Fix common misspellings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext3 / balloc.c
1 /*
2 * linux/fs/ext3/balloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
12 */
13
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/jbd.h>
19 #include <linux/ext3_fs.h>
20 #include <linux/ext3_jbd.h>
21 #include <linux/quotaops.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24
25 /*
26 * balloc.c contains the blocks allocation and deallocation routines
27 */
28
29 /*
30 * The free blocks are managed by bitmaps. A file system contains several
31 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
32 * block for inodes, N blocks for the inode table and data blocks.
33 *
34 * The file system contains group descriptors which are located after the
35 * super block. Each descriptor contains the number of the bitmap block and
36 * the free blocks count in the block. The descriptors are loaded in memory
37 * when a file system is mounted (see ext3_fill_super).
38 */
39
40
41 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
42
43 /*
44 * Calculate the block group number and offset, given a block number
45 */
46 static void ext3_get_group_no_and_offset(struct super_block *sb,
47 ext3_fsblk_t blocknr, unsigned long *blockgrpp, ext3_grpblk_t *offsetp)
48 {
49 struct ext3_super_block *es = EXT3_SB(sb)->s_es;
50
51 blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
52 if (offsetp)
53 *offsetp = blocknr % EXT3_BLOCKS_PER_GROUP(sb);
54 if (blockgrpp)
55 *blockgrpp = blocknr / EXT3_BLOCKS_PER_GROUP(sb);
56 }
57
58 /**
59 * ext3_get_group_desc() -- load group descriptor from disk
60 * @sb: super block
61 * @block_group: given block group
62 * @bh: pointer to the buffer head to store the block
63 * group descriptor
64 */
65 struct ext3_group_desc * ext3_get_group_desc(struct super_block * sb,
66 unsigned int block_group,
67 struct buffer_head ** bh)
68 {
69 unsigned long group_desc;
70 unsigned long offset;
71 struct ext3_group_desc * desc;
72 struct ext3_sb_info *sbi = EXT3_SB(sb);
73
74 if (block_group >= sbi->s_groups_count) {
75 ext3_error (sb, "ext3_get_group_desc",
76 "block_group >= groups_count - "
77 "block_group = %d, groups_count = %lu",
78 block_group, sbi->s_groups_count);
79
80 return NULL;
81 }
82 smp_rmb();
83
84 group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
85 offset = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
86 if (!sbi->s_group_desc[group_desc]) {
87 ext3_error (sb, "ext3_get_group_desc",
88 "Group descriptor not loaded - "
89 "block_group = %d, group_desc = %lu, desc = %lu",
90 block_group, group_desc, offset);
91 return NULL;
92 }
93
94 desc = (struct ext3_group_desc *) sbi->s_group_desc[group_desc]->b_data;
95 if (bh)
96 *bh = sbi->s_group_desc[group_desc];
97 return desc + offset;
98 }
99
100 static int ext3_valid_block_bitmap(struct super_block *sb,
101 struct ext3_group_desc *desc,
102 unsigned int block_group,
103 struct buffer_head *bh)
104 {
105 ext3_grpblk_t offset;
106 ext3_grpblk_t next_zero_bit;
107 ext3_fsblk_t bitmap_blk;
108 ext3_fsblk_t group_first_block;
109
110 group_first_block = ext3_group_first_block_no(sb, block_group);
111
112 /* check whether block bitmap block number is set */
113 bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
114 offset = bitmap_blk - group_first_block;
115 if (!ext3_test_bit(offset, bh->b_data))
116 /* bad block bitmap */
117 goto err_out;
118
119 /* check whether the inode bitmap block number is set */
120 bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap);
121 offset = bitmap_blk - group_first_block;
122 if (!ext3_test_bit(offset, bh->b_data))
123 /* bad block bitmap */
124 goto err_out;
125
126 /* check whether the inode table block number is set */
127 bitmap_blk = le32_to_cpu(desc->bg_inode_table);
128 offset = bitmap_blk - group_first_block;
129 next_zero_bit = ext3_find_next_zero_bit(bh->b_data,
130 offset + EXT3_SB(sb)->s_itb_per_group,
131 offset);
132 if (next_zero_bit >= offset + EXT3_SB(sb)->s_itb_per_group)
133 /* good bitmap for inode tables */
134 return 1;
135
136 err_out:
137 ext3_error(sb, __func__,
138 "Invalid block bitmap - "
139 "block_group = %d, block = %lu",
140 block_group, bitmap_blk);
141 return 0;
142 }
143
144 /**
145 * read_block_bitmap()
146 * @sb: super block
147 * @block_group: given block group
148 *
149 * Read the bitmap for a given block_group,and validate the
150 * bits for block/inode/inode tables are set in the bitmaps
151 *
152 * Return buffer_head on success or NULL in case of failure.
153 */
154 static struct buffer_head *
155 read_block_bitmap(struct super_block *sb, unsigned int block_group)
156 {
157 struct ext3_group_desc * desc;
158 struct buffer_head * bh = NULL;
159 ext3_fsblk_t bitmap_blk;
160
161 desc = ext3_get_group_desc(sb, block_group, NULL);
162 if (!desc)
163 return NULL;
164 bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
165 bh = sb_getblk(sb, bitmap_blk);
166 if (unlikely(!bh)) {
167 ext3_error(sb, __func__,
168 "Cannot read block bitmap - "
169 "block_group = %d, block_bitmap = %u",
170 block_group, le32_to_cpu(desc->bg_block_bitmap));
171 return NULL;
172 }
173 if (likely(bh_uptodate_or_lock(bh)))
174 return bh;
175
176 if (bh_submit_read(bh) < 0) {
177 brelse(bh);
178 ext3_error(sb, __func__,
179 "Cannot read block bitmap - "
180 "block_group = %d, block_bitmap = %u",
181 block_group, le32_to_cpu(desc->bg_block_bitmap));
182 return NULL;
183 }
184 ext3_valid_block_bitmap(sb, desc, block_group, bh);
185 /*
186 * file system mounted not to panic on error, continue with corrupt
187 * bitmap
188 */
189 return bh;
190 }
191 /*
192 * The reservation window structure operations
193 * --------------------------------------------
194 * Operations include:
195 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
196 *
197 * We use a red-black tree to represent per-filesystem reservation
198 * windows.
199 *
200 */
201
202 /**
203 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
204 * @rb_root: root of per-filesystem reservation rb tree
205 * @verbose: verbose mode
206 * @fn: function which wishes to dump the reservation map
207 *
208 * If verbose is turned on, it will print the whole block reservation
209 * windows(start, end). Otherwise, it will only print out the "bad" windows,
210 * those windows that overlap with their immediate neighbors.
211 */
212 #if 1
213 static void __rsv_window_dump(struct rb_root *root, int verbose,
214 const char *fn)
215 {
216 struct rb_node *n;
217 struct ext3_reserve_window_node *rsv, *prev;
218 int bad;
219
220 restart:
221 n = rb_first(root);
222 bad = 0;
223 prev = NULL;
224
225 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
226 while (n) {
227 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
228 if (verbose)
229 printk("reservation window 0x%p "
230 "start: %lu, end: %lu\n",
231 rsv, rsv->rsv_start, rsv->rsv_end);
232 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
233 printk("Bad reservation %p (start >= end)\n",
234 rsv);
235 bad = 1;
236 }
237 if (prev && prev->rsv_end >= rsv->rsv_start) {
238 printk("Bad reservation %p (prev->end >= start)\n",
239 rsv);
240 bad = 1;
241 }
242 if (bad) {
243 if (!verbose) {
244 printk("Restarting reservation walk in verbose mode\n");
245 verbose = 1;
246 goto restart;
247 }
248 }
249 n = rb_next(n);
250 prev = rsv;
251 }
252 printk("Window map complete.\n");
253 BUG_ON(bad);
254 }
255 #define rsv_window_dump(root, verbose) \
256 __rsv_window_dump((root), (verbose), __func__)
257 #else
258 #define rsv_window_dump(root, verbose) do {} while (0)
259 #endif
260
261 /**
262 * goal_in_my_reservation()
263 * @rsv: inode's reservation window
264 * @grp_goal: given goal block relative to the allocation block group
265 * @group: the current allocation block group
266 * @sb: filesystem super block
267 *
268 * Test if the given goal block (group relative) is within the file's
269 * own block reservation window range.
270 *
271 * If the reservation window is outside the goal allocation group, return 0;
272 * grp_goal (given goal block) could be -1, which means no specific
273 * goal block. In this case, always return 1.
274 * If the goal block is within the reservation window, return 1;
275 * otherwise, return 0;
276 */
277 static int
278 goal_in_my_reservation(struct ext3_reserve_window *rsv, ext3_grpblk_t grp_goal,
279 unsigned int group, struct super_block * sb)
280 {
281 ext3_fsblk_t group_first_block, group_last_block;
282
283 group_first_block = ext3_group_first_block_no(sb, group);
284 group_last_block = group_first_block + (EXT3_BLOCKS_PER_GROUP(sb) - 1);
285
286 if ((rsv->_rsv_start > group_last_block) ||
287 (rsv->_rsv_end < group_first_block))
288 return 0;
289 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
290 || (grp_goal + group_first_block > rsv->_rsv_end)))
291 return 0;
292 return 1;
293 }
294
295 /**
296 * search_reserve_window()
297 * @rb_root: root of reservation tree
298 * @goal: target allocation block
299 *
300 * Find the reserved window which includes the goal, or the previous one
301 * if the goal is not in any window.
