ext4: fix fio regression
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / extents_status.c
1 /*
2 * fs/ext4/extents_status.c
3 *
4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5 * Modified by
6 * Allison Henderson <achender@linux.vnet.ibm.com>
7 * Hugh Dickins <hughd@google.com>
8 * Zheng Liu <wenqing.lz@taobao.com>
9 *
10 * Ext4 extents status tree core functions.
11 */
12 #include <linux/rbtree.h>
13 #include "ext4.h"
14 #include "extents_status.h"
15 #include "ext4_extents.h"
16
17 #include <trace/events/ext4.h>
18
19 /*
20 * According to previous discussion in Ext4 Developer Workshop, we
21 * will introduce a new structure called io tree to track all extent
22 * status in order to solve some problems that we have met
23 * (e.g. Reservation space warning), and provide extent-level locking.
24 * Delay extent tree is the first step to achieve this goal. It is
25 * original built by Yongqiang Yang. At that time it is called delay
26 * extent tree, whose goal is only track delayed extents in memory to
27 * simplify the implementation of fiemap and bigalloc, and introduce
28 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
29 * delay extent tree at the first commit. But for better understand
30 * what it does, it has been rename to extent status tree.
31 *
32 * Step1:
33 * Currently the first step has been done. All delayed extents are
34 * tracked in the tree. It maintains the delayed extent when a delayed
35 * allocation is issued, and the delayed extent is written out or
36 * invalidated. Therefore the implementation of fiemap and bigalloc
37 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
38 *
39 * The following comment describes the implemenmtation of extent
40 * status tree and future works.
41 *
42 * Step2:
43 * In this step all extent status are tracked by extent status tree.
44 * Thus, we can first try to lookup a block mapping in this tree before
45 * finding it in extent tree. Hence, single extent cache can be removed
46 * because extent status tree can do a better job. Extents in status
47 * tree are loaded on-demand. Therefore, the extent status tree may not
48 * contain all of the extents in a file. Meanwhile we define a shrinker
49 * to reclaim memory from extent status tree because fragmented extent
50 * tree will make status tree cost too much memory. written/unwritten/-
51 * hole extents in the tree will be reclaimed by this shrinker when we
52 * are under high memory pressure. Delayed extents will not be
53 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
54 */
55
56 /*
57 * Extent status tree implementation for ext4.
58 *
59 *
60 * ==========================================================================
61 * Extent status tree tracks all extent status.
62 *
63 * 1. Why we need to implement extent status tree?
64 *
65 * Without extent status tree, ext4 identifies a delayed extent by looking
66 * up page cache, this has several deficiencies - complicated, buggy,
67 * and inefficient code.
68 *
69 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
70 * block or a range of blocks are belonged to a delayed extent.
71 *
72 * Let us have a look at how they do without extent status tree.
73 * -- FIEMAP
74 * FIEMAP looks up page cache to identify delayed allocations from holes.
75 *
76 * -- SEEK_HOLE/DATA
77 * SEEK_HOLE/DATA has the same problem as FIEMAP.
78 *
79 * -- bigalloc
80 * bigalloc looks up page cache to figure out if a block is
81 * already under delayed allocation or not to determine whether
82 * quota reserving is needed for the cluster.
83 *
84 * -- writeout
85 * Writeout looks up whole page cache to see if a buffer is
86 * mapped, If there are not very many delayed buffers, then it is
87 * time comsuming.
88 *
89 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
90 * bigalloc and writeout can figure out if a block or a range of
91 * blocks is under delayed allocation(belonged to a delayed extent) or
92 * not by searching the extent tree.
93 *
94 *
95 * ==========================================================================
96 * 2. Ext4 extent status tree impelmentation
97 *
98 * -- extent
99 * A extent is a range of blocks which are contiguous logically and
100 * physically. Unlike extent in extent tree, this extent in ext4 is
101 * a in-memory struct, there is no corresponding on-disk data. There
102 * is no limit on length of extent, so an extent can contain as many
103 * blocks as they are contiguous logically and physically.
