5f00ddfe3d9b08c42a5b99df5bfd9768a876b57f
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49 #include <linux/blkdev.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u16 csum_lo;
58 __u16 csum_hi = 0;
59 __u32 csum;
60
61 csum_lo = le16_to_cpu(raw->i_checksum_lo);
62 raw->i_checksum_lo = 0;
63 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
64 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
65 csum_hi = le16_to_cpu(raw->i_checksum_hi);
66 raw->i_checksum_hi = 0;
67 }
68
69 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
70 EXT4_INODE_SIZE(inode->i_sb));
71
72 raw->i_checksum_lo = cpu_to_le16(csum_lo);
73 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
74 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
75 raw->i_checksum_hi = cpu_to_le16(csum_hi);
76
77 return csum;
78 }
79
80 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
81 struct ext4_inode_info *ei)
82 {
83 __u32 provided, calculated;
84
85 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
86 cpu_to_le32(EXT4_OS_LINUX) ||
87 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
88 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 return 1;
90
91 provided = le16_to_cpu(raw->i_checksum_lo);
92 calculated = ext4_inode_csum(inode, raw, ei);
93 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
94 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
95 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
96 else
97 calculated &= 0xFFFF;
98
99 return provided == calculated;
100 }
101
102 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
103 struct ext4_inode_info *ei)
104 {
105 __u32 csum;
106
107 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
108 cpu_to_le32(EXT4_OS_LINUX) ||
109 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
110 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
111 return;
112
113 csum = ext4_inode_csum(inode, raw, ei);
114 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 }
119
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 loff_t new_size)
122 {
123 trace_ext4_begin_ordered_truncate(inode, new_size);
124 /*
125 * If jinode is zero, then we never opened the file for
126 * writing, so there's no need to call
127 * jbd2_journal_begin_ordered_truncate() since there's no
128 * outstanding writes we need to flush.
129 */
130 if (!EXT4_I(inode)->jinode)
131 return 0;
132 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133 EXT4_I(inode)->jinode,
134 new_size);
135 }
136
137 static void ext4_invalidatepage(struct page *page, unsigned long offset);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
141 struct inode *inode, struct page *page, loff_t from,
142 loff_t length, int flags);
143
144 /*
145 * Test whether an inode is a fast symlink.
146 */
147 static int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 (inode->i_sb->s_blocksize >> 9) : 0;
151
152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188
189 trace_ext4_evict_inode(inode);
190
191 if (inode->i_nlink) {
192 /*
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
206 *
207 * Note that directories do not have this problem because they
208 * don't use page cache.
209 */
210 if (ext4_should_journal_data(inode) &&
211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 inode->i_ino != EXT4_JOURNAL_INO) {
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216 jbd2_complete_transaction(journal, commit_tid);
217 filemap_write_and_wait(&inode->i_data);
218 }
219 truncate_inode_pages(&inode->i_data, 0);
220 ext4_ioend_shutdown(inode);
221 goto no_delete;
222 }
223
224 if (!is_bad_inode(inode))
225 dquot_initialize(inode);
226
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages(&inode->i_data, 0);
230 ext4_ioend_shutdown(inode);
231
232 if (is_bad_inode(inode))
233 goto no_delete;
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Calculate the number of metadata blocks need to reserve
326 * to allocate a block located at @lblock
327 */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333 return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
342 {
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 struct ext4_inode_info *ei = EXT4_I(inode);
345
346 spin_lock(&ei->i_block_reservation_lock);
347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350 "with only %d reserved data blocks",
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
356
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode->i_ino, ei->i_allocated_meta_blocks,
362 ei->i_reserved_meta_blocks, used,
363 ei->i_reserved_data_blocks);
364 WARN_ON(1);
365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366 }
367
368 /* Update per-inode reservations */
369 ei->i_reserved_data_blocks -= used;
370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372 used + ei->i_allocated_meta_blocks);
373 ei->i_allocated_meta_blocks = 0;
374
375 if (ei->i_reserved_data_blocks == 0) {
376 /*
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
379 * allocation blocks.
380 */
381 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382 ei->i_reserved_meta_blocks);
383 ei->i_reserved_meta_blocks = 0;
384 ei->i_da_metadata_calc_len = 0;
385 }
386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388 /* Update quota subsystem for data blocks */
389 if (quota_claim)
390 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391 else {
392 /*
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
395 * not re-claim the quota for fallocated blocks.
396 */
397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398 }
399
400 /*
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
404 */
405 if ((ei->i_reserved_data_blocks == 0) &&
406 (atomic_read(&inode->i_writecount) == 0))
407 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411 unsigned int line,
412 struct ext4_map_blocks *map)
413 {
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_len);
420 return -EIO;
421 }
422 return 0;
423 }
424
425 #define check_block_validity(inode, map) \
426 __check_block_validity((inode), __func__, __LINE__, (map))
427
428 /*
429 * Return the number of contiguous dirty pages in a given inode
430 * starting at page frame idx.
431 */
432 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
433 unsigned int max_pages)
434 {
435 struct address_space *mapping = inode->i_mapping;
436 pgoff_t index;
437 struct pagevec pvec;
438 pgoff_t num = 0;
439 int i, nr_pages, done = 0;
440
441 if (max_pages == 0)
442 return 0;
443 pagevec_init(&pvec, 0);
444 while (!done) {
445 index = idx;
446 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
447 PAGECACHE_TAG_DIRTY,
448 (pgoff_t)PAGEVEC_SIZE);
449 if (nr_pages == 0)
450 break;
451 for (i = 0; i < nr_pages; i++) {
452 struct page *page = pvec.pages[i];
453 struct buffer_head *bh, *head;
454
455 lock_page(page);
456 if (unlikely(page->mapping != mapping) ||
457 !PageDirty(page) ||
458 PageWriteback(page) ||
459 page->index != idx) {
460 done = 1;
461 unlock_page(page);
462 break;
463 }
464 if (page_has_buffers(page)) {
465 bh = head = page_buffers(page);
466 do {
467 if (!buffer_delay(bh) &&
468 !buffer_unwritten(bh))
469 done = 1;
470 bh = bh->b_this_page;
471 } while (!done && (bh != head));
472 }
473 unlock_page(page);
474 if (done)
475 break;
476 idx++;
477 num++;
478 if (num >= max_pages) {
479 done = 1;
480 break;
481 }
482 }
483 pagevec_release(&pvec);
484 }
485 return num;
486 }
487
488 #ifdef ES_AGGRESSIVE_TEST
489 static void ext4_map_blocks_es_recheck(handle_t *handle,
490 struct inode *inode,
491 struct ext4_map_blocks *es_map,
492 struct ext4_map_blocks *map,
493 int flags)
494 {
495 int retval;
496
497 map->m_flags = 0;
498 /*
499 * There is a race window that the result is not the same.
500 * e.g. xfstests #223 when dioread_nolock enables. The reason
501 * is that we lookup a block mapping in extent status tree with
502 * out taking i_data_sem. So at the time the unwritten extent
503 * could be converted.
504 */
505 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
506 down_read((&EXT4_I(inode)->i_data_sem));
507 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
508 retval = ext4_ext_map_blocks(handle, inode, map, flags &
509 EXT4_GET_BLOCKS_KEEP_SIZE);
510 } else {
511 retval = ext4_ind_map_blocks(handle, inode, map, flags &
512 EXT4_GET_BLOCKS_KEEP_SIZE);
513 }
514 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515 up_read((&EXT4_I(inode)->i_data_sem));
516 /*
517 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
518 * because it shouldn't be marked in es_map->m_flags.
519 */
520 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
521
522 /*
523 * We don't check m_len because extent will be collpased in status
524 * tree. So the m_len might not equal.
525 */
526 if (es_map->m_lblk != map->m_lblk ||
527 es_map->m_flags != map->m_flags ||
528 es_map->m_pblk != map->m_pblk) {
529 printk("ES cache assertation failed for inode: %lu "
530 "es_cached ex [%d/%d/%llu/%x] != "
531 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
532 inode->i_ino, es_map->m_lblk, es_map->m_len,
533 es_map->m_pblk, es_map->m_flags, map->m_lblk,
534 map->m_len, map->m_pblk, map->m_flags,
535 retval, flags);
536 }
537 }
538 #endif /* ES_AGGRESSIVE_TEST */
539
540 /*
541 * The ext4_map_blocks() function tries to look up the requested blocks,
542 * and returns if the blocks are already mapped.
543 *
544 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
545 * and store the allocated blocks in the result buffer head and mark it
546 * mapped.
547 *
548 * If file type is extents based, it will call ext4_ext_map_blocks(),
549 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
550 * based files
551 *
552 * On success, it returns the number of blocks being mapped or allocate.
553 * if create==0 and the blocks are pre-allocated and uninitialized block,
554 * the result buffer head is unmapped. If the create ==1, it will make sure
555 * the buffer head is mapped.
556 *
557 * It returns 0 if plain look up failed (blocks have not been allocated), in
558 * that case, buffer head is unmapped
559 *
560 * It returns the error in case of allocation failure.
561 */
562 int ext4_map_blocks(handle_t *handle, struct inode *inode,
563 struct ext4_map_blocks *map, int flags)
564 {
565 struct extent_status es;
566 int retval;
567 #ifdef ES_AGGRESSIVE_TEST
568 struct ext4_map_blocks orig_map;
569
570 memcpy(&orig_map, map, sizeof(*map));
571 #endif
572
573 map->m_flags = 0;
574 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
575 "logical block %lu\n", inode->i_ino, flags, map->m_len,
576 (unsigned long) map->m_lblk);
577
578 /* Lookup extent status tree firstly */
579 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
580 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
581 map->m_pblk = ext4_es_pblock(&es) +
582 map->m_lblk - es.es_lblk;
583 map->m_flags |= ext4_es_is_written(&es) ?
584 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
585 retval = es.es_len - (map->m_lblk - es.es_lblk);
586 if (retval > map->m_len)
587 retval = map->m_len;
588 map->m_len = retval;
589 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
590 retval = 0;
591 } else {
592 BUG_ON(1);
593 }
594 #ifdef ES_AGGRESSIVE_TEST
595 ext4_map_blocks_es_recheck(handle, inode, map,
596 &orig_map, flags);
597 #endif
598 goto found;
599 }
600
601 /*
602 * Try to see if we can get the block without requesting a new
603 * file system block.
604 */
605 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
606 down_read((&EXT4_I(inode)->i_data_sem));
607 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
608 retval = ext4_ext_map_blocks(handle, inode, map, flags &
609 EXT4_GET_BLOCKS_KEEP_SIZE);
610 } else {
611 retval = ext4_ind_map_blocks(handle, inode, map, flags &
612 EXT4_GET_BLOCKS_KEEP_SIZE);
613 }
614 if (retval > 0) {
615 int ret;
616 unsigned long long status;
617
618 #ifdef ES_AGGRESSIVE_TEST
619 if (retval != map->m_len) {
620 printk("ES len assertation failed for inode: %lu "
621 "retval %d != map->m_len %d "
622 "in %s (lookup)\n", inode->i_ino, retval,
623 map->m_len, __func__);
624 }
625 #endif
626
627 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
628 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
629 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
630 ext4_find_delalloc_range(inode, map->m_lblk,
631 map->m_lblk + map->m_len - 1))
632 status |= EXTENT_STATUS_DELAYED;
633 ret = ext4_es_insert_extent(inode, map->m_lblk,
634 map->m_len, map->m_pblk, status);
635 if (ret < 0)
636 retval = ret;
637 }
638 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
639 up_read((&EXT4_I(inode)->i_data_sem));
640
641 found:
642 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
643 int ret = check_block_validity(inode, map);
644 if (ret != 0)
645 return ret;
646 }
647
648 /* If it is only a block(s) look up */
649 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
650 return retval;
651
652 /*
653 * Returns if the blocks have already allocated
654 *
655 * Note that if blocks have been preallocated
656 * ext4_ext_get_block() returns the create = 0
657 * with buffer head unmapped.
658 */
659 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660 return retval;
661
662 /*
663 * Here we clear m_flags because after allocating an new extent,
664 * it will be set again.
665 */
666 map->m_flags &= ~EXT4_MAP_FLAGS;
667
668 /*
669 * New blocks allocate and/or writing to uninitialized extent
670 * will possibly result in updating i_data, so we take
671 * the write lock of i_data_sem, and call get_blocks()
672 * with create == 1 flag.
673 */
674 down_write((&EXT4_I(inode)->i_data_sem));
675
676 /*
677 * if the caller is from delayed allocation writeout path
678 * we have already reserved fs blocks for allocation
679 * let the underlying get_block() function know to
680 * avoid double accounting
681 */
682 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
683 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
684 /*
685 * We need to check for EXT4 here because migrate
686 * could have changed the inode type in between
687 */
688 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
689 retval = ext4_ext_map_blocks(handle, inode, map, flags);
690 } else {
691 retval = ext4_ind_map_blocks(handle, inode, map, flags);
692
693 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
694 /*
695 * We allocated new blocks which will result in
696 * i_data's format changing. Force the migrate
697 * to fail by clearing migrate flags
698 */
699 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
700 }
701
702 /*
703 * Update reserved blocks/metadata blocks after successful
704 * block allocation which had been deferred till now. We don't
705 * support fallocate for non extent files. So we can update
706 * reserve space here.
707 */
708 if ((retval > 0) &&
709 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
710 ext4_da_update_reserve_space(inode, retval, 1);
711 }
712 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
713 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
714
715 if (retval > 0) {
716 int ret;
717 unsigned long long status;
718
719 #ifdef ES_AGGRESSIVE_TEST
720 if (retval != map->m_len) {
721 printk("ES len assertation failed for inode: %lu "
722 "retval %d != map->m_len %d "
723 "in %s (allocation)\n", inode->i_ino, retval,
724 map->m_len, __func__);
725 }
726 #endif
727
728 /*
729 * If the extent has been zeroed out, we don't need to update
730 * extent status tree.
731 */
732 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
733 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
734 if (ext4_es_is_written(&es))
735 goto has_zeroout;
736 }
737 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
738 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
739 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
740 ext4_find_delalloc_range(inode, map->m_lblk,
741 map->m_lblk + map->m_len - 1))
742 status |= EXTENT_STATUS_DELAYED;
743 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
744 map->m_pblk, status);
745 if (ret < 0)
746 retval = ret;
747 }
748
749 has_zeroout:
750 up_write((&EXT4_I(inode)->i_data_sem));
751 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
752 int ret = check_block_validity(inode, map);
753 if (ret != 0)
754 return ret;
755 }
756 return retval;
757 }
758
759 /* Maximum number of blocks we map for direct IO at once. */
760 #define DIO_MAX_BLOCKS 4096
761
762 static int _ext4_get_block(struct inode *inode, sector_t iblock,
763 struct buffer_head *bh, int flags)
764 {
765 handle_t *handle = ext4_journal_current_handle();
766 struct ext4_map_blocks map;
767 int ret = 0, started = 0;
768 int dio_credits;
769
770 if (ext4_has_inline_data(inode))
771 return -ERANGE;
772
773 map.m_lblk = iblock;
774 map.m_len = bh->b_size >> inode->i_blkbits;
775
776 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
777 /* Direct IO write... */
778 if (map.m_len > DIO_MAX_BLOCKS)
779 map.m_len = DIO_MAX_BLOCKS;
780 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
781 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
782 dio_credits);
783 if (IS_ERR(handle)) {
784 ret = PTR_ERR(handle);
785 return ret;
786 }
787 started = 1;
788 }
789
790 ret = ext4_map_blocks(handle, inode, &map, flags);
791 if (ret > 0) {
792 map_bh(bh, inode->i_sb, map.m_pblk);
793 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
794 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
795 ret = 0;
796 }
797 if (started)
798 ext4_journal_stop(handle);
799 return ret;
800 }
801
802 int ext4_get_block(struct inode *inode, sector_t iblock,
803 struct buffer_head *bh, int create)
804 {
805 return _ext4_get_block(inode, iblock, bh,
806 create ? EXT4_GET_BLOCKS_CREATE : 0);
807 }
808
809 /*
810 * `handle' can be NULL if create is zero
811 */
812 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
813 ext4_lblk_t block, int create, int *errp)
814 {
815 struct ext4_map_blocks map;
816 struct buffer_head *bh;
817 int fatal = 0, err;
818
819 J_ASSERT(handle != NULL || create == 0);
820
821 map.m_lblk = block;
822 map.m_len = 1;
823 err = ext4_map_blocks(handle, inode, &map,
824 create ? EXT4_GET_BLOCKS_CREATE : 0);
825
826 /* ensure we send some value back into *errp */
827 *errp = 0;
828
829 if (create && err == 0)
830 err = -ENOSPC; /* should never happen */
831 if (err < 0)
832 *errp = err;
833 if (err <= 0)
834 return NULL;
835
836 bh = sb_getblk(inode->i_sb, map.m_pblk);
837 if (unlikely(!bh)) {
838 *errp = -ENOMEM;
839 return NULL;
840 }
841 if (map.m_flags & EXT4_MAP_NEW) {
842 J_ASSERT(create != 0);
843 J_ASSERT(handle != NULL);
844
845 /*
846 * Now that we do not always journal data, we should
847 * keep in mind whether this should always journal the
848 * new buffer as metadata. For now, regular file
849 * writes use ext4_get_block instead, so it's not a
850 * problem.
851 */
852 lock_buffer(bh);
853 BUFFER_TRACE(bh, "call get_create_access");
854 fatal = ext4_journal_get_create_access(handle, bh);
855 if (!fatal && !buffer_uptodate(bh)) {
856 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
857 set_buffer_uptodate(bh);
858 }
859 unlock_buffer(bh);
860 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
861 err = ext4_handle_dirty_metadata(handle, inode, bh);
862 if (!fatal)
863 fatal = err;
864 } else {
865 BUFFER_TRACE(bh, "not a new buffer");
866 }
867 if (fatal) {
868 *errp = fatal;
869 brelse(bh);
870 bh = NULL;
871 }
872 return bh;
873 }
874
875 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
876 ext4_lblk_t block, int create, int *err)
877 {
878 struct buffer_head *bh;
879
880 bh = ext4_getblk(handle, inode, block, create, err);
881 if (!bh)
882 return bh;
883 if (buffer_uptodate(bh))
884 return bh;
885 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
886 wait_on_buffer(bh);
887 if (buffer_uptodate(bh))
888 return bh;
889 put_bh(bh);
890 *err = -EIO;
891 return NULL;
892 }
893
894 int ext4_walk_page_buffers(handle_t *handle,
895 struct buffer_head *head,
896 unsigned from,
897 unsigned to,
898 int *partial,
899 int (*fn)(handle_t *handle,
900 struct buffer_head *bh))
901 {
902 struct buffer_head *bh;
903 unsigned block_start, block_end;
904 unsigned blocksize = head->b_size;
905 int err, ret = 0;
906 struct buffer_head *next;
907
908 for (bh = head, block_start = 0;
909 ret == 0 && (bh != head || !block_start);
910 block_start = block_end, bh = next) {
911 next = bh->b_this_page;
912 block_end = block_start + blocksize;
913 if (block_end <= from || block_start >= to) {
914 if (partial && !buffer_uptodate(bh))
915 *partial = 1;
916 continue;
917 }
918 err = (*fn)(handle, bh);
919 if (!ret)
920 ret = err;
921 }
922 return ret;
923 }
924
925 /*
926 * To preserve ordering, it is essential that the hole instantiation and
927 * the data write be encapsulated in a single transaction. We cannot
928 * close off a transaction and start a new one between the ext4_get_block()
929 * and the commit_write(). So doing the jbd2_journal_start at the start of
930 * prepare_write() is the right place.
931 *
932 * Also, this function can nest inside ext4_writepage(). In that case, we
933 * *know* that ext4_writepage() has generated enough buffer credits to do the
934 * whole page. So we won't block on the journal in that case, which is good,
935 * because the caller may be PF_MEMALLOC.