302 * Returns NULL if there are no windows or if all windows start after the goal.
303 */
304 static struct ext3_reserve_window_node *
305 search_reserve_window(struct rb_root *root, ext3_fsblk_t goal)
306 {
307 struct rb_node *n = root->rb_node;
308 struct ext3_reserve_window_node *rsv;
309
310 if (!n)
311 return NULL;
312
313 do {
314 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
315
316 if (goal < rsv->rsv_start)
317 n = n->rb_left;
318 else if (goal > rsv->rsv_end)
319 n = n->rb_right;
320 else
321 return rsv;
322 } while (n);
323 /*
324 * We've fallen off the end of the tree: the goal wasn't inside
325 * any particular node. OK, the previous node must be to one
326 * side of the interval containing the goal. If it's the RHS,
327 * we need to back up one.
328 */
329 if (rsv->rsv_start > goal) {
330 n = rb_prev(&rsv->rsv_node);
331 rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node);
332 }
333 return rsv;
334 }
335
336 /**
337 * ext3_rsv_window_add() -- Insert a window to the block reservation rb tree.
338 * @sb: super block
339 * @rsv: reservation window to add
340 *
341 * Must be called with rsv_lock hold.
342 */
343 void ext3_rsv_window_add(struct super_block *sb,
344 struct ext3_reserve_window_node *rsv)
345 {
346 struct rb_root *root = &EXT3_SB(sb)->s_rsv_window_root;
347 struct rb_node *node = &rsv->rsv_node;
348 ext3_fsblk_t start = rsv->rsv_start;
349
350 struct rb_node ** p = &root->rb_node;
351 struct rb_node * parent = NULL;
352 struct ext3_reserve_window_node *this;
353
354 while (*p)
355 {
356 parent = *p;
357 this = rb_entry(parent, struct ext3_reserve_window_node, rsv_node);
358
359 if (start < this->rsv_start)
360 p = &(*p)->rb_left;
361 else if (start > this->rsv_end)
362 p = &(*p)->rb_right;
363 else {
364 rsv_window_dump(root, 1);
365 BUG();
366 }
367 }
368
369 rb_link_node(node, parent, p);
370 rb_insert_color(node, root);
371 }
372
373 /**
374 * ext3_rsv_window_remove() -- unlink a window from the reservation rb tree
375 * @sb: super block
376 * @rsv: reservation window to remove
377 *
378 * Mark the block reservation window as not allocated, and unlink it
379 * from the filesystem reservation window rb tree. Must be called with
380 * rsv_lock hold.
381 */
382 static void rsv_window_remove(struct super_block *sb,
383 struct ext3_reserve_window_node *rsv)
384 {
385 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
386 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
387 rsv->rsv_alloc_hit = 0;
388 rb_erase(&rsv->rsv_node, &EXT3_SB(sb)->s_rsv_window_root);
389 }
390
391 /*
392 * rsv_is_empty() -- Check if the reservation window is allocated.
393 * @rsv: given reservation window to check
394 *
395 * returns 1 if the end block is EXT3_RESERVE_WINDOW_NOT_ALLOCATED.
396 */
397 static inline int rsv_is_empty(struct ext3_reserve_window *rsv)
398 {
399 /* a valid reservation end block could not be 0 */
400 return rsv->_rsv_end == EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
401 }
402
403 /**
404 * ext3_init_block_alloc_info()
405 * @inode: file inode structure
406 *
407 * Allocate and initialize the reservation window structure, and
408 * link the window to the ext3 inode structure at last
409 *
410 * The reservation window structure is only dynamically allocated
411 * and linked to ext3 inode the first time the open file
412 * needs a new block. So, before every ext3_new_block(s) call, for
413 * regular files, we should check whether the reservation window
414 * structure exists or not. In the latter case, this function is called.
415 * Fail to do so will result in block reservation being turned off for that
416 * open file.
417 *
418 * This function is called from ext3_get_blocks_handle(), also called
419 * when setting the reservation window size through ioctl before the file
420 * is open for write (needs block allocation).
421 *
422 * Needs truncate_mutex protection prior to call this function.
423 */
424 void ext3_init_block_alloc_info(struct inode *inode)
425 {
426 struct ext3_inode_info *ei = EXT3_I(inode);
427 struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
428 struct super_block *sb = inode->i_sb;
429
430 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
431 if (block_i) {
432 struct ext3_reserve_window_node *rsv = &block_i->rsv_window_node;
433
434 rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
435 rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED;
436
437 /*
438 * if filesystem is mounted with NORESERVATION, the goal
439 * reservation window size is set to zero to indicate
440 * block reservation is off
441 */
442 if (!test_opt(sb, RESERVATION))
443 rsv->rsv_goal_size = 0;
444 else
445 rsv->rsv_goal_size = EXT3_DEFAULT_RESERVE_BLOCKS;
446 rsv->rsv_alloc_hit = 0;
447 block_i->last_alloc_logical_block = 0;
448 block_i->last_alloc_physical_block = 0;
449 }
450 ei->i_block_alloc_info = block_i;
451 }
452
453 /**
454 * ext3_discard_reservation()
455 * @inode: inode
456 *
457 * Discard(free) block reservation window on last file close, or truncate
458 * or at last iput().
459 *
460 * It is being called in three cases:
461 * ext3_release_file(): last writer close the file
462 * ext3_clear_inode(): last iput(), when nobody link to this file.
463 * ext3_truncate(): when the block indirect map is about to change.
464 *
465 */
466 void ext3_discard_reservation(struct inode *inode)
467 {
468 struct ext3_inode_info *ei = EXT3_I(inode);
469 struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info;
470 struct ext3_reserve_window_node *rsv;
471 spinlock_t *rsv_lock = &EXT3_SB(inode->i_sb)->s_rsv_window_lock;
472
473 if (!block_i)
474 return;
475
476 rsv = &block_i->rsv_window_node;
477 if (!rsv_is_empty(&rsv->rsv_window)) {
478 spin_lock(rsv_lock);
479 if (!rsv_is_empty(&rsv->rsv_window))
480 rsv_window_remove(inode->i_sb, rsv);
481 spin_unlock(rsv_lock);
482 }
483 }
484
485 /**
486 * ext3_free_blocks_sb() -- Free given blocks and update quota
487 * @handle: handle to this transaction
488 * @sb: super block
489 * @block: start physcial block to free
490 * @count: number of blocks to free
491 * @pdquot_freed_blocks: pointer to quota
492 */
493 void ext3_free_blocks_sb(handle_t *handle, struct super_block *sb,
494 ext3_fsblk_t block, unsigned long count,
495 unsigned long *pdquot_freed_blocks)
496 {
497 struct buffer_head *bitmap_bh = NULL;
498 struct buffer_head *gd_bh;
499 unsigned long block_group;
500 ext3_grpblk_t bit;
501 unsigned long i;
502 unsigned long overflow;
503 struct ext3_group_desc * desc;
504 struct ext3_super_block * es;
505 struct ext3_sb_info *sbi;
506 int err = 0, ret;
507 ext3_grpblk_t group_freed;
508
509 *pdquot_freed_blocks = 0;
510 sbi = EXT3_SB(sb);
511 es = sbi->s_es;
512 if (block < le32_to_cpu(es->s_first_data_block) ||
513 block + count < block ||
514 block + count > le32_to_cpu(es->s_blocks_count)) {
515 ext3_error (sb, "ext3_free_blocks",
516 "Freeing blocks not in datazone - "
517 "block = "E3FSBLK", count = %lu", block, count);
518 goto error_return;
519 }
520
521 ext3_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
522
523 do_more:
524 overflow = 0;
525 block_group = (block - le32_to_cpu(es->s_first_data_block)) /
526 EXT3_BLOCKS_PER_GROUP(sb);
527 bit = (block - le32_to_cpu(es->s_first_data_block)) %
528 EXT3_BLOCKS_PER_GROUP(sb);
529 /*
530 * Check to see if we are freeing blocks across a group
531 * boundary.
532 */
533 if (bit + count > EXT3_BLOCKS_PER_GROUP(sb)) {
534 overflow = bit + count - EXT3_BLOCKS_PER_GROUP(sb);
535 count -= overflow;
536 }
537 brelse(bitmap_bh);
538 bitmap_bh = read_block_bitmap(sb, block_group);
539 if (!bitmap_bh)
540 goto error_return;
541 desc = ext3_get_group_desc (sb, block_group, &gd_bh);
542 if (!desc)
543 goto error_return;
544
545 if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
546 in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
547 in_range (block, le32_to_cpu(desc->bg_inode_table),
548 sbi->s_itb_per_group) ||
549 in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
550 sbi->s_itb_per_group)) {
551 ext3_error (sb, "ext3_free_blocks",
552 "Freeing blocks in system zones - "
553 "Block = "E3FSBLK", count = %lu",
554 block, count);
555 goto error_return;
556 }
557
558 /*
559 * We are about to start releasing blocks in the bitmap,
560 * so we need undo access.