104 *
105 * -- extent status tree
106 * Every inode has an extent status tree and all allocation blocks
107 * are added to the tree with different status. The extent in the
108 * tree are ordered by logical block no.
109 *
110 * -- operations on a extent status tree
111 * There are three important operations on a delayed extent tree: find
112 * next extent, adding a extent(a range of blocks) and removing a extent.
113 *
114 * -- race on a extent status tree
115 * Extent status tree is protected by inode->i_es_lock.
116 *
117 * -- memory consumption
118 * Fragmented extent tree will make extent status tree cost too much
119 * memory. Hence, we will reclaim written/unwritten/hole extents from
120 * the tree under a heavy memory pressure.
121 *
122 *
123 * ==========================================================================
124 * 3. Performance analysis
125 *
126 * -- overhead
127 * 1. There is a cache extent for write access, so if writes are
128 * not very random, adding space operaions are in O(1) time.
129 *
130 * -- gain
131 * 2. Code is much simpler, more readable, more maintainable and
132 * more efficient.
133 *
134 *
135 * ==========================================================================
136 * 4. TODO list
137 *
138 * -- Refactor delayed space reservation
139 *
140 * -- Extent-level locking
141 */
142
143 static struct kmem_cache *ext4_es_cachep;
144
145 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
146 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
147 ext4_lblk_t end);
148 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
149 int nr_to_scan);
150
151 int __init ext4_init_es(void)
152 {
153 ext4_es_cachep = kmem_cache_create("ext4_extent_status",
154 sizeof(struct extent_status),
155 0, (SLAB_RECLAIM_ACCOUNT), NULL);
156 if (ext4_es_cachep == NULL)
157 return -ENOMEM;
158 return 0;
159 }
160
161 void ext4_exit_es(void)
162 {
163 if (ext4_es_cachep)
164 kmem_cache_destroy(ext4_es_cachep);
165 }
166
167 void ext4_es_init_tree(struct ext4_es_tree *tree)
168 {
169 tree->root = RB_ROOT;
170 tree->cache_es = NULL;
171 }
172
173 #ifdef ES_DEBUG__
174 static void ext4_es_print_tree(struct inode *inode)
175 {
176 struct ext4_es_tree *tree;
177 struct rb_node *node;
178
179 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
180 tree = &EXT4_I(inode)->i_es_tree;
181 node = rb_first(&tree->root);
182 while (node) {
183 struct extent_status *es;
184 es = rb_entry(node, struct extent_status, rb_node);
185 printk(KERN_DEBUG " [%u/%u) %llu %llx",
186 es->es_lblk, es->es_len,
187 ext4_es_pblock(es), ext4_es_status(es));
188 node = rb_next(node);
189 }
190 printk(KERN_DEBUG "\n");
191 }
192 #else
193 #define ext4_es_print_tree(inode)
194 #endif
195
196 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
197 {
198 BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
199 return es->es_lblk + es->es_len - 1;
200 }
201
202 /*
203 * search through the tree for an delayed extent with a given offset. If
204 * it can't be found, try to find next extent.
