Merge tag 'v3.10.108' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62
63 #include <trace/events/task.h>
64 #include "internal.h"
65 #include "coredump.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 BUG_ON(!fmt);
77 write_lock(&binfmt_lock);
78 insert ? list_add(&fmt->lh, &formats) :
79 list_add_tail(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
81 }
82
83 EXPORT_SYMBOL(__register_binfmt);
84
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 write_lock(&binfmt_lock);
88 list_del(&fmt->lh);
89 write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(unregister_binfmt);
93
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 module_put(fmt->module);
97 }
98
99 /*
100 * Note that a shared library must be both readable and executable due to
101 * security reasons.
102 *
103 * Also note that we take the address to load from from the file itself.
104 */
105 SYSCALL_DEFINE1(uselib, const char __user *, library)
106 {
107 struct file *file;
108 struct filename *tmp = getname(library);
109 int error = PTR_ERR(tmp);
110 static const struct open_flags uselib_flags = {
111 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
112 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
113 .intent = LOOKUP_OPEN
114 };
115
116 if (IS_ERR(tmp))
117 goto out;
118
119 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
120 putname(tmp);
121 error = PTR_ERR(file);
122 if (IS_ERR(file))
123 goto out;
124
125 error = -EINVAL;
126 if (!S_ISREG(file_inode(file)->i_mode))
127 goto exit;
128
129 error = -EACCES;
130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131 goto exit;
132
133 fsnotify_open(file);
134
135 error = -ENOEXEC;
136 if(file->f_op) {
137 struct linux_binfmt * fmt;
138
139 read_lock(&binfmt_lock);
140 list_for_each_entry(fmt, &formats, lh) {
141 if (!fmt->load_shlib)
142 continue;
143 if (!try_module_get(fmt->module))
144 continue;
145 read_unlock(&binfmt_lock);
146 error = fmt->load_shlib(file);
147 read_lock(&binfmt_lock);
148 put_binfmt(fmt);
149 if (error != -ENOEXEC)
150 break;
151 }
152 read_unlock(&binfmt_lock);
153 }
154 exit:
155 fput(file);
156 out:
157 return error;
158 }
159
160 #ifdef CONFIG_MMU
161 /*
162 * The nascent bprm->mm is not visible until exec_mmap() but it can
163 * use a lot of memory, account these pages in current->mm temporary
164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165 * change the counter back via acct_arg_size(0).
166 */
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169 struct mm_struct *mm = current->mm;
170 long diff = (long)(pages - bprm->vma_pages);
171
172 if (!mm || !diff)
173 return;
174
175 bprm->vma_pages = pages;
176 add_mm_counter(mm, MM_ANONPAGES, diff);
177 }
178
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 int write)
181 {
182 struct page *page;
183 int ret;
184
185 #ifdef CONFIG_STACK_GROWSUP
186 if (write) {
187 ret = expand_downwards(bprm->vma, pos);
188 if (ret < 0)
189 return NULL;
190 }
191 #endif
192 ret = get_user_pages(current, bprm->mm, pos,
193 1, write, 1, &page, NULL);
194 if (ret <= 0)
195 return NULL;
196
197 if (write) {
198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199 unsigned long ptr_size;
200 struct rlimit *rlim;
201
202 /*
203 * Since the stack will hold pointers to the strings, we
204 * must account for them as well.
205 *
206 * The size calculation is the entire vma while each arg page is
207 * built, so each time we get here it's calculating how far it
208 * is currently (rather than each call being just the newly
209 * added size from the arg page). As a result, we need to
210 * always add the entire size of the pointers, so that on the
211 * last call to get_arg_page() we'll actually have the entire
212 * correct size.
213 */
214 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
215 if (ptr_size > ULONG_MAX - size)
216 goto fail;
217 size += ptr_size;
218
219 acct_arg_size(bprm, size / PAGE_SIZE);
220
221 /*
222 * We've historically supported up to 32 pages (ARG_MAX)
223 * of argument strings even with small stacks
224 */
225 if (size <= ARG_MAX)
226 return page;
227
228 /*
229 * Limit to 1/4-th the stack size for the argv+env strings.
230 * This ensures that:
231 * - the remaining binfmt code will not run out of stack space,
232 * - the program will have a reasonable amount of stack left
233 * to work from.
234 */
235 rlim = current->signal->rlim;
236 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4)
237 goto fail;
238 }
239
240 return page;
241
242 fail:
243 put_page(page);
244 return NULL;
245 }
246
247 static void put_arg_page(struct page *page)
248 {
249 put_page(page);
250 }
251
252 static void free_arg_page(struct linux_binprm *bprm, int i)
253 {
254 }
255
256 static void free_arg_pages(struct linux_binprm *bprm)
257 {
258 }
259
260 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
261 struct page *page)
262 {
263 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
264 }
265
266 static int __bprm_mm_init(struct linux_binprm *bprm)
267 {
268 int err;
269 struct vm_area_struct *vma = NULL;
270 struct mm_struct *mm = bprm->mm;
271
272 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
273 if (!vma)
274 return -ENOMEM;
275
276 down_write(&mm->mmap_sem);
277 vma->vm_mm = mm;
278
279 /*
280 * Place the stack at the largest stack address the architecture
281 * supports. Later, we'll move this to an appropriate place. We don't
282 * use STACK_TOP because that can depend on attributes which aren't
283 * configured yet.
