Merge tag 'for-v3.10-fixes' of git://git.infradead.org/battery-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44
45 /*
46 * LOCKING:
47 * There are three level of locking required by epoll :
48 *
49 * 1) epmutex (mutex)
50 * 2) ep->mtx (mutex)
51 * 3) ep->lock (spinlock)
52 *
53 * The acquire order is the one listed above, from 1 to 3.
54 * We need a spinlock (ep->lock) because we manipulate objects
55 * from inside the poll callback, that might be triggered from
56 * a wake_up() that in turn might be called from IRQ context.
57 * So we can't sleep inside the poll callback and hence we need
58 * a spinlock. During the event transfer loop (from kernel to
59 * user space) we could end up sleeping due a copy_to_user(), so
60 * we need a lock that will allow us to sleep. This lock is a
61 * mutex (ep->mtx). It is acquired during the event transfer loop,
62 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
63 * Then we also need a global mutex to serialize eventpoll_release_file()
64 * and ep_free().
65 * This mutex is acquired by ep_free() during the epoll file
66 * cleanup path and it is also acquired by eventpoll_release_file()
67 * if a file has been pushed inside an epoll set and it is then
68 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
69 * It is also acquired when inserting an epoll fd onto another epoll
70 * fd. We do this so that we walk the epoll tree and ensure that this
71 * insertion does not create a cycle of epoll file descriptors, which
72 * could lead to deadlock. We need a global mutex to prevent two
73 * simultaneous inserts (A into B and B into A) from racing and
74 * constructing a cycle without either insert observing that it is
75 * going to.
76 * It is necessary to acquire multiple "ep->mtx"es at once in the
77 * case when one epoll fd is added to another. In this case, we
78 * always acquire the locks in the order of nesting (i.e. after
79 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
80 * before e2->mtx). Since we disallow cycles of epoll file
81 * descriptors, this ensures that the mutexes are well-ordered. In
82 * order to communicate this nesting to lockdep, when walking a tree
83 * of epoll file descriptors, we use the current recursion depth as
84 * the lockdep subkey.
85 * It is possible to drop the "ep->mtx" and to use the global
86 * mutex "epmutex" (together with "ep->lock") to have it working,
87 * but having "ep->mtx" will make the interface more scalable.
88 * Events that require holding "epmutex" are very rare, while for
89 * normal operations the epoll private "ep->mtx" will guarantee
90 * a better scalability.
91 */
92
93 /* Epoll private bits inside the event mask */
94 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
95
96 /* Maximum number of nesting allowed inside epoll sets */
97 #define EP_MAX_NESTS 4
98
99 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
100
101 #define EP_UNACTIVE_PTR ((void *) -1L)
102
103 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
104
105 struct epoll_filefd {
106 struct file *file;
107 int fd;
108 } __packed;
109
110 /*
111 * Structure used to track possible nested calls, for too deep recursions
112 * and loop cycles.
113 */
114 struct nested_call_node {
115 struct list_head llink;
116 void *cookie;
117 void *ctx;
118 };
119
120 /*
121 * This structure is used as collector for nested calls, to check for
122 * maximum recursion dept and loop cycles.
123 */
124 struct nested_calls {
125 struct list_head tasks_call_list;
126 spinlock_t lock;
127 };
128
129 /*
130 * Each file descriptor added to the eventpoll interface will
131 * have an entry of this type linked to the "rbr" RB tree.
132 * Avoid increasing the size of this struct, there can be many thousands
133 * of these on a server and we do not want this to take another cache line.
134 */
135 struct epitem {
136 /* RB tree node used to link this structure to the eventpoll RB tree */
137 struct rb_node rbn;
138
139 /* List header used to link this structure to the eventpoll ready list */
140 struct list_head rdllink;
141
142 /*
143 * Works together "struct eventpoll"->ovflist in keeping the
144 * single linked chain of items.
145 */
146 struct epitem *next;
147
148 /* The file descriptor information this item refers to */
149 struct epoll_filefd ffd;
150
151 /* Number of active wait queue attached to poll operations */
152 int nwait;
153
154 /* List containing poll wait queues */
155 struct list_head pwqlist;
156
157 /* The "container" of this item */
158 struct eventpoll *ep;
159
160 /* List header used to link this item to the "struct file" items list */
161 struct list_head fllink;
162
163 /* wakeup_source used when EPOLLWAKEUP is set */
164 struct wakeup_source __rcu *ws;
165
166 /* The structure that describe the interested events and the source fd */
167 struct epoll_event event;
168 };
169
170 /*
171 * This structure is stored inside the "private_data" member of the file
172 * structure and represents the main data structure for the eventpoll
173 * interface.
174 */
175 struct eventpoll {
176 /* Protect the access to this structure */
177 spinlock_t lock;
178
179 /*
180 * This mutex is used to ensure that files are not removed
181 * while epoll is using them. This is held during the event
182 * collection loop, the file cleanup path, the epoll file exit
183 * code and the ctl operations.
184 */
185 struct mutex mtx;
186
187 /* Wait queue used by sys_epoll_wait() */
188 wait_queue_head_t wq;
189
190 /* Wait queue used by file->poll() */
191 wait_queue_head_t poll_wait;
192
193 /* List of ready file descriptors */
194 struct list_head rdllist;
195
196 /* RB tree root used to store monitored fd structs */
197 struct rb_root rbr;
198
199 /*
200 * This is a single linked list that chains all the "struct epitem" that
201 * happened while transferring ready events to userspace w/out
202 * holding ->lock.
203 */
204 struct epitem *ovflist;
205
206 /* wakeup_source used when ep_scan_ready_list is running */
207 struct wakeup_source *ws;
208
209 /* The user that created the eventpoll descriptor */
210 struct user_struct *user;
211
212 struct file *file;
213
214 /* used to optimize loop detection check */
215 int visited;
216 struct list_head visited_list_link;
217 };
218
219 /* Wait structure used by the poll hooks */
220 struct eppoll_entry {
221 /* List header used to link this structure to the "struct epitem" */
222 struct list_head llink;
223
224 /* The "base" pointer is set to the container "struct epitem" */
225 struct epitem *base;
226
227 /*
228 * Wait queue item that will be linked to the target file wait
229 * queue head.
230 */
231 wait_queue_t wait;
232
233 /* The wait queue head that linked the "wait" wait queue item */
234 wait_queue_head_t *whead;
235 };
236
237 /* Wrapper struct used by poll queueing */
238 struct ep_pqueue {
239 poll_table pt;
240 struct epitem *epi;
241 };
242
243 /* Used by the ep_send_events() function as callback private data */
244 struct ep_send_events_data {
245 int maxevents;
246 struct epoll_event __user *events;
247 };
248
249 /*
250 * Configuration options available inside /proc/sys/fs/epoll/
251 */
252 /* Maximum number of epoll watched descriptors, per user */
253 static long max_user_watches __read_mostly;
254
255 /*
256 * This mutex is used to serialize ep_free() and eventpoll_release_file().
257 */
258 static DEFINE_MUTEX(epmutex);
259
260 /* Used to check for epoll file descriptor inclusion loops */
261 static struct nested_calls poll_loop_ncalls;
262
263 /* Used for safe wake up implementation */
264 static struct nested_calls poll_safewake_ncalls;
265
266 /* Used to call file's f_op->poll() under the nested calls boundaries */
267 static struct nested_calls poll_readywalk_ncalls;
268
269 /* Slab cache used to allocate "struct epitem" */
270 static struct kmem_cache *epi_cache __read_mostly;
271
272 /* Slab cache used to allocate "struct eppoll_entry" */
273 static struct kmem_cache *pwq_cache __read_mostly;
274
275 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
276 static LIST_HEAD(visited_list);
277
278 /*
279 * List of files with newly added links, where we may need to limit the number
280 * of emanating paths. Protected by the epmutex.