936 *
937 * By accident, ext4 can be reentered when a transaction is open via
938 * quota file writes. If we were to commit the transaction while thus
939 * reentered, there can be a deadlock - we would be holding a quota
940 * lock, and the commit would never complete if another thread had a
941 * transaction open and was blocking on the quota lock - a ranking
942 * violation.
943 *
944 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
945 * will _not_ run commit under these circumstances because handle->h_ref
946 * is elevated. We'll still have enough credits for the tiny quotafile
947 * write.
948 */
949 int do_journal_get_write_access(handle_t *handle,
950 struct buffer_head *bh)
951 {
952 int dirty = buffer_dirty(bh);
953 int ret;
954
955 if (!buffer_mapped(bh) || buffer_freed(bh))
956 return 0;
957 /*
958 * __block_write_begin() could have dirtied some buffers. Clean
959 * the dirty bit as jbd2_journal_get_write_access() could complain
960 * otherwise about fs integrity issues. Setting of the dirty bit
961 * by __block_write_begin() isn't a real problem here as we clear
962 * the bit before releasing a page lock and thus writeback cannot
963 * ever write the buffer.
964 */
965 if (dirty)
966 clear_buffer_dirty(bh);
967 ret = ext4_journal_get_write_access(handle, bh);
968 if (!ret && dirty)
969 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
970 return ret;
971 }
972
973 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
974 struct buffer_head *bh_result, int create);
975 static int ext4_write_begin(struct file *file, struct address_space *mapping,
976 loff_t pos, unsigned len, unsigned flags,
977 struct page **pagep, void **fsdata)
978 {
979 struct inode *inode = mapping->host;
980 int ret, needed_blocks;
981 handle_t *handle;
982 int retries = 0;
983 struct page *page;
984 pgoff_t index;
985 unsigned from, to;
986 #if defined(FEATURE_STORAGE_PID_LOGGER)
987 extern unsigned char *page_logger;
988 struct page_pid_logger *tmp_logger;
989 unsigned long page_index;
990 extern spinlock_t g_locker;
991 unsigned long g_flags;
992 #endif
993
994 trace_ext4_write_begin(inode, pos, len, flags);
995 /*
996 * Reserve one block more for addition to orphan list in case
997 * we allocate blocks but write fails for some reason
998 */
999 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1000 index = pos >> PAGE_CACHE_SHIFT;
1001 from = pos & (PAGE_CACHE_SIZE - 1);
1002 to = from + len;
1003
1004 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1005 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1006 flags, pagep);
1007 if (ret < 0)
1008 return ret;
1009 if (ret == 1)
1010 return 0;
1011 }
1012
1013 /*
1014 * grab_cache_page_write_begin() can take a long time if the
1015 * system is thrashing due to memory pressure, or if the page
1016 * is being written back. So grab it first before we start
1017 * the transaction handle. This also allows us to allocate
1018 * the page (if needed) without using GFP_NOFS.
1019 */
1020 retry_grab:
1021 page = grab_cache_page_write_begin(mapping, index, flags);
1022 if (!page)
1023 return -ENOMEM;
1024 unlock_page(page);
1025
1026 retry_journal:
1027 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1028 if (IS_ERR(handle)) {
1029 page_cache_release(page);
1030 return PTR_ERR(handle);
1031 }
1032
1033 lock_page(page);
1034 if (page->mapping != mapping) {
1035 /* The page got truncated from under us */
1036 unlock_page(page);
1037 page_cache_release(page);
1038 ext4_journal_stop(handle);
1039 goto retry_grab;
1040 }
1041 wait_on_page_writeback(page);
1042
1043 if (ext4_should_dioread_nolock(inode))
1044 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1045 else
1046 ret = __block_write_begin(page, pos, len, ext4_get_block);
1047
1048 if (!ret && ext4_should_journal_data(inode)) {
1049 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1050 from, to, NULL,
1051 do_journal_get_write_access);
1052 }
1053
1054 if (ret) {
1055 unlock_page(page);
1056 /*
1057 * __block_write_begin may have instantiated a few blocks
1058 * outside i_size. Trim these off again. Don't need
1059 * i_size_read because we hold i_mutex.
1060 *
1061 * Add inode to orphan list in case we crash before
1062 * truncate finishes
1063 */
1064 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1065 ext4_orphan_add(handle, inode);
1066
1067 ext4_journal_stop(handle);
1068 if (pos + len > inode->i_size) {
1069 ext4_truncate_failed_write(inode);
1070 /*
1071 * If truncate failed early the inode might
1072 * still be on the orphan list; we need to
1073 * make sure the inode is removed from the
1074 * orphan list in that case.
1075 */
1076 if (inode->i_nlink)
1077 ext4_orphan_del(NULL, inode);
1078 }
1079
1080 if (ret == -ENOSPC &&
1081 ext4_should_retry_alloc(inode->i_sb, &retries))
1082 goto retry_journal;
1083 page_cache_release(page);
1084 return ret;
1085 }
1086 *pagep = page;
1087 #if defined(FEATURE_STORAGE_PID_LOGGER)
1088 if( page_logger && (*pagep)) {
1089 //#if defined(CONFIG_FLATMEM)
1090 //page_index = (unsigned long)((*pagep) - mem_map) ;
1091 //#else
1092 page_index = (unsigned long)(__page_to_pfn(*pagep))- PHYS_PFN_OFFSET;
1093 //#endif
1094 tmp_logger =((struct page_pid_logger *)page_logger) + page_index;
1095 spin_lock_irqsave(&g_locker, g_flags);
1096 if( page_index < num_physpages) {
1097 if( tmp_logger->pid1 == 0XFFFF)
1098 tmp_logger->pid1 = current->pid;
1099 else if( tmp_logger->pid1 != current->pid)
1100 tmp_logger->pid2 = current->pid;
1101 }
1102 spin_unlock_irqrestore(&g_locker, g_flags);
1103 }
1104 #endif
1105 return ret;
1106 }
1107
1108 /* For write_end() in data=journal mode */
1109 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1110 {
1111 int ret;
1112 if (!buffer_mapped(bh) || buffer_freed(bh))
1113 return 0;
1114 set_buffer_uptodate(bh);
1115 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1116 clear_buffer_meta(bh);
1117 clear_buffer_prio(bh);
1118 return ret;
1119 }
1120
1121 /*
1122 * We need to pick up the new inode size which generic_commit_write gave us
1123 * `file' can be NULL - eg, when called from page_symlink().
1124 *
1125 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1126 * buffers are managed internally.
1127 */
1128 static int ext4_write_end(struct file *file,
1129 struct address_space *mapping,
1130 loff_t pos, unsigned len, unsigned copied,
1131 struct page *page, void *fsdata)
1132 {
1133 handle_t *handle = ext4_journal_current_handle();
1134 struct inode *inode = mapping->host;
1135 int ret = 0, ret2;
1136 int i_size_changed = 0;
1137
1138 trace_ext4_write_end(inode, pos, len, copied);
1139 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1140 ret = ext4_jbd2_file_inode(handle, inode);
1141 if (ret) {
1142 unlock_page(page);
1143 page_cache_release(page);
1144 goto errout;
1145 }
1146 }
1147
1148 if (ext4_has_inline_data(inode)) {
1149 ret = ext4_write_inline_data_end(inode, pos, len,
1150 copied, page);
1151 if (ret < 0)
1152 goto errout;
1153 copied = ret;
1154 } else
1155 copied = block_write_end(file, mapping, pos,
1156 len, copied, page, fsdata);
1157
1158 /*
1159 * No need to use i_size_read() here, the i_size
1160 * cannot change under us because we hole i_mutex.
1161 *
1162 * But it's important to update i_size while still holding page lock:
1163 * page writeout could otherwise come in and zero beyond i_size.
1164 */
1165 if (pos + copied > inode->i_size) {
1166 i_size_write(inode, pos + copied);
1167 i_size_changed = 1;
1168 }
1169
1170 if (pos + copied > EXT4_I(inode)->i_disksize) {
1171 /* We need to mark inode dirty even if
1172 * new_i_size is less that inode->i_size
1173 * but greater than i_disksize. (hint delalloc)
1174 */
1175 ext4_update_i_disksize(inode, (pos + copied));
1176 i_size_changed = 1;
1177 }
1178 unlock_page(page);
1179 page_cache_release(page);
1180
1181 /*
1182 * Don't mark the inode dirty under page lock. First, it unnecessarily
1183 * makes the holding time of page lock longer. Second, it forces lock
1184 * ordering of page lock and transaction start for journaling
1185 * filesystems.
1186 */
1187 if (i_size_changed)
1188 ext4_mark_inode_dirty(handle, inode);
1189
1190 if (copied < 0)
1191 ret = copied;
1192 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1193 /* if we have allocated more blocks and copied
1194 * less. We will have blocks allocated outside
1195 * inode->i_size. So truncate them
1196 */
1197 ext4_orphan_add(handle, inode);
1198 errout:
1199 ret2 = ext4_journal_stop(handle);
1200 if (!ret)
1201 ret = ret2;
1202
1203 if (pos + len > inode->i_size) {
1204 ext4_truncate_failed_write(inode);
1205 /*
1206 * If truncate failed early the inode might still be
1207 * on the orphan list; we need to make sure the inode
1208 * is removed from the orphan list in that case.
1209 */
1210 if (inode->i_nlink)
1211 ext4_orphan_del(NULL, inode);
1212 }
1213
1214 return ret ? ret : copied;
1215 }
1216
1217 static int ext4_journalled_write_end(struct file *file,
1218 struct address_space *mapping,
1219 loff_t pos, unsigned len, unsigned copied,
1220 struct page *page, void *fsdata)
1221 {
1222 handle_t *handle = ext4_journal_current_handle();
1223 struct inode *inode = mapping->host;
1224 int ret = 0, ret2;
1225 int partial = 0;
1226 unsigned from, to;
1227 loff_t new_i_size;
1228
1229 trace_ext4_journalled_write_end(inode, pos, len, copied);
1230 from = pos & (PAGE_CACHE_SIZE - 1);
1231 to = from + len;
1232
1233 BUG_ON(!ext4_handle_valid(handle));
1234
1235 if (ext4_has_inline_data(inode))
1236 copied = ext4_write_inline_data_end(inode, pos, len,
1237 copied, page);
1238 else {
1239 if (copied < len) {
1240 if (!PageUptodate(page))
1241 copied = 0;
1242 page_zero_new_buffers(page, from+copied, to);
1243 }
1244
1245 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1246 to, &partial, write_end_fn);
1247 if (!partial)
1248 SetPageUptodate(page);
1249 }
1250 new_i_size = pos + copied;
1251 if (new_i_size > inode->i_size)
1252 i_size_write(inode, pos+copied);
1253 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1254 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1255 if (new_i_size > EXT4_I(inode)->i_disksize) {
1256 ext4_update_i_disksize(inode, new_i_size);
1257 ret2 = ext4_mark_inode_dirty(handle, inode);
1258 if (!ret)
1259 ret = ret2;
1260 }
1261
1262 unlock_page(page);
1263 page_cache_release(page);
1264 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1265 /* if we have allocated more blocks and copied
1266 * less. We will have blocks allocated outside
1267 * inode->i_size. So truncate them
1268 */
1269 ext4_orphan_add(handle, inode);
1270
1271 ret2 = ext4_journal_stop(handle);
1272 if (!ret)
1273 ret = ret2;
1274 if (pos + len > inode->i_size) {
1275 ext4_truncate_failed_write(inode);
1276 /*
1277 * If truncate failed early the inode might still be
1278 * on the orphan list; we need to make sure the inode
1279 * is removed from the orphan list in that case.
1280 */
1281 if (inode->i_nlink)
1282 ext4_orphan_del(NULL, inode);
1283 }
1284
1285 return ret ? ret : copied;
1286 }
1287
1288 /*
1289 * Reserve a metadata for a single block located at lblock
1290 */
1291 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1292 {
1293 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1294 struct ext4_inode_info *ei = EXT4_I(inode);
1295 unsigned int md_needed;
1296 ext4_lblk_t save_last_lblock;
1297 int save_len;
1298
1299 /*
1300 * recalculate the amount of metadata blocks to reserve
1301 * in order to allocate nrblocks
1302 * worse case is one extent per block
1303 */
1304 spin_lock(&ei->i_block_reservation_lock);
1305 /*
1306 * ext4_calc_metadata_amount() has side effects, which we have
1307 * to be prepared undo if we fail to claim space.
1308 */
1309 save_len = ei->i_da_metadata_calc_len;
1310 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1311 md_needed = EXT4_NUM_B2C(sbi,
1312 ext4_calc_metadata_amount(inode, lblock));
1313 trace_ext4_da_reserve_space(inode, md_needed);
1314
1315 /*
1316 * We do still charge estimated metadata to the sb though;
1317 * we cannot afford to run out of free blocks.
1318 */
1319 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1320 ei->i_da_metadata_calc_len = save_len;
1321 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1322 spin_unlock(&ei->i_block_reservation_lock);
1323 return -ENOSPC;
1324 }
1325 ei->i_reserved_meta_blocks += md_needed;
1326 spin_unlock(&ei->i_block_reservation_lock);
1327
1328 return 0; /* success */
1329 }
1330
1331 /*
1332 * Reserve a single cluster located at lblock
1333 */
1334 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1335 {
1336 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1337 struct ext4_inode_info *ei = EXT4_I(inode);
1338 unsigned int md_needed;
1339 int ret;
1340 ext4_lblk_t save_last_lblock;
1341 int save_len;
1342
1343 /*
1344 * We will charge metadata quota at writeout time; this saves
1345 * us from metadata over-estimation, though we may go over by
1346 * a small amount in the end. Here we just reserve for data.
1347 */
1348 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1349 if (ret)
1350 return ret;
1351
1352 /*
1353 * recalculate the amount of metadata blocks to reserve
1354 * in order to allocate nrblocks
1355 * worse case is one extent per block
1356 */
1357 spin_lock(&ei->i_block_reservation_lock);
1358 /*
1359 * ext4_calc_metadata_amount() has side effects, which we have
1360 * to be prepared undo if we fail to claim space.
1361 */
1362 save_len = ei->i_da_metadata_calc_len;
1363 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1364 md_needed = EXT4_NUM_B2C(sbi,
1365 ext4_calc_metadata_amount(inode, lblock));
1366 trace_ext4_da_reserve_space(inode, md_needed);
1367
1368 /*
1369 * We do still charge estimated metadata to the sb though;
1370 * we cannot afford to run out of free blocks.
1371 */
1372 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1373 ei->i_da_metadata_calc_len = save_len;
1374 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1375 spin_unlock(&ei->i_block_reservation_lock);
1376 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1377 return -ENOSPC;
1378 }
1379 ei->i_reserved_data_blocks++;
1380 ei->i_reserved_meta_blocks += md_needed;
1381 spin_unlock(&ei->i_block_reservation_lock);
1382
1383 return 0; /* success */
1384 }
1385
1386 static void ext4_da_release_space(struct inode *inode, int to_free)
1387 {
1388 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1389 struct ext4_inode_info *ei = EXT4_I(inode);
1390
1391 if (!to_free)
1392 return; /* Nothing to release, exit */
1393
1394 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1395
1396 trace_ext4_da_release_space(inode, to_free);
1397 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1398 /*
1399 * if there aren't enough reserved blocks, then the
1400 * counter is messed up somewhere. Since this
1401 * function is called from invalidate page, it's
1402 * harmless to return without any action.
1403 */
1404 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1405 "ino %lu, to_free %d with only %d reserved "
1406 "data blocks", inode->i_ino, to_free,
1407 ei->i_reserved_data_blocks);
1408 WARN_ON(1);
1409 to_free = ei->i_reserved_data_blocks;
1410 }
1411 ei->i_reserved_data_blocks -= to_free;
1412
1413 if (ei->i_reserved_data_blocks == 0) {
1414 /*
1415 * We can release all of the reserved metadata blocks
1416 * only when we have written all of the delayed
1417 * allocation blocks.
1418 * Note that in case of bigalloc, i_reserved_meta_blocks,
1419 * i_reserved_data_blocks, etc. refer to number of clusters.
1420 */
1421 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1422 ei->i_reserved_meta_blocks);
1423 ei->i_reserved_meta_blocks = 0;
1424 ei->i_da_metadata_calc_len = 0;
1425 }
1426
1427 /* update fs dirty data blocks counter */
1428 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1429
1430 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1431
1432 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1433 }
1434
1435 static void ext4_da_page_release_reservation(struct page *page,
1436 unsigned long offset)
1437 {
1438 int to_release = 0;
1439 struct buffer_head *head, *bh;
1440 unsigned int curr_off = 0;
1441 struct inode *inode = page->mapping->host;
1442 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1443 int num_clusters;
1444 ext4_fsblk_t lblk;
1445
1446 head = page_buffers(page);
1447 bh = head;
1448 do {
1449 unsigned int next_off = curr_off + bh->b_size;
1450
1451 if ((offset <= curr_off) && (buffer_delay(bh))) {
1452 to_release++;
1453 clear_buffer_delay(bh);
1454 }
1455 curr_off = next_off;
1456 } while ((bh = bh->b_this_page) != head);
1457
1458 if (to_release) {
1459 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1460 ext4_es_remove_extent(inode, lblk, to_release);
1461 }
1462
1463 /* If we have released all the blocks belonging to a cluster, then we
1464 * need to release the reserved space for that cluster. */
1465 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1466 while (num_clusters > 0) {
1467 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1468 ((num_clusters - 1) << sbi->s_cluster_bits);
1469 if (sbi->s_cluster_ratio == 1 ||
1470 !ext4_find_delalloc_cluster(inode, lblk))
1471 ext4_da_release_space(inode, 1);
1472
1473 num_clusters--;
1474 }
1475 }
1476
1477 /*
1478 * Delayed allocation stuff
1479 */
1480
1481 /*
1482 * mpage_da_submit_io - walks through extent of pages and try to write
1483 * them with writepage() call back
1484 *
1485 * @mpd->inode: inode
1486 * @mpd->first_page: first page of the extent
1487 * @mpd->next_page: page after the last page of the extent
1488 *
1489 * By the time mpage_da_submit_io() is called we expect all blocks
1490 * to be allocated. this may be wrong if allocation failed.
1491 *
1492 * As pages are already locked by write_cache_pages(), we can't use it
1493 */
1494 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1495 struct ext4_map_blocks *map)
1496 {
1497 struct pagevec pvec;
1498 unsigned long index, end;
1499 int ret = 0, err, nr_pages, i;
1500 struct inode *inode = mpd->inode;
1501 struct address_space *mapping = inode->i_mapping;
1502 loff_t size = i_size_read(inode);
1503 unsigned int len, block_start;
1504 struct buffer_head *bh, *page_bufs = NULL;
1505 sector_t pblock = 0, cur_logical = 0;
1506 struct ext4_io_submit io_submit;
1507
1508 BUG_ON(mpd->next_page <= mpd->first_page);
1509 memset(&io_submit, 0, sizeof(io_submit));
1510 /*
1511 * We need to start from the first_page to the next_page - 1
1512 * to make sure we also write the mapped dirty buffer_heads.
1513 * If we look at mpd->b_blocknr we would only be looking
1514 * at the currently mapped buffer_heads.