284 */
285 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
286 vma->vm_end = STACK_TOP_MAX;
287 vma->vm_start = vma->vm_end - PAGE_SIZE;
288 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
289 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
290 INIT_LIST_HEAD(&vma->anon_vma_chain);
291
292 err = insert_vm_struct(mm, vma);
293 if (err)
294 goto err;
295
296 mm->stack_vm = mm->total_vm = 1;
297 up_write(&mm->mmap_sem);
298 bprm->p = vma->vm_end - sizeof(void *);
299 return 0;
300 err:
301 up_write(&mm->mmap_sem);
302 bprm->vma = NULL;
303 kmem_cache_free(vm_area_cachep, vma);
304 return err;
305 }
306
307 static bool valid_arg_len(struct linux_binprm *bprm, long len)
308 {
309 return len <= MAX_ARG_STRLEN;
310 }
311
312 #else
313
314 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
315 {
316 }
317
318 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 int write)
320 {
321 struct page *page;
322
323 page = bprm->page[pos / PAGE_SIZE];
324 if (!page && write) {
325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326 if (!page)
327 return NULL;
328 bprm->page[pos / PAGE_SIZE] = page;
329 }
330
331 return page;
332 }
333
334 static void put_arg_page(struct page *page)
335 {
336 }
337
338 static void free_arg_page(struct linux_binprm *bprm, int i)
339 {
340 if (bprm->page[i]) {
341 __free_page(bprm->page[i]);
342 bprm->page[i] = NULL;
343 }
344 }
345
346 static void free_arg_pages(struct linux_binprm *bprm)
347 {
348 int i;
349
350 for (i = 0; i < MAX_ARG_PAGES; i++)
351 free_arg_page(bprm, i);
352 }
353
354 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355 struct page *page)
356 {
357 }
358
359 static int __bprm_mm_init(struct linux_binprm *bprm)
360 {
361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362 return 0;
363 }
364
365 static bool valid_arg_len(struct linux_binprm *bprm, long len)
366 {
367 return len <= bprm->p;
368 }
369
370 #endif /* CONFIG_MMU */
371
372 /*
373 * Create a new mm_struct and populate it with a temporary stack
374 * vm_area_struct. We don't have enough context at this point to set the stack
375 * flags, permissions, and offset, so we use temporary values. We'll update
376 * them later in setup_arg_pages().
377 */
378 static int bprm_mm_init(struct linux_binprm *bprm)
379 {
380 int err;
381 struct mm_struct *mm = NULL;
382
383 bprm->mm = mm = mm_alloc();
384 err = -ENOMEM;
385 if (!mm)
386 goto err;
387
388 err = init_new_context(current, mm);
389 if (err)
390 goto err;
391
392 err = __bprm_mm_init(bprm);
393 if (err)
394 goto err;
395
396 return 0;
397
398 err:
399 if (mm) {
400 bprm->mm = NULL;
401 mmdrop(mm);
402 }
403
404 return err;
405 }
406
407 struct user_arg_ptr {
408 #ifdef CONFIG_COMPAT
409 bool is_compat;
410 #endif
411 union {
412 const char __user *const __user *native;
413 #ifdef CONFIG_COMPAT
414 const compat_uptr_t __user *compat;
415 #endif
416 } ptr;
417 };
418
419 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
420 {
421 const char __user *native;
422
423 #ifdef CONFIG_COMPAT
424 if (unlikely(argv.is_compat)) {
425 compat_uptr_t compat;
426
427 if (get_user(compat, argv.ptr.compat + nr))
428 return ERR_PTR(-EFAULT);
429
430 return compat_ptr(compat);
431 }
432 #endif
433
434 if (get_user(native, argv.ptr.native + nr))
435 return ERR_PTR(-EFAULT);
436
437 return native;
438 }
439
440 /*
441 * count() counts the number of strings in array ARGV.
442 */
443 static int count(struct user_arg_ptr argv, int max)
444 {
445 int i = 0;
446
447 if (argv.ptr.native != NULL) {
448 for (;;) {
449 const char __user *p = get_user_arg_ptr(argv, i);
450
451 if (!p)
452 break;
453
454 if (IS_ERR(p))
455 return -EFAULT;
456
457 if (i >= max)
458 return -E2BIG;
459 ++i;
460
461 if (fatal_signal_pending(current))
462 return -ERESTARTNOHAND;
463 cond_resched();
464 }
465 }
466 return i;
467 }
468
469 /*
470 * 'copy_strings()' copies argument/environment strings from the old
471 * processes's memory to the new process's stack. The call to get_user_pages()
472 * ensures the destination page is created and not swapped out.
473 */
474 static int copy_strings(int argc, struct user_arg_ptr argv,
475 struct linux_binprm *bprm)
476 {
477 struct page *kmapped_page = NULL;
478 char *kaddr = NULL;
479 unsigned long kpos = 0;
480 int ret;
481
482 while (argc-- > 0) {
483 const char __user *str;
484 int len;
485 unsigned long pos;
486
487 ret = -EFAULT;
488 str = get_user_arg_ptr(argv, argc);
489 if (IS_ERR(str))
490 goto out;
491
492 len = strnlen_user(str, MAX_ARG_STRLEN);
493 if (!len)
494 goto out;
495
496 ret = -E2BIG;
497 if (!valid_arg_len(bprm, len))
498 goto out;
499
500 /* We're going to work our way backwords. */
501 pos = bprm->p;
502 str += len;
503 bprm->p -= len;
504
505 while (len > 0) {
506 int offset, bytes_to_copy;
507
508 if (fatal_signal_pending(current)) {
509 ret = -ERESTARTNOHAND;
510 goto out;
511 }
512 cond_resched();
513
514 offset = pos % PAGE_SIZE;
515 if (offset == 0)
516 offset = PAGE_SIZE;
517
518 bytes_to_copy = offset;
519 if (bytes_to_copy > len)
520 bytes_to_copy = len;
521
522 offset -= bytes_to_copy;
523 pos -= bytes_to_copy;
524 str -= bytes_to_copy;
525 len -= bytes_to_copy;
526
527 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
528 struct page *page;
529
530 page = get_arg_page(bprm, pos, 1);
531 if (!page) {
532 ret = -E2BIG;
533 goto out;
534 }
535
536 if (kmapped_page) {
537 flush_kernel_dcache_page(kmapped_page);
538 kunmap(kmapped_page);
539 put_arg_page(kmapped_page);
540 }
541 kmapped_page = page;
542 kaddr = kmap(kmapped_page);
543 kpos = pos & PAGE_MASK;
544 flush_arg_page(bprm, kpos, kmapped_page);
545 }
546 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
547 ret = -EFAULT;
548 goto out;
549 }
550 }
551 }
552 ret = 0;
553 out:
554 if (kmapped_page) {
555 flush_kernel_dcache_page(kmapped_page);
556 kunmap(kmapped_page);
557 put_arg_page(kmapped_page);
558 }
559 return ret;
560 }
561
562 /*
563 * Like copy_strings, but get argv and its values from kernel memory.