205 */
206 static struct extent_status *__es_tree_search(struct rb_root *root,
207 ext4_lblk_t lblk)
208 {
209 struct rb_node *node = root->rb_node;
210 struct extent_status *es = NULL;
211
212 while (node) {
213 es = rb_entry(node, struct extent_status, rb_node);
214 if (lblk < es->es_lblk)
215 node = node->rb_left;
216 else if (lblk > ext4_es_end(es))
217 node = node->rb_right;
218 else
219 return es;
220 }
221
222 if (es && lblk < es->es_lblk)
223 return es;
224
225 if (es && lblk > ext4_es_end(es)) {
226 node = rb_next(&es->rb_node);
227 return node ? rb_entry(node, struct extent_status, rb_node) :
228 NULL;
229 }
230
231 return NULL;
232 }
233
234 /*
235 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
236 * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
237 *
238 * @inode: the inode which owns delayed extents
239 * @lblk: the offset where we start to search
240 * @end: the offset where we stop to search
241 * @es: delayed extent that we found
242 */
243 void ext4_es_find_delayed_extent_range(struct inode *inode,
244 ext4_lblk_t lblk, ext4_lblk_t end,
245 struct extent_status *es)
246 {
247 struct ext4_es_tree *tree = NULL;
248 struct extent_status *es1 = NULL;
249 struct rb_node *node;
250
251 BUG_ON(es == NULL);
252 BUG_ON(end < lblk);
253 trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
254
255 read_lock(&EXT4_I(inode)->i_es_lock);
256 tree = &EXT4_I(inode)->i_es_tree;
257
258 /* find extent in cache firstly */
259 es->es_lblk = es->es_len = es->es_pblk = 0;
260 if (tree->cache_es) {
261 es1 = tree->cache_es;
262 if (in_range(lblk, es1->es_lblk, es1->es_len)) {
263 es_debug("%u cached by [%u/%u) %llu %llx\n",
264 lblk, es1->es_lblk, es1->es_len,
265 ext4_es_pblock(es1), ext4_es_status(es1));
266 goto out;
267 }
268 }
269
270 es1 = __es_tree_search(&tree->root, lblk);
271
272 out:
273 if (es1 && !ext4_es_is_delayed(es1)) {
274 while ((node = rb_next(&es1->rb_node)) != NULL) {
275 es1 = rb_entry(node, struct extent_status, rb_node);
276 if (es1->es_lblk > end) {
277 es1 = NULL;
278 break;
279 }
280 if (ext4_es_is_delayed(es1))
281 break;
282 }
283 }
284
285 if (es1 && ext4_es_is_delayed(es1)) {
286 tree->cache_es = es1;
287 es->es_lblk = es1->es_lblk;
288 es->es_len = es1->es_len;
289 es->es_pblk = es1->es_pblk;
290 }
291
292 read_unlock(&EXT4_I(inode)->i_es_lock);
293
294 ext4_es_lru_add(inode);
295 trace_ext4_es_find_delayed_extent_range_exit(inode, es);
296 }
297
298 static struct extent_status *
299 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
300 ext4_fsblk_t pblk)
301 {
302 struct extent_status *es;
303 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
304 if (es == NULL)
305 return NULL;
306 es->es_lblk = lblk;
307 es->es_len = len;
308 es->es_pblk = pblk;
309
310 /*
311 * We don't count delayed extent because we never try to reclaim them
312 */
313 if (!ext4_es_is_delayed(es)) {
314 EXT4_I(inode)->i_es_lru_nr++;
315 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
316 }
317
318 return es;
319 }
320
321 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
322 {
323 /* Decrease the lru counter when this es is not delayed */
324 if (!ext4_es_is_delayed(es)) {
325 BUG_ON(EXT4_I(inode)->i_es_lru_nr == 0);
326 EXT4_I(inode)->i_es_lru_nr--;
327 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_extent_cache_cnt);
328 }
329
330 kmem_cache_free(ext4_es_cachep, es);
331 }
332
333 /*
334 * Check whether or not two extents can be merged
335 * Condition:
336 * - logical block number is contiguous
337 * - physical block number is contiguous
338 * - status is equal
339 */
340 static int ext4_es_can_be_merged(struct extent_status *es1,
341 struct extent_status *es2)
342 {
343 if (ext4_es_status(es1) != ext4_es_status(es2))
344 return 0;
345
346 if (((__u64) es1->es_len) + es2->es_len > 0xFFFFFFFFULL)
347 return 0;
348
349 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
350 return 0;
351
352 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
353 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
354 return 1;
355
356 if (ext4_es_is_hole(es1))
357 return 1;
358
359 /* we need to check delayed extent is without unwritten status */
360 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
361 return 1;
362
363 return 0;
364 }
365
