fb7e576df25cde1908dc94486bb8e4063407af1c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76 return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81 {
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103 {
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121 {
122 trace_ext4_begin_ordered_truncate(inode, new_size);
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned long offset);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140 struct inode *inode, struct page *page, loff_t from,
141 loff_t length, int flags);
142
143 /*
144 * Test whether an inode is a fast symlink.
145 */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 (inode->i_sb->s_blocksize >> 9) : 0;
150
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
157 * this transaction.
158 */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160 int nblocks)
161 {
162 int ret;
163
164 /*
165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
169 */
170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
171 jbd_debug(2, "restarting handle %p\n", handle);
172 up_write(&EXT4_I(inode)->i_data_sem);
173 ret = ext4_journal_restart(handle, nblocks);
174 down_write(&EXT4_I(inode)->i_data_sem);
175 ext4_discard_preallocations(inode);
176
177 return ret;
178 }
179
180 /*
181 * Called at the last iput() if i_nlink is zero.
182 */
183 void ext4_evict_inode(struct inode *inode)
184 {
185 handle_t *handle;
186 int err;
187
188 trace_ext4_evict_inode(inode);
189
190 if (inode->i_nlink) {
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215 jbd2_complete_transaction(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
217 }
218 truncate_inode_pages(&inode->i_data, 0);
219 ext4_ioend_shutdown(inode);
220 goto no_delete;
221 }
222
223 if (!is_bad_inode(inode))
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
229 ext4_ioend_shutdown(inode);
230
231 if (is_bad_inode(inode))
232 goto no_delete;
233
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
254 ext4_handle_sync(handle);
255 inode->i_size = 0;
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
262 if (inode->i_blocks)
263 ext4_truncate(inode);
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
282 goto no_delete;
283 }
284 }
285
286 /*
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
293 */
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
307 else
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
311 return;
312 no_delete:
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
326 */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332 return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
341 {
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 struct ext4_inode_info *ei = EXT4_I(inode);
344
345 spin_lock(&ei->i_block_reservation_lock);
346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 if (unlikely(used > ei->i_reserved_data_blocks)) {
348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
355
356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 used + ei->i_allocated_meta_blocks);
372 ei->i_allocated_meta_blocks = 0;
373
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 ei->i_reserved_meta_blocks);
382 ei->i_reserved_meta_blocks = 0;
383 ei->i_da_metadata_calc_len = 0;
384 }
385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 else {
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
395 */
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 }
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
406 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410 unsigned int line,
411 struct ext4_map_blocks *map)
412 {
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
419 return -EIO;
420 }
421 return 0;
422 }
423
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
426
427 /*
428 * Return the number of contiguous dirty pages in a given inode
429 * starting at page frame idx.
430 */
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432 unsigned int max_pages)
433 {
434 struct address_space *mapping = inode->i_mapping;
435 pgoff_t index;
436 struct pagevec pvec;
437 pgoff_t num = 0;
438 int i, nr_pages, done = 0;
439
440 if (max_pages == 0)
441 return 0;
442 pagevec_init(&pvec, 0);
443 while (!done) {
444 index = idx;
445 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446 PAGECACHE_TAG_DIRTY,
447 (pgoff_t)PAGEVEC_SIZE);
448 if (nr_pages == 0)
449 break;
450 for (i = 0; i < nr_pages; i++) {
451 struct page *page = pvec.pages[i];
452 struct buffer_head *bh, *head;
453
454 lock_page(page);
455 if (unlikely(page->mapping != mapping) ||
456 !PageDirty(page) ||
457 PageWriteback(page) ||
458 page->index != idx) {
459 done = 1;
460 unlock_page(page);
461 break;
462 }
463 if (page_has_buffers(page)) {
464 bh = head = page_buffers(page);
465 do {
466 if (!buffer_delay(bh) &&
467 !buffer_unwritten(bh))
468 done = 1;
469 bh = bh->b_this_page;
470 } while (!done && (bh != head));
471 }
472 unlock_page(page);
473 if (done)
474 break;
475 idx++;
476 num++;
477 if (num >= max_pages) {
478 done = 1;
479 break;
480 }
481 }
482 pagevec_release(&pvec);
483 }
484 return num;
485 }
486
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
489 struct inode *inode,
490 struct ext4_map_blocks *es_map,
491 struct ext4_map_blocks *map,
492 int flags)
493 {
494 int retval;
495
496 map->m_flags = 0;
497 /*
498 * There is a race window that the result is not the same.
499 * e.g. xfstests #223 when dioread_nolock enables. The reason
500 * is that we lookup a block mapping in extent status tree with
501 * out taking i_data_sem. So at the time the unwritten extent
502 * could be converted.
503 */
504 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505 down_read((&EXT4_I(inode)->i_data_sem));
506 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508 EXT4_GET_BLOCKS_KEEP_SIZE);
509 } else {
510 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511 EXT4_GET_BLOCKS_KEEP_SIZE);
512 }
513 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514 up_read((&EXT4_I(inode)->i_data_sem));
515 /*
516 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517 * because it shouldn't be marked in es_map->m_flags.
518 */
519 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521 /*
522 * We don't check m_len because extent will be collpased in status
523 * tree. So the m_len might not equal.
524 */
525 if (es_map->m_lblk != map->m_lblk ||
526 es_map->m_flags != map->m_flags ||
527 es_map->m_pblk != map->m_pblk) {
528 printk("ES cache assertation failed for inode: %lu "
529 "es_cached ex [%d/%d/%llu/%x] != "
530 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531 inode->i_ino, es_map->m_lblk, es_map->m_len,
532 es_map->m_pblk, es_map->m_flags, map->m_lblk,
533 map->m_len, map->m_pblk, map->m_flags,
534 retval, flags);
535 }
536 }
537 #endif /* ES_AGGRESSIVE_TEST */
538
539 /*
540 * The ext4_map_blocks() function tries to look up the requested blocks,
541 * and returns if the blocks are already mapped.
542 *
543 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544 * and store the allocated blocks in the result buffer head and mark it
545 * mapped.
546 *
547 * If file type is extents based, it will call ext4_ext_map_blocks(),
548 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549 * based files
550 *
551 * On success, it returns the number of blocks being mapped or allocate.
552 * if create==0 and the blocks are pre-allocated and uninitialized block,
553 * the result buffer head is unmapped. If the create ==1, it will make sure
554 * the buffer head is mapped.
555 *
556 * It returns 0 if plain look up failed (blocks have not been allocated), in
557 * that case, buffer head is unmapped
558 *
559 * It returns the error in case of allocation failure.
560 */
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562 struct ext4_map_blocks *map, int flags)
563 {
564 struct extent_status es;
565 int retval;
566 #ifdef ES_AGGRESSIVE_TEST
567 struct ext4_map_blocks orig_map;
568
569 memcpy(&orig_map, map, sizeof(*map));
570 #endif
571
572 map->m_flags = 0;
573 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574 "logical block %lu\n", inode->i_ino, flags, map->m_len,
575 (unsigned long) map->m_lblk);
576
577 /* Lookup extent status tree firstly */
578 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580 map->m_pblk = ext4_es_pblock(&es) +
581 map->m_lblk - es.es_lblk;
582 map->m_flags |= ext4_es_is_written(&es) ?
583 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584 retval = es.es_len - (map->m_lblk - es.es_lblk);
585 if (retval > map->m_len)
586 retval = map->m_len;
587 map->m_len = retval;
588 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589 retval = 0;
590 } else {
591 BUG_ON(1);
592 }
593 #ifdef ES_AGGRESSIVE_TEST
594 ext4_map_blocks_es_recheck(handle, inode, map,
595 &orig_map, flags);
596 #endif
597 goto found;
598 }
599
600 /*
601 * Try to see if we can get the block without requesting a new
602 * file system block.
603 */
604 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605 down_read((&EXT4_I(inode)->i_data_sem));
606 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608 EXT4_GET_BLOCKS_KEEP_SIZE);
609 } else {
610 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611 EXT4_GET_BLOCKS_KEEP_SIZE);
612 }
613 if (retval > 0) {
614 int ret;
615 unsigned long long status;
616
617 #ifdef ES_AGGRESSIVE_TEST
618 if (retval != map->m_len) {
619 printk("ES len assertation failed for inode: %lu "
620 "retval %d != map->m_len %d "
621 "in %s (lookup)\n", inode->i_ino, retval,
622 map->m_len, __func__);
623 }
624 #endif
625
626 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629 !(status & EXTENT_STATUS_WRITTEN) &&
630 ext4_find_delalloc_range(inode, map->m_lblk,
631 map->m_lblk + map->m_len - 1))
632 status |= EXTENT_STATUS_DELAYED;
633 ret = ext4_es_insert_extent(inode, map->m_lblk,
634 map->m_len, map->m_pblk, status);
635 if (ret < 0)
636 retval = ret;
637 }
638 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
639 up_read((&EXT4_I(inode)->i_data_sem));
640
641 found:
642 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
643 int ret = check_block_validity(inode, map);
644 if (ret != 0)
645 return ret;
646 }
647
648 /* If it is only a block(s) look up */
649 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
650 return retval;
651
652 /*
653 * Returns if the blocks have already allocated
654 *
655 * Note that if blocks have been preallocated
656 * ext4_ext_get_block() returns the create = 0
657 * with buffer head unmapped.
658 */
659 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660 return retval;
661
662 /*
663 * Here we clear m_flags because after allocating an new extent,
664 * it will be set again.
665 */
666 map->m_flags &= ~EXT4_MAP_FLAGS;
667
668 /*
669 * New blocks allocate and/or writing to uninitialized extent
670 * will possibly result in updating i_data, so we take
671 * the write lock of i_data_sem, and call get_blocks()
672 * with create == 1 flag.
673 */
674 down_write((&EXT4_I(inode)->i_data_sem));
675
676 /*
677 * if the caller is from delayed allocation writeout path
678 * we have already reserved fs blocks for allocation
679 * let the underlying get_block() function know to
680 * avoid double accounting
681 */
682 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
683 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
684 /*
685 * We need to check for EXT4 here because migrate
686 * could have changed the inode type in between
687 */
688 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
689 retval = ext4_ext_map_blocks(handle, inode, map, flags);
690 } else {
691 retval = ext4_ind_map_blocks(handle, inode, map, flags);
692
693 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
694 /*
695 * We allocated new blocks which will result in
696 * i_data's format changing. Force the migrate
697 * to fail by clearing migrate flags
698 */
699 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
700 }
701
702 /*
703 * Update reserved blocks/metadata blocks after successful
704 * block allocation which had been deferred till now. We don't
705 * support fallocate for non extent files. So we can update
706 * reserve space here.
707 */
708 if ((retval > 0) &&
709 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
710 ext4_da_update_reserve_space(inode, retval, 1);
711 }
712 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
713 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
714
715 if (retval > 0) {
716 int ret;
717 unsigned long long status;
718
719 #ifdef ES_AGGRESSIVE_TEST
720 if (retval != map->m_len) {
721 printk("ES len assertation failed for inode: %lu "
722 "retval %d != map->m_len %d "
723 "in %s (allocation)\n", inode->i_ino, retval,
724 map->m_len, __func__);
725 }
726 #endif
727
728 /*
729 * If the extent has been zeroed out, we don't need to update
730 * extent status tree.
731 */
732 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
733 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
734 if (ext4_es_is_written(&es))
735 goto has_zeroout;
736 }
737 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
738 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
739 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
740 !(status & EXTENT_STATUS_WRITTEN) &&
741 ext4_find_delalloc_range(inode, map->m_lblk,
742 map->m_lblk + map->m_len - 1))
743 status |= EXTENT_STATUS_DELAYED;
744 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
745 map->m_pblk, status);
746 if (ret < 0)
747 retval = ret;
748 }
749
750 has_zeroout:
751 up_write((&EXT4_I(inode)->i_data_sem));
752 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
753 int ret = check_block_validity(inode, map);
754 if (ret != 0)
755 return ret;
756 }
757 return retval;
758 }
759
760 /* Maximum number of blocks we map for direct IO at once. */
761 #define DIO_MAX_BLOCKS 4096
762
763 static int _ext4_get_block(struct inode *inode, sector_t iblock,
764 struct buffer_head *bh, int flags)
765 {
766 handle_t *handle = ext4_journal_current_handle();
767 struct ext4_map_blocks map;
768 int ret = 0, started = 0;
769 int dio_credits;
770
771 if (ext4_has_inline_data(inode))
772 return -ERANGE;
773
774 map.m_lblk = iblock;
775 map.m_len = bh->b_size >> inode->i_blkbits;
776
777 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
778 /* Direct IO write... */
779 if (map.m_len > DIO_MAX_BLOCKS)
780 map.m_len = DIO_MAX_BLOCKS;
781 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
782 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
783 dio_credits);
784 if (IS_ERR(handle)) {
785 ret = PTR_ERR(handle);
786 return ret;
787 }
788 started = 1;
789 }
790
791 ret = ext4_map_blocks(handle, inode, &map, flags);
792 if (ret > 0) {
793 map_bh(bh, inode->i_sb, map.m_pblk);
794 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
795 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
796 ret = 0;
797 }
798 if (started)
799 ext4_journal_stop(handle);
800 return ret;
801 }
802
803 int ext4_get_block(struct inode *inode, sector_t iblock,
804 struct buffer_head *bh, int create)
805 {
806 return _ext4_get_block(inode, iblock, bh,
807 create ? EXT4_GET_BLOCKS_CREATE : 0);
808 }
809
810 /*
811 * `handle' can be NULL if create is zero
812 */
813 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
814 ext4_lblk_t block, int create, int *errp)
815 {
816 struct ext4_map_blocks map;
817 struct buffer_head *bh;
818 int fatal = 0, err;
819
820 J_ASSERT(handle != NULL || create == 0);
821
822 map.m_lblk = block;
823 map.m_len = 1;
824 err = ext4_map_blocks(handle, inode, &map,
825 create ? EXT4_GET_BLOCKS_CREATE : 0);
826
827 /* ensure we send some value back into *errp */
828 *errp = 0;
829
830 if (create && err == 0)
831 err = -ENOSPC; /* should never happen */
832 if (err < 0)
833 *errp = err;
834 if (err <= 0)
835 return NULL;
836
837 bh = sb_getblk(inode->i_sb, map.m_pblk);
838 if (unlikely(!bh)) {
839 *errp = -ENOMEM;
840 return NULL;
841 }
842 if (map.m_flags & EXT4_MAP_NEW) {
843 J_ASSERT(create != 0);
844 J_ASSERT(handle != NULL);
845
846 /*
847 * Now that we do not always journal data, we should
848 * keep in mind whether this should always journal the
849 * new buffer as metadata. For now, regular file
850 * writes use ext4_get_block instead, so it's not a
851 * problem.
852 */
853 lock_buffer(bh);
854 BUFFER_TRACE(bh, "call get_create_access");
855 fatal = ext4_journal_get_create_access(handle, bh);
856 if (!fatal && !buffer_uptodate(bh)) {
857 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
858 set_buffer_uptodate(bh);
859 }
860 unlock_buffer(bh);
861 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
862 err = ext4_handle_dirty_metadata(handle, inode, bh);
863 if (!fatal)
864 fatal = err;
865 } else {
866 BUFFER_TRACE(bh, "not a new buffer");
867 }
868 if (fatal) {
869 *errp = fatal;
870 brelse(bh);
871 bh = NULL;
872 }
873 return bh;
874 }
875
876 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
877 ext4_lblk_t block, int create, int *err)
878 {
879 struct buffer_head *bh;
880
881 bh = ext4_getblk(handle, inode, block, create, err);
882 if (!bh)
883 return bh;
884 if (buffer_uptodate(bh))
885 return bh;
886 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
887 wait_on_buffer(bh);
888 if (buffer_uptodate(bh))
889 return bh;
890 put_bh(bh);
891 *err = -EIO;
892 return NULL;
893 }
894
895 int ext4_walk_page_buffers(handle_t *handle,
896 struct buffer_head *head,
897 unsigned from,
898 unsigned to,
899 int *partial,
900 int (*fn)(handle_t *handle,
901 struct buffer_head *bh))
902 {
903 struct buffer_head *bh;
904 unsigned block_start, block_end;
905 unsigned blocksize = head->b_size;
906 int err, ret = 0;
907 struct buffer_head *next;
908
909 for (bh = head, block_start = 0;
910 ret == 0 && (bh != head || !block_start);
911 block_start = block_end, bh = next) {
912 next = bh->b_this_page;
913 block_end = block_start + blocksize;
914 if (block_end <= from || block_start >= to) {
915 if (partial && !buffer_uptodate(bh))
916 *partial = 1;
917 continue;
918 }
919 err = (*fn)(handle, bh);
920 if (!ret)
921 ret = err;
922 }
923 return ret;
924 }
925
926 /*
927 * To preserve ordering, it is essential that the hole instantiation and
928 * the data write be encapsulated in a single transaction. We cannot
929 * close off a transaction and start a new one between the ext4_get_block()
930 * and the commit_write(). So doing the jbd2_journal_start at the start of
931 * prepare_write() is the right place.
932 *
933 * Also, this function can nest inside ext4_writepage(). In that case, we
934 * *know* that ext4_writepage() has generated enough buffer credits to do the
935 * whole page. So we won't block on the journal in that case, which is good,
936 * because the caller may be PF_MEMALLOC.
937 *
938 * By accident, ext4 can be reentered when a transaction is open via
939 * quota file writes. If we were to commit the transaction while thus
940 * reentered, there can be a deadlock - we would be holding a quota
941 * lock, and the commit would never complete if another thread had a
942 * transaction open and was blocking on the quota lock - a ranking
943 * violation.
944 *
945 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
946 * will _not_ run commit under these circumstances because handle->h_ref
947 * is elevated. We'll still have enough credits for the tiny quotafile
948 * write.
949 */
950 int do_journal_get_write_access(handle_t *handle,
951 struct buffer_head *bh)
952 {
953 int dirty = buffer_dirty(bh);
954 int ret;
955
956 if (!buffer_mapped(bh) || buffer_freed(bh))
957 return 0;
958 /*
959 * __block_write_begin() could have dirtied some buffers. Clean
960 * the dirty bit as jbd2_journal_get_write_access() could complain
961 * otherwise about fs integrity issues. Setting of the dirty bit
962 * by __block_write_begin() isn't a real problem here as we clear
963 * the bit before releasing a page lock and thus writeback cannot
964 * ever write the buffer.
965 */
966 if (dirty)
967 clear_buffer_dirty(bh);
968 ret = ext4_journal_get_write_access(handle, bh);
969 if (!ret && dirty)
970 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
971 return ret;
972 }
973
974 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
975 struct buffer_head *bh_result, int create);
976 static int ext4_write_begin(struct file *file, struct address_space *mapping,
977 loff_t pos, unsigned len, unsigned flags,
978 struct page **pagep, void **fsdata)
979 {
980 struct inode *inode = mapping->host;
981 int ret, needed_blocks;
982 handle_t *handle;
983 int retries = 0;
984 struct page *page;
985 pgoff_t index;
986 unsigned from, to;
987
988 trace_ext4_write_begin(inode, pos, len, flags);
989 /*
990 * Reserve one block more for addition to orphan list in case
991 * we allocate blocks but write fails for some reason
992 */
993 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
994 index = pos >> PAGE_CACHE_SHIFT;
995 from = pos & (PAGE_CACHE_SIZE - 1);
996 to = from + len;
997
998 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
999 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1000 flags, pagep);
1001 if (ret < 0)
1002 return ret;
1003 if (ret == 1)
1004 return 0;
1005 }
1006
1007 /*
1008 * grab_cache_page_write_begin() can take a long time if the
1009 * system is thrashing due to memory pressure, or if the page
1010 * is being written back. So grab it first before we start
1011 * the transaction handle. This also allows us to allocate
1012 * the page (if needed) without using GFP_NOFS.