564 */
565 int copy_strings_kernel(int argc, const char *const *__argv,
566 struct linux_binprm *bprm)
567 {
568 int r;
569 mm_segment_t oldfs = get_fs();
570 struct user_arg_ptr argv = {
571 .ptr.native = (const char __user *const __user *)__argv,
572 };
573
574 set_fs(KERNEL_DS);
575 r = copy_strings(argc, argv, bprm);
576 set_fs(oldfs);
577
578 return r;
579 }
580 EXPORT_SYMBOL(copy_strings_kernel);
581
582 #ifdef CONFIG_MMU
583
584 /*
585 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
586 * the binfmt code determines where the new stack should reside, we shift it to
587 * its final location. The process proceeds as follows:
588 *
589 * 1) Use shift to calculate the new vma endpoints.
590 * 2) Extend vma to cover both the old and new ranges. This ensures the
591 * arguments passed to subsequent functions are consistent.
592 * 3) Move vma's page tables to the new range.
593 * 4) Free up any cleared pgd range.
594 * 5) Shrink the vma to cover only the new range.
595 */
596 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
597 {
598 struct mm_struct *mm = vma->vm_mm;
599 unsigned long old_start = vma->vm_start;
600 unsigned long old_end = vma->vm_end;
601 unsigned long length = old_end - old_start;
602 unsigned long new_start = old_start - shift;
603 unsigned long new_end = old_end - shift;
604 struct mmu_gather tlb;
605
606 BUG_ON(new_start > new_end);
607
608 /*
609 * ensure there are no vmas between where we want to go
610 * and where we are
611 */
612 if (vma != find_vma(mm, new_start))
613 return -EFAULT;
614
615 /*
616 * cover the whole range: [new_start, old_end)
617 */
618 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
619 return -ENOMEM;
620
621 /*
622 * move the page tables downwards, on failure we rely on
623 * process cleanup to remove whatever mess we made.
624 */
625 if (length != move_page_tables(vma, old_start,
626 vma, new_start, length, false))
627 return -ENOMEM;
628
629 lru_add_drain();
630 tlb_gather_mmu(&tlb, mm, old_start, old_end);
631 if (new_end > old_start) {
632 /*
633 * when the old and new regions overlap clear from new_end.
634 */
635 free_pgd_range(&tlb, new_end, old_end, new_end,
636 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637 } else {
638 /*
639 * otherwise, clean from old_start; this is done to not touch
640 * the address space in [new_end, old_start) some architectures
641 * have constraints on va-space that make this illegal (IA64) -
642 * for the others its just a little faster.
643 */
644 free_pgd_range(&tlb, old_start, old_end, new_end,
645 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
646 }
647 tlb_finish_mmu(&tlb, old_start, old_end);
648
649 /*
650 * Shrink the vma to just the new range. Always succeeds.
651 */
652 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
653
654 return 0;
655 }
656
657 /*
658 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
659 * the stack is optionally relocated, and some extra space is added.
660 */
661 int setup_arg_pages(struct linux_binprm *bprm,
662 unsigned long stack_top,
663 int executable_stack)
664 {
665 unsigned long ret;
666 unsigned long stack_shift;
667 struct mm_struct *mm = current->mm;
668 struct vm_area_struct *vma = bprm->vma;
669 struct vm_area_struct *prev = NULL;
670 unsigned long vm_flags;
671 unsigned long stack_base;
672 unsigned long stack_size;
673 unsigned long stack_expand;
674 unsigned long rlim_stack;
675
676 #ifdef CONFIG_STACK_GROWSUP
677 /* Limit stack size */
678 stack_base = rlimit_max(RLIMIT_STACK);
679 if (stack_base > STACK_SIZE_MAX)
680 stack_base = STACK_SIZE_MAX;
681
682 /* Make sure we didn't let the argument array grow too large. */
683 if (vma->vm_end - vma->vm_start > stack_base)
684 return -ENOMEM;
685
686 stack_base = PAGE_ALIGN(stack_top - stack_base);
687
688 stack_shift = vma->vm_start - stack_base;
689 mm->arg_start = bprm->p - stack_shift;
690 bprm->p = vma->vm_end - stack_shift;
691 #else
692 stack_top = arch_align_stack(stack_top);
693 stack_top = PAGE_ALIGN(stack_top);
694
695 if (unlikely(stack_top < mmap_min_addr) ||
696 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
697 return -ENOMEM;
698
699 stack_shift = vma->vm_end - stack_top;
700
701 bprm->p -= stack_shift;
702 mm->arg_start = bprm->p;
703 #endif
704
705 if (bprm->loader)
706 bprm->loader -= stack_shift;
707 bprm->exec -= stack_shift;
708
709 down_write(&mm->mmap_sem);
710 vm_flags = VM_STACK_FLAGS;
711
712 /*
713 * Adjust stack execute permissions; explicitly enable for
714 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
715 * (arch default) otherwise.
716 */
717 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
718 vm_flags |= VM_EXEC;
719 else if (executable_stack == EXSTACK_DISABLE_X)
720 vm_flags &= ~VM_EXEC;
721 vm_flags |= mm->def_flags;
722 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
723
724 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
725 vm_flags);
726 if (ret)
727 goto out_unlock;
728 BUG_ON(prev != vma);
729
730 /* Move stack pages down in memory. */
731 if (stack_shift) {
732 ret = shift_arg_pages(vma, stack_shift);
733 if (ret)
734 goto out_unlock;
735 }
736
737 /* mprotect_fixup is overkill to remove the temporary stack flags */
738 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
739
740 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
741 stack_size = vma->vm_end - vma->vm_start;
742 /*
743 * Align this down to a page boundary as expand_stack
744 * will align it up.