366 static struct extent_status *
367 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
368 {
369 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
370 struct extent_status *es1;
371 struct rb_node *node;
372
373 node = rb_prev(&es->rb_node);
374 if (!node)
375 return es;
376
377 es1 = rb_entry(node, struct extent_status, rb_node);
378 if (ext4_es_can_be_merged(es1, es)) {
379 es1->es_len += es->es_len;
380 rb_erase(&es->rb_node, &tree->root);
381 ext4_es_free_extent(inode, es);
382 es = es1;
383 }
384
385 return es;
386 }
387
388 static struct extent_status *
389 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
390 {
391 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
392 struct extent_status *es1;
393 struct rb_node *node;
394
395 node = rb_next(&es->rb_node);
396 if (!node)
397 return es;
398
399 es1 = rb_entry(node, struct extent_status, rb_node);
400 if (ext4_es_can_be_merged(es, es1)) {
401 es->es_len += es1->es_len;
402 rb_erase(node, &tree->root);
403 ext4_es_free_extent(inode, es1);
404 }
405
406 return es;
407 }
408
409 #ifdef ES_AGGRESSIVE_TEST
410 static void ext4_es_insert_extent_ext_check(struct inode *inode,
411 struct extent_status *es)
412 {
413 struct ext4_ext_path *path = NULL;
414 struct ext4_extent *ex;
415 ext4_lblk_t ee_block;
416 ext4_fsblk_t ee_start;
417 unsigned short ee_len;
418 int depth, ee_status, es_status;
419
420 path = ext4_ext_find_extent(inode, es->es_lblk, NULL);
421 if (IS_ERR(path))
422 return;
423
424 depth = ext_depth(inode);
425 ex = path[depth].p_ext;
426
427 if (ex) {
428
429 ee_block = le32_to_cpu(ex->ee_block);
430 ee_start = ext4_ext_pblock(ex);
431 ee_len = ext4_ext_get_actual_len(ex);
432
433 ee_status = ext4_ext_is_uninitialized(ex) ? 1 : 0;
434 es_status = ext4_es_is_unwritten(es) ? 1 : 0;
435
436 /*
437 * Make sure ex and es are not overlap when we try to insert
438 * a delayed/hole extent.
439 */
440 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
441 if (in_range(es->es_lblk, ee_block, ee_len)) {
442 pr_warn("ES insert assertation failed for "
443 "inode: %lu we can find an extent "
444 "at block [%d/%d/%llu/%c], but we "
445 "want to add an delayed/hole extent "
446 "[%d/%d/%llu/%llx]\n",
447 inode->i_ino, ee_block, ee_len,
448 ee_start, ee_status ? 'u' : 'w',
449 es->es_lblk, es->es_len,
450 ext4_es_pblock(es), ext4_es_status(es));
451 }
452 goto out;
453 }
454
455 /*
456 * We don't check ee_block == es->es_lblk, etc. because es
457 * might be a part of whole extent, vice versa.
458 */
459 if (es->es_lblk < ee_block ||
460 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
461 pr_warn("ES insert assertation failed for inode: %lu "
462 "ex_status [%d/%d/%llu/%c] != "
463 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
464 ee_block, ee_len, ee_start,
465 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
466 ext4_es_pblock(es), es_status ? 'u' : 'w');
467 goto out;
468 }
469
470 if (ee_status ^ es_status) {
471 pr_warn("ES insert assertation failed for inode: %lu "
472 "ex_status [%d/%d/%llu/%c] != "
473 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
474 ee_block, ee_len, ee_start,
475 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
476 ext4_es_pblock(es), es_status ? 'u' : 'w');
477 }
478 } else {
479 /*
480 * We can't find an extent on disk. So we need to make sure
481 * that we don't want to add an written/unwritten extent.
482 */
483 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
484 pr_warn("ES insert assertation failed for inode: %lu "
485 "can't find an extent at block %d but we want "
486 "to add an written/unwritten extent "
487 "[%d/%d/%llu/%llx]\n", inode->i_ino,
488 es->es_lblk, es->es_lblk, es->es_len,
489 ext4_es_pblock(es), ext4_es_status(es));
490 }
491 }
492 out:
493 if (path) {
494 ext4_ext_drop_refs(path);
495 kfree(path);
496 }
497 }
498
499 static void ext4_es_insert_extent_ind_check(struct inode *inode,
500 struct extent_status *es)
501 {
502 struct ext4_map_blocks map;
503 int retval;
504
505 /*
506 * Here we call ext4_ind_map_blocks to lookup a block mapping because
507 * 'Indirect' structure is defined in indirect.c. So we couldn't
508 * access direct/indirect tree from outside. It is too dirty to define
509 * this function in indirect.c file.