1013 */
1014 retry_grab:
1015 page = grab_cache_page_write_begin(mapping, index, flags);
1016 if (!page)
1017 return -ENOMEM;
1018 unlock_page(page);
1019
1020 retry_journal:
1021 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1022 if (IS_ERR(handle)) {
1023 page_cache_release(page);
1024 return PTR_ERR(handle);
1025 }
1026
1027 lock_page(page);
1028 if (page->mapping != mapping) {
1029 /* The page got truncated from under us */
1030 unlock_page(page);
1031 page_cache_release(page);
1032 ext4_journal_stop(handle);
1033 goto retry_grab;
1034 }
1035 /* In case writeback began while the page was unlocked */
1036 wait_for_stable_page(page);
1037
1038 if (ext4_should_dioread_nolock(inode))
1039 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1040 else
1041 ret = __block_write_begin(page, pos, len, ext4_get_block);
1042
1043 if (!ret && ext4_should_journal_data(inode)) {
1044 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1045 from, to, NULL,
1046 do_journal_get_write_access);
1047 }
1048
1049 if (ret) {
1050 unlock_page(page);
1051 /*
1052 * __block_write_begin may have instantiated a few blocks
1053 * outside i_size. Trim these off again. Don't need
1054 * i_size_read because we hold i_mutex.
1055 *
1056 * Add inode to orphan list in case we crash before
1057 * truncate finishes
1058 */
1059 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1060 ext4_orphan_add(handle, inode);
1061
1062 ext4_journal_stop(handle);
1063 if (pos + len > inode->i_size) {
1064 ext4_truncate_failed_write(inode);
1065 /*
1066 * If truncate failed early the inode might
1067 * still be on the orphan list; we need to
1068 * make sure the inode is removed from the
1069 * orphan list in that case.
1070 */
1071 if (inode->i_nlink)
1072 ext4_orphan_del(NULL, inode);
1073 }
1074
1075 if (ret == -ENOSPC &&
1076 ext4_should_retry_alloc(inode->i_sb, &retries))
1077 goto retry_journal;
1078 page_cache_release(page);
1079 return ret;
1080 }
1081 *pagep = page;
1082 return ret;
1083 }
1084
1085 /* For write_end() in data=journal mode */
1086 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1087 {
1088 int ret;
1089 if (!buffer_mapped(bh) || buffer_freed(bh))
1090 return 0;
1091 set_buffer_uptodate(bh);
1092 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1093 clear_buffer_meta(bh);
1094 clear_buffer_prio(bh);
1095 return ret;
1096 }
1097
1098 /*
1099 * We need to pick up the new inode size which generic_commit_write gave us
1100 * `file' can be NULL - eg, when called from page_symlink().
1101 *
1102 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1103 * buffers are managed internally.
1104 */
1105 static int ext4_write_end(struct file *file,
1106 struct address_space *mapping,
1107 loff_t pos, unsigned len, unsigned copied,
1108 struct page *page, void *fsdata)
1109 {
1110 handle_t *handle = ext4_journal_current_handle();
1111 struct inode *inode = mapping->host;
1112 int ret = 0, ret2;
1113 int i_size_changed = 0;
1114
1115 trace_ext4_write_end(inode, pos, len, copied);
1116 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1117 ret = ext4_jbd2_file_inode(handle, inode);
1118 if (ret) {
1119 unlock_page(page);
1120 page_cache_release(page);
1121 goto errout;
1122 }
1123 }
1124
1125 if (ext4_has_inline_data(inode)) {
1126 ret = ext4_write_inline_data_end(inode, pos, len,
1127 copied, page);
1128 if (ret < 0)
1129 goto errout;
1130 copied = ret;
1131 } else
1132 copied = block_write_end(file, mapping, pos,
1133 len, copied, page, fsdata);
1134
1135 /*
1136 * No need to use i_size_read() here, the i_size
1137 * cannot change under us because we hole i_mutex.
1138 *
1139 * But it's important to update i_size while still holding page lock:
1140 * page writeout could otherwise come in and zero beyond i_size.
1141 */
1142 if (pos + copied > inode->i_size) {
1143 i_size_write(inode, pos + copied);
1144 i_size_changed = 1;
1145 }
1146
1147 if (pos + copied > EXT4_I(inode)->i_disksize) {
1148 /* We need to mark inode dirty even if
1149 * new_i_size is less that inode->i_size
1150 * but greater than i_disksize. (hint delalloc)
1151 */
1152 ext4_update_i_disksize(inode, (pos + copied));
1153 i_size_changed = 1;
1154 }
1155 unlock_page(page);
1156 page_cache_release(page);
1157
1158 /*
1159 * Don't mark the inode dirty under page lock. First, it unnecessarily
1160 * makes the holding time of page lock longer. Second, it forces lock
1161 * ordering of page lock and transaction start for journaling
1162 * filesystems.
1163 */
1164 if (i_size_changed)
1165 ext4_mark_inode_dirty(handle, inode);
1166
1167 if (copied < 0)
1168 ret = copied;
1169 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1170 /* if we have allocated more blocks and copied
1171 * less. We will have blocks allocated outside
1172 * inode->i_size. So truncate them
1173 */
1174 ext4_orphan_add(handle, inode);
1175 errout:
1176 ret2 = ext4_journal_stop(handle);
1177 if (!ret)
1178 ret = ret2;
1179
1180 if (pos + len > inode->i_size) {
1181 ext4_truncate_failed_write(inode);
1182 /*
1183 * If truncate failed early the inode might still be
1184 * on the orphan list; we need to make sure the inode
1185 * is removed from the orphan list in that case.
1186 */
1187 if (inode->i_nlink)
1188 ext4_orphan_del(NULL, inode);
1189 }
1190
1191 return ret ? ret : copied;
1192 }
1193
1194 static int ext4_journalled_write_end(struct file *file,
1195 struct address_space *mapping,
1196 loff_t pos, unsigned len, unsigned copied,
1197 struct page *page, void *fsdata)
1198 {
1199 handle_t *handle = ext4_journal_current_handle();
1200 struct inode *inode = mapping->host;
1201 int ret = 0, ret2;
1202 int partial = 0;
1203 unsigned from, to;
1204 loff_t new_i_size;
1205
1206 trace_ext4_journalled_write_end(inode, pos, len, copied);
1207 from = pos & (PAGE_CACHE_SIZE - 1);
1208 to = from + len;
1209
1210 BUG_ON(!ext4_handle_valid(handle));
1211
1212 if (ext4_has_inline_data(inode))
1213 copied = ext4_write_inline_data_end(inode, pos, len,
1214 copied, page);
1215 else {
1216 if (copied < len) {
1217 if (!PageUptodate(page))
1218 copied = 0;
1219 page_zero_new_buffers(page, from+copied, to);
1220 }
1221
1222 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1223 to, &partial, write_end_fn);
1224 if (!partial)
1225 SetPageUptodate(page);
1226 }
1227 new_i_size = pos + copied;
1228 if (new_i_size > inode->i_size)
1229 i_size_write(inode, pos+copied);
1230 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1231 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1232 if (new_i_size > EXT4_I(inode)->i_disksize) {
1233 ext4_update_i_disksize(inode, new_i_size);
1234 ret2 = ext4_mark_inode_dirty(handle, inode);
1235 if (!ret)
1236 ret = ret2;
1237 }
1238
1239 unlock_page(page);
1240 page_cache_release(page);
1241 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1242 /* if we have allocated more blocks and copied
1243 * less. We will have blocks allocated outside
1244 * inode->i_size. So truncate them
1245 */
1246 ext4_orphan_add(handle, inode);
1247
1248 ret2 = ext4_journal_stop(handle);
1249 if (!ret)
1250 ret = ret2;
1251 if (pos + len > inode->i_size) {
1252 ext4_truncate_failed_write(inode);
1253 /*
1254 * If truncate failed early the inode might still be
1255 * on the orphan list; we need to make sure the inode
1256 * is removed from the orphan list in that case.
1257 */
1258 if (inode->i_nlink)
1259 ext4_orphan_del(NULL, inode);
1260 }
1261
1262 return ret ? ret : copied;
1263 }
1264
1265 /*
1266 * Reserve a metadata for a single block located at lblock
1267 */
1268 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1269 {
1270 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1271 struct ext4_inode_info *ei = EXT4_I(inode);
1272 unsigned int md_needed;
1273 ext4_lblk_t save_last_lblock;
1274 int save_len;
1275
1276 /*
1277 * recalculate the amount of metadata blocks to reserve
1278 * in order to allocate nrblocks
1279 * worse case is one extent per block
1280 */
1281 spin_lock(&ei->i_block_reservation_lock);
1282 /*
1283 * ext4_calc_metadata_amount() has side effects, which we have
1284 * to be prepared undo if we fail to claim space.
1285 */
1286 save_len = ei->i_da_metadata_calc_len;
1287 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1288 md_needed = EXT4_NUM_B2C(sbi,
1289 ext4_calc_metadata_amount(inode, lblock));
1290 trace_ext4_da_reserve_space(inode, md_needed);
1291
1292 /*
1293 * We do still charge estimated metadata to the sb though;
1294 * we cannot afford to run out of free blocks.
1295 */
1296 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1297 ei->i_da_metadata_calc_len = save_len;
1298 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1299 spin_unlock(&ei->i_block_reservation_lock);
1300 return -ENOSPC;
1301 }
1302 ei->i_reserved_meta_blocks += md_needed;
1303 spin_unlock(&ei->i_block_reservation_lock);
1304
1305 return 0; /* success */
1306 }
1307
1308 /*
1309 * Reserve a single cluster located at lblock
1310 */
1311 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1312 {
1313 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314 struct ext4_inode_info *ei = EXT4_I(inode);
1315 unsigned int md_needed;
1316 int ret;
1317 ext4_lblk_t save_last_lblock;
1318 int save_len;
1319
1320 /*
1321 * We will charge metadata quota at writeout time; this saves
1322 * us from metadata over-estimation, though we may go over by
1323 * a small amount in the end. Here we just reserve for data.
1324 */
1325 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326 if (ret)
1327 return ret;
1328
1329 /*
1330 * recalculate the amount of metadata blocks to reserve
1331 * in order to allocate nrblocks
1332 * worse case is one extent per block
1333 */
1334 spin_lock(&ei->i_block_reservation_lock);
1335 /*
1336 * ext4_calc_metadata_amount() has side effects, which we have
1337 * to be prepared undo if we fail to claim space.
1338 */
1339 save_len = ei->i_da_metadata_calc_len;
1340 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1341 md_needed = EXT4_NUM_B2C(sbi,
1342 ext4_calc_metadata_amount(inode, lblock));
1343 trace_ext4_da_reserve_space(inode, md_needed);
1344
1345 /*
1346 * We do still charge estimated metadata to the sb though;
1347 * we cannot afford to run out of free blocks.
1348 */
1349 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1350 ei->i_da_metadata_calc_len = save_len;
1351 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1352 spin_unlock(&ei->i_block_reservation_lock);
1353 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1354 return -ENOSPC;
1355 }
1356 ei->i_reserved_data_blocks++;
1357 ei->i_reserved_meta_blocks += md_needed;
1358 spin_unlock(&ei->i_block_reservation_lock);
1359
1360 return 0; /* success */
1361 }
1362
1363 static void ext4_da_release_space(struct inode *inode, int to_free)
1364 {
1365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366 struct ext4_inode_info *ei = EXT4_I(inode);
1367
1368 if (!to_free)
1369 return; /* Nothing to release, exit */
1370
1371 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1372
1373 trace_ext4_da_release_space(inode, to_free);
1374 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1375 /*
1376 * if there aren't enough reserved blocks, then the
1377 * counter is messed up somewhere. Since this
1378 * function is called from invalidate page, it's
1379 * harmless to return without any action.
1380 */
1381 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1382 "ino %lu, to_free %d with only %d reserved "
1383 "data blocks", inode->i_ino, to_free,
1384 ei->i_reserved_data_blocks);
1385 WARN_ON(1);
1386 to_free = ei->i_reserved_data_blocks;
1387 }
1388 ei->i_reserved_data_blocks -= to_free;
1389
1390 if (ei->i_reserved_data_blocks == 0) {
1391 /*
1392 * We can release all of the reserved metadata blocks
1393 * only when we have written all of the delayed
1394 * allocation blocks.
1395 * Note that in case of bigalloc, i_reserved_meta_blocks,
1396 * i_reserved_data_blocks, etc. refer to number of clusters.
1397 */
1398 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1399 ei->i_reserved_meta_blocks);
1400 ei->i_reserved_meta_blocks = 0;
1401 ei->i_da_metadata_calc_len = 0;
1402 }
1403
1404 /* update fs dirty data blocks counter */
1405 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1406
1407 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1408
1409 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1410 }
1411
1412 static void ext4_da_page_release_reservation(struct page *page,
1413 unsigned long offset)
1414 {
1415 int to_release = 0, contiguous_blks = 0;
1416 struct buffer_head *head, *bh;
1417 unsigned int curr_off = 0;
1418 struct inode *inode = page->mapping->host;
1419 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420 int num_clusters;
1421 ext4_fsblk_t lblk;
1422
1423 head = page_buffers(page);
1424 bh = head;
1425 do {
1426 unsigned int next_off = curr_off + bh->b_size;
1427
1428 if ((offset <= curr_off) && (buffer_delay(bh))) {
1429 to_release++;
1430 contiguous_blks++;
1431 clear_buffer_delay(bh);
1432 } else if (contiguous_blks) {
1433 lblk = page->index <<
1434 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1435 lblk += (curr_off >> inode->i_blkbits) -
1436 contiguous_blks;
1437 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1438 contiguous_blks = 0;
1439 }
1440 curr_off = next_off;
1441 } while ((bh = bh->b_this_page) != head);
1442
1443 if (contiguous_blks) {
1444 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1446 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1447 }
1448
1449 /* If we have released all the blocks belonging to a cluster, then we
1450 * need to release the reserved space for that cluster. */
1451 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1452 while (num_clusters > 0) {
1453 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1454 ((num_clusters - 1) << sbi->s_cluster_bits);
1455 if (sbi->s_cluster_ratio == 1 ||
1456 !ext4_find_delalloc_cluster(inode, lblk))
1457 ext4_da_release_space(inode, 1);
1458
1459 num_clusters--;
1460 }
1461 }
1462
1463 /*
1464 * Delayed allocation stuff
1465 */
1466
1467 /*
1468 * mpage_da_submit_io - walks through extent of pages and try to write
1469 * them with writepage() call back
1470 *
1471 * @mpd->inode: inode
1472 * @mpd->first_page: first page of the extent
1473 * @mpd->next_page: page after the last page of the extent
1474 *
1475 * By the time mpage_da_submit_io() is called we expect all blocks
1476 * to be allocated. this may be wrong if allocation failed.
1477 *
1478 * As pages are already locked by write_cache_pages(), we can't use it
1479 */
1480 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1481 struct ext4_map_blocks *map)
1482 {
1483 struct pagevec pvec;
1484 unsigned long index, end;
1485 int ret = 0, err, nr_pages, i;
1486 struct inode *inode = mpd->inode;
1487 struct address_space *mapping = inode->i_mapping;
1488 loff_t size = i_size_read(inode);
1489 unsigned int len, block_start;
1490 struct buffer_head *bh, *page_bufs = NULL;
1491 sector_t pblock = 0, cur_logical = 0;
1492 struct ext4_io_submit io_submit;
1493
1494 BUG_ON(mpd->next_page <= mpd->first_page);
1495 memset(&io_submit, 0, sizeof(io_submit));
1496 /*
1497 * We need to start from the first_page to the next_page - 1
1498 * to make sure we also write the mapped dirty buffer_heads.
1499 * If we look at mpd->b_blocknr we would only be looking
1500 * at the currently mapped buffer_heads.
1501 */
1502 index = mpd->first_page;
1503 end = mpd->next_page - 1;
1504
1505 pagevec_init(&pvec, 0);
1506 while (index <= end) {
1507 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1508 if (nr_pages == 0)
1509 break;
1510 for (i = 0; i < nr_pages; i++) {
1511 int skip_page = 0;
1512 struct page *page = pvec.pages[i];
1513
1514 index = page->index;
1515 if (index > end)
1516 break;
1517
1518 if (index == size >> PAGE_CACHE_SHIFT)
1519 len = size & ~PAGE_CACHE_MASK;
1520 else
1521 len = PAGE_CACHE_SIZE;
1522 if (map) {
1523 cur_logical = index << (PAGE_CACHE_SHIFT -
1524 inode->i_blkbits);
1525 pblock = map->m_pblk + (cur_logical -
1526 map->m_lblk);
1527 }
1528 index++;
1529
1530 BUG_ON(!PageLocked(page));
1531 BUG_ON(PageWriteback(page));
1532
1533 bh = page_bufs = page_buffers(page);
1534 block_start = 0;
1535 do {
1536 if (map && (cur_logical >= map->m_lblk) &&
1537 (cur_logical <= (map->m_lblk +
1538 (map->m_len - 1)))) {
1539 if (buffer_delay(bh)) {
1540 clear_buffer_delay(bh);
1541 bh->b_blocknr = pblock;
1542 }
1543 if (buffer_unwritten(bh) ||
1544 buffer_mapped(bh))
1545 BUG_ON(bh->b_blocknr != pblock);
1546 if (map->m_flags & EXT4_MAP_UNINIT)
1547 set_buffer_uninit(bh);
1548 clear_buffer_unwritten(bh);
1549 }
1550
1551 /*
1552 * skip page if block allocation undone and
1553 * block is dirty
1554 */
1555 if (ext4_bh_delay_or_unwritten(NULL, bh))
1556 skip_page = 1;
1557 bh = bh->b_this_page;
1558 block_start += bh->b_size;
1559 cur_logical++;
1560 pblock++;
1561 } while (bh != page_bufs);
1562
1563 if (skip_page) {
1564 unlock_page(page);
1565 continue;
1566 }
1567
1568 clear_page_dirty_for_io(page);
1569 err = ext4_bio_write_page(&io_submit, page, len,
1570 mpd->wbc);
1571 if (!err)
1572 mpd->pages_written++;
1573 /*
1574 * In error case, we have to continue because
1575 * remaining pages are still locked
1576 */
1577 if (ret == 0)
1578 ret = err;
1579 }
1580 pagevec_release(&pvec);
1581 }
1582 ext4_io_submit(&io_submit);
1583 return ret;
1584 }
1585
1586 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1587 {
1588 int nr_pages, i;
1589 pgoff_t index, end;
1590 struct pagevec pvec;
1591 struct inode *inode = mpd->inode;
1592 struct address_space *mapping = inode->i_mapping;
1593 ext4_lblk_t start, last;
1594
1595 index = mpd->first_page;
1596 end = mpd->next_page - 1;
1597
1598 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1599 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1600 ext4_es_remove_extent(inode, start, last - start + 1);
1601
1602 pagevec_init(&pvec, 0);
1603 while (index <= end) {
1604 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1605 if (nr_pages == 0)
1606 break;
1607 for (i = 0; i < nr_pages; i++) {
1608 struct page *page = pvec.pages[i];
1609 if (page->index > end)
1610 break;
1611 BUG_ON(!PageLocked(page));
1612 BUG_ON(PageWriteback(page));
1613 block_invalidatepage(page, 0);
1614 ClearPageUptodate(page);
1615 unlock_page(page);
1616 }
1617 index = pvec.pages[nr_pages - 1]->index + 1;
1618 pagevec_release(&pvec);
1619 }
1620 return;
1621 }
1622
1623 static void ext4_print_free_blocks(struct inode *inode)
1624 {
1625 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1626 struct super_block *sb = inode->i_sb;
1627 struct ext4_inode_info *ei = EXT4_I(inode);
1628
1629 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1630 EXT4_C2B(EXT4_SB(inode->i_sb),
1631 ext4_count_free_clusters(sb)));
1632 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1633 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1634 (long long) EXT4_C2B(EXT4_SB(sb),
1635 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1636 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1637 (long long) EXT4_C2B(EXT4_SB(sb),
1638 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1639 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1640 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1641 ei->i_reserved_data_blocks);
1642 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1643 ei->i_reserved_meta_blocks);
1644 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1645 ei->i_allocated_meta_blocks);
1646 return;
1647 }
1648
1649 /*
1650 * mpage_da_map_and_submit - go through given space, map them
1651 * if necessary, and then submit them for I/O
1652 *
1653 * @mpd - bh describing space
1654 *
1655 * The function skips space we know is already mapped to disk blocks.
