fs: dcache reduce d_parent locking
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
37
38 /*
39 * Usage:
40 * dcache_inode_lock protects:
41 * - i_dentry, d_alias, d_inode
42 * dcache_hash_lock protects:
43 * - the dcache hash table, s_anon lists
44 * dcache_lru_lock protects:
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
50 * - d_count
51 * - d_unhashed()
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
54 * - d_alias, d_inode
55 *
56 * Ordering:
57 * dcache_inode_lock
58 * dentry->d_lock
59 * dcache_lru_lock
60 * dcache_hash_lock
61 *
62 * If there is an ancestor relationship:
63 * dentry->d_parent->...->d_parent->d_lock
64 * ...
65 * dentry->d_parent->d_lock
66 * dentry->d_lock
67 *
68 * If no ancestor relationship:
69 * if (dentry1 < dentry2)
70 * dentry1->d_lock
71 * dentry2->d_lock
72 */
73 int sysctl_vfs_cache_pressure __read_mostly = 100;
74 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75
76 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_inode_lock);
77 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_hash_lock);
78 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
80
81 EXPORT_SYMBOL(rename_lock);
82 EXPORT_SYMBOL(dcache_inode_lock);
83
84 static struct kmem_cache *dentry_cache __read_mostly;
85
86 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
87
88 /*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
98
99 static unsigned int d_hash_mask __read_mostly;
100 static unsigned int d_hash_shift __read_mostly;
101 static struct hlist_head *dentry_hashtable __read_mostly;
102
103 /* Statistics gathering. */
104 struct dentry_stat_t dentry_stat = {
105 .age_limit = 45,
106 };
107
108 static DEFINE_PER_CPU(unsigned int, nr_dentry);
109
110 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
111 static int get_nr_dentry(void)
112 {
113 int i;
114 int sum = 0;
115 for_each_possible_cpu(i)
116 sum += per_cpu(nr_dentry, i);
117 return sum < 0 ? 0 : sum;
118 }
119
120 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
121 size_t *lenp, loff_t *ppos)
122 {
123 dentry_stat.nr_dentry = get_nr_dentry();
124 return proc_dointvec(table, write, buffer, lenp, ppos);
125 }
126 #endif
127
128 static void __d_free(struct rcu_head *head)
129 {
130 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
131
132 WARN_ON(!list_empty(&dentry->d_alias));
133 if (dname_external(dentry))
134 kfree(dentry->d_name.name);
135 kmem_cache_free(dentry_cache, dentry);
136 }
137
138 /*
139 * no locks, please.
140 */
141 static void d_free(struct dentry *dentry)
142 {
143 BUG_ON(dentry->d_count);
144 this_cpu_dec(nr_dentry);
145 if (dentry->d_op && dentry->d_op->d_release)
146 dentry->d_op->d_release(dentry);
147
148 /* if dentry was never inserted into hash, immediate free is OK */
149 if (hlist_unhashed(&dentry->d_hash))
150 __d_free(&dentry->d_u.d_rcu);
151 else
152 call_rcu(&dentry->d_u.d_rcu, __d_free);
153 }
154
155 /*
156 * Release the dentry's inode, using the filesystem
157 * d_iput() operation if defined.
