If the filesystem has aborted, it is read-only, so return
2468 * right away instead of dumping stack traces later on that
2469 * will obscure the real source of the problem. We test
2470 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2471 * the latter could be true if the filesystem is mounted
2472 * read-only, and in that case, ext4_da_writepages should
2473 * *never* be called, so if that ever happens, we would want
2474 * the stack trace.
2475 */
2476 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2477 return -EROFS;
2478
2479 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2480 range_whole = 1;
2481
2482 range_cyclic = wbc->range_cyclic;
2483 if (wbc->range_cyclic) {
2484 index = mapping->writeback_index;
2485 if (index)
2486 cycled = 0;
2487 wbc->range_start = index << PAGE_CACHE_SHIFT;
2488 wbc->range_end = LLONG_MAX;
2489 wbc->range_cyclic = 0;
2490 end = -1;
2491 } else {
2492 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2493 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2494 }
2495
2496 /*
2497 * This works around two forms of stupidity. The first is in
2498 * the writeback code, which caps the maximum number of pages
2499 * written to be 1024 pages. This is wrong on multiple
2500 * levels; different architectues have a different page size,
2501 * which changes the maximum amount of data which gets
2502 * written. Secondly, 4 megabytes is way too small. XFS
2503 * forces this value to be 16 megabytes by multiplying
2504 * nr_to_write parameter by four, and then relies on its
2505 * allocator to allocate larger extents to make them
2506 * contiguous. Unfortunately this brings us to the second
2507 * stupidity, which is that ext4's mballoc code only allocates
2508 * at most 2048 blocks. So we force contiguous writes up to
2509 * the number of dirty blocks in the inode, or
2510 * sbi->max_writeback_mb_bump whichever is smaller.
2511 */
2512 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2513 if (!range_cyclic && range_whole) {
2514 if (wbc->nr_to_write == LONG_MAX)
2515 desired_nr_to_write = wbc->nr_to_write;
2516 else
2517 desired_nr_to_write = wbc->nr_to_write * 8;
2518 } else
2519 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2520 max_pages);
2521 if (desired_nr_to_write > max_pages)
2522 desired_nr_to_write = max_pages;
2523
2524 if (wbc->nr_to_write < desired_nr_to_write) {
2525 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2526 wbc->nr_to_write = desired_nr_to_write;
2527 }
2528
2529 retry:
2530 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2531 tag_pages_for_writeback(mapping, index, end);
2532
2533 blk_start_plug(&plug);
2534 while (!ret && wbc->nr_to_write > 0) {
2535
2536 /*
2537 * we insert one extent at a time. So we need
2538 * credit needed for single extent allocation.
2539 * journalled mode is currently not supported
2540 * by delalloc
2541 */
2542 BUG_ON(ext4_should_journal_data(inode));
2543 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2544
2545 /* start a new transaction*/
2546 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2547 needed_blocks);
2548 if (IS_ERR(handle)) {
2549 ret = PTR_ERR(handle);
2550 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2551 "%ld pages, ino %lu; err %d", __func__,
2552 wbc->nr_to_write, inode->i_ino, ret);
2553 blk_finish_plug(&plug);
2554 goto out_writepages;
2555 }
2556
2557 /*
2558 * Now call write_cache_pages_da() to find the next
2559 * contiguous region of logical blocks that need
2560 * blocks to be allocated by ext4 and submit them.
2561 */
2562 ret = write_cache_pages_da(handle, mapping,
2563 wbc, &mpd, &done_index);
2564 /*
2565 * If we have a contiguous extent of pages and we
2566 * haven't done the I/O yet, map the blocks and submit
2567 * them for I/O.
2568 */
2569 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2570 mpage_da_map_and_submit(&mpd);
2571 ret = MPAGE_DA_EXTENT_TAIL;
2572 }
2573 trace_ext4_da_write_pages(inode, &mpd);
2574 wbc->nr_to_write -= mpd.pages_written;
2575
2576 ext4_journal_stop(handle);
2577
2578 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2579 /* commit the transaction which would
2580 * free blocks released in the transaction
2581 * and try again
2582 */
2583 jbd2_journal_force_commit_nested(sbi->s_journal);
2584 ret = 0;
2585 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2586 /*
2587 * Got one extent now try with rest of the pages.
2588 * If mpd.retval is set -EIO, journal is aborted.
2589 * So we don't need to write any more.
2590 */
2591 pages_written += mpd.pages_written;
2592 ret = mpd.retval;
2593 io_done = 1;
2594 } else if (wbc->nr_to_write)
2595 /*
2596 * There is no more writeout needed
2597 * or we requested for a noblocking writeout
2598 * and we found the device congested
2599 */
2600 break;
2601 }
2602 blk_finish_plug(&plug);
2603 if (!io_done && !cycled) {
2604 cycled = 1;
2605 index = 0;
2606 wbc->range_start = index << PAGE_CACHE_SHIFT;
2607 wbc->range_end = mapping->writeback_index - 1;
2608 goto retry;
2609 }
2610
2611 /* Update index */
2612 wbc->range_cyclic = range_cyclic;
2613 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2614 /*
2615 * set the writeback_index so that range_cyclic
2616 * mode will write it back later
2617 */
2618 mapping->writeback_index = done_index;
2619
2620 out_writepages:
2621 wbc->nr_to_write -= nr_to_writebump;
2622 wbc->range_start = range_start;
2623 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2624 return ret;
2625 }
2626
2627 static int ext4_nonda_switch(struct super_block *sb)
2628 {
2629 s64 free_clusters, dirty_clusters;
2630 struct ext4_sb_info *sbi = EXT4_SB(sb);
2631
2632 /*
2633 * switch to non delalloc mode if we are running low
2634 * on free block. The free block accounting via percpu
2635 * counters can get slightly wrong with percpu_counter_batch getting
2636 * accumulated on each CPU without updating global counters
2637 * Delalloc need an accurate free block accounting. So switch
2638 * to non delalloc when we are near to error range.
2639 */
2640 free_clusters =
2641 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2642 dirty_clusters =
2643 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2644 /*
2645 * Start pushing delalloc when 1/2 of free blocks are dirty.
2646 */
2647 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2648 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2649
2650 if (2 * free_clusters < 3 * dirty_clusters ||
2651 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2652 /*
2653 * free block count is less than 150% of dirty blocks
2654 * or free blocks is less than watermark
2655 */
2656 return 1;
2657 }
2658 return 0;
2659 }
2660
2661 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2662 loff_t pos, unsigned len, unsigned flags,
2663 struct page **pagep, void **fsdata)
2664 {
2665 int ret, retries = 0;
2666 struct page *page;
2667 pgoff_t index;
2668 struct inode *inode = mapping->host;
2669 handle_t *handle;
2670
2671 index = pos >> PAGE_CACHE_SHIFT;
2672
2673 if (ext4_nonda_switch(inode->i_sb)) {
2674 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2675 return ext4_write_begin(file, mapping, pos,
2676 len, flags, pagep, fsdata);
2677 }
2678 *fsdata = (void *)0;
2679 trace_ext4_da_write_begin(inode, pos, len, flags);
2680
2681 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2682 ret = ext4_da_write_inline_data_begin(mapping, inode,
2683 pos, len, flags,
2684 pagep, fsdata);
2685 if (ret < 0)
2686 return ret;
2687 if (ret == 1)
2688 return 0;
2689 }
2690
2691 /*
2692 * grab_cache_page_write_begin() can take a long time if the
2693 * system is thrashing due to memory pressure, or if the page
2694 * is being written back. So grab it first before we start
2695 * the transaction handle. This also allows us to allocate
2696 * the page (if needed) without using GFP_NOFS.
2697 */
2698 retry_grab:
2699 page = grab_cache_page_write_begin(mapping, index, flags);
2700 if (!page)
2701 return -ENOMEM;
2702 unlock_page(page);
2703
2704 /*
2705 * With delayed allocation, we don't log the i_disksize update
2706 * if there is delayed block allocation. But we still need
2707 * to journalling the i_disksize update if writes to the end
2708 * of file which has an already mapped buffer.
2709 */
2710 retry_journal:
2711 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2712 if (IS_ERR(handle)) {
2713 page_cache_release(page);
2714 return PTR_ERR(handle);
2715 }
2716
2717 lock_page(page);
2718 if (page->mapping != mapping) {
2719 /* The page got truncated from under us */
2720 unlock_page(page);
2721 page_cache_release(page);
2722 ext4_journal_stop(handle);
2723 goto retry_grab;
2724 }
2725 /* In case writeback began while the page was unlocked */
2726 wait_on_page_writeback(page);
2727
2728 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2729 if (ret < 0) {
2730 unlock_page(page);
2731 ext4_journal_stop(handle);
2732 /*
2733 * block_write_begin may have instantiated a few blocks
2734 * outside i_size. Trim these off again. Don't need
2735 * i_size_read because we hold i_mutex.
2736 */
2737 if (pos + len > inode->i_size)
2738 ext4_truncate_failed_write(inode);
2739
2740 if (ret == -ENOSPC &&
2741 ext4_should_retry_alloc(inode->i_sb, &retries))
2742 goto retry_journal;
2743
2744 page_cache_release(page);
2745 return ret;
2746 }
2747
2748 *pagep = page;
2749 return ret;
2750 }
2751
2752 /*
2753 * Check if we should update i_disksize
2754 * when write to the end of file but not require block allocation
2755 */
2756 static int ext4_da_should_update_i_disksize(struct page *page,
2757 unsigned long offset)
2758 {
2759 struct buffer_head *bh;
2760 struct inode *inode = page->mapping->host;
2761 unsigned int idx;
2762 int i;
2763
2764 bh = page_buffers(page);
2765 idx = offset >> inode->i_blkbits;
2766
2767 for (i = 0; i < idx; i++)
2768 bh = bh->b_this_page;
2769
2770 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2771 return 0;
2772 return 1;
2773 }
2774
2775 static int ext4_da_write_end(struct file *file,
2776 struct address_space *mapping,
2777 loff_t pos, unsigned len, unsigned copied,
2778 struct page *page, void *fsdata)
2779 {
2780 struct inode *inode = mapping->host;
2781 int ret = 0, ret2;
2782 handle_t *handle = ext4_journal_current_handle();
2783 loff_t new_i_size;
2784 unsigned long start, end;
2785 int write_mode = (int)(unsigned long)fsdata;
2786
2787 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2788 return ext4_write_end(file, mapping, pos,
2789 len, copied, page, fsdata);
2790
2791 trace_ext4_da_write_end(inode, pos, len, copied);
2792 start = pos & (PAGE_CACHE_SIZE - 1);
2793 end = start + copied - 1;
2794
2795 /*
2796 * generic_write_end() will run mark_inode_dirty() if i_size
2797 * changes. So let's piggyback the i_disksize mark_inode_dirty
2798 * into that.