1515 */
1516 index = mpd->first_page;
1517 end = mpd->next_page - 1;
1518
1519 pagevec_init(&pvec, 0);
1520 while (index <= end) {
1521 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1522 if (nr_pages == 0)
1523 break;
1524 for (i = 0; i < nr_pages; i++) {
1525 int skip_page = 0;
1526 struct page *page = pvec.pages[i];
1527
1528 index = page->index;
1529 if (index > end)
1530 break;
1531
1532 if (index == size >> PAGE_CACHE_SHIFT)
1533 len = size & ~PAGE_CACHE_MASK;
1534 else
1535 len = PAGE_CACHE_SIZE;
1536 if (map) {
1537 cur_logical = index << (PAGE_CACHE_SHIFT -
1538 inode->i_blkbits);
1539 pblock = map->m_pblk + (cur_logical -
1540 map->m_lblk);
1541 }
1542 index++;
1543
1544 BUG_ON(!PageLocked(page));
1545 BUG_ON(PageWriteback(page));
1546
1547 bh = page_bufs = page_buffers(page);
1548 block_start = 0;
1549 do {
1550 if (map && (cur_logical >= map->m_lblk) &&
1551 (cur_logical <= (map->m_lblk +
1552 (map->m_len - 1)))) {
1553 if (buffer_delay(bh)) {
1554 clear_buffer_delay(bh);
1555 bh->b_blocknr = pblock;
1556 }
1557 if (buffer_unwritten(bh) ||
1558 buffer_mapped(bh))
1559 BUG_ON(bh->b_blocknr != pblock);
1560 if (map->m_flags & EXT4_MAP_UNINIT)
1561 set_buffer_uninit(bh);
1562 clear_buffer_unwritten(bh);
1563 }
1564
1565 /*
1566 * skip page if block allocation undone and
1567 * block is dirty
1568 */
1569 if (ext4_bh_delay_or_unwritten(NULL, bh))
1570 skip_page = 1;
1571 bh = bh->b_this_page;
1572 block_start += bh->b_size;
1573 cur_logical++;
1574 pblock++;
1575 } while (bh != page_bufs);
1576
1577 if (skip_page) {
1578 unlock_page(page);
1579 continue;
1580 }
1581
1582 clear_page_dirty_for_io(page);
1583 err = ext4_bio_write_page(&io_submit, page, len,
1584 mpd->wbc);
1585 if (!err)
1586 mpd->pages_written++;
1587 /*
1588 * In error case, we have to continue because
1589 * remaining pages are still locked
1590 */
1591 if (ret == 0)
1592 ret = err;
1593 }
1594 pagevec_release(&pvec);
1595 }
1596 ext4_io_submit(&io_submit);
1597 return ret;
1598 }
1599
1600 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1601 {
1602 int nr_pages, i;
1603 pgoff_t index, end;
1604 struct pagevec pvec;
1605 struct inode *inode = mpd->inode;
1606 struct address_space *mapping = inode->i_mapping;
1607 ext4_lblk_t start, last;
1608
1609 index = mpd->first_page;
1610 end = mpd->next_page - 1;
1611
1612 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1613 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1614 ext4_es_remove_extent(inode, start, last - start + 1);
1615
1616 pagevec_init(&pvec, 0);
1617 while (index <= end) {
1618 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1619 if (nr_pages == 0)
1620 break;
1621 for (i = 0; i < nr_pages; i++) {
1622 struct page *page = pvec.pages[i];
1623 if (page->index > end)
1624 break;
1625 BUG_ON(!PageLocked(page));
1626 BUG_ON(PageWriteback(page));
1627 block_invalidatepage(page, 0);
1628 ClearPageUptodate(page);
1629 unlock_page(page);
1630 }
1631 index = pvec.pages[nr_pages - 1]->index + 1;
1632 pagevec_release(&pvec);
1633 }
1634 return;
1635 }
1636
1637 static void ext4_print_free_blocks(struct inode *inode)
1638 {
1639 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1640 struct super_block *sb = inode->i_sb;
1641 struct ext4_inode_info *ei = EXT4_I(inode);
1642
1643 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1644 EXT4_C2B(EXT4_SB(inode->i_sb),
1645 ext4_count_free_clusters(sb)));
1646 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1647 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1648 (long long) EXT4_C2B(EXT4_SB(sb),
1649 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1650 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1651 (long long) EXT4_C2B(EXT4_SB(sb),
1652 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1653 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1654 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1655 ei->i_reserved_data_blocks);
1656 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1657 ei->i_reserved_meta_blocks);
1658 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1659 ei->i_allocated_meta_blocks);
1660 return;
1661 }
1662
1663 /*
1664 * mpage_da_map_and_submit - go through given space, map them
1665 * if necessary, and then submit them for I/O
1666 *
1667 * @mpd - bh describing space
1668 *
1669 * The function skips space we know is already mapped to disk blocks.
1670 *
1671 */
1672 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1673 {
1674 int err, blks, get_blocks_flags;
1675 struct ext4_map_blocks map, *mapp = NULL;
1676 sector_t next = mpd->b_blocknr;
1677 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1678 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1679 handle_t *handle = NULL;
1680
1681 /*
1682 * If the blocks are mapped already, or we couldn't accumulate
1683 * any blocks, then proceed immediately to the submission stage.
1684 */
1685 if ((mpd->b_size == 0) ||
1686 ((mpd->b_state & (1 << BH_Mapped)) &&
1687 !(mpd->b_state & (1 << BH_Delay)) &&
1688 !(mpd->b_state & (1 << BH_Unwritten))))
1689 goto submit_io;
1690
1691 handle = ext4_journal_current_handle();
1692 BUG_ON(!handle);
1693
1694 /*
1695 * Call ext4_map_blocks() to allocate any delayed allocation
1696 * blocks, or to convert an uninitialized extent to be
1697 * initialized (in the case where we have written into
1698 * one or more preallocated blocks).
1699 *
1700 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1701 * indicate that we are on the delayed allocation path. This
1702 * affects functions in many different parts of the allocation
1703 * call path. This flag exists primarily because we don't
1704 * want to change *many* call functions, so ext4_map_blocks()
1705 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1706 * inode's allocation semaphore is taken.
1707 *
1708 * If the blocks in questions were delalloc blocks, set
1709 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1710 * variables are updated after the blocks have been allocated.
1711 */
1712 map.m_lblk = next;
1713 map.m_len = max_blocks;
1714 /*
1715 * We're in delalloc path and it is possible that we're going to
1716 * need more metadata blocks than previously reserved. However
1717 * we must not fail because we're in writeback and there is
1718 * nothing we can do about it so it might result in data loss.
1719 * So use reserved blocks to allocate metadata if possible.
1720 */
1721 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1722 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1723 if (ext4_should_dioread_nolock(mpd->inode))
1724 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1725 if (mpd->b_state & (1 << BH_Delay))
1726 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1727
1728
1729 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1730 if (blks < 0) {
1731 struct super_block *sb = mpd->inode->i_sb;
1732
1733 err = blks;
1734 /*
1735 * If get block returns EAGAIN or ENOSPC and there
1736 * appears to be free blocks we will just let
1737 * mpage_da_submit_io() unlock all of the pages.
1738 */
1739 if (err == -EAGAIN)
1740 goto submit_io;
1741
1742 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1743 mpd->retval = err;
1744 goto submit_io;
1745 }
1746
1747 /*
1748 * get block failure will cause us to loop in
1749 * writepages, because a_ops->writepage won't be able
1750 * to make progress. The page will be redirtied by
1751 * writepage and writepages will again try to write
1752 * the same.
1753 */
1754 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1755 ext4_msg(sb, KERN_CRIT,
1756 "delayed block allocation failed for inode %lu "
1757 "at logical offset %llu with max blocks %zd "
1758 "with error %d", mpd->inode->i_ino,
1759 (unsigned long long) next,
1760 mpd->b_size >> mpd->inode->i_blkbits, err);
1761 ext4_msg(sb, KERN_CRIT,
1762 "This should not happen!! Data will be lost");
1763 if (err == -ENOSPC)
1764 ext4_print_free_blocks(mpd->inode);
1765 }
1766 /* invalidate all the pages */
1767 ext4_da_block_invalidatepages(mpd);
1768
1769 /* Mark this page range as having been completed */
1770 mpd->io_done = 1;
1771 return;
1772 }
1773 BUG_ON(blks == 0);
1774
1775 mapp = &map;
1776 if (map.m_flags & EXT4_MAP_NEW) {
1777 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1778 int i;
1779
1780 for (i = 0; i < map.m_len; i++)
1781 unmap_underlying_metadata(bdev, map.m_pblk + i);
1782 }
1783
1784 /*
1785 * Update on-disk size along with block allocation.
1786 */
1787 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1788 if (disksize > i_size_read(mpd->inode))
1789 disksize = i_size_read(mpd->inode);
1790 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1791 ext4_update_i_disksize(mpd->inode, disksize);
1792 err = ext4_mark_inode_dirty(handle, mpd->inode);
1793 if (err)
1794 ext4_error(mpd->inode->i_sb,
1795 "Failed to mark inode %lu dirty",
1796 mpd->inode->i_ino);
1797 }
1798
1799 submit_io:
1800 mpage_da_submit_io(mpd, mapp);
1801 mpd->io_done = 1;
1802 }
1803
1804 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1805 (1 << BH_Delay) | (1 << BH_Unwritten))
1806
1807 /*
1808 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1809 *
1810 * @mpd->lbh - extent of blocks
1811 * @logical - logical number of the block in the file
1812 * @b_state - b_state of the buffer head added
1813 *
1814 * the function is used to collect contig. blocks in same state
1815 */
1816 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1817 unsigned long b_state)
1818 {
1819 sector_t next;
1820 int blkbits = mpd->inode->i_blkbits;
1821 int nrblocks = mpd->b_size >> blkbits;
1822
1823 /*
1824 * XXX Don't go larger than mballoc is willing to allocate
1825 * This is a stopgap solution. We eventually need to fold
1826 * mpage_da_submit_io() into this function and then call
1827 * ext4_map_blocks() multiple times in a loop
1828 */
1829 if (nrblocks >= (8*1024*1024 >> blkbits))
1830 goto flush_it;
1831
1832 /* check if the reserved journal credits might overflow */
1833 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1834 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1835 /*
1836 * With non-extent format we are limited by the journal
1837 * credit available. Total credit needed to insert
1838 * nrblocks contiguous blocks is dependent on the
1839 * nrblocks. So limit nrblocks.
1840 */
1841 goto flush_it;
1842 }
1843 }
1844 /*
1845 * First block in the extent
1846 */
1847 if (mpd->b_size == 0) {
1848 mpd->b_blocknr = logical;
1849 mpd->b_size = 1 << blkbits;
1850 mpd->b_state = b_state & BH_FLAGS;
1851 return;
1852 }
1853
1854 next = mpd->b_blocknr + nrblocks;
1855 /*
1856 * Can we merge the block to our big extent?
1857 */
1858 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1859 mpd->b_size += 1 << blkbits;
1860 return;
1861 }
1862
1863 flush_it:
1864 /*
1865 * We couldn't merge the block to our extent, so we
1866 * need to flush current extent and start new one
1867 */
1868 mpage_da_map_and_submit(mpd);
1869 return;
1870 }
1871
1872 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1873 {
1874 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1875 }
1876
1877 /*
1878 * This function is grabs code from the very beginning of
1879 * ext4_map_blocks, but assumes that the caller is from delayed write
1880 * time. This function looks up the requested blocks and sets the
1881 * buffer delay bit under the protection of i_data_sem.
1882 */
1883 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1884 struct ext4_map_blocks *map,
1885 struct buffer_head *bh)
1886 {
1887 struct extent_status es;
1888 int retval;
1889 sector_t invalid_block = ~((sector_t) 0xffff);
1890 #ifdef ES_AGGRESSIVE_TEST
1891 struct ext4_map_blocks orig_map;
1892
1893 memcpy(&orig_map, map, sizeof(*map));
1894 #endif
1895
1896 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1897 invalid_block = ~0;
1898
1899 map->m_flags = 0;
1900 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1901 "logical block %lu\n", inode->i_ino, map->m_len,
1902 (unsigned long) map->m_lblk);
1903
1904 /* Lookup extent status tree firstly */
1905 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1906
1907 if (ext4_es_is_hole(&es)) {
1908 retval = 0;
1909 down_read((&EXT4_I(inode)->i_data_sem));
1910 goto add_delayed;
1911 }
1912
1913 /*
1914 * Delayed extent could be allocated by fallocate.
1915 * So we need to check it.
1916 */
1917 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1918 map_bh(bh, inode->i_sb, invalid_block);
1919 set_buffer_new(bh);
1920 set_buffer_delay(bh);
1921 return 0;
1922 }
1923
1924 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1925 retval = es.es_len - (iblock - es.es_lblk);
1926 if (retval > map->m_len)
1927 retval = map->m_len;
1928 map->m_len = retval;
1929 if (ext4_es_is_written(&es))
1930 map->m_flags |= EXT4_MAP_MAPPED;
1931 else if (ext4_es_is_unwritten(&es))
1932 map->m_flags |= EXT4_MAP_UNWRITTEN;
1933 else
1934 BUG_ON(1);
1935
1936 #ifdef ES_AGGRESSIVE_TEST
1937 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1938 #endif
1939 return retval;
1940 }
1941
1942 /*
1943 * Try to see if we can get the block without requesting a new
1944 * file system block.
1945 */
1946 down_read((&EXT4_I(inode)->i_data_sem));
1947 if (ext4_has_inline_data(inode)) {
1948 /*
1949 * We will soon create blocks for this page, and let
1950 * us pretend as if the blocks aren't allocated yet.
1951 * In case of clusters, we have to handle the work
1952 * of mapping from cluster so that the reserved space
1953 * is calculated properly.
1954 */
1955 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1956 ext4_find_delalloc_cluster(inode, map->m_lblk))
1957 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1958 retval = 0;
1959 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1960 retval = ext4_ext_map_blocks(NULL, inode, map,
1961 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1962 else
1963 retval = ext4_ind_map_blocks(NULL, inode, map,
1964 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1965
1966 add_delayed:
1967 if (retval == 0) {
1968 int ret;
1969 /*
1970 * XXX: __block_prepare_write() unmaps passed block,
1971 * is it OK?
1972 */
1973 /*
1974 * If the block was allocated from previously allocated cluster,
1975 * then we don't need to reserve it again. However we still need
1976 * to reserve metadata for every block we're going to write.
1977 */
1978 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1979 ret = ext4_da_reserve_space(inode, iblock);
1980 if (ret) {
1981 /* not enough space to reserve */
1982 retval = ret;
1983 goto out_unlock;
1984 }
1985 } else {
1986 ret = ext4_da_reserve_metadata(inode, iblock);
1987 if (ret) {
1988 /* not enough space to reserve */
1989 retval = ret;
1990 goto out_unlock;
1991 }
1992 }
1993
1994 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1995 ~0, EXTENT_STATUS_DELAYED);
1996 if (ret) {
1997 retval = ret;
1998 goto out_unlock;
1999 }
2000
2001 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
2002 * and it should not appear on the bh->b_state.
2003 */
2004 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
2005
2006 map_bh(bh, inode->i_sb, invalid_block);
2007 set_buffer_new(bh);
2008 set_buffer_delay(bh);
2009 } else if (retval > 0) {
2010 int ret;
2011 unsigned long long status;
2012
2013 #ifdef ES_AGGRESSIVE_TEST
2014 if (retval != map->m_len) {
2015 printk("ES len assertation failed for inode: %lu "
2016 "retval %d != map->m_len %d "
2017 "in %s (lookup)\n", inode->i_ino, retval,
2018 map->m_len, __func__);
2019 }
2020 #endif
2021
2022 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2023 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2024 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2025 map->m_pblk, status);
2026 if (ret != 0)
2027 retval = ret;
2028 }
2029
2030 out_unlock:
2031 up_read((&EXT4_I(inode)->i_data_sem));
2032
2033 return retval;
2034 }
2035
2036 /*
2037 * This is a special get_blocks_t callback which is used by
2038 * ext4_da_write_begin(). It will either return mapped block or
2039 * reserve space for a single block.
2040 *
2041 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2042 * We also have b_blocknr = -1 and b_bdev initialized properly
2043 *
2044 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2045 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2046 * initialized properly.
2047 */
2048 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2049 struct buffer_head *bh, int create)
2050 {
2051 struct ext4_map_blocks map;
2052 int ret = 0;
2053
2054 BUG_ON(create == 0);
2055 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2056
2057 map.m_lblk = iblock;
2058 map.m_len = 1;
2059
2060 /*
2061 * first, we need to know whether the block is allocated already
2062 * preallocated blocks are unmapped but should treated
2063 * the same as allocated blocks.
2064 */
2065 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2066 if (ret <= 0)
2067 return ret;
2068
2069 map_bh(bh, inode->i_sb, map.m_pblk);
2070 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2071
2072 if (buffer_unwritten(bh)) {
2073 /* A delayed write to unwritten bh should be marked
2074 * new and mapped. Mapped ensures that we don't do
2075 * get_block multiple times when we write to the same
2076 * offset and new ensures that we do proper zero out
2077 * for partial write.
2078 */
2079 set_buffer_new(bh);
2080 set_buffer_mapped(bh);
2081 }
2082 return 0;
2083 }
2084
2085 static int bget_one(handle_t *handle, struct buffer_head *bh)
2086 {
2087 get_bh(bh);
2088 return 0;
2089 }
2090
2091 static int bput_one(handle_t *handle, struct buffer_head *bh)
2092 {
2093 put_bh(bh);
2094 return 0;
2095 }
2096
2097 static int __ext4_journalled_writepage(struct page *page,
2098 unsigned int len)
2099 {
2100 struct address_space *mapping = page->mapping;
2101 struct inode *inode = mapping->host;
2102 struct buffer_head *page_bufs = NULL;
2103 handle_t *handle = NULL;
2104 int ret = 0, err = 0;
2105 int inline_data = ext4_has_inline_data(inode);
2106 struct buffer_head *inode_bh = NULL;
2107
2108 ClearPageChecked(page);
2109
2110 if (inline_data) {
2111 BUG_ON(page->index != 0);
2112 BUG_ON(len > ext4_get_max_inline_size(inode));
2113 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2114 if (inode_bh == NULL)
2115 goto out;
2116 } else {
2117 page_bufs = page_buffers(page);
2118 if (!page_bufs) {
2119 BUG();
2120 goto out;
2121 }
2122 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2123 NULL, bget_one);
2124 }
2125 /* As soon as we unlock the page, it can go away, but we have
2126 * references to buffers so we are safe */
2127 unlock_page(page);
2128
2129 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2130 ext4_writepage_trans_blocks(inode));
2131 if (IS_ERR(handle)) {
2132 ret = PTR_ERR(handle);
2133 goto out;
2134 }
2135
2136 BUG_ON(!ext4_handle_valid(handle));
2137
2138 if (inline_data) {
2139 ret = ext4_journal_get_write_access(handle, inode_bh);
2140
2141 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2142
2143 } else {
2144 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2145 do_journal_get_write_access);
2146
2147 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2148 write_end_fn);
2149 }
2150 if (ret == 0)
2151 ret = err;
2152 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2153 err = ext4_journal_stop(handle);
2154 if (!ret)
2155 ret = err;
2156
2157 if (!ext4_has_inline_data(inode))
2158 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2159 NULL, bput_one);
2160 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2161 out:
2162 brelse(inode_bh);
2163 return ret;
2164 }
2165
2166 /*
2167 * Note that we don't need to start a transaction unless we're journaling data
2168 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2169 * need to file the inode to the transaction's list in ordered mode because if
2170 * we are writing back data added by write(), the inode is already there and if
2171 * we are writing back data modified via mmap(), no one guarantees in which
2172 * transaction the data will hit the disk. In case we are journaling data, we
2173 * cannot start transaction directly because transaction start ranks above page
2174 * lock so we have to do some magic.
2175 *
2176 * This function can get called via...
2177 * - ext4_da_writepages after taking page lock (have journal handle)
2178 * - journal_submit_inode_data_buffers (no journal handle)
2179 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2180 * - grab_page_cache when doing write_begin (have journal handle)
2181 *
2182 * We don't do any block allocation in this function. If we have page with
2183 * multiple blocks we need to write those buffer_heads that are mapped. This
2184 * is important for mmaped based write. So if we do with blocksize 1K
2185 * truncate(f, 1024);
2186 * a = mmap(f, 0, 4096);
2187 * a[0] = 'a';
2188 * truncate(f, 4096);
2189 * we have in the page first buffer_head mapped via page_mkwrite call back
2190 * but other buffer_heads would be unmapped but dirty (dirty done via the
2191 * do_wp_page). So writepage should write the first block. If we modify
2192 * the mmap area beyond 1024 we will again get a page_fault and the
2193 * page_mkwrite callback will do the block allocation and mark the
2194 * buffer_heads mapped.