561 */
562 /* @@@ check errors */
563 BUFFER_TRACE(bitmap_bh, "getting undo access");
564 err = ext3_journal_get_undo_access(handle, bitmap_bh);
565 if (err)
566 goto error_return;
567
568 /*
569 * We are about to modify some metadata. Call the journal APIs
570 * to unshare ->b_data if a currently-committing transaction is
571 * using it
572 */
573 BUFFER_TRACE(gd_bh, "get_write_access");
574 err = ext3_journal_get_write_access(handle, gd_bh);
575 if (err)
576 goto error_return;
577
578 jbd_lock_bh_state(bitmap_bh);
579
580 for (i = 0, group_freed = 0; i < count; i++) {
581 /*
582 * An HJ special. This is expensive...
583 */
584 #ifdef CONFIG_JBD_DEBUG
585 jbd_unlock_bh_state(bitmap_bh);
586 {
587 struct buffer_head *debug_bh;
588 debug_bh = sb_find_get_block(sb, block + i);
589 if (debug_bh) {
590 BUFFER_TRACE(debug_bh, "Deleted!");
591 if (!bh2jh(bitmap_bh)->b_committed_data)
592 BUFFER_TRACE(debug_bh,
593 "No committed data in bitmap");
594 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
595 __brelse(debug_bh);
596 }
597 }
598 jbd_lock_bh_state(bitmap_bh);
599 #endif
600 if (need_resched()) {
601 jbd_unlock_bh_state(bitmap_bh);
602 cond_resched();
603 jbd_lock_bh_state(bitmap_bh);
604 }
605 /* @@@ This prevents newly-allocated data from being
606 * freed and then reallocated within the same
607 * transaction.
608 *
609 * Ideally we would want to allow that to happen, but to
610 * do so requires making journal_forget() capable of
611 * revoking the queued write of a data block, which
612 * implies blocking on the journal lock. *forget()
613 * cannot block due to truncate races.
614 *
615 * Eventually we can fix this by making journal_forget()
616 * return a status indicating whether or not it was able
617 * to revoke the buffer. On successful revoke, it is
618 * safe not to set the allocation bit in the committed
619 * bitmap, because we know that there is no outstanding
620 * activity on the buffer any more and so it is safe to
621 * reallocate it.
622 */
623 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
624 J_ASSERT_BH(bitmap_bh,
625 bh2jh(bitmap_bh)->b_committed_data != NULL);
626 ext3_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
627 bh2jh(bitmap_bh)->b_committed_data);
628
629 /*
630 * We clear the bit in the bitmap after setting the committed
631 * data bit, because this is the reverse order to that which
632 * the allocator uses.
633 */
634 BUFFER_TRACE(bitmap_bh, "clear bit");
635 if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
636 bit + i, bitmap_bh->b_data)) {
637 jbd_unlock_bh_state(bitmap_bh);
638 ext3_error(sb, __func__,
639 "bit already cleared for block "E3FSBLK,
640 block + i);
641 jbd_lock_bh_state(bitmap_bh);
642 BUFFER_TRACE(bitmap_bh, "bit already cleared");
643 } else {
644 group_freed++;
645 }
646 }
647 jbd_unlock_bh_state(bitmap_bh);
648
649 spin_lock(sb_bgl_lock(sbi, block_group));
650 le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
651 spin_unlock(sb_bgl_lock(sbi, block_group));
652 percpu_counter_add(&sbi->s_freeblocks_counter, count);
653
654 /* We dirtied the bitmap block */
655 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
656 err = ext3_journal_dirty_metadata(handle, bitmap_bh);
657
658 /* And the group descriptor block */
659 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
660 ret = ext3_journal_dirty_metadata(handle, gd_bh);
661 if (!err) err = ret;
662 *pdquot_freed_blocks += group_freed;
663
664 if (overflow && !err) {
665 block += count;
666 count = overflow;
667 goto do_more;
668 }
669
670 error_return:
671 brelse(bitmap_bh);
672 ext3_std_error(sb, err);
673 return;
674 }
675
676 /**
677 * ext3_free_blocks() -- Free given blocks and update quota
678 * @handle: handle for this transaction
679 * @inode: inode
680 * @block: start physical block to free
681 * @count: number of blocks to count
682 */
683 void ext3_free_blocks(handle_t *handle, struct inode *inode,
684 ext3_fsblk_t block, unsigned long count)
685 {
686 struct super_block * sb;
687 unsigned long dquot_freed_blocks;
688
689 sb = inode->i_sb;
690 if (!sb) {
691 printk ("ext3_free_blocks: nonexistent device");
692 return;
693 }
694 ext3_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
695 if (dquot_freed_blocks)
696 dquot_free_block(inode, dquot_freed_blocks);
697 return;
698 }
699
700 /**
701 * ext3_test_allocatable()
702 * @nr: given allocation block group
703 * @bh: bufferhead contains the bitmap of the given block group
704 *
705 * For ext3 allocations, we must not reuse any blocks which are
706 * allocated in the bitmap buffer's "last committed data" copy. This
707 * prevents deletes from freeing up the page for reuse until we have
708 * committed the delete transaction.
709 *
710 * If we didn't do this, then deleting something and reallocating it as
711 * data would allow the old block to be overwritten before the
712 * transaction committed (because we force data to disk before commit).
713 * This would lead to corruption if we crashed between overwriting the
714 * data and committing the delete.
715 *
716 * @@@ We may want to make this allocation behaviour conditional on
717 * data-writes at some point, and disable it for metadata allocations or
718 * sync-data inodes.
719 */
720 static int ext3_test_allocatable(ext3_grpblk_t nr, struct buffer_head *bh)
721 {
722 int ret;
723 struct journal_head *jh = bh2jh(bh);
724
725 if (ext3_test_bit(nr, bh->b_data))
726 return 0;
727
728 jbd_lock_bh_state(bh);
729 if (!jh->b_committed_data)
730 ret = 1;
731 else
732 ret = !ext3_test_bit(nr, jh->b_committed_data);
733 jbd_unlock_bh_state(bh);
734 return ret;
735 }
736
737 /**
738 * bitmap_search_next_usable_block()
739 * @start: the starting block (group relative) of the search
740 * @bh: bufferhead contains the block group bitmap
741 * @maxblocks: the ending block (group relative) of the reservation
742 *
743 * The bitmap search --- search forward alternately through the actual
744 * bitmap on disk and the last-committed copy in journal, until we find a
745 * bit free in both bitmaps.
746 */
747 static ext3_grpblk_t
748 bitmap_search_next_usable_block(ext3_grpblk_t start, struct buffer_head *bh,
749 ext3_grpblk_t maxblocks)
750 {
751 ext3_grpblk_t next;
752 struct journal_head *jh = bh2jh(bh);
753
754 while (start < maxblocks) {
755 next = ext3_find_next_zero_bit(bh->b_data, maxblocks, start);
756 if (next >= maxblocks)
757 return -1;
758 if (ext3_test_allocatable(next, bh))
759 return next;
760 jbd_lock_bh_state(bh);
761 if (jh->b_committed_data)
762 start = ext3_find_next_zero_bit(jh->b_committed_data,
763 maxblocks, next);
764 jbd_unlock_bh_state(bh);
765 }
766 return -1;
767 }
768
769 /**
770 * find_next_usable_block()
771 * @start: the starting block (group relative) to find next
772 * allocatable block in bitmap.
773 * @bh: bufferhead contains the block group bitmap
774 * @maxblocks: the ending block (group relative) for the search
775 *
776 * Find an allocatable block in a bitmap. We honor both the bitmap and
777 * its last-committed copy (if that exists), and perform the "most
778 * appropriate allocation" algorithm of looking for a free block near
779 * the initial goal; then for a free byte somewhere in the bitmap; then
780 * for any free bit in the bitmap.
781 */
782 static ext3_grpblk_t
783 find_next_usable_block(ext3_grpblk_t start, struct buffer_head *bh,
784 ext3_grpblk_t maxblocks)
785 {
786 ext3_grpblk_t here, next;
787 char *p, *r;
788
789 if (start > 0) {
790 /*
791 * The goal was occupied; search forward for a free
792 * block within the next XX blocks.
793 *
794 * end_goal is more or less random, but it has to be
795 * less than EXT3_BLOCKS_PER_GROUP. Aligning up to the
796 * next 64-bit boundary is simple..
797 */
798 ext3_grpblk_t end_goal = (start + 63) & ~63;
799 if (end_goal > maxblocks)
800 end_goal = maxblocks;
801 here = ext3_find_next_zero_bit(bh->b_data, end_goal, start);
802 if (here < end_goal && ext3_test_allocatable(here, bh))
803 return here;
804 ext3_debug("Bit not found near goal\n");
805 }
806
807 here = start;
808 if (here < 0)
809 here = 0;
810
811 p = bh->b_data + (here >> 3);
812 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
813 next = (r - bh->b_data) << 3;
814
815 if (next < maxblocks && next >= start && ext3_test_allocatable(next, bh))
816 return next;
817
818 /*
819 * The bitmap search --- search forward alternately through the actual
820 * bitmap and the last-committed copy until we find a bit free in
821 * both
822 */
823 here = bitmap_search_next_usable_block(here, bh, maxblocks);
824 return here;
825 }
826
827 /**
828 * claim_block()
829 * @lock: the spin lock for this block group
830 * @block: the free block (group relative) to allocate
831 * @bh: the buffer_head contains the block group bitmap
832 *
833 * We think we can allocate this block in this bitmap. Try to set the bit.
834 * If that succeeds then check that nobody has allocated and then freed the
835 * block since we saw that is was not marked in b_committed_data. If it _was_
836 * allocated and freed then clear the bit in the bitmap again and return
837 * zero (failure).