1656 *
1657 */
1658 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1659 {
1660 int err, blks, get_blocks_flags;
1661 struct ext4_map_blocks map, *mapp = NULL;
1662 sector_t next = mpd->b_blocknr;
1663 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1664 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1665 handle_t *handle = NULL;
1666
1667 /*
1668 * If the blocks are mapped already, or we couldn't accumulate
1669 * any blocks, then proceed immediately to the submission stage.
1670 */
1671 if ((mpd->b_size == 0) ||
1672 ((mpd->b_state & (1 << BH_Mapped)) &&
1673 !(mpd->b_state & (1 << BH_Delay)) &&
1674 !(mpd->b_state & (1 << BH_Unwritten))))
1675 goto submit_io;
1676
1677 handle = ext4_journal_current_handle();
1678 BUG_ON(!handle);
1679
1680 /*
1681 * Call ext4_map_blocks() to allocate any delayed allocation
1682 * blocks, or to convert an uninitialized extent to be
1683 * initialized (in the case where we have written into
1684 * one or more preallocated blocks).
1685 *
1686 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1687 * indicate that we are on the delayed allocation path. This
1688 * affects functions in many different parts of the allocation
1689 * call path. This flag exists primarily because we don't
1690 * want to change *many* call functions, so ext4_map_blocks()
1691 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1692 * inode's allocation semaphore is taken.
1693 *
1694 * If the blocks in questions were delalloc blocks, set
1695 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1696 * variables are updated after the blocks have been allocated.
1697 */
1698 map.m_lblk = next;
1699 map.m_len = max_blocks;
1700 /*
1701 * We're in delalloc path and it is possible that we're going to
1702 * need more metadata blocks than previously reserved. However
1703 * we must not fail because we're in writeback and there is
1704 * nothing we can do about it so it might result in data loss.
1705 * So use reserved blocks to allocate metadata if possible.
1706 */
1707 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1708 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1709 if (ext4_should_dioread_nolock(mpd->inode))
1710 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1711 if (mpd->b_state & (1 << BH_Delay))
1712 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1713
1714
1715 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1716 if (blks < 0) {
1717 struct super_block *sb = mpd->inode->i_sb;
1718
1719 err = blks;
1720 /*
1721 * If get block returns EAGAIN or ENOSPC and there
1722 * appears to be free blocks we will just let
1723 * mpage_da_submit_io() unlock all of the pages.
1724 */
1725 if (err == -EAGAIN)
1726 goto submit_io;
1727
1728 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1729 mpd->retval = err;
1730 goto submit_io;
1731 }
1732
1733 /*
1734 * get block failure will cause us to loop in
1735 * writepages, because a_ops->writepage won't be able
1736 * to make progress. The page will be redirtied by
1737 * writepage and writepages will again try to write
1738 * the same.
1739 */
1740 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1741 ext4_msg(sb, KERN_CRIT,
1742 "delayed block allocation failed for inode %lu "
1743 "at logical offset %llu with max blocks %zd "
1744 "with error %d", mpd->inode->i_ino,
1745 (unsigned long long) next,
1746 mpd->b_size >> mpd->inode->i_blkbits, err);
1747 ext4_msg(sb, KERN_CRIT,
1748 "This should not happen!! Data will be lost");
1749 if (err == -ENOSPC)
1750 ext4_print_free_blocks(mpd->inode);
1751 }
1752 /* invalidate all the pages */
1753 ext4_da_block_invalidatepages(mpd);
1754
1755 /* Mark this page range as having been completed */
1756 mpd->io_done = 1;
1757 return;
1758 }
1759 BUG_ON(blks == 0);
1760
1761 mapp = &map;
1762 if (map.m_flags & EXT4_MAP_NEW) {
1763 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1764 int i;
1765
1766 for (i = 0; i < map.m_len; i++)
1767 unmap_underlying_metadata(bdev, map.m_pblk + i);
1768 }
1769
1770 /*
1771 * Update on-disk size along with block allocation.
1772 */
1773 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1774 if (disksize > i_size_read(mpd->inode))
1775 disksize = i_size_read(mpd->inode);
1776 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1777 ext4_update_i_disksize(mpd->inode, disksize);
1778 err = ext4_mark_inode_dirty(handle, mpd->inode);
1779 if (err)
1780 ext4_error(mpd->inode->i_sb,
1781 "Failed to mark inode %lu dirty",
1782 mpd->inode->i_ino);
1783 }
1784
1785 submit_io:
1786 mpage_da_submit_io(mpd, mapp);
1787 mpd->io_done = 1;
1788 }
1789
1790 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1791 (1 << BH_Delay) | (1 << BH_Unwritten))
1792
1793 /*
1794 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1795 *
1796 * @mpd->lbh - extent of blocks
1797 * @logical - logical number of the block in the file
1798 * @b_state - b_state of the buffer head added
1799 *
1800 * the function is used to collect contig. blocks in same state
1801 */
1802 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1803 unsigned long b_state)
1804 {
1805 sector_t next;
1806 int blkbits = mpd->inode->i_blkbits;
1807 int nrblocks = mpd->b_size >> blkbits;
1808
1809 /*
1810 * XXX Don't go larger than mballoc is willing to allocate
1811 * This is a stopgap solution. We eventually need to fold
1812 * mpage_da_submit_io() into this function and then call
1813 * ext4_map_blocks() multiple times in a loop
1814 */
1815 if (nrblocks >= (8*1024*1024 >> blkbits))
1816 goto flush_it;
1817
1818 /* check if the reserved journal credits might overflow */
1819 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1820 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1821 /*
1822 * With non-extent format we are limited by the journal
1823 * credit available. Total credit needed to insert
1824 * nrblocks contiguous blocks is dependent on the
1825 * nrblocks. So limit nrblocks.
1826 */
1827 goto flush_it;
1828 }
1829 }
1830 /*
1831 * First block in the extent
1832 */
1833 if (mpd->b_size == 0) {
1834 mpd->b_blocknr = logical;
1835 mpd->b_size = 1 << blkbits;
1836 mpd->b_state = b_state & BH_FLAGS;
1837 return;
1838 }
1839
1840 next = mpd->b_blocknr + nrblocks;
1841 /*
1842 * Can we merge the block to our big extent?
1843 */
1844 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1845 mpd->b_size += 1 << blkbits;
1846 return;
1847 }
1848
1849 flush_it:
1850 /*
1851 * We couldn't merge the block to our extent, so we
1852 * need to flush current extent and start new one
1853 */
1854 mpage_da_map_and_submit(mpd);
1855 return;
1856 }
1857
1858 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1859 {
1860 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1861 }
1862
1863 /*
1864 * This function is grabs code from the very beginning of
1865 * ext4_map_blocks, but assumes that the caller is from delayed write
1866 * time. This function looks up the requested blocks and sets the
1867 * buffer delay bit under the protection of i_data_sem.
1868 */
1869 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1870 struct ext4_map_blocks *map,
1871 struct buffer_head *bh)
1872 {
1873 struct extent_status es;
1874 int retval;
1875 sector_t invalid_block = ~((sector_t) 0xffff);
1876 #ifdef ES_AGGRESSIVE_TEST
1877 struct ext4_map_blocks orig_map;
1878
1879 memcpy(&orig_map, map, sizeof(*map));
1880 #endif
1881
1882 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1883 invalid_block = ~0;
1884
1885 map->m_flags = 0;
1886 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1887 "logical block %lu\n", inode->i_ino, map->m_len,
1888 (unsigned long) map->m_lblk);
1889
1890 /* Lookup extent status tree firstly */
1891 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1892
1893 if (ext4_es_is_hole(&es)) {
1894 retval = 0;
1895 down_read((&EXT4_I(inode)->i_data_sem));
1896 goto add_delayed;
1897 }
1898
1899 /*
1900 * Delayed extent could be allocated by fallocate.
1901 * So we need to check it.
1902 */
1903 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1904 map_bh(bh, inode->i_sb, invalid_block);
1905 set_buffer_new(bh);
1906 set_buffer_delay(bh);
1907 return 0;
1908 }
1909
1910 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1911 retval = es.es_len - (iblock - es.es_lblk);
1912 if (retval > map->m_len)
1913 retval = map->m_len;
1914 map->m_len = retval;
1915 if (ext4_es_is_written(&es))
1916 map->m_flags |= EXT4_MAP_MAPPED;
1917 else if (ext4_es_is_unwritten(&es))
1918 map->m_flags |= EXT4_MAP_UNWRITTEN;
1919 else
1920 BUG_ON(1);
1921
1922 #ifdef ES_AGGRESSIVE_TEST
1923 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1924 #endif
1925 return retval;
1926 }
1927
1928 /*
1929 * Try to see if we can get the block without requesting a new
1930 * file system block.
1931 */
1932 down_read((&EXT4_I(inode)->i_data_sem));
1933 if (ext4_has_inline_data(inode)) {
1934 /*
1935 * We will soon create blocks for this page, and let
1936 * us pretend as if the blocks aren't allocated yet.
1937 * In case of clusters, we have to handle the work
1938 * of mapping from cluster so that the reserved space
1939 * is calculated properly.
1940 */
1941 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1942 ext4_find_delalloc_cluster(inode, map->m_lblk))
1943 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1944 retval = 0;
1945 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1946 retval = ext4_ext_map_blocks(NULL, inode, map,
1947 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1948 else
1949 retval = ext4_ind_map_blocks(NULL, inode, map,
1950 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1951
1952 add_delayed:
1953 if (retval == 0) {
1954 int ret;
1955 /*
1956 * XXX: __block_prepare_write() unmaps passed block,
1957 * is it OK?
1958 */
1959 /*
1960 * If the block was allocated from previously allocated cluster,
1961 * then we don't need to reserve it again. However we still need
1962 * to reserve metadata for every block we're going to write.
1963 */
1964 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1965 ret = ext4_da_reserve_space(inode, iblock);
1966 if (ret) {
1967 /* not enough space to reserve */
1968 retval = ret;
1969 goto out_unlock;
1970 }
1971 } else {
1972 ret = ext4_da_reserve_metadata(inode, iblock);
1973 if (ret) {
1974 /* not enough space to reserve */
1975 retval = ret;
1976 goto out_unlock;
1977 }
1978 }
1979
1980 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1981 ~0, EXTENT_STATUS_DELAYED);
1982 if (ret) {
1983 retval = ret;
1984 goto out_unlock;
1985 }
1986
1987 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1988 * and it should not appear on the bh->b_state.
1989 */
1990 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1991
1992 map_bh(bh, inode->i_sb, invalid_block);
1993 set_buffer_new(bh);
1994 set_buffer_delay(bh);
1995 } else if (retval > 0) {
1996 int ret;
1997 unsigned long long status;
1998
1999 #ifdef ES_AGGRESSIVE_TEST
2000 if (retval != map->m_len) {
2001 printk("ES len assertation failed for inode: %lu "
2002 "retval %d != map->m_len %d "
2003 "in %s (lookup)\n", inode->i_ino, retval,
2004 map->m_len, __func__);
2005 }
2006 #endif
2007
2008 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2009 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2010 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2011 map->m_pblk, status);
2012 if (ret != 0)
2013 retval = ret;
2014 }
2015
2016 out_unlock:
2017 up_read((&EXT4_I(inode)->i_data_sem));
2018
2019 return retval;
2020 }
2021
2022 /*
2023 * This is a special get_blocks_t callback which is used by
2024 * ext4_da_write_begin(). It will either return mapped block or
2025 * reserve space for a single block.
2026 *
2027 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2028 * We also have b_blocknr = -1 and b_bdev initialized properly
2029 *
2030 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2031 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2032 * initialized properly.
2033 */
2034 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2035 struct buffer_head *bh, int create)
2036 {
2037 struct ext4_map_blocks map;
2038 int ret = 0;
2039
2040 BUG_ON(create == 0);
2041 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2042
2043 map.m_lblk = iblock;
2044 map.m_len = 1;
2045
2046 /*
2047 * first, we need to know whether the block is allocated already
2048 * preallocated blocks are unmapped but should treated
2049 * the same as allocated blocks.
2050 */
2051 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2052 if (ret <= 0)
2053 return ret;
2054
2055 map_bh(bh, inode->i_sb, map.m_pblk);
2056 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2057
2058 if (buffer_unwritten(bh)) {
2059 /* A delayed write to unwritten bh should be marked
2060 * new and mapped. Mapped ensures that we don't do
2061 * get_block multiple times when we write to the same
2062 * offset and new ensures that we do proper zero out
2063 * for partial write.
2064 */
2065 set_buffer_new(bh);
2066 set_buffer_mapped(bh);
2067 }
2068 return 0;
2069 }
2070
2071 static int bget_one(handle_t *handle, struct buffer_head *bh)
2072 {
2073 get_bh(bh);
2074 return 0;
2075 }
2076
2077 static int bput_one(handle_t *handle, struct buffer_head *bh)
2078 {
2079 put_bh(bh);
2080 return 0;
2081 }
2082
2083 static int __ext4_journalled_writepage(struct page *page,
2084 unsigned int len)
2085 {
2086 struct address_space *mapping = page->mapping;
2087 struct inode *inode = mapping->host;
2088 struct buffer_head *page_bufs = NULL;
2089 handle_t *handle = NULL;
2090 int ret = 0, err = 0;
2091 int inline_data = ext4_has_inline_data(inode);
2092 struct buffer_head *inode_bh = NULL;
2093
2094 ClearPageChecked(page);
2095
2096 if (inline_data) {
2097 BUG_ON(page->index != 0);
2098 BUG_ON(len > ext4_get_max_inline_size(inode));
2099 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2100 if (inode_bh == NULL)
2101 goto out;
2102 } else {
2103 page_bufs = page_buffers(page);
2104 if (!page_bufs) {
2105 BUG();
2106 goto out;
2107 }
2108 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2109 NULL, bget_one);
2110 }
2111 /*
2112 * We need to release the page lock before we start the
2113 * journal, so grab a reference so the page won't disappear
2114 * out from under us.
2115 */
2116 get_page(page);
2117 unlock_page(page);
2118
2119 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2120 ext4_writepage_trans_blocks(inode));
2121 if (IS_ERR(handle)) {
2122 ret = PTR_ERR(handle);
2123 put_page(page);
2124 goto out_no_pagelock;
2125 }
2126 BUG_ON(!ext4_handle_valid(handle));
2127
2128 lock_page(page);
2129 put_page(page);
2130 if (page->mapping != mapping) {
2131 /* The page got truncated from under us */
2132 ext4_journal_stop(handle);
2133 ret = 0;
2134 goto out;
2135 }
2136
2137 if (inline_data) {
2138 ret = ext4_journal_get_write_access(handle, inode_bh);
2139
2140 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2141
2142 } else {
2143 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2144 do_journal_get_write_access);
2145
2146 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2147 write_end_fn);
2148 }
2149 if (ret == 0)
2150 ret = err;
2151 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2152 err = ext4_journal_stop(handle);
2153 if (!ret)
2154 ret = err;
2155
2156 if (!ext4_has_inline_data(inode))
2157 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2158 NULL, bput_one);
2159 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2160 out:
2161 unlock_page(page);
2162 out_no_pagelock:
2163 brelse(inode_bh);
2164 return ret;
2165 }
2166
2167 /*
2168 * Note that we don't need to start a transaction unless we're journaling data
2169 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2170 * need to file the inode to the transaction's list in ordered mode because if
2171 * we are writing back data added by write(), the inode is already there and if
2172 * we are writing back data modified via mmap(), no one guarantees in which
2173 * transaction the data will hit the disk. In case we are journaling data, we
2174 * cannot start transaction directly because transaction start ranks above page
2175 * lock so we have to do some magic.
2176 *
2177 * This function can get called via...
2178 * - ext4_da_writepages after taking page lock (have journal handle)
2179 * - journal_submit_inode_data_buffers (no journal handle)
2180 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2181 * - grab_page_cache when doing write_begin (have journal handle)
2182 *
2183 * We don't do any block allocation in this function. If we have page with
2184 * multiple blocks we need to write those buffer_heads that are mapped. This
2185 * is important for mmaped based write. So if we do with blocksize 1K
2186 * truncate(f, 1024);
2187 * a = mmap(f, 0, 4096);
2188 * a[0] = 'a';
2189 * truncate(f, 4096);
2190 * we have in the page first buffer_head mapped via page_mkwrite call back
2191 * but other buffer_heads would be unmapped but dirty (dirty done via the
2192 * do_wp_page). So writepage should write the first block. If we modify
2193 * the mmap area beyond 1024 we will again get a page_fault and the
2194 * page_mkwrite callback will do the block allocation and mark the
2195 * buffer_heads mapped.
2196 *
2197 * We redirty the page if we have any buffer_heads that is either delay or
2198 * unwritten in the page.
2199 *
2200 * We can get recursively called as show below.
2201 *
2202 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2203 * ext4_writepage()
2204 *
2205 * But since we don't do any block allocation we should not deadlock.
2206 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2207 */
2208 static int ext4_writepage(struct page *page,
2209 struct writeback_control *wbc)
2210 {
2211 int ret = 0;
2212 loff_t size;
2213 unsigned int len;
2214 struct buffer_head *page_bufs = NULL;
2215 struct inode *inode = page->mapping->host;
2216 struct ext4_io_submit io_submit;
2217
2218 trace_ext4_writepage(page);
2219 size = i_size_read(inode);
2220 if (page->index == size >> PAGE_CACHE_SHIFT)
2221 len = size & ~PAGE_CACHE_MASK;
2222 else
2223 len = PAGE_CACHE_SIZE;
2224
2225 page_bufs = page_buffers(page);
2226 /*
2227 * We cannot do block allocation or other extent handling in this
2228 * function. If there are buffers needing that, we have to redirty
2229 * the page. But we may reach here when we do a journal commit via
2230 * journal_submit_inode_data_buffers() and in that case we must write
2231 * allocated buffers to achieve data=ordered mode guarantees.
2232 */
2233 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2234 ext4_bh_delay_or_unwritten)) {
2235 redirty_page_for_writepage(wbc, page);
2236 if (current->flags & PF_MEMALLOC) {
2237 /*
2238 * For memory cleaning there's no point in writing only
2239 * some buffers. So just bail out. Warn if we came here
2240 * from direct reclaim.
2241 */
2242 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2243 == PF_MEMALLOC);
2244 unlock_page(page);
2245 return 0;
2246 }
2247 }
2248
2249 if (PageChecked(page) && ext4_should_journal_data(inode))
2250 /*
2251 * It's mmapped pagecache. Add buffers and journal it. There
2252 * doesn't seem much point in redirtying the page here.