158 */
159 static void dentry_iput(struct dentry * dentry)
160 __releases(dentry->d_lock)
161 __releases(dcache_inode_lock)
162 {
163 struct inode *inode = dentry->d_inode;
164 if (inode) {
165 dentry->d_inode = NULL;
166 list_del_init(&dentry->d_alias);
167 spin_unlock(&dentry->d_lock);
168 spin_unlock(&dcache_inode_lock);
169 if (!inode->i_nlink)
170 fsnotify_inoderemove(inode);
171 if (dentry->d_op && dentry->d_op->d_iput)
172 dentry->d_op->d_iput(dentry, inode);
173 else
174 iput(inode);
175 } else {
176 spin_unlock(&dentry->d_lock);
177 spin_unlock(&dcache_inode_lock);
178 }
179 }
180
181 /*
182 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
183 */
184 static void dentry_lru_add(struct dentry *dentry)
185 {
186 if (list_empty(&dentry->d_lru)) {
187 spin_lock(&dcache_lru_lock);
188 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
189 dentry->d_sb->s_nr_dentry_unused++;
190 dentry_stat.nr_unused++;
191 spin_unlock(&dcache_lru_lock);
192 }
193 }
194
195 static void __dentry_lru_del(struct dentry *dentry)
196 {
197 list_del_init(&dentry->d_lru);
198 dentry->d_sb->s_nr_dentry_unused--;
199 dentry_stat.nr_unused--;
200 }
201
202 static void dentry_lru_del(struct dentry *dentry)
203 {
204 if (!list_empty(&dentry->d_lru)) {
205 spin_lock(&dcache_lru_lock);
206 __dentry_lru_del(dentry);
207 spin_unlock(&dcache_lru_lock);
208 }
209 }
210
211 static void dentry_lru_move_tail(struct dentry *dentry)
212 {
213 spin_lock(&dcache_lru_lock);
214 if (list_empty(&dentry->d_lru)) {
215 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
216 dentry->d_sb->s_nr_dentry_unused++;
217 dentry_stat.nr_unused++;
218 } else {
219 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
220 }
221 spin_unlock(&dcache_lru_lock);
222 }
223
224 /**
225 * d_kill - kill dentry and return parent
226 * @dentry: dentry to kill
227 *
228 * The dentry must already be unhashed and removed from the LRU.
229 *
230 * If this is the root of the dentry tree, return NULL.
231 *
232 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
233 * d_kill.
234 */
235 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
236 __releases(dentry->d_lock)
237 __releases(parent->d_lock)
238 __releases(dcache_inode_lock)
239 {
240 dentry->d_parent = NULL;
241 list_del(&dentry->d_u.d_child);
242 if (parent)
243 spin_unlock(&parent->d_lock);
244 dentry_iput(dentry);
245 /*
246 * dentry_iput drops the locks, at which point nobody (except
247 * transient RCU lookups) can reach this dentry.
248 */
249 d_free(dentry);
250 return parent;
251 }
252
253 /**
254 * d_drop - drop a dentry
255 * @dentry: dentry to drop
256 *
257 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
258 * be found through a VFS lookup any more. Note that this is different from
259 * deleting the dentry - d_delete will try to mark the dentry negative if
260 * possible, giving a successful _negative_ lookup, while d_drop will
261 * just make the cache lookup fail.
262 *
263 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
264 * reason (NFS timeouts or autofs deletes).
265 *
266 * __d_drop requires dentry->d_lock.
267 */
268 void __d_drop(struct dentry *dentry)
269 {
270 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
271 dentry->d_flags |= DCACHE_UNHASHED;
272 spin_lock(&dcache_hash_lock);
273 hlist_del_rcu(&dentry->d_hash);
274 spin_unlock(&dcache_hash_lock);
275 }
276 }
277 EXPORT_SYMBOL(__d_drop);
278
279 void d_drop(struct dentry *dentry)
280 {
281 spin_lock(&dentry->d_lock);
282 __d_drop(dentry);
283 spin_unlock(&dentry->d_lock);
284 }
285 EXPORT_SYMBOL(d_drop);
286
287 /*
288 * This is dput
289 *
290 * This is complicated by the fact that we do not want to put
291 * dentries that are no longer on any hash chain on the unused
292 * list: we'd much rather just get rid of them immediately.
293 *
294 * However, that implies that we have to traverse the dentry
295 * tree upwards to the parents which might _also_ now be
296 * scheduled for deletion (it may have been only waiting for
297 * its last child to go away).
298 *
299 * This tail recursion is done by hand as we don't want to depend
300 * on the compiler to always get this right (gcc generally doesn't).
301 * Real recursion would eat up our stack space.
302 */
303
304 /*
305 * dput - release a dentry
306 * @dentry: dentry to release
307 *
308 * Release a dentry. This will drop the usage count and if appropriate
309 * call the dentry unlink method as well as removing it from the queues and
310 * releasing its resources. If the parent dentries were scheduled for release
311 * they too may now get deleted.
312 *
313 * no dcache lock, please.