838 */
839 static inline int
840 claim_block(spinlock_t *lock, ext3_grpblk_t block, struct buffer_head *bh)
841 {
842 struct journal_head *jh = bh2jh(bh);
843 int ret;
844
845 if (ext3_set_bit_atomic(lock, block, bh->b_data))
846 return 0;
847 jbd_lock_bh_state(bh);
848 if (jh->b_committed_data && ext3_test_bit(block,jh->b_committed_data)) {
849 ext3_clear_bit_atomic(lock, block, bh->b_data);
850 ret = 0;
851 } else {
852 ret = 1;
853 }
854 jbd_unlock_bh_state(bh);
855 return ret;
856 }
857
858 /**
859 * ext3_try_to_allocate()
860 * @sb: superblock
861 * @handle: handle to this transaction
862 * @group: given allocation block group
863 * @bitmap_bh: bufferhead holds the block bitmap
864 * @grp_goal: given target block within the group
865 * @count: target number of blocks to allocate
866 * @my_rsv: reservation window
867 *
868 * Attempt to allocate blocks within a give range. Set the range of allocation
869 * first, then find the first free bit(s) from the bitmap (within the range),
870 * and at last, allocate the blocks by claiming the found free bit as allocated.
871 *
872 * To set the range of this allocation:
873 * if there is a reservation window, only try to allocate block(s) from the
874 * file's own reservation window;
875 * Otherwise, the allocation range starts from the give goal block, ends at
876 * the block group's last block.
877 *
878 * If we failed to allocate the desired block then we may end up crossing to a
879 * new bitmap. In that case we must release write access to the old one via
880 * ext3_journal_release_buffer(), else we'll run out of credits.
881 */
882 static ext3_grpblk_t
883 ext3_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
884 struct buffer_head *bitmap_bh, ext3_grpblk_t grp_goal,
885 unsigned long *count, struct ext3_reserve_window *my_rsv)
886 {
887 ext3_fsblk_t group_first_block;
888 ext3_grpblk_t start, end;
889 unsigned long num = 0;
890
891 /* we do allocation within the reservation window if we have a window */
892 if (my_rsv) {
893 group_first_block = ext3_group_first_block_no(sb, group);
894 if (my_rsv->_rsv_start >= group_first_block)
895 start = my_rsv->_rsv_start - group_first_block;
896 else
897 /* reservation window cross group boundary */
898 start = 0;
899 end = my_rsv->_rsv_end - group_first_block + 1;
900 if (end > EXT3_BLOCKS_PER_GROUP(sb))
901 /* reservation window crosses group boundary */
902 end = EXT3_BLOCKS_PER_GROUP(sb);
903 if ((start <= grp_goal) && (grp_goal < end))
904 start = grp_goal;
905 else
906 grp_goal = -1;
907 } else {
908 if (grp_goal > 0)
909 start = grp_goal;
910 else
911 start = 0;
912 end = EXT3_BLOCKS_PER_GROUP(sb);
913 }
914
915 BUG_ON(start > EXT3_BLOCKS_PER_GROUP(sb));
916
917 repeat:
918 if (grp_goal < 0 || !ext3_test_allocatable(grp_goal, bitmap_bh)) {
919 grp_goal = find_next_usable_block(start, bitmap_bh, end);
920 if (grp_goal < 0)
921 goto fail_access;
922 if (!my_rsv) {
923 int i;
924
925 for (i = 0; i < 7 && grp_goal > start &&
926 ext3_test_allocatable(grp_goal - 1,
927 bitmap_bh);
928 i++, grp_goal--)
929 ;
930 }
931 }
932 start = grp_goal;
933
934 if (!claim_block(sb_bgl_lock(EXT3_SB(sb), group),
935 grp_goal, bitmap_bh)) {
936 /*
937 * The block was allocated by another thread, or it was
938 * allocated and then freed by another thread
939 */
940 start++;
941 grp_goal++;
942 if (start >= end)
943 goto fail_access;
944 goto repeat;
945 }
946 num++;
947 grp_goal++;
948 while (num < *count && grp_goal < end
949 && ext3_test_allocatable(grp_goal, bitmap_bh)
950 && claim_block(sb_bgl_lock(EXT3_SB(sb), group),
951 grp_goal, bitmap_bh)) {
952 num++;
953 grp_goal++;
954 }
955 *count = num;
956 return grp_goal - num;
957 fail_access:
958 *count = num;
959 return -1;
960 }
961
962 /**
963 * find_next_reservable_window():
964 * find a reservable space within the given range.
965 * It does not allocate the reservation window for now:
966 * alloc_new_reservation() will do the work later.
967 *
968 * @search_head: the head of the searching list;
969 * This is not necessarily the list head of the whole filesystem
970 *
971 * We have both head and start_block to assist the search
972 * for the reservable space. The list starts from head,
973 * but we will shift to the place where start_block is,
974 * then start from there, when looking for a reservable space.
975 *
976 * @my_rsv: the reservation window
977 *
978 * @sb: the super block
979 *
980 * @start_block: the first block we consider to start
981 * the real search from
982 *
983 * @last_block:
984 * the maximum block number that our goal reservable space
985 * could start from. This is normally the last block in this
986 * group. The search will end when we found the start of next
987 * possible reservable space is out of this boundary.
988 * This could handle the cross boundary reservation window
989 * request.
990 *
991 * basically we search from the given range, rather than the whole
992 * reservation double linked list, (start_block, last_block)
993 * to find a free region that is of my size and has not
994 * been reserved.
995 *
996 */
997 static int find_next_reservable_window(
998 struct ext3_reserve_window_node *search_head,
999 struct ext3_reserve_window_node *my_rsv,
1000 struct super_block * sb,
1001 ext3_fsblk_t start_block,
1002 ext3_fsblk_t last_block)
1003 {
1004 struct rb_node *next;
1005 struct ext3_reserve_window_node *rsv, *prev;
1006 ext3_fsblk_t cur;
1007 int size = my_rsv->rsv_goal_size;
1008
1009 /* TODO: make the start of the reservation window byte-aligned */
1010 /* cur = *start_block & ~7;*/
1011 cur = start_block;
1012 rsv = search_head;
1013 if (!rsv)
1014 return -1;
1015
1016 while (1) {
1017 if (cur <= rsv->rsv_end)
1018 cur = rsv->rsv_end + 1;
1019
1020 /* TODO?
1021 * in the case we could not find a reservable space
1022 * that is what is expected, during the re-search, we could
1023 * remember what's the largest reservable space we could have
1024 * and return that one.
1025 *
1026 * For now it will fail if we could not find the reservable
1027 * space with expected-size (or more)...
1028 */
1029 if (cur > last_block)
1030 return -1; /* fail */
1031
1032 prev = rsv;
1033 next = rb_next(&rsv->rsv_node);
1034 rsv = rb_entry(next,struct ext3_reserve_window_node,rsv_node);
1035
1036 /*
1037 * Reached the last reservation, we can just append to the
1038 * previous one.
1039 */
1040 if (!next)
1041 break;
1042
1043 if (cur + size <= rsv->rsv_start) {
1044 /*
1045 * Found a reserveable space big enough. We could
1046 * have a reservation across the group boundary here
1047 */
1048 break;
1049 }
1050 }
1051 /*
1052 * we come here either :
1053 * when we reach the end of the whole list,
1054 * and there is empty reservable space after last entry in the list.
1055 * append it to the end of the list.
1056 *
1057 * or we found one reservable space in the middle of the list,
1058 * return the reservation window that we could append to.
1059 * succeed.
1060 */
1061
1062 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1063 rsv_window_remove(sb, my_rsv);
1064
1065 /*
1066 * Let's book the whole available window for now. We will check the
1067 * disk bitmap later and then, if there are free blocks then we adjust
1068 * the window size if it's larger than requested.
1069 * Otherwise, we will remove this node from the tree next time
1070 * call find_next_reservable_window.
1071 */
1072 my_rsv->rsv_start = cur;
1073 my_rsv->rsv_end = cur + size - 1;
1074 my_rsv->rsv_alloc_hit = 0;
1075
1076 if (prev != my_rsv)
1077 ext3_rsv_window_add(sb, my_rsv);
1078
1079 return 0;
1080 }
1081
1082 /**
1083 * alloc_new_reservation()--allocate a new reservation window
1084 *
1085 * To make a new reservation, we search part of the filesystem
1086 * reservation list (the list that inside the group). We try to
1087 * allocate a new reservation window near the allocation goal,
1088 * or the beginning of the group, if there is no goal.
1089 *
1090 * We first find a reservable space after the goal, then from
1091 * there, we check the bitmap for the first free block after
1092 * it. If there is no free block until the end of group, then the
1093 * whole group is full, we failed. Otherwise, check if the free
1094 * block is inside the expected reservable space, if so, we
1095 * succeed.
1096 * If the first free block is outside the reservable space, then
1097 * start from the first free block, we search for next available
1098 * space, and go on.
1099 *
1100 * on succeed, a new reservation will be found and inserted into the list
1101 * It contains at least one free block, and it does not overlap with other
1102 * reservation windows.
1103 *
1104 * failed: we failed to find a reservation window in this group
1105 *
1106 * @my_rsv: the reservation window
1107 *
1108 * @grp_goal: The goal (group-relative). It is where the search for a
1109 * free reservable space should start from.