281 */
282 static LIST_HEAD(tfile_check_list);
283
284 #ifdef CONFIG_SYSCTL
285
286 #include <linux/sysctl.h>
287
288 static long zero;
289 static long long_max = LONG_MAX;
290
291 ctl_table epoll_table[] = {
292 {
293 .procname = "max_user_watches",
294 .data = &max_user_watches,
295 .maxlen = sizeof(max_user_watches),
296 .mode = 0644,
297 .proc_handler = proc_doulongvec_minmax,
298 .extra1 = &zero,
299 .extra2 = &long_max,
300 },
301 { }
302 };
303 #endif /* CONFIG_SYSCTL */
304
305 static const struct file_operations eventpoll_fops;
306
307 static inline int is_file_epoll(struct file *f)
308 {
309 return f->f_op == &eventpoll_fops;
310 }
311
312 /* Setup the structure that is used as key for the RB tree */
313 static inline void ep_set_ffd(struct epoll_filefd *ffd,
314 struct file *file, int fd)
315 {
316 ffd->file = file;
317 ffd->fd = fd;
318 }
319
320 /* Compare RB tree keys */
321 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
322 struct epoll_filefd *p2)
323 {
324 return (p1->file > p2->file ? +1:
325 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
326 }
327
328 /* Tells us if the item is currently linked */
329 static inline int ep_is_linked(struct list_head *p)
330 {
331 return !list_empty(p);
332 }
333
334 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
335 {
336 return container_of(p, struct eppoll_entry, wait);
337 }
338
339 /* Get the "struct epitem" from a wait queue pointer */
340 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
341 {
342 return container_of(p, struct eppoll_entry, wait)->base;
343 }
344
345 /* Get the "struct epitem" from an epoll queue wrapper */
346 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
347 {
348 return container_of(p, struct ep_pqueue, pt)->epi;
349 }
350
351 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
352 static inline int ep_op_has_event(int op)
353 {
354 return op != EPOLL_CTL_DEL;
355 }
356
357 /* Initialize the poll safe wake up structure */
358 static void ep_nested_calls_init(struct nested_calls *ncalls)
359 {
360 INIT_LIST_HEAD(&ncalls->tasks_call_list);
361 spin_lock_init(&ncalls->lock);
362 }
363
364 /**
365 * ep_events_available - Checks if ready events might be available.
366 *
367 * @ep: Pointer to the eventpoll context.
368 *
369 * Returns: Returns a value different than zero if ready events are available,
370 * or zero otherwise.
371 */
372 static inline int ep_events_available(struct eventpoll *ep)
373 {
374 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
375 }
376
377 /**
378 * ep_call_nested - Perform a bound (possibly) nested call, by checking
379 * that the recursion limit is not exceeded, and that
380 * the same nested call (by the meaning of same cookie) is
381 * no re-entered.
382 *
383 * @ncalls: Pointer to the nested_calls structure to be used for this call.
384 * @max_nests: Maximum number of allowed nesting calls.
385 * @nproc: Nested call core function pointer.
386 * @priv: Opaque data to be passed to the @nproc callback.
387 * @cookie: Cookie to be used to identify this nested call.
388 * @ctx: This instance context.
389 *
390 * Returns: Returns the code returned by the @nproc callback, or -1 if
391 * the maximum recursion limit has been exceeded.
392 */
393 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
394 int (*nproc)(void *, void *, int), void *priv,
395 void *cookie, void *ctx)
396 {
397 int error, call_nests = 0;
398 unsigned long flags;
399 struct list_head *lsthead = &ncalls->tasks_call_list;
400 struct nested_call_node *tncur;
401 struct nested_call_node tnode;
402
403 spin_lock_irqsave(&ncalls->lock, flags);
404
405 /*
406 * Try to see if the current task is already inside this wakeup call.
407 * We use a list here, since the population inside this set is always
408 * very much limited.
409 */
410 list_for_each_entry(tncur, lsthead, llink) {
411 if (tncur->ctx == ctx &&
412 (tncur->cookie == cookie || ++call_nests > max_nests)) {
413 /*
414 * Ops ... loop detected or maximum nest level reached.
415 * We abort this wake by breaking the cycle itself.
416 */
417 error = -1;
418 goto out_unlock;
419 }
420 }
421
422 /* Add the current task and cookie to the list */
423 tnode.ctx = ctx;
424 tnode.cookie = cookie;
425 list_add(&tnode.llink, lsthead);
426
427 spin_unlock_irqrestore(&ncalls->lock, flags);
428
429 /* Call the nested function */
430 error = (*nproc)(priv, cookie, call_nests);
431
432 /* Remove the current task from the list */
433 spin_lock_irqsave(&ncalls->lock, flags);
434 list_del(&tnode.llink);
435 out_unlock:
436 spin_unlock_irqrestore(&ncalls->lock, flags);
437
438 return error;
439 }
440
441 /*
442 * As described in commit 0ccf831cb lockdep: annotate epoll
443 * the use of wait queues used by epoll is done in a very controlled
444 * manner. Wake ups can nest inside each other, but are never done
445 * with the same locking. For example:
446 *
447 * dfd = socket(...);
448 * efd1 = epoll_create();
449 * efd2 = epoll_create();
450 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
451 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
452 *
453 * When a packet arrives to the device underneath "dfd", the net code will
454 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
455 * callback wakeup entry on that queue, and the wake_up() performed by the
456 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
457 * (efd1) notices that it may have some event ready, so it needs to wake up
458 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
459 * that ends up in another wake_up(), after having checked about the
460 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
461 * avoid stack blasting.
462 *
463 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
464 * this special case of epoll.
465 */
466 #ifdef CONFIG_DEBUG_LOCK_ALLOC
467 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
468 unsigned long events, int subclass)
469 {
470 unsigned long flags;
471
472 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
473 wake_up_locked_poll(wqueue, events);
474 spin_unlock_irqrestore(&wqueue->lock, flags);
475 }
476 #else
477 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
478 unsigned long events, int subclass)
479 {
480 wake_up_poll(wqueue, events);
481 }
482 #endif
483
484 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
485 {
486 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
487 1 + call_nests);
488 return 0;
489 }
490
491 /*
492 * Perform a safe wake up of the poll wait list. The problem is that
493 * with the new callback'd wake up system, it is possible that the
494 * poll callback is reentered from inside the call to wake_up() done
495 * on the poll wait queue head. The rule is that we cannot reenter the
496 * wake up code from the same task more than EP_MAX_NESTS times,
497 * and we cannot reenter the same wait queue head at all. This will
498 * enable to have a hierarchy of epoll file descriptor of no more than
499 * EP_MAX_NESTS deep.
500 */
501 static void ep_poll_safewake(wait_queue_head_t *wq)
502 {
503 int this_cpu = get_cpu();
504
505 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
506 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
507
508 put_cpu();
509 }
510
511 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
512 {
513 wait_queue_head_t *whead;
514
515 rcu_read_lock();
516 /* If it is cleared by POLLFREE, it should be rcu-safe */
517 whead = rcu_dereference(pwq->whead);
518 if (whead)
519 remove_wait_queue(whead, &pwq->wait);
520 rcu_read_unlock();
521 }
522
523 /*
524 * This function unregisters poll callbacks from the associated file
525 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
526 * ep_free).
527 */
528 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
529 {
530 struct list_head *lsthead = &epi->pwqlist;
531 struct eppoll_entry *pwq;
532
533 while (!list_empty(lsthead)) {
534 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
535
536 list_del(&pwq->llink);
537 ep_remove_wait_queue(pwq);
538 kmem_cache_free(pwq_cache, pwq);
539 }
540 }
541
542 /* call only when ep->mtx is held */
543 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
544 {
545 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
546 }
547
548 /* call only when ep->mtx is held */
549 static inline void ep_pm_stay_awake(struct epitem *epi)
550 {
551 struct wakeup_source *ws = ep_wakeup_source(epi);
552
553 if (ws)
554 __pm_stay_awake(ws);
555 }
556
557 static inline bool ep_has_wakeup_source(struct epitem *epi)
558 {
559 return rcu_access_pointer(epi->ws) ? true : false;
560 }
561
562 /* call when ep->mtx cannot be held (ep_poll_callback) */
563 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
564 {
565 struct wakeup_source *ws;
566
567 rcu_read_lock();
568 ws = rcu_dereference(epi->ws);
569 if (ws)
570 __pm_stay_awake(ws);
571 rcu_read_unlock();
572 }
573
574 /**
575 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
576 * the scan code, to call f_op->poll(). Also allows for
577 * O(NumReady) performance.