745 */
746 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
747 #ifdef CONFIG_STACK_GROWSUP
748 if (stack_size + stack_expand > rlim_stack)
749 stack_base = vma->vm_start + rlim_stack;
750 else
751 stack_base = vma->vm_end + stack_expand;
752 #else
753 if (stack_size + stack_expand > rlim_stack)
754 stack_base = vma->vm_end - rlim_stack;
755 else
756 stack_base = vma->vm_start - stack_expand;
757 #endif
758 current->mm->start_stack = bprm->p;
759 ret = expand_stack(vma, stack_base);
760 if (ret)
761 ret = -EFAULT;
762
763 out_unlock:
764 up_write(&mm->mmap_sem);
765 return ret;
766 }
767 EXPORT_SYMBOL(setup_arg_pages);
768
769 #endif /* CONFIG_MMU */
770
771 struct file *open_exec(const char *name)
772 {
773 struct file *file;
774 int err;
775 struct filename tmp = { .name = name };
776 static const struct open_flags open_exec_flags = {
777 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
778 .acc_mode = MAY_EXEC | MAY_OPEN,
779 .intent = LOOKUP_OPEN
780 };
781
782 file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags, LOOKUP_FOLLOW);
783 if (IS_ERR(file))
784 goto out;
785
786 err = -EACCES;
787 if (!S_ISREG(file_inode(file)->i_mode))
788 goto exit;
789
790 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
791 goto exit;
792
793 fsnotify_open(file);
794
795 err = deny_write_access(file);
796 if (err)
797 goto exit;
798
799 out:
800 return file;
801
802 exit:
803 fput(file);
804 return ERR_PTR(err);
805 }
806 EXPORT_SYMBOL(open_exec);
807
808 int kernel_read(struct file *file, loff_t offset,
809 char *addr, unsigned long count)
810 {
811 mm_segment_t old_fs;
812 loff_t pos = offset;
813 int result;
814
815 old_fs = get_fs();
816 set_fs(get_ds());
817 /* The cast to a user pointer is valid due to the set_fs() */
818 result = vfs_read(file, (void __user *)addr, count, &pos);
819 set_fs(old_fs);
820 return result;
821 }
822
823 EXPORT_SYMBOL(kernel_read);
824
825 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
826 {
827 ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
828 if (res > 0)
829 flush_icache_range(addr, addr + len);
830 return res;
831 }
832 EXPORT_SYMBOL(read_code);
833
834 static int exec_mmap(struct mm_struct *mm)
835 {
836 struct task_struct *tsk;
837 struct mm_struct * old_mm, *active_mm;
838
839 /* Notify parent that we're no longer interested in the old VM */
840 tsk = current;
841 old_mm = current->mm;
842 mm_release(tsk, old_mm);
843
844 if (old_mm) {
845 sync_mm_rss(old_mm);
846 /*
847 * Make sure that if there is a core dump in progress
848 * for the old mm, we get out and die instead of going
849 * through with the exec. We must hold mmap_sem around
850 * checking core_state and changing tsk->mm.
851 */
852 down_read(&old_mm->mmap_sem);
853 if (unlikely(old_mm->core_state)) {
854 up_read(&old_mm->mmap_sem);
855 return -EINTR;
856 }
857 }
858 task_lock(tsk);
859 active_mm = tsk->active_mm;
860 tsk->mm = mm;
861 tsk->active_mm = mm;
862 activate_mm(active_mm, mm);
863 task_unlock(tsk);
864 arch_pick_mmap_layout(mm);
865 if (old_mm) {
866 up_read(&old_mm->mmap_sem);
867 BUG_ON(active_mm != old_mm);
868 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
869 mm_update_next_owner(old_mm);
870 mmput(old_mm);
871 return 0;
872 }
873 mmdrop(active_mm);
874 return 0;
875 }
876
877 /*
878 * This function makes sure the current process has its own signal table,
879 * so that flush_signal_handlers can later reset the handlers without
880 * disturbing other processes. (Other processes might share the signal
881 * table via the CLONE_SIGHAND option to clone().)
882 */
883 static int de_thread(struct task_struct *tsk)
884 {
885 struct signal_struct *sig = tsk->signal;
886 struct sighand_struct *oldsighand = tsk->sighand;
887 spinlock_t *lock = &oldsighand->siglock;
888
889 if (thread_group_empty(tsk))
890 goto no_thread_group;
891
892 /*
893 * Kill all other threads in the thread group.
894 */
895 spin_lock_irq(lock);
896 if (signal_group_exit(sig)) {
897 /*
898 * Another group action in progress, just
899 * return so that the signal is processed.
900 */
901 spin_unlock_irq(lock);
902 return -EAGAIN;
903 }
904
905 sig->group_exit_task = tsk;
906 sig->notify_count = zap_other_threads(tsk);
907 if (!thread_group_leader(tsk))
908 sig->notify_count--;
909
910 while (sig->notify_count) {
911 __set_current_state(TASK_KILLABLE);
912 spin_unlock_irq(lock);
913 schedule();
914 if (unlikely(__fatal_signal_pending(tsk)))
915 goto killed;
916 spin_lock_irq(lock);
917 }
918 spin_unlock_irq(lock);
919
920 /*
921 * At this point all other threads have exited, all we have to
922 * do is to wait for the thread group leader to become inactive,
923 * and to assume its PID:
924 */
925 if (!thread_group_leader(tsk)) {
926 struct task_struct *leader = tsk->group_leader;
927
928 sig->notify_count = -1; /* for exit_notify() */
929 for (;;) {
930 threadgroup_change_begin(tsk);
931 write_lock_irq(&tasklist_lock);
932 if (likely(leader->exit_state))
933 break;
934 __set_current_state(TASK_KILLABLE);
935 write_unlock_irq(&tasklist_lock);
936 threadgroup_change_end(tsk);
937 schedule();
938 if (unlikely(__fatal_signal_pending(tsk)))
939 goto killed;
940 }
941
942 /*
943 * The only record we have of the real-time age of a
944 * process, regardless of execs it's done, is start_time.
945 * All the past CPU time is accumulated in signal_struct
946 * from sister threads now dead. But in this non-leader
947 * exec, nothing survives from the original leader thread,
948 * whose birth marks the true age of this process now.
949 * When we take on its identity by switching to its PID, we
950 * also take its birthdate (always earlier than our own).
951 */
952 tsk->start_time = leader->start_time;
953
954 BUG_ON(!same_thread_group(leader, tsk));
955 BUG_ON(has_group_leader_pid(tsk));
956 /*
957 * An exec() starts a new thread group with the
958 * TGID of the previous thread group. Rehash the
959 * two threads with a switched PID, and release
960 * the former thread group leader:
961 */
962
963 /* Become a process group leader with the old leader's pid.
964 * The old leader becomes a thread of the this thread group.