510 */
511
512 map.m_lblk = es->es_lblk;
513 map.m_len = es->es_len;
514
515 retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
516 if (retval > 0) {
517 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
518 /*
519 * We want to add a delayed/hole extent but this
520 * block has been allocated.
521 */
522 pr_warn("ES insert assertation failed for inode: %lu "
523 "We can find blocks but we want to add a "
524 "delayed/hole extent [%d/%d/%llu/%llx]\n",
525 inode->i_ino, es->es_lblk, es->es_len,
526 ext4_es_pblock(es), ext4_es_status(es));
527 return;
528 } else if (ext4_es_is_written(es)) {
529 if (retval != es->es_len) {
530 pr_warn("ES insert assertation failed for "
531 "inode: %lu retval %d != es_len %d\n",
532 inode->i_ino, retval, es->es_len);
533 return;
534 }
535 if (map.m_pblk != ext4_es_pblock(es)) {
536 pr_warn("ES insert assertation failed for "
537 "inode: %lu m_pblk %llu != "
538 "es_pblk %llu\n",
539 inode->i_ino, map.m_pblk,
540 ext4_es_pblock(es));
541 return;
542 }
543 } else {
544 /*
545 * We don't need to check unwritten extent because
546 * indirect-based file doesn't have it.
547 */
548 BUG_ON(1);
549 }
550 } else if (retval == 0) {
551 if (ext4_es_is_written(es)) {
552 pr_warn("ES insert assertation failed for inode: %lu "
553 "We can't find the block but we want to add "
554 "an written extent [%d/%d/%llu/%llx]\n",
555 inode->i_ino, es->es_lblk, es->es_len,
556 ext4_es_pblock(es), ext4_es_status(es));
557 return;
558 }
559 }
560 }
561
562 static inline void ext4_es_insert_extent_check(struct inode *inode,
563 struct extent_status *es)
564 {
565 /*
566 * We don't need to worry about the race condition because
567 * caller takes i_data_sem locking.
568 */
569 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
570 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
571 ext4_es_insert_extent_ext_check(inode, es);
572 else
573 ext4_es_insert_extent_ind_check(inode, es);
574 }
575 #else
576 static inline void ext4_es_insert_extent_check(struct inode *inode,
577 struct extent_status *es)
578 {
579 }
580 #endif
581
582 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
583 {
584 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
585 struct rb_node **p = &tree->root.rb_node;
586 struct rb_node *parent = NULL;
587 struct extent_status *es;
588
589 while (*p) {
590 parent = *p;
591 es = rb_entry(parent, struct extent_status, rb_node);
592
593 if (newes->es_lblk < es->es_lblk) {
594 if (ext4_es_can_be_merged(newes, es)) {
595 /*
596 * Here we can modify es_lblk directly
597 * because it isn't overlapped.
598 */
599 es->es_lblk = newes->es_lblk;
600 es->es_len += newes->es_len;
601 if (ext4_es_is_written(es) ||
602 ext4_es_is_unwritten(es))
603 ext4_es_store_pblock(es,
604 newes->es_pblk);
605 es = ext4_es_try_to_merge_left(inode, es);
606 goto out;
607 }
608 p = &(*p)->rb_left;
609 } else if (newes->es_lblk > ext4_es_end(es)) {
610 if (ext4_es_can_be_merged(es, newes)) {
611 es->es_len += newes->es_len;
612 es = ext4_es_try_to_merge_right(inode, es);
613 goto out;
614 }
615 p = &(*p)->rb_right;
616 } else {
617 BUG_ON(1);
618 return -EINVAL;
619 }
620 }
621
622 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
623 newes->es_pblk);
624 if (!es)
625 return -ENOMEM;
626 rb_link_node(&es->rb_node, parent, p);
627 rb_insert_color(&es->rb_node, &tree->root);
628
629 out:
630 tree->cache_es = es;
631 return 0;
632 }
633
634 /*
635 * ext4_es_insert_extent() adds a space to a extent status tree.