2195 *
2196 * We redirty the page if we have any buffer_heads that is either delay or
2197 * unwritten in the page.
2198 *
2199 * We can get recursively called as show below.
2200 *
2201 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2202 * ext4_writepage()
2203 *
2204 * But since we don't do any block allocation we should not deadlock.
2205 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2206 */
2207 static int ext4_writepage(struct page *page,
2208 struct writeback_control *wbc)
2209 {
2210 int ret = 0;
2211 loff_t size;
2212 unsigned int len;
2213 struct buffer_head *page_bufs = NULL;
2214 struct inode *inode = page->mapping->host;
2215 struct ext4_io_submit io_submit;
2216
2217 trace_ext4_writepage(page);
2218 size = i_size_read(inode);
2219 if (page->index == size >> PAGE_CACHE_SHIFT)
2220 len = size & ~PAGE_CACHE_MASK;
2221 else
2222 len = PAGE_CACHE_SIZE;
2223
2224 page_bufs = page_buffers(page);
2225 /*
2226 * We cannot do block allocation or other extent handling in this
2227 * function. If there are buffers needing that, we have to redirty
2228 * the page. But we may reach here when we do a journal commit via
2229 * journal_submit_inode_data_buffers() and in that case we must write
2230 * allocated buffers to achieve data=ordered mode guarantees.
2231 */
2232 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2233 ext4_bh_delay_or_unwritten)) {
2234 redirty_page_for_writepage(wbc, page);
2235 if (current->flags & PF_MEMALLOC) {
2236 /*
2237 * For memory cleaning there's no point in writing only
2238 * some buffers. So just bail out. Warn if we came here
2239 * from direct reclaim.
2240 */
2241 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2242 == PF_MEMALLOC);
2243 unlock_page(page);
2244 return 0;
2245 }
2246 }
2247
2248 if (PageChecked(page) && ext4_should_journal_data(inode))
2249 /*
2250 * It's mmapped pagecache. Add buffers and journal it. There
2251 * doesn't seem much point in redirtying the page here.
2252 */
2253 return __ext4_journalled_writepage(page, len);
2254
2255 memset(&io_submit, 0, sizeof(io_submit));
2256 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2257 ext4_io_submit(&io_submit);
2258 return ret;
2259 }
2260
2261 /*
2262 * This is called via ext4_da_writepages() to
2263 * calculate the total number of credits to reserve to fit
2264 * a single extent allocation into a single transaction,
2265 * ext4_da_writpeages() will loop calling this before
2266 * the block allocation.
2267 */
2268
2269 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2270 {
2271 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2272
2273 /*
2274 * With non-extent format the journal credit needed to
2275 * insert nrblocks contiguous block is dependent on
2276 * number of contiguous block. So we will limit
2277 * number of contiguous block to a sane value
2278 */
2279 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2280 (max_blocks > EXT4_MAX_TRANS_DATA))
2281 max_blocks = EXT4_MAX_TRANS_DATA;
2282
2283 return ext4_chunk_trans_blocks(inode, max_blocks);
2284 }
2285
2286 /*
2287 * write_cache_pages_da - walk the list of dirty pages of the given
2288 * address space and accumulate pages that need writing, and call
2289 * mpage_da_map_and_submit to map a single contiguous memory region
2290 * and then write them.
2291 */
2292 static int write_cache_pages_da(handle_t *handle,
2293 struct address_space *mapping,
2294 struct writeback_control *wbc,
2295 struct mpage_da_data *mpd,
2296 pgoff_t *done_index)
2297 {
2298 struct buffer_head *bh, *head;
2299 struct inode *inode = mapping->host;
2300 struct pagevec pvec;
2301 unsigned int nr_pages;
2302 sector_t logical;
2303 pgoff_t index, end;
2304 long nr_to_write = wbc->nr_to_write;
2305 int i, tag, ret = 0;
2306
2307 memset(mpd, 0, sizeof(struct mpage_da_data));
2308 mpd->wbc = wbc;
2309 mpd->inode = inode;
2310 pagevec_init(&pvec, 0);
2311 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2312 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2313
2314 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2315 tag = PAGECACHE_TAG_TOWRITE;
2316 else
2317 tag = PAGECACHE_TAG_DIRTY;
2318
2319 *done_index = index;
2320 while (index <= end) {
2321 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2322 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2323 if (nr_pages == 0)
2324 return 0;
2325
2326 for (i = 0; i < nr_pages; i++) {
2327 struct page *page = pvec.pages[i];
2328
2329 /*
2330 * At this point, the page may be truncated or
2331 * invalidated (changing page->mapping to NULL), or
2332 * even swizzled back from swapper_space to tmpfs file
2333 * mapping. However, page->index will not change
2334 * because we have a reference on the page.
2335 */
2336 if (page->index > end)
2337 goto out;
2338
2339 *done_index = page->index + 1;
2340
2341 /*
2342 * If we can't merge this page, and we have
2343 * accumulated an contiguous region, write it
2344 */
2345 if ((mpd->next_page != page->index) &&
2346 (mpd->next_page != mpd->first_page)) {
2347 mpage_da_map_and_submit(mpd);
2348 goto ret_extent_tail;
2349 }
2350
2351 lock_page(page);
2352
2353 /*
2354 * If the page is no longer dirty, or its
2355 * mapping no longer corresponds to inode we
2356 * are writing (which means it has been
2357 * truncated or invalidated), or the page is
2358 * already under writeback and we are not
2359 * doing a data integrity writeback, skip the page
2360 */
2361 if (!PageDirty(page) ||
2362 (PageWriteback(page) &&
2363 (wbc->sync_mode == WB_SYNC_NONE)) ||
2364 unlikely(page->mapping != mapping)) {
2365 unlock_page(page);
2366 continue;
2367 }
2368
2369 wait_on_page_writeback(page);
2370 BUG_ON(PageWriteback(page));
2371
2372 /*
2373 * If we have inline data and arrive here, it means that
2374 * we will soon create the block for the 1st page, so
2375 * we'd better clear the inline data here.
2376 */
2377 if (ext4_has_inline_data(inode)) {
2378 BUG_ON(ext4_test_inode_state(inode,
2379 EXT4_STATE_MAY_INLINE_DATA));
2380 ext4_destroy_inline_data(handle, inode);
2381 }
2382
2383 if (mpd->next_page != page->index)
2384 mpd->first_page = page->index;
2385 mpd->next_page = page->index + 1;
2386 logical = (sector_t) page->index <<
2387 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2388
2389 /* Add all dirty buffers to mpd */
2390 head = page_buffers(page);
2391 bh = head;
2392 do {
2393 BUG_ON(buffer_locked(bh));
2394 /*
2395 * We need to try to allocate unmapped blocks
2396 * in the same page. Otherwise we won't make
2397 * progress with the page in ext4_writepage
2398 */
2399 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2400 mpage_add_bh_to_extent(mpd, logical,
2401 bh->b_state);
2402 if (mpd->io_done)
2403 goto ret_extent_tail;
2404 } else if (buffer_dirty(bh) &&
2405 buffer_mapped(bh)) {
2406 /*
2407 * mapped dirty buffer. We need to
2408 * update the b_state because we look
2409 * at b_state in mpage_da_map_blocks.
2410 * We don't update b_size because if we
2411 * find an unmapped buffer_head later
2412 * we need to use the b_state flag of
2413 * that buffer_head.
2414 */
2415 if (mpd->b_size == 0)
2416 mpd->b_state =
2417 bh->b_state & BH_FLAGS;
2418 }
2419 logical++;
2420 } while ((bh = bh->b_this_page) != head);
2421
2422 if (nr_to_write > 0) {
2423 nr_to_write--;
2424 if (nr_to_write == 0 &&
2425 wbc->sync_mode == WB_SYNC_NONE)
2426 /*
2427 * We stop writing back only if we are
2428 * not doing integrity sync. In case of
2429 * integrity sync we have to keep going
2430 * because someone may be concurrently
2431 * dirtying pages, and we might have
2432 * synced a lot of newly appeared dirty
2433 * pages, but have not synced all of the
2434 * old dirty pages.
2435 */
2436 goto out;
2437 }
2438 }
2439 pagevec_release(&pvec);
2440 cond_resched();
2441 }
2442 return 0;
2443 ret_extent_tail:
2444 ret = MPAGE_DA_EXTENT_TAIL;
2445 out:
2446 pagevec_release(&pvec);
2447 cond_resched();
2448 return ret;
2449 }
2450
2451
2452 static int ext4_da_writepages(struct address_space *mapping,
2453 struct writeback_control *wbc)
2454 {
2455 pgoff_t index;
2456 int range_whole = 0;
2457 handle_t *handle = NULL;
2458 struct mpage_da_data mpd;
2459 struct inode *inode = mapping->host;
2460 int pages_written = 0;
2461 unsigned int max_pages;
2462 int range_cyclic, cycled = 1, io_done = 0;
2463 int needed_blocks, ret = 0;
2464 long desired_nr_to_write, nr_to_writebump = 0;
2465 loff_t range_start = wbc->range_start;
2466 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2467 pgoff_t done_index = 0;
2468 pgoff_t end;
2469 struct blk_plug plug;
2470
2471 trace_ext4_da_writepages(inode, wbc);
2472
2473 /*
2474 * No pages to write? This is mainly a kludge to avoid starting
2475 * a transaction for special inodes like journal inode on last iput()
2476 * because that could violate lock ordering on umount
2477 */
2478 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2479 return 0;
2480
2481 /*
2482 * If the filesystem has aborted, it is read-only, so return
2483 * right away instead of dumping stack traces later on that
2484 * will obscure the real source of the problem. We test
2485 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2486 * the latter could be true if the filesystem is mounted
2487 * read-only, and in that case, ext4_da_writepages should
2488 * *never* be called, so if that ever happens, we would want
2489 * the stack trace.
2490 */
2491 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2492 return -EROFS;
2493
2494 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2495 range_whole = 1;
2496
2497 range_cyclic = wbc->range_cyclic;
2498 if (wbc->range_cyclic) {
2499 index = mapping->writeback_index;
2500 if (index)
2501 cycled = 0;
2502 wbc->range_start = index << PAGE_CACHE_SHIFT;
2503 wbc->range_end = LLONG_MAX;
2504 wbc->range_cyclic = 0;
2505 end = -1;
2506 } else {
2507 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2508 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2509 }
2510
2511 /*
2512 * This works around two forms of stupidity. The first is in
2513 * the writeback code, which caps the maximum number of pages
2514 * written to be 1024 pages. This is wrong on multiple
2515 * levels; different architectues have a different page size,
2516 * which changes the maximum amount of data which gets
2517 * written. Secondly, 4 megabytes is way too small. XFS
2518 * forces this value to be 16 megabytes by multiplying
2519 * nr_to_write parameter by four, and then relies on its
2520 * allocator to allocate larger extents to make them
2521 * contiguous. Unfortunately this brings us to the second
2522 * stupidity, which is that ext4's mballoc code only allocates
2523 * at most 2048 blocks. So we force contiguous writes up to
2524 * the number of dirty blocks in the inode, or
2525 * sbi->max_writeback_mb_bump whichever is smaller.
2526 */
2527 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2528 if (!range_cyclic && range_whole) {
2529 if (wbc->nr_to_write == LONG_MAX)
2530 desired_nr_to_write = wbc->nr_to_write;
2531 else
2532 desired_nr_to_write = wbc->nr_to_write * 8;
2533 } else
2534 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2535 max_pages);
2536 if (desired_nr_to_write > max_pages)
2537 desired_nr_to_write = max_pages;
2538
2539 if (wbc->nr_to_write < desired_nr_to_write) {
2540 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2541 wbc->nr_to_write = desired_nr_to_write;
2542 }
2543
2544 retry:
2545 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2546 tag_pages_for_writeback(mapping, index, end);
2547
2548 blk_start_plug(&plug);
2549 while (!ret && wbc->nr_to_write > 0) {
2550
2551 /*
2552 * we insert one extent at a time. So we need
2553 * credit needed for single extent allocation.
2554 * journalled mode is currently not supported
2555 * by delalloc
2556 */
2557 BUG_ON(ext4_should_journal_data(inode));
2558 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2559
2560 /* start a new transaction*/
2561 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2562 needed_blocks);
2563 if (IS_ERR(handle)) {
2564 ret = PTR_ERR(handle);
2565 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2566 "%ld pages, ino %lu; err %d", __func__,
2567 wbc->nr_to_write, inode->i_ino, ret);
2568 blk_finish_plug(&plug);
2569 goto out_writepages;
2570 }
2571
2572 /*
2573 * Now call write_cache_pages_da() to find the next
2574 * contiguous region of logical blocks that need
2575 * blocks to be allocated by ext4 and submit them.
2576 */
2577 ret = write_cache_pages_da(handle, mapping,
2578 wbc, &mpd, &done_index);
2579 /*
2580 * If we have a contiguous extent of pages and we
2581 * haven't done the I/O yet, map the blocks and submit
2582 * them for I/O.
2583 */
2584 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2585 mpage_da_map_and_submit(&mpd);
2586 ret = MPAGE_DA_EXTENT_TAIL;
2587 }
2588 trace_ext4_da_write_pages(inode, &mpd);
2589 wbc->nr_to_write -= mpd.pages_written;
2590
2591 ext4_journal_stop(handle);
2592
2593 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2594 /* commit the transaction which would
2595 * free blocks released in the transaction
2596 * and try again
2597 */
2598 jbd2_journal_force_commit_nested(sbi->s_journal);
2599 ret = 0;
2600 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2601 /*
2602 * Got one extent now try with rest of the pages.
2603 * If mpd.retval is set -EIO, journal is aborted.
2604 * So we don't need to write any more.
2605 */
2606 pages_written += mpd.pages_written;
2607 ret = mpd.retval;
2608 io_done = 1;
2609 } else if (wbc->nr_to_write)
2610 /*
2611 * There is no more writeout needed
2612 * or we requested for a noblocking writeout
2613 * and we found the device congested
2614 */
2615 break;
2616 }
2617 blk_finish_plug(&plug);
2618 if (!io_done && !cycled) {
2619 cycled = 1;
2620 index = 0;
2621 wbc->range_start = index << PAGE_CACHE_SHIFT;
2622 wbc->range_end = mapping->writeback_index - 1;
2623 goto retry;
2624 }
2625
2626 /* Update index */
2627 wbc->range_cyclic = range_cyclic;
2628 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2629 /*
2630 * set the writeback_index so that range_cyclic
2631 * mode will write it back later
2632 */
2633 mapping->writeback_index = done_index;
2634
2635 out_writepages:
2636 wbc->nr_to_write -= nr_to_writebump;
2637 wbc->range_start = range_start;
2638 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2639 return ret;
2640 }
2641
2642 static int ext4_nonda_switch(struct super_block *sb)
2643 {
2644 s64 free_clusters, dirty_clusters;
2645 struct ext4_sb_info *sbi = EXT4_SB(sb);
2646
2647 /*
2648 * switch to non delalloc mode if we are running low
2649 * on free block. The free block accounting via percpu
2650 * counters can get slightly wrong with percpu_counter_batch getting
2651 * accumulated on each CPU without updating global counters
2652 * Delalloc need an accurate free block accounting. So switch
2653 * to non delalloc when we are near to error range.
2654 */
2655 free_clusters =
2656 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2657 dirty_clusters =
2658 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2659 /*
2660 * Start pushing delalloc when 1/2 of free blocks are dirty.
2661 */
2662 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2663 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2664
2665 if (2 * free_clusters < 3 * dirty_clusters ||
2666 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2667 /*
2668 * free block count is less than 150% of dirty blocks
2669 * or free blocks is less than watermark
2670 */
2671 return 1;
2672 }
2673 return 0;
2674 }
2675
2676 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2677 loff_t pos, unsigned len, unsigned flags,
2678 struct page **pagep, void **fsdata)
2679 {
2680 int ret, retries = 0;
2681 struct page *page;
2682 pgoff_t index;
2683 struct inode *inode = mapping->host;
2684 handle_t *handle;
2685
2686 index = pos >> PAGE_CACHE_SHIFT;
2687
2688 if (ext4_nonda_switch(inode->i_sb)) {
2689 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2690 return ext4_write_begin(file, mapping, pos,
2691 len, flags, pagep, fsdata);
2692 }
2693 *fsdata = (void *)0;
2694 trace_ext4_da_write_begin(inode, pos, len, flags);
2695
2696 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2697 ret = ext4_da_write_inline_data_begin(mapping, inode,
2698 pos, len, flags,
2699 pagep, fsdata);
2700 if (ret < 0)
2701 return ret;
2702 if (ret == 1)
2703 return 0;
2704 }
2705
2706 /*
2707 * grab_cache_page_write_begin() can take a long time if the
2708 * system is thrashing due to memory pressure, or if the page
2709 * is being written back. So grab it first before we start
2710 * the transaction handle. This also allows us to allocate
2711 * the page (if needed) without using GFP_NOFS.
2712 */
2713 retry_grab:
2714 page = grab_cache_page_write_begin(mapping, index, flags);
2715 if (!page)
2716 return -ENOMEM;
2717 unlock_page(page);
2718
2719 /*
2720 * With delayed allocation, we don't log the i_disksize update
2721 * if there is delayed block allocation. But we still need
2722 * to journalling the i_disksize update if writes to the end
2723 * of file which has an already mapped buffer.
2724 */
2725 retry_journal:
2726 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2727 if (IS_ERR(handle)) {
2728 page_cache_release(page);
2729 return PTR_ERR(handle);
2730 }
2731
2732 lock_page(page);
2733 if (page->mapping != mapping) {
2734 /* The page got truncated from under us */
2735 unlock_page(page);
2736 page_cache_release(page);
2737 ext4_journal_stop(handle);
2738 goto retry_grab;
2739 }
2740 /* In case writeback began while the page was unlocked */
2741 wait_on_page_writeback(page);
2742
2743 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2744 if (ret < 0) {
2745 unlock_page(page);
2746 ext4_journal_stop(handle);
2747 /*
2748 * block_write_begin may have instantiated a few blocks
2749 * outside i_size. Trim these off again. Don't need
2750 * i_size_read because we hold i_mutex.
2751 */
2752 if (pos + len > inode->i_size)
2753 ext4_truncate_failed_write(inode);
2754
2755 if (ret == -ENOSPC &&
2756 ext4_should_retry_alloc(inode->i_sb, &retries))
2757 goto retry_journal;
2758
2759 page_cache_release(page);
2760 return ret;
2761 }
2762
2763 *pagep = page;
2764 return ret;
2765 }
2766
2767 /*
2768 * Check if we should update i_disksize
2769 * when write to the end of file but not require block allocation
2770 */
2771 static int ext4_da_should_update_i_disksize(struct page *page,
2772 unsigned long offset)
2773 {
2774 struct buffer_head *bh;
2775 struct inode *inode = page->mapping->host;
2776 unsigned int idx;
2777 int i;
2778
2779 bh = page_buffers(page);
2780 idx = offset >> inode->i_blkbits;
2781
2782 for (i = 0; i < idx; i++)
2783 bh = bh->b_this_page;
2784
2785 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2786 return 0;
2787 return 1;
2788 }
2789
2790 static int ext4_da_write_end(struct file *file,
2791 struct address_space *mapping,
2792 loff_t pos, unsigned len, unsigned copied,
2793 struct page *page, void *fsdata)
2794 {
2795 struct inode *inode = mapping->host;
2796 int ret = 0, ret2;
2797 handle_t *handle = ext4_journal_current_handle();
2798 loff_t new_i_size;
2799 unsigned long start, end;
2800 int write_mode = (int)(unsigned long)fsdata;
2801
2802 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2803 return ext4_write_end(file, mapping, pos,
2804 len, copied, page, fsdata);
2805
2806 trace_ext4_da_write_end(inode, pos, len, copied);
2807 start = pos & (PAGE_CACHE_SIZE - 1);
2808 end = start + copied - 1;
2809
2810 /*
2811 * generic_write_end() will run mark_inode_dirty() if i_size
2812 * changes. So let's piggyback the i_disksize mark_inode_dirty
2813 * into that.