965 * Note: The old leader also uses this pid until release_task
966 * is called. Odd but simple and correct.
967 */
968 detach_pid(tsk, PIDTYPE_PID);
969 tsk->pid = leader->pid;
970 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
971 transfer_pid(leader, tsk, PIDTYPE_PGID);
972 transfer_pid(leader, tsk, PIDTYPE_SID);
973
974 list_replace_rcu(&leader->tasks, &tsk->tasks);
975 list_replace_init(&leader->sibling, &tsk->sibling);
976
977 tsk->group_leader = tsk;
978 leader->group_leader = tsk;
979
980 tsk->exit_signal = SIGCHLD;
981 leader->exit_signal = -1;
982
983 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
984 leader->exit_state = EXIT_DEAD;
985
986 /*
987 * We are going to release_task()->ptrace_unlink() silently,
988 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
989 * the tracer wont't block again waiting for this thread.
990 */
991 if (unlikely(leader->ptrace))
992 __wake_up_parent(leader, leader->parent);
993 write_unlock_irq(&tasklist_lock);
994 threadgroup_change_end(tsk);
995
996 release_task(leader);
997 }
998
999 sig->group_exit_task = NULL;
1000 sig->notify_count = 0;
1001
1002 no_thread_group:
1003 /* we have changed execution domain */
1004 tsk->exit_signal = SIGCHLD;
1005
1006 exit_itimers(sig);
1007 flush_itimer_signals();
1008
1009 if (atomic_read(&oldsighand->count) != 1) {
1010 struct sighand_struct *newsighand;
1011 /*
1012 * This ->sighand is shared with the CLONE_SIGHAND
1013 * but not CLONE_THREAD task, switch to the new one.
1014 */
1015 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1016 if (!newsighand)
1017 return -ENOMEM;
1018
1019 atomic_set(&newsighand->count, 1);
1020 memcpy(newsighand->action, oldsighand->action,
1021 sizeof(newsighand->action));
1022
1023 write_lock_irq(&tasklist_lock);
1024 spin_lock(&oldsighand->siglock);
1025 rcu_assign_pointer(tsk->sighand, newsighand);
1026 spin_unlock(&oldsighand->siglock);
1027 write_unlock_irq(&tasklist_lock);
1028
1029 __cleanup_sighand(oldsighand);
1030 }
1031
1032 BUG_ON(!thread_group_leader(tsk));
1033 return 0;
1034
1035 killed:
1036 /* protects against exit_notify() and __exit_signal() */
1037 read_lock(&tasklist_lock);
1038 sig->group_exit_task = NULL;
1039 sig->notify_count = 0;
1040 read_unlock(&tasklist_lock);
1041 return -EAGAIN;
1042 }
1043
1044 char *get_task_comm(char *buf, struct task_struct *tsk)
1045 {
1046 /* buf must be at least sizeof(tsk->comm) in size */
1047 task_lock(tsk);
1048 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1049 task_unlock(tsk);
1050 return buf;
1051 }
1052 EXPORT_SYMBOL_GPL(get_task_comm);
1053
1054 /*
1055 * These functions flushes out all traces of the currently running executable
1056 * so that a new one can be started
1057 */
1058
1059 void set_task_comm(struct task_struct *tsk, char *buf)
1060 {
1061 task_lock(tsk);
1062 trace_task_rename(tsk, buf);
1063 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1064 task_unlock(tsk);
1065 perf_event_comm(tsk);
1066 }
1067
1068 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1069 {
1070 int i, ch;
1071
1072 /* Copies the binary name from after last slash */
1073 for (i = 0; (ch = *(fn++)) != '\0';) {
1074 if (ch == '/')
1075 i = 0; /* overwrite what we wrote */
1076 else
1077 if (i < len - 1)
1078 tcomm[i++] = ch;
1079 }
1080 tcomm[i] = '\0';
1081 }
1082
1083 int flush_old_exec(struct linux_binprm * bprm)
1084 {
1085 int retval;
1086
1087 /*
1088 * Make sure we have a private signal table and that
1089 * we are unassociated from the previous thread group.
1090 */
1091 retval = de_thread(current);
1092 if (retval)
1093 goto out;
1094
1095 set_mm_exe_file(bprm->mm, bprm->file);
1096
1097 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1098 /*
1099 * Release all of the old mmap stuff
1100 */
1101 acct_arg_size(bprm, 0);
1102 retval = exec_mmap(bprm->mm);
1103 if (retval)
1104 goto out;
1105
1106 bprm->mm = NULL; /* We're using it now */
1107
1108 set_fs(USER_DS);
1109 current->flags &=
1110 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1111 flush_thread();
1112 current->personality &= ~bprm->per_clear;
1113
1114 /*
1115 * We have to apply CLOEXEC before we change whether the process is
1116 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1117 * trying to access the should-be-closed file descriptors of a process
1118 * undergoing exec(2).
1119 */
1120 do_close_on_exec(current->files);
1121 return 0;
1122
1123 out:
1124 return retval;
1125 }
1126 EXPORT_SYMBOL(flush_old_exec);
1127
1128 void would_dump(struct linux_binprm *bprm, struct file *file)
1129 {
1130 if (inode_permission(file_inode(file), MAY_READ) < 0)
1131 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1132 }
1133 EXPORT_SYMBOL(would_dump);
1134
1135 void setup_new_exec(struct linux_binprm * bprm)
1136 {
1137 arch_pick_mmap_layout(current->mm);
1138
1139 /* This is the point of no return */
1140 current->sas_ss_sp = current->sas_ss_size = 0;
1141
1142 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1143 set_dumpable(current->mm, SUID_DUMP_USER);
1144 else
1145 set_dumpable(current->mm, suid_dumpable);
1146
1147 set_task_comm(current, bprm->tcomm);
1148
1149 /* Set the new mm task size. We have to do that late because it may
1150 * depend on TIF_32BIT which is only updated in flush_thread() on
1151 * some architectures like powerpc
1152 */
1153 current->mm->task_size = TASK_SIZE;
1154
1155 /* install the new credentials */
1156 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1157 !gid_eq(bprm->cred->gid, current_egid())) {
1158 current->pdeath_signal = 0;
1159 } else {
1160 would_dump(bprm, bprm->file);
1161 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1162 set_dumpable(current->mm, suid_dumpable);
1163 }
1164
1165 /* An exec changes our domain. We are no longer part of the thread
1166 group */
1167
1168 current->self_exec_id++;
1169
1170 flush_signal_handlers(current, 0);
1171 }
1172 EXPORT_SYMBOL(setup_new_exec);
1173
1174 /*
1175 * Prepare credentials and lock ->cred_guard_mutex.