636 *
637 * ext4_es_insert_extent is called by ext4_da_write_begin and
638 * ext4_es_remove_extent.
639 *
640 * Return 0 on success, error code on failure.
641 */
642 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
643 ext4_lblk_t len, ext4_fsblk_t pblk,
644 unsigned long long status)
645 {
646 struct extent_status newes;
647 ext4_lblk_t end = lblk + len - 1;
648 int err = 0;
649
650 es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
651 lblk, len, pblk, status, inode->i_ino);
652
653 if (!len)
654 return 0;
655
656 BUG_ON(end < lblk);
657
658 newes.es_lblk = lblk;
659 newes.es_len = len;
660 ext4_es_store_pblock(&newes, pblk);
661 ext4_es_store_status(&newes, status);
662 trace_ext4_es_insert_extent(inode, &newes);
663
664 ext4_es_insert_extent_check(inode, &newes);
665
666 write_lock(&EXT4_I(inode)->i_es_lock);
667 err = __es_remove_extent(inode, lblk, end);
668 if (err != 0)
669 goto error;
670 err = __es_insert_extent(inode, &newes);
671
672 error:
673 write_unlock(&EXT4_I(inode)->i_es_lock);
674
675 ext4_es_lru_add(inode);
676 ext4_es_print_tree(inode);
677
678 return err;
679 }
680
681 /*
682 * ext4_es_lookup_extent() looks up an extent in extent status tree.
683 *
684 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
685 *
686 * Return: 1 on found, 0 on not
687 */
688 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
689 struct extent_status *es)
690 {
691 struct ext4_es_tree *tree;
692 struct extent_status *es1 = NULL;
693 struct rb_node *node;
694 int found = 0;
695
696 trace_ext4_es_lookup_extent_enter(inode, lblk);
697 es_debug("lookup extent in block %u\n", lblk);
698
699 tree = &EXT4_I(inode)->i_es_tree;
700 read_lock(&EXT4_I(inode)->i_es_lock);
701
702 /* find extent in cache firstly */
703 es->es_lblk = es->es_len = es->es_pblk = 0;
704 if (tree->cache_es) {
705 es1 = tree->cache_es;
706 if (in_range(lblk, es1->es_lblk, es1->es_len)) {
707 es_debug("%u cached by [%u/%u)\n",
708 lblk, es1->es_lblk, es1->es_len);
709 found = 1;
710 goto out;
711 }
712 }
713
714 node = tree->root.rb_node;
715 while (node) {
716 es1 = rb_entry(node, struct extent_status, rb_node);
717 if (lblk < es1->es_lblk)
718 node = node->rb_left;
719 else if (lblk > ext4_es_end(es1))
720 node = node->rb_right;
721 else {
722 found = 1;
723 break;
724 }
725 }
726
727 out:
728 if (found) {
729 BUG_ON(!es1);
730 es->es_lblk = es1->es_lblk;
731 es->es_len = es1->es_len;
732 es->es_pblk = es1->es_pblk;
733 }
734
735 read_unlock(&EXT4_I(inode)->i_es_lock);
736
737 ext4_es_lru_add(inode);
738 trace_ext4_es_lookup_extent_exit(inode, es, found);
739 return found;
740 }
741
742 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
743 ext4_lblk_t end)
744 {
745 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
746 struct rb_node *node;
747 struct extent_status *es;
748 struct extent_status orig_es;
749 ext4_lblk_t len1, len2;
750 ext4_fsblk_t block;
751 int err = 0;
752
753 es = __es_tree_search(&tree->root, lblk);
754 if (!es)
755 goto out;
756 if (es->es_lblk > end)
757 goto out;
758
759 /* Simply invalidate cache_es. */
760 tree->cache_es = NULL;
761
762 orig_es.es_lblk = es->es_lblk;