2253 */
2254 return __ext4_journalled_writepage(page, len);
2255
2256 memset(&io_submit, 0, sizeof(io_submit));
2257 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2258 ext4_io_submit(&io_submit);
2259 return ret;
2260 }
2261
2262 /*
2263 * This is called via ext4_da_writepages() to
2264 * calculate the total number of credits to reserve to fit
2265 * a single extent allocation into a single transaction,
2266 * ext4_da_writpeages() will loop calling this before
2267 * the block allocation.
2268 */
2269
2270 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2271 {
2272 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2273
2274 /*
2275 * With non-extent format the journal credit needed to
2276 * insert nrblocks contiguous block is dependent on
2277 * number of contiguous block. So we will limit
2278 * number of contiguous block to a sane value
2279 */
2280 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2281 (max_blocks > EXT4_MAX_TRANS_DATA))
2282 max_blocks = EXT4_MAX_TRANS_DATA;
2283
2284 return ext4_chunk_trans_blocks(inode, max_blocks);
2285 }
2286
2287 /*
2288 * write_cache_pages_da - walk the list of dirty pages of the given
2289 * address space and accumulate pages that need writing, and call
2290 * mpage_da_map_and_submit to map a single contiguous memory region
2291 * and then write them.
2292 */
2293 static int write_cache_pages_da(handle_t *handle,
2294 struct address_space *mapping,
2295 struct writeback_control *wbc,
2296 struct mpage_da_data *mpd,
2297 pgoff_t *done_index)
2298 {
2299 struct buffer_head *bh, *head;
2300 struct inode *inode = mapping->host;
2301 struct pagevec pvec;
2302 unsigned int nr_pages;
2303 sector_t logical;
2304 pgoff_t index, end;
2305 long nr_to_write = wbc->nr_to_write;
2306 int i, tag, ret = 0;
2307
2308 memset(mpd, 0, sizeof(struct mpage_da_data));
2309 mpd->wbc = wbc;
2310 mpd->inode = inode;
2311 pagevec_init(&pvec, 0);
2312 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2313 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2314
2315 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2316 tag = PAGECACHE_TAG_TOWRITE;
2317 else
2318 tag = PAGECACHE_TAG_DIRTY;
2319
2320 *done_index = index;
2321 while (index <= end) {
2322 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2323 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2324 if (nr_pages == 0)
2325 return 0;
2326
2327 for (i = 0; i < nr_pages; i++) {
2328 struct page *page = pvec.pages[i];
2329
2330 /*
2331 * At this point, the page may be truncated or
2332 * invalidated (changing page->mapping to NULL), or
2333 * even swizzled back from swapper_space to tmpfs file
2334 * mapping. However, page->index will not change
2335 * because we have a reference on the page.
2336 */
2337 if (page->index > end)
2338 goto out;
2339
2340 *done_index = page->index + 1;
2341
2342 /*
2343 * If we can't merge this page, and we have
2344 * accumulated an contiguous region, write it
2345 */
2346 if ((mpd->next_page != page->index) &&
2347 (mpd->next_page != mpd->first_page)) {
2348 mpage_da_map_and_submit(mpd);
2349 goto ret_extent_tail;
2350 }
2351
2352 lock_page(page);
2353
2354 /*
2355 * If the page is no longer dirty, or its
2356 * mapping no longer corresponds to inode we
2357 * are writing (which means it has been
2358 * truncated or invalidated), or the page is
2359 * already under writeback and we are not
2360 * doing a data integrity writeback, skip the page
2361 */
2362 if (!PageDirty(page) ||
2363 (PageWriteback(page) &&
2364 (wbc->sync_mode == WB_SYNC_NONE)) ||
2365 unlikely(page->mapping != mapping)) {
2366 unlock_page(page);
2367 continue;
2368 }
2369
2370 wait_on_page_writeback(page);
2371 BUG_ON(PageWriteback(page));
2372
2373 /*
2374 * If we have inline data and arrive here, it means that
2375 * we will soon create the block for the 1st page, so
2376 * we'd better clear the inline data here.
2377 */
2378 if (ext4_has_inline_data(inode)) {
2379 BUG_ON(ext4_test_inode_state(inode,
2380 EXT4_STATE_MAY_INLINE_DATA));
2381 ext4_destroy_inline_data(handle, inode);
2382 }
2383
2384 if (mpd->next_page != page->index)
2385 mpd->first_page = page->index;
2386 mpd->next_page = page->index + 1;
2387 logical = (sector_t) page->index <<
2388 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2389
2390 /* Add all dirty buffers to mpd */
2391 head = page_buffers(page);
2392 bh = head;
2393 do {
2394 BUG_ON(buffer_locked(bh));
2395 /*
2396 * We need to try to allocate unmapped blocks
2397 * in the same page. Otherwise we won't make
2398 * progress with the page in ext4_writepage
2399 */
2400 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2401 mpage_add_bh_to_extent(mpd, logical,
2402 bh->b_state);
2403 if (mpd->io_done)
2404 goto ret_extent_tail;
2405 } else if (buffer_dirty(bh) &&
2406 buffer_mapped(bh)) {
2407 /*
2408 * mapped dirty buffer. We need to
2409 * update the b_state because we look
2410 * at b_state in mpage_da_map_blocks.
2411 * We don't update b_size because if we
2412 * find an unmapped buffer_head later
2413 * we need to use the b_state flag of
2414 * that buffer_head.
2415 */
2416 if (mpd->b_size == 0)
2417 mpd->b_state =
2418 bh->b_state & BH_FLAGS;
2419 }
2420 logical++;
2421 } while ((bh = bh->b_this_page) != head);
2422
2423 if (nr_to_write > 0) {
2424 nr_to_write--;
2425 if (nr_to_write == 0 &&
2426 wbc->sync_mode == WB_SYNC_NONE)
2427 /*
2428 * We stop writing back only if we are
2429 * not doing integrity sync. In case of
2430 * integrity sync we have to keep going
2431 * because someone may be concurrently
2432 * dirtying pages, and we might have
2433 * synced a lot of newly appeared dirty
2434 * pages, but have not synced all of the
2435 * old dirty pages.
2436 */
2437 goto out;
2438 }
2439 }
2440 pagevec_release(&pvec);
2441 cond_resched();
2442 }
2443 return 0;
2444 ret_extent_tail:
2445 ret = MPAGE_DA_EXTENT_TAIL;
2446 out:
2447 pagevec_release(&pvec);
2448 cond_resched();
2449 return ret;
2450 }
2451
2452
2453 static int ext4_da_writepages(struct address_space *mapping,
2454 struct writeback_control *wbc)
2455 {
2456 pgoff_t index;
2457 int range_whole = 0;
2458 handle_t *handle = NULL;
2459 struct mpage_da_data mpd;
2460 struct inode *inode = mapping->host;
2461 int pages_written = 0;
2462 unsigned int max_pages;
2463 int range_cyclic, cycled = 1, io_done = 0;
2464 int needed_blocks, ret = 0;
2465 long desired_nr_to_write, nr_to_writebump = 0;
2466 loff_t range_start = wbc->range_start;
2467 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2468 pgoff_t done_index = 0;
2469 pgoff_t end;
2470 struct blk_plug plug;
2471
2472 trace_ext4_da_writepages(inode, wbc);
2473
2474 /*
2475 * No pages to write? This is mainly a kludge to avoid starting
2476 * a transaction for special inodes like journal inode on last iput()
2477 * because that could violate lock ordering on umount
2478 */
2479 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2480 return 0;
2481
2482 /*
2483 * If the filesystem has aborted, it is read-only, so return
2484 * right away instead of dumping stack traces later on that
2485 * will obscure the real source of the problem. We test
2486 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2487 * the latter could be true if the filesystem is mounted
2488 * read-only, and in that case, ext4_da_writepages should
2489 * *never* be called, so if that ever happens, we would want
2490 * the stack trace.
2491 */
2492 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2493 return -EROFS;
2494
2495 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2496 range_whole = 1;
2497
2498 range_cyclic = wbc->range_cyclic;
2499 if (wbc->range_cyclic) {
2500 index = mapping->writeback_index;
2501 if (index)
2502 cycled = 0;
2503 wbc->range_start = index << PAGE_CACHE_SHIFT;
2504 wbc->range_end = LLONG_MAX;
2505 wbc->range_cyclic = 0;
2506 end = -1;
2507 } else {
2508 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2509 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2510 }
2511
2512 /*
2513 * This works around two forms of stupidity. The first is in
2514 * the writeback code, which caps the maximum number of pages
2515 * written to be 1024 pages. This is wrong on multiple
2516 * levels; different architectues have a different page size,
2517 * which changes the maximum amount of data which gets
2518 * written. Secondly, 4 megabytes is way too small. XFS
2519 * forces this value to be 16 megabytes by multiplying
2520 * nr_to_write parameter by four, and then relies on its
2521 * allocator to allocate larger extents to make them
2522 * contiguous. Unfortunately this brings us to the second
2523 * stupidity, which is that ext4's mballoc code only allocates
2524 * at most 2048 blocks. So we force contiguous writes up to
2525 * the number of dirty blocks in the inode, or
2526 * sbi->max_writeback_mb_bump whichever is smaller.
2527 */
2528 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2529 if (!range_cyclic && range_whole) {
2530 if (wbc->nr_to_write == LONG_MAX)
2531 desired_nr_to_write = wbc->nr_to_write;
2532 else
2533 desired_nr_to_write = wbc->nr_to_write * 8;
2534 } else
2535 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2536 max_pages);
2537 if (desired_nr_to_write > max_pages)
2538 desired_nr_to_write = max_pages;
2539
2540 if (wbc->nr_to_write < desired_nr_to_write) {
2541 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2542 wbc->nr_to_write = desired_nr_to_write;
2543 }
2544
2545 retry:
2546 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2547 tag_pages_for_writeback(mapping, index, end);
2548
2549 blk_start_plug(&plug);
2550 while (!ret && wbc->nr_to_write > 0) {
2551
2552 /*
2553 * we insert one extent at a time. So we need
2554 * credit needed for single extent allocation.
2555 * journalled mode is currently not supported
2556 * by delalloc
2557 */
2558 BUG_ON(ext4_should_journal_data(inode));
2559 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2560
2561 /* start a new transaction*/
2562 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2563 needed_blocks);
2564 if (IS_ERR(handle)) {
2565 ret = PTR_ERR(handle);
2566 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2567 "%ld pages, ino %lu; err %d", __func__,
2568 wbc->nr_to_write, inode->i_ino, ret);
2569 blk_finish_plug(&plug);
2570 goto out_writepages;
2571 }
2572
2573 /*
2574 * Now call write_cache_pages_da() to find the next
2575 * contiguous region of logical blocks that need
2576 * blocks to be allocated by ext4 and submit them.
2577 */
2578 ret = write_cache_pages_da(handle, mapping,
2579 wbc, &mpd, &done_index);
2580 /*
2581 * If we have a contiguous extent of pages and we
2582 * haven't done the I/O yet, map the blocks and submit
2583 * them for I/O.
2584 */
2585 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2586 mpage_da_map_and_submit(&mpd);
2587 ret = MPAGE_DA_EXTENT_TAIL;
2588 }
2589 trace_ext4_da_write_pages(inode, &mpd);
2590 wbc->nr_to_write -= mpd.pages_written;
2591
2592 ext4_journal_stop(handle);
2593
2594 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2595 /* commit the transaction which would
2596 * free blocks released in the transaction
2597 * and try again
2598 */
2599 jbd2_journal_force_commit_nested(sbi->s_journal);
2600 ret = 0;
2601 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2602 /*
2603 * Got one extent now try with rest of the pages.
2604 * If mpd.retval is set -EIO, journal is aborted.
2605 * So we don't need to write any more.
2606 */
2607 pages_written += mpd.pages_written;
2608 ret = mpd.retval;
2609 io_done = 1;
2610 } else if (wbc->nr_to_write)
2611 /*
2612 * There is no more writeout needed
2613 * or we requested for a noblocking writeout
2614 * and we found the device congested
2615 */
2616 break;
2617 }
2618 blk_finish_plug(&plug);
2619 if (!io_done && !cycled) {
2620 cycled = 1;
2621 index = 0;
2622 wbc->range_start = index << PAGE_CACHE_SHIFT;
2623 wbc->range_end = mapping->writeback_index - 1;
2624 goto retry;
2625 }
2626
2627 /* Update index */
2628 wbc->range_cyclic = range_cyclic;
2629 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2630 /*
2631 * set the writeback_index so that range_cyclic
2632 * mode will write it back later
2633 */
2634 mapping->writeback_index = done_index;
2635
2636 out_writepages:
2637 wbc->nr_to_write -= nr_to_writebump;
2638 wbc->range_start = range_start;
2639 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2640 return ret;
2641 }
2642
2643 static int ext4_nonda_switch(struct super_block *sb)
2644 {
2645 s64 free_clusters, dirty_clusters;
2646 struct ext4_sb_info *sbi = EXT4_SB(sb);
2647
2648 /*
2649 * switch to non delalloc mode if we are running low
2650 * on free block. The free block accounting via percpu
2651 * counters can get slightly wrong with percpu_counter_batch getting
2652 * accumulated on each CPU without updating global counters
2653 * Delalloc need an accurate free block accounting. So switch
2654 * to non delalloc when we are near to error range.
2655 */
2656 free_clusters =
2657 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2658 dirty_clusters =
2659 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2660 /*
2661 * Start pushing delalloc when 1/2 of free blocks are dirty.
2662 */
2663 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2664 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2665
2666 if (2 * free_clusters < 3 * dirty_clusters ||
2667 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2668 /*
2669 * free block count is less than 150% of dirty blocks
2670 * or free blocks is less than watermark
2671 */
2672 return 1;
2673 }
2674 return 0;
2675 }
2676
2677 /* We always reserve for an inode update; the superblock could be there too */
2678 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2679 {
2680 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2681 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2682 return 1;
2683
2684 if (pos + len <= 0x7fffffffULL)
2685 return 1;
2686
2687 /* We might need to update the superblock to set LARGE_FILE */
2688 return 2;
2689 }
2690
2691 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2692 loff_t pos, unsigned len, unsigned flags,
2693 struct page **pagep, void **fsdata)
2694 {
2695 int ret, retries = 0;
2696 struct page *page;
2697 pgoff_t index;
2698 struct inode *inode = mapping->host;
2699 handle_t *handle;
2700
2701 index = pos >> PAGE_CACHE_SHIFT;
2702
2703 if (ext4_nonda_switch(inode->i_sb)) {
2704 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2705 return ext4_write_begin(file, mapping, pos,
2706 len, flags, pagep, fsdata);
2707 }
2708 *fsdata = (void *)0;
2709 trace_ext4_da_write_begin(inode, pos, len, flags);
2710
2711 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2712 ret = ext4_da_write_inline_data_begin(mapping, inode,
2713 pos, len, flags,
2714 pagep, fsdata);
2715 if (ret < 0)
2716 return ret;
2717 if (ret == 1)
2718 return 0;
2719 }
2720
2721 /*
2722 * grab_cache_page_write_begin() can take a long time if the
2723 * system is thrashing due to memory pressure, or if the page
2724 * is being written back. So grab it first before we start
2725 * the transaction handle. This also allows us to allocate
2726 * the page (if needed) without using GFP_NOFS.
2727 */
2728 retry_grab:
2729 page = grab_cache_page_write_begin(mapping, index, flags);
2730 if (!page)
2731 return -ENOMEM;
2732 unlock_page(page);
2733
2734 /*
2735 * With delayed allocation, we don't log the i_disksize update
2736 * if there is delayed block allocation. But we still need
2737 * to journalling the i_disksize update if writes to the end
2738 * of file which has an already mapped buffer.
2739 */
2740 retry_journal:
2741 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2742 ext4_da_write_credits(inode, pos, len));
2743 if (IS_ERR(handle)) {
2744 page_cache_release(page);
2745 return PTR_ERR(handle);
2746 }
2747
2748 lock_page(page);
2749 if (page->mapping != mapping) {
2750 /* The page got truncated from under us */
2751 unlock_page(page);
2752 page_cache_release(page);
2753 ext4_journal_stop(handle);
2754 goto retry_grab;
2755 }
2756 /* In case writeback began while the page was unlocked */
2757 wait_for_stable_page(page);
2758
2759 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2760 if (ret < 0) {
2761 unlock_page(page);
2762 ext4_journal_stop(handle);
2763 /*
2764 * block_write_begin may have instantiated a few blocks
2765 * outside i_size. Trim these off again. Don't need
2766 * i_size_read because we hold i_mutex.
2767 */
2768 if (pos + len > inode->i_size)
2769 ext4_truncate_failed_write(inode);
2770
2771 if (ret == -ENOSPC &&
2772 ext4_should_retry_alloc(inode->i_sb, &retries))
2773 goto retry_journal;
2774
2775 page_cache_release(page);
2776 return ret;
2777 }
2778
2779 *pagep = page;
2780 return ret;
2781 }
2782
2783 /*
2784 * Check if we should update i_disksize
2785 * when write to the end of file but not require block allocation
2786 */
2787 static int ext4_da_should_update_i_disksize(struct page *page,
2788 unsigned long offset)
2789 {
2790 struct buffer_head *bh;
2791 struct inode *inode = page->mapping->host;
2792 unsigned int idx;
2793 int i;
2794
2795 bh = page_buffers(page);
2796 idx = offset >> inode->i_blkbits;
2797
2798 for (i = 0; i < idx; i++)
2799 bh = bh->b_this_page;
2800
2801 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2802 return 0;
2803 return 1;
2804 }
2805
2806 static int ext4_da_write_end(struct file *file,
2807 struct address_space *mapping,
2808 loff_t pos, unsigned len, unsigned copied,
2809 struct page *page, void *fsdata)
2810 {
2811 struct inode *inode = mapping->host;
2812 int ret = 0, ret2;
2813 handle_t *handle = ext4_journal_current_handle();
2814 loff_t new_i_size;
2815 unsigned long start, end;
2816 int write_mode = (int)(unsigned long)fsdata;
2817
2818 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2819 return ext4_write_end(file, mapping, pos,
2820 len, copied, page, fsdata);
2821
2822 trace_ext4_da_write_end(inode, pos, len, copied);
2823 start = pos & (PAGE_CACHE_SIZE - 1);
2824 end = start + copied - 1;
2825
2826 /*
2827 * generic_write_end() will run mark_inode_dirty() if i_size
2828 * changes. So let's piggyback the i_disksize mark_inode_dirty
2829 * into that.
2830 */
2831 new_i_size = pos + copied;
2832 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2833 if (ext4_has_inline_data(inode) ||
2834 ext4_da_should_update_i_disksize(page, end)) {
2835 down_write(&EXT4_I(inode)->i_data_sem);
2836 if (new_i_size > EXT4_I(inode)->i_disksize)
2837 EXT4_I(inode)->i_disksize = new_i_size;
2838 up_write(&EXT4_I(inode)->i_data_sem);
2839 /* We need to mark inode dirty even if
2840 * new_i_size is less that inode->i_size
2841 * bu greater than i_disksize.(hint delalloc)
2842 */
2843 ext4_mark_inode_dirty(handle, inode);
2844 }
2845 }
2846
2847 if (write_mode != CONVERT_INLINE_DATA &&
2848 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2849 ext4_has_inline_data(inode))
2850 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2851 page);
2852 else
2853 ret2 = generic_write_end(file, mapping, pos, len, copied,
2854 page, fsdata);
2855
2856 copied = ret2;
2857 if (ret2 < 0)
2858 ret = ret2;
2859 ret2 = ext4_journal_stop(handle);
2860 if (!ret)
2861 ret = ret2;
2862
2863 return ret ? ret : copied;
2864 }
2865
2866 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2867 {
2868 /*
2869 * Drop reserved blocks
2870 */
2871 BUG_ON(!PageLocked(page));
2872 if (!page_has_buffers(page))
2873 goto out;
2874
2875 ext4_da_page_release_reservation(page, offset);
2876
2877 out:
2878 ext4_invalidatepage(page, offset);
2879
2880 return;
2881 }
2882
2883 /*
2884 * Force all delayed allocation blocks to be allocated for a given inode.