1110 * if we have a grp_goal(grp_goal >0 ), then start from there,
1111 * no grp_goal(grp_goal = -1), we start from the first block
1112 * of the group.
1113 *
1114 * @sb: the super block
1115 * @group: the group we are trying to allocate in
1116 * @bitmap_bh: the block group block bitmap
1117 *
1118 */
1119 static int alloc_new_reservation(struct ext3_reserve_window_node *my_rsv,
1120 ext3_grpblk_t grp_goal, struct super_block *sb,
1121 unsigned int group, struct buffer_head *bitmap_bh)
1122 {
1123 struct ext3_reserve_window_node *search_head;
1124 ext3_fsblk_t group_first_block, group_end_block, start_block;
1125 ext3_grpblk_t first_free_block;
1126 struct rb_root *fs_rsv_root = &EXT3_SB(sb)->s_rsv_window_root;
1127 unsigned long size;
1128 int ret;
1129 spinlock_t *rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
1130
1131 group_first_block = ext3_group_first_block_no(sb, group);
1132 group_end_block = group_first_block + (EXT3_BLOCKS_PER_GROUP(sb) - 1);
1133
1134 if (grp_goal < 0)
1135 start_block = group_first_block;
1136 else
1137 start_block = grp_goal + group_first_block;
1138
1139 size = my_rsv->rsv_goal_size;
1140
1141 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1142 /*
1143 * if the old reservation is cross group boundary
1144 * and if the goal is inside the old reservation window,
1145 * we will come here when we just failed to allocate from
1146 * the first part of the window. We still have another part
1147 * that belongs to the next group. In this case, there is no
1148 * point to discard our window and try to allocate a new one
1149 * in this group(which will fail). we should
1150 * keep the reservation window, just simply move on.
1151 *
1152 * Maybe we could shift the start block of the reservation
1153 * window to the first block of next group.
1154 */
1155
1156 if ((my_rsv->rsv_start <= group_end_block) &&
1157 (my_rsv->rsv_end > group_end_block) &&
1158 (start_block >= my_rsv->rsv_start))
1159 return -1;
1160
1161 if ((my_rsv->rsv_alloc_hit >
1162 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1163 /*
1164 * if the previously allocation hit ratio is
1165 * greater than 1/2, then we double the size of
1166 * the reservation window the next time,
1167 * otherwise we keep the same size window
1168 */
1169 size = size * 2;
1170 if (size > EXT3_MAX_RESERVE_BLOCKS)
1171 size = EXT3_MAX_RESERVE_BLOCKS;
1172 my_rsv->rsv_goal_size= size;
1173 }
1174 }
1175
1176 spin_lock(rsv_lock);
1177 /*
1178 * shift the search start to the window near the goal block
1179 */
1180 search_head = search_reserve_window(fs_rsv_root, start_block);
1181
1182 /*
1183 * find_next_reservable_window() simply finds a reservable window
1184 * inside the given range(start_block, group_end_block).
1185 *
1186 * To make sure the reservation window has a free bit inside it, we
1187 * need to check the bitmap after we found a reservable window.
1188 */
1189 retry:
1190 ret = find_next_reservable_window(search_head, my_rsv, sb,
1191 start_block, group_end_block);
1192
1193 if (ret == -1) {
1194 if (!rsv_is_empty(&my_rsv->rsv_window))
1195 rsv_window_remove(sb, my_rsv);
1196 spin_unlock(rsv_lock);
1197 return -1;
1198 }
1199
1200 /*
1201 * On success, find_next_reservable_window() returns the
1202 * reservation window where there is a reservable space after it.
1203 * Before we reserve this reservable space, we need
1204 * to make sure there is at least a free block inside this region.
1205 *
1206 * searching the first free bit on the block bitmap and copy of
1207 * last committed bitmap alternatively, until we found a allocatable
1208 * block. Search start from the start block of the reservable space
1209 * we just found.
1210 */
1211 spin_unlock(rsv_lock);
1212 first_free_block = bitmap_search_next_usable_block(
1213 my_rsv->rsv_start - group_first_block,
1214 bitmap_bh, group_end_block - group_first_block + 1);
1215
1216 if (first_free_block < 0) {
1217 /*
1218 * no free block left on the bitmap, no point
1219 * to reserve the space. return failed.
1220 */
1221 spin_lock(rsv_lock);
1222 if (!rsv_is_empty(&my_rsv->rsv_window))
1223 rsv_window_remove(sb, my_rsv);
1224 spin_unlock(rsv_lock);
1225 return -1; /* failed */
1226 }
1227
1228 start_block = first_free_block + group_first_block;
1229 /*
1230 * check if the first free block is within the
1231 * free space we just reserved
1232 */
1233 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1234 return 0; /* success */
1235 /*
1236 * if the first free bit we found is out of the reservable space
1237 * continue search for next reservable space,
1238 * start from where the free block is,
1239 * we also shift the list head to where we stopped last time
1240 */
1241 search_head = my_rsv;
1242 spin_lock(rsv_lock);
1243 goto retry;
1244 }
1245
1246 /**
1247 * try_to_extend_reservation()
1248 * @my_rsv: given reservation window
1249 * @sb: super block
1250 * @size: the delta to extend
1251 *
1252 * Attempt to expand the reservation window large enough to have
1253 * required number of free blocks
1254 *
1255 * Since ext3_try_to_allocate() will always allocate blocks within
1256 * the reservation window range, if the window size is too small,
1257 * multiple blocks allocation has to stop at the end of the reservation
1258 * window. To make this more efficient, given the total number of
1259 * blocks needed and the current size of the window, we try to
1260 * expand the reservation window size if necessary on a best-effort
1261 * basis before ext3_new_blocks() tries to allocate blocks,
1262 */
1263 static void try_to_extend_reservation(struct ext3_reserve_window_node *my_rsv,
1264 struct super_block *sb, int size)
1265 {
1266 struct ext3_reserve_window_node *next_rsv;
1267 struct rb_node *next;
1268 spinlock_t *rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock;
1269
1270 if (!spin_trylock(rsv_lock))
1271 return;
1272
1273 next = rb_next(&my_rsv->rsv_node);
1274
1275 if (!next)
1276 my_rsv->rsv_end += size;
1277 else {
1278 next_rsv = rb_entry(next, struct ext3_reserve_window_node, rsv_node);
1279
1280 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1281 my_rsv->rsv_end += size;
1282 else
1283 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1284 }
1285 spin_unlock(rsv_lock);
1286 }
1287
1288 /**
1289 * ext3_try_to_allocate_with_rsv()
1290 * @sb: superblock
1291 * @handle: handle to this transaction
1292 * @group: given allocation block group
1293 * @bitmap_bh: bufferhead holds the block bitmap
1294 * @grp_goal: given target block within the group
1295 * @my_rsv: reservation window
1296 * @count: target number of blocks to allocate
1297 * @errp: pointer to store the error code
1298 *
1299 * This is the main function used to allocate a new block and its reservation
1300 * window.
1301 *
1302 * Each time when a new block allocation is need, first try to allocate from
1303 * its own reservation. If it does not have a reservation window, instead of
1304 * looking for a free bit on bitmap first, then look up the reservation list to
1305 * see if it is inside somebody else's reservation window, we try to allocate a
1306 * reservation window for it starting from the goal first. Then do the block
1307 * allocation within the reservation window.
1308 *
1309 * This will avoid keeping on searching the reservation list again and
1310 * again when somebody is looking for a free block (without
1311 * reservation), and there are lots of free blocks, but they are all
1312 * being reserved.
1313 *
1314 * We use a red-black tree for the per-filesystem reservation list.
1315 *
1316 */
1317 static ext3_grpblk_t
1318 ext3_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1319 unsigned int group, struct buffer_head *bitmap_bh,
1320 ext3_grpblk_t grp_goal,
1321 struct ext3_reserve_window_node * my_rsv,
1322 unsigned long *count, int *errp)
1323 {
1324 ext3_fsblk_t group_first_block, group_last_block;
1325 ext3_grpblk_t ret = 0;
1326 int fatal;
1327 unsigned long num = *count;
1328
1329 *errp = 0;
1330
1331 /*
1332 * Make sure we use undo access for the bitmap, because it is critical
1333 * that we do the frozen_data COW on bitmap buffers in all cases even
1334 * if the buffer is in BJ_Forget state in the committing transaction.
1335 */
1336 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1337 fatal = ext3_journal_get_undo_access(handle, bitmap_bh);
1338 if (fatal) {
1339 *errp = fatal;
1340 return -1;
1341 }
1342
1343 /*
1344 * we don't deal with reservation when
1345 * filesystem is mounted without reservation
1346 * or the file is not a regular file
1347 * or last attempt to allocate a block with reservation turned on failed
1348 */
1349 if (my_rsv == NULL ) {
1350 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh,
1351 grp_goal, count, NULL);
1352 goto out;
1353 }
1354 /*
1355 * grp_goal is a group relative block number (if there is a goal)
1356 * 0 <= grp_goal < EXT3_BLOCKS_PER_GROUP(sb)
1357 * first block is a filesystem wide block number
1358 * first block is the block number of the first block in this group
1359 */
1360 group_first_block = ext3_group_first_block_no(sb, group);
1361 group_last_block = group_first_block + (EXT3_BLOCKS_PER_GROUP(sb) - 1);
1362
1363 /*
1364 * Basically we will allocate a new block from inode's reservation
1365 * window.