578 *
579 * @ep: Pointer to the epoll private data structure.
580 * @sproc: Pointer to the scan callback.
581 * @priv: Private opaque data passed to the @sproc callback.
582 * @depth: The current depth of recursive f_op->poll calls.
583 *
584 * Returns: The same integer error code returned by the @sproc callback.
585 */
586 static int ep_scan_ready_list(struct eventpoll *ep,
587 int (*sproc)(struct eventpoll *,
588 struct list_head *, void *),
589 void *priv,
590 int depth)
591 {
592 int error, pwake = 0;
593 unsigned long flags;
594 struct epitem *epi, *nepi;
595 LIST_HEAD(txlist);
596
597 /*
598 * We need to lock this because we could be hit by
599 * eventpoll_release_file() and epoll_ctl().
600 */
601 mutex_lock_nested(&ep->mtx, depth);
602
603 /*
604 * Steal the ready list, and re-init the original one to the
605 * empty list. Also, set ep->ovflist to NULL so that events
606 * happening while looping w/out locks, are not lost. We cannot
607 * have the poll callback to queue directly on ep->rdllist,
608 * because we want the "sproc" callback to be able to do it
609 * in a lockless way.
610 */
611 spin_lock_irqsave(&ep->lock, flags);
612 list_splice_init(&ep->rdllist, &txlist);
613 ep->ovflist = NULL;
614 spin_unlock_irqrestore(&ep->lock, flags);
615
616 /*
617 * Now call the callback function.
618 */
619 error = (*sproc)(ep, &txlist, priv);
620
621 spin_lock_irqsave(&ep->lock, flags);
622 /*
623 * During the time we spent inside the "sproc" callback, some
624 * other events might have been queued by the poll callback.
625 * We re-insert them inside the main ready-list here.
626 */
627 for (nepi = ep->ovflist; (epi = nepi) != NULL;
628 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
629 /*
630 * We need to check if the item is already in the list.
631 * During the "sproc" callback execution time, items are
632 * queued into ->ovflist but the "txlist" might already
633 * contain them, and the list_splice() below takes care of them.
634 */
635 if (!ep_is_linked(&epi->rdllink)) {
636 list_add_tail(&epi->rdllink, &ep->rdllist);
637 ep_pm_stay_awake(epi);
638 }
639 }
640 /*
641 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
642 * releasing the lock, events will be queued in the normal way inside
643 * ep->rdllist.
644 */
645 ep->ovflist = EP_UNACTIVE_PTR;
646
647 /*
648 * Quickly re-inject items left on "txlist".
649 */
650 list_splice(&txlist, &ep->rdllist);
651 __pm_relax(ep->ws);
652
653 if (!list_empty(&ep->rdllist)) {
654 /*
655 * Wake up (if active) both the eventpoll wait list and
656 * the ->poll() wait list (delayed after we release the lock).
657 */
658 if (waitqueue_active(&ep->wq))
659 wake_up_locked(&ep->wq);
660 if (waitqueue_active(&ep->poll_wait))
661 pwake++;
662 }
663 spin_unlock_irqrestore(&ep->lock, flags);
664
665 mutex_unlock(&ep->mtx);
666
667 /* We have to call this outside the lock */
668 if (pwake)
669 ep_poll_safewake(&ep->poll_wait);
670
671 return error;
672 }
673
674 /*
675 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
676 * all the associated resources. Must be called with "mtx" held.
677 */
678 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
679 {
680 unsigned long flags;
681 struct file *file = epi->ffd.file;
682
683 /*
684 * Removes poll wait queue hooks. We _have_ to do this without holding
685 * the "ep->lock" otherwise a deadlock might occur. This because of the
686 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
687 * queue head lock when unregistering the wait queue. The wakeup callback
688 * will run by holding the wait queue head lock and will call our callback
689 * that will try to get "ep->lock".
690 */
691 ep_unregister_pollwait(ep, epi);
692
693 /* Remove the current item from the list of epoll hooks */
694 spin_lock(&file->f_lock);
695 if (ep_is_linked(&epi->fllink))
696 list_del_init(&epi->fllink);
697 spin_unlock(&file->f_lock);
698
699 rb_erase(&epi->rbn, &ep->rbr);
700
701 spin_lock_irqsave(&ep->lock, flags);
702 if (ep_is_linked(&epi->rdllink))
703 list_del_init(&epi->rdllink);
704 spin_unlock_irqrestore(&ep->lock, flags);
705
706 wakeup_source_unregister(ep_wakeup_source(epi));
707
708 /* At this point it is safe to free the eventpoll item */
709 kmem_cache_free(epi_cache, epi);
710
711 atomic_long_dec(&ep->user->epoll_watches);
712
713 return 0;
714 }
715
716 static void ep_free(struct eventpoll *ep)
717 {
718 struct rb_node *rbp;
719 struct epitem *epi;
720
721 /* We need to release all tasks waiting for these file */
722 if (waitqueue_active(&ep->poll_wait))
723 ep_poll_safewake(&ep->poll_wait);
724
725 /*
726 * We need to lock this because we could be hit by
727 * eventpoll_release_file() while we're freeing the "struct eventpoll".
728 * We do not need to hold "ep->mtx" here because the epoll file
729 * is on the way to be removed and no one has references to it
730 * anymore. The only hit might come from eventpoll_release_file() but
731 * holding "epmutex" is sufficient here.
732 */
733 mutex_lock(&epmutex);
734
735 /*
736 * Walks through the whole tree by unregistering poll callbacks.
737 */
738 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
739 epi = rb_entry(rbp, struct epitem, rbn);
740
741 ep_unregister_pollwait(ep, epi);
742 }
743
744 /*
745 * Walks through the whole tree by freeing each "struct epitem". At this
746 * point we are sure no poll callbacks will be lingering around, and also by
747 * holding "epmutex" we can be sure that no file cleanup code will hit
748 * us during this operation. So we can avoid the lock on "ep->lock".
749 * We do not need to lock ep->mtx, either, we only do it to prevent
750 * a lockdep warning.
751 */
752 mutex_lock(&ep->mtx);
753 while ((rbp = rb_first(&ep->rbr)) != NULL) {
754 epi = rb_entry(rbp, struct epitem, rbn);
755 ep_remove(ep, epi);
756 }
757 mutex_unlock(&ep->mtx);
758
759 mutex_unlock(&epmutex);
760 mutex_destroy(&ep->mtx);
761 free_uid(ep->user);
762 wakeup_source_unregister(ep->ws);
763 kfree(ep);
764 }
765
766 static int ep_eventpoll_release(struct inode *inode, struct file *file)
767 {
768 struct eventpoll *ep = file->private_data;
769
770 if (ep)
771 ep_free(ep);
772
773 return 0;
774 }
775
776 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
777 {
778 pt->_key = epi->event.events;
779
780 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
781 }
782
783 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
784 void *priv)
785 {
786 struct epitem *epi, *tmp;
787 poll_table pt;
788
789 init_poll_funcptr(&pt, NULL);
790
791 list_for_each_entry_safe(epi, tmp, head, rdllink) {
792 if (ep_item_poll(epi, &pt))
793 return POLLIN | POLLRDNORM;
794 else {
795 /*
796 * Item has been dropped into the ready list by the poll
797 * callback, but it's not actually ready, as far as
798 * caller requested events goes. We can remove it here.
799 */
800 __pm_relax(ep_wakeup_source(epi));
801 list_del_init(&epi->rdllink);
802 }
803 }
804
805 return 0;
806 }
807
808 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
809 {
810 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
811 }
812
813 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
814 {
815 int pollflags;
816 struct eventpoll *ep = file->private_data;
817
818 /* Insert inside our poll wait queue */
819 poll_wait(file, &ep->poll_wait, wait);
820
821 /*
822 * Proceed to find out if wanted events are really available inside
823 * the ready list. This need to be done under ep_call_nested()
824 * supervision, since the call to f_op->poll() done on listed files
825 * could re-enter here.