1176 * install_exec_creds() commits the new creds and drops the lock.
1177 * Or, if exec fails before, free_bprm() should release ->cred and
1178 * and unlock.
1179 */
1180 int prepare_bprm_creds(struct linux_binprm *bprm)
1181 {
1182 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1183 return -ERESTARTNOINTR;
1184
1185 bprm->cred = prepare_exec_creds();
1186 if (likely(bprm->cred))
1187 return 0;
1188
1189 mutex_unlock(&current->signal->cred_guard_mutex);
1190 return -ENOMEM;
1191 }
1192
1193 void free_bprm(struct linux_binprm *bprm)
1194 {
1195 free_arg_pages(bprm);
1196 if (bprm->cred) {
1197 mutex_unlock(&current->signal->cred_guard_mutex);
1198 abort_creds(bprm->cred);
1199 }
1200 /* If a binfmt changed the interp, free it. */
1201 if (bprm->interp != bprm->filename)
1202 kfree(bprm->interp);
1203 kfree(bprm);
1204 }
1205
1206 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1207 {
1208 /* If a binfmt changed the interp, free it first. */
1209 if (bprm->interp != bprm->filename)
1210 kfree(bprm->interp);
1211 bprm->interp = kstrdup(interp, GFP_KERNEL);
1212 if (!bprm->interp)
1213 return -ENOMEM;
1214 return 0;
1215 }
1216 EXPORT_SYMBOL(bprm_change_interp);
1217
1218 /*
1219 * install the new credentials for this executable
1220 */
1221 void install_exec_creds(struct linux_binprm *bprm)
1222 {
1223 security_bprm_committing_creds(bprm);
1224
1225 commit_creds(bprm->cred);
1226 bprm->cred = NULL;
1227
1228 /*
1229 * Disable monitoring for regular users
1230 * when executing setuid binaries. Must
1231 * wait until new credentials are committed
1232 * by commit_creds() above
1233 */
1234 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1235 perf_event_exit_task(current);
1236 /*
1237 * cred_guard_mutex must be held at least to this point to prevent
1238 * ptrace_attach() from altering our determination of the task's
1239 * credentials; any time after this it may be unlocked.
1240 */
1241 security_bprm_committed_creds(bprm);
1242 mutex_unlock(&current->signal->cred_guard_mutex);
1243 }
1244 EXPORT_SYMBOL(install_exec_creds);
1245
1246 /*
1247 * determine how safe it is to execute the proposed program
1248 * - the caller must hold ->cred_guard_mutex to protect against
1249 * PTRACE_ATTACH or seccomp thread-sync
1250 */
1251 static int check_unsafe_exec(struct linux_binprm *bprm)
1252 {
1253 struct task_struct *p = current, *t;
1254 unsigned n_fs;
1255 int res = 0;
1256
1257 if (p->ptrace) {
1258 if (p->ptrace & PT_PTRACE_CAP)
1259 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1260 else
1261 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1262 }
1263
1264 /*
1265 * This isn't strictly necessary, but it makes it harder for LSMs to
1266 * mess up.
1267 */
1268 if (task_no_new_privs(current))
1269 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1270
1271 n_fs = 1;
1272 spin_lock(&p->fs->lock);
1273 rcu_read_lock();
1274 for (t = next_thread(p); t != p; t = next_thread(t)) {
1275 if (t->fs == p->fs)
1276 n_fs++;
1277 }
1278 rcu_read_unlock();
1279
1280 if (p->fs->users > n_fs) {
1281 bprm->unsafe |= LSM_UNSAFE_SHARE;
1282 } else {
1283 res = -EAGAIN;
1284 if (!p->fs->in_exec) {
1285 p->fs->in_exec = 1;
1286 res = 1;
1287 }
1288 }
1289 spin_unlock(&p->fs->lock);
1290
1291 return res;
1292 }
1293
1294 static void bprm_fill_uid(struct linux_binprm *bprm)
1295 {
1296 struct inode *inode;
1297 unsigned int mode;
1298 kuid_t uid;
1299 kgid_t gid;
1300
1301 /* clear any previous set[ug]id data from a previous binary */
1302 bprm->cred->euid = current_euid();
1303 bprm->cred->egid = current_egid();
1304
1305 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1306 return;
1307
1308 if (current->no_new_privs)
1309 return;
1310
1311 inode = file_inode(bprm->file);
1312 mode = ACCESS_ONCE(inode->i_mode);
1313 if (!(mode & (S_ISUID|S_ISGID)))
1314 return;
1315
1316 /* Be careful if suid/sgid is set */
1317 mutex_lock(&inode->i_mutex);
1318
1319 /* reload atomically mode/uid/gid now that lock held */
1320 mode = inode->i_mode;
1321 uid = inode->i_uid;
1322 gid = inode->i_gid;
1323 mutex_unlock(&inode->i_mutex);
1324
1325 /* We ignore suid/sgid if there are no mappings for them in the ns */
1326 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1327 !kgid_has_mapping(bprm->cred->user_ns, gid))
1328 return;
1329
1330 if (mode & S_ISUID) {
1331 bprm->per_clear |= PER_CLEAR_ON_SETID;
1332 bprm->cred->euid = uid;
1333 }
1334
1335 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1336 bprm->per_clear |= PER_CLEAR_ON_SETID;
1337 bprm->cred->egid = gid;
1338 }
1339 }
1340
1341 /*
1342 * Fill the binprm structure from the inode.
1343 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1344 *
1345 * This may be called multiple times for binary chains (scripts for example).