1366 *
1367 * We need to allocate a new reservation window, if:
1368 * a) inode does not have a reservation window; or
1369 * b) last attempt to allocate a block from existing reservation
1370 * failed; or
1371 * c) we come here with a goal and with a reservation window
1372 *
1373 * We do not need to allocate a new reservation window if we come here
1374 * at the beginning with a goal and the goal is inside the window, or
1375 * we don't have a goal but already have a reservation window.
1376 * then we could go to allocate from the reservation window directly.
1377 */
1378 while (1) {
1379 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1380 !goal_in_my_reservation(&my_rsv->rsv_window,
1381 grp_goal, group, sb)) {
1382 if (my_rsv->rsv_goal_size < *count)
1383 my_rsv->rsv_goal_size = *count;
1384 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1385 group, bitmap_bh);
1386 if (ret < 0)
1387 break; /* failed */
1388
1389 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1390 grp_goal, group, sb))
1391 grp_goal = -1;
1392 } else if (grp_goal >= 0) {
1393 int curr = my_rsv->rsv_end -
1394 (grp_goal + group_first_block) + 1;
1395
1396 if (curr < *count)
1397 try_to_extend_reservation(my_rsv, sb,
1398 *count - curr);
1399 }
1400
1401 if ((my_rsv->rsv_start > group_last_block) ||
1402 (my_rsv->rsv_end < group_first_block)) {
1403 rsv_window_dump(&EXT3_SB(sb)->s_rsv_window_root, 1);
1404 BUG();
1405 }
1406 ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh,
1407 grp_goal, &num, &my_rsv->rsv_window);
1408 if (ret >= 0) {
1409 my_rsv->rsv_alloc_hit += num;
1410 *count = num;
1411 break; /* succeed */
1412 }
1413 num = *count;
1414 }
1415 out:
1416 if (ret >= 0) {
1417 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1418 "bitmap block");
1419 fatal = ext3_journal_dirty_metadata(handle, bitmap_bh);
1420 if (fatal) {
1421 *errp = fatal;
1422 return -1;
1423 }
1424 return ret;
1425 }
1426
1427 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1428 ext3_journal_release_buffer(handle, bitmap_bh);
1429 return ret;
1430 }
1431
1432 /**
1433 * ext3_has_free_blocks()
1434 * @sbi: in-core super block structure.
1435 *
1436 * Check if filesystem has at least 1 free block available for allocation.
1437 */
1438 static int ext3_has_free_blocks(struct ext3_sb_info *sbi)
1439 {
1440 ext3_fsblk_t free_blocks, root_blocks;
1441
1442 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1443 root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1444 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1445 sbi->s_resuid != current_fsuid() &&
1446 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1447 return 0;
1448 }
1449 return 1;
1450 }
1451
1452 /**
1453 * ext3_should_retry_alloc()
1454 * @sb: super block
1455 * @retries number of attemps has been made
1456 *
1457 * ext3_should_retry_alloc() is called when ENOSPC is returned, and if
1458 * it is profitable to retry the operation, this function will wait
1459 * for the current or committing transaction to complete, and then
1460 * return TRUE.
1461 *
1462 * if the total number of retries exceed three times, return FALSE.
1463 */
1464 int ext3_should_retry_alloc(struct super_block *sb, int *retries)
1465 {
1466 if (!ext3_has_free_blocks(EXT3_SB(sb)) || (*retries)++ > 3)
1467 return 0;
1468
1469 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1470
1471 return journal_force_commit_nested(EXT3_SB(sb)->s_journal);
1472 }
1473
1474 /**
1475 * ext3_new_blocks() -- core block(s) allocation function
1476 * @handle: handle to this transaction
1477 * @inode: file inode
1478 * @goal: given target block(filesystem wide)
1479 * @count: target number of blocks to allocate
1480 * @errp: error code
1481 *
1482 * ext3_new_blocks uses a goal block to assist allocation. It tries to
1483 * allocate block(s) from the block group contains the goal block first. If that
1484 * fails, it will try to allocate block(s) from other block groups without
1485 * any specific goal block.
1486 *
1487 */
1488 ext3_fsblk_t ext3_new_blocks(handle_t *handle, struct inode *inode,
1489 ext3_fsblk_t goal, unsigned long *count, int *errp)
1490 {
1491 struct buffer_head *bitmap_bh = NULL;
1492 struct buffer_head *gdp_bh;
1493 int group_no;
1494 int goal_group;
1495 ext3_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1496 ext3_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1497 ext3_fsblk_t ret_block; /* filesyetem-wide allocated block */
1498 int bgi; /* blockgroup iteration index */
1499 int fatal = 0, err;
1500 int performed_allocation = 0;
1501 ext3_grpblk_t free_blocks; /* number of free blocks in a group */
1502 struct super_block *sb;
1503 struct ext3_group_desc *gdp;
1504 struct ext3_super_block *es;
1505 struct ext3_sb_info *sbi;
1506 struct ext3_reserve_window_node *my_rsv = NULL;
1507 struct ext3_block_alloc_info *block_i;
1508 unsigned short windowsz = 0;
1509 #ifdef EXT3FS_DEBUG
1510 static int goal_hits, goal_attempts;
1511 #endif
1512 unsigned long ngroups;
1513 unsigned long num = *count;
1514
1515 *errp = -ENOSPC;
1516 sb = inode->i_sb;
1517 if (!sb) {
1518 printk("ext3_new_block: nonexistent device");
1519 return 0;
1520 }
1521
1522 /*
1523 * Check quota for allocation of this block.
1524 */
1525 err = dquot_alloc_block(inode, num);
1526 if (err) {
1527 *errp = err;
1528 return 0;
1529 }
1530
1531 sbi = EXT3_SB(sb);
1532 es = EXT3_SB(sb)->s_es;
1533 ext3_debug("goal=%lu.\n", goal);
1534 /*
1535 * Allocate a block from reservation only when
1536 * filesystem is mounted with reservation(default,-o reservation), and
1537 * it's a regular file, and
1538 * the desired window size is greater than 0 (One could use ioctl
1539 * command EXT3_IOC_SETRSVSZ to set the window size to 0 to turn off
1540 * reservation on that particular file)
1541 */
1542 block_i = EXT3_I(inode)->i_block_alloc_info;
1543 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1544 my_rsv = &block_i->rsv_window_node;
1545
1546 if (!ext3_has_free_blocks(sbi)) {
1547 *errp = -ENOSPC;
1548 goto out;
1549 }
1550
1551 /*
1552 * First, test whether the goal block is free.
1553 */
1554 if (goal < le32_to_cpu(es->s_first_data_block) ||
1555 goal >= le32_to_cpu(es->s_blocks_count))
1556 goal = le32_to_cpu(es->s_first_data_block);
1557 group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1558 EXT3_BLOCKS_PER_GROUP(sb);
1559 goal_group = group_no;
1560 retry_alloc:
1561 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1562 if (!gdp)
1563 goto io_error;
1564
1565 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1566 /*
1567 * if there is not enough free blocks to make a new resevation
1568 * turn off reservation for this allocation
1569 */
1570 if (my_rsv && (free_blocks < windowsz)
1571 && (free_blocks > 0)
1572 && (rsv_is_empty(&my_rsv->rsv_window)))
1573 my_rsv = NULL;
1574
1575 if (free_blocks > 0) {
1576 grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) %
1577 EXT3_BLOCKS_PER_GROUP(sb));
1578 bitmap_bh = read_block_bitmap(sb, group_no);
1579 if (!bitmap_bh)
1580 goto io_error;
1581 grp_alloc_blk = ext3_try_to_allocate_with_rsv(sb, handle,
1582 group_no, bitmap_bh, grp_target_blk,
1583 my_rsv, &num, &fatal);
1584 if (fatal)
1585 goto out;
1586 if (grp_alloc_blk >= 0)
1587 goto allocated;
1588 }
1589
1590 ngroups = EXT3_SB(sb)->s_groups_count;
1591 smp_rmb();
1592
1593 /*
1594 * Now search the rest of the groups. We assume that
1595 * group_no and gdp correctly point to the last group visited.
1596 */
1597 for (bgi = 0; bgi < ngroups; bgi++) {
1598 group_no++;
1599 if (group_no >= ngroups)
1600 group_no = 0;
1601 gdp = ext3_get_group_desc(sb, group_no, &gdp_bh);
1602 if (!gdp)
1603 goto io_error;
1604 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1605 /*
1606 * skip this group (and avoid loading bitmap) if there
1607 * are no free blocks
1608 */
1609 if (!free_blocks)
1610 continue;
1611 /*
1612 * skip this group if the number of
1613 * free blocks is less than half of the reservation
1614 * window size.
1615 */
1616 if (my_rsv && (free_blocks <= (windowsz/2)))
1617 continue;
1618
1619 brelse(bitmap_bh);
1620 bitmap_bh = read_block_bitmap(sb, group_no);
1621 if (!bitmap_bh)
1622 goto io_error;
1623 /*
1624 * try to allocate block(s) from this group, without a goal(-1).
1625 */
1626 grp_alloc_blk = ext3_try_to_allocate_with_rsv(sb, handle,
1627 group_no, bitmap_bh, -1, my_rsv,
1628 &num, &fatal);
1629 if (fatal)
1630 goto out;
1631 if (grp_alloc_blk >= 0)
1632 goto allocated;
1633 }
1634 /*
1635 * We may end up a bogus earlier ENOSPC error due to
1636 * filesystem is "full" of reservations, but
1637 * there maybe indeed free blocks available on disk
1638 * In this case, we just forget about the reservations
1639 * just do block allocation as without reservations.