826 */
827 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
828 ep_poll_readyevents_proc, ep, ep, current);
829
830 return pollflags != -1 ? pollflags : 0;
831 }
832
833 #ifdef CONFIG_PROC_FS
834 static int ep_show_fdinfo(struct seq_file *m, struct file *f)
835 {
836 struct eventpoll *ep = f->private_data;
837 struct rb_node *rbp;
838 int ret = 0;
839
840 mutex_lock(&ep->mtx);
841 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
842 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
843
844 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
845 epi->ffd.fd, epi->event.events,
846 (long long)epi->event.data);
847 if (ret)
848 break;
849 }
850 mutex_unlock(&ep->mtx);
851
852 return ret;
853 }
854 #endif
855
856 /* File callbacks that implement the eventpoll file behaviour */
857 static const struct file_operations eventpoll_fops = {
858 #ifdef CONFIG_PROC_FS
859 .show_fdinfo = ep_show_fdinfo,
860 #endif
861 .release = ep_eventpoll_release,
862 .poll = ep_eventpoll_poll,
863 .llseek = noop_llseek,
864 };
865
866 /*
867 * This is called from eventpoll_release() to unlink files from the eventpoll
868 * interface. We need to have this facility to cleanup correctly files that are
869 * closed without being removed from the eventpoll interface.
870 */
871 void eventpoll_release_file(struct file *file)
872 {
873 struct list_head *lsthead = &file->f_ep_links;
874 struct eventpoll *ep;
875 struct epitem *epi;
876
877 /*
878 * We don't want to get "file->f_lock" because it is not
879 * necessary. It is not necessary because we're in the "struct file"
880 * cleanup path, and this means that no one is using this file anymore.
881 * So, for example, epoll_ctl() cannot hit here since if we reach this
882 * point, the file counter already went to zero and fget() would fail.
883 * The only hit might come from ep_free() but by holding the mutex
884 * will correctly serialize the operation. We do need to acquire
885 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
886 * from anywhere but ep_free().
887 *
888 * Besides, ep_remove() acquires the lock, so we can't hold it here.
889 */
890 mutex_lock(&epmutex);
891
892 while (!list_empty(lsthead)) {
893 epi = list_first_entry(lsthead, struct epitem, fllink);
894
895 ep = epi->ep;
896 list_del_init(&epi->fllink);
897 mutex_lock_nested(&ep->mtx, 0);
898 ep_remove(ep, epi);
899 mutex_unlock(&ep->mtx);
900 }
901
902 mutex_unlock(&epmutex);
903 }
904
905 static int ep_alloc(struct eventpoll **pep)
906 {
907 int error;
908 struct user_struct *user;
909 struct eventpoll *ep;
910
911 user = get_current_user();
912 error = -ENOMEM;
913 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
914 if (unlikely(!ep))
915 goto free_uid;
916
917 spin_lock_init(&ep->lock);
918 mutex_init(&ep->mtx);
919 init_waitqueue_head(&ep->wq);
920 init_waitqueue_head(&ep->poll_wait);
921 INIT_LIST_HEAD(&ep->rdllist);
922 ep->rbr = RB_ROOT;
923 ep->ovflist = EP_UNACTIVE_PTR;
924 ep->user = user;
925
926 *pep = ep;
927
928 return 0;
929
930 free_uid:
931 free_uid(user);
932 return error;
933 }
934
935 /*
936 * Search the file inside the eventpoll tree. The RB tree operations
937 * are protected by the "mtx" mutex, and ep_find() must be called with
938 * "mtx" held.
939 */
940 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
941 {
942 int kcmp;
943 struct rb_node *rbp;
944 struct epitem *epi, *epir = NULL;
945 struct epoll_filefd ffd;
946
947 ep_set_ffd(&ffd, file, fd);
948 for (rbp = ep->rbr.rb_node; rbp; ) {
949 epi = rb_entry(rbp, struct epitem, rbn);
950 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
951 if (kcmp > 0)
952 rbp = rbp->rb_right;
953 else if (kcmp < 0)
954 rbp = rbp->rb_left;
955 else {
956 epir = epi;
957 break;
958 }
959 }
960
961 return epir;
962 }
963
964 /*
965 * This is the callback that is passed to the wait queue wakeup
966 * mechanism. It is called by the stored file descriptors when they
967 * have events to report.
968 */
969 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
970 {
971 int pwake = 0;
972 unsigned long flags;
973 struct epitem *epi = ep_item_from_wait(wait);
974 struct eventpoll *ep = epi->ep;
975
976 if ((unsigned long)key & POLLFREE) {
977 ep_pwq_from_wait(wait)->whead = NULL;
978 /*
979 * whead = NULL above can race with ep_remove_wait_queue()
980 * which can do another remove_wait_queue() after us, so we
981 * can't use __remove_wait_queue(). whead->lock is held by
982 * the caller.
983 */
984 list_del_init(&wait->task_list);
985 }
986
987 spin_lock_irqsave(&ep->lock, flags);
988
989 /*
990 * If the event mask does not contain any poll(2) event, we consider the
991 * descriptor to be disabled. This condition is likely the effect of the
992 * EPOLLONESHOT bit that disables the descriptor when an event is received,
993 * until the next EPOLL_CTL_MOD will be issued.
994 */
995 if (!(epi->event.events & ~EP_PRIVATE_BITS))
996 goto out_unlock;
997
998 /*
999 * Check the events coming with the callback. At this stage, not
1000 * every device reports the events in the "key" parameter of the
1001 * callback. We need to be able to handle both cases here, hence the
1002 * test for "key" != NULL before the event match test.
1003 */
1004 if (key && !((unsigned long) key & epi->event.events))
1005 goto out_unlock;
1006
1007 /*
1008 * If we are transferring events to userspace, we can hold no locks
1009 * (because we're accessing user memory, and because of linux f_op->poll()
1010 * semantics). All the events that happen during that period of time are
1011 * chained in ep->ovflist and requeued later on.
1012 */
1013 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1014 if (epi->next == EP_UNACTIVE_PTR) {
1015 epi->next = ep->ovflist;
1016 ep->ovflist = epi;
1017 if (epi->ws) {
1018 /*
1019 * Activate ep->ws since epi->ws may get
1020 * deactivated at any time.
1021 */
1022 __pm_stay_awake(ep->ws);
1023 }
1024
1025 }
1026 goto out_unlock;
1027 }
1028
1029 /* If this file is already in the ready list we exit soon */
1030 if (!ep_is_linked(&epi->rdllink)) {
1031 list_add_tail(&epi->rdllink, &ep->rdllist);
1032 ep_pm_stay_awake_rcu(epi);
1033 }
1034
1035 /*
1036 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1037 * wait list.
1038 */
1039 if (waitqueue_active(&ep->wq))
1040 wake_up_locked(&ep->wq);
1041 if (waitqueue_active(&ep->poll_wait))
1042 pwake++;
1043
1044 out_unlock:
1045 spin_unlock_irqrestore(&ep->lock, flags);
1046
1047 /* We have to call this outside the lock */
1048 if (pwake)
1049 ep_poll_safewake(&ep->poll_wait);
1050
1051 return 1;
1052 }
1053
1054 /*
1055 * This is the callback that is used to add our wait queue to the
1056 * target file wakeup lists.