2885 */
2886 int ext4_alloc_da_blocks(struct inode *inode)
2887 {
2888 trace_ext4_alloc_da_blocks(inode);
2889
2890 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2891 !EXT4_I(inode)->i_reserved_meta_blocks)
2892 return 0;
2893
2894 /*
2895 * We do something simple for now. The filemap_flush() will
2896 * also start triggering a write of the data blocks, which is
2897 * not strictly speaking necessary (and for users of
2898 * laptop_mode, not even desirable). However, to do otherwise
2899 * would require replicating code paths in:
2900 *
2901 * ext4_da_writepages() ->
2902 * write_cache_pages() ---> (via passed in callback function)
2903 * __mpage_da_writepage() -->
2904 * mpage_add_bh_to_extent()
2905 * mpage_da_map_blocks()
2906 *
2907 * The problem is that write_cache_pages(), located in
2908 * mm/page-writeback.c, marks pages clean in preparation for
2909 * doing I/O, which is not desirable if we're not planning on
2910 * doing I/O at all.
2911 *
2912 * We could call write_cache_pages(), and then redirty all of
2913 * the pages by calling redirty_page_for_writepage() but that
2914 * would be ugly in the extreme. So instead we would need to
2915 * replicate parts of the code in the above functions,
2916 * simplifying them because we wouldn't actually intend to
2917 * write out the pages, but rather only collect contiguous
2918 * logical block extents, call the multi-block allocator, and
2919 * then update the buffer heads with the block allocations.
2920 *
2921 * For now, though, we'll cheat by calling filemap_flush(),
2922 * which will map the blocks, and start the I/O, but not
2923 * actually wait for the I/O to complete.
2924 */
2925 return filemap_flush(inode->i_mapping);
2926 }
2927
2928 /*
2929 * bmap() is special. It gets used by applications such as lilo and by
2930 * the swapper to find the on-disk block of a specific piece of data.
2931 *
2932 * Naturally, this is dangerous if the block concerned is still in the
2933 * journal. If somebody makes a swapfile on an ext4 data-journaling
2934 * filesystem and enables swap, then they may get a nasty shock when the
2935 * data getting swapped to that swapfile suddenly gets overwritten by
2936 * the original zero's written out previously to the journal and
2937 * awaiting writeback in the kernel's buffer cache.
2938 *
2939 * So, if we see any bmap calls here on a modified, data-journaled file,
2940 * take extra steps to flush any blocks which might be in the cache.
2941 */
2942 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2943 {
2944 struct inode *inode = mapping->host;
2945 journal_t *journal;
2946 int err;
2947
2948 /*
2949 * We can get here for an inline file via the FIBMAP ioctl
2950 */
2951 if (ext4_has_inline_data(inode))
2952 return 0;
2953
2954 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2955 test_opt(inode->i_sb, DELALLOC)) {
2956 /*
2957 * With delalloc we want to sync the file
2958 * so that we can make sure we allocate
2959 * blocks for file
2960 */
2961 filemap_write_and_wait(mapping);
2962 }
2963
2964 if (EXT4_JOURNAL(inode) &&
2965 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2966 /*
2967 * This is a REALLY heavyweight approach, but the use of
2968 * bmap on dirty files is expected to be extremely rare:
2969 * only if we run lilo or swapon on a freshly made file
2970 * do we expect this to happen.
2971 *
2972 * (bmap requires CAP_SYS_RAWIO so this does not
2973 * represent an unprivileged user DOS attack --- we'd be
2974 * in trouble if mortal users could trigger this path at
2975 * will.)
2976 *
2977 * NB. EXT4_STATE_JDATA is not set on files other than
2978 * regular files. If somebody wants to bmap a directory
2979 * or symlink and gets confused because the buffer
2980 * hasn't yet been flushed to disk, they deserve
2981 * everything they get.
2982 */
2983
2984 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2985 journal = EXT4_JOURNAL(inode);
2986 jbd2_journal_lock_updates(journal);
2987 err = jbd2_journal_flush(journal);
2988 jbd2_journal_unlock_updates(journal);
2989
2990 if (err)
2991 return 0;
2992 }
2993
2994 return generic_block_bmap(mapping, block, ext4_get_block);
2995 }
2996
2997 static int ext4_readpage(struct file *file, struct page *page)
2998 {
2999 int ret = -EAGAIN;
3000 struct inode *inode = page->mapping->host;
3001
3002 trace_ext4_readpage(page);
3003
3004 if (ext4_has_inline_data(inode))
3005 ret = ext4_readpage_inline(inode, page);
3006
3007 if (ret == -EAGAIN)
3008 return mpage_readpage(page, ext4_get_block);
3009
3010 return ret;
3011 }
3012
3013 static int
3014 ext4_readpages(struct file *file, struct address_space *mapping,
3015 struct list_head *pages, unsigned nr_pages)
3016 {
3017 struct inode *inode = mapping->host;
3018
3019 /* If the file has inline data, no need to do readpages. */
3020 if (ext4_has_inline_data(inode))
3021 return 0;
3022
3023 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3024 }
3025
3026 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3027 {
3028 trace_ext4_invalidatepage(page, offset);
3029
3030 /* No journalling happens on data buffers when this function is used */
3031 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3032
3033 block_invalidatepage(page, offset);
3034 }
3035
3036 static int __ext4_journalled_invalidatepage(struct page *page,
3037 unsigned long offset)
3038 {
3039 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3040
3041 trace_ext4_journalled_invalidatepage(page, offset);
3042
3043 /*
3044 * If it's a full truncate we just forget about the pending dirtying
3045 */
3046 if (offset == 0)
3047 ClearPageChecked(page);
3048
3049 return jbd2_journal_invalidatepage(journal, page, offset);
3050 }
3051
3052 /* Wrapper for aops... */
3053 static void ext4_journalled_invalidatepage(struct page *page,
3054 unsigned long offset)
3055 {
3056 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3057 }
3058
3059 static int ext4_releasepage(struct page *page, gfp_t wait)
3060 {
3061 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3062
3063 trace_ext4_releasepage(page);
3064
3065 /* Page has dirty journalled data -> cannot release */
3066 if (PageChecked(page))
3067 return 0;
3068 if (journal)
3069 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3070 else
3071 return try_to_free_buffers(page);
3072 }
3073
3074 /*
3075 * ext4_get_block used when preparing for a DIO write or buffer write.
3076 * We allocate an uinitialized extent if blocks haven't been allocated.
3077 * The extent will be converted to initialized after the IO is complete.
3078 */
3079 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3080 struct buffer_head *bh_result, int create)
3081 {
3082 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3083 inode->i_ino, create);
3084 return _ext4_get_block(inode, iblock, bh_result,
3085 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3086 }
3087
3088 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3089 struct buffer_head *bh_result, int create)
3090 {
3091 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3092 inode->i_ino, create);
3093 return _ext4_get_block(inode, iblock, bh_result,
3094 EXT4_GET_BLOCKS_NO_LOCK);
3095 }
3096
3097 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3098 ssize_t size, void *private, int ret,
3099 bool is_async)
3100 {
3101 struct inode *inode = file_inode(iocb->ki_filp);
3102 ext4_io_end_t *io_end = iocb->private;
3103
3104 /* if not async direct IO or dio with 0 bytes write, just return */
3105 if (!io_end || !size)
3106 goto out;
3107
3108 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3109 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3110 iocb->private, io_end->inode->i_ino, iocb, offset,
3111 size);
3112
3113 iocb->private = NULL;
3114
3115 /* if not aio dio with unwritten extents, just free io and return */
3116 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3117 ext4_free_io_end(io_end);
3118 out:
3119 inode_dio_done(inode);
3120 if (is_async)
3121 aio_complete(iocb, ret, 0);
3122 return;
3123 }
3124
3125 io_end->offset = offset;
3126 io_end->size = size;
3127 if (is_async) {
3128 io_end->iocb = iocb;
3129 io_end->result = ret;
3130 }
3131
3132 ext4_add_complete_io(io_end);
3133 }
3134
3135 /*
3136 * For ext4 extent files, ext4 will do direct-io write to holes,
3137 * preallocated extents, and those write extend the file, no need to
3138 * fall back to buffered IO.
3139 *
3140 * For holes, we fallocate those blocks, mark them as uninitialized
3141 * If those blocks were preallocated, we mark sure they are split, but
3142 * still keep the range to write as uninitialized.
3143 *
3144 * The unwritten extents will be converted to written when DIO is completed.
3145 * For async direct IO, since the IO may still pending when return, we
3146 * set up an end_io call back function, which will do the conversion
3147 * when async direct IO completed.
3148 *
3149 * If the O_DIRECT write will extend the file then add this inode to the
3150 * orphan list. So recovery will truncate it back to the original size
3151 * if the machine crashes during the write.
3152 *
3153 */
3154 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3155 const struct iovec *iov, loff_t offset,
3156 unsigned long nr_segs)
3157 {
3158 struct file *file = iocb->ki_filp;
3159 struct inode *inode = file->f_mapping->host;
3160 ssize_t ret;
3161 size_t count = iov_length(iov, nr_segs);
3162 int overwrite = 0;
3163 get_block_t *get_block_func = NULL;
3164 int dio_flags = 0;
3165 loff_t final_size = offset + count;
3166
3167 /* Use the old path for reads and writes beyond i_size. */
3168 if (rw != WRITE || final_size > inode->i_size)
3169 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3170
3171 BUG_ON(iocb->private == NULL);
3172
3173 /* If we do a overwrite dio, i_mutex locking can be released */
3174 overwrite = *((int *)iocb->private);
3175
3176 if (overwrite) {
3177 atomic_inc(&inode->i_dio_count);
3178 down_read(&EXT4_I(inode)->i_data_sem);
3179 mutex_unlock(&inode->i_mutex);
3180 }
3181
3182 /*
3183 * We could direct write to holes and fallocate.
3184 *
3185 * Allocated blocks to fill the hole are marked as
3186 * uninitialized to prevent parallel buffered read to expose
3187 * the stale data before DIO complete the data IO.
3188 *
3189 * As to previously fallocated extents, ext4 get_block will
3190 * just simply mark the buffer mapped but still keep the
3191 * extents uninitialized.
3192 *
3193 * For non AIO case, we will convert those unwritten extents
3194 * to written after return back from blockdev_direct_IO.
3195 *
3196 * For async DIO, the conversion needs to be deferred when the
3197 * IO is completed. The ext4 end_io callback function will be
3198 * called to take care of the conversion work. Here for async
3199 * case, we allocate an io_end structure to hook to the iocb.
3200 */
3201 iocb->private = NULL;
3202 ext4_inode_aio_set(inode, NULL);
3203 if (!is_sync_kiocb(iocb)) {
3204 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3205 if (!io_end) {
3206 ret = -ENOMEM;
3207 goto retake_lock;
3208 }
3209 io_end->flag |= EXT4_IO_END_DIRECT;
3210 iocb->private = io_end;
3211 /*
3212 * we save the io structure for current async direct
3213 * IO, so that later ext4_map_blocks() could flag the
3214 * io structure whether there is a unwritten extents
3215 * needs to be converted when IO is completed.
3216 */
3217 ext4_inode_aio_set(inode, io_end);
3218 }
3219
3220 if (overwrite) {
3221 get_block_func = ext4_get_block_write_nolock;
3222 } else {
3223 get_block_func = ext4_get_block_write;
3224 dio_flags = DIO_LOCKING;
3225 }
3226 ret = __blockdev_direct_IO(rw, iocb, inode,
3227 inode->i_sb->s_bdev, iov,
3228 offset, nr_segs,
3229 get_block_func,
3230 ext4_end_io_dio,
3231 NULL,
3232 dio_flags);
3233
3234 if (iocb->private)
3235 ext4_inode_aio_set(inode, NULL);
3236 /*
3237 * The io_end structure takes a reference to the inode, that
3238 * structure needs to be destroyed and the reference to the
3239 * inode need to be dropped, when IO is complete, even with 0
3240 * byte write, or failed.
3241 *
3242 * In the successful AIO DIO case, the io_end structure will
3243 * be destroyed and the reference to the inode will be dropped
3244 * after the end_io call back function is called.
3245 *
3246 * In the case there is 0 byte write, or error case, since VFS
3247 * direct IO won't invoke the end_io call back function, we
3248 * need to free the end_io structure here.
3249 */
3250 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3251 ext4_free_io_end(iocb->private);
3252 iocb->private = NULL;
3253 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3254 EXT4_STATE_DIO_UNWRITTEN)) {
3255 int err;
3256 /*
3257 * for non AIO case, since the IO is already
3258 * completed, we could do the conversion right here
3259 */
3260 err = ext4_convert_unwritten_extents(inode,
3261 offset, ret);
3262 if (err < 0)
3263 ret = err;
3264 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3265 }
3266
3267 retake_lock:
3268 /* take i_mutex locking again if we do a ovewrite dio */
3269 if (overwrite) {
3270 inode_dio_done(inode);
3271 up_read(&EXT4_I(inode)->i_data_sem);
3272 mutex_lock(&inode->i_mutex);
3273 }
3274
3275 return ret;
3276 }
3277
3278 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3279 const struct iovec *iov, loff_t offset,
3280 unsigned long nr_segs)
3281 {
3282 struct file *file = iocb->ki_filp;
3283 struct inode *inode = file->f_mapping->host;
3284 ssize_t ret;
3285
3286 /*
3287 * If we are doing data journalling we don't support O_DIRECT
3288 */
3289 if (ext4_should_journal_data(inode))
3290 return 0;
3291
3292 /* Let buffer I/O handle the inline data case. */
3293 if (ext4_has_inline_data(inode))
3294 return 0;
3295
3296 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3297 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3298 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3299 else
3300 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3301 trace_ext4_direct_IO_exit(inode, offset,
3302 iov_length(iov, nr_segs), rw, ret);
3303 return ret;
3304 }
3305
3306 /*
3307 * Pages can be marked dirty completely asynchronously from ext4's journalling
3308 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3309 * much here because ->set_page_dirty is called under VFS locks. The page is
3310 * not necessarily locked.
3311 *
3312 * We cannot just dirty the page and leave attached buffers clean, because the
3313 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3314 * or jbddirty because all the journalling code will explode.
3315 *
3316 * So what we do is to mark the page "pending dirty" and next time writepage
3317 * is called, propagate that into the buffers appropriately.
3318 */
3319 static int ext4_journalled_set_page_dirty(struct page *page)
3320 {
3321 SetPageChecked(page);
3322 return __set_page_dirty_nobuffers(page);
3323 }
3324
3325 static const struct address_space_operations ext4_aops = {
3326 .readpage = ext4_readpage,
3327 .readpages = ext4_readpages,
3328 .writepage = ext4_writepage,
3329 .write_begin = ext4_write_begin,
3330 .write_end = ext4_write_end,
3331 .bmap = ext4_bmap,
3332 .invalidatepage = ext4_invalidatepage,
3333 .releasepage = ext4_releasepage,
3334 .direct_IO = ext4_direct_IO,
3335 .migratepage = buffer_migrate_page,
3336 .is_partially_uptodate = block_is_partially_uptodate,
3337 .error_remove_page = generic_error_remove_page,
3338 };
3339
3340 static const struct address_space_operations ext4_journalled_aops = {
3341 .readpage = ext4_readpage,
3342 .readpages = ext4_readpages,
3343 .writepage = ext4_writepage,
3344 .write_begin = ext4_write_begin,
3345 .write_end = ext4_journalled_write_end,
3346 .set_page_dirty = ext4_journalled_set_page_dirty,
3347 .bmap = ext4_bmap,
3348 .invalidatepage = ext4_journalled_invalidatepage,
3349 .releasepage = ext4_releasepage,
3350 .direct_IO = ext4_direct_IO,
3351 .is_partially_uptodate = block_is_partially_uptodate,
3352 .error_remove_page = generic_error_remove_page,
3353 };
3354
3355 static const struct address_space_operations ext4_da_aops = {
3356 .readpage = ext4_readpage,
3357 .readpages = ext4_readpages,
3358 .writepage = ext4_writepage,
3359 .writepages = ext4_da_writepages,
3360 .write_begin = ext4_da_write_begin,
3361 .write_end = ext4_da_write_end,
3362 .bmap = ext4_bmap,
3363 .invalidatepage = ext4_da_invalidatepage,
3364 .releasepage = ext4_releasepage,
3365 .direct_IO = ext4_direct_IO,
3366 .migratepage = buffer_migrate_page,
3367 .is_partially_uptodate = block_is_partially_uptodate,
3368 .error_remove_page = generic_error_remove_page,
3369 };
3370
3371 void ext4_set_aops(struct inode *inode)
3372 {
3373 switch (ext4_inode_journal_mode(inode)) {
3374 case EXT4_INODE_ORDERED_DATA_MODE:
3375 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3376 break;
3377 case EXT4_INODE_WRITEBACK_DATA_MODE:
3378 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3379 break;
3380 case EXT4_INODE_JOURNAL_DATA_MODE:
3381 inode->i_mapping->a_ops = &ext4_journalled_aops;
3382 return;
3383 default:
3384 BUG();
3385 }
3386 if (test_opt(inode->i_sb, DELALLOC))
3387 inode->i_mapping->a_ops = &ext4_da_aops;
3388 else
3389 inode->i_mapping->a_ops = &ext4_aops;
3390 }
3391
3392
3393 /*
3394 * ext4_discard_partial_page_buffers()
3395 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3396 * This function finds and locks the page containing the offset
3397 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3398 * Calling functions that already have the page locked should call
3399 * ext4_discard_partial_page_buffers_no_lock directly.
3400 */
3401 int ext4_discard_partial_page_buffers(handle_t *handle,
3402 struct address_space *mapping, loff_t from,
3403 loff_t length, int flags)
3404 {
3405 struct inode *inode = mapping->host;
3406 struct page *page;
3407 int err = 0;
3408
3409 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3410 mapping_gfp_mask(mapping) & ~__GFP_FS);
3411 if (!page)
3412 return -ENOMEM;
3413
3414 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3415 from, length, flags);
3416
3417 unlock_page(page);
3418 page_cache_release(page);
3419 return err;
3420 }
3421
3422 /*
3423 * ext4_discard_partial_page_buffers_no_lock()
3424 * Zeros a page range of length 'length' starting from offset 'from'.
3425 * Buffer heads that correspond to the block aligned regions of the
3426 * zeroed range will be unmapped. Unblock aligned regions
3427 * will have the corresponding buffer head mapped if needed so that
3428 * that region of the page can be updated with the partial zero out.
3429 *
3430 * This function assumes that the page has already been locked. The
3431 * The range to be discarded must be contained with in the given page.
3432 * If the specified range exceeds the end of the page it will be shortened
3433 * to the end of the page that corresponds to 'from'. This function is
3434 * appropriate for updating a page and it buffer heads to be unmapped and
3435 * zeroed for blocks that have been either released, or are going to be
3436 * released.