2814 */
2815 new_i_size = pos + copied;
2816 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2817 if (ext4_has_inline_data(inode) ||
2818 ext4_da_should_update_i_disksize(page, end)) {
2819 down_write(&EXT4_I(inode)->i_data_sem);
2820 if (new_i_size > EXT4_I(inode)->i_disksize)
2821 EXT4_I(inode)->i_disksize = new_i_size;
2822 up_write(&EXT4_I(inode)->i_data_sem);
2823 /* We need to mark inode dirty even if
2824 * new_i_size is less that inode->i_size
2825 * bu greater than i_disksize.(hint delalloc)
2826 */
2827 ext4_mark_inode_dirty(handle, inode);
2828 }
2829 }
2830
2831 if (write_mode != CONVERT_INLINE_DATA &&
2832 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2833 ext4_has_inline_data(inode))
2834 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2835 page);
2836 else
2837 ret2 = generic_write_end(file, mapping, pos, len, copied,
2838 page, fsdata);
2839
2840 copied = ret2;
2841 if (ret2 < 0)
2842 ret = ret2;
2843 ret2 = ext4_journal_stop(handle);
2844 if (!ret)
2845 ret = ret2;
2846
2847 return ret ? ret : copied;
2848 }
2849
2850 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2851 {
2852 /*
2853 * Drop reserved blocks
2854 */
2855 BUG_ON(!PageLocked(page));
2856 if (!page_has_buffers(page))
2857 goto out;
2858
2859 ext4_da_page_release_reservation(page, offset);
2860
2861 out:
2862 ext4_invalidatepage(page, offset);
2863
2864 return;
2865 }
2866
2867 /*
2868 * Force all delayed allocation blocks to be allocated for a given inode.
2869 */
2870 int ext4_alloc_da_blocks(struct inode *inode)
2871 {
2872 trace_ext4_alloc_da_blocks(inode);
2873
2874 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2875 !EXT4_I(inode)->i_reserved_meta_blocks)
2876 return 0;
2877
2878 /*
2879 * We do something simple for now. The filemap_flush() will
2880 * also start triggering a write of the data blocks, which is
2881 * not strictly speaking necessary (and for users of
2882 * laptop_mode, not even desirable). However, to do otherwise
2883 * would require replicating code paths in:
2884 *
2885 * ext4_da_writepages() ->
2886 * write_cache_pages() ---> (via passed in callback function)
2887 * __mpage_da_writepage() -->
2888 * mpage_add_bh_to_extent()
2889 * mpage_da_map_blocks()
2890 *
2891 * The problem is that write_cache_pages(), located in
2892 * mm/page-writeback.c, marks pages clean in preparation for
2893 * doing I/O, which is not desirable if we're not planning on
2894 * doing I/O at all.
2895 *
2896 * We could call write_cache_pages(), and then redirty all of
2897 * the pages by calling redirty_page_for_writepage() but that
2898 * would be ugly in the extreme. So instead we would need to
2899 * replicate parts of the code in the above functions,
2900 * simplifying them because we wouldn't actually intend to
2901 * write out the pages, but rather only collect contiguous
2902 * logical block extents, call the multi-block allocator, and
2903 * then update the buffer heads with the block allocations.
2904 *
2905 * For now, though, we'll cheat by calling filemap_flush(),
2906 * which will map the blocks, and start the I/O, but not
2907 * actually wait for the I/O to complete.
2908 */
2909 return filemap_flush(inode->i_mapping);
2910 }
2911
2912 /*
2913 * bmap() is special. It gets used by applications such as lilo and by
2914 * the swapper to find the on-disk block of a specific piece of data.
2915 *
2916 * Naturally, this is dangerous if the block concerned is still in the
2917 * journal. If somebody makes a swapfile on an ext4 data-journaling
2918 * filesystem and enables swap, then they may get a nasty shock when the
2919 * data getting swapped to that swapfile suddenly gets overwritten by
2920 * the original zero's written out previously to the journal and
2921 * awaiting writeback in the kernel's buffer cache.
2922 *
2923 * So, if we see any bmap calls here on a modified, data-journaled file,
2924 * take extra steps to flush any blocks which might be in the cache.
2925 */
2926 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2927 {
2928 struct inode *inode = mapping->host;
2929 journal_t *journal;
2930 int err;
2931
2932 /*
2933 * We can get here for an inline file via the FIBMAP ioctl
2934 */
2935 if (ext4_has_inline_data(inode))
2936 return 0;
2937
2938 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2939 test_opt(inode->i_sb, DELALLOC)) {
2940 /*
2941 * With delalloc we want to sync the file
2942 * so that we can make sure we allocate
2943 * blocks for file
2944 */
2945 filemap_write_and_wait(mapping);
2946 }
2947
2948 if (EXT4_JOURNAL(inode) &&
2949 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2950 /*
2951 * This is a REALLY heavyweight approach, but the use of
2952 * bmap on dirty files is expected to be extremely rare:
2953 * only if we run lilo or swapon on a freshly made file
2954 * do we expect this to happen.
2955 *
2956 * (bmap requires CAP_SYS_RAWIO so this does not
2957 * represent an unprivileged user DOS attack --- we'd be
2958 * in trouble if mortal users could trigger this path at
2959 * will.)
2960 *
2961 * NB. EXT4_STATE_JDATA is not set on files other than
2962 * regular files. If somebody wants to bmap a directory
2963 * or symlink and gets confused because the buffer
2964 * hasn't yet been flushed to disk, they deserve
2965 * everything they get.
2966 */
2967
2968 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2969 journal = EXT4_JOURNAL(inode);
2970 jbd2_journal_lock_updates(journal);
2971 err = jbd2_journal_flush(journal);
2972 jbd2_journal_unlock_updates(journal);
2973
2974 if (err)
2975 return 0;
2976 }
2977
2978 return generic_block_bmap(mapping, block, ext4_get_block);
2979 }
2980
2981 static int ext4_readpage(struct file *file, struct page *page)
2982 {
2983 int ret = -EAGAIN;
2984 struct inode *inode = page->mapping->host;
2985
2986 trace_ext4_readpage(page);
2987
2988 if (ext4_has_inline_data(inode))
2989 ret = ext4_readpage_inline(inode, page);
2990
2991 if (ret == -EAGAIN)
2992 return mpage_readpage(page, ext4_get_block);
2993
2994 return ret;
2995 }
2996
2997 static int
2998 ext4_readpages(struct file *file, struct address_space *mapping,
2999 struct list_head *pages, unsigned nr_pages)
3000 {
3001 struct inode *inode = mapping->host;
3002
3003 /* If the file has inline data, no need to do readpages. */
3004 if (ext4_has_inline_data(inode))
3005 return 0;
3006
3007 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3008 }
3009
3010 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3011 {
3012 trace_ext4_invalidatepage(page, offset);
3013
3014 /* No journalling happens on data buffers when this function is used */
3015 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3016
3017 block_invalidatepage(page, offset);
3018 }
3019
3020 static int __ext4_journalled_invalidatepage(struct page *page,
3021 unsigned long offset)
3022 {
3023 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3024
3025 trace_ext4_journalled_invalidatepage(page, offset);
3026
3027 /*
3028 * If it's a full truncate we just forget about the pending dirtying
3029 */
3030 if (offset == 0)
3031 ClearPageChecked(page);
3032
3033 return jbd2_journal_invalidatepage(journal, page, offset);
3034 }
3035
3036 /* Wrapper for aops... */
3037 static void ext4_journalled_invalidatepage(struct page *page,
3038 unsigned long offset)
3039 {
3040 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3041 }
3042
3043 static int ext4_releasepage(struct page *page, gfp_t wait)
3044 {
3045 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3046
3047 trace_ext4_releasepage(page);
3048
3049 /* Page has dirty journalled data -> cannot release */
3050 if (PageChecked(page))
3051 return 0;
3052 if (journal)
3053 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3054 else
3055 return try_to_free_buffers(page);
3056 }
3057
3058 /*
3059 * ext4_get_block used when preparing for a DIO write or buffer write.
3060 * We allocate an uinitialized extent if blocks haven't been allocated.
3061 * The extent will be converted to initialized after the IO is complete.
3062 */
3063 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3064 struct buffer_head *bh_result, int create)
3065 {
3066 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3067 inode->i_ino, create);
3068 return _ext4_get_block(inode, iblock, bh_result,
3069 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3070 }
3071
3072 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3073 struct buffer_head *bh_result, int create)
3074 {
3075 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3076 inode->i_ino, create);
3077 return _ext4_get_block(inode, iblock, bh_result,
3078 EXT4_GET_BLOCKS_NO_LOCK);
3079 }
3080
3081 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3082 ssize_t size, void *private, int ret,
3083 bool is_async)
3084 {
3085 struct inode *inode = file_inode(iocb->ki_filp);
3086 ext4_io_end_t *io_end = iocb->private;
3087
3088 /* if not async direct IO or dio with 0 bytes write, just return */
3089 if (!io_end || !size)
3090 goto out;
3091
3092 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3093 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3094 iocb->private, io_end->inode->i_ino, iocb, offset,
3095 size);
3096
3097 iocb->private = NULL;
3098
3099 /* if not aio dio with unwritten extents, just free io and return */
3100 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3101 ext4_free_io_end(io_end);
3102 out:
3103 inode_dio_done(inode);
3104 if (is_async)
3105 aio_complete(iocb, ret, 0);
3106 return;
3107 }
3108
3109 io_end->offset = offset;
3110 io_end->size = size;
3111 if (is_async) {
3112 io_end->iocb = iocb;
3113 io_end->result = ret;
3114 }
3115
3116 ext4_add_complete_io(io_end);
3117 }
3118
3119 /*
3120 * For ext4 extent files, ext4 will do direct-io write to holes,
3121 * preallocated extents, and those write extend the file, no need to
3122 * fall back to buffered IO.
3123 *
3124 * For holes, we fallocate those blocks, mark them as uninitialized
3125 * If those blocks were preallocated, we mark sure they are split, but
3126 * still keep the range to write as uninitialized.
3127 *
3128 * The unwritten extents will be converted to written when DIO is completed.
3129 * For async direct IO, since the IO may still pending when return, we
3130 * set up an end_io call back function, which will do the conversion
3131 * when async direct IO completed.
3132 *
3133 * If the O_DIRECT write will extend the file then add this inode to the
3134 * orphan list. So recovery will truncate it back to the original size
3135 * if the machine crashes during the write.
3136 *
3137 */
3138 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3139 const struct iovec *iov, loff_t offset,
3140 unsigned long nr_segs)
3141 {
3142 struct file *file = iocb->ki_filp;
3143 struct inode *inode = file->f_mapping->host;
3144 ssize_t ret;
3145 size_t count = iov_length(iov, nr_segs);
3146 int overwrite = 0;
3147 get_block_t *get_block_func = NULL;
3148 int dio_flags = 0;
3149 loff_t final_size = offset + count;
3150
3151 /* Use the old path for reads and writes beyond i_size. */
3152 if (rw != WRITE || final_size > inode->i_size)
3153 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3154
3155 BUG_ON(iocb->private == NULL);
3156
3157 /* If we do a overwrite dio, i_mutex locking can be released */
3158 overwrite = *((int *)iocb->private);
3159
3160 if (overwrite) {
3161 atomic_inc(&inode->i_dio_count);
3162 down_read(&EXT4_I(inode)->i_data_sem);
3163 mutex_unlock(&inode->i_mutex);
3164 }
3165
3166 /*
3167 * We could direct write to holes and fallocate.
3168 *
3169 * Allocated blocks to fill the hole are marked as
3170 * uninitialized to prevent parallel buffered read to expose
3171 * the stale data before DIO complete the data IO.
3172 *
3173 * As to previously fallocated extents, ext4 get_block will
3174 * just simply mark the buffer mapped but still keep the
3175 * extents uninitialized.
3176 *
3177 * For non AIO case, we will convert those unwritten extents
3178 * to written after return back from blockdev_direct_IO.
3179 *
3180 * For async DIO, the conversion needs to be deferred when the
3181 * IO is completed. The ext4 end_io callback function will be
3182 * called to take care of the conversion work. Here for async
3183 * case, we allocate an io_end structure to hook to the iocb.
3184 */
3185 iocb->private = NULL;
3186 ext4_inode_aio_set(inode, NULL);
3187 if (!is_sync_kiocb(iocb)) {
3188 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3189 if (!io_end) {
3190 ret = -ENOMEM;
3191 goto retake_lock;
3192 }
3193 io_end->flag |= EXT4_IO_END_DIRECT;
3194 iocb->private = io_end;
3195 /*
3196 * we save the io structure for current async direct
3197 * IO, so that later ext4_map_blocks() could flag the
3198 * io structure whether there is a unwritten extents
3199 * needs to be converted when IO is completed.
3200 */
3201 ext4_inode_aio_set(inode, io_end);
3202 }
3203
3204 if (overwrite) {
3205 get_block_func = ext4_get_block_write_nolock;
3206 } else {
3207 get_block_func = ext4_get_block_write;
3208 dio_flags = DIO_LOCKING;
3209 }
3210 ret = __blockdev_direct_IO(rw, iocb, inode,
3211 inode->i_sb->s_bdev, iov,
3212 offset, nr_segs,
3213 get_block_func,
3214 ext4_end_io_dio,
3215 NULL,
3216 dio_flags);
3217
3218 if (iocb->private)
3219 ext4_inode_aio_set(inode, NULL);
3220 /*
3221 * The io_end structure takes a reference to the inode, that
3222 * structure needs to be destroyed and the reference to the
3223 * inode need to be dropped, when IO is complete, even with 0
3224 * byte write, or failed.
3225 *
3226 * In the successful AIO DIO case, the io_end structure will
3227 * be destroyed and the reference to the inode will be dropped
3228 * after the end_io call back function is called.
3229 *
3230 * In the case there is 0 byte write, or error case, since VFS
3231 * direct IO won't invoke the end_io call back function, we
3232 * need to free the end_io structure here.
3233 */
3234 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3235 ext4_free_io_end(iocb->private);
3236 iocb->private = NULL;
3237 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3238 EXT4_STATE_DIO_UNWRITTEN)) {
3239 int err;
3240 /*
3241 * for non AIO case, since the IO is already
3242 * completed, we could do the conversion right here
3243 */
3244 err = ext4_convert_unwritten_extents(inode,
3245 offset, ret);
3246 if (err < 0)
3247 ret = err;
3248 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3249 }
3250
3251 retake_lock:
3252 /* take i_mutex locking again if we do a ovewrite dio */
3253 if (overwrite) {
3254 inode_dio_done(inode);
3255 up_read(&EXT4_I(inode)->i_data_sem);
3256 mutex_lock(&inode->i_mutex);
3257 }
3258
3259 return ret;
3260 }
3261
3262 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3263 const struct iovec *iov, loff_t offset,
3264 unsigned long nr_segs)
3265 {
3266 struct file *file = iocb->ki_filp;
3267 struct inode *inode = file->f_mapping->host;
3268 ssize_t ret;
3269
3270 /*
3271 * If we are doing data journalling we don't support O_DIRECT
3272 */
3273 if (ext4_should_journal_data(inode))
3274 return 0;
3275
3276 /* Let buffer I/O handle the inline data case. */
3277 if (ext4_has_inline_data(inode))
3278 return 0;
3279
3280 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3281 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3282 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3283 else
3284 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3285 trace_ext4_direct_IO_exit(inode, offset,
3286 iov_length(iov, nr_segs), rw, ret);
3287 return ret;
3288 }
3289
3290 /*
3291 * Pages can be marked dirty completely asynchronously from ext4's journalling
3292 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3293 * much here because ->set_page_dirty is called under VFS locks. The page is
3294 * not necessarily locked.
3295 *
3296 * We cannot just dirty the page and leave attached buffers clean, because the
3297 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3298 * or jbddirty because all the journalling code will explode.
3299 *
3300 * So what we do is to mark the page "pending dirty" and next time writepage
3301 * is called, propagate that into the buffers appropriately.
3302 */
3303 static int ext4_journalled_set_page_dirty(struct page *page)
3304 {
3305 SetPageChecked(page);
3306 return __set_page_dirty_nobuffers(page);
3307 }
3308
3309 static const struct address_space_operations ext4_aops = {
3310 .readpage = ext4_readpage,
3311 .readpages = ext4_readpages,
3312 .writepage = ext4_writepage,
3313 .write_begin = ext4_write_begin,
3314 .write_end = ext4_write_end,
3315 .bmap = ext4_bmap,
3316 .invalidatepage = ext4_invalidatepage,
3317 .releasepage = ext4_releasepage,
3318 .direct_IO = ext4_direct_IO,
3319 .migratepage = buffer_migrate_page,
3320 .is_partially_uptodate = block_is_partially_uptodate,
3321 .error_remove_page = generic_error_remove_page,
3322 };
3323
3324 static const struct address_space_operations ext4_journalled_aops = {
3325 .readpage = ext4_readpage,
3326 .readpages = ext4_readpages,
3327 .writepage = ext4_writepage,
3328 .write_begin = ext4_write_begin,
3329 .write_end = ext4_journalled_write_end,
3330 .set_page_dirty = ext4_journalled_set_page_dirty,
3331 .bmap = ext4_bmap,
3332 .invalidatepage = ext4_journalled_invalidatepage,
3333 .releasepage = ext4_releasepage,
3334 .direct_IO = ext4_direct_IO,
3335 .is_partially_uptodate = block_is_partially_uptodate,
3336 .error_remove_page = generic_error_remove_page,
3337 };
3338
3339 static const struct address_space_operations ext4_da_aops = {
3340 .readpage = ext4_readpage,
3341 .readpages = ext4_readpages,
3342 .writepage = ext4_writepage,
3343 .writepages = ext4_da_writepages,
3344 .write_begin = ext4_da_write_begin,
3345 .write_end = ext4_da_write_end,
3346 .bmap = ext4_bmap,
3347 .invalidatepage = ext4_da_invalidatepage,
3348 .releasepage = ext4_releasepage,
3349 .direct_IO = ext4_direct_IO,
3350 .migratepage = buffer_migrate_page,
3351 .is_partially_uptodate = block_is_partially_uptodate,
3352 .error_remove_page = generic_error_remove_page,
3353 };
3354
3355 void ext4_set_aops(struct inode *inode)
3356 {
3357 switch (ext4_inode_journal_mode(inode)) {
3358 case EXT4_INODE_ORDERED_DATA_MODE:
3359 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3360 break;
3361 case EXT4_INODE_WRITEBACK_DATA_MODE:
3362 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3363 break;
3364 case EXT4_INODE_JOURNAL_DATA_MODE:
3365 inode->i_mapping->a_ops = &ext4_journalled_aops;
3366 return;
3367 default:
3368 BUG();
3369 }
3370 if (test_opt(inode->i_sb, DELALLOC))
3371 inode->i_mapping->a_ops = &ext4_da_aops;
3372 else
3373 inode->i_mapping->a_ops = &ext4_aops;
3374 }
3375
3376
3377 /*
3378 * ext4_discard_partial_page_buffers()
3379 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3380 * This function finds and locks the page containing the offset
3381 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3382 * Calling functions that already have the page locked should call
3383 * ext4_discard_partial_page_buffers_no_lock directly.
3384 */
3385 int ext4_discard_partial_page_buffers(handle_t *handle,
3386 struct address_space *mapping, loff_t from,
3387 loff_t length, int flags)
3388 {
3389 struct inode *inode = mapping->host;
3390 struct page *page;
3391 int err = 0;
3392
3393 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3394 mapping_gfp_mask(mapping) & ~__GFP_FS);
3395 if (!page)
3396 return -ENOMEM;
3397
3398 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3399 from, length, flags);
3400
3401 unlock_page(page);
3402 page_cache_release(page);
3403 return err;
3404 }
3405
3406 /*
3407 * ext4_discard_partial_page_buffers_no_lock()
3408 * Zeros a page range of length 'length' starting from offset 'from'.