2799 */
2800 new_i_size = pos + copied;
2801 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2802 if (ext4_has_inline_data(inode) ||
2803 ext4_da_should_update_i_disksize(page, end)) {
2804 down_write(&EXT4_I(inode)->i_data_sem);
2805 if (new_i_size > EXT4_I(inode)->i_disksize)
2806 EXT4_I(inode)->i_disksize = new_i_size;
2807 up_write(&EXT4_I(inode)->i_data_sem);
2808 /* We need to mark inode dirty even if
2809 * new_i_size is less that inode->i_size
2810 * bu greater than i_disksize.(hint delalloc)
2811 */
2812 ext4_mark_inode_dirty(handle, inode);
2813 }
2814 }
2815
2816 if (write_mode != CONVERT_INLINE_DATA &&
2817 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2818 ext4_has_inline_data(inode))
2819 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2820 page);
2821 else
2822 ret2 = generic_write_end(file, mapping, pos, len, copied,
2823 page, fsdata);
2824
2825 copied = ret2;
2826 if (ret2 < 0)
2827 ret = ret2;
2828 ret2 = ext4_journal_stop(handle);
2829 if (!ret)
2830 ret = ret2;
2831
2832 return ret ? ret : copied;
2833 }
2834
2835 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2836 {
2837 /*
2838 * Drop reserved blocks
2839 */
2840 BUG_ON(!PageLocked(page));
2841 if (!page_has_buffers(page))
2842 goto out;
2843
2844 ext4_da_page_release_reservation(page, offset);
2845
2846 out:
2847 ext4_invalidatepage(page, offset);
2848
2849 return;
2850 }
2851
2852 /*
2853 * Force all delayed allocation blocks to be allocated for a given inode.
2854 */
2855 int ext4_alloc_da_blocks(struct inode *inode)
2856 {
2857 trace_ext4_alloc_da_blocks(inode);
2858
2859 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2860 !EXT4_I(inode)->i_reserved_meta_blocks)
2861 return 0;
2862
2863 /*
2864 * We do something simple for now. The filemap_flush() will
2865 * also start triggering a write of the data blocks, which is
2866 * not strictly speaking necessary (and for users of
2867 * laptop_mode, not even desirable). However, to do otherwise
2868 * would require replicating code paths in:
2869 *
2870 * ext4_da_writepages() ->
2871 * write_cache_pages() ---> (via passed in callback function)
2872 * __mpage_da_writepage() -->
2873 * mpage_add_bh_to_extent()
2874 * mpage_da_map_blocks()
2875 *
2876 * The problem is that write_cache_pages(), located in
2877 * mm/page-writeback.c, marks pages clean in preparation for
2878 * doing I/O, which is not desirable if we're not planning on
2879 * doing I/O at all.
2880 *
2881 * We could call write_cache_pages(), and then redirty all of
2882 * the pages by calling redirty_page_for_writepage() but that
2883 * would be ugly in the extreme. So instead we would need to
2884 * replicate parts of the code in the above functions,
2885 * simplifying them because we wouldn't actually intend to
2886 * write out the pages, but rather only collect contiguous
2887 * logical block extents, call the multi-block allocator, and
2888 * then update the buffer heads with the block allocations.
2889 *
2890 * For now, though, we'll cheat by calling filemap_flush(),
2891 * which will map the blocks, and start the I/O, but not
2892 * actually wait for the I/O to complete.
2893 */
2894 return filemap_flush(inode->i_mapping);
2895 }
2896
2897 /*
2898 * bmap() is special. It gets used by applications such as lilo and by
2899 * the swapper to find the on-disk block of a specific piece of data.
2900 *
2901 * Naturally, this is dangerous if the block concerned is still in the
2902 * journal. If somebody makes a swapfile on an ext4 data-journaling
2903 * filesystem and enables swap, then they may get a nasty shock when the
2904 * data getting swapped to that swapfile suddenly gets overwritten by
2905 * the original zero's written out previously to the journal and
2906 * awaiting writeback in the kernel's buffer cache.
2907 *
2908 * So, if we see any bmap calls here on a modified, data-journaled file,
2909 * take extra steps to flush any blocks which might be in the cache.
2910 */
2911 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2912 {
2913 struct inode *inode = mapping->host;
2914 journal_t *journal;
2915 int err;
2916
2917 /*
2918 * We can get here for an inline file via the FIBMAP ioctl
2919 */
2920 if (ext4_has_inline_data(inode))
2921 return 0;
2922
2923 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2924 test_opt(inode->i_sb, DELALLOC)) {
2925 /*
2926 * With delalloc we want to sync the file
2927 * so that we can make sure we allocate
2928 * blocks for file
2929 */
2930 filemap_write_and_wait(mapping);
2931 }
2932
2933 if (EXT4_JOURNAL(inode) &&
2934 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2935 /*
2936 * This is a REALLY heavyweight approach, but the use of
2937 * bmap on dirty files is expected to be extremely rare:
2938 * only if we run lilo or swapon on a freshly made file
2939 * do we expect this to happen.
2940 *
2941 * (bmap requires CAP_SYS_RAWIO so this does not
2942 * represent an unprivileged user DOS attack --- we'd be
2943 * in trouble if mortal users could trigger this path at
2944 * will.)
2945 *
2946 * NB. EXT4_STATE_JDATA is not set on files other than
2947 * regular files. If somebody wants to bmap a directory
2948 * or symlink and gets confused because the buffer
2949 * hasn't yet been flushed to disk, they deserve
2950 * everything they get.
2951 */
2952
2953 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2954 journal = EXT4_JOURNAL(inode);
2955 jbd2_journal_lock_updates(journal);
2956 err = jbd2_journal_flush(journal);
2957 jbd2_journal_unlock_updates(journal);
2958
2959 if (err)
2960 return 0;
2961 }
2962
2963 return generic_block_bmap(mapping, block, ext4_get_block);
2964 }
2965
2966 static int ext4_readpage(struct file *file, struct page *page)
2967 {
2968 int ret = -EAGAIN;
2969 struct inode *inode = page->mapping->host;
2970
2971 trace_ext4_readpage(page);
2972
2973 if (ext4_has_inline_data(inode))
2974 ret = ext4_readpage_inline(inode, page);
2975
2976 if (ret == -EAGAIN)
2977 return mpage_readpage(page, ext4_get_block);
2978
2979 return ret;
2980 }
2981
2982 static int
2983 ext4_readpages(struct file *file, struct address_space *mapping,
2984 struct list_head *pages, unsigned nr_pages)
2985 {
2986 struct inode *inode = mapping->host;
2987
2988 /* If the file has inline data, no need to do readpages. */
2989 if (ext4_has_inline_data(inode))
2990 return 0;
2991
2992 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2993 }
2994
2995 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2996 {
2997 trace_ext4_invalidatepage(page, offset);
2998
2999 /* No journalling happens on data buffers when this function is used */
3000 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3001
3002 block_invalidatepage(page, offset);
3003 }
3004
3005 static int __ext4_journalled_invalidatepage(struct page *page,
3006 unsigned long offset)
3007 {
3008 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3009
3010 trace_ext4_journalled_invalidatepage(page, offset);
3011
3012 /*
3013 * If it's a full truncate we just forget about the pending dirtying
3014 */
3015 if (offset == 0)
3016 ClearPageChecked(page);
3017
3018 return jbd2_journal_invalidatepage(journal, page, offset);
3019 }
3020
3021 /* Wrapper for aops... */
3022 static void ext4_journalled_invalidatepage(struct page *page,
3023 unsigned long offset)
3024 {
3025 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3026 }
3027
3028 static int ext4_releasepage(struct page *page, gfp_t wait)
3029 {
3030 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3031
3032 trace_ext4_releasepage(page);
3033
3034 /* Page has dirty journalled data -> cannot release */
3035 if (PageChecked(page))
3036 return 0;
3037 if (journal)
3038 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3039 else
3040 return try_to_free_buffers(page);
3041 }
3042
3043 /*
3044 * ext4_get_block used when preparing for a DIO write or buffer write.
3045 * We allocate an uinitialized extent if blocks haven't been allocated.
3046 * The extent will be converted to initialized after the IO is complete.
3047 */
3048 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3049 struct buffer_head *bh_result, int create)
3050 {
3051 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3052 inode->i_ino, create);
3053 return _ext4_get_block(inode, iblock, bh_result,
3054 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3055 }
3056
3057 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3058 struct buffer_head *bh_result, int create)
3059 {
3060 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3061 inode->i_ino, create);
3062 return _ext4_get_block(inode, iblock, bh_result,
3063 EXT4_GET_BLOCKS_NO_LOCK);
3064 }
3065
3066 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3067 ssize_t size, void *private, int ret,
3068 bool is_async)
3069 {
3070 struct inode *inode = file_inode(iocb->ki_filp);
3071 ext4_io_end_t *io_end = iocb->private;
3072
3073 /* if not async direct IO or dio with 0 bytes write, just return */
3074 if (!io_end || !size)
3075 goto out;
3076
3077 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3078 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3079 iocb->private, io_end->inode->i_ino, iocb, offset,
3080 size);
3081
3082 iocb->private = NULL;
3083
3084 /* if not aio dio with unwritten extents, just free io and return */
3085 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3086 ext4_free_io_end(io_end);
3087 out:
3088 inode_dio_done(inode);
3089 if (is_async)
3090 aio_complete(iocb, ret, 0);
3091 return;
3092 }
3093
3094 io_end->offset = offset;
3095 io_end->size = size;
3096 if (is_async) {
3097 io_end->iocb = iocb;
3098 io_end->result = ret;
3099 }
3100
3101 ext4_add_complete_io(io_end);
3102 }
3103
3104 /*
3105 * For ext4 extent files, ext4 will do direct-io write to holes,
3106 * preallocated extents, and those write extend the file, no need to
3107 * fall back to buffered IO.
3108 *
3109 * For holes, we fallocate those blocks, mark them as uninitialized
3110 * If those blocks were preallocated, we mark sure they are split, but
3111 * still keep the range to write as uninitialized.
3112 *
3113 * The unwritten extents will be converted to written when DIO is completed.
3114 * For async direct IO, since the IO may still pending when return, we
3115 * set up an end_io call back function, which will do the conversion
3116 * when async direct IO completed.
3117 *
3118 * If the O_DIRECT write will extend the file then add this inode to the
3119 * orphan list. So recovery will truncate it back to the original size
3120 * if the machine crashes during the write.
3121 *
3122 */
3123 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3124 const struct iovec *iov, loff_t offset,
3125 unsigned long nr_segs)
3126 {
3127 struct file *file = iocb->ki_filp;
3128 struct inode *inode = file->f_mapping->host;
3129 ssize_t ret;
3130 size_t count = iov_length(iov, nr_segs);
3131 int overwrite = 0;
3132 get_block_t *get_block_func = NULL;
3133 int dio_flags = 0;
3134 loff_t final_size = offset + count;
3135
3136 /* Use the old path for reads and writes beyond i_size. */
3137 if (rw != WRITE || final_size > inode->i_size)
3138 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3139
3140 BUG_ON(iocb->private == NULL);
3141
3142 /* If we do a overwrite dio, i_mutex locking can be released */
3143 overwrite = *((int *)iocb->private);
3144
3145 if (overwrite) {
3146 atomic_inc(&inode->i_dio_count);
3147 down_read(&EXT4_I(inode)->i_data_sem);
3148 mutex_unlock(&inode->i_mutex);
3149 }
3150
3151 /*
3152 * We could direct write to holes and fallocate.
3153 *
3154 * Allocated blocks to fill the hole are marked as
3155 * uninitialized to prevent parallel buffered read to expose
3156 * the stale data before DIO complete the data IO.
3157 *
3158 * As to previously fallocated extents, ext4 get_block will
3159 * just simply mark the buffer mapped but still keep the
3160 * extents uninitialized.