1057 */
1058 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1059 poll_table *pt)
1060 {
1061 struct epitem *epi = ep_item_from_epqueue(pt);
1062 struct eppoll_entry *pwq;
1063
1064 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1065 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1066 pwq->whead = whead;
1067 pwq->base = epi;
1068 add_wait_queue(whead, &pwq->wait);
1069 list_add_tail(&pwq->llink, &epi->pwqlist);
1070 epi->nwait++;
1071 } else {
1072 /* We have to signal that an error occurred */
1073 epi->nwait = -1;
1074 }
1075 }
1076
1077 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1078 {
1079 int kcmp;
1080 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1081 struct epitem *epic;
1082
1083 while (*p) {
1084 parent = *p;
1085 epic = rb_entry(parent, struct epitem, rbn);
1086 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1087 if (kcmp > 0)
1088 p = &parent->rb_right;
1089 else
1090 p = &parent->rb_left;
1091 }
1092 rb_link_node(&epi->rbn, parent, p);
1093 rb_insert_color(&epi->rbn, &ep->rbr);
1094 }
1095
1096
1097
1098 #define PATH_ARR_SIZE 5
1099 /*
1100 * These are the number paths of length 1 to 5, that we are allowing to emanate
1101 * from a single file of interest. For example, we allow 1000 paths of length
1102 * 1, to emanate from each file of interest. This essentially represents the
1103 * potential wakeup paths, which need to be limited in order to avoid massive
1104 * uncontrolled wakeup storms. The common use case should be a single ep which
1105 * is connected to n file sources. In this case each file source has 1 path
1106 * of length 1. Thus, the numbers below should be more than sufficient. These
1107 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1108 * and delete can't add additional paths. Protected by the epmutex.
1109 */
1110 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1111 static int path_count[PATH_ARR_SIZE];
1112
1113 static int path_count_inc(int nests)
1114 {
1115 /* Allow an arbitrary number of depth 1 paths */
1116 if (nests == 0)
1117 return 0;
1118
1119 if (++path_count[nests] > path_limits[nests])
1120 return -1;
1121 return 0;
1122 }
1123
1124 static void path_count_init(void)
1125 {
1126 int i;
1127
1128 for (i = 0; i < PATH_ARR_SIZE; i++)
1129 path_count[i] = 0;
1130 }
1131
1132 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1133 {
1134 int error = 0;
1135 struct file *file = priv;
1136 struct file *child_file;
1137 struct epitem *epi;
1138
1139 list_for_each_entry(epi, &file->f_ep_links, fllink) {
1140 child_file = epi->ep->file;
1141 if (is_file_epoll(child_file)) {
1142 if (list_empty(&child_file->f_ep_links)) {
1143 if (path_count_inc(call_nests)) {
1144 error = -1;
1145 break;
1146 }
1147 } else {
1148 error = ep_call_nested(&poll_loop_ncalls,
1149 EP_MAX_NESTS,
1150 reverse_path_check_proc,
1151 child_file, child_file,
1152 current);
1153 }
1154 if (error != 0)
1155 break;
1156 } else {
1157 printk(KERN_ERR "reverse_path_check_proc: "
1158 "file is not an ep!\n");
1159 }
1160 }
1161 return error;
1162 }
1163
1164 /**
1165 * reverse_path_check - The tfile_check_list is list of file *, which have
1166 * links that are proposed to be newly added. We need to
1167 * make sure that those added links don't add too many
1168 * paths such that we will spend all our time waking up
1169 * eventpoll objects.
1170 *
1171 * Returns: Returns zero if the proposed links don't create too many paths,
1172 * -1 otherwise.
1173 */
1174 static int reverse_path_check(void)
1175 {
1176 int error = 0;
1177 struct file *current_file;
1178
1179 /* let's call this for all tfiles */
1180 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1181 path_count_init();
1182 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1183 reverse_path_check_proc, current_file,
1184 current_file, current);
1185 if (error)
1186 break;
1187 }
1188 return error;
1189 }
1190
1191 static int ep_create_wakeup_source(struct epitem *epi)
1192 {
1193 const char *name;
1194 struct wakeup_source *ws;
1195
1196 if (!epi->ep->ws) {
1197 epi->ep->ws = wakeup_source_register("eventpoll");
1198 if (!epi->ep->ws)
1199 return -ENOMEM;
1200 }
1201
1202 name = epi->ffd.file->f_path.dentry->d_name.name;
1203 ws = wakeup_source_register(name);
1204
1205 if (!ws)
1206 return -ENOMEM;
1207 rcu_assign_pointer(epi->ws, ws);
1208
1209 return 0;
1210 }
1211
1212 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1213 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1214 {
1215 struct wakeup_source *ws = ep_wakeup_source(epi);
1216
1217 RCU_INIT_POINTER(epi->ws, NULL);
1218
1219 /*
1220 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1221 * used internally by wakeup_source_remove, too (called by
1222 * wakeup_source_unregister), so we cannot use call_rcu
1223 */
1224 synchronize_rcu();
1225 wakeup_source_unregister(ws);
1226 }
1227
1228 /*
1229 * Must be called with "mtx" held.
1230 */
1231 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1232 struct file *tfile, int fd)
1233 {
1234 int error, revents, pwake = 0;
1235 unsigned long flags;
1236 long user_watches;
1237 struct epitem *epi;
1238 struct ep_pqueue epq;
1239
1240 user_watches = atomic_long_read(&ep->user->epoll_watches);
1241 if (unlikely(user_watches >= max_user_watches))
1242 return -ENOSPC;
1243 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1244 return -ENOMEM;
1245
1246 /* Item initialization follow here ... */
1247 INIT_LIST_HEAD(&epi->rdllink);
1248 INIT_LIST_HEAD(&epi->fllink);
1249 INIT_LIST_HEAD(&epi->pwqlist);
1250 epi->ep = ep;
1251 ep_set_ffd(&epi->ffd, tfile, fd);
1252 epi->event = *event;
1253 epi->nwait = 0;
1254 epi->next = EP_UNACTIVE_PTR;
1255 if (epi->event.events & EPOLLWAKEUP) {
1256 error = ep_create_wakeup_source(epi);
1257 if (error)
1258 goto error_create_wakeup_source;
1259 } else {
1260 RCU_INIT_POINTER(epi->ws, NULL);
1261 }
1262
1263 /* Initialize the poll table using the queue callback */
1264 epq.epi = epi;
1265 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1266
1267 /*
1268 * Attach the item to the poll hooks and get current event bits.
1269 * We can safely use the file* here because its usage count has
1270 * been increased by the caller of this function. Note that after
1271 * this operation completes, the poll callback can start hitting
1272 * the new item.
1273 */
1274 revents = ep_item_poll(epi, &epq.pt);
1275
1276 /*
1277 * We have to check if something went wrong during the poll wait queue
1278 * install process. Namely an allocation for a wait queue failed due
1279 * high memory pressure.
1280 */
1281 error = -ENOMEM;
1282 if (epi->nwait < 0)
1283 goto error_unregister;
1284
1285 /* Add the current item to the list of active epoll hook for this file */
1286 spin_lock(&tfile->f_lock);
1287 list_add_tail(&epi->fllink, &tfile->f_ep_links);
1288 spin_unlock(&tfile->f_lock);
1289
1290 /*
1291 * Add the current item to the RB tree. All RB tree operations are
1292 * protected by "mtx", and ep_insert() is called with "mtx" held.
1293 */
1294 ep_rbtree_insert(ep, epi);
1295
1296 /* now check if we've created too many backpaths */
1297 error = -EINVAL;
1298 if (reverse_path_check())
1299 goto error_remove_epi;
1300
1301 /* We have to drop the new item inside our item list to keep track of it */
1302 spin_lock_irqsave(&ep->lock, flags);
1303
1304 /* If the file is already "ready" we drop it inside the ready list */
1305 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1306 list_add_tail(&epi->rdllink, &ep->rdllist);
1307 ep_pm_stay_awake(epi);
1308
1309 /* Notify waiting tasks that events are available */
1310 if (waitqueue_active(&ep->wq))
1311 wake_up_locked(&ep->wq);
1312 if (waitqueue_active(&ep->poll_wait))
1313 pwake++;
1314 }
1315
1316 spin_unlock_irqrestore(&ep->lock, flags);
1317
1318 atomic_long_inc(&ep->user->epoll_watches);
1319
1320 /* We have to call this outside the lock */
1321 if (pwake)
1322 ep_poll_safewake(&ep->poll_wait);
1323
1324 return 0;
1325
1326 error_remove_epi:
1327 spin_lock(&tfile->f_lock);
1328 if (ep_is_linked(&epi->fllink))
1329 list_del_init(&epi->fllink);
1330 spin_unlock(&tfile->f_lock);
1331
1332 rb_erase(&epi->rbn, &ep->rbr);
1333
1334 error_unregister:
1335 ep_unregister_pollwait(ep, epi);
1336
1337 /*
1338 * We need to do this because an event could have been arrived on some
1339 * allocated wait queue. Note that we don't care about the ep->ovflist
1340 * list, since that is used/cleaned only inside a section bound by "mtx".