1640 */
1641 if (my_rsv) {
1642 my_rsv = NULL;
1643 windowsz = 0;
1644 group_no = goal_group;
1645 goto retry_alloc;
1646 }
1647 /* No space left on the device */
1648 *errp = -ENOSPC;
1649 goto out;
1650
1651 allocated:
1652
1653 ext3_debug("using block group %d(%d)\n",
1654 group_no, gdp->bg_free_blocks_count);
1655
1656 BUFFER_TRACE(gdp_bh, "get_write_access");
1657 fatal = ext3_journal_get_write_access(handle, gdp_bh);
1658 if (fatal)
1659 goto out;
1660
1661 ret_block = grp_alloc_blk + ext3_group_first_block_no(sb, group_no);
1662
1663 if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) ||
1664 in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) ||
1665 in_range(ret_block, le32_to_cpu(gdp->bg_inode_table),
1666 EXT3_SB(sb)->s_itb_per_group) ||
1667 in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table),
1668 EXT3_SB(sb)->s_itb_per_group)) {
1669 ext3_error(sb, "ext3_new_block",
1670 "Allocating block in system zone - "
1671 "blocks from "E3FSBLK", length %lu",
1672 ret_block, num);
1673 /*
1674 * claim_block() marked the blocks we allocated as in use. So we
1675 * may want to selectively mark some of the blocks as free.
1676 */
1677 goto retry_alloc;
1678 }
1679
1680 performed_allocation = 1;
1681
1682 #ifdef CONFIG_JBD_DEBUG
1683 {
1684 struct buffer_head *debug_bh;
1685
1686 /* Record bitmap buffer state in the newly allocated block */
1687 debug_bh = sb_find_get_block(sb, ret_block);
1688 if (debug_bh) {
1689 BUFFER_TRACE(debug_bh, "state when allocated");
1690 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1691 brelse(debug_bh);
1692 }
1693 }
1694 jbd_lock_bh_state(bitmap_bh);
1695 spin_lock(sb_bgl_lock(sbi, group_no));
1696 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1697 int i;
1698
1699 for (i = 0; i < num; i++) {
1700 if (ext3_test_bit(grp_alloc_blk+i,
1701 bh2jh(bitmap_bh)->b_committed_data)) {
1702 printk("%s: block was unexpectedly set in "
1703 "b_committed_data\n", __func__);
1704 }
1705 }
1706 }
1707 ext3_debug("found bit %d\n", grp_alloc_blk);
1708 spin_unlock(sb_bgl_lock(sbi, group_no));
1709 jbd_unlock_bh_state(bitmap_bh);
1710 #endif
1711
1712 if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) {
1713 ext3_error(sb, "ext3_new_block",
1714 "block("E3FSBLK") >= blocks count(%d) - "
1715 "block_group = %d, es == %p ", ret_block,
1716 le32_to_cpu(es->s_blocks_count), group_no, es);
1717 goto out;
1718 }
1719
1720 /*
1721 * It is up to the caller to add the new buffer to a journal
1722 * list of some description. We don't know in advance whether
1723 * the caller wants to use it as metadata or data.
1724 */
1725 ext3_debug("allocating block %lu. Goal hits %d of %d.\n",
1726 ret_block, goal_hits, goal_attempts);
1727
1728 spin_lock(sb_bgl_lock(sbi, group_no));
1729 le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1730 spin_unlock(sb_bgl_lock(sbi, group_no));
1731 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1732
1733 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1734 err = ext3_journal_dirty_metadata(handle, gdp_bh);
1735 if (!fatal)
1736 fatal = err;
1737
1738 if (fatal)
1739 goto out;
1740
1741 *errp = 0;
1742 brelse(bitmap_bh);
1743 dquot_free_block(inode, *count-num);
1744 *count = num;
1745 return ret_block;
1746
1747 io_error:
1748 *errp = -EIO;
1749 out:
1750 if (fatal) {
1751 *errp = fatal;
1752 ext3_std_error(sb, fatal);
1753 }
1754 /*
1755 * Undo the block allocation
1756 */
1757 if (!performed_allocation)
1758 dquot_free_block(inode, *count);
1759 brelse(bitmap_bh);
1760 return 0;
1761 }
1762
1763 ext3_fsblk_t ext3_new_block(handle_t *handle, struct inode *inode,
1764 ext3_fsblk_t goal, int *errp)
1765 {
1766 unsigned long count = 1;
1767
1768 return ext3_new_blocks(handle, inode, goal, &count, errp);
1769 }
1770
1771 /**
1772 * ext3_count_free_blocks() -- count filesystem free blocks
1773 * @sb: superblock
1774 *
1775 * Adds up the number of free blocks from each block group.
1776 */
1777 ext3_fsblk_t ext3_count_free_blocks(struct super_block *sb)
1778 {
1779 ext3_fsblk_t desc_count;
1780 struct ext3_group_desc *gdp;
1781 int i;
1782 unsigned long ngroups = EXT3_SB(sb)->s_groups_count;
1783 #ifdef EXT3FS_DEBUG
1784 struct ext3_super_block *es;
1785 ext3_fsblk_t bitmap_count;
1786 unsigned long x;
1787 struct buffer_head *bitmap_bh = NULL;
1788
1789 es = EXT3_SB(sb)->s_es;
1790 desc_count = 0;
1791 bitmap_count = 0;
1792 gdp = NULL;
1793
1794 smp_rmb();
1795 for (i = 0; i < ngroups; i++) {
1796 gdp = ext3_get_group_desc(sb, i, NULL);
1797 if (!gdp)
1798 continue;
1799 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1800 brelse(bitmap_bh);
1801 bitmap_bh = read_block_bitmap(sb, i);
1802 if (bitmap_bh == NULL)
1803 continue;
1804
1805 x = ext3_count_free(bitmap_bh, sb->s_blocksize);
1806 printk("group %d: stored = %d, counted = %lu\n",
1807 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1808 bitmap_count += x;
1809 }
1810 brelse(bitmap_bh);
1811 printk("ext3_count_free_blocks: stored = "E3FSBLK
1812 ", computed = "E3FSBLK", "E3FSBLK"\n",
1813 le32_to_cpu(es->s_free_blocks_count),
1814 desc_count, bitmap_count);
1815 return bitmap_count;
1816 #else
1817 desc_count = 0;
1818 smp_rmb();
1819 for (i = 0; i < ngroups; i++) {
1820 gdp = ext3_get_group_desc(sb, i, NULL);
1821 if (!gdp)
1822 continue;
1823 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1824 }
1825
1826 return desc_count;
1827 #endif
1828 }
1829
1830 static inline int test_root(int a, int b)
1831 {
1832 int num = b;
1833
1834 while (a > num)
1835 num *= b;
1836 return num == a;
1837 }
1838
1839 static int ext3_group_sparse(int group)
1840 {
1841 if (group <= 1)
1842 return 1;
1843 if (!(group & 1))
1844 return 0;
1845 return (test_root(group, 7) || test_root(group, 5) ||
1846 test_root(group, 3));
1847 }
1848
1849 /**
1850 * ext3_bg_has_super - number of blocks used by the superblock in group
1851 * @sb: superblock for filesystem
1852 * @group: group number to check
1853 *
1854 * Return the number of blocks used by the superblock (primary or backup)
1855 * in this group. Currently this will be only 0 or 1.
1856 */
1857 int ext3_bg_has_super(struct super_block *sb, int group)
1858 {
1859 if (EXT3_HAS_RO_COMPAT_FEATURE(sb,
1860 EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1861 !ext3_group_sparse(group))
1862 return 0;
1863 return 1;
1864 }
1865
1866 static unsigned long ext3_bg_num_gdb_meta(struct super_block *sb, int group)
1867 {
1868 unsigned long metagroup = group / EXT3_DESC_PER_BLOCK(sb);
1869 unsigned long first = metagroup * EXT3_DESC_PER_BLOCK(sb);
1870 unsigned long last = first + EXT3_DESC_PER_BLOCK(sb) - 1;
1871
1872 if (group == first || group == first + 1 || group == last)
1873 return 1;
1874 return 0;
1875 }
1876
1877 static unsigned long ext3_bg_num_gdb_nometa(struct super_block *sb, int group)
1878 {
1879 return ext3_bg_has_super(sb, group) ? EXT3_SB(sb)->s_gdb_count : 0;
1880 }
1881
1882 /**
1883 * ext3_bg_num_gdb - number of blocks used by the group table in group
1884 * @sb: superblock for filesystem
1885 * @group: group number to check
1886 *
1887 * Return the number of blocks used by the group descriptor table
1888 * (primary or backup) in this group. In the future there may be a
1889 * different number of descriptor blocks in each group.