3161 *
3162 * For non AIO case, we will convert those unwritten extents
3163 * to written after return back from blockdev_direct_IO.
3164 *
3165 * For async DIO, the conversion needs to be deferred when the
3166 * IO is completed. The ext4 end_io callback function will be
3167 * called to take care of the conversion work. Here for async
3168 * case, we allocate an io_end structure to hook to the iocb.
3169 */
3170 iocb->private = NULL;
3171 ext4_inode_aio_set(inode, NULL);
3172 if (!is_sync_kiocb(iocb)) {
3173 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3174 if (!io_end) {
3175 ret = -ENOMEM;
3176 goto retake_lock;
3177 }
3178 io_end->flag |= EXT4_IO_END_DIRECT;
3179 iocb->private = io_end;
3180 /*
3181 * we save the io structure for current async direct
3182 * IO, so that later ext4_map_blocks() could flag the
3183 * io structure whether there is a unwritten extents
3184 * needs to be converted when IO is completed.
3185 */
3186 ext4_inode_aio_set(inode, io_end);
3187 }
3188
3189 if (overwrite) {
3190 get_block_func = ext4_get_block_write_nolock;
3191 } else {
3192 get_block_func = ext4_get_block_write;
3193 dio_flags = DIO_LOCKING;
3194 }
3195 ret = __blockdev_direct_IO(rw, iocb, inode,
3196 inode->i_sb->s_bdev, iov,
3197 offset, nr_segs,
3198 get_block_func,
3199 ext4_end_io_dio,
3200 NULL,
3201 dio_flags);
3202
3203 if (iocb->private)
3204 ext4_inode_aio_set(inode, NULL);
3205 /*
3206 * The io_end structure takes a reference to the inode, that
3207 * structure needs to be destroyed and the reference to the
3208 * inode need to be dropped, when IO is complete, even with 0
3209 * byte write, or failed.
3210 *
3211 * In the successful AIO DIO case, the io_end structure will
3212 * be destroyed and the reference to the inode will be dropped
3213 * after the end_io call back function is called.
3214 *
3215 * In the case there is 0 byte write, or error case, since VFS
3216 * direct IO won't invoke the end_io call back function, we
3217 * need to free the end_io structure here.
3218 */
3219 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3220 ext4_free_io_end(iocb->private);
3221 iocb->private = NULL;
3222 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3223 EXT4_STATE_DIO_UNWRITTEN)) {
3224 int err;
3225 /*
3226 * for non AIO case, since the IO is already
3227 * completed, we could do the conversion right here
3228 */
3229 err = ext4_convert_unwritten_extents(inode,
3230 offset, ret);
3231 if (err < 0)
3232 ret = err;
3233 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3234 }
3235
3236 retake_lock:
3237 /* take i_mutex locking again if we do a ovewrite dio */
3238 if (overwrite) {
3239 inode_dio_done(inode);
3240 up_read(&EXT4_I(inode)->i_data_sem);
3241 mutex_lock(&inode->i_mutex);
3242 }
3243
3244 return ret;
3245 }
3246
3247 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3248 const struct iovec *iov, loff_t offset,
3249 unsigned long nr_segs)
3250 {
3251 struct file *file = iocb->ki_filp;
3252 struct inode *inode = file->f_mapping->host;
3253 ssize_t ret;
3254
3255 /*
3256 * If we are doing data journalling we don't support O_DIRECT
3257 */
3258 if (ext4_should_journal_data(inode))
3259 return 0;
3260
3261 /* Let buffer I/O handle the inline data case. */
3262 if (ext4_has_inline_data(inode))
3263 return 0;
3264
3265 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3266 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3267 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3268 else
3269 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3270 trace_ext4_direct_IO_exit(inode, offset,
3271 iov_length(iov, nr_segs), rw, ret);
3272 return ret;
3273 }
3274
3275 /*
3276 * Pages can be marked dirty completely asynchronously from ext4's journalling
3277 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3278 * much here because ->set_page_dirty is called under VFS locks. The page is
3279 * not necessarily locked.
3280 *
3281 * We cannot just dirty the page and leave attached buffers clean, because the
3282 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3283 * or jbddirty because all the journalling code will explode.
3284 *
3285 * So what we do is to mark the page "pending dirty" and next time writepage
3286 * is called, propagate that into the buffers appropriately.
3287 */
3288 static int ext4_journalled_set_page_dirty(struct page *page)
3289 {
3290 SetPageChecked(page);
3291 return __set_page_dirty_nobuffers(page);
3292 }
3293
3294 static const struct address_space_operations ext4_aops = {
3295 .readpage = ext4_readpage,
3296 .readpages = ext4_readpages,
3297 .writepage = ext4_writepage,
3298 .write_begin = ext4_write_begin,
3299 .write_end = ext4_write_end,
3300 .bmap = ext4_bmap,
3301 .invalidatepage = ext4_invalidatepage,
3302 .releasepage = ext4_releasepage,
3303 .direct_IO = ext4_direct_IO,
3304 .migratepage = buffer_migrate_page,
3305 .is_partially_uptodate = block_is_partially_uptodate,
3306 .error_remove_page = generic_error_remove_page,
3307 };
3308
3309 static const struct address_space_operations ext4_journalled_aops = {
3310 .readpage = ext4_readpage,
3311 .readpages = ext4_readpages,
3312 .writepage = ext4_writepage,
3313 .write_begin = ext4_write_begin,
3314 .write_end = ext4_journalled_write_end,
3315 .set_page_dirty = ext4_journalled_set_page_dirty,
3316 .bmap = ext4_bmap,
3317 .invalidatepage = ext4_journalled_invalidatepage,
3318 .releasepage = ext4_releasepage,
3319 .direct_IO = ext4_direct_IO,
3320 .is_partially_uptodate = block_is_partially_uptodate,
3321 .error_remove_page = generic_error_remove_page,
3322 };
3323
3324 static const struct address_space_operations ext4_da_aops = {
3325 .readpage = ext4_readpage,
3326 .readpages = ext4_readpages,
3327 .writepage = ext4_writepage,
3328 .writepages = ext4_da_writepages,
3329 .write_begin = ext4_da_write_begin,
3330 .write_end = ext4_da_write_end,
3331 .bmap = ext4_bmap,
3332 .invalidatepage = ext4_da_invalidatepage,
3333 .releasepage = ext4_releasepage,
3334 .direct_IO = ext4_direct_IO,
3335 .migratepage = buffer_migrate_page,
3336 .is_partially_uptodate = block_is_partially_uptodate,
3337 .error_remove_page = generic_error_remove_page,
3338 };
3339
3340 void ext4_set_aops(struct inode *inode)
3341 {
3342 switch (ext4_inode_journal_mode(inode)) {
3343 case EXT4_INODE_ORDERED_DATA_MODE:
3344 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3345 break;
3346 case EXT4_INODE_WRITEBACK_DATA_MODE:
3347 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3348 break;
3349 case EXT4_INODE_JOURNAL_DATA_MODE:
3350 inode->i_mapping->a_ops = &ext4_journalled_aops;
3351 return;
3352 default:
3353 BUG();
3354 }
3355 if (test_opt(inode->i_sb, DELALLOC))
3356 inode->i_mapping->a_ops = &ext4_da_aops;
3357 else
3358 inode->i_mapping->a_ops = &ext4_aops;
3359 }
3360
3361
3362 /*
3363 * ext4_discard_partial_page_buffers()
3364 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3365 * This function finds and locks the page containing the offset
3366 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3367 * Calling functions that already have the page locked should call
3368 * ext4_discard_partial_page_buffers_no_lock directly.
3369 */
3370 int ext4_discard_partial_page_buffers(handle_t *handle,
3371 struct address_space *mapping, loff_t from,
3372 loff_t length, int flags)
3373 {
3374 struct inode *inode = mapping->host;
3375 struct page *page;
3376 int err = 0;
3377
3378 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3379 mapping_gfp_mask(mapping) & ~__GFP_FS);
3380 if (!page)
3381 return -ENOMEM;
3382
3383 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3384 from, length, flags);
3385
3386 unlock_page(page);
3387 page_cache_release(page);
3388 return err;
3389 }
3390
3391 /*
3392 * ext4_discard_partial_page_buffers_no_lock()
3393 * Zeros a page range of length 'length' starting from offset 'from'.
3394 * Buffer heads that correspond to the block aligned regions of the
3395 * zeroed range will be unmapped. Unblock aligned regions
3396 * will have the corresponding buffer head mapped if needed so that
3397 * that region of the page can be updated with the partial zero out.
3398 *
3399 * This function assumes that the page has already been locked. The
3400 * The range to be discarded must be contained with in the given page.
3401 * If the specified range exceeds the end of the page it will be shortened
3402 * to the end of the page that corresponds to 'from'. This function is
3403 * appropriate for updating a page and it buffer heads to be unmapped and
3404 * zeroed for blocks that have been either released, or are going to be
3405 * released.
3406 *
3407 * handle: The journal handle
3408 * inode: The files inode
3409 * page: A locked page that contains the offset "from"
3410 * from: The starting byte offset (from the beginning of the file)
3411 * to begin discarding
3412 * len: The length of bytes to discard
3413 * flags: Optional flags that may be used:
3414 *
3415 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3416 * Only zero the regions of the page whose buffer heads
3417 * have already been unmapped. This flag is appropriate
3418 * for updating the contents of a page whose blocks may
3419 * have already been released, and we only want to zero
3420 * out the regions that correspond to those released blocks.
3421 *
3422 * Returns zero on success or negative on failure.
3423 */
3424 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3425 struct inode *inode, struct page *page, loff_t from,
3426 loff_t length, int flags)
3427 {
3428 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3429 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3430 unsigned int blocksize, max, pos;
3431 ext4_lblk_t iblock;
3432 struct buffer_head *bh;
3433 int err = 0;
3434
3435 blocksize = inode->i_sb->s_blocksize;
3436 max = PAGE_CACHE_SIZE - offset;
3437
3438 if (index != page->index)
3439 return -EINVAL;
3440
3441 /*
3442 * correct length if it does not fall between
3443 * 'from' and the end of the page
3444 */
3445 if (length > max || length < 0)
3446 length = max;
3447
3448 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3449
3450 if (!page_has_buffers(page))
3451 create_empty_buffers(page, blocksize, 0);
3452
3453 /* Find the buffer that contains "offset" */
3454 bh = page_buffers(page);
3455 pos = blocksize;
3456 while (offset >= pos) {
3457 bh = bh->b_this_page;
3458 iblock++;
3459 pos += blocksize;
3460 }
3461
3462 pos = offset;
3463 while (pos < offset + length) {
3464 unsigned int end_of_block, range_to_discard;
3465
3466 err = 0;
3467
3468 /* The length of space left to zero and unmap */
3469 range_to_discard = offset + length - pos;
3470
3471 /* The length of space until the end of the block */
3472 end_of_block = blocksize - (pos & (blocksize-1));
3473
3474 /*
3475 * Do not unmap or zero past end of block
3476 * for this buffer head
3477 */
3478 if (range_to_discard > end_of_block)
3479 range_to_discard = end_of_block;
3480
3481
3482 /*
3483 * Skip this buffer head if we are only zeroing unampped
3484 * regions of the page
3485 */
3486 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3487 buffer_mapped(bh))
3488 goto next;
3489
3490 /* If the range is block aligned, unmap */
3491 if (range_to_discard == blocksize) {
3492 clear_buffer_dirty(bh);
3493 bh->b_bdev = NULL;
3494 clear_buffer_mapped(bh);
3495 clear_buffer_req(bh);
3496 clear_buffer_new(bh);
3497 clear_buffer_delay(bh);
3498 clear_buffer_unwritten(bh);
3499 clear_buffer_uptodate(bh);
3500 zero_user(page, pos, range_to_discard);
3501 BUFFER_TRACE(bh, "Buffer discarded");
3502 goto next;
3503 }
3504
3505 /*
3506 * If this block is not completely contained in the range
3507 * to be discarded, then it is not going to be released. Because
3508 * we need to keep this block, we need to make sure this part
3509 * of the page is uptodate before we modify it by writeing
3510 * partial zeros on it.