314 */
315
316 void dput(struct dentry *dentry)
317 {
318 struct dentry *parent;
319 if (!dentry)
320 return;
321
322 repeat:
323 if (dentry->d_count == 1)
324 might_sleep();
325 spin_lock(&dentry->d_lock);
326 BUG_ON(!dentry->d_count);
327 if (dentry->d_count > 1) {
328 dentry->d_count--;
329 spin_unlock(&dentry->d_lock);
330 return;
331 }
332
333 if (dentry->d_op && dentry->d_op->d_delete) {
334 if (dentry->d_op->d_delete(dentry))
335 goto kill_it;
336 }
337
338 /* Unreachable? Get rid of it */
339 if (d_unhashed(dentry))
340 goto kill_it;
341
342 /* Otherwise leave it cached and ensure it's on the LRU */
343 dentry->d_flags |= DCACHE_REFERENCED;
344 dentry_lru_add(dentry);
345
346 dentry->d_count--;
347 spin_unlock(&dentry->d_lock);
348 return;
349
350 kill_it:
351 if (!spin_trylock(&dcache_inode_lock)) {
352 relock:
353 spin_unlock(&dentry->d_lock);
354 cpu_relax();
355 goto repeat;
356 }
357 if (IS_ROOT(dentry))
358 parent = NULL;
359 else
360 parent = dentry->d_parent;
361 if (parent && !spin_trylock(&parent->d_lock)) {
362 spin_unlock(&dcache_inode_lock);
363 goto relock;
364 }
365 dentry->d_count--;
366 /* if dentry was on the d_lru list delete it from there */
367 dentry_lru_del(dentry);
368 /* if it was on the hash (d_delete case), then remove it */
369 __d_drop(dentry);
370 dentry = d_kill(dentry, parent);
371 if (dentry)
372 goto repeat;
373 }
374 EXPORT_SYMBOL(dput);
375
376 /**
377 * d_invalidate - invalidate a dentry
378 * @dentry: dentry to invalidate
379 *
380 * Try to invalidate the dentry if it turns out to be
381 * possible. If there are other dentries that can be
382 * reached through this one we can't delete it and we
383 * return -EBUSY. On success we return 0.
384 *
385 * no dcache lock.
386 */
387
388 int d_invalidate(struct dentry * dentry)
389 {
390 /*
391 * If it's already been dropped, return OK.
392 */
393 spin_lock(&dentry->d_lock);
394 if (d_unhashed(dentry)) {
395 spin_unlock(&dentry->d_lock);
396 return 0;
397 }
398 /*
399 * Check whether to do a partial shrink_dcache
400 * to get rid of unused child entries.
401 */
402 if (!list_empty(&dentry->d_subdirs)) {
403 spin_unlock(&dentry->d_lock);
404 shrink_dcache_parent(dentry);
405 spin_lock(&dentry->d_lock);
406 }
407
408 /*
409 * Somebody else still using it?
410 *
411 * If it's a directory, we can't drop it
412 * for fear of somebody re-populating it
413 * with children (even though dropping it
414 * would make it unreachable from the root,
415 * we might still populate it if it was a
416 * working directory or similar).
417 */
418 if (dentry->d_count > 1) {
419 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
420 spin_unlock(&dentry->d_lock);
421 return -EBUSY;
422 }
423 }
424
425 __d_drop(dentry);
426 spin_unlock(&dentry->d_lock);
427 return 0;
428 }
429 EXPORT_SYMBOL(d_invalidate);
430
431 /* This must be called with d_lock held */
432 static inline void __dget_dlock(struct dentry *dentry)
433 {
434 dentry->d_count++;
435 }
436
437 static inline void __dget(struct dentry *dentry)
438 {
439 spin_lock(&dentry->d_lock);
440 __dget_dlock(dentry);
441 spin_unlock(&dentry->d_lock);
442 }
443
444 struct dentry *dget_parent(struct dentry *dentry)
445 {
446 struct dentry *ret;
447
448 repeat:
449 /*
450 * Don't need rcu_dereference because we re-check it was correct under
451 * the lock.