3437 *
3438 * handle: The journal handle
3439 * inode: The files inode
3440 * page: A locked page that contains the offset "from"
3441 * from: The starting byte offset (from the beginning of the file)
3442 * to begin discarding
3443 * len: The length of bytes to discard
3444 * flags: Optional flags that may be used:
3445 *
3446 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3447 * Only zero the regions of the page whose buffer heads
3448 * have already been unmapped. This flag is appropriate
3449 * for updating the contents of a page whose blocks may
3450 * have already been released, and we only want to zero
3451 * out the regions that correspond to those released blocks.
3452 *
3453 * Returns zero on success or negative on failure.
3454 */
3455 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3456 struct inode *inode, struct page *page, loff_t from,
3457 loff_t length, int flags)
3458 {
3459 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3460 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3461 unsigned int blocksize, max, pos;
3462 ext4_lblk_t iblock;
3463 struct buffer_head *bh;
3464 int err = 0;
3465
3466 blocksize = inode->i_sb->s_blocksize;
3467 max = PAGE_CACHE_SIZE - offset;
3468
3469 if (index != page->index)
3470 return -EINVAL;
3471
3472 /*
3473 * correct length if it does not fall between
3474 * 'from' and the end of the page
3475 */
3476 if (length > max || length < 0)
3477 length = max;
3478
3479 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3480
3481 if (!page_has_buffers(page))
3482 create_empty_buffers(page, blocksize, 0);
3483
3484 /* Find the buffer that contains "offset" */
3485 bh = page_buffers(page);
3486 pos = blocksize;
3487 while (offset >= pos) {
3488 bh = bh->b_this_page;
3489 iblock++;
3490 pos += blocksize;
3491 }
3492
3493 pos = offset;
3494 while (pos < offset + length) {
3495 unsigned int end_of_block, range_to_discard;
3496
3497 err = 0;
3498
3499 /* The length of space left to zero and unmap */
3500 range_to_discard = offset + length - pos;
3501
3502 /* The length of space until the end of the block */
3503 end_of_block = blocksize - (pos & (blocksize-1));
3504
3505 /*
3506 * Do not unmap or zero past end of block
3507 * for this buffer head
3508 */
3509 if (range_to_discard > end_of_block)
3510 range_to_discard = end_of_block;
3511
3512
3513 /*
3514 * Skip this buffer head if we are only zeroing unampped
3515 * regions of the page
3516 */
3517 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3518 buffer_mapped(bh))
3519 goto next;
3520
3521 /* If the range is block aligned, unmap */
3522 if (range_to_discard == blocksize) {
3523 clear_buffer_dirty(bh);
3524 bh->b_bdev = NULL;
3525 clear_buffer_mapped(bh);
3526 clear_buffer_req(bh);
3527 clear_buffer_new(bh);
3528 clear_buffer_delay(bh);
3529 clear_buffer_unwritten(bh);
3530 clear_buffer_uptodate(bh);
3531 zero_user(page, pos, range_to_discard);
3532 BUFFER_TRACE(bh, "Buffer discarded");
3533 goto next;
3534 }
3535
3536 /*
3537 * If this block is not completely contained in the range
3538 * to be discarded, then it is not going to be released. Because
3539 * we need to keep this block, we need to make sure this part
3540 * of the page is uptodate before we modify it by writeing
3541 * partial zeros on it.
3542 */
3543 if (!buffer_mapped(bh)) {
3544 /*
3545 * Buffer head must be mapped before we can read
3546 * from the block
3547 */
3548 BUFFER_TRACE(bh, "unmapped");
3549 ext4_get_block(inode, iblock, bh, 0);
3550 /* unmapped? It's a hole - nothing to do */
3551 if (!buffer_mapped(bh)) {
3552 BUFFER_TRACE(bh, "still unmapped");
3553 goto next;
3554 }
3555 }
3556
3557 /* Ok, it's mapped. Make sure it's up-to-date */
3558 if (PageUptodate(page))
3559 set_buffer_uptodate(bh);
3560
3561 if (!buffer_uptodate(bh)) {
3562 err = -EIO;
3563 ll_rw_block(READ, 1, &bh);
3564 wait_on_buffer(bh);
3565 /* Uhhuh. Read error. Complain and punt.*/
3566 if (!buffer_uptodate(bh))
3567 goto next;
3568 }
3569
3570 if (ext4_should_journal_data(inode)) {
3571 BUFFER_TRACE(bh, "get write access");
3572 err = ext4_journal_get_write_access(handle, bh);
3573 if (err)
3574 goto next;
3575 }
3576
3577 zero_user(page, pos, range_to_discard);
3578
3579 err = 0;
3580 if (ext4_should_journal_data(inode)) {
3581 err = ext4_handle_dirty_metadata(handle, inode, bh);
3582 } else
3583 mark_buffer_dirty(bh);
3584
3585 BUFFER_TRACE(bh, "Partial buffer zeroed");
3586 next:
3587 bh = bh->b_this_page;
3588 iblock++;
3589 pos += range_to_discard;
3590 }
3591
3592 return err;
3593 }
3594
3595 int ext4_can_truncate(struct inode *inode)
3596 {
3597 if (S_ISREG(inode->i_mode))
3598 return 1;
3599 if (S_ISDIR(inode->i_mode))
3600 return 1;
3601 if (S_ISLNK(inode->i_mode))
3602 return !ext4_inode_is_fast_symlink(inode);
3603 return 0;
3604 }
3605
3606 /*
3607 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3608 * associated with the given offset and length
3609 *
3610 * @inode: File inode
3611 * @offset: The offset where the hole will begin
3612 * @len: The length of the hole
3613 *
3614 * Returns: 0 on success or negative on failure
3615 */
3616
3617 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3618 {
3619 struct inode *inode = file_inode(file);
3620 struct super_block *sb = inode->i_sb;
3621 ext4_lblk_t first_block, stop_block;
3622 struct address_space *mapping = inode->i_mapping;
3623 loff_t first_page, last_page, page_len;
3624 loff_t first_page_offset, last_page_offset;
3625 handle_t *handle;
3626 unsigned int credits;
3627 int ret = 0;
3628
3629 if (!S_ISREG(inode->i_mode))
3630 return -EOPNOTSUPP;
3631
3632 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3633 /* TODO: Add support for bigalloc file systems */
3634 return -EOPNOTSUPP;
3635 }
3636
3637 trace_ext4_punch_hole(inode, offset, length);
3638
3639 /*
3640 * Write out all dirty pages to avoid race conditions
3641 * Then release them.
3642 */
3643 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3644 ret = filemap_write_and_wait_range(mapping, offset,
3645 offset + length - 1);
3646 if (ret)
3647 return ret;
3648 }
3649
3650 mutex_lock(&inode->i_mutex);
3651 /* It's not possible punch hole on append only file */
3652 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3653 ret = -EPERM;
3654 goto out_mutex;
3655 }
3656 if (IS_SWAPFILE(inode)) {
3657 ret = -ETXTBSY;
3658 goto out_mutex;
3659 }
3660
3661 /* No need to punch hole beyond i_size */
3662 if (offset >= inode->i_size)
3663 goto out_mutex;
3664
3665 /*
3666 * If the hole extends beyond i_size, set the hole
3667 * to end after the page that contains i_size
3668 */
3669 if (offset + length > inode->i_size) {
3670 length = inode->i_size +
3671 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3672 offset;
3673 }
3674
3675 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3676 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3677
3678 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3679 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3680
3681 /* Now release the pages */
3682 if (last_page_offset > first_page_offset) {
3683 truncate_pagecache_range(inode, first_page_offset,
3684 last_page_offset - 1);
3685 }
3686
3687 /* Wait all existing dio workers, newcomers will block on i_mutex */
3688 ext4_inode_block_unlocked_dio(inode);
3689 ret = ext4_flush_unwritten_io(inode);
3690 if (ret)
3691 goto out_dio;
3692 inode_dio_wait(inode);
3693
3694 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3695 credits = ext4_writepage_trans_blocks(inode);
3696 else
3697 credits = ext4_blocks_for_truncate(inode);
3698 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3699 if (IS_ERR(handle)) {
3700 ret = PTR_ERR(handle);
3701 ext4_std_error(sb, ret);
3702 goto out_dio;
3703 }
3704
3705 /*
3706 * Now we need to zero out the non-page-aligned data in the
3707 * pages at the start and tail of the hole, and unmap the
3708 * buffer heads for the block aligned regions of the page that
3709 * were completely zeroed.
3710 */
3711 if (first_page > last_page) {
3712 /*
3713 * If the file space being truncated is contained
3714 * within a page just zero out and unmap the middle of
3715 * that page
3716 */
3717 ret = ext4_discard_partial_page_buffers(handle,
3718 mapping, offset, length, 0);
3719
3720 if (ret)
3721 goto out_stop;
3722 } else {
3723 /*
3724 * zero out and unmap the partial page that contains
3725 * the start of the hole
3726 */
3727 page_len = first_page_offset - offset;
3728 if (page_len > 0) {
3729 ret = ext4_discard_partial_page_buffers(handle, mapping,
3730 offset, page_len, 0);
3731 if (ret)
3732 goto out_stop;
3733 }
3734
3735 /*
3736 * zero out and unmap the partial page that contains
3737 * the end of the hole
3738 */
3739 page_len = offset + length - last_page_offset;
3740 if (page_len > 0) {
3741 ret = ext4_discard_partial_page_buffers(handle, mapping,
3742 last_page_offset, page_len, 0);
3743 if (ret)
3744 goto out_stop;
3745 }
3746 }
3747
3748 /*
3749 * If i_size is contained in the last page, we need to
3750 * unmap and zero the partial page after i_size
3751 */
3752 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3753 inode->i_size % PAGE_CACHE_SIZE != 0) {
3754 page_len = PAGE_CACHE_SIZE -
3755 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3756
3757 if (page_len > 0) {
3758 ret = ext4_discard_partial_page_buffers(handle,
3759 mapping, inode->i_size, page_len, 0);
3760
3761 if (ret)
3762 goto out_stop;
3763 }
3764 }
3765
3766 first_block = (offset + sb->s_blocksize - 1) >>
3767 EXT4_BLOCK_SIZE_BITS(sb);
3768 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3769
3770 /* If there are no blocks to remove, return now */
3771 if (first_block >= stop_block)
3772 goto out_stop;
3773
3774 down_write(&EXT4_I(inode)->i_data_sem);
3775 ext4_discard_preallocations(inode);
3776
3777 ret = ext4_es_remove_extent(inode, first_block,
3778 stop_block - first_block);
3779 if (ret) {
3780 up_write(&EXT4_I(inode)->i_data_sem);
3781 goto out_stop;
3782 }
3783
3784 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3785 ret = ext4_ext_remove_space(inode, first_block,
3786 stop_block - 1);
3787 else
3788 ret = ext4_free_hole_blocks(handle, inode, first_block,
3789 stop_block);
3790
3791 ext4_discard_preallocations(inode);
3792 up_write(&EXT4_I(inode)->i_data_sem);
3793 if (IS_SYNC(inode))
3794 ext4_handle_sync(handle);
3795 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3796 ext4_mark_inode_dirty(handle, inode);
3797 out_stop:
3798 ext4_journal_stop(handle);
3799 out_dio:
3800 ext4_inode_resume_unlocked_dio(inode);
3801 out_mutex:
3802 mutex_unlock(&inode->i_mutex);
3803 return ret;
3804 }
3805
3806 /*
3807 * ext4_truncate()
3808 *
3809 * We block out ext4_get_block() block instantiations across the entire
3810 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3811 * simultaneously on behalf of the same inode.
3812 *
3813 * As we work through the truncate and commit bits of it to the journal there
3814 * is one core, guiding principle: the file's tree must always be consistent on
3815 * disk. We must be able to restart the truncate after a crash.
3816 *
3817 * The file's tree may be transiently inconsistent in memory (although it
3818 * probably isn't), but whenever we close off and commit a journal transaction,
3819 * the contents of (the filesystem + the journal) must be consistent and
3820 * restartable. It's pretty simple, really: bottom up, right to left (although
3821 * left-to-right works OK too).
3822 *
3823 * Note that at recovery time, journal replay occurs *before* the restart of
3824 * truncate against the orphan inode list.
3825 *
3826 * The committed inode has the new, desired i_size (which is the same as
3827 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3828 * that this inode's truncate did not complete and it will again call
3829 * ext4_truncate() to have another go. So there will be instantiated blocks
3830 * to the right of the truncation point in a crashed ext4 filesystem. But
3831 * that's fine - as long as they are linked from the inode, the post-crash
3832 * ext4_truncate() run will find them and release them.
3833 */
3834 void ext4_truncate(struct inode *inode)
3835 {
3836 struct ext4_inode_info *ei = EXT4_I(inode);
3837 unsigned int credits;
3838 handle_t *handle;
3839 struct address_space *mapping = inode->i_mapping;
3840 loff_t page_len;
3841
3842 /*
3843 * There is a possibility that we're either freeing the inode
3844 * or it completely new indode. In those cases we might not
3845 * have i_mutex locked because it's not necessary.
3846 */
3847 if (!(inode->i_state & (I_NEW|I_FREEING)))
3848 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3849 trace_ext4_truncate_enter(inode);
3850
3851 if (!ext4_can_truncate(inode))
3852 return;
3853
3854 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3855
3856 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3857 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3858
3859 if (ext4_has_inline_data(inode)) {
3860 int has_inline = 1;
3861
3862 ext4_inline_data_truncate(inode, &has_inline);
3863 if (has_inline)
3864 return;
3865 }
3866
3867 /*
3868 * finish any pending end_io work so we won't run the risk of
3869 * converting any truncated blocks to initialized later
3870 */
3871 ext4_flush_unwritten_io(inode);
3872
3873 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3874 credits = ext4_writepage_trans_blocks(inode);
3875 else
3876 credits = ext4_blocks_for_truncate(inode);
3877
3878 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3879 if (IS_ERR(handle)) {
3880 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3881 return;
3882 }
3883
3884 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3885 page_len = PAGE_CACHE_SIZE -
3886 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3887
3888 if (ext4_discard_partial_page_buffers(handle,
3889 mapping, inode->i_size, page_len, 0))
3890 goto out_stop;
3891 }
3892
3893 /*
3894 * We add the inode to the orphan list, so that if this
3895 * truncate spans multiple transactions, and we crash, we will
3896 * resume the truncate when the filesystem recovers. It also
3897 * marks the inode dirty, to catch the new size.
3898 *
3899 * Implication: the file must always be in a sane, consistent
3900 * truncatable state while each transaction commits.
3901 */
3902 if (ext4_orphan_add(handle, inode))
3903 goto out_stop;
3904
3905 down_write(&EXT4_I(inode)->i_data_sem);
3906
3907 ext4_discard_preallocations(inode);
3908
3909 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3910 ext4_ext_truncate(handle, inode);
3911 else
3912 ext4_ind_truncate(handle, inode);
3913
3914 up_write(&ei->i_data_sem);
3915
3916 if (IS_SYNC(inode))
3917 ext4_handle_sync(handle);
3918
3919 out_stop:
3920 /*
3921 * If this was a simple ftruncate() and the file will remain alive,
3922 * then we need to clear up the orphan record which we created above.
3923 * However, if this was a real unlink then we were called by
3924 * ext4_delete_inode(), and we allow that function to clean up the
3925 * orphan info for us.
3926 */
3927 if (inode->i_nlink)
3928 ext4_orphan_del(handle, inode);
3929
3930 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3931 ext4_mark_inode_dirty(handle, inode);
3932 ext4_journal_stop(handle);
3933
3934 trace_ext4_truncate_exit(inode);
3935 }
3936
3937 /*
3938 * ext4_get_inode_loc returns with an extra refcount against the inode's
3939 * underlying buffer_head on success. If 'in_mem' is true, we have all
3940 * data in memory that is needed to recreate the on-disk version of this
3941 * inode.
3942 */
3943 static int __ext4_get_inode_loc(struct inode *inode,
3944 struct ext4_iloc *iloc, int in_mem)
3945 {
3946 struct ext4_group_desc *gdp;
3947 struct buffer_head *bh;
3948 struct super_block *sb = inode->i_sb;
3949 ext4_fsblk_t block;
3950 int inodes_per_block, inode_offset;
3951
3952 iloc->bh = NULL;
3953 if (!ext4_valid_inum(sb, inode->i_ino))
3954 return -EIO;
3955
3956 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3957 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3958 if (!gdp)
3959 return -EIO;
3960
3961 /*
3962 * Figure out the offset within the block group inode table
3963 */
3964 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3965 inode_offset = ((inode->i_ino - 1) %
3966 EXT4_INODES_PER_GROUP(sb));
3967 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3968 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3969
3970 bh = sb_getblk(sb, block);
3971 if (unlikely(!bh))
3972 return -ENOMEM;
3973 if (!buffer_uptodate(bh)) {
3974 lock_buffer(bh);
3975
3976 /*
3977 * If the buffer has the write error flag, we have failed
3978 * to write out another inode in the same block. In this
3979 * case, we don't have to read the block because we may
3980 * read the old inode data successfully.
3981 */
3982 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3983 set_buffer_uptodate(bh);
3984
3985 if (buffer_uptodate(bh)) {
3986 /* someone brought it uptodate while we waited */
3987 unlock_buffer(bh);
3988 goto has_buffer;
3989 }
3990
3991 /*
3992 * If we have all information of the inode in memory and this
3993 * is the only valid inode in the block, we need not read the
3994 * block.
3995 */
3996 if (in_mem) {
3997 struct buffer_head *bitmap_bh;
3998 int i, start;
3999
4000 start = inode_offset & ~(inodes_per_block - 1);
4001
4002 /* Is the inode bitmap in cache? */
4003 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4004 if (unlikely(!bitmap_bh))
4005 goto make_io;
4006
4007 /*
4008 * If the inode bitmap isn't in cache then the
4009 * optimisation may end up performing two reads instead
4010 * of one, so skip it.
4011 */
4012 if (!buffer_uptodate(bitmap_bh)) {
4013 brelse(bitmap_bh);
4014 goto make_io;
4015 }
4016 for (i = start; i < start + inodes_per_block; i++) {
4017 if (i == inode_offset)
4018 continue;
4019 if (ext4_test_bit(i, bitmap_bh->b_data))
4020 break;
4021 }
4022 brelse(bitmap_bh);
4023 if (i == start + inodes_per_block) {
4024 /* all other inodes are free, so skip I/O */
4025 memset(bh->b_data, 0, bh->b_size);
4026 set_buffer_uptodate(bh);
4027 unlock_buffer(bh);
4028 goto has_buffer;
4029 }
4030 }
4031
4032 make_io:
4033 /*
4034 * If we need to do any I/O, try to pre-readahead extra
4035 * blocks from the inode table.
4036 */
4037 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4038 ext4_fsblk_t b, end, table;
4039 unsigned num;
4040 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4041
4042 table = ext4_inode_table(sb, gdp);
4043 /* s_inode_readahead_blks is always a power of 2 */
4044 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4045 if (table > b)
4046 b = table;
4047 end = b + ra_blks;
4048 num = EXT4_INODES_PER_GROUP(sb);
4049 if (ext4_has_group_desc_csum(sb))
4050 num -= ext4_itable_unused_count(sb, gdp);
4051 table += num / inodes_per_block;
4052 if (end > table)
4053 end = table;
4054 while (b <= end)
4055 sb_breadahead(sb, b++);
4056 }
4057
4058 /*
4059 * There are other valid inodes in the buffer, this inode
4060 * has in-inode xattrs, or we don't have this inode in memory.
4061 * Read the block from disk.