1346 */
1347 int prepare_binprm(struct linux_binprm *bprm)
1348 {
1349 int retval;
1350
1351 if (bprm->file->f_op == NULL)
1352 return -EACCES;
1353
1354 bprm_fill_uid(bprm);
1355
1356 /* fill in binprm security blob */
1357 retval = security_bprm_set_creds(bprm);
1358 if (retval)
1359 return retval;
1360 bprm->cred_prepared = 1;
1361
1362 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1363 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1364 }
1365
1366 EXPORT_SYMBOL(prepare_binprm);
1367
1368 /*
1369 * Arguments are '\0' separated strings found at the location bprm->p
1370 * points to; chop off the first by relocating brpm->p to right after
1371 * the first '\0' encountered.
1372 */
1373 int remove_arg_zero(struct linux_binprm *bprm)
1374 {
1375 int ret = 0;
1376 unsigned long offset;
1377 char *kaddr;
1378 struct page *page;
1379
1380 if (!bprm->argc)
1381 return 0;
1382
1383 do {
1384 offset = bprm->p & ~PAGE_MASK;
1385 page = get_arg_page(bprm, bprm->p, 0);
1386 if (!page) {
1387 ret = -EFAULT;
1388 goto out;
1389 }
1390 kaddr = kmap_atomic(page);
1391
1392 for (; offset < PAGE_SIZE && kaddr[offset];
1393 offset++, bprm->p++)
1394 ;
1395
1396 kunmap_atomic(kaddr);
1397 put_arg_page(page);
1398
1399 if (offset == PAGE_SIZE)
1400 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1401 } while (offset == PAGE_SIZE);
1402
1403 bprm->p++;
1404 bprm->argc--;
1405 ret = 0;
1406
1407 out:
1408 return ret;
1409 }
1410 EXPORT_SYMBOL(remove_arg_zero);
1411
1412 /*
1413 * cycle the list of binary formats handler, until one recognizes the image
1414 */
1415 int search_binary_handler(struct linux_binprm *bprm)
1416 {
1417 unsigned int depth = bprm->recursion_depth;
1418 int try,retval;
1419 struct linux_binfmt *fmt;
1420 pid_t old_pid, old_vpid;
1421
1422 /* This allows 4 levels of binfmt rewrites before failing hard. */
1423 if (depth > 5)
1424 return -ELOOP;
1425
1426 retval = security_bprm_check(bprm);
1427 if (retval)
1428 return retval;
1429
1430 retval = audit_bprm(bprm);
1431 if (retval)
1432 return retval;
1433
1434 /* Need to fetch pid before load_binary changes it */
1435 old_pid = current->pid;
1436 rcu_read_lock();
1437 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1438 rcu_read_unlock();
1439
1440 retval = -ENOENT;
1441 for (try=0; try<2; try++) {
1442 read_lock(&binfmt_lock);
1443 list_for_each_entry(fmt, &formats, lh) {
1444 int (*fn)(struct linux_binprm *) = fmt->load_binary;
1445 if (!fn)
1446 continue;
1447 if (!try_module_get(fmt->module))
1448 continue;
1449 read_unlock(&binfmt_lock);
1450 bprm->recursion_depth = depth + 1;
1451 retval = fn(bprm);
1452 bprm->recursion_depth = depth;
1453 if (retval >= 0) {
1454 if (depth == 0) {
1455 trace_sched_process_exec(current, old_pid, bprm);
1456 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1457 }
1458 put_binfmt(fmt);
1459 allow_write_access(bprm->file);
1460 if (bprm->file)
1461 fput(bprm->file);
1462 bprm->file = NULL;
1463 current->did_exec = 1;
1464 proc_exec_connector(current);
1465 return retval;
1466 }
1467 read_lock(&binfmt_lock);
1468 put_binfmt(fmt);
1469 if (retval != -ENOEXEC || bprm->mm == NULL)
1470 break;
1471 if (!bprm->file) {
1472 read_unlock(&binfmt_lock);
1473 return retval;
1474 }
1475 }
1476 read_unlock(&binfmt_lock);
1477 #ifdef CONFIG_MODULES
1478 if (retval != -ENOEXEC || bprm->mm == NULL) {
1479 break;
1480 } else {
1481 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1482 if (printable(bprm->buf[0]) &&
1483 printable(bprm->buf[1]) &&
1484 printable(bprm->buf[2]) &&
1485 printable(bprm->buf[3]))
1486 break; /* -ENOEXEC */
1487 if (try)
1488 break; /* -ENOEXEC */
1489 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1490 }
1491 #else
1492 break;
1493 #endif
1494 }
1495 return retval;
1496 }
1497
1498 EXPORT_SYMBOL(search_binary_handler);
1499
1500 /*
1501 * sys_execve() executes a new program.
1502 */
1503 static int do_execve_common(const char *filename,
1504 struct user_arg_ptr argv,
1505 struct user_arg_ptr envp)
1506 {
1507 struct linux_binprm *bprm;
1508 struct file *file;
1509 struct files_struct *displaced;
1510 bool clear_in_exec;
1511 int retval;
1512 const struct cred *cred = current_cred();
1513
1514 /*
1515 * We move the actual failure in case of RLIMIT_NPROC excess from
1516 * set*uid() to execve() because too many poorly written programs
1517 * don't check setuid() return code. Here we additionally recheck
1518 * whether NPROC limit is still exceeded.