3511 */
3512 if (!buffer_mapped(bh)) {
3513 /*
3514 * Buffer head must be mapped before we can read
3515 * from the block
3516 */
3517 BUFFER_TRACE(bh, "unmapped");
3518 ext4_get_block(inode, iblock, bh, 0);
3519 /* unmapped? It's a hole - nothing to do */
3520 if (!buffer_mapped(bh)) {
3521 BUFFER_TRACE(bh, "still unmapped");
3522 goto next;
3523 }
3524 }
3525
3526 /* Ok, it's mapped. Make sure it's up-to-date */
3527 if (PageUptodate(page))
3528 set_buffer_uptodate(bh);
3529
3530 if (!buffer_uptodate(bh)) {
3531 err = -EIO;
3532 ll_rw_block(READ, 1, &bh);
3533 wait_on_buffer(bh);
3534 /* Uhhuh. Read error. Complain and punt.*/
3535 if (!buffer_uptodate(bh))
3536 goto next;
3537 }
3538
3539 if (ext4_should_journal_data(inode)) {
3540 BUFFER_TRACE(bh, "get write access");
3541 err = ext4_journal_get_write_access(handle, bh);
3542 if (err)
3543 goto next;
3544 }
3545
3546 zero_user(page, pos, range_to_discard);
3547
3548 err = 0;
3549 if (ext4_should_journal_data(inode)) {
3550 err = ext4_handle_dirty_metadata(handle, inode, bh);
3551 } else
3552 mark_buffer_dirty(bh);
3553
3554 BUFFER_TRACE(bh, "Partial buffer zeroed");
3555 next:
3556 bh = bh->b_this_page;
3557 iblock++;
3558 pos += range_to_discard;
3559 }
3560
3561 return err;
3562 }
3563
3564 int ext4_can_truncate(struct inode *inode)
3565 {
3566 if (S_ISREG(inode->i_mode))
3567 return 1;
3568 if (S_ISDIR(inode->i_mode))
3569 return 1;
3570 if (S_ISLNK(inode->i_mode))
3571 return !ext4_inode_is_fast_symlink(inode);
3572 return 0;
3573 }
3574
3575 /*
3576 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3577 * associated with the given offset and length
3578 *
3579 * @inode: File inode
3580 * @offset: The offset where the hole will begin
3581 * @len: The length of the hole
3582 *
3583 * Returns: 0 on success or negative on failure
3584 */
3585
3586 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3587 {
3588 struct inode *inode = file_inode(file);
3589 struct super_block *sb = inode->i_sb;
3590 ext4_lblk_t first_block, stop_block;
3591 struct address_space *mapping = inode->i_mapping;
3592 loff_t first_page, last_page, page_len;
3593 loff_t first_page_offset, last_page_offset;
3594 handle_t *handle;
3595 unsigned int credits;
3596 int ret = 0;
3597
3598 if (!S_ISREG(inode->i_mode))
3599 return -EOPNOTSUPP;
3600
3601 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3602 /* TODO: Add support for bigalloc file systems */
3603 return -EOPNOTSUPP;
3604 }
3605
3606 trace_ext4_punch_hole(inode, offset, length);
3607
3608 /*
3609 * Write out all dirty pages to avoid race conditions
3610 * Then release them.
3611 */
3612 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3613 ret = filemap_write_and_wait_range(mapping, offset,
3614 offset + length - 1);
3615 if (ret)
3616 return ret;
3617 }
3618
3619 mutex_lock(&inode->i_mutex);
3620 /* It's not possible punch hole on append only file */
3621 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3622 ret = -EPERM;
3623 goto out_mutex;
3624 }
3625 if (IS_SWAPFILE(inode)) {
3626 ret = -ETXTBSY;
3627 goto out_mutex;
3628 }
3629
3630 /* No need to punch hole beyond i_size */
3631 if (offset >= inode->i_size)
3632 goto out_mutex;
3633
3634 /*
3635 * If the hole extends beyond i_size, set the hole
3636 * to end after the page that contains i_size
3637 */
3638 if (offset + length > inode->i_size) {
3639 length = inode->i_size +
3640 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3641 offset;
3642 }
3643
3644 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3645 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3646
3647 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3648 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3649
3650 /* Now release the pages */
3651 if (last_page_offset > first_page_offset) {
3652 truncate_pagecache_range(inode, first_page_offset,
3653 last_page_offset - 1);
3654 }
3655
3656 /* Wait all existing dio workers, newcomers will block on i_mutex */
3657 ext4_inode_block_unlocked_dio(inode);
3658 ret = ext4_flush_unwritten_io(inode);
3659 if (ret)
3660 goto out_dio;
3661 inode_dio_wait(inode);
3662
3663 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3664 credits = ext4_writepage_trans_blocks(inode);
3665 else
3666 credits = ext4_blocks_for_truncate(inode);
3667 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3668 if (IS_ERR(handle)) {
3669 ret = PTR_ERR(handle);
3670 ext4_std_error(sb, ret);
3671 goto out_dio;
3672 }
3673
3674 /*
3675 * Now we need to zero out the non-page-aligned data in the
3676 * pages at the start and tail of the hole, and unmap the
3677 * buffer heads for the block aligned regions of the page that
3678 * were completely zeroed.
3679 */
3680 if (first_page > last_page) {
3681 /*
3682 * If the file space being truncated is contained
3683 * within a page just zero out and unmap the middle of
3684 * that page
3685 */
3686 ret = ext4_discard_partial_page_buffers(handle,
3687 mapping, offset, length, 0);
3688
3689 if (ret)
3690 goto out_stop;
3691 } else {
3692 /*
3693 * zero out and unmap the partial page that contains
3694 * the start of the hole
3695 */
3696 page_len = first_page_offset - offset;
3697 if (page_len > 0) {
3698 ret = ext4_discard_partial_page_buffers(handle, mapping,
3699 offset, page_len, 0);
3700 if (ret)
3701 goto out_stop;
3702 }
3703
3704 /*
3705 * zero out and unmap the partial page that contains
3706 * the end of the hole
3707 */
3708 page_len = offset + length - last_page_offset;
3709 if (page_len > 0) {
3710 ret = ext4_discard_partial_page_buffers(handle, mapping,
3711 last_page_offset, page_len, 0);
3712 if (ret)
3713 goto out_stop;
3714 }
3715 }
3716
3717 /*
3718 * If i_size is contained in the last page, we need to
3719 * unmap and zero the partial page after i_size
3720 */
3721 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3722 inode->i_size % PAGE_CACHE_SIZE != 0) {
3723 page_len = PAGE_CACHE_SIZE -
3724 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3725
3726 if (page_len > 0) {
3727 ret = ext4_discard_partial_page_buffers(handle,
3728 mapping, inode->i_size, page_len, 0);
3729
3730 if (ret)
3731 goto out_stop;
3732 }
3733 }
3734
3735 first_block = (offset + sb->s_blocksize - 1) >>
3736 EXT4_BLOCK_SIZE_BITS(sb);
3737 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3738
3739 /* If there are no blocks to remove, return now */
3740 if (first_block >= stop_block)
3741 goto out_stop;
3742
3743 down_write(&EXT4_I(inode)->i_data_sem);
3744 ext4_discard_preallocations(inode);
3745
3746 ret = ext4_es_remove_extent(inode, first_block,
3747 stop_block - first_block);
3748 if (ret) {
3749 up_write(&EXT4_I(inode)->i_data_sem);
3750 goto out_stop;
3751 }
3752
3753 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3754 ret = ext4_ext_remove_space(inode, first_block,
3755 stop_block - 1);
3756 else
3757 ret = ext4_free_hole_blocks(handle, inode, first_block,
3758 stop_block);
3759
3760 ext4_discard_preallocations(inode);
3761 up_write(&EXT4_I(inode)->i_data_sem);
3762 if (IS_SYNC(inode))
3763 ext4_handle_sync(handle);
3764 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3765 ext4_mark_inode_dirty(handle, inode);
3766 out_stop:
3767 ext4_journal_stop(handle);
3768 out_dio:
3769 ext4_inode_resume_unlocked_dio(inode);
3770 out_mutex:
3771 mutex_unlock(&inode->i_mutex);
3772 return ret;
3773 }
3774
3775 /*
3776 * ext4_truncate()
3777 *
3778 * We block out ext4_get_block() block instantiations across the entire
3779 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3780 * simultaneously on behalf of the same inode.
3781 *
3782 * As we work through the truncate and commit bits of it to the journal there
3783 * is one core, guiding principle: the file's tree must always be consistent on
3784 * disk. We must be able to restart the truncate after a crash.
3785 *
3786 * The file's tree may be transiently inconsistent in memory (although it
3787 * probably isn't), but whenever we close off and commit a journal transaction,
3788 * the contents of (the filesystem + the journal) must be consistent and
3789 * restartable. It's pretty simple, really: bottom up, right to left (although
3790 * left-to-right works OK too).
3791 *
3792 * Note that at recovery time, journal replay occurs *before* the restart of
3793 * truncate against the orphan inode list.
3794 *
3795 * The committed inode has the new, desired i_size (which is the same as
3796 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3797 * that this inode's truncate did not complete and it will again call
3798 * ext4_truncate() to have another go. So there will be instantiated blocks
3799 * to the right of the truncation point in a crashed ext4 filesystem. But
3800 * that's fine - as long as they are linked from the inode, the post-crash
3801 * ext4_truncate() run will find them and release them.
3802 */
3803 void ext4_truncate(struct inode *inode)
3804 {
3805 struct ext4_inode_info *ei = EXT4_I(inode);
3806 unsigned int credits;
3807 handle_t *handle;
3808 struct address_space *mapping = inode->i_mapping;
3809 loff_t page_len;
3810
3811 /*
3812 * There is a possibility that we're either freeing the inode
3813 * or it completely new indode. In those cases we might not
3814 * have i_mutex locked because it's not necessary.
3815 */
3816 if (!(inode->i_state & (I_NEW|I_FREEING)))
3817 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3818 trace_ext4_truncate_enter(inode);
3819
3820 if (!ext4_can_truncate(inode))
3821 return;
3822
3823 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3824
3825 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3826 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3827
3828 if (ext4_has_inline_data(inode)) {
3829 int has_inline = 1;
3830
3831 ext4_inline_data_truncate(inode, &has_inline);
3832 if (has_inline)
3833 return;
3834 }
3835
3836 /*
3837 * finish any pending end_io work so we won't run the risk of
3838 * converting any truncated blocks to initialized later
3839 */
3840 ext4_flush_unwritten_io(inode);
3841
3842 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3843 credits = ext4_writepage_trans_blocks(inode);
3844 else
3845 credits = ext4_blocks_for_truncate(inode);
3846
3847 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3848 if (IS_ERR(handle)) {
3849 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3850 return;
3851 }
3852
3853 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3854 page_len = PAGE_CACHE_SIZE -
3855 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3856
3857 if (ext4_discard_partial_page_buffers(handle,
3858 mapping, inode->i_size, page_len, 0))
3859 goto out_stop;
3860 }
3861
3862 /*
3863 * We add the inode to the orphan list, so that if this
3864 * truncate spans multiple transactions, and we crash, we will
3865 * resume the truncate when the filesystem recovers. It also
3866 * marks the inode dirty, to catch the new size.