763 orig_es.es_len = es->es_len;
764 orig_es.es_pblk = es->es_pblk;
765
766 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
767 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
768 if (len1 > 0)
769 es->es_len = len1;
770 if (len2 > 0) {
771 if (len1 > 0) {
772 struct extent_status newes;
773
774 newes.es_lblk = end + 1;
775 newes.es_len = len2;
776 if (ext4_es_is_written(&orig_es) ||
777 ext4_es_is_unwritten(&orig_es)) {
778 block = ext4_es_pblock(&orig_es) +
779 orig_es.es_len - len2;
780 ext4_es_store_pblock(&newes, block);
781 }
782 ext4_es_store_status(&newes, ext4_es_status(&orig_es));
783 err = __es_insert_extent(inode, &newes);
784 if (err) {
785 es->es_lblk = orig_es.es_lblk;
786 es->es_len = orig_es.es_len;
787 goto out;
788 }
789 } else {
790 es->es_lblk = end + 1;
791 es->es_len = len2;
792 if (ext4_es_is_written(es) ||
793 ext4_es_is_unwritten(es)) {
794 block = orig_es.es_pblk + orig_es.es_len - len2;
795 ext4_es_store_pblock(es, block);
796 }
797 }
798 goto out;
799 }
800
801 if (len1 > 0) {
802 node = rb_next(&es->rb_node);
803 if (node)
804 es = rb_entry(node, struct extent_status, rb_node);
805 else
806 es = NULL;
807 }
808
809 while (es && ext4_es_end(es) <= end) {
810 node = rb_next(&es->rb_node);
811 rb_erase(&es->rb_node, &tree->root);
812 ext4_es_free_extent(inode, es);
813 if (!node) {
814 es = NULL;
815 break;
816 }
817 es = rb_entry(node, struct extent_status, rb_node);
818 }
819
820 if (es && es->es_lblk < end + 1) {
821 ext4_lblk_t orig_len = es->es_len;
822
823 len1 = ext4_es_end(es) - end;
824 es->es_lblk = end + 1;
825 es->es_len = len1;
826 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
827 block = es->es_pblk + orig_len - len1;
828 ext4_es_store_pblock(es, block);
829 }
830 }
831
832 out:
833 return err;
834 }
835
836 /*
837 * ext4_es_remove_extent() removes a space from a extent status tree.
838 *
839 * Return 0 on success, error code on failure.
840 */
841 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
842 ext4_lblk_t len)
843 {
844 ext4_lblk_t end;
845 int err = 0;
846
847 trace_ext4_es_remove_extent(inode, lblk, len);
848 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
849 lblk, len, inode->i_ino);
850
851 if (!len)
852 return err;
853
854 end = lblk + len - 1;
855 BUG_ON(end < lblk);
856
857 write_lock(&EXT4_I(inode)->i_es_lock);
858 err = __es_remove_extent(inode, lblk, end);
859 write_unlock(&EXT4_I(inode)->i_es_lock);
860 ext4_es_print_tree(inode);
861 return err;
862 }
863
864 int ext4_es_zeroout(struct inode *inode, struct ext4_extent *ex)
865 {
866 ext4_lblk_t ee_block;
867 ext4_fsblk_t ee_pblock;
868 unsigned int ee_len;
869
870 ee_block = le32_to_cpu(ex->ee_block);
871 ee_len = ext4_ext_get_actual_len(ex);
872 ee_pblock = ext4_ext_pblock(ex);
873
874 if (ee_len == 0)
875 return 0;
876
877 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
878 EXTENT_STATUS_WRITTEN);
879 }
880
881 static int ext4_es_shrink(struct shrinker *shrink, struct shrink_control *sc)
882 {
883 struct ext4_sb_info *sbi = container_of(shrink,
884 struct ext4_sb_info, s_es_shrinker);
885 struct ext4_inode_info *ei;