1341 * And ep_insert() is called with "mtx" held.
1342 */
1343 spin_lock_irqsave(&ep->lock, flags);
1344 if (ep_is_linked(&epi->rdllink))
1345 list_del_init(&epi->rdllink);
1346 spin_unlock_irqrestore(&ep->lock, flags);
1347
1348 wakeup_source_unregister(ep_wakeup_source(epi));
1349
1350 error_create_wakeup_source:
1351 kmem_cache_free(epi_cache, epi);
1352
1353 return error;
1354 }
1355
1356 /*
1357 * Modify the interest event mask by dropping an event if the new mask
1358 * has a match in the current file status. Must be called with "mtx" held.
1359 */
1360 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1361 {
1362 int pwake = 0;
1363 unsigned int revents;
1364 poll_table pt;
1365
1366 init_poll_funcptr(&pt, NULL);
1367
1368 /*
1369 * Set the new event interest mask before calling f_op->poll();
1370 * otherwise we might miss an event that happens between the
1371 * f_op->poll() call and the new event set registering.
1372 */
1373 epi->event.events = event->events; /* need barrier below */
1374 epi->event.data = event->data; /* protected by mtx */
1375 if (epi->event.events & EPOLLWAKEUP) {
1376 if (!ep_has_wakeup_source(epi))
1377 ep_create_wakeup_source(epi);
1378 } else if (ep_has_wakeup_source(epi)) {
1379 ep_destroy_wakeup_source(epi);
1380 }
1381
1382 /*
1383 * The following barrier has two effects:
1384 *
1385 * 1) Flush epi changes above to other CPUs. This ensures
1386 * we do not miss events from ep_poll_callback if an
1387 * event occurs immediately after we call f_op->poll().
1388 * We need this because we did not take ep->lock while
1389 * changing epi above (but ep_poll_callback does take
1390 * ep->lock).
1391 *
1392 * 2) We also need to ensure we do not miss _past_ events
1393 * when calling f_op->poll(). This barrier also
1394 * pairs with the barrier in wq_has_sleeper (see
1395 * comments for wq_has_sleeper).
1396 *
1397 * This barrier will now guarantee ep_poll_callback or f_op->poll
1398 * (or both) will notice the readiness of an item.
1399 */
1400 smp_mb();
1401
1402 /*
1403 * Get current event bits. We can safely use the file* here because
1404 * its usage count has been increased by the caller of this function.
1405 */
1406 revents = ep_item_poll(epi, &pt);
1407
1408 /*
1409 * If the item is "hot" and it is not registered inside the ready
1410 * list, push it inside.
1411 */
1412 if (revents & event->events) {
1413 spin_lock_irq(&ep->lock);
1414 if (!ep_is_linked(&epi->rdllink)) {
1415 list_add_tail(&epi->rdllink, &ep->rdllist);
1416 ep_pm_stay_awake(epi);
1417
1418 /* Notify waiting tasks that events are available */
1419 if (waitqueue_active(&ep->wq))
1420 wake_up_locked(&ep->wq);
1421 if (waitqueue_active(&ep->poll_wait))
1422 pwake++;
1423 }
1424 spin_unlock_irq(&ep->lock);
1425 }
1426
1427 /* We have to call this outside the lock */
1428 if (pwake)
1429 ep_poll_safewake(&ep->poll_wait);
1430
1431 return 0;
1432 }
1433
1434 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1435 void *priv)
1436 {
1437 struct ep_send_events_data *esed = priv;
1438 int eventcnt;
1439 unsigned int revents;
1440 struct epitem *epi;
1441 struct epoll_event __user *uevent;
1442 struct wakeup_source *ws;
1443 poll_table pt;
1444
1445 init_poll_funcptr(&pt, NULL);
1446
1447 /*
1448 * We can loop without lock because we are passed a task private list.
1449 * Items cannot vanish during the loop because ep_scan_ready_list() is
1450 * holding "mtx" during this call.
1451 */
1452 for (eventcnt = 0, uevent = esed->events;
1453 !list_empty(head) && eventcnt < esed->maxevents;) {
1454 epi = list_first_entry(head, struct epitem, rdllink);
1455
1456 /*
1457 * Activate ep->ws before deactivating epi->ws to prevent
1458 * triggering auto-suspend here (in case we reactive epi->ws
1459 * below).
1460 *
1461 * This could be rearranged to delay the deactivation of epi->ws
1462 * instead, but then epi->ws would temporarily be out of sync
1463 * with ep_is_linked().
1464 */
1465 ws = ep_wakeup_source(epi);
1466 if (ws) {
1467 if (ws->active)
1468 __pm_stay_awake(ep->ws);
1469 __pm_relax(ws);
1470 }
1471
1472 list_del_init(&epi->rdllink);
1473
1474 revents = ep_item_poll(epi, &pt);
1475
1476 /*
1477 * If the event mask intersect the caller-requested one,
1478 * deliver the event to userspace. Again, ep_scan_ready_list()
1479 * is holding "mtx", so no operations coming from userspace
1480 * can change the item.
1481 */
1482 if (revents) {
1483 if (__put_user(revents, &uevent->events) ||
1484 __put_user(epi->event.data, &uevent->data)) {
1485 list_add(&epi->rdllink, head);
1486 ep_pm_stay_awake(epi);
1487 return eventcnt ? eventcnt : -EFAULT;
1488 }
1489 eventcnt++;
1490 uevent++;
1491 if (epi->event.events & EPOLLONESHOT)
1492 epi->event.events &= EP_PRIVATE_BITS;
1493 else if (!(epi->event.events & EPOLLET)) {
1494 /*
1495 * If this file has been added with Level
1496 * Trigger mode, we need to insert back inside
1497 * the ready list, so that the next call to
1498 * epoll_wait() will check again the events
1499 * availability. At this point, no one can insert
1500 * into ep->rdllist besides us. The epoll_ctl()
1501 * callers are locked out by
1502 * ep_scan_ready_list() holding "mtx" and the
1503 * poll callback will queue them in ep->ovflist.
1504 */
1505 list_add_tail(&epi->rdllink, &ep->rdllist);
1506 ep_pm_stay_awake(epi);
1507 }
1508 }
1509 }
1510
1511 return eventcnt;
1512 }
1513
1514 static int ep_send_events(struct eventpoll *ep,
1515 struct epoll_event __user *events, int maxevents)
1516 {
1517 struct ep_send_events_data esed;
1518
1519 esed.maxevents = maxevents;
1520 esed.events = events;
1521
1522 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1523 }
1524
1525 static inline struct timespec ep_set_mstimeout(long ms)
1526 {
1527 struct timespec now, ts = {
1528 .tv_sec = ms / MSEC_PER_SEC,
1529 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1530 };
1531
1532 ktime_get_ts(&now);
1533 return timespec_add_safe(now, ts);
1534 }
1535
1536 /**
1537 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1538 * event buffer.
1539 *
1540 * @ep: Pointer to the eventpoll context.
1541 * @events: Pointer to the userspace buffer where the ready events should be
1542 * stored.
1543 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1544 * @timeout: Maximum timeout for the ready events fetch operation, in
1545 * milliseconds. If the @timeout is zero, the function will not block,
1546 * while if the @timeout is less than zero, the function will block
1547 * until at least one event has been retrieved (or an error
1548 * occurred).
1549 *
1550 * Returns: Returns the number of ready events which have been fetched, or an
1551 * error code, in case of error.
1552 */
1553 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1554 int maxevents, long timeout)
1555 {
1556 int res = 0, eavail, timed_out = 0;
1557 unsigned long flags;
1558 long slack = 0;
1559 wait_queue_t wait;
1560 ktime_t expires, *to = NULL;
1561
1562 if (timeout > 0) {
1563 struct timespec end_time = ep_set_mstimeout(timeout);
1564
1565 slack = select_estimate_accuracy(&end_time);
1566 to = &expires;
1567 *to = timespec_to_ktime(end_time);
1568 } else if (timeout == 0) {
1569 /*
1570 * Avoid the unnecessary trip to the wait queue loop, if the
1571 * caller specified a non blocking operation.