3867 *
3868 * Implication: the file must always be in a sane, consistent
3869 * truncatable state while each transaction commits.
3870 */
3871 if (ext4_orphan_add(handle, inode))
3872 goto out_stop;
3873
3874 down_write(&EXT4_I(inode)->i_data_sem);
3875
3876 ext4_discard_preallocations(inode);
3877
3878 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3879 ext4_ext_truncate(handle, inode);
3880 else
3881 ext4_ind_truncate(handle, inode);
3882
3883 up_write(&ei->i_data_sem);
3884
3885 if (IS_SYNC(inode))
3886 ext4_handle_sync(handle);
3887
3888 out_stop:
3889 /*
3890 * If this was a simple ftruncate() and the file will remain alive,
3891 * then we need to clear up the orphan record which we created above.
3892 * However, if this was a real unlink then we were called by
3893 * ext4_delete_inode(), and we allow that function to clean up the
3894 * orphan info for us.
3895 */
3896 if (inode->i_nlink)
3897 ext4_orphan_del(handle, inode);
3898
3899 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3900 ext4_mark_inode_dirty(handle, inode);
3901 ext4_journal_stop(handle);
3902
3903 trace_ext4_truncate_exit(inode);
3904 }
3905
3906 /*
3907 * ext4_get_inode_loc returns with an extra refcount against the inode's
3908 * underlying buffer_head on success. If 'in_mem' is true, we have all
3909 * data in memory that is needed to recreate the on-disk version of this
3910 * inode.
3911 */
3912 static int __ext4_get_inode_loc(struct inode *inode,
3913 struct ext4_iloc *iloc, int in_mem)
3914 {
3915 struct ext4_group_desc *gdp;
3916 struct buffer_head *bh;
3917 struct super_block *sb = inode->i_sb;
3918 ext4_fsblk_t block;
3919 int inodes_per_block, inode_offset;
3920
3921 iloc->bh = NULL;
3922 if (!ext4_valid_inum(sb, inode->i_ino))
3923 return -EIO;
3924
3925 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3926 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3927 if (!gdp)
3928 return -EIO;
3929
3930 /*
3931 * Figure out the offset within the block group inode table
3932 */
3933 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3934 inode_offset = ((inode->i_ino - 1) %
3935 EXT4_INODES_PER_GROUP(sb));
3936 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3937 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3938
3939 bh = sb_getblk(sb, block);
3940 if (unlikely(!bh))
3941 return -ENOMEM;
3942 if (!buffer_uptodate(bh)) {
3943 lock_buffer(bh);
3944
3945 /*
3946 * If the buffer has the write error flag, we have failed
3947 * to write out another inode in the same block. In this
3948 * case, we don't have to read the block because we may
3949 * read the old inode data successfully.
3950 */
3951 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3952 set_buffer_uptodate(bh);
3953
3954 if (buffer_uptodate(bh)) {
3955 /* someone brought it uptodate while we waited */
3956 unlock_buffer(bh);
3957 goto has_buffer;
3958 }
3959
3960 /*
3961 * If we have all information of the inode in memory and this
3962 * is the only valid inode in the block, we need not read the
3963 * block.
3964 */
3965 if (in_mem) {
3966 struct buffer_head *bitmap_bh;
3967 int i, start;
3968
3969 start = inode_offset & ~(inodes_per_block - 1);
3970
3971 /* Is the inode bitmap in cache? */
3972 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3973 if (unlikely(!bitmap_bh))
3974 goto make_io;
3975
3976 /*
3977 * If the inode bitmap isn't in cache then the
3978 * optimisation may end up performing two reads instead
3979 * of one, so skip it.
3980 */
3981 if (!buffer_uptodate(bitmap_bh)) {
3982 brelse(bitmap_bh);
3983 goto make_io;
3984 }
3985 for (i = start; i < start + inodes_per_block; i++) {
3986 if (i == inode_offset)
3987 continue;
3988 if (ext4_test_bit(i, bitmap_bh->b_data))
3989 break;
3990 }
3991 brelse(bitmap_bh);
3992 if (i == start + inodes_per_block) {
3993 /* all other inodes are free, so skip I/O */
3994 memset(bh->b_data, 0, bh->b_size);
3995 set_buffer_uptodate(bh);
3996 unlock_buffer(bh);
3997 goto has_buffer;
3998 }
3999 }
4000
4001 make_io:
4002 /*
4003 * If we need to do any I/O, try to pre-readahead extra
4004 * blocks from the inode table.
4005 */
4006 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4007 ext4_fsblk_t b, end, table;
4008 unsigned num;
4009 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4010
4011 table = ext4_inode_table(sb, gdp);
4012 /* s_inode_readahead_blks is always a power of 2 */
4013 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4014 if (table > b)
4015 b = table;
4016 end = b + ra_blks;
4017 num = EXT4_INODES_PER_GROUP(sb);
4018 if (ext4_has_group_desc_csum(sb))
4019 num -= ext4_itable_unused_count(sb, gdp);
4020 table += num / inodes_per_block;
4021 if (end > table)
4022 end = table;
4023 while (b <= end)
4024 sb_breadahead(sb, b++);
4025 }
4026
4027 /*
4028 * There are other valid inodes in the buffer, this inode
4029 * has in-inode xattrs, or we don't have this inode in memory.
4030 * Read the block from disk.
4031 */
4032 trace_ext4_load_inode(inode);
4033 get_bh(bh);
4034 bh->b_end_io = end_buffer_read_sync;
4035 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4036 wait_on_buffer(bh);
4037 if (!buffer_uptodate(bh)) {
4038 EXT4_ERROR_INODE_BLOCK(inode, block,
4039 "unable to read itable block");
4040 brelse(bh);
4041 return -EIO;
4042 }
4043 }
4044 has_buffer:
4045 iloc->bh = bh;
4046 return 0;
4047 }
4048
4049 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4050 {
4051 /* We have all inode data except xattrs in memory here. */
4052 return __ext4_get_inode_loc(inode, iloc,
4053 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4054 }
4055
4056 void ext4_set_inode_flags(struct inode *inode)
4057 {
4058 unsigned int flags = EXT4_I(inode)->i_flags;
4059
4060 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4061 if (flags & EXT4_SYNC_FL)
4062 inode->i_flags |= S_SYNC;
4063 if (flags & EXT4_APPEND_FL)
4064 inode->i_flags |= S_APPEND;
4065 if (flags & EXT4_IMMUTABLE_FL)
4066 inode->i_flags |= S_IMMUTABLE;
4067 if (flags & EXT4_NOATIME_FL)
4068 inode->i_flags |= S_NOATIME;
4069 if (flags & EXT4_DIRSYNC_FL)
4070 inode->i_flags |= S_DIRSYNC;
4071 }
4072
4073 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4074 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4075 {
4076 unsigned int vfs_fl;
4077 unsigned long old_fl, new_fl;
4078
4079 do {
4080 vfs_fl = ei->vfs_inode.i_flags;
4081 old_fl = ei->i_flags;
4082 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4083 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4084 EXT4_DIRSYNC_FL);
4085 if (vfs_fl & S_SYNC)
4086 new_fl |= EXT4_SYNC_FL;
4087 if (vfs_fl & S_APPEND)
4088 new_fl |= EXT4_APPEND_FL;
4089 if (vfs_fl & S_IMMUTABLE)
4090 new_fl |= EXT4_IMMUTABLE_FL;
4091 if (vfs_fl & S_NOATIME)
4092 new_fl |= EXT4_NOATIME_FL;
4093 if (vfs_fl & S_DIRSYNC)
4094 new_fl |= EXT4_DIRSYNC_FL;
4095 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4096 }
4097
4098 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4099 struct ext4_inode_info *ei)
4100 {
4101 blkcnt_t i_blocks ;
4102 struct inode *inode = &(ei->vfs_inode);
4103 struct super_block *sb = inode->i_sb;
4104
4105 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4106 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4107 /* we are using combined 48 bit field */
4108 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4109 le32_to_cpu(raw_inode->i_blocks_lo);
4110 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4111 /* i_blocks represent file system block size */
4112 return i_blocks << (inode->i_blkbits - 9);
4113 } else {
4114 return i_blocks;
4115 }
4116 } else {
4117 return le32_to_cpu(raw_inode->i_blocks_lo);
4118 }
4119 }
4120
4121 static inline void ext4_iget_extra_inode(struct inode *inode,
4122 struct ext4_inode *raw_inode,
4123 struct ext4_inode_info *ei)
4124 {
4125 __le32 *magic = (void *)raw_inode +
4126 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4127 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4128 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4129 ext4_find_inline_data_nolock(inode);
4130 } else
4131 EXT4_I(inode)->i_inline_off = 0;
4132 }
4133
4134 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4135 {
4136 struct ext4_iloc iloc;
4137 struct ext4_inode *raw_inode;
4138 struct ext4_inode_info *ei;
4139 struct inode *inode;
4140 journal_t *journal = EXT4_SB(sb)->s_journal;
4141 long ret;
4142 int block;
4143 uid_t i_uid;
4144 gid_t i_gid;
4145
4146 inode = iget_locked(sb, ino);
4147 if (!inode)
4148 return ERR_PTR(-ENOMEM);
4149 if (!(inode->i_state & I_NEW))
4150 return inode;
4151
4152 ei = EXT4_I(inode);
4153 iloc.bh = NULL;
4154
4155 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4156 if (ret < 0)
4157 goto bad_inode;
4158 raw_inode = ext4_raw_inode(&iloc);
4159
4160 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4161 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4162 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4163 EXT4_INODE_SIZE(inode->i_sb)) {
4164 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4165 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4166 EXT4_INODE_SIZE(inode->i_sb));
4167 ret = -EIO;
4168 goto bad_inode;
4169 }
4170 } else
4171 ei->i_extra_isize = 0;
4172
4173 /* Precompute checksum seed for inode metadata */
4174 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4175 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4176 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4177 __u32 csum;
4178 __le32 inum = cpu_to_le32(inode->i_ino);
4179 __le32 gen = raw_inode->i_generation;
4180 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4181 sizeof(inum));
4182 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4183 sizeof(gen));
4184 }
4185
4186 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4187 EXT4_ERROR_INODE(inode, "checksum invalid");
4188 ret = -EIO;
4189 goto bad_inode;
4190 }
4191
4192 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4193 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4194 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4195 if (!(test_opt(inode->i_sb, NO_UID32))) {
4196 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4197 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4198 }
4199 i_uid_write(inode, i_uid);
4200 i_gid_write(inode, i_gid);
4201 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4202
4203 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4204 ei->i_inline_off = 0;
4205 ei->i_dir_start_lookup = 0;
4206 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4207 /* We now have enough fields to check if the inode was active or not.