4062 */
4063 trace_ext4_load_inode(inode);
4064 get_bh(bh);
4065 bh->b_end_io = end_buffer_read_sync;
4066 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4067 wait_on_buffer(bh);
4068 if (!buffer_uptodate(bh)) {
4069 EXT4_ERROR_INODE_BLOCK(inode, block,
4070 "unable to read itable block");
4071 brelse(bh);
4072 return -EIO;
4073 }
4074 }
4075 has_buffer:
4076 iloc->bh = bh;
4077 return 0;
4078 }
4079
4080 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4081 {
4082 /* We have all inode data except xattrs in memory here. */
4083 return __ext4_get_inode_loc(inode, iloc,
4084 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4085 }
4086
4087 void ext4_set_inode_flags(struct inode *inode)
4088 {
4089 unsigned int flags = EXT4_I(inode)->i_flags;
4090 unsigned int new_fl = 0;
4091
4092 if (flags & EXT4_SYNC_FL)
4093 new_fl |= S_SYNC;
4094 if (flags & EXT4_APPEND_FL)
4095 new_fl |= S_APPEND;
4096 if (flags & EXT4_IMMUTABLE_FL)
4097 new_fl |= S_IMMUTABLE;
4098 if (flags & EXT4_NOATIME_FL)
4099 new_fl |= S_NOATIME;
4100 if (flags & EXT4_DIRSYNC_FL)
4101 new_fl |= S_DIRSYNC;
4102 set_mask_bits(&inode->i_flags,
4103 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4104 }
4105
4106 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4107 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4108 {
4109 unsigned int vfs_fl;
4110 unsigned long old_fl, new_fl;
4111
4112 do {
4113 vfs_fl = ei->vfs_inode.i_flags;
4114 old_fl = ei->i_flags;
4115 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4116 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4117 EXT4_DIRSYNC_FL);
4118 if (vfs_fl & S_SYNC)
4119 new_fl |= EXT4_SYNC_FL;
4120 if (vfs_fl & S_APPEND)
4121 new_fl |= EXT4_APPEND_FL;
4122 if (vfs_fl & S_IMMUTABLE)
4123 new_fl |= EXT4_IMMUTABLE_FL;
4124 if (vfs_fl & S_NOATIME)
4125 new_fl |= EXT4_NOATIME_FL;
4126 if (vfs_fl & S_DIRSYNC)
4127 new_fl |= EXT4_DIRSYNC_FL;
4128 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4129 }
4130
4131 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4132 struct ext4_inode_info *ei)
4133 {
4134 blkcnt_t i_blocks ;
4135 struct inode *inode = &(ei->vfs_inode);
4136 struct super_block *sb = inode->i_sb;
4137
4138 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4139 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4140 /* we are using combined 48 bit field */
4141 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4142 le32_to_cpu(raw_inode->i_blocks_lo);
4143 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4144 /* i_blocks represent file system block size */
4145 return i_blocks << (inode->i_blkbits - 9);
4146 } else {
4147 return i_blocks;
4148 }
4149 } else {
4150 return le32_to_cpu(raw_inode->i_blocks_lo);
4151 }
4152 }
4153
4154 static inline void ext4_iget_extra_inode(struct inode *inode,
4155 struct ext4_inode *raw_inode,
4156 struct ext4_inode_info *ei)
4157 {
4158 __le32 *magic = (void *)raw_inode +
4159 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4160 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4161 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4162 ext4_find_inline_data_nolock(inode);
4163 } else
4164 EXT4_I(inode)->i_inline_off = 0;
4165 }
4166
4167 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4168 {
4169 struct ext4_iloc iloc;
4170 struct ext4_inode *raw_inode;
4171 struct ext4_inode_info *ei;
4172 struct inode *inode;
4173 journal_t *journal = EXT4_SB(sb)->s_journal;
4174 long ret;
4175 int block;
4176 uid_t i_uid;
4177 gid_t i_gid;
4178
4179 inode = iget_locked(sb, ino);
4180 if (!inode)
4181 return ERR_PTR(-ENOMEM);
4182 if (!(inode->i_state & I_NEW))
4183 return inode;
4184
4185 ei = EXT4_I(inode);
4186 iloc.bh = NULL;
4187
4188 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4189 if (ret < 0)
4190 goto bad_inode;
4191 raw_inode = ext4_raw_inode(&iloc);
4192
4193 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4194 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4195 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4196 EXT4_INODE_SIZE(inode->i_sb)) {
4197 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4198 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4199 EXT4_INODE_SIZE(inode->i_sb));
4200 ret = -EIO;
4201 goto bad_inode;
4202 }
4203 } else
4204 ei->i_extra_isize = 0;
4205
4206 /* Precompute checksum seed for inode metadata */
4207 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4208 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4209 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4210 __u32 csum;
4211 __le32 inum = cpu_to_le32(inode->i_ino);
4212 __le32 gen = raw_inode->i_generation;
4213 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4214 sizeof(inum));
4215 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4216 sizeof(gen));
4217 }
4218
4219 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4220 EXT4_ERROR_INODE(inode, "checksum invalid");
4221 ret = -EIO;
4222 goto bad_inode;
4223 }
4224
4225 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4226 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4227 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4228 if (!(test_opt(inode->i_sb, NO_UID32))) {
4229 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4230 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4231 }
4232 i_uid_write(inode, i_uid);
4233 i_gid_write(inode, i_gid);
4234 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4235
4236 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4237 ei->i_inline_off = 0;
4238 ei->i_dir_start_lookup = 0;
4239 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4240 /* We now have enough fields to check if the inode was active or not.
4241 * This is needed because nfsd might try to access dead inodes
4242 * the test is that same one that e2fsck uses
4243 * NeilBrown 1999oct15
4244 */
4245 if (inode->i_nlink == 0) {
4246 if ((inode->i_mode == 0 ||
4247 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4248 ino != EXT4_BOOT_LOADER_INO) {
4249 /* this inode is deleted */
4250 ret = -ESTALE;
4251 goto bad_inode;
4252 }
4253 /* The only unlinked inodes we let through here have
4254 * valid i_mode and are being read by the orphan
4255 * recovery code: that's fine, we're about to complete
4256 * the process of deleting those.
4257 * OR it is the EXT4_BOOT_LOADER_INO which is
4258 * not initialized on a new filesystem. */
4259 }
4260 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4261 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4262 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4263 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4264 ei->i_file_acl |=
4265 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4266 inode->i_size = ext4_isize(raw_inode);
4267 ei->i_disksize = inode->i_size;
4268 #ifdef CONFIG_QUOTA
4269 ei->i_reserved_quota = 0;
4270 #endif
4271 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4272 ei->i_block_group = iloc.block_group;
4273 ei->i_last_alloc_group = ~0;
4274 /*
4275 * NOTE! The in-memory inode i_data array is in little-endian order
4276 * even on big-endian machines: we do NOT byteswap the block numbers!
4277 */
4278 for (block = 0; block < EXT4_N_BLOCKS; block++)
4279 ei->i_data[block] = raw_inode->i_block[block];
4280 INIT_LIST_HEAD(&ei->i_orphan);
4281
4282 /*
4283 * Set transaction id's of transactions that have to be committed
4284 * to finish f[data]sync. We set them to currently running transaction
4285 * as we cannot be sure that the inode or some of its metadata isn't
4286 * part of the transaction - the inode could have been reclaimed and
4287 * now it is reread from disk.
4288 */
4289 if (journal) {
4290 transaction_t *transaction;
4291 tid_t tid;
4292
4293 read_lock(&journal->j_state_lock);
4294 if (journal->j_running_transaction)
4295 transaction = journal->j_running_transaction;
4296 else
4297 transaction = journal->j_committing_transaction;
4298 if (transaction)
4299 tid = transaction->t_tid;
4300 else
4301 tid = journal->j_commit_sequence;
4302 read_unlock(&journal->j_state_lock);
4303 ei->i_sync_tid = tid;
4304 ei->i_datasync_tid = tid;
4305 }
4306
4307 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4308 if (ei->i_extra_isize == 0) {
4309 /* The extra space is currently unused. Use it. */
4310 ei->i_extra_isize = sizeof(struct ext4_inode) -
4311 EXT4_GOOD_OLD_INODE_SIZE;
4312 } else {
4313 ext4_iget_extra_inode(inode, raw_inode, ei);
4314 }
4315 }
4316
4317 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4318 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4319 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4320 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4321
4322 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4323 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4324 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4325 inode->i_version |=
4326 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4327 }
4328
4329 ret = 0;
4330 if (ei->i_file_acl &&
4331 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4332 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4333 ei->i_file_acl);
4334 ret = -EIO;
4335 goto bad_inode;
4336 } else if (!ext4_has_inline_data(inode)) {
4337 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4338 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4339 (S_ISLNK(inode->i_mode) &&
4340 !ext4_inode_is_fast_symlink(inode))))
4341 /* Validate extent which is part of inode */
4342 ret = ext4_ext_check_inode(inode);
4343 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4344 (S_ISLNK(inode->i_mode) &&
4345 !ext4_inode_is_fast_symlink(inode))) {
4346 /* Validate block references which are part of inode */
4347 ret = ext4_ind_check_inode(inode);
4348 }
4349 }
4350 if (ret)
4351 goto bad_inode;
4352
4353 if (S_ISREG(inode->i_mode)) {
4354 inode->i_op = &ext4_file_inode_operations;
4355 inode->i_fop = &ext4_file_operations;
4356 ext4_set_aops(inode);
4357 } else if (S_ISDIR(inode->i_mode)) {
4358 inode->i_op = &ext4_dir_inode_operations;
4359 inode->i_fop = &ext4_dir_operations;
4360 } else if (S_ISLNK(inode->i_mode)) {
4361 if (ext4_inode_is_fast_symlink(inode)) {
4362 inode->i_op = &ext4_fast_symlink_inode_operations;
4363 nd_terminate_link(ei->i_data, inode->i_size,
4364 sizeof(ei->i_data) - 1);
4365 } else {
4366 inode->i_op = &ext4_symlink_inode_operations;
4367 ext4_set_aops(inode);
4368 }
4369 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4370 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4371 inode->i_op = &ext4_special_inode_operations;
4372 if (raw_inode->i_block[0])
4373 init_special_inode(inode, inode->i_mode,
4374 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4375 else
4376 init_special_inode(inode, inode->i_mode,
4377 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4378 } else if (ino == EXT4_BOOT_LOADER_INO) {
4379 make_bad_inode(inode);
4380 } else {
4381 ret = -EIO;
4382 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4383 goto bad_inode;
4384 }
4385 brelse(iloc.bh);
4386 ext4_set_inode_flags(inode);
4387 unlock_new_inode(inode);
4388 return inode;
4389
4390 bad_inode:
4391 brelse(iloc.bh);
4392 iget_failed(inode);
4393 return ERR_PTR(ret);
4394 }
4395
4396 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4397 {
4398 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4399 return ERR_PTR(-EIO);
4400 return ext4_iget(sb, ino);
4401 }
4402
4403 static int ext4_inode_blocks_set(handle_t *handle,
4404 struct ext4_inode *raw_inode,
4405 struct ext4_inode_info *ei)
4406 {
4407 struct inode *inode = &(ei->vfs_inode);
4408 u64 i_blocks = inode->i_blocks;
4409 struct super_block *sb = inode->i_sb;
4410
4411 if (i_blocks <= ~0U) {
4412 /*
4413 * i_blocks can be represented in a 32 bit variable
4414 * as multiple of 512 bytes
4415 */
4416 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4417 raw_inode->i_blocks_high = 0;
4418 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4419 return 0;
4420 }
4421 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4422 return -EFBIG;
4423
4424 if (i_blocks <= 0xffffffffffffULL) {
4425 /*
4426 * i_blocks can be represented in a 48 bit variable
4427 * as multiple of 512 bytes
4428 */
4429 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4430 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4431 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4432 } else {
4433 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4434 /* i_block is stored in file system block size */
4435 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4436 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4437 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4438 }
4439 return 0;
4440 }
4441
4442 /*
4443 * Post the struct inode info into an on-disk inode location in the
4444 * buffer-cache. This gobbles the caller's reference to the
4445 * buffer_head in the inode location struct.
4446 *
4447 * The caller must have write access to iloc->bh.
4448 */
4449 static int ext4_do_update_inode(handle_t *handle,
4450 struct inode *inode,
4451 struct ext4_iloc *iloc)
4452 {
4453 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4454 struct ext4_inode_info *ei = EXT4_I(inode);
4455 struct buffer_head *bh = iloc->bh;
4456 int err = 0, rc, block;
4457 int need_datasync = 0;
4458 uid_t i_uid;
4459 gid_t i_gid;
4460
4461 /* For fields not not tracking in the in-memory inode,
4462 * initialise them to zero for new inodes. */
4463 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4464 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4465
4466 ext4_get_inode_flags(ei);
4467 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4468 i_uid = i_uid_read(inode);
4469 i_gid = i_gid_read(inode);
4470 if (!(test_opt(inode->i_sb, NO_UID32))) {
4471 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4472 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4473 /*
4474 * Fix up interoperability with old kernels. Otherwise, old inodes get
4475 * re-used with the upper 16 bits of the uid/gid intact
4476 */
4477 if (!ei->i_dtime) {
4478 raw_inode->i_uid_high =
4479 cpu_to_le16(high_16_bits(i_uid));
4480 raw_inode->i_gid_high =
4481 cpu_to_le16(high_16_bits(i_gid));
4482 } else {
4483 raw_inode->i_uid_high = 0;
4484 raw_inode->i_gid_high = 0;
4485 }
4486 } else {
4487 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4488 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4489 raw_inode->i_uid_high = 0;
4490 raw_inode->i_gid_high = 0;
4491 }
4492 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4493
4494 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4495 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4496 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4497 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4498
4499 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4500 goto out_brelse;
4501 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4502 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4503 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4504 cpu_to_le32(EXT4_OS_HURD))
4505 raw_inode->i_file_acl_high =
4506 cpu_to_le16(ei->i_file_acl >> 32);
4507 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4508 if (ei->i_disksize != ext4_isize(raw_inode)) {
4509 ext4_isize_set(raw_inode, ei->i_disksize);
4510 need_datasync = 1;
4511 }
4512 if (ei->i_disksize > 0x7fffffffULL) {
4513 struct super_block *sb = inode->i_sb;
4514 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4515 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4516 EXT4_SB(sb)->s_es->s_rev_level ==
4517 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4518 /* If this is the first large file
4519 * created, add a flag to the superblock.
4520 */
4521 err = ext4_journal_get_write_access(handle,
4522 EXT4_SB(sb)->s_sbh);
4523 if (err)
4524 goto out_brelse;
4525 ext4_update_dynamic_rev(sb);
4526 EXT4_SET_RO_COMPAT_FEATURE(sb,
4527 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4528 ext4_handle_sync(handle);
4529 err = ext4_handle_dirty_super(handle, sb);
4530 }
4531 }
4532 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4533 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4534 if (old_valid_dev(inode->i_rdev)) {
4535 raw_inode->i_block[0] =
4536 cpu_to_le32(old_encode_dev(inode->i_rdev));
4537 raw_inode->i_block[1] = 0;
4538 } else {
4539 raw_inode->i_block[0] = 0;
4540 raw_inode->i_block[1] =
4541 cpu_to_le32(new_encode_dev(inode->i_rdev));
4542 raw_inode->i_block[2] = 0;
4543 }
4544 } else if (!ext4_has_inline_data(inode)) {
4545 for (block = 0; block < EXT4_N_BLOCKS; block++)
4546 raw_inode->i_block[block] = ei->i_data[block];
4547 }
4548
4549 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4550 if (ei->i_extra_isize) {
4551 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4552 raw_inode->i_version_hi =
4553 cpu_to_le32(inode->i_version >> 32);
4554 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4555 }
4556
4557 ext4_inode_csum_set(inode, raw_inode, ei);
4558
4559 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4560 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4561 if (!err)
4562 err = rc;
4563 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4564
4565 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4566 out_brelse:
4567 brelse(bh);
4568 ext4_std_error(inode->i_sb, err);
4569 return err;
4570 }
4571
4572 /*
4573 * ext4_write_inode()
4574 *
4575 * We are called from a few places:
4576 *
4577 * - Within generic_file_write() for O_SYNC files.
4578 * Here, there will be no transaction running. We wait for any running
4579 * transaction to commit.
4580 *
4581 * - Within sys_sync(), kupdate and such.
4582 * We wait on commit, if tol to.
4583 *
4584 * - Within prune_icache() (PF_MEMALLOC == true)
4585 * Here we simply return. We can't afford to block kswapd on the
4586 * journal commit.
4587 *
4588 * In all cases it is actually safe for us to return without doing anything,
4589 * because the inode has been copied into a raw inode buffer in
4590 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4591 * knfsd.
4592 *
4593 * Note that we are absolutely dependent upon all inode dirtiers doing the
4594 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4595 * which we are interested.
4596 *
4597 * It would be a bug for them to not do this. The code:
4598 *
4599 * mark_inode_dirty(inode)
4600 * stuff();
4601 * inode->i_size = expr;
4602 *
4603 * is in error because a kswapd-driven write_inode() could occur while
4604 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4605 * will no longer be on the superblock's dirty inode list.
4606 */
4607 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4608 {
4609 int err;
4610
4611 if (current->flags & PF_MEMALLOC)
4612 return 0;
4613
4614 if (EXT4_SB(inode->i_sb)->s_journal) {
4615 if (ext4_journal_current_handle()) {
4616 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4617 dump_stack();
4618 return -EIO;
4619 }
4620
4621 if (wbc->sync_mode != WB_SYNC_ALL)
4622 return 0;
4623
4624 err = ext4_force_commit(inode->i_sb);
4625 } else {
4626 struct ext4_iloc iloc;
4627
4628 err = __ext4_get_inode_loc(inode, &iloc, 0);
4629 if (err)
4630 return err;
4631 if (wbc->sync_mode == WB_SYNC_ALL)
4632 sync_dirty_buffer(iloc.bh);
4633 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4634 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4635 "IO error syncing inode");
4636 err = -EIO;
4637 }
4638 brelse(iloc.bh);
4639 }
4640 return err;
4641 }
4642
4643 /*
4644 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4645 * buffers that are attached to a page stradding i_size and are undergoing
4646 * commit. In that case we have to wait for commit to finish and try again.
4647 */
4648 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4649 {
4650 struct page *page;
4651 unsigned offset;
4652 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4653 tid_t commit_tid = 0;
4654 int ret;
4655
4656 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4657 /*
4658 * All buffers in the last page remain valid? Then there's nothing to
4659 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4660 * blocksize case
4661 */
4662 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4663 return;
4664 while (1) {
4665 page = find_lock_page(inode->i_mapping,
4666 inode->i_size >> PAGE_CACHE_SHIFT);
4667 if (!page)
4668 return;
4669 ret = __ext4_journalled_invalidatepage(page, offset);
4670 unlock_page(page);
4671 page_cache_release(page);
4672 if (ret != -EBUSY)
4673 return;
4674 commit_tid = 0;
4675 read_lock(&journal->j_state_lock);
4676 if (journal->j_committing_transaction)
4677 commit_tid = journal->j_committing_transaction->t_tid;
4678 read_unlock(&journal->j_state_lock);
4679 if (commit_tid)
4680 jbd2_log_wait_commit(journal, commit_tid);
4681 }
4682 }
4683
4684 /*
4685 * ext4_setattr()
4686 *
4687 * Called from notify_change.
4688 *
4689 * We want to trap VFS attempts to truncate the file as soon as
4690 * possible. In particular, we want to make sure that when the VFS
4691 * shrinks i_size, we put the inode on the orphan list and modify
4692 * i_disksize immediately, so that during the subsequent flushing of
4693 * dirty pages and freeing of disk blocks, we can guarantee that any
4694 * commit will leave the blocks being flushed in an unused state on
4695 * disk. (On recovery, the inode will get truncated and the blocks will
4696 * be freed, so we have a strong guarantee that no future commit will
4697 * leave these blocks visible to the user.)