1572 */
1573 timed_out = 1;
1574 spin_lock_irqsave(&ep->lock, flags);
1575 goto check_events;
1576 }
1577
1578 fetch_events:
1579 spin_lock_irqsave(&ep->lock, flags);
1580
1581 if (!ep_events_available(ep)) {
1582 /*
1583 * We don't have any available event to return to the caller.
1584 * We need to sleep here, and we will be wake up by
1585 * ep_poll_callback() when events will become available.
1586 */
1587 init_waitqueue_entry(&wait, current);
1588 __add_wait_queue_exclusive(&ep->wq, &wait);
1589
1590 for (;;) {
1591 /*
1592 * We don't want to sleep if the ep_poll_callback() sends us
1593 * a wakeup in between. That's why we set the task state
1594 * to TASK_INTERRUPTIBLE before doing the checks.
1595 */
1596 set_current_state(TASK_INTERRUPTIBLE);
1597 if (ep_events_available(ep) || timed_out)
1598 break;
1599 if (signal_pending(current)) {
1600 res = -EINTR;
1601 break;
1602 }
1603
1604 spin_unlock_irqrestore(&ep->lock, flags);
1605 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1606 timed_out = 1;
1607
1608 spin_lock_irqsave(&ep->lock, flags);
1609 }
1610 __remove_wait_queue(&ep->wq, &wait);
1611
1612 set_current_state(TASK_RUNNING);
1613 }
1614 check_events:
1615 /* Is it worth to try to dig for events ? */
1616 eavail = ep_events_available(ep);
1617
1618 spin_unlock_irqrestore(&ep->lock, flags);
1619
1620 /*
1621 * Try to transfer events to user space. In case we get 0 events and
1622 * there's still timeout left over, we go trying again in search of
1623 * more luck.
1624 */
1625 if (!res && eavail &&
1626 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1627 goto fetch_events;
1628
1629 return res;
1630 }
1631
1632 /**
1633 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1634 * API, to verify that adding an epoll file inside another
1635 * epoll structure, does not violate the constraints, in
1636 * terms of closed loops, or too deep chains (which can
1637 * result in excessive stack usage).
1638 *
1639 * @priv: Pointer to the epoll file to be currently checked.
1640 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1641 * data structure pointer.
1642 * @call_nests: Current dept of the @ep_call_nested() call stack.
1643 *
1644 * Returns: Returns zero if adding the epoll @file inside current epoll
1645 * structure @ep does not violate the constraints, or -1 otherwise.
1646 */
1647 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1648 {
1649 int error = 0;
1650 struct file *file = priv;
1651 struct eventpoll *ep = file->private_data;
1652 struct eventpoll *ep_tovisit;
1653 struct rb_node *rbp;
1654 struct epitem *epi;
1655
1656 mutex_lock_nested(&ep->mtx, call_nests + 1);
1657 ep->visited = 1;
1658 list_add(&ep->visited_list_link, &visited_list);
1659 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1660 epi = rb_entry(rbp, struct epitem, rbn);
1661 if (unlikely(is_file_epoll(epi->ffd.file))) {
1662 ep_tovisit = epi->ffd.file->private_data;
1663 if (ep_tovisit->visited)
1664 continue;
1665 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1666 ep_loop_check_proc, epi->ffd.file,
1667 ep_tovisit, current);
1668 if (error != 0)
1669 break;
1670 } else {
1671 /*
1672 * If we've reached a file that is not associated with
1673 * an ep, then we need to check if the newly added
1674 * links are going to add too many wakeup paths. We do
1675 * this by adding it to the tfile_check_list, if it's
1676 * not already there, and calling reverse_path_check()
1677 * during ep_insert().
1678 */
1679 if (list_empty(&epi->ffd.file->f_tfile_llink))
1680 list_add(&epi->ffd.file->f_tfile_llink,
1681 &tfile_check_list);
1682 }
1683 }
1684 mutex_unlock(&ep->mtx);
1685
1686 return error;
1687 }
1688
1689 /**
1690 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1691 * another epoll file (represented by @ep) does not create
1692 * closed loops or too deep chains.
1693 *
1694 * @ep: Pointer to the epoll private data structure.
1695 * @file: Pointer to the epoll file to be checked.
1696 *
1697 * Returns: Returns zero if adding the epoll @file inside current epoll
1698 * structure @ep does not violate the constraints, or -1 otherwise.
1699 */
1700 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1701 {
1702 int ret;
1703 struct eventpoll *ep_cur, *ep_next;
1704
1705 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1706 ep_loop_check_proc, file, ep, current);
1707 /* clear visited list */
1708 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1709 visited_list_link) {
1710 ep_cur->visited = 0;
1711 list_del(&ep_cur->visited_list_link);
1712 }
1713 return ret;
1714 }
1715
1716 static void clear_tfile_check_list(void)
1717 {
1718 struct file *file;
1719
1720 /* first clear the tfile_check_list */
1721 while (!list_empty(&tfile_check_list)) {
1722 file = list_first_entry(&tfile_check_list, struct file,
1723 f_tfile_llink);
1724 list_del_init(&file->f_tfile_llink);
1725 }
1726 INIT_LIST_HEAD(&tfile_check_list);
1727 }
1728
1729 /*
1730 * Open an eventpoll file descriptor.
1731 */
1732 SYSCALL_DEFINE1(epoll_create1, int, flags)
1733 {
1734 int error, fd;
1735 struct eventpoll *ep = NULL;
1736 struct file *file;
1737
1738 /* Check the EPOLL_* constant for consistency. */
1739 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1740
1741 if (flags & ~EPOLL_CLOEXEC)
1742 return -EINVAL;
1743 /*
1744 * Create the internal data structure ("struct eventpoll").
1745 */
1746 error = ep_alloc(&ep);
1747 if (error < 0)
1748 return error;
1749 /*
1750 * Creates all the items needed to setup an eventpoll file. That is,
1751 * a file structure and a free file descriptor.
1752 */
1753 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1754 if (fd < 0) {
1755 error = fd;
1756 goto out_free_ep;
1757 }
1758 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1759 O_RDWR | (flags & O_CLOEXEC));
1760 if (IS_ERR(file)) {
1761 error = PTR_ERR(file);
1762 goto out_free_fd;
1763 }
1764 ep->file = file;
1765 fd_install(fd, file);
1766 return fd;
1767
1768 out_free_fd:
1769 put_unused_fd(fd);
1770 out_free_ep:
1771 ep_free(ep);
1772 return error;
1773 }
1774
1775 SYSCALL_DEFINE1(epoll_create, int, size)
1776 {
1777 if (size <= 0)
1778 return -EINVAL;
1779
1780 return sys_epoll_create1(0);
1781 }
1782
1783 /*
1784 * The following function implements the controller interface for
1785 * the eventpoll file that enables the insertion/removal/change of
1786 * file descriptors inside the interest set.
1787 */
1788 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1789 struct epoll_event __user *, event)
1790 {
1791 int error;
1792 int did_lock_epmutex = 0;
1793 struct file *file, *tfile;
1794 struct eventpoll *ep;
1795 struct epitem *epi;
1796 struct epoll_event epds;
1797
1798 error = -EFAULT;
1799 if (ep_op_has_event(op) &&
1800 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1801 goto error_return;
1802
1803 /* Get the "struct file *" for the eventpoll file */
1804 error = -EBADF;
1805 file = fget(epfd);
1806 if (!file)
1807 goto error_return;
1808
1809 /* Get the "struct file *" for the target file */
1810 tfile = fget(fd);
1811 if (!tfile)
1812 goto error_fput;
1813
1814 /* The target file descriptor must support poll */
1815 error = -EPERM;
1816 if (!tfile->f_op || !tfile->f_op->poll)
1817 goto error_tgt_fput;
1818
1819 /* Check if EPOLLWAKEUP is allowed */
1820 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1821 epds.events &= ~EPOLLWAKEUP;
1822
1823 /*
1824 * We have to check that the file structure underneath the file descriptor
1825 * the user passed to us _is_ an eventpoll file. And also we do not permit
1826 * adding an epoll file descriptor inside itself.