3409 * Buffer heads that correspond to the block aligned regions of the
3410 * zeroed range will be unmapped. Unblock aligned regions
3411 * will have the corresponding buffer head mapped if needed so that
3412 * that region of the page can be updated with the partial zero out.
3413 *
3414 * This function assumes that the page has already been locked. The
3415 * The range to be discarded must be contained with in the given page.
3416 * If the specified range exceeds the end of the page it will be shortened
3417 * to the end of the page that corresponds to 'from'. This function is
3418 * appropriate for updating a page and it buffer heads to be unmapped and
3419 * zeroed for blocks that have been either released, or are going to be
3420 * released.
3421 *
3422 * handle: The journal handle
3423 * inode: The files inode
3424 * page: A locked page that contains the offset "from"
3425 * from: The starting byte offset (from the beginning of the file)
3426 * to begin discarding
3427 * len: The length of bytes to discard
3428 * flags: Optional flags that may be used:
3429 *
3430 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3431 * Only zero the regions of the page whose buffer heads
3432 * have already been unmapped. This flag is appropriate
3433 * for updating the contents of a page whose blocks may
3434 * have already been released, and we only want to zero
3435 * out the regions that correspond to those released blocks.
3436 *
3437 * Returns zero on success or negative on failure.
3438 */
3439 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3440 struct inode *inode, struct page *page, loff_t from,
3441 loff_t length, int flags)
3442 {
3443 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3444 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3445 unsigned int blocksize, max, pos;
3446 ext4_lblk_t iblock;
3447 struct buffer_head *bh;
3448 int err = 0;
3449
3450 blocksize = inode->i_sb->s_blocksize;
3451 max = PAGE_CACHE_SIZE - offset;
3452
3453 if (index != page->index)
3454 return -EINVAL;
3455
3456 /*
3457 * correct length if it does not fall between
3458 * 'from' and the end of the page
3459 */
3460 if (length > max || length < 0)
3461 length = max;
3462
3463 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3464
3465 if (!page_has_buffers(page))
3466 create_empty_buffers(page, blocksize, 0);
3467
3468 /* Find the buffer that contains "offset" */
3469 bh = page_buffers(page);
3470 pos = blocksize;
3471 while (offset >= pos) {
3472 bh = bh->b_this_page;
3473 iblock++;
3474 pos += blocksize;
3475 }
3476
3477 pos = offset;
3478 while (pos < offset + length) {
3479 unsigned int end_of_block, range_to_discard;
3480
3481 err = 0;
3482
3483 /* The length of space left to zero and unmap */
3484 range_to_discard = offset + length - pos;
3485
3486 /* The length of space until the end of the block */
3487 end_of_block = blocksize - (pos & (blocksize-1));
3488
3489 /*
3490 * Do not unmap or zero past end of block
3491 * for this buffer head
3492 */
3493 if (range_to_discard > end_of_block)
3494 range_to_discard = end_of_block;
3495
3496
3497 /*
3498 * Skip this buffer head if we are only zeroing unampped
3499 * regions of the page
3500 */
3501 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3502 buffer_mapped(bh))
3503 goto next;
3504
3505 /* If the range is block aligned, unmap */
3506 if (range_to_discard == blocksize) {
3507 clear_buffer_dirty(bh);
3508 bh->b_bdev = NULL;
3509 clear_buffer_mapped(bh);
3510 clear_buffer_req(bh);
3511 clear_buffer_new(bh);
3512 clear_buffer_delay(bh);
3513 clear_buffer_unwritten(bh);
3514 clear_buffer_uptodate(bh);
3515 zero_user(page, pos, range_to_discard);
3516 BUFFER_TRACE(bh, "Buffer discarded");
3517 goto next;
3518 }
3519
3520 /*
3521 * If this block is not completely contained in the range
3522 * to be discarded, then it is not going to be released. Because
3523 * we need to keep this block, we need to make sure this part
3524 * of the page is uptodate before we modify it by writeing
3525 * partial zeros on it.
3526 */
3527 if (!buffer_mapped(bh)) {
3528 /*
3529 * Buffer head must be mapped before we can read
3530 * from the block
3531 */
3532 BUFFER_TRACE(bh, "unmapped");
3533 ext4_get_block(inode, iblock, bh, 0);
3534 /* unmapped? It's a hole - nothing to do */
3535 if (!buffer_mapped(bh)) {
3536 BUFFER_TRACE(bh, "still unmapped");
3537 goto next;
3538 }
3539 }
3540
3541 /* Ok, it's mapped. Make sure it's up-to-date */
3542 if (PageUptodate(page))
3543 set_buffer_uptodate(bh);
3544
3545 if (!buffer_uptodate(bh)) {
3546 err = -EIO;
3547 ll_rw_block(READ, 1, &bh);
3548 wait_on_buffer(bh);
3549 /* Uhhuh. Read error. Complain and punt.*/
3550 if (!buffer_uptodate(bh))
3551 goto next;
3552 }
3553
3554 if (ext4_should_journal_data(inode)) {
3555 BUFFER_TRACE(bh, "get write access");
3556 err = ext4_journal_get_write_access(handle, bh);
3557 if (err)
3558 goto next;
3559 }
3560
3561 zero_user(page, pos, range_to_discard);
3562
3563 err = 0;
3564 if (ext4_should_journal_data(inode)) {
3565 err = ext4_handle_dirty_metadata(handle, inode, bh);
3566 } else
3567 mark_buffer_dirty(bh);
3568
3569 BUFFER_TRACE(bh, "Partial buffer zeroed");
3570 next:
3571 bh = bh->b_this_page;
3572 iblock++;
3573 pos += range_to_discard;
3574 }
3575
3576 return err;
3577 }
3578
3579 int ext4_can_truncate(struct inode *inode)
3580 {
3581 if (S_ISREG(inode->i_mode))
3582 return 1;
3583 if (S_ISDIR(inode->i_mode))
3584 return 1;
3585 if (S_ISLNK(inode->i_mode))
3586 return !ext4_inode_is_fast_symlink(inode);
3587 return 0;
3588 }
3589
3590 /*
3591 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3592 * associated with the given offset and length
3593 *
3594 * @inode: File inode
3595 * @offset: The offset where the hole will begin
3596 * @len: The length of the hole
3597 *
3598 * Returns: 0 on success or negative on failure
3599 */
3600
3601 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3602 {
3603 struct inode *inode = file_inode(file);
3604 struct super_block *sb = inode->i_sb;
3605 ext4_lblk_t first_block, stop_block;
3606 struct address_space *mapping = inode->i_mapping;
3607 loff_t first_page, last_page, page_len;
3608 loff_t first_page_offset, last_page_offset;
3609 handle_t *handle;
3610 unsigned int credits;
3611 int ret = 0;
3612
3613 if (!S_ISREG(inode->i_mode))
3614 return -EOPNOTSUPP;
3615
3616 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3617 /* TODO: Add support for bigalloc file systems */
3618 return -EOPNOTSUPP;
3619 }
3620
3621 trace_ext4_punch_hole(inode, offset, length);
3622
3623 /*
3624 * Write out all dirty pages to avoid race conditions
3625 * Then release them.
3626 */
3627 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3628 ret = filemap_write_and_wait_range(mapping, offset,
3629 offset + length - 1);
3630 if (ret)
3631 return ret;
3632 }
3633
3634 mutex_lock(&inode->i_mutex);
3635 /* It's not possible punch hole on append only file */
3636 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3637 ret = -EPERM;
3638 goto out_mutex;
3639 }
3640 if (IS_SWAPFILE(inode)) {
3641 ret = -ETXTBSY;
3642 goto out_mutex;
3643 }
3644
3645 /* No need to punch hole beyond i_size */
3646 if (offset >= inode->i_size)
3647 goto out_mutex;
3648
3649 /*
3650 * If the hole extends beyond i_size, set the hole
3651 * to end after the page that contains i_size
3652 */
3653 if (offset + length > inode->i_size) {
3654 length = inode->i_size +
3655 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3656 offset;
3657 }
3658
3659 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3660 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3661
3662 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3663 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3664
3665 /* Now release the pages */
3666 if (last_page_offset > first_page_offset) {
3667 truncate_pagecache_range(inode, first_page_offset,
3668 last_page_offset - 1);
3669 }
3670
3671 /* Wait all existing dio workers, newcomers will block on i_mutex */
3672 ext4_inode_block_unlocked_dio(inode);
3673 ret = ext4_flush_unwritten_io(inode);
3674 if (ret)
3675 goto out_dio;
3676 inode_dio_wait(inode);
3677
3678 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3679 credits = ext4_writepage_trans_blocks(inode);
3680 else
3681 credits = ext4_blocks_for_truncate(inode);
3682 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3683 if (IS_ERR(handle)) {
3684 ret = PTR_ERR(handle);
3685 ext4_std_error(sb, ret);
3686 goto out_dio;
3687 }
3688
3689 /*
3690 * Now we need to zero out the non-page-aligned data in the
3691 * pages at the start and tail of the hole, and unmap the
3692 * buffer heads for the block aligned regions of the page that
3693 * were completely zeroed.
3694 */
3695 if (first_page > last_page) {
3696 /*
3697 * If the file space being truncated is contained
3698 * within a page just zero out and unmap the middle of
3699 * that page
3700 */
3701 ret = ext4_discard_partial_page_buffers(handle,
3702 mapping, offset, length, 0);
3703
3704 if (ret)
3705 goto out_stop;
3706 } else {
3707 /*
3708 * zero out and unmap the partial page that contains
3709 * the start of the hole
3710 */
3711 page_len = first_page_offset - offset;
3712 if (page_len > 0) {
3713 ret = ext4_discard_partial_page_buffers(handle, mapping,
3714 offset, page_len, 0);
3715 if (ret)
3716 goto out_stop;
3717 }
3718
3719 /*
3720 * zero out and unmap the partial page that contains
3721 * the end of the hole
3722 */
3723 page_len = offset + length - last_page_offset;
3724 if (page_len > 0) {
3725 ret = ext4_discard_partial_page_buffers(handle, mapping,
3726 last_page_offset, page_len, 0);
3727 if (ret)
3728 goto out_stop;
3729 }
3730 }
3731
3732 /*
3733 * If i_size is contained in the last page, we need to
3734 * unmap and zero the partial page after i_size
3735 */
3736 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3737 inode->i_size % PAGE_CACHE_SIZE != 0) {
3738 page_len = PAGE_CACHE_SIZE -
3739 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3740
3741 if (page_len > 0) {
3742 ret = ext4_discard_partial_page_buffers(handle,
3743 mapping, inode->i_size, page_len, 0);
3744
3745 if (ret)
3746 goto out_stop;
3747 }
3748 }
3749
3750 first_block = (offset + sb->s_blocksize - 1) >>
3751 EXT4_BLOCK_SIZE_BITS(sb);
3752 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3753
3754 /* If there are no blocks to remove, return now */
3755 if (first_block >= stop_block)
3756 goto out_stop;
3757
3758 down_write(&EXT4_I(inode)->i_data_sem);
3759 ext4_discard_preallocations(inode);
3760
3761 ret = ext4_es_remove_extent(inode, first_block,
3762 stop_block - first_block);
3763 if (ret) {
3764 up_write(&EXT4_I(inode)->i_data_sem);
3765 goto out_stop;
3766 }
3767
3768 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3769 ret = ext4_ext_remove_space(inode, first_block,
3770 stop_block - 1);
3771 else
3772 ret = ext4_free_hole_blocks(handle, inode, first_block,
3773 stop_block);
3774
3775 ext4_discard_preallocations(inode);
3776 up_write(&EXT4_I(inode)->i_data_sem);
3777 if (IS_SYNC(inode))
3778 ext4_handle_sync(handle);
3779 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3780 ext4_mark_inode_dirty(handle, inode);
3781 out_stop:
3782 ext4_journal_stop(handle);
3783 out_dio:
3784 ext4_inode_resume_unlocked_dio(inode);
3785 out_mutex:
3786 mutex_unlock(&inode->i_mutex);
3787 return ret;
3788 }
3789
3790 /*
3791 * ext4_truncate()
3792 *
3793 * We block out ext4_get_block() block instantiations across the entire
3794 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3795 * simultaneously on behalf of the same inode.
3796 *
3797 * As we work through the truncate and commit bits of it to the journal there
3798 * is one core, guiding principle: the file's tree must always be consistent on
3799 * disk. We must be able to restart the truncate after a crash.
3800 *
3801 * The file's tree may be transiently inconsistent in memory (although it
3802 * probably isn't), but whenever we close off and commit a journal transaction,
3803 * the contents of (the filesystem + the journal) must be consistent and
3804 * restartable. It's pretty simple, really: bottom up, right to left (although
3805 * left-to-right works OK too).
3806 *
3807 * Note that at recovery time, journal replay occurs *before* the restart of
3808 * truncate against the orphan inode list.
3809 *
3810 * The committed inode has the new, desired i_size (which is the same as
3811 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3812 * that this inode's truncate did not complete and it will again call
3813 * ext4_truncate() to have another go. So there will be instantiated blocks
3814 * to the right of the truncation point in a crashed ext4 filesystem. But
3815 * that's fine - as long as they are linked from the inode, the post-crash
3816 * ext4_truncate() run will find them and release them.
3817 */
3818 void ext4_truncate(struct inode *inode)
3819 {
3820 struct ext4_inode_info *ei = EXT4_I(inode);
3821 unsigned int credits;
3822 handle_t *handle;
3823 struct address_space *mapping = inode->i_mapping;
3824 loff_t page_len;
3825
3826 /*
3827 * There is a possibility that we're either freeing the inode
3828 * or it completely new indode. In those cases we might not
3829 * have i_mutex locked because it's not necessary.
3830 */
3831 if (!(inode->i_state & (I_NEW|I_FREEING)))
3832 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3833 trace_ext4_truncate_enter(inode);
3834
3835 if (!ext4_can_truncate(inode))
3836 return;
3837
3838 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3839
3840 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3841 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3842
3843 if (ext4_has_inline_data(inode)) {
3844 int has_inline = 1;
3845
3846 ext4_inline_data_truncate(inode, &has_inline);
3847 if (has_inline)
3848 return;
3849 }
3850
3851 /*
3852 * finish any pending end_io work so we won't run the risk of
3853 * converting any truncated blocks to initialized later
3854 */
3855 ext4_flush_unwritten_io(inode);
3856
3857 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3858 credits = ext4_writepage_trans_blocks(inode);
3859 else
3860 credits = ext4_blocks_for_truncate(inode);
3861
3862 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3863 if (IS_ERR(handle)) {
3864 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3865 return;
3866 }
3867
3868 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3869 page_len = PAGE_CACHE_SIZE -
3870 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3871
3872 if (ext4_discard_partial_page_buffers(handle,
3873 mapping, inode->i_size, page_len, 0))
3874 goto out_stop;
3875 }
3876
3877 /*
3878 * We add the inode to the orphan list, so that if this
3879 * truncate spans multiple transactions, and we crash, we will
3880 * resume the truncate when the filesystem recovers. It also
3881 * marks the inode dirty, to catch the new size.
3882 *
3883 * Implication: the file must always be in a sane, consistent
3884 * truncatable state while each transaction commits.
3885 */
3886 if (ext4_orphan_add(handle, inode))
3887 goto out_stop;
3888
3889 down_write(&EXT4_I(inode)->i_data_sem);
3890
3891 ext4_discard_preallocations(inode);
3892
3893 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3894 ext4_ext_truncate(handle, inode);
3895 else
3896 ext4_ind_truncate(handle, inode);
3897
3898 up_write(&ei->i_data_sem);
3899
3900 if (IS_SYNC(inode))
3901 ext4_handle_sync(handle);
3902
3903 out_stop:
3904 /*
3905 * If this was a simple ftruncate() and the file will remain alive,
3906 * then we need to clear up the orphan record which we created above.
3907 * However, if this was a real unlink then we were called by
3908 * ext4_delete_inode(), and we allow that function to clean up the
3909 * orphan info for us.
3910 */
3911 if (inode->i_nlink)
3912 ext4_orphan_del(handle, inode);
3913
3914 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3915 ext4_mark_inode_dirty(handle, inode);
3916 ext4_journal_stop(handle);
3917
3918 trace_ext4_truncate_exit(inode);
3919 }
3920
3921 /*
3922 * ext4_get_inode_loc returns with an extra refcount against the inode's
3923 * underlying buffer_head on success. If 'in_mem' is true, we have all
3924 * data in memory that is needed to recreate the on-disk version of this
3925 * inode.
3926 */
3927 static int __ext4_get_inode_loc(struct inode *inode,
3928 struct ext4_iloc *iloc, int in_mem)
3929 {
3930 struct ext4_group_desc *gdp;
3931 struct buffer_head *bh;
3932 struct super_block *sb = inode->i_sb;
3933 ext4_fsblk_t block;
3934 int inodes_per_block, inode_offset;
3935
3936 iloc->bh = NULL;
3937 if (!ext4_valid_inum(sb, inode->i_ino))
3938 return -EIO;
3939
3940 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3941 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3942 if (!gdp)
3943 return -EIO;
3944
3945 /*
3946 * Figure out the offset within the block group inode table
3947 */
3948 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3949 inode_offset = ((inode->i_ino - 1) %
3950 EXT4_INODES_PER_GROUP(sb));
3951 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3952 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3953
3954 bh = sb_getblk(sb, block);
3955 if (unlikely(!bh))
3956 return -ENOMEM;
3957 if (!buffer_uptodate(bh)) {
3958 lock_buffer(bh);
3959
3960 /*
3961 * If the buffer has the write error flag, we have failed
3962 * to write out another inode in the same block. In this
3963 * case, we don't have to read the block because we may
3964 * read the old inode data successfully.
3965 */
3966 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3967 set_buffer_uptodate(bh);
3968
3969 if (buffer_uptodate(bh)) {
3970 /* someone brought it uptodate while we waited */
3971 unlock_buffer(bh);
3972 goto has_buffer;
3973 }
3974
3975 /*
3976 * If we have all information of the inode in memory and this
3977 * is the only valid inode in the block, we need not read the
3978 * block.
3979 */
3980 if (in_mem) {
3981 struct buffer_head *bitmap_bh;
3982 int i, start;
3983
3984 start = inode_offset & ~(inodes_per_block - 1);
3985
3986 /* Is the inode bitmap in cache? */
3987 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3988 if (unlikely(!bitmap_bh))
3989 goto make_io;
3990
3991 /*
3992 * If the inode bitmap isn't in cache then the
3993 * optimisation may end up performing two reads instead
3994 * of one, so skip it.
3995 */
3996 if (!buffer_uptodate(bitmap_bh)) {
3997 brelse(bitmap_bh);
3998 goto make_io;
3999 }
4000 for (i = start; i < start + inodes_per_block; i++) {
4001 if (i == inode_offset)
4002 continue;
4003 if (ext4_test_bit(i, bitmap_bh->b_data))
4004 break;
4005 }
4006 brelse(bitmap_bh);
4007 if (i == start + inodes_per_block) {
4008 /* all other inodes are free, so skip I/O */
4009 memset(bh->b_data, 0, bh->b_size);
4010 set_buffer_uptodate(bh);
4011 unlock_buffer(bh);
4012 goto has_buffer;
4013 }
4014 }
4015
4016 make_io:
4017 /*
4018 * If we need to do any I/O, try to pre-readahead extra
4019 * blocks from the inode table.
4020 */
4021 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4022 ext4_fsblk_t b, end, table;
4023 unsigned num;
4024 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4025
4026 table = ext4_inode_table(sb, gdp);
4027 /* s_inode_readahead_blks is always a power of 2 */
4028 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4029 if (table > b)
4030 b = table;
4031 end = b + ra_blks;
4032 num = EXT4_INODES_PER_GROUP(sb);
4033 if (ext4_has_group_desc_csum(sb))
4034 num -= ext4_itable_unused_count(sb, gdp);
4035 table += num / inodes_per_block;
4036 if (end > table)
4037 end = table;
4038 while (b <= end)
4039 sb_breadahead(sb, b++);
4040 }
4041
4042 /*
4043 * There are other valid inodes in the buffer, this inode
4044 * has in-inode xattrs, or we don't have this inode in memory.