4208 * This is needed because nfsd might try to access dead inodes
4209 * the test is that same one that e2fsck uses
4210 * NeilBrown 1999oct15
4211 */
4212 if (inode->i_nlink == 0) {
4213 if ((inode->i_mode == 0 ||
4214 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4215 ino != EXT4_BOOT_LOADER_INO) {
4216 /* this inode is deleted */
4217 ret = -ESTALE;
4218 goto bad_inode;
4219 }
4220 /* The only unlinked inodes we let through here have
4221 * valid i_mode and are being read by the orphan
4222 * recovery code: that's fine, we're about to complete
4223 * the process of deleting those.
4224 * OR it is the EXT4_BOOT_LOADER_INO which is
4225 * not initialized on a new filesystem. */
4226 }
4227 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4228 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4229 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4230 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4231 ei->i_file_acl |=
4232 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4233 inode->i_size = ext4_isize(raw_inode);
4234 ei->i_disksize = inode->i_size;
4235 #ifdef CONFIG_QUOTA
4236 ei->i_reserved_quota = 0;
4237 #endif
4238 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4239 ei->i_block_group = iloc.block_group;
4240 ei->i_last_alloc_group = ~0;
4241 /*
4242 * NOTE! The in-memory inode i_data array is in little-endian order
4243 * even on big-endian machines: we do NOT byteswap the block numbers!
4244 */
4245 for (block = 0; block < EXT4_N_BLOCKS; block++)
4246 ei->i_data[block] = raw_inode->i_block[block];
4247 INIT_LIST_HEAD(&ei->i_orphan);
4248
4249 /*
4250 * Set transaction id's of transactions that have to be committed
4251 * to finish f[data]sync. We set them to currently running transaction
4252 * as we cannot be sure that the inode or some of its metadata isn't
4253 * part of the transaction - the inode could have been reclaimed and
4254 * now it is reread from disk.
4255 */
4256 if (journal) {
4257 transaction_t *transaction;
4258 tid_t tid;
4259
4260 read_lock(&journal->j_state_lock);
4261 if (journal->j_running_transaction)
4262 transaction = journal->j_running_transaction;
4263 else
4264 transaction = journal->j_committing_transaction;
4265 if (transaction)
4266 tid = transaction->t_tid;
4267 else
4268 tid = journal->j_commit_sequence;
4269 read_unlock(&journal->j_state_lock);
4270 ei->i_sync_tid = tid;
4271 ei->i_datasync_tid = tid;
4272 }
4273
4274 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4275 if (ei->i_extra_isize == 0) {
4276 /* The extra space is currently unused. Use it. */
4277 ei->i_extra_isize = sizeof(struct ext4_inode) -
4278 EXT4_GOOD_OLD_INODE_SIZE;
4279 } else {
4280 ext4_iget_extra_inode(inode, raw_inode, ei);
4281 }
4282 }
4283
4284 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4285 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4286 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4287 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4288
4289 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4290 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4291 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4292 inode->i_version |=
4293 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4294 }
4295
4296 ret = 0;
4297 if (ei->i_file_acl &&
4298 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4299 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4300 ei->i_file_acl);
4301 ret = -EIO;
4302 goto bad_inode;
4303 } else if (!ext4_has_inline_data(inode)) {
4304 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4305 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4306 (S_ISLNK(inode->i_mode) &&
4307 !ext4_inode_is_fast_symlink(inode))))
4308 /* Validate extent which is part of inode */
4309 ret = ext4_ext_check_inode(inode);
4310 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4311 (S_ISLNK(inode->i_mode) &&
4312 !ext4_inode_is_fast_symlink(inode))) {
4313 /* Validate block references which are part of inode */
4314 ret = ext4_ind_check_inode(inode);
4315 }
4316 }
4317 if (ret)
4318 goto bad_inode;
4319
4320 if (S_ISREG(inode->i_mode)) {
4321 inode->i_op = &ext4_file_inode_operations;
4322 inode->i_fop = &ext4_file_operations;
4323 ext4_set_aops(inode);
4324 } else if (S_ISDIR(inode->i_mode)) {
4325 inode->i_op = &ext4_dir_inode_operations;
4326 inode->i_fop = &ext4_dir_operations;
4327 } else if (S_ISLNK(inode->i_mode)) {
4328 if (ext4_inode_is_fast_symlink(inode)) {
4329 inode->i_op = &ext4_fast_symlink_inode_operations;
4330 nd_terminate_link(ei->i_data, inode->i_size,
4331 sizeof(ei->i_data) - 1);
4332 } else {
4333 inode->i_op = &ext4_symlink_inode_operations;
4334 ext4_set_aops(inode);
4335 }
4336 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4337 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4338 inode->i_op = &ext4_special_inode_operations;
4339 if (raw_inode->i_block[0])
4340 init_special_inode(inode, inode->i_mode,
4341 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4342 else
4343 init_special_inode(inode, inode->i_mode,
4344 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4345 } else if (ino == EXT4_BOOT_LOADER_INO) {
4346 make_bad_inode(inode);
4347 } else {
4348 ret = -EIO;
4349 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4350 goto bad_inode;
4351 }
4352 brelse(iloc.bh);
4353 ext4_set_inode_flags(inode);
4354 unlock_new_inode(inode);
4355 return inode;
4356
4357 bad_inode:
4358 brelse(iloc.bh);
4359 iget_failed(inode);
4360 return ERR_PTR(ret);
4361 }
4362
4363 static int ext4_inode_blocks_set(handle_t *handle,
4364 struct ext4_inode *raw_inode,
4365 struct ext4_inode_info *ei)
4366 {
4367 struct inode *inode = &(ei->vfs_inode);
4368 u64 i_blocks = inode->i_blocks;
4369 struct super_block *sb = inode->i_sb;
4370
4371 if (i_blocks <= ~0U) {
4372 /*
4373 * i_blocks can be represented in a 32 bit variable
4374 * as multiple of 512 bytes
4375 */
4376 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4377 raw_inode->i_blocks_high = 0;
4378 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4379 return 0;
4380 }
4381 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4382 return -EFBIG;
4383
4384 if (i_blocks <= 0xffffffffffffULL) {
4385 /*
4386 * i_blocks can be represented in a 48 bit variable
4387 * as multiple of 512 bytes
4388 */
4389 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4390 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4391 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4392 } else {
4393 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4394 /* i_block is stored in file system block size */
4395 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4396 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4397 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4398 }
4399 return 0;
4400 }
4401
4402 /*
4403 * Post the struct inode info into an on-disk inode location in the
4404 * buffer-cache. This gobbles the caller's reference to the
4405 * buffer_head in the inode location struct.
4406 *
4407 * The caller must have write access to iloc->bh.
4408 */
4409 static int ext4_do_update_inode(handle_t *handle,
4410 struct inode *inode,
4411 struct ext4_iloc *iloc)
4412 {
4413 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4414 struct ext4_inode_info *ei = EXT4_I(inode);
4415 struct buffer_head *bh = iloc->bh;
4416 int err = 0, rc, block;
4417 int need_datasync = 0;
4418 uid_t i_uid;
4419 gid_t i_gid;
4420
4421 /* For fields not not tracking in the in-memory inode,
4422 * initialise them to zero for new inodes. */
4423 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4424 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4425
4426 ext4_get_inode_flags(ei);
4427 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4428 i_uid = i_uid_read(inode);
4429 i_gid = i_gid_read(inode);
4430 if (!(test_opt(inode->i_sb, NO_UID32))) {
4431 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4432 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4433 /*
4434 * Fix up interoperability with old kernels. Otherwise, old inodes get
4435 * re-used with the upper 16 bits of the uid/gid intact
4436 */
4437 if (!ei->i_dtime) {
4438 raw_inode->i_uid_high =
4439 cpu_to_le16(high_16_bits(i_uid));
4440 raw_inode->i_gid_high =
4441 cpu_to_le16(high_16_bits(i_gid));
4442 } else {
4443 raw_inode->i_uid_high = 0;
4444 raw_inode->i_gid_high = 0;
4445 }
4446 } else {
4447 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4448 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4449 raw_inode->i_uid_high = 0;
4450 raw_inode->i_gid_high = 0;
4451 }
4452 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4453
4454 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4455 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4456 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4457 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4458
4459 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4460 goto out_brelse;
4461 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4462 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4463 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4464 cpu_to_le32(EXT4_OS_HURD))
4465 raw_inode->i_file_acl_high =
4466 cpu_to_le16(ei->i_file_acl >> 32);
4467 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4468 if (ei->i_disksize != ext4_isize(raw_inode)) {
4469 ext4_isize_set(raw_inode, ei->i_disksize);
4470 need_datasync = 1;
4471 }
4472 if (ei->i_disksize > 0x7fffffffULL) {
4473 struct super_block *sb = inode->i_sb;
4474 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4475 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4476 EXT4_SB(sb)->s_es->s_rev_level ==
4477 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4478 /* If this is the first large file
4479 * created, add a flag to the superblock.
4480 */
4481 err = ext4_journal_get_write_access(handle,
4482 EXT4_SB(sb)->s_sbh);
4483 if (err)
4484 goto out_brelse;
4485 ext4_update_dynamic_rev(sb);
4486 EXT4_SET_RO_COMPAT_FEATURE(sb,
4487 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4488 ext4_handle_sync(handle);
4489 err = ext4_handle_dirty_super(handle, sb);
4490 }
4491 }
4492 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4493 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4494 if (old_valid_dev(inode->i_rdev)) {
4495 raw_inode->i_block[0] =
4496 cpu_to_le32(old_encode_dev(inode->i_rdev));
4497 raw_inode->i_block[1] = 0;
4498 } else {
4499 raw_inode->i_block[0] = 0;
4500 raw_inode->i_block[1] =
4501 cpu_to_le32(new_encode_dev(inode->i_rdev));
4502 raw_inode->i_block[2] = 0;
4503 }
4504 } else if (!ext4_has_inline_data(inode)) {
4505 for (block = 0; block < EXT4_N_BLOCKS; block++)
4506 raw_inode->i_block[block] = ei->i_data[block];
4507 }
4508
4509 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4510 if (ei->i_extra_isize) {
4511 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4512 raw_inode->i_version_hi =
4513 cpu_to_le32(inode->i_version >> 32);
4514 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4515 }
4516
4517 ext4_inode_csum_set(inode, raw_inode, ei);
4518
4519 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4520 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4521 if (!err)
4522 err = rc;
4523 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4524
4525 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4526 out_brelse:
4527 brelse(bh);
4528 ext4_std_error(inode->i_sb, err);
4529 return err;
4530 }
4531
4532 /*
4533 * ext4_write_inode()
4534 *
4535 * We are called from a few places:
4536 *
4537 * - Within generic_file_write() for O_SYNC files.
4538 * Here, there will be no transaction running. We wait for any running
4539 * transaction to commit.
4540 *
4541 * - Within sys_sync(), kupdate and such.
4542 * We wait on commit, if tol to.
4543 *
4544 * - Within prune_icache() (PF_MEMALLOC == true)
4545 * Here we simply return. We can't afford to block kswapd on the
4546 * journal commit.
4547 *
4548 * In all cases it is actually safe for us to return without doing anything,
4549 * because the inode has been copied into a raw inode buffer in
4550 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4551 * knfsd.
4552 *
4553 * Note that we are absolutely dependent upon all inode dirtiers doing the
4554 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4555 * which we are interested.