1890 */
1891 unsigned long ext3_bg_num_gdb(struct super_block *sb, int group)
1892 {
1893 unsigned long first_meta_bg =
1894 le32_to_cpu(EXT3_SB(sb)->s_es->s_first_meta_bg);
1895 unsigned long metagroup = group / EXT3_DESC_PER_BLOCK(sb);
1896
1897 if (!EXT3_HAS_INCOMPAT_FEATURE(sb,EXT3_FEATURE_INCOMPAT_META_BG) ||
1898 metagroup < first_meta_bg)
1899 return ext3_bg_num_gdb_nometa(sb,group);
1900
1901 return ext3_bg_num_gdb_meta(sb,group);
1902
1903 }
1904
1905 /**
1906 * ext3_trim_all_free -- function to trim all free space in alloc. group
1907 * @sb: super block for file system
1908 * @group: allocation group to trim
1909 * @start: first group block to examine
1910 * @max: last group block to examine
1911 * @gdp: allocation group description structure
1912 * @minblocks: minimum extent block count
1913 *
1914 * ext3_trim_all_free walks through group's block bitmap searching for free
1915 * blocks. When the free block is found, it tries to allocate this block and
1916 * consequent free block to get the biggest free extent possible, until it
1917 * reaches any used block. Then issue a TRIM command on this extent and free
1918 * the extent in the block bitmap. This is done until whole group is scanned.
1919 */
1920 ext3_grpblk_t ext3_trim_all_free(struct super_block *sb, unsigned int group,
1921 ext3_grpblk_t start, ext3_grpblk_t max,
1922 ext3_grpblk_t minblocks)
1923 {
1924 handle_t *handle;
1925 ext3_grpblk_t next, free_blocks, bit, freed, count = 0;
1926 ext3_fsblk_t discard_block;
1927 struct ext3_sb_info *sbi;
1928 struct buffer_head *gdp_bh, *bitmap_bh = NULL;
1929 struct ext3_group_desc *gdp;
1930 int err = 0, ret = 0;
1931
1932 /*
1933 * We will update one block bitmap, and one group descriptor
1934 */
1935 handle = ext3_journal_start_sb(sb, 2);
1936 if (IS_ERR(handle))
1937 return PTR_ERR(handle);
1938
1939 bitmap_bh = read_block_bitmap(sb, group);
1940 if (!bitmap_bh) {
1941 err = -EIO;
1942 goto err_out;
1943 }
1944
1945 BUFFER_TRACE(bitmap_bh, "getting undo access");
1946 err = ext3_journal_get_undo_access(handle, bitmap_bh);
1947 if (err)
1948 goto err_out;
1949
1950 gdp = ext3_get_group_desc(sb, group, &gdp_bh);
1951 if (!gdp) {
1952 err = -EIO;
1953 goto err_out;
1954 }
1955
1956 BUFFER_TRACE(gdp_bh, "get_write_access");
1957 err = ext3_journal_get_write_access(handle, gdp_bh);
1958 if (err)
1959 goto err_out;
1960
1961 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1962 sbi = EXT3_SB(sb);
1963
1964 /* Walk through the whole group */
1965 while (start < max) {
1966 start = bitmap_search_next_usable_block(start, bitmap_bh, max);
1967 if (start < 0)
1968 break;
1969 next = start;
1970
1971 /*
1972 * Allocate contiguous free extents by setting bits in the
1973 * block bitmap
1974 */
1975 while (next < max
1976 && claim_block(sb_bgl_lock(sbi, group),
1977 next, bitmap_bh)) {
1978 next++;
1979 }
1980
1981 /* We did not claim any blocks */
1982 if (next == start)
1983 continue;
1984
1985 discard_block = (ext3_fsblk_t)start +
1986 ext3_group_first_block_no(sb, group);
1987
1988 /* Update counters */
1989 spin_lock(sb_bgl_lock(sbi, group));
1990 le16_add_cpu(&gdp->bg_free_blocks_count, start - next);
1991 spin_unlock(sb_bgl_lock(sbi, group));
1992 percpu_counter_sub(&sbi->s_freeblocks_counter, next - start);
1993
1994 free_blocks -= next - start;
1995 /* Do not issue a TRIM on extents smaller than minblocks */
1996 if ((next - start) < minblocks)
1997 goto free_extent;
1998
1999 /* Send the TRIM command down to the device */
2000 err = sb_issue_discard(sb, discard_block, next - start,
2001 GFP_NOFS, 0);
2002 count += (next - start);
2003 free_extent:
2004 freed = 0;
2005
2006 /*
2007 * Clear bits in the bitmap
2008 */
2009 for (bit = start; bit < next; bit++) {
2010 BUFFER_TRACE(bitmap_bh, "clear bit");
2011 if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, group),
2012 bit, bitmap_bh->b_data)) {
2013 ext3_error(sb, __func__,
2014 "bit already cleared for block "E3FSBLK,
2015 (unsigned long)bit);
2016 BUFFER_TRACE(bitmap_bh, "bit already cleared");
2017 } else {
2018 freed++;
2019 }
2020 }
2021
2022 /* Update couters */
2023 spin_lock(sb_bgl_lock(sbi, group));
2024 le16_add_cpu(&gdp->bg_free_blocks_count, freed);
2025 spin_unlock(sb_bgl_lock(sbi, group));
2026 percpu_counter_add(&sbi->s_freeblocks_counter, freed);
2027
2028 start = next;
2029 if (err < 0) {
2030 if (err != -EOPNOTSUPP)
2031 ext3_warning(sb, __func__, "Discard command "
2032 "returned error %d\n", err);
2033 break;
2034 }
2035
2036 if (fatal_signal_pending(current)) {
2037 err = -ERESTARTSYS;
2038 break;
2039 }
2040
2041 cond_resched();
2042
2043 /* No more suitable extents */
2044 if (free_blocks < minblocks)
2045 break;
2046 }
2047
2048 /* We dirtied the bitmap block */
2049 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
2050 ret = ext3_journal_dirty_metadata(handle, bitmap_bh);
2051 if (!err)
2052 err = ret;
2053
2054 /* And the group descriptor block */
2055 BUFFER_TRACE(gdp_bh, "dirtied group descriptor block");
2056 ret = ext3_journal_dirty_metadata(handle, gdp_bh);
2057 if (!err)
2058 err = ret;
2059
2060 ext3_debug("trimmed %d blocks in the group %d\n",
2061 count, group);
2062
2063 err_out:
2064 if (err)
2065 count = err;
2066 ext3_journal_stop(handle);
2067 brelse(bitmap_bh);
2068
2069 return count;
2070 }
2071
2072 /**
2073 * ext3_trim_fs() -- trim ioctl handle function
2074 * @sb: superblock for filesystem
2075 * @start: First Byte to trim
2076 * @len: number of Bytes to trim from start
2077 * @minlen: minimum extent length in Bytes
2078 *
2079 * ext3_trim_fs goes through all allocation groups containing Bytes from
2080 * start to start+len. For each such a group ext3_trim_all_free function
2081 * is invoked to trim all free space.
2082 */
2083 int ext3_trim_fs(struct super_block *sb, struct fstrim_range *range)
2084 {
2085 ext3_grpblk_t last_block, first_block, free_blocks;
2086 unsigned long first_group, last_group;
2087 unsigned long group, ngroups;
2088 struct ext3_group_desc *gdp;
2089 struct ext3_super_block *es = EXT3_SB(sb)->s_es;
2090 uint64_t start, len, minlen, trimmed;
2091 ext3_fsblk_t max_blks = le32_to_cpu(es->s_blocks_count);
2092 int ret = 0;
2093
2094 start = (range->start >> sb->s_blocksize_bits) +
2095 le32_to_cpu(es->s_first_data_block);
2096 len = range->len >> sb->s_blocksize_bits;
2097 minlen = range->minlen >> sb->s_blocksize_bits;
2098 trimmed = 0;
2099
2100 if (unlikely(minlen > EXT3_BLOCKS_PER_GROUP(sb)))
2101 return -EINVAL;
2102 if (start >= max_blks)
2103 goto out;
2104 if (start + len > max_blks)
2105 len = max_blks - start;
2106
2107 ngroups = EXT3_SB(sb)->s_groups_count;
2108 smp_rmb();
2109
2110 /* Determine first and last group to examine based on start and len */
2111 ext3_get_group_no_and_offset(sb, (ext3_fsblk_t) start,
2112 &first_group, &first_block);
2113 ext3_get_group_no_and_offset(sb, (ext3_fsblk_t) (start + len),
2114 &last_group, &last_block);
2115 last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
2116 last_block = EXT3_BLOCKS_PER_GROUP(sb);
2117
2118 if (first_group > last_group)
2119 return -EINVAL;
2120
2121 for (group = first_group; group <= last_group; group++) {
2122 gdp = ext3_get_group_desc(sb, group, NULL);
2123 if (!gdp)
2124 break;
2125
2126 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
2127 if (free_blocks < minlen)
2128 continue;
2129
2130 /*
2131 * For all the groups except the last one, last block will
2132 * always be EXT3_BLOCKS_PER_GROUP(sb), so we only need to
2133 * change it for the last group in which case first_block +
2134 * len < EXT3_BLOCKS_PER_GROUP(sb).
2135 */
2136 if (first_block + len < EXT3_BLOCKS_PER_GROUP(sb))
2137 last_block = first_block + len;
2138 len -= last_block - first_block;
2139
2140 ret = ext3_trim_all_free(sb, group, first_block,
2141 last_block, minlen);
2142 if (ret < 0)
2143 break;
2144
2145 trimmed += ret;
2146 first_block = 0;
2147 }
2148
2149 if (ret >= 0)
2150 ret = 0;
2151
2152 out:
2153 range->len = trimmed * sb->s_blocksize;
2154
2155 return ret;
2156 }