4045 * Read the block from disk.
4046 */
4047 trace_ext4_load_inode(inode);
4048 get_bh(bh);
4049 bh->b_end_io = end_buffer_read_sync;
4050 #ifdef FEATURE_STORAGE_META_LOG
4051 if( bh && bh->b_bdev && bh->b_bdev->bd_disk)
4052 set_metadata_rw_status(bh->b_bdev->bd_disk->first_minor, WAIT_READ_CNT);
4053 #endif
4054 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4055 wait_on_buffer(bh);
4056 if (!buffer_uptodate(bh)) {
4057 EXT4_ERROR_INODE_BLOCK(inode, block,
4058 "unable to read itable block");
4059 brelse(bh);
4060 return -EIO;
4061 }
4062 }
4063 has_buffer:
4064 iloc->bh = bh;
4065 return 0;
4066 }
4067
4068 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4069 {
4070 /* We have all inode data except xattrs in memory here. */
4071 return __ext4_get_inode_loc(inode, iloc,
4072 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4073 }
4074
4075 void ext4_set_inode_flags(struct inode *inode)
4076 {
4077 unsigned int flags = EXT4_I(inode)->i_flags;
4078 unsigned int new_fl = 0;
4079
4080 if (flags & EXT4_SYNC_FL)
4081 new_fl |= S_SYNC;
4082 if (flags & EXT4_APPEND_FL)
4083 new_fl |= S_APPEND;
4084 if (flags & EXT4_IMMUTABLE_FL)
4085 new_fl |= S_IMMUTABLE;
4086 if (flags & EXT4_NOATIME_FL)
4087 new_fl |= S_NOATIME;
4088 if (flags & EXT4_DIRSYNC_FL)
4089 new_fl |= S_DIRSYNC;
4090 set_mask_bits(&inode->i_flags,
4091 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4092 }
4093
4094 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4095 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4096 {
4097 unsigned int vfs_fl;
4098 unsigned long old_fl, new_fl;
4099
4100 do {
4101 vfs_fl = ei->vfs_inode.i_flags;
4102 old_fl = ei->i_flags;
4103 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4104 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4105 EXT4_DIRSYNC_FL);
4106 if (vfs_fl & S_SYNC)
4107 new_fl |= EXT4_SYNC_FL;
4108 if (vfs_fl & S_APPEND)
4109 new_fl |= EXT4_APPEND_FL;
4110 if (vfs_fl & S_IMMUTABLE)
4111 new_fl |= EXT4_IMMUTABLE_FL;
4112 if (vfs_fl & S_NOATIME)
4113 new_fl |= EXT4_NOATIME_FL;
4114 if (vfs_fl & S_DIRSYNC)
4115 new_fl |= EXT4_DIRSYNC_FL;
4116 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4117 }
4118
4119 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4120 struct ext4_inode_info *ei)
4121 {
4122 blkcnt_t i_blocks ;
4123 struct inode *inode = &(ei->vfs_inode);
4124 struct super_block *sb = inode->i_sb;
4125
4126 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4127 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4128 /* we are using combined 48 bit field */
4129 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4130 le32_to_cpu(raw_inode->i_blocks_lo);
4131 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4132 /* i_blocks represent file system block size */
4133 return i_blocks << (inode->i_blkbits - 9);
4134 } else {
4135 return i_blocks;
4136 }
4137 } else {
4138 return le32_to_cpu(raw_inode->i_blocks_lo);
4139 }
4140 }
4141
4142 static inline void ext4_iget_extra_inode(struct inode *inode,
4143 struct ext4_inode *raw_inode,
4144 struct ext4_inode_info *ei)
4145 {
4146 __le32 *magic = (void *)raw_inode +
4147 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4148 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4149 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4150 ext4_find_inline_data_nolock(inode);
4151 } else
4152 EXT4_I(inode)->i_inline_off = 0;
4153 }
4154
4155 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4156 {
4157 struct ext4_iloc iloc;
4158 struct ext4_inode *raw_inode;
4159 struct ext4_inode_info *ei;
4160 struct inode *inode;
4161 journal_t *journal = EXT4_SB(sb)->s_journal;
4162 long ret;
4163 int block;
4164 uid_t i_uid;
4165 gid_t i_gid;
4166
4167 inode = iget_locked(sb, ino);
4168 if (!inode)
4169 return ERR_PTR(-ENOMEM);
4170 if (!(inode->i_state & I_NEW))
4171 return inode;
4172
4173 ei = EXT4_I(inode);
4174 iloc.bh = NULL;
4175
4176 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4177 if (ret < 0)
4178 goto bad_inode;
4179 raw_inode = ext4_raw_inode(&iloc);
4180
4181 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4182 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4183 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4184 EXT4_INODE_SIZE(inode->i_sb)) {
4185 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4186 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4187 EXT4_INODE_SIZE(inode->i_sb));
4188 ret = -EIO;
4189 goto bad_inode;
4190 }
4191 } else
4192 ei->i_extra_isize = 0;
4193
4194 /* Precompute checksum seed for inode metadata */
4195 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4196 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4197 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4198 __u32 csum;
4199 __le32 inum = cpu_to_le32(inode->i_ino);
4200 __le32 gen = raw_inode->i_generation;
4201 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4202 sizeof(inum));
4203 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4204 sizeof(gen));
4205 }
4206
4207 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4208 EXT4_ERROR_INODE(inode, "checksum invalid");
4209 ret = -EIO;
4210 goto bad_inode;
4211 }
4212
4213 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4214 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4215 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4216 if (!(test_opt(inode->i_sb, NO_UID32))) {
4217 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4218 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4219 }
4220 i_uid_write(inode, i_uid);
4221 i_gid_write(inode, i_gid);
4222 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4223
4224 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4225 ei->i_inline_off = 0;
4226 ei->i_dir_start_lookup = 0;
4227 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4228 /* We now have enough fields to check if the inode was active or not.
4229 * This is needed because nfsd might try to access dead inodes
4230 * the test is that same one that e2fsck uses
4231 * NeilBrown 1999oct15
4232 */
4233 if (inode->i_nlink == 0) {
4234 if ((inode->i_mode == 0 ||
4235 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4236 ino != EXT4_BOOT_LOADER_INO) {
4237 /* this inode is deleted */
4238 ret = -ESTALE;
4239 goto bad_inode;
4240 }
4241 /* The only unlinked inodes we let through here have
4242 * valid i_mode and are being read by the orphan
4243 * recovery code: that's fine, we're about to complete
4244 * the process of deleting those.
4245 * OR it is the EXT4_BOOT_LOADER_INO which is
4246 * not initialized on a new filesystem. */
4247 }
4248 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4249 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4250 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4251 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4252 ei->i_file_acl |=
4253 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4254 inode->i_size = ext4_isize(raw_inode);
4255 ei->i_disksize = inode->i_size;
4256 #ifdef CONFIG_QUOTA
4257 ei->i_reserved_quota = 0;
4258 #endif
4259 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4260 ei->i_block_group = iloc.block_group;
4261 ei->i_last_alloc_group = ~0;
4262 /*
4263 * NOTE! The in-memory inode i_data array is in little-endian order
4264 * even on big-endian machines: we do NOT byteswap the block numbers!
4265 */
4266 for (block = 0; block < EXT4_N_BLOCKS; block++)
4267 ei->i_data[block] = raw_inode->i_block[block];
4268 INIT_LIST_HEAD(&ei->i_orphan);
4269
4270 /*
4271 * Set transaction id's of transactions that have to be committed
4272 * to finish f[data]sync. We set them to currently running transaction
4273 * as we cannot be sure that the inode or some of its metadata isn't
4274 * part of the transaction - the inode could have been reclaimed and
4275 * now it is reread from disk.
4276 */
4277 if (journal) {
4278 transaction_t *transaction;
4279 tid_t tid;
4280
4281 read_lock(&journal->j_state_lock);
4282 if (journal->j_running_transaction)
4283 transaction = journal->j_running_transaction;
4284 else
4285 transaction = journal->j_committing_transaction;
4286 if (transaction)
4287 tid = transaction->t_tid;
4288 else
4289 tid = journal->j_commit_sequence;
4290 read_unlock(&journal->j_state_lock);
4291 ei->i_sync_tid = tid;
4292 ei->i_datasync_tid = tid;
4293 }
4294
4295 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4296 if (ei->i_extra_isize == 0) {
4297 /* The extra space is currently unused. Use it. */
4298 ei->i_extra_isize = sizeof(struct ext4_inode) -
4299 EXT4_GOOD_OLD_INODE_SIZE;
4300 } else {
4301 ext4_iget_extra_inode(inode, raw_inode, ei);
4302 }
4303 }
4304
4305 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4306 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4307 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4308 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4309
4310 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4311 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4312 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4313 inode->i_version |=
4314 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4315 }
4316
4317 ret = 0;
4318 if (ei->i_file_acl &&
4319 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4320 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4321 ei->i_file_acl);
4322 ret = -EIO;
4323 goto bad_inode;
4324 } else if (!ext4_has_inline_data(inode)) {
4325 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4326 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4327 (S_ISLNK(inode->i_mode) &&
4328 !ext4_inode_is_fast_symlink(inode))))
4329 /* Validate extent which is part of inode */
4330 ret = ext4_ext_check_inode(inode);
4331 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4332 (S_ISLNK(inode->i_mode) &&
4333 !ext4_inode_is_fast_symlink(inode))) {
4334 /* Validate block references which are part of inode */
4335 ret = ext4_ind_check_inode(inode);
4336 }
4337 }
4338 if (ret)
4339 goto bad_inode;
4340
4341 if (S_ISREG(inode->i_mode)) {
4342 inode->i_op = &ext4_file_inode_operations;
4343 inode->i_fop = &ext4_file_operations;
4344 ext4_set_aops(inode);
4345 } else if (S_ISDIR(inode->i_mode)) {
4346 inode->i_op = &ext4_dir_inode_operations;
4347 inode->i_fop = &ext4_dir_operations;
4348 } else if (S_ISLNK(inode->i_mode)) {
4349 if (ext4_inode_is_fast_symlink(inode)) {
4350 inode->i_op = &ext4_fast_symlink_inode_operations;
4351 nd_terminate_link(ei->i_data, inode->i_size,
4352 sizeof(ei->i_data) - 1);
4353 } else {
4354 inode->i_op = &ext4_symlink_inode_operations;
4355 ext4_set_aops(inode);
4356 }
4357 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4358 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4359 inode->i_op = &ext4_special_inode_operations;
4360 if (raw_inode->i_block[0])
4361 init_special_inode(inode, inode->i_mode,
4362 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4363 else
4364 init_special_inode(inode, inode->i_mode,
4365 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4366 } else if (ino == EXT4_BOOT_LOADER_INO) {
4367 make_bad_inode(inode);
4368 } else {
4369 ret = -EIO;
4370 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4371 goto bad_inode;
4372 }
4373 brelse(iloc.bh);
4374 ext4_set_inode_flags(inode);
4375 unlock_new_inode(inode);
4376 return inode;
4377
4378 bad_inode:
4379 brelse(iloc.bh);
4380 iget_failed(inode);
4381 return ERR_PTR(ret);
4382 }
4383
4384 static int ext4_inode_blocks_set(handle_t *handle,
4385 struct ext4_inode *raw_inode,
4386 struct ext4_inode_info *ei)
4387 {
4388 struct inode *inode = &(ei->vfs_inode);
4389 u64 i_blocks = inode->i_blocks;
4390 struct super_block *sb = inode->i_sb;
4391
4392 if (i_blocks <= ~0U) {
4393 /*
4394 * i_blocks can be represented in a 32 bit variable
4395 * as multiple of 512 bytes
4396 */
4397 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4398 raw_inode->i_blocks_high = 0;
4399 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4400 return 0;
4401 }
4402 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4403 return -EFBIG;
4404
4405 if (i_blocks <= 0xffffffffffffULL) {
4406 /*
4407 * i_blocks can be represented in a 48 bit variable
4408 * as multiple of 512 bytes
4409 */
4410 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4411 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4412 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4413 } else {
4414 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4415 /* i_block is stored in file system block size */
4416 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4417 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4418 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4419 }
4420 return 0;
4421 }
4422
4423 /*
4424 * Post the struct inode info into an on-disk inode location in the
4425 * buffer-cache. This gobbles the caller's reference to the
4426 * buffer_head in the inode location struct.
4427 *
4428 * The caller must have write access to iloc->bh.
4429 */
4430 static int ext4_do_update_inode(handle_t *handle,
4431 struct inode *inode,
4432 struct ext4_iloc *iloc)
4433 {
4434 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4435 struct ext4_inode_info *ei = EXT4_I(inode);
4436 struct buffer_head *bh = iloc->bh;
4437 int err = 0, rc, block;
4438 int need_datasync = 0;
4439 uid_t i_uid;
4440 gid_t i_gid;
4441
4442 /* For fields not not tracking in the in-memory inode,
4443 * initialise them to zero for new inodes. */
4444 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4445 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4446
4447 ext4_get_inode_flags(ei);
4448 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4449 i_uid = i_uid_read(inode);
4450 i_gid = i_gid_read(inode);
4451 if (!(test_opt(inode->i_sb, NO_UID32))) {
4452 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4453 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4454 /*
4455 * Fix up interoperability with old kernels. Otherwise, old inodes get
4456 * re-used with the upper 16 bits of the uid/gid intact
4457 */
4458 if (!ei->i_dtime) {
4459 raw_inode->i_uid_high =
4460 cpu_to_le16(high_16_bits(i_uid));
4461 raw_inode->i_gid_high =
4462 cpu_to_le16(high_16_bits(i_gid));
4463 } else {
4464 raw_inode->i_uid_high = 0;
4465 raw_inode->i_gid_high = 0;
4466 }
4467 } else {
4468 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4469 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4470 raw_inode->i_uid_high = 0;
4471 raw_inode->i_gid_high = 0;
4472 }
4473 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4474
4475 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4476 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4477 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4478 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4479
4480 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4481 goto out_brelse;
4482 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4483 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4484 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4485 cpu_to_le32(EXT4_OS_HURD))
4486 raw_inode->i_file_acl_high =
4487 cpu_to_le16(ei->i_file_acl >> 32);
4488 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4489 if (ei->i_disksize != ext4_isize(raw_inode)) {
4490 ext4_isize_set(raw_inode, ei->i_disksize);
4491 need_datasync = 1;
4492 }
4493 if (ei->i_disksize > 0x7fffffffULL) {
4494 struct super_block *sb = inode->i_sb;
4495 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4496 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4497 EXT4_SB(sb)->s_es->s_rev_level ==
4498 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4499 /* If this is the first large file
4500 * created, add a flag to the superblock.
4501 */
4502 err = ext4_journal_get_write_access(handle,
4503 EXT4_SB(sb)->s_sbh);
4504 if (err)
4505 goto out_brelse;
4506 ext4_update_dynamic_rev(sb);
4507 EXT4_SET_RO_COMPAT_FEATURE(sb,
4508 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4509 ext4_handle_sync(handle);
4510 err = ext4_handle_dirty_super(handle, sb);
4511 }
4512 }
4513 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4514 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4515 if (old_valid_dev(inode->i_rdev)) {
4516 raw_inode->i_block[0] =
4517 cpu_to_le32(old_encode_dev(inode->i_rdev));
4518 raw_inode->i_block[1] = 0;
4519 } else {
4520 raw_inode->i_block[0] = 0;
4521 raw_inode->i_block[1] =
4522 cpu_to_le32(new_encode_dev(inode->i_rdev));
4523 raw_inode->i_block[2] = 0;
4524 }
4525 } else if (!ext4_has_inline_data(inode)) {
4526 for (block = 0; block < EXT4_N_BLOCKS; block++)
4527 raw_inode->i_block[block] = ei->i_data[block];
4528 }
4529
4530 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4531 if (ei->i_extra_isize) {
4532 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4533 raw_inode->i_version_hi =
4534 cpu_to_le32(inode->i_version >> 32);
4535 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4536 }
4537
4538 ext4_inode_csum_set(inode, raw_inode, ei);
4539
4540 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4541 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4542 if (!err)
4543 err = rc;
4544 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4545
4546 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4547 out_brelse:
4548 brelse(bh);
4549 ext4_std_error(inode->i_sb, err);
4550 return err;
4551 }
4552
4553 /*
4554 * ext4_write_inode()
4555 *
4556 * We are called from a few places:
4557 *
4558 * - Within generic_file_write() for O_SYNC files.
4559 * Here, there will be no transaction running. We wait for any running
4560 * transaction to commit.
4561 *
4562 * - Within sys_sync(), kupdate and such.
4563 * We wait on commit, if tol to.
4564 *
4565 * - Within prune_icache() (PF_MEMALLOC == true)
4566 * Here we simply return. We can't afford to block kswapd on the
4567 * journal commit.
4568 *
4569 * In all cases it is actually safe for us to return without doing anything,
4570 * because the inode has been copied into a raw inode buffer in
4571 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4572 * knfsd.
4573 *
4574 * Note that we are absolutely dependent upon all inode dirtiers doing the
4575 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4576 * which we are interested.
4577 *
4578 * It would be a bug for them to not do this. The code:
4579 *
4580 * mark_inode_dirty(inode)
4581 * stuff();
4582 * inode->i_size = expr;
4583 *
4584 * is in error because a kswapd-driven write_inode() could occur while
4585 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4586 * will no longer be on the superblock's dirty inode list.
4587 */
4588 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4589 {
4590 int err;
4591
4592 if (current->flags & PF_MEMALLOC)
4593 return 0;
4594
4595 if (EXT4_SB(inode->i_sb)->s_journal) {
4596 if (ext4_journal_current_handle()) {
4597 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4598 dump_stack();
4599 return -EIO;
4600 }
4601
4602 if (wbc->sync_mode != WB_SYNC_ALL)
4603 return 0;
4604
4605 err = ext4_force_commit(inode->i_sb);
4606 } else {
4607 struct ext4_iloc iloc;
4608
4609 err = __ext4_get_inode_loc(inode, &iloc, 0);
4610 if (err)
4611 return err;
4612 if (wbc->sync_mode == WB_SYNC_ALL)
4613 sync_dirty_buffer(iloc.bh);
4614 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4615 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4616 "IO error syncing inode");
4617 err = -EIO;
4618 }
4619 brelse(iloc.bh);
4620 }
4621 return err;
4622 }
4623
4624 /*
4625 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4626 * buffers that are attached to a page stradding i_size and are undergoing
4627 * commit. In that case we have to wait for commit to finish and try again.
4628 */
4629 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4630 {
4631 struct page *page;
4632 unsigned offset;
4633 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4634 tid_t commit_tid = 0;
4635 int ret;
4636
4637 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4638 /*
4639 * All buffers in the last page remain valid? Then there's nothing to
4640 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4641 * blocksize case
4642 */
4643 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4644 return;
4645 while (1) {
4646 page = find_lock_page(inode->i_mapping,
4647 inode->i_size >> PAGE_CACHE_SHIFT);
4648 if (!page)
4649 return;
4650 ret = __ext4_journalled_invalidatepage(page, offset);
4651 unlock_page(page);
4652 page_cache_release(page);
4653 if (ret != -EBUSY)
4654 return;
4655 commit_tid = 0;
4656 read_lock(&journal->j_state_lock);
4657 if (journal->j_committing_transaction)
4658 commit_tid = journal->j_committing_transaction->t_tid;
4659 read_unlock(&journal->j_state_lock);
4660 if (commit_tid)
4661 jbd2_log_wait_commit(journal, commit_tid);
4662 }
4663 }
4664
4665 /*
4666 * ext4_setattr()
4667 *
4668 * Called from notify_change.