4556 *
4557 * It would be a bug for them to not do this. The code:
4558 *
4559 * mark_inode_dirty(inode)
4560 * stuff();
4561 * inode->i_size = expr;
4562 *
4563 * is in error because a kswapd-driven write_inode() could occur while
4564 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4565 * will no longer be on the superblock's dirty inode list.
4566 */
4567 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4568 {
4569 int err;
4570
4571 if (current->flags & PF_MEMALLOC)
4572 return 0;
4573
4574 if (EXT4_SB(inode->i_sb)->s_journal) {
4575 if (ext4_journal_current_handle()) {
4576 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4577 dump_stack();
4578 return -EIO;
4579 }
4580
4581 if (wbc->sync_mode != WB_SYNC_ALL)
4582 return 0;
4583
4584 err = ext4_force_commit(inode->i_sb);
4585 } else {
4586 struct ext4_iloc iloc;
4587
4588 err = __ext4_get_inode_loc(inode, &iloc, 0);
4589 if (err)
4590 return err;
4591 if (wbc->sync_mode == WB_SYNC_ALL)
4592 sync_dirty_buffer(iloc.bh);
4593 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4594 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4595 "IO error syncing inode");
4596 err = -EIO;
4597 }
4598 brelse(iloc.bh);
4599 }
4600 return err;
4601 }
4602
4603 /*
4604 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4605 * buffers that are attached to a page stradding i_size and are undergoing
4606 * commit. In that case we have to wait for commit to finish and try again.
4607 */
4608 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4609 {
4610 struct page *page;
4611 unsigned offset;
4612 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4613 tid_t commit_tid = 0;
4614 int ret;
4615
4616 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4617 /*
4618 * All buffers in the last page remain valid? Then there's nothing to
4619 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4620 * blocksize case
4621 */
4622 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4623 return;
4624 while (1) {
4625 page = find_lock_page(inode->i_mapping,
4626 inode->i_size >> PAGE_CACHE_SHIFT);
4627 if (!page)
4628 return;
4629 ret = __ext4_journalled_invalidatepage(page, offset);
4630 unlock_page(page);
4631 page_cache_release(page);
4632 if (ret != -EBUSY)
4633 return;
4634 commit_tid = 0;
4635 read_lock(&journal->j_state_lock);
4636 if (journal->j_committing_transaction)
4637 commit_tid = journal->j_committing_transaction->t_tid;
4638 read_unlock(&journal->j_state_lock);
4639 if (commit_tid)
4640 jbd2_log_wait_commit(journal, commit_tid);
4641 }
4642 }
4643
4644 /*
4645 * ext4_setattr()
4646 *
4647 * Called from notify_change.
4648 *
4649 * We want to trap VFS attempts to truncate the file as soon as
4650 * possible. In particular, we want to make sure that when the VFS
4651 * shrinks i_size, we put the inode on the orphan list and modify
4652 * i_disksize immediately, so that during the subsequent flushing of
4653 * dirty pages and freeing of disk blocks, we can guarantee that any
4654 * commit will leave the blocks being flushed in an unused state on
4655 * disk. (On recovery, the inode will get truncated and the blocks will
4656 * be freed, so we have a strong guarantee that no future commit will
4657 * leave these blocks visible to the user.)
4658 *
4659 * Another thing we have to assure is that if we are in ordered mode
4660 * and inode is still attached to the committing transaction, we must
4661 * we start writeout of all the dirty pages which are being truncated.
4662 * This way we are sure that all the data written in the previous
4663 * transaction are already on disk (truncate waits for pages under
4664 * writeback).
4665 *
4666 * Called with inode->i_mutex down.
4667 */
4668 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4669 {
4670 struct inode *inode = dentry->d_inode;
4671 int error, rc = 0;
4672 int orphan = 0;
4673 const unsigned int ia_valid = attr->ia_valid;
4674
4675 error = inode_change_ok(inode, attr);
4676 if (error)
4677 return error;
4678
4679 if (is_quota_modification(inode, attr))
4680 dquot_initialize(inode);
4681 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4682 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4683 handle_t *handle;
4684
4685 /* (user+group)*(old+new) structure, inode write (sb,
4686 * inode block, ? - but truncate inode update has it) */
4687 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4688 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4689 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4690 if (IS_ERR(handle)) {
4691 error = PTR_ERR(handle);
4692 goto err_out;
4693 }
4694 error = dquot_transfer(inode, attr);
4695 if (error) {
4696 ext4_journal_stop(handle);
4697 return error;
4698 }
4699 /* Update corresponding info in inode so that everything is in
4700 * one transaction */
4701 if (attr->ia_valid & ATTR_UID)
4702 inode->i_uid = attr->ia_uid;
4703 if (attr->ia_valid & ATTR_GID)
4704 inode->i_gid = attr->ia_gid;
4705 error = ext4_mark_inode_dirty(handle, inode);
4706 ext4_journal_stop(handle);
4707 }
4708
4709 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4710 handle_t *handle;
4711 loff_t oldsize = inode->i_size;
4712
4713 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4714 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4715
4716 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4717 return -EFBIG;
4718 }
4719 if (S_ISREG(inode->i_mode) &&
4720 (attr->ia_size < inode->i_size)) {
4721 if (ext4_should_order_data(inode)) {
4722 error = ext4_begin_ordered_truncate(inode,
4723 attr->ia_size);
4724 if (error)
4725 goto err_out;
4726 }
4727 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4728 if (IS_ERR(handle)) {
4729 error = PTR_ERR(handle);
4730 goto err_out;
4731 }
4732 if (ext4_handle_valid(handle)) {
4733 error = ext4_orphan_add(handle, inode);
4734 orphan = 1;
4735 }
4736 EXT4_I(inode)->i_disksize = attr->ia_size;
4737 rc = ext4_mark_inode_dirty(handle, inode);
4738 if (!error)
4739 error = rc;
4740 ext4_journal_stop(handle);
4741 if (error) {
4742 ext4_orphan_del(NULL, inode);
4743 goto err_out;
4744 }
4745 }
4746
4747 i_size_write(inode, attr->ia_size);
4748 /*
4749 * Blocks are going to be removed from the inode. Wait
4750 * for dio in flight. Temporarily disable
4751 * dioread_nolock to prevent livelock.
4752 */
4753 if (orphan) {
4754 if (!ext4_should_journal_data(inode)) {
4755 ext4_inode_block_unlocked_dio(inode);
4756 inode_dio_wait(inode);
4757 ext4_inode_resume_unlocked_dio(inode);
4758 } else
4759 ext4_wait_for_tail_page_commit(inode);
4760 }
4761 /*
4762 * Truncate pagecache after we've waited for commit
4763 * in data=journal mode to make pages freeable.
4764 */
4765 truncate_pagecache(inode, oldsize, inode->i_size);
4766 }
4767 /*
4768 * We want to call ext4_truncate() even if attr->ia_size ==
4769 * inode->i_size for cases like truncation of fallocated space
4770 */
4771 if (attr->ia_valid & ATTR_SIZE)
4772 ext4_truncate(inode);
4773
4774 if (!rc) {
4775 setattr_copy(inode, attr);
4776 mark_inode_dirty(inode);
4777 }
4778
4779 /*
4780 * If the call to ext4_truncate failed to get a transaction handle at
4781 * all, we need to clean up the in-core orphan list manually.
4782 */
4783 if (orphan && inode->i_nlink)
4784 ext4_orphan_del(NULL, inode);
4785
4786 if (!rc && (ia_valid & ATTR_MODE))
4787 rc = ext4_acl_chmod(inode);
4788
4789 err_out:
4790 ext4_std_error(inode->i_sb, error);
4791 if (!error)
4792 error = rc;
4793 return error;
4794 }
4795
4796 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4797 struct kstat *stat)
4798 {
4799 struct inode *inode;
4800 unsigned long long delalloc_blocks;
4801
4802 inode = dentry->d_inode;
4803 generic_fillattr(inode, stat);
4804
4805 /*
4806 * We can't update i_blocks if the block allocation is delayed
4807 * otherwise in the case of system crash before the real block
4808 * allocation is done, we will have i_blocks inconsistent with
4809 * on-disk file blocks.
4810 * We always keep i_blocks updated together with real
4811 * allocation. But to not confuse with user, stat
4812 * will return the blocks that include the delayed allocation
4813 * blocks for this file.
4814 */
4815 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4816 EXT4_I(inode)->i_reserved_data_blocks);
4817
4818 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4819 return 0;
4820 }
4821
4822 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4823 {
4824 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4825 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4826 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4827 }
4828
4829 /*
4830 * Account for index blocks, block groups bitmaps and block group
4831 * descriptor blocks if modify datablocks and index blocks
4832 * worse case, the indexs blocks spread over different block groups
4833 *
4834 * If datablocks are discontiguous, they are possible to spread over
4835 * different block groups too. If they are contiguous, with flexbg,
4836 * they could still across block group boundary.
4837 *
4838 * Also account for superblock, inode, quota and xattr blocks
4839 */
4840 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4841 {
4842 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4843 int gdpblocks;
4844 int idxblocks;
4845 int ret = 0;
4846
4847 /*
4848 * How many index blocks need to touch to modify nrblocks?
4849 * The "Chunk" flag indicating whether the nrblocks is
4850 * physically contiguous on disk
4851 *
4852 * For Direct IO and fallocate, they calls get_block to allocate
4853 * one single extent at a time, so they could set the "Chunk" flag
4854 */
4855 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4856
4857 ret = idxblocks;
4858
4859 /*
4860 * Now let's see how many group bitmaps and group descriptors need
4861 * to account
4862 */
4863 groups = idxblocks;
4864 if (chunk)
4865 groups += 1;
4866 else
4867 groups += nrblocks;
4868
4869 gdpblocks = groups;
4870 if (groups > ngroups)
4871 groups = ngroups;
4872 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4873 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4874
4875 /* bitmaps and block group descriptor blocks */
4876 ret += groups + gdpblocks;
4877
4878 /* Blocks for super block, inode, quota and xattr blocks */
4879 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4880
4881 return ret;
4882 }
4883
4884 /*
4885 * Calculate the total number of credits to reserve to fit
4886 * the modification of a single pages into a single transaction,
4887 * which may include multiple chunks of block allocations.
4888 *
4889 * This could be called via ext4_write_begin()
4890 *
4891 * We need to consider the worse case, when
4892 * one new block per extent.
4893 */
4894 int ext4_writepage_trans_blocks(struct inode *inode)
4895 {
4896 int bpp = ext4_journal_blocks_per_page(inode);
4897 int ret;
4898
4899 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4900
4901 /* Account for data blocks for journalled mode */
4902 if (ext4_should_journal_data(inode))
4903 ret += bpp;
4904 return ret;
4905 }
4906
4907 /*
4908 * Calculate the journal credits for a chunk of data modification.
4909 *
4910 * This is called from DIO, fallocate or whoever calling
4911 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4912 *
4913 * journal buffers for data blocks are not included here, as DIO
4914 * and fallocate do no need to journal data buffers.
4915 */
4916 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4917 {
4918 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4919 }
4920
4921 /*
4922 * The caller must have previously called ext4_reserve_inode_write().
4923 * Give this, we know that the caller already has write access to iloc->bh.