1827 */
1828 error = -EINVAL;
1829 if (file == tfile || !is_file_epoll(file))
1830 goto error_tgt_fput;
1831
1832 /*
1833 * At this point it is safe to assume that the "private_data" contains
1834 * our own data structure.
1835 */
1836 ep = file->private_data;
1837
1838 /*
1839 * When we insert an epoll file descriptor, inside another epoll file
1840 * descriptor, there is the change of creating closed loops, which are
1841 * better be handled here, than in more critical paths. While we are
1842 * checking for loops we also determine the list of files reachable
1843 * and hang them on the tfile_check_list, so we can check that we
1844 * haven't created too many possible wakeup paths.
1845 *
1846 * We need to hold the epmutex across both ep_insert and ep_remove
1847 * b/c we want to make sure we are looking at a coherent view of
1848 * epoll network.
1849 */
1850 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1851 mutex_lock(&epmutex);
1852 did_lock_epmutex = 1;
1853 }
1854 if (op == EPOLL_CTL_ADD) {
1855 if (is_file_epoll(tfile)) {
1856 error = -ELOOP;
1857 if (ep_loop_check(ep, tfile) != 0) {
1858 clear_tfile_check_list();
1859 goto error_tgt_fput;
1860 }
1861 } else
1862 list_add(&tfile->f_tfile_llink, &tfile_check_list);
1863 }
1864
1865 mutex_lock_nested(&ep->mtx, 0);
1866
1867 /*
1868 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1869 * above, we can be sure to be able to use the item looked up by
1870 * ep_find() till we release the mutex.
1871 */
1872 epi = ep_find(ep, tfile, fd);
1873
1874 error = -EINVAL;
1875 switch (op) {
1876 case EPOLL_CTL_ADD:
1877 if (!epi) {
1878 epds.events |= POLLERR | POLLHUP;
1879 error = ep_insert(ep, &epds, tfile, fd);
1880 } else
1881 error = -EEXIST;
1882 clear_tfile_check_list();
1883 break;
1884 case EPOLL_CTL_DEL:
1885 if (epi)
1886 error = ep_remove(ep, epi);
1887 else
1888 error = -ENOENT;
1889 break;
1890 case EPOLL_CTL_MOD:
1891 if (epi) {
1892 epds.events |= POLLERR | POLLHUP;
1893 error = ep_modify(ep, epi, &epds);
1894 } else
1895 error = -ENOENT;
1896 break;
1897 }
1898 mutex_unlock(&ep->mtx);
1899
1900 error_tgt_fput:
1901 if (did_lock_epmutex)
1902 mutex_unlock(&epmutex);
1903
1904 fput(tfile);
1905 error_fput:
1906 fput(file);
1907 error_return:
1908
1909 return error;
1910 }
1911
1912 /*
1913 * Implement the event wait interface for the eventpoll file. It is the kernel
1914 * part of the user space epoll_wait(2).
1915 */
1916 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1917 int, maxevents, int, timeout)
1918 {
1919 int error;
1920 struct fd f;
1921 struct eventpoll *ep;
1922
1923 /* The maximum number of event must be greater than zero */
1924 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1925 return -EINVAL;
1926
1927 /* Verify that the area passed by the user is writeable */
1928 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1929 return -EFAULT;
1930
1931 /* Get the "struct file *" for the eventpoll file */
1932 f = fdget(epfd);
1933 if (!f.file)
1934 return -EBADF;
1935
1936 /*
1937 * We have to check that the file structure underneath the fd
1938 * the user passed to us _is_ an eventpoll file.
1939 */
1940 error = -EINVAL;
1941 if (!is_file_epoll(f.file))
1942 goto error_fput;
1943
1944 /*
1945 * At this point it is safe to assume that the "private_data" contains
1946 * our own data structure.
1947 */
1948 ep = f.file->private_data;
1949
1950 /* Time to fish for events ... */
1951 error = ep_poll(ep, events, maxevents, timeout);
1952
1953 error_fput:
1954 fdput(f);
1955 return error;
1956 }
1957
1958 /*
1959 * Implement the event wait interface for the eventpoll file. It is the kernel
1960 * part of the user space epoll_pwait(2).
1961 */
1962 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1963 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1964 size_t, sigsetsize)
1965 {
1966 int error;
1967 sigset_t ksigmask, sigsaved;
1968
1969 /*
1970 * If the caller wants a certain signal mask to be set during the wait,
1971 * we apply it here.
1972 */
1973 if (sigmask) {
1974 if (sigsetsize != sizeof(sigset_t))
1975 return -EINVAL;
1976 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1977 return -EFAULT;
1978 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1979 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1980 }
1981
1982 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1983
1984 /*
1985 * If we changed the signal mask, we need to restore the original one.
1986 * In case we've got a signal while waiting, we do not restore the
1987 * signal mask yet, and we allow do_signal() to deliver the signal on
1988 * the way back to userspace, before the signal mask is restored.
1989 */
1990 if (sigmask) {
1991 if (error == -EINTR) {
1992 memcpy(&current->saved_sigmask, &sigsaved,
1993 sizeof(sigsaved));
1994 set_restore_sigmask();
1995 } else
1996 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1997 }
1998
1999 return error;
2000 }
2001
2002 #ifdef CONFIG_COMPAT
2003 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2004 struct epoll_event __user *, events,
2005 int, maxevents, int, timeout,
2006 const compat_sigset_t __user *, sigmask,
2007 compat_size_t, sigsetsize)
2008 {
2009 long err;
2010 compat_sigset_t csigmask;
2011 sigset_t ksigmask, sigsaved;
2012
2013 /*
2014 * If the caller wants a certain signal mask to be set during the wait,
2015 * we apply it here.
2016 */
2017 if (sigmask) {
2018 if (sigsetsize != sizeof(compat_sigset_t))
2019 return -EINVAL;
2020 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2021 return -EFAULT;
2022 sigset_from_compat(&ksigmask, &csigmask);
2023 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2024 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2025 }
2026
2027 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2028
2029 /*
2030 * If we changed the signal mask, we need to restore the original one.
2031 * In case we've got a signal while waiting, we do not restore the
2032 * signal mask yet, and we allow do_signal() to deliver the signal on
2033 * the way back to userspace, before the signal mask is restored.
2034 */
2035 if (sigmask) {
2036 if (err == -EINTR) {
2037 memcpy(&current->saved_sigmask, &sigsaved,
2038 sizeof(sigsaved));
2039 set_restore_sigmask();
2040 } else
2041 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2042 }
2043
2044 return err;
2045 }
2046 #endif
2047
2048 static int __init eventpoll_init(void)
2049 {
2050 struct sysinfo si;
2051
2052 si_meminfo(&si);
2053 /*
2054 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2055 */
2056 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2057 EP_ITEM_COST;
2058 BUG_ON(max_user_watches < 0);
2059
2060 /*
2061 * Initialize the structure used to perform epoll file descriptor
2062 * inclusion loops checks.
2063 */
2064 ep_nested_calls_init(&poll_loop_ncalls);
2065
2066 /* Initialize the structure used to perform safe poll wait head wake ups */
2067 ep_nested_calls_init(&poll_safewake_ncalls);
2068
2069 /* Initialize the structure used to perform file's f_op->poll() calls */
2070 ep_nested_calls_init(&poll_readywalk_ncalls);
2071
2072 /*
2073 * We can have many thousands of epitems, so prevent this from
2074 * using an extra cache line on 64-bit (and smaller) CPUs
2075 */
2076 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2077
2078 /* Allocates slab cache used to allocate "struct epitem" items */
2079 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2080 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2081
2082 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2083 pwq_cache = kmem_cache_create("eventpoll_pwq",
2084 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2085
2086 return 0;
2087 }
2088 fs_initcall(eventpoll_init);