4669 *
4670 * We want to trap VFS attempts to truncate the file as soon as
4671 * possible. In particular, we want to make sure that when the VFS
4672 * shrinks i_size, we put the inode on the orphan list and modify
4673 * i_disksize immediately, so that during the subsequent flushing of
4674 * dirty pages and freeing of disk blocks, we can guarantee that any
4675 * commit will leave the blocks being flushed in an unused state on
4676 * disk. (On recovery, the inode will get truncated and the blocks will
4677 * be freed, so we have a strong guarantee that no future commit will
4678 * leave these blocks visible to the user.)
4679 *
4680 * Another thing we have to assure is that if we are in ordered mode
4681 * and inode is still attached to the committing transaction, we must
4682 * we start writeout of all the dirty pages which are being truncated.
4683 * This way we are sure that all the data written in the previous
4684 * transaction are already on disk (truncate waits for pages under
4685 * writeback).
4686 *
4687 * Called with inode->i_mutex down.
4688 */
4689 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4690 {
4691 struct inode *inode = dentry->d_inode;
4692 int error, rc = 0;
4693 int orphan = 0;
4694 const unsigned int ia_valid = attr->ia_valid;
4695
4696 error = inode_change_ok(inode, attr);
4697 if (error)
4698 return error;
4699
4700 if (is_quota_modification(inode, attr))
4701 dquot_initialize(inode);
4702 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4703 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4704 handle_t *handle;
4705
4706 /* (user+group)*(old+new) structure, inode write (sb,
4707 * inode block, ? - but truncate inode update has it) */
4708 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4709 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4710 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4711 if (IS_ERR(handle)) {
4712 error = PTR_ERR(handle);
4713 goto err_out;
4714 }
4715 error = dquot_transfer(inode, attr);
4716 if (error) {
4717 ext4_journal_stop(handle);
4718 return error;
4719 }
4720 /* Update corresponding info in inode so that everything is in
4721 * one transaction */
4722 if (attr->ia_valid & ATTR_UID)
4723 inode->i_uid = attr->ia_uid;
4724 if (attr->ia_valid & ATTR_GID)
4725 inode->i_gid = attr->ia_gid;
4726 error = ext4_mark_inode_dirty(handle, inode);
4727 ext4_journal_stop(handle);
4728 }
4729
4730 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4731 handle_t *handle;
4732 loff_t oldsize = inode->i_size;
4733
4734 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4735 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4736
4737 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4738 return -EFBIG;
4739 }
4740
4741 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4742 inode_inc_iversion(inode);
4743
4744 if (S_ISREG(inode->i_mode) &&
4745 (attr->ia_size < inode->i_size)) {
4746 if (ext4_should_order_data(inode)) {
4747 error = ext4_begin_ordered_truncate(inode,
4748 attr->ia_size);
4749 if (error)
4750 goto err_out;
4751 }
4752 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4753 if (IS_ERR(handle)) {
4754 error = PTR_ERR(handle);
4755 goto err_out;
4756 }
4757 if (ext4_handle_valid(handle)) {
4758 error = ext4_orphan_add(handle, inode);
4759 orphan = 1;
4760 }
4761 EXT4_I(inode)->i_disksize = attr->ia_size;
4762 rc = ext4_mark_inode_dirty(handle, inode);
4763 if (!error)
4764 error = rc;
4765 ext4_journal_stop(handle);
4766 if (error) {
4767 ext4_orphan_del(NULL, inode);
4768 goto err_out;
4769 }
4770 }
4771
4772 i_size_write(inode, attr->ia_size);
4773 /*
4774 * Blocks are going to be removed from the inode. Wait
4775 * for dio in flight. Temporarily disable
4776 * dioread_nolock to prevent livelock.
4777 */
4778 if (orphan) {
4779 if (!ext4_should_journal_data(inode)) {
4780 ext4_inode_block_unlocked_dio(inode);
4781 inode_dio_wait(inode);
4782 ext4_inode_resume_unlocked_dio(inode);
4783 } else
4784 ext4_wait_for_tail_page_commit(inode);
4785 }
4786 /*
4787 * Truncate pagecache after we've waited for commit
4788 * in data=journal mode to make pages freeable.
4789 */
4790 truncate_pagecache(inode, oldsize, inode->i_size);
4791 }
4792 /*
4793 * We want to call ext4_truncate() even if attr->ia_size ==
4794 * inode->i_size for cases like truncation of fallocated space
4795 */
4796 if (attr->ia_valid & ATTR_SIZE)
4797 ext4_truncate(inode);
4798
4799 if (!rc) {
4800 setattr_copy(inode, attr);
4801 mark_inode_dirty(inode);
4802 }
4803
4804 /*
4805 * If the call to ext4_truncate failed to get a transaction handle at
4806 * all, we need to clean up the in-core orphan list manually.
4807 */
4808 if (orphan && inode->i_nlink)
4809 ext4_orphan_del(NULL, inode);
4810
4811 if (!rc && (ia_valid & ATTR_MODE))
4812 rc = ext4_acl_chmod(inode);
4813
4814 err_out:
4815 ext4_std_error(inode->i_sb, error);
4816 if (!error)
4817 error = rc;
4818 return error;
4819 }
4820
4821 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4822 struct kstat *stat)
4823 {
4824 struct inode *inode;
4825 unsigned long long delalloc_blocks;
4826
4827 inode = dentry->d_inode;
4828 generic_fillattr(inode, stat);
4829
4830 /*
4831 * We can't update i_blocks if the block allocation is delayed
4832 * otherwise in the case of system crash before the real block
4833 * allocation is done, we will have i_blocks inconsistent with
4834 * on-disk file blocks.
4835 * We always keep i_blocks updated together with real
4836 * allocation. But to not confuse with user, stat
4837 * will return the blocks that include the delayed allocation
4838 * blocks for this file.
4839 */
4840 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4841 EXT4_I(inode)->i_reserved_data_blocks);
4842
4843 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4844 return 0;
4845 }
4846
4847 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4848 {
4849 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4850 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4851 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4852 }
4853
4854 /*
4855 * Account for index blocks, block groups bitmaps and block group
4856 * descriptor blocks if modify datablocks and index blocks
4857 * worse case, the indexs blocks spread over different block groups
4858 *
4859 * If datablocks are discontiguous, they are possible to spread over
4860 * different block groups too. If they are contiguous, with flexbg,
4861 * they could still across block group boundary.
4862 *
4863 * Also account for superblock, inode, quota and xattr blocks
4864 */
4865 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4866 {
4867 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4868 int gdpblocks;
4869 int idxblocks;
4870 int ret = 0;
4871
4872 /*
4873 * How many index blocks need to touch to modify nrblocks?
4874 * The "Chunk" flag indicating whether the nrblocks is
4875 * physically contiguous on disk
4876 *
4877 * For Direct IO and fallocate, they calls get_block to allocate
4878 * one single extent at a time, so they could set the "Chunk" flag
4879 */
4880 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4881
4882 ret = idxblocks;
4883
4884 /*
4885 * Now let's see how many group bitmaps and group descriptors need
4886 * to account
4887 */
4888 groups = idxblocks;
4889 if (chunk)
4890 groups += 1;
4891 else
4892 groups += nrblocks;
4893
4894 gdpblocks = groups;
4895 if (groups > ngroups)
4896 groups = ngroups;
4897 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4898 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4899
4900 /* bitmaps and block group descriptor blocks */
4901 ret += groups + gdpblocks;
4902
4903 /* Blocks for super block, inode, quota and xattr blocks */
4904 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4905
4906 return ret;
4907 }
4908
4909 /*
4910 * Calculate the total number of credits to reserve to fit
4911 * the modification of a single pages into a single transaction,
4912 * which may include multiple chunks of block allocations.
4913 *
4914 * This could be called via ext4_write_begin()
4915 *
4916 * We need to consider the worse case, when
4917 * one new block per extent.
4918 */
4919 int ext4_writepage_trans_blocks(struct inode *inode)
4920 {
4921 int bpp = ext4_journal_blocks_per_page(inode);
4922 int ret;
4923
4924 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4925
4926 /* Account for data blocks for journalled mode */
4927 if (ext4_should_journal_data(inode))
4928 ret += bpp;
4929 return ret;
4930 }
4931
4932 /*
4933 * Calculate the journal credits for a chunk of data modification.
4934 *
4935 * This is called from DIO, fallocate or whoever calling
4936 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4937 *
4938 * journal buffers for data blocks are not included here, as DIO
4939 * and fallocate do no need to journal data buffers.
4940 */
4941 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4942 {
4943 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4944 }
4945
4946 /*
4947 * The caller must have previously called ext4_reserve_inode_write().
4948 * Give this, we know that the caller already has write access to iloc->bh.
4949 */
4950 int ext4_mark_iloc_dirty(handle_t *handle,
4951 struct inode *inode, struct ext4_iloc *iloc)
4952 {
4953 int err = 0;
4954
4955 if (IS_I_VERSION(inode))
4956 inode_inc_iversion(inode);
4957
4958 /* the do_update_inode consumes one bh->b_count */
4959 get_bh(iloc->bh);
4960
4961 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4962 err = ext4_do_update_inode(handle, inode, iloc);
4963 put_bh(iloc->bh);
4964 return err;
4965 }
4966
4967 /*
4968 * On success, We end up with an outstanding reference count against
4969 * iloc->bh. This _must_ be cleaned up later.
4970 */
4971
4972 int
4973 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4974 struct ext4_iloc *iloc)
4975 {
4976 int err;
4977
4978 err = ext4_get_inode_loc(inode, iloc);
4979 if (!err) {
4980 BUFFER_TRACE(iloc->bh, "get_write_access");
4981 err = ext4_journal_get_write_access(handle, iloc->bh);
4982 if (err) {
4983 brelse(iloc->bh);
4984 iloc->bh = NULL;
4985 }
4986 }
4987 ext4_std_error(inode->i_sb, err);
4988 return err;
4989 }
4990
4991 /*
4992 * Expand an inode by new_extra_isize bytes.
4993 * Returns 0 on success or negative error number on failure.
4994 */
4995 static int ext4_expand_extra_isize(struct inode *inode,
4996 unsigned int new_extra_isize,
4997 struct ext4_iloc iloc,
4998 handle_t *handle)
4999 {
5000 struct ext4_inode *raw_inode;
5001 struct ext4_xattr_ibody_header *header;
5002
5003 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5004 return 0;
5005
5006 raw_inode = ext4_raw_inode(&iloc);
5007
5008 header = IHDR(inode, raw_inode);
5009
5010 /* No extended attributes present */
5011 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5012 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5013 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5014 new_extra_isize);
5015 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5016 return 0;
5017 }
5018
5019 /* try to expand with EAs present */
5020 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5021 raw_inode, handle);
5022 }
5023
5024 /*
5025 * What we do here is to mark the in-core inode as clean with respect to inode
5026 * dirtiness (it may still be data-dirty).
5027 * This means that the in-core inode may be reaped by prune_icache
5028 * without having to perform any I/O. This is a very good thing,
5029 * because *any* task may call prune_icache - even ones which
5030 * have a transaction open against a different journal.
5031 *
5032 * Is this cheating? Not really. Sure, we haven't written the
5033 * inode out, but prune_icache isn't a user-visible syncing function.
5034 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5035 * we start and wait on commits.
5036 */
5037 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5038 {
5039 struct ext4_iloc iloc;
5040 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5041 static unsigned int mnt_count;
5042 int err, ret;
5043
5044 might_sleep();
5045 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5046 err = ext4_reserve_inode_write(handle, inode, &iloc);
5047 if (ext4_handle_valid(handle) &&
5048 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5049 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5050 /*
5051 * We need extra buffer credits since we may write into EA block
5052 * with this same handle. If journal_extend fails, then it will
5053 * only result in a minor loss of functionality for that inode.
5054 * If this is felt to be critical, then e2fsck should be run to
5055 * force a large enough s_min_extra_isize.
5056 */
5057 if ((jbd2_journal_extend(handle,
5058 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5059 ret = ext4_expand_extra_isize(inode,
5060 sbi->s_want_extra_isize,
5061 iloc, handle);
5062 if (ret) {
5063 ext4_set_inode_state(inode,
5064 EXT4_STATE_NO_EXPAND);
5065 if (mnt_count !=
5066 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5067 ext4_warning(inode->i_sb,
5068 "Unable to expand inode %lu. Delete"
5069 " some EAs or run e2fsck.",
5070 inode->i_ino);
5071 mnt_count =
5072 le16_to_cpu(sbi->s_es->s_mnt_count);
5073 }
5074 }
5075 }
5076 }
5077 if (!err)
5078 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5079 return err;
5080 }
5081
5082 /*
5083 * ext4_dirty_inode() is called from __mark_inode_dirty()
5084 *
5085 * We're really interested in the case where a file is being extended.
5086 * i_size has been changed by generic_commit_write() and we thus need
5087 * to include the updated inode in the current transaction.
5088 *
5089 * Also, dquot_alloc_block() will always dirty the inode when blocks
5090 * are allocated to the file.
5091 *
5092 * If the inode is marked synchronous, we don't honour that here - doing
5093 * so would cause a commit on atime updates, which we don't bother doing.
5094 * We handle synchronous inodes at the highest possible level.
5095 */
5096 void ext4_dirty_inode(struct inode *inode, int flags)
5097 {
5098 handle_t *handle;
5099
5100 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5101 if (IS_ERR(handle))
5102 goto out;
5103
5104 ext4_mark_inode_dirty(handle, inode);
5105
5106 ext4_journal_stop(handle);
5107 out:
5108 return;
5109 }
5110
5111 #if 0
5112 /*
5113 * Bind an inode's backing buffer_head into this transaction, to prevent
5114 * it from being flushed to disk early. Unlike
5115 * ext4_reserve_inode_write, this leaves behind no bh reference and
5116 * returns no iloc structure, so the caller needs to repeat the iloc
5117 * lookup to mark the inode dirty later.
5118 */
5119 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5120 {
5121 struct ext4_iloc iloc;
5122
5123 int err = 0;
5124 if (handle) {
5125 err = ext4_get_inode_loc(inode, &iloc);
5126 if (!err) {
5127 BUFFER_TRACE(iloc.bh, "get_write_access");
5128 err = jbd2_journal_get_write_access(handle, iloc.bh);
5129 if (!err)
5130 err = ext4_handle_dirty_metadata(handle,
5131 NULL,
5132 iloc.bh);
5133 brelse(iloc.bh);
5134 }
5135 }
5136 ext4_std_error(inode->i_sb, err);
5137 return err;
5138 }
5139 #endif
5140
5141 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5142 {
5143 journal_t *journal;
5144 handle_t *handle;
5145 int err;
5146
5147 /*
5148 * We have to be very careful here: changing a data block's
5149 * journaling status dynamically is dangerous. If we write a
5150 * data block to the journal, change the status and then delete
5151 * that block, we risk forgetting to revoke the old log record
5152 * from the journal and so a subsequent replay can corrupt data.
5153 * So, first we make sure that the journal is empty and that
5154 * nobody is changing anything.
5155 */
5156
5157 journal = EXT4_JOURNAL(inode);
5158 if (!journal)
5159 return 0;
5160 if (is_journal_aborted(journal))
5161 return -EROFS;
5162 /* We have to allocate physical blocks for delalloc blocks
5163 * before flushing journal. otherwise delalloc blocks can not
5164 * be allocated any more. even more truncate on delalloc blocks
5165 * could trigger BUG by flushing delalloc blocks in journal.
5166 * There is no delalloc block in non-journal data mode.
5167 */
5168 if (val && test_opt(inode->i_sb, DELALLOC)) {
5169 err = ext4_alloc_da_blocks(inode);
5170 if (err < 0)
5171 return err;
5172 }
5173
5174 /* Wait for all existing dio workers */
5175 ext4_inode_block_unlocked_dio(inode);
5176 inode_dio_wait(inode);
5177
5178 jbd2_journal_lock_updates(journal);
5179
5180 /*
5181 * OK, there are no updates running now, and all cached data is
5182 * synced to disk. We are now in a completely consistent state
5183 * which doesn't have anything in the journal, and we know that
5184 * no filesystem updates are running, so it is safe to modify
5185 * the inode's in-core data-journaling state flag now.
5186 */
5187
5188 if (val)
5189 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5190 else {
5191 jbd2_journal_flush(journal);
5192 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5193 }
5194 ext4_set_aops(inode);
5195
5196 jbd2_journal_unlock_updates(journal);
5197 ext4_inode_resume_unlocked_dio(inode);
5198
5199 /* Finally we can mark the inode as dirty. */
5200
5201 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5202 if (IS_ERR(handle))
5203 return PTR_ERR(handle);
5204
5205 err = ext4_mark_inode_dirty(handle, inode);
5206 ext4_handle_sync(handle);
5207 ext4_journal_stop(handle);
5208 ext4_std_error(inode->i_sb, err);
5209
5210 return err;
5211 }
5212
5213 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5214 {
5215 return !buffer_mapped(bh);
5216 }
5217
5218 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5219 {
5220 struct page *page = vmf->page;
5221 loff_t size;
5222 unsigned long len;
5223 int ret;
5224 struct file *file = vma->vm_file;
5225 struct inode *inode = file_inode(file);
5226 struct address_space *mapping = inode->i_mapping;
5227 handle_t *handle;
5228 get_block_t *get_block;
5229 int retries = 0;
5230
5231 sb_start_pagefault(inode->i_sb);
5232 file_update_time(vma->vm_file);
5233 /* Delalloc case is easy... */
5234 if (test_opt(inode->i_sb, DELALLOC) &&
5235 !ext4_should_journal_data(inode) &&
5236 !ext4_nonda_switch(inode->i_sb)) {
5237 do {
5238 ret = __block_page_mkwrite(vma, vmf,
5239 ext4_da_get_block_prep);
5240 } while (ret == -ENOSPC &&
5241 ext4_should_retry_alloc(inode->i_sb, &retries));
5242 goto out_ret;
5243 }
5244
5245 lock_page(page);
5246 size = i_size_read(inode);
5247 /* Page got truncated from under us? */
5248 if (page->mapping != mapping || page_offset(page) > size) {
5249 unlock_page(page);
5250 ret = VM_FAULT_NOPAGE;
5251 goto out;
5252 }
5253
5254 if (page->index == size >> PAGE_CACHE_SHIFT)
5255 len = size & ~PAGE_CACHE_MASK;
5256 else
5257 len = PAGE_CACHE_SIZE;
5258 /*
5259 * Return if we have all the buffers mapped. This avoids the need to do
5260 * journal_start/journal_stop which can block and take a long time
5261 */
5262 if (page_has_buffers(page)) {
5263 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5264 0, len, NULL,
5265 ext4_bh_unmapped)) {
5266 /* Wait so that we don't change page under IO */
5267 wait_for_stable_page(page);
5268 ret = VM_FAULT_LOCKED;
5269 goto out;
5270 }
5271 }
5272 unlock_page(page);
5273 /* OK, we need to fill the hole... */
5274 if (ext4_should_dioread_nolock(inode))
5275 get_block = ext4_get_block_write;
5276 else
5277 get_block = ext4_get_block;
5278 retry_alloc:
5279 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5280 ext4_writepage_trans_blocks(inode));
5281 if (IS_ERR(handle)) {
5282 ret = VM_FAULT_SIGBUS;
5283 goto out;
5284 }
5285 ret = __block_page_mkwrite(vma, vmf, get_block);
5286 if (!ret && ext4_should_journal_data(inode)) {
5287 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5288 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5289 unlock_page(page);
5290 ret = VM_FAULT_SIGBUS;
5291 ext4_journal_stop(handle);
5292 goto out;
5293 }
5294 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5295 }
5296 ext4_journal_stop(handle);
5297 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5298 goto retry_alloc;
5299 out_ret:
5300 ret = block_page_mkwrite_return(ret);
5301 out:
5302 sb_end_pagefault(inode->i_sb);
5303 return ret;
5304 }