1519 */
1520 if ((current->flags & PF_NPROC_EXCEEDED) &&
1521 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1522 retval = -EAGAIN;
1523 goto out_ret;
1524 }
1525
1526 /* We're below the limit (still or again), so we don't want to make
1527 * further execve() calls fail. */
1528 current->flags &= ~PF_NPROC_EXCEEDED;
1529
1530 retval = unshare_files(&displaced);
1531 if (retval)
1532 goto out_ret;
1533
1534 retval = -ENOMEM;
1535 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1536 if (!bprm)
1537 goto out_files;
1538
1539 retval = prepare_bprm_creds(bprm);
1540 if (retval)
1541 goto out_free;
1542
1543 retval = check_unsafe_exec(bprm);
1544 if (retval < 0)
1545 goto out_free;
1546 clear_in_exec = retval;
1547 current->in_execve = 1;
1548
1549 file = open_exec(filename);
1550 retval = PTR_ERR(file);
1551 if (IS_ERR(file))
1552 goto out_unmark;
1553
1554 sched_exec();
1555
1556 bprm->file = file;
1557 bprm->filename = filename;
1558 bprm->interp = filename;
1559
1560 retval = bprm_mm_init(bprm);
1561 if (retval)
1562 goto out_file;
1563
1564 bprm->argc = count(argv, MAX_ARG_STRINGS);
1565 if ((retval = bprm->argc) < 0)
1566 goto out;
1567
1568 bprm->envc = count(envp, MAX_ARG_STRINGS);
1569 if ((retval = bprm->envc) < 0)
1570 goto out;
1571
1572 retval = prepare_binprm(bprm);
1573 if (retval < 0)
1574 goto out;
1575
1576 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1577 if (retval < 0)
1578 goto out;
1579
1580 bprm->exec = bprm->p;
1581 retval = copy_strings(bprm->envc, envp, bprm);
1582 if (retval < 0)
1583 goto out;
1584
1585 retval = copy_strings(bprm->argc, argv, bprm);
1586 if (retval < 0)
1587 goto out;
1588
1589 retval = search_binary_handler(bprm);
1590 if (retval < 0)
1591 goto out;
1592
1593 /* execve succeeded */
1594 current->fs->in_exec = 0;
1595 current->in_execve = 0;
1596 acct_update_integrals(current);
1597 free_bprm(bprm);
1598 if (displaced)
1599 put_files_struct(displaced);
1600 return retval;
1601
1602 out:
1603 if (bprm->mm) {
1604 acct_arg_size(bprm, 0);
1605 mmput(bprm->mm);
1606 }
1607
1608 out_file:
1609 if (bprm->file) {
1610 allow_write_access(bprm->file);
1611 fput(bprm->file);
1612 }
1613
1614 out_unmark:
1615 if (clear_in_exec)
1616 current->fs->in_exec = 0;
1617 current->in_execve = 0;
1618
1619 out_free:
1620 free_bprm(bprm);
1621
1622 out_files:
1623 if (displaced)
1624 reset_files_struct(displaced);
1625 out_ret:
1626 return retval;
1627 }
1628
1629 int do_execve(const char *filename,
1630 const char __user *const __user *__argv,
1631 const char __user *const __user *__envp)
1632 {
1633 struct user_arg_ptr argv = { .ptr.native = __argv };
1634 struct user_arg_ptr envp = { .ptr.native = __envp };
1635 return do_execve_common(filename, argv, envp);
1636 }
1637
1638 #ifdef CONFIG_COMPAT
1639 static int compat_do_execve(const char *filename,
1640 const compat_uptr_t __user *__argv,
1641 const compat_uptr_t __user *__envp)
1642 {
1643 struct user_arg_ptr argv = {
1644 .is_compat = true,
1645 .ptr.compat = __argv,
1646 };
1647 struct user_arg_ptr envp = {
1648 .is_compat = true,
1649 .ptr.compat = __envp,
1650 };
1651 return do_execve_common(filename, argv, envp);
1652 }
1653 #endif
1654
1655 void set_binfmt(struct linux_binfmt *new)
1656 {
1657 struct mm_struct *mm = current->mm;
1658
1659 if (mm->binfmt)
1660 module_put(mm->binfmt->module);
1661
1662 mm->binfmt = new;
1663 if (new)
1664 __module_get(new->module);
1665 }
1666
1667 EXPORT_SYMBOL(set_binfmt);
1668
1669 /*
1670 * set_dumpable converts traditional three-value dumpable to two flags and
1671 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1672 * these bits are not changed atomically. So get_dumpable can observe the
1673 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1674 * return either old dumpable or new one by paying attention to the order of
1675 * modifying the bits.
1676 *
1677 * dumpable | mm->flags (binary)
1678 * old new | initial interim final
1679 * ---------+-----------------------
1680 * 0 1 | 00 01 01
1681 * 0 2 | 00 10(*) 11
1682 * 1 0 | 01 00 00
1683 * 1 2 | 01 11 11
1684 * 2 0 | 11 10(*) 00
1685 * 2 1 | 11 11 01
1686 *
1687 * (*) get_dumpable regards interim value of 10 as 11.
1688 */
1689 void set_dumpable(struct mm_struct *mm, int value)
1690 {
1691 switch (value) {
1692 case SUID_DUMP_DISABLE:
1693 clear_bit(MMF_DUMPABLE, &mm->flags);
1694 smp_wmb();
1695 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1696 break;
1697 case SUID_DUMP_USER:
1698 set_bit(MMF_DUMPABLE, &mm->flags);
1699 smp_wmb();
1700 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1701 break;
1702 case SUID_DUMP_ROOT:
1703 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1704 smp_wmb();
1705 set_bit(MMF_DUMPABLE, &mm->flags);
1706 break;
1707 }
1708 }
1709
1710 int __get_dumpable(unsigned long mm_flags)
1711 {
1712 int ret;
1713
1714 ret = mm_flags & MMF_DUMPABLE_MASK;
1715 return (ret > SUID_DUMP_USER) ? SUID_DUMP_ROOT : ret;
1716 }
1717
1718 /*
1719 * This returns the actual value of the suid_dumpable flag. For things
1720 * that are using this for checking for privilege transitions, it must
1721 * test against SUID_DUMP_USER rather than treating it as a boolean
1722 * value.
1723 */
1724 int get_dumpable(struct mm_struct *mm)
1725 {
1726 return __get_dumpable(mm->flags);
1727 }
1728
1729 SYSCALL_DEFINE3(execve,
1730 const char __user *, filename,
1731 const char __user *const __user *, argv,
1732 const char __user *const __user *, envp)
1733 {
1734 struct filename *path = getname(filename);
1735 int error = PTR_ERR(path);
1736 if (!IS_ERR(path)) {
1737 error = do_execve(path->name, argv, envp);
1738 putname(path);
1739 }
1740 return error;
1741 }
1742 #ifdef CONFIG_COMPAT
1743 asmlinkage long compat_sys_execve(const char __user * filename,
1744 const compat_uptr_t __user * argv,
1745 const compat_uptr_t __user * envp)
1746 {
1747 struct filename *path = getname(filename);
1748 int error = PTR_ERR(path);
1749 if (!IS_ERR(path)) {
1750 error = compat_do_execve(path->name, argv, envp);
1751 putname(path);
1752 }
1753 return error;
1754 }
1755 #endif