886 struct list_head *cur, *tmp, scanned;
887 int nr_to_scan = sc->nr_to_scan;
888 int ret, nr_shrunk = 0;
889
890 ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
891 trace_ext4_es_shrink_enter(sbi->s_sb, nr_to_scan, ret);
892
893 if (!nr_to_scan)
894 return ret;
895
896 INIT_LIST_HEAD(&scanned);
897
898 spin_lock(&sbi->s_es_lru_lock);
899 list_for_each_safe(cur, tmp, &sbi->s_es_lru) {
900 list_move_tail(cur, &scanned);
901
902 ei = list_entry(cur, struct ext4_inode_info, i_es_lru);
903
904 read_lock(&ei->i_es_lock);
905 if (ei->i_es_lru_nr == 0) {
906 read_unlock(&ei->i_es_lock);
907 continue;
908 }
909 read_unlock(&ei->i_es_lock);
910
911 write_lock(&ei->i_es_lock);
912 ret = __es_try_to_reclaim_extents(ei, nr_to_scan);
913 write_unlock(&ei->i_es_lock);
914
915 nr_shrunk += ret;
916 nr_to_scan -= ret;
917 if (nr_to_scan == 0)
918 break;
919 }
920 list_splice_tail(&scanned, &sbi->s_es_lru);
921 spin_unlock(&sbi->s_es_lru_lock);
922
923 ret = percpu_counter_read_positive(&sbi->s_extent_cache_cnt);
924 trace_ext4_es_shrink_exit(sbi->s_sb, nr_shrunk, ret);
925 return ret;
926 }
927
928 void ext4_es_register_shrinker(struct super_block *sb)
929 {
930 struct ext4_sb_info *sbi;
931
932 sbi = EXT4_SB(sb);
933 INIT_LIST_HEAD(&sbi->s_es_lru);
934 spin_lock_init(&sbi->s_es_lru_lock);
935 sbi->s_es_shrinker.shrink = ext4_es_shrink;
936 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
937 register_shrinker(&sbi->s_es_shrinker);
938 }
939
940 void ext4_es_unregister_shrinker(struct super_block *sb)
941 {
942 unregister_shrinker(&EXT4_SB(sb)->s_es_shrinker);
943 }
944
945 void ext4_es_lru_add(struct inode *inode)
946 {
947 struct ext4_inode_info *ei = EXT4_I(inode);
948 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
949
950 spin_lock(&sbi->s_es_lru_lock);
951 if (list_empty(&ei->i_es_lru))
952 list_add_tail(&ei->i_es_lru, &sbi->s_es_lru);
953 else
954 list_move_tail(&ei->i_es_lru, &sbi->s_es_lru);
955 spin_unlock(&sbi->s_es_lru_lock);
956 }
957
958 void ext4_es_lru_del(struct inode *inode)
959 {
960 struct ext4_inode_info *ei = EXT4_I(inode);
961 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
962
963 spin_lock(&sbi->s_es_lru_lock);
964 if (!list_empty(&ei->i_es_lru))
965 list_del_init(&ei->i_es_lru);
966 spin_unlock(&sbi->s_es_lru_lock);
967 }
968
969 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
970 int nr_to_scan)
971 {
972 struct inode *inode = &ei->vfs_inode;
973 struct ext4_es_tree *tree = &ei->i_es_tree;
974 struct rb_node *node;
975 struct extent_status *es;
976 int nr_shrunk = 0;
977
978 if (ei->i_es_lru_nr == 0)
979 return 0;
980
981 node = rb_first(&tree->root);
982 while (node != NULL) {
983 es = rb_entry(node, struct extent_status, rb_node);
984 node = rb_next(&es->rb_node);
985 /*
986 * We can't reclaim delayed extent from status tree because
987 * fiemap, bigallic, and seek_data/hole need to use it.
988 */
989 if (!ext4_es_is_delayed(es)) {
990 rb_erase(&es->rb_node, &tree->root);
991 ext4_es_free_extent(inode, es);
992 nr_shrunk++;
993 if (--nr_to_scan == 0)
994 break;
995 }
996 }
997 tree->cache_es = NULL;
998 return nr_shrunk;
999 }