4924 */
4925 int ext4_mark_iloc_dirty(handle_t *handle,
4926 struct inode *inode, struct ext4_iloc *iloc)
4927 {
4928 int err = 0;
4929
4930 if (IS_I_VERSION(inode))
4931 inode_inc_iversion(inode);
4932
4933 /* the do_update_inode consumes one bh->b_count */
4934 get_bh(iloc->bh);
4935
4936 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4937 err = ext4_do_update_inode(handle, inode, iloc);
4938 put_bh(iloc->bh);
4939 return err;
4940 }
4941
4942 /*
4943 * On success, We end up with an outstanding reference count against
4944 * iloc->bh. This _must_ be cleaned up later.
4945 */
4946
4947 int
4948 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4949 struct ext4_iloc *iloc)
4950 {
4951 int err;
4952
4953 err = ext4_get_inode_loc(inode, iloc);
4954 if (!err) {
4955 BUFFER_TRACE(iloc->bh, "get_write_access");
4956 err = ext4_journal_get_write_access(handle, iloc->bh);
4957 if (err) {
4958 brelse(iloc->bh);
4959 iloc->bh = NULL;
4960 }
4961 }
4962 ext4_std_error(inode->i_sb, err);
4963 return err;
4964 }
4965
4966 /*
4967 * Expand an inode by new_extra_isize bytes.
4968 * Returns 0 on success or negative error number on failure.
4969 */
4970 static int ext4_expand_extra_isize(struct inode *inode,
4971 unsigned int new_extra_isize,
4972 struct ext4_iloc iloc,
4973 handle_t *handle)
4974 {
4975 struct ext4_inode *raw_inode;
4976 struct ext4_xattr_ibody_header *header;
4977
4978 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4979 return 0;
4980
4981 raw_inode = ext4_raw_inode(&iloc);
4982
4983 header = IHDR(inode, raw_inode);
4984
4985 /* No extended attributes present */
4986 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4987 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4988 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4989 new_extra_isize);
4990 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4991 return 0;
4992 }
4993
4994 /* try to expand with EAs present */
4995 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4996 raw_inode, handle);
4997 }
4998
4999 /*
5000 * What we do here is to mark the in-core inode as clean with respect to inode
5001 * dirtiness (it may still be data-dirty).
5002 * This means that the in-core inode may be reaped by prune_icache
5003 * without having to perform any I/O. This is a very good thing,
5004 * because *any* task may call prune_icache - even ones which
5005 * have a transaction open against a different journal.
5006 *
5007 * Is this cheating? Not really. Sure, we haven't written the
5008 * inode out, but prune_icache isn't a user-visible syncing function.
5009 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5010 * we start and wait on commits.
5011 */
5012 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5013 {
5014 struct ext4_iloc iloc;
5015 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5016 static unsigned int mnt_count;
5017 int err, ret;
5018
5019 might_sleep();
5020 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5021 err = ext4_reserve_inode_write(handle, inode, &iloc);
5022 if (ext4_handle_valid(handle) &&
5023 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5024 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5025 /*
5026 * We need extra buffer credits since we may write into EA block
5027 * with this same handle. If journal_extend fails, then it will
5028 * only result in a minor loss of functionality for that inode.
5029 * If this is felt to be critical, then e2fsck should be run to
5030 * force a large enough s_min_extra_isize.
5031 */
5032 if ((jbd2_journal_extend(handle,
5033 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5034 ret = ext4_expand_extra_isize(inode,
5035 sbi->s_want_extra_isize,
5036 iloc, handle);
5037 if (ret) {
5038 ext4_set_inode_state(inode,
5039 EXT4_STATE_NO_EXPAND);
5040 if (mnt_count !=
5041 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5042 ext4_warning(inode->i_sb,
5043 "Unable to expand inode %lu. Delete"
5044 " some EAs or run e2fsck.",
5045 inode->i_ino);
5046 mnt_count =
5047 le16_to_cpu(sbi->s_es->s_mnt_count);
5048 }
5049 }
5050 }
5051 }
5052 if (!err)
5053 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5054 return err;
5055 }
5056
5057 /*
5058 * ext4_dirty_inode() is called from __mark_inode_dirty()
5059 *
5060 * We're really interested in the case where a file is being extended.
5061 * i_size has been changed by generic_commit_write() and we thus need
5062 * to include the updated inode in the current transaction.
5063 *
5064 * Also, dquot_alloc_block() will always dirty the inode when blocks
5065 * are allocated to the file.
5066 *
5067 * If the inode is marked synchronous, we don't honour that here - doing
5068 * so would cause a commit on atime updates, which we don't bother doing.
5069 * We handle synchronous inodes at the highest possible level.
5070 */
5071 void ext4_dirty_inode(struct inode *inode, int flags)
5072 {
5073 handle_t *handle;
5074
5075 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5076 if (IS_ERR(handle))
5077 goto out;
5078
5079 ext4_mark_inode_dirty(handle, inode);
5080
5081 ext4_journal_stop(handle);
5082 out:
5083 return;
5084 }
5085
5086 #if 0
5087 /*
5088 * Bind an inode's backing buffer_head into this transaction, to prevent
5089 * it from being flushed to disk early. Unlike
5090 * ext4_reserve_inode_write, this leaves behind no bh reference and
5091 * returns no iloc structure, so the caller needs to repeat the iloc
5092 * lookup to mark the inode dirty later.
5093 */
5094 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5095 {
5096 struct ext4_iloc iloc;
5097
5098 int err = 0;
5099 if (handle) {
5100 err = ext4_get_inode_loc(inode, &iloc);
5101 if (!err) {
5102 BUFFER_TRACE(iloc.bh, "get_write_access");
5103 err = jbd2_journal_get_write_access(handle, iloc.bh);
5104 if (!err)
5105 err = ext4_handle_dirty_metadata(handle,
5106 NULL,
5107 iloc.bh);
5108 brelse(iloc.bh);
5109 }
5110 }
5111 ext4_std_error(inode->i_sb, err);
5112 return err;
5113 }
5114 #endif
5115
5116 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5117 {
5118 journal_t *journal;
5119 handle_t *handle;
5120 int err;
5121
5122 /*
5123 * We have to be very careful here: changing a data block's
5124 * journaling status dynamically is dangerous. If we write a
5125 * data block to the journal, change the status and then delete
5126 * that block, we risk forgetting to revoke the old log record
5127 * from the journal and so a subsequent replay can corrupt data.
5128 * So, first we make sure that the journal is empty and that
5129 * nobody is changing anything.
5130 */
5131
5132 journal = EXT4_JOURNAL(inode);
5133 if (!journal)
5134 return 0;
5135 if (is_journal_aborted(journal))
5136 return -EROFS;
5137 /* We have to allocate physical blocks for delalloc blocks
5138 * before flushing journal. otherwise delalloc blocks can not
5139 * be allocated any more. even more truncate on delalloc blocks
5140 * could trigger BUG by flushing delalloc blocks in journal.
5141 * There is no delalloc block in non-journal data mode.
5142 */
5143 if (val && test_opt(inode->i_sb, DELALLOC)) {
5144 err = ext4_alloc_da_blocks(inode);
5145 if (err < 0)
5146 return err;
5147 }
5148
5149 /* Wait for all existing dio workers */
5150 ext4_inode_block_unlocked_dio(inode);
5151 inode_dio_wait(inode);
5152
5153 jbd2_journal_lock_updates(journal);
5154
5155 /*
5156 * OK, there are no updates running now, and all cached data is
5157 * synced to disk. We are now in a completely consistent state
5158 * which doesn't have anything in the journal, and we know that
5159 * no filesystem updates are running, so it is safe to modify
5160 * the inode's in-core data-journaling state flag now.
5161 */
5162
5163 if (val)
5164 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5165 else {
5166 jbd2_journal_flush(journal);
5167 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5168 }
5169 ext4_set_aops(inode);
5170
5171 jbd2_journal_unlock_updates(journal);
5172 ext4_inode_resume_unlocked_dio(inode);
5173
5174 /* Finally we can mark the inode as dirty. */
5175
5176 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5177 if (IS_ERR(handle))
5178 return PTR_ERR(handle);
5179
5180 err = ext4_mark_inode_dirty(handle, inode);
5181 ext4_handle_sync(handle);
5182 ext4_journal_stop(handle);
5183 ext4_std_error(inode->i_sb, err);
5184
5185 return err;
5186 }
5187
5188 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5189 {
5190 return !buffer_mapped(bh);
5191 }
5192
5193 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5194 {
5195 struct page *page = vmf->page;
5196 loff_t size;
5197 unsigned long len;
5198 int ret;
5199 struct file *file = vma->vm_file;
5200 struct inode *inode = file_inode(file);
5201 struct address_space *mapping = inode->i_mapping;
5202 handle_t *handle;
5203 get_block_t *get_block;
5204 int retries = 0;
5205
5206 sb_start_pagefault(inode->i_sb);
5207 file_update_time(vma->vm_file);
5208 /* Delalloc case is easy... */
5209 if (test_opt(inode->i_sb, DELALLOC) &&
5210 !ext4_should_journal_data(inode) &&
5211 !ext4_nonda_switch(inode->i_sb)) {
5212 do {
5213 ret = __block_page_mkwrite(vma, vmf,
5214 ext4_da_get_block_prep);
5215 } while (ret == -ENOSPC &&
5216 ext4_should_retry_alloc(inode->i_sb, &retries));
5217 goto out_ret;
5218 }
5219
5220 lock_page(page);
5221 size = i_size_read(inode);
5222 /* Page got truncated from under us? */
5223 if (page->mapping != mapping || page_offset(page) > size) {
5224 unlock_page(page);
5225 ret = VM_FAULT_NOPAGE;
5226 goto out;
5227 }
5228
5229 if (page->index == size >> PAGE_CACHE_SHIFT)
5230 len = size & ~PAGE_CACHE_MASK;
5231 else
5232 len = PAGE_CACHE_SIZE;
5233 /*
5234 * Return if we have all the buffers mapped. This avoids the need to do
5235 * journal_start/journal_stop which can block and take a long time
5236 */
5237 if (page_has_buffers(page)) {
5238 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5239 0, len, NULL,
5240 ext4_bh_unmapped)) {
5241 /* Wait so that we don't change page under IO */
5242 wait_for_stable_page(page);
5243 ret = VM_FAULT_LOCKED;
5244 goto out;
5245 }
5246 }
5247 unlock_page(page);
5248 /* OK, we need to fill the hole... */
5249 if (ext4_should_dioread_nolock(inode))
5250 get_block = ext4_get_block_write;
5251 else
5252 get_block = ext4_get_block;
5253 retry_alloc:
5254 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5255 ext4_writepage_trans_blocks(inode));
5256 if (IS_ERR(handle)) {
5257 ret = VM_FAULT_SIGBUS;
5258 goto out;
5259 }
5260 ret = __block_page_mkwrite(vma, vmf, get_block);
5261 if (!ret && ext4_should_journal_data(inode)) {
5262 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5263 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5264 unlock_page(page);
5265 ret = VM_FAULT_SIGBUS;
5266 ext4_journal_stop(handle);
5267 goto out;
5268 }
5269 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5270 }
5271 ext4_journal_stop(handle);
5272 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5273 goto retry_alloc;
5274 out_ret:
5275 ret = block_page_mkwrite_return(ret);
5276 out:
5277 sb_end_pagefault(inode->i_sb);
5278 return ret;
5279 }