4698 *
4699 * Another thing we have to assure is that if we are in ordered mode
4700 * and inode is still attached to the committing transaction, we must
4701 * we start writeout of all the dirty pages which are being truncated.
4702 * This way we are sure that all the data written in the previous
4703 * transaction are already on disk (truncate waits for pages under
4704 * writeback).
4705 *
4706 * Called with inode->i_mutex down.
4707 */
4708 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4709 {
4710 struct inode *inode = dentry->d_inode;
4711 int error, rc = 0;
4712 int orphan = 0;
4713 const unsigned int ia_valid = attr->ia_valid;
4714
4715 error = inode_change_ok(inode, attr);
4716 if (error)
4717 return error;
4718
4719 if (is_quota_modification(inode, attr))
4720 dquot_initialize(inode);
4721 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4722 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4723 handle_t *handle;
4724
4725 /* (user+group)*(old+new) structure, inode write (sb,
4726 * inode block, ? - but truncate inode update has it) */
4727 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4728 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4729 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4730 if (IS_ERR(handle)) {
4731 error = PTR_ERR(handle);
4732 goto err_out;
4733 }
4734 error = dquot_transfer(inode, attr);
4735 if (error) {
4736 ext4_journal_stop(handle);
4737 return error;
4738 }
4739 /* Update corresponding info in inode so that everything is in
4740 * one transaction */
4741 if (attr->ia_valid & ATTR_UID)
4742 inode->i_uid = attr->ia_uid;
4743 if (attr->ia_valid & ATTR_GID)
4744 inode->i_gid = attr->ia_gid;
4745 error = ext4_mark_inode_dirty(handle, inode);
4746 ext4_journal_stop(handle);
4747 }
4748
4749 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4750 handle_t *handle;
4751 loff_t oldsize = inode->i_size;
4752
4753 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4754 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4755
4756 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4757 return -EFBIG;
4758 }
4759
4760 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4761 inode_inc_iversion(inode);
4762
4763 if (S_ISREG(inode->i_mode) &&
4764 (attr->ia_size < inode->i_size)) {
4765 if (ext4_should_order_data(inode)) {
4766 error = ext4_begin_ordered_truncate(inode,
4767 attr->ia_size);
4768 if (error)
4769 goto err_out;
4770 }
4771 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4772 if (IS_ERR(handle)) {
4773 error = PTR_ERR(handle);
4774 goto err_out;
4775 }
4776 if (ext4_handle_valid(handle)) {
4777 error = ext4_orphan_add(handle, inode);
4778 orphan = 1;
4779 }
4780 EXT4_I(inode)->i_disksize = attr->ia_size;
4781 rc = ext4_mark_inode_dirty(handle, inode);
4782 if (!error)
4783 error = rc;
4784 ext4_journal_stop(handle);
4785 if (error) {
4786 ext4_orphan_del(NULL, inode);
4787 goto err_out;
4788 }
4789 }
4790
4791 i_size_write(inode, attr->ia_size);
4792 /*
4793 * Blocks are going to be removed from the inode. Wait
4794 * for dio in flight. Temporarily disable
4795 * dioread_nolock to prevent livelock.
4796 */
4797 if (orphan) {
4798 if (!ext4_should_journal_data(inode)) {
4799 ext4_inode_block_unlocked_dio(inode);
4800 inode_dio_wait(inode);
4801 ext4_inode_resume_unlocked_dio(inode);
4802 } else
4803 ext4_wait_for_tail_page_commit(inode);
4804 }
4805 /*
4806 * Truncate pagecache after we've waited for commit
4807 * in data=journal mode to make pages freeable.
4808 */
4809 truncate_pagecache(inode, oldsize, inode->i_size);
4810 }
4811 /*
4812 * We want to call ext4_truncate() even if attr->ia_size ==
4813 * inode->i_size for cases like truncation of fallocated space
4814 */
4815 if (attr->ia_valid & ATTR_SIZE)
4816 ext4_truncate(inode);
4817
4818 if (!rc) {
4819 setattr_copy(inode, attr);
4820 mark_inode_dirty(inode);
4821 }
4822
4823 /*
4824 * If the call to ext4_truncate failed to get a transaction handle at
4825 * all, we need to clean up the in-core orphan list manually.
4826 */
4827 if (orphan && inode->i_nlink)
4828 ext4_orphan_del(NULL, inode);
4829
4830 if (!rc && (ia_valid & ATTR_MODE))
4831 rc = ext4_acl_chmod(inode);
4832
4833 err_out:
4834 ext4_std_error(inode->i_sb, error);
4835 if (!error)
4836 error = rc;
4837 return error;
4838 }
4839
4840 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4841 struct kstat *stat)
4842 {
4843 struct inode *inode;
4844 unsigned long long delalloc_blocks;
4845
4846 inode = dentry->d_inode;
4847 generic_fillattr(inode, stat);
4848
4849 /*
4850 * We can't update i_blocks if the block allocation is delayed
4851 * otherwise in the case of system crash before the real block
4852 * allocation is done, we will have i_blocks inconsistent with
4853 * on-disk file blocks.
4854 * We always keep i_blocks updated together with real
4855 * allocation. But to not confuse with user, stat
4856 * will return the blocks that include the delayed allocation
4857 * blocks for this file.
4858 */
4859 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4860 EXT4_I(inode)->i_reserved_data_blocks);
4861
4862 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4863 return 0;
4864 }
4865
4866 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4867 {
4868 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4869 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4870 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4871 }
4872
4873 /*
4874 * Account for index blocks, block groups bitmaps and block group
4875 * descriptor blocks if modify datablocks and index blocks
4876 * worse case, the indexs blocks spread over different block groups
4877 *
4878 * If datablocks are discontiguous, they are possible to spread over
4879 * different block groups too. If they are contiguous, with flexbg,
4880 * they could still across block group boundary.
4881 *
4882 * Also account for superblock, inode, quota and xattr blocks
4883 */
4884 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4885 {
4886 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4887 int gdpblocks;
4888 int idxblocks;
4889 int ret = 0;
4890
4891 /*
4892 * How many index blocks need to touch to modify nrblocks?
4893 * The "Chunk" flag indicating whether the nrblocks is
4894 * physically contiguous on disk
4895 *
4896 * For Direct IO and fallocate, they calls get_block to allocate
4897 * one single extent at a time, so they could set the "Chunk" flag
4898 */
4899 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4900
4901 ret = idxblocks;
4902
4903 /*
4904 * Now let's see how many group bitmaps and group descriptors need
4905 * to account
4906 */
4907 groups = idxblocks;
4908 if (chunk)
4909 groups += 1;
4910 else
4911 groups += nrblocks;
4912
4913 gdpblocks = groups;
4914 if (groups > ngroups)
4915 groups = ngroups;
4916 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4917 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4918
4919 /* bitmaps and block group descriptor blocks */
4920 ret += groups + gdpblocks;
4921
4922 /* Blocks for super block, inode, quota and xattr blocks */
4923 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4924
4925 return ret;
4926 }
4927
4928 /*
4929 * Calculate the total number of credits to reserve to fit
4930 * the modification of a single pages into a single transaction,
4931 * which may include multiple chunks of block allocations.
4932 *
4933 * This could be called via ext4_write_begin()
4934 *
4935 * We need to consider the worse case, when
4936 * one new block per extent.
4937 */
4938 int ext4_writepage_trans_blocks(struct inode *inode)
4939 {
4940 int bpp = ext4_journal_blocks_per_page(inode);
4941 int ret;
4942
4943 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4944
4945 /* Account for data blocks for journalled mode */
4946 if (ext4_should_journal_data(inode))
4947 ret += bpp;
4948 return ret;
4949 }
4950
4951 /*
4952 * Calculate the journal credits for a chunk of data modification.
4953 *
4954 * This is called from DIO, fallocate or whoever calling
4955 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4956 *
4957 * journal buffers for data blocks are not included here, as DIO
4958 * and fallocate do no need to journal data buffers.
4959 */
4960 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4961 {
4962 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4963 }
4964
4965 /*
4966 * The caller must have previously called ext4_reserve_inode_write().
4967 * Give this, we know that the caller already has write access to iloc->bh.
4968 */
4969 int ext4_mark_iloc_dirty(handle_t *handle,
4970 struct inode *inode, struct ext4_iloc *iloc)
4971 {
4972 int err = 0;
4973
4974 if (IS_I_VERSION(inode))
4975 inode_inc_iversion(inode);
4976
4977 /* the do_update_inode consumes one bh->b_count */
4978 get_bh(iloc->bh);
4979
4980 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4981 err = ext4_do_update_inode(handle, inode, iloc);
4982 put_bh(iloc->bh);
4983 return err;
4984 }
4985
4986 /*
4987 * On success, We end up with an outstanding reference count against
4988 * iloc->bh. This _must_ be cleaned up later.
4989 */
4990
4991 int
4992 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4993 struct ext4_iloc *iloc)
4994 {
4995 int err;
4996
4997 err = ext4_get_inode_loc(inode, iloc);
4998 if (!err) {
4999 BUFFER_TRACE(iloc->bh, "get_write_access");
5000 err = ext4_journal_get_write_access(handle, iloc->bh);
5001 if (err) {
5002 brelse(iloc->bh);
5003 iloc->bh = NULL;
5004 }
5005 }
5006 ext4_std_error(inode->i_sb, err);
5007 return err;
5008 }
5009
5010 /*
5011 * Expand an inode by new_extra_isize bytes.
5012 * Returns 0 on success or negative error number on failure.
5013 */
5014 static int ext4_expand_extra_isize(struct inode *inode,
5015 unsigned int new_extra_isize,
5016 struct ext4_iloc iloc,
5017 handle_t *handle)
5018 {
5019 struct ext4_inode *raw_inode;
5020 struct ext4_xattr_ibody_header *header;
5021
5022 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5023 return 0;
5024
5025 raw_inode = ext4_raw_inode(&iloc);
5026
5027 header = IHDR(inode, raw_inode);
5028
5029 /* No extended attributes present */
5030 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5031 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5032 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5033 new_extra_isize);
5034 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5035 return 0;
5036 }
5037
5038 /* try to expand with EAs present */
5039 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5040 raw_inode, handle);
5041 }
5042
5043 /*
5044 * What we do here is to mark the in-core inode as clean with respect to inode
5045 * dirtiness (it may still be data-dirty).
5046 * This means that the in-core inode may be reaped by prune_icache
5047 * without having to perform any I/O. This is a very good thing,
5048 * because *any* task may call prune_icache - even ones which
5049 * have a transaction open against a different journal.
5050 *
5051 * Is this cheating? Not really. Sure, we haven't written the
5052 * inode out, but prune_icache isn't a user-visible syncing function.
5053 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5054 * we start and wait on commits.
5055 */
5056 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5057 {
5058 struct ext4_iloc iloc;
5059 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5060 static unsigned int mnt_count;
5061 int err, ret;
5062
5063 might_sleep();
5064 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5065 err = ext4_reserve_inode_write(handle, inode, &iloc);
5066 if (err)
5067 return err;
5068 if (ext4_handle_valid(handle) &&
5069 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5070 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5071 /*
5072 * We need extra buffer credits since we may write into EA block
5073 * with this same handle. If journal_extend fails, then it will
5074 * only result in a minor loss of functionality for that inode.
5075 * If this is felt to be critical, then e2fsck should be run to
5076 * force a large enough s_min_extra_isize.
5077 */
5078 if ((jbd2_journal_extend(handle,
5079 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5080 ret = ext4_expand_extra_isize(inode,
5081 sbi->s_want_extra_isize,
5082 iloc, handle);
5083 if (ret) {
5084 ext4_set_inode_state(inode,
5085 EXT4_STATE_NO_EXPAND);
5086 if (mnt_count !=
5087 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5088 ext4_warning(inode->i_sb,
5089 "Unable to expand inode %lu. Delete"
5090 " some EAs or run e2fsck.",
5091 inode->i_ino);
5092 mnt_count =
5093 le16_to_cpu(sbi->s_es->s_mnt_count);
5094 }
5095 }
5096 }
5097 }
5098 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5099 }
5100
5101 /*
5102 * ext4_dirty_inode() is called from __mark_inode_dirty()
5103 *
5104 * We're really interested in the case where a file is being extended.
5105 * i_size has been changed by generic_commit_write() and we thus need
5106 * to include the updated inode in the current transaction.
5107 *
5108 * Also, dquot_alloc_block() will always dirty the inode when blocks
5109 * are allocated to the file.
5110 *
5111 * If the inode is marked synchronous, we don't honour that here - doing
5112 * so would cause a commit on atime updates, which we don't bother doing.
5113 * We handle synchronous inodes at the highest possible level.
5114 */
5115 void ext4_dirty_inode(struct inode *inode, int flags)
5116 {
5117 handle_t *handle;
5118
5119 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5120 if (IS_ERR(handle))
5121 goto out;
5122
5123 ext4_mark_inode_dirty(handle, inode);
5124
5125 ext4_journal_stop(handle);
5126 out:
5127 return;
5128 }
5129
5130 #if 0
5131 /*
5132 * Bind an inode's backing buffer_head into this transaction, to prevent
5133 * it from being flushed to disk early. Unlike
5134 * ext4_reserve_inode_write, this leaves behind no bh reference and
5135 * returns no iloc structure, so the caller needs to repeat the iloc
5136 * lookup to mark the inode dirty later.
5137 */
5138 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5139 {
5140 struct ext4_iloc iloc;
5141
5142 int err = 0;
5143 if (handle) {
5144 err = ext4_get_inode_loc(inode, &iloc);
5145 if (!err) {
5146 BUFFER_TRACE(iloc.bh, "get_write_access");
5147 err = jbd2_journal_get_write_access(handle, iloc.bh);
5148 if (!err)
5149 err = ext4_handle_dirty_metadata(handle,
5150 NULL,
5151 iloc.bh);
5152 brelse(iloc.bh);
5153 }
5154 }
5155 ext4_std_error(inode->i_sb, err);
5156 return err;
5157 }
5158 #endif
5159
5160 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5161 {
5162 journal_t *journal;
5163 handle_t *handle;
5164 int err;
5165
5166 /*
5167 * We have to be very careful here: changing a data block's
5168 * journaling status dynamically is dangerous. If we write a
5169 * data block to the journal, change the status and then delete
5170 * that block, we risk forgetting to revoke the old log record
5171 * from the journal and so a subsequent replay can corrupt data.
5172 * So, first we make sure that the journal is empty and that
5173 * nobody is changing anything.
5174 */
5175
5176 journal = EXT4_JOURNAL(inode);
5177 if (!journal)
5178 return 0;
5179 if (is_journal_aborted(journal))
5180 return -EROFS;
5181 /* We have to allocate physical blocks for delalloc blocks
5182 * before flushing journal. otherwise delalloc blocks can not
5183 * be allocated any more. even more truncate on delalloc blocks
5184 * could trigger BUG by flushing delalloc blocks in journal.
5185 * There is no delalloc block in non-journal data mode.
5186 */
5187 if (val && test_opt(inode->i_sb, DELALLOC)) {
5188 err = ext4_alloc_da_blocks(inode);
5189 if (err < 0)
5190 return err;
5191 }
5192
5193 /* Wait for all existing dio workers */
5194 ext4_inode_block_unlocked_dio(inode);
5195 inode_dio_wait(inode);
5196
5197 jbd2_journal_lock_updates(journal);
5198
5199 /*
5200 * OK, there are no updates running now, and all cached data is
5201 * synced to disk. We are now in a completely consistent state
5202 * which doesn't have anything in the journal, and we know that
5203 * no filesystem updates are running, so it is safe to modify
5204 * the inode's in-core data-journaling state flag now.
5205 */
5206
5207 if (val)
5208 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5209 else {
5210 jbd2_journal_flush(journal);
5211 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5212 }
5213 ext4_set_aops(inode);
5214
5215 jbd2_journal_unlock_updates(journal);
5216 ext4_inode_resume_unlocked_dio(inode);
5217
5218 /* Finally we can mark the inode as dirty. */
5219
5220 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5221 if (IS_ERR(handle))
5222 return PTR_ERR(handle);
5223
5224 err = ext4_mark_inode_dirty(handle, inode);
5225 ext4_handle_sync(handle);
5226 ext4_journal_stop(handle);
5227 ext4_std_error(inode->i_sb, err);
5228
5229 return err;
5230 }
5231
5232 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5233 {
5234 return !buffer_mapped(bh);
5235 }
5236
5237 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5238 {
5239 struct page *page = vmf->page;
5240 loff_t size;
5241 unsigned long len;
5242 int ret;
5243 struct file *file = vma->vm_file;
5244 struct inode *inode = file_inode(file);
5245 struct address_space *mapping = inode->i_mapping;
5246 handle_t *handle;
5247 get_block_t *get_block;
5248 int retries = 0;
5249
5250 sb_start_pagefault(inode->i_sb);
5251 file_update_time(vma->vm_file);
5252 /* Delalloc case is easy... */
5253 if (test_opt(inode->i_sb, DELALLOC) &&
5254 !ext4_should_journal_data(inode) &&
5255 !ext4_nonda_switch(inode->i_sb)) {
5256 do {
5257 ret = __block_page_mkwrite(vma, vmf,
5258 ext4_da_get_block_prep);
5259 } while (ret == -ENOSPC &&
5260 ext4_should_retry_alloc(inode->i_sb, &retries));
5261 goto out_ret;
5262 }
5263
5264 lock_page(page);
5265 size = i_size_read(inode);
5266 /* Page got truncated from under us? */
5267 if (page->mapping != mapping || page_offset(page) > size) {
5268 unlock_page(page);
5269 ret = VM_FAULT_NOPAGE;
5270 goto out;
5271 }
5272
5273 if (page->index == size >> PAGE_CACHE_SHIFT)
5274 len = size & ~PAGE_CACHE_MASK;
5275 else
5276 len = PAGE_CACHE_SIZE;
5277 /*
5278 * Return if we have all the buffers mapped. This avoids the need to do
5279 * journal_start/journal_stop which can block and take a long time
5280 */
5281 if (page_has_buffers(page)) {
5282 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5283 0, len, NULL,
5284 ext4_bh_unmapped)) {
5285 /* Wait so that we don't change page under IO */
5286 wait_for_stable_page(page);
5287 ret = VM_FAULT_LOCKED;
5288 goto out;
5289 }
5290 }
5291 unlock_page(page);
5292 /* OK, we need to fill the hole... */
5293 if (ext4_should_dioread_nolock(inode))
5294 get_block = ext4_get_block_write;
5295 else
5296 get_block = ext4_get_block;
5297 retry_alloc:
5298 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5299 ext4_writepage_trans_blocks(inode));
5300 if (IS_ERR(handle)) {
5301 ret = VM_FAULT_SIGBUS;
5302 goto out;
5303 }
5304 ret = __block_page_mkwrite(vma, vmf, get_block);
5305 if (!ret && ext4_should_journal_data(inode)) {
5306 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5307 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5308 unlock_page(page);
5309 ret = VM_FAULT_SIGBUS;
5310 ext4_journal_stop(handle);
5311 goto out;
5312 }
5313 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5314 }
5315 ext4_journal_stop(handle);
5316 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5317 goto retry_alloc;
5318 out_ret:
5319 ret = block_page_mkwrite_return(ret);
5320 out:
5321 sb_end_pagefault(inode->i_sb);
5322 return ret;
5323 }