452 */
453 rcu_read_lock();
454 ret = dentry->d_parent;
455 if (!ret) {
456 rcu_read_unlock();
457 goto out;
458 }
459 spin_lock(&ret->d_lock);
460 if (unlikely(ret != dentry->d_parent)) {
461 spin_unlock(&ret->d_lock);
462 rcu_read_unlock();
463 goto repeat;
464 }
465 rcu_read_unlock();
466 BUG_ON(!ret->d_count);
467 ret->d_count++;
468 spin_unlock(&ret->d_lock);
469 out:
470 return ret;
471 }
472 EXPORT_SYMBOL(dget_parent);
473
474 /**
475 * d_find_alias - grab a hashed alias of inode
476 * @inode: inode in question
477 * @want_discon: flag, used by d_splice_alias, to request
478 * that only a DISCONNECTED alias be returned.
479 *
480 * If inode has a hashed alias, or is a directory and has any alias,
481 * acquire the reference to alias and return it. Otherwise return NULL.
482 * Notice that if inode is a directory there can be only one alias and
483 * it can be unhashed only if it has no children, or if it is the root
484 * of a filesystem.
485 *
486 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
487 * any other hashed alias over that one unless @want_discon is set,
488 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
489 */
490 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
491 {
492 struct dentry *alias, *discon_alias;
493
494 again:
495 discon_alias = NULL;
496 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
497 spin_lock(&alias->d_lock);
498 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
499 if (IS_ROOT(alias) &&
500 (alias->d_flags & DCACHE_DISCONNECTED)) {
501 discon_alias = alias;
502 } else if (!want_discon) {
503 __dget_dlock(alias);
504 spin_unlock(&alias->d_lock);
505 return alias;
506 }
507 }
508 spin_unlock(&alias->d_lock);
509 }
510 if (discon_alias) {
511 alias = discon_alias;
512 spin_lock(&alias->d_lock);
513 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
514 if (IS_ROOT(alias) &&
515 (alias->d_flags & DCACHE_DISCONNECTED)) {
516 __dget_dlock(alias);
517 spin_unlock(&alias->d_lock);
518 return alias;
519 }
520 }
521 spin_unlock(&alias->d_lock);
522 goto again;
523 }
524 return NULL;
525 }
526
527 struct dentry *d_find_alias(struct inode *inode)
528 {
529 struct dentry *de = NULL;
530
531 if (!list_empty(&inode->i_dentry)) {
532 spin_lock(&dcache_inode_lock);
533 de = __d_find_alias(inode, 0);
534 spin_unlock(&dcache_inode_lock);
535 }
536 return de;
537 }
538 EXPORT_SYMBOL(d_find_alias);
539
540 /*
541 * Try to kill dentries associated with this inode.
542 * WARNING: you must own a reference to inode.
543 */
544 void d_prune_aliases(struct inode *inode)
545 {
546 struct dentry *dentry;
547 restart:
548 spin_lock(&dcache_inode_lock);
549 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
550 spin_lock(&dentry->d_lock);
551 if (!dentry->d_count) {
552 __dget_dlock(dentry);
553 __d_drop(dentry);
554 spin_unlock(&dentry->d_lock);
555 spin_unlock(&dcache_inode_lock);
556 dput(dentry);
557 goto restart;
558 }
559 spin_unlock(&dentry->d_lock);
560 }
561 spin_unlock(&dcache_inode_lock);
562 }
563 EXPORT_SYMBOL(d_prune_aliases);
564
565 /*
566 * Throw away a dentry - free the inode, dput the parent. This requires that
567 * the LRU list has already been removed.
568 *
569 * Try to prune ancestors as well. This is necessary to prevent
570 * quadratic behavior of shrink_dcache_parent(), but is also expected
571 * to be beneficial in reducing dentry cache fragmentation.
572 */
573 static void prune_one_dentry(struct dentry *dentry, struct dentry *parent)
574 __releases(dentry->d_lock)
575 __releases(parent->d_lock)
576 __releases(dcache_inode_lock)
577 {
578 __d_drop(dentry);
579 dentry = d_kill(dentry, parent);
580
581 /*
582 * Prune ancestors.
583 */
584 while (dentry) {
585 spin_lock(&dcache_inode_lock);
586 again:
587 spin_lock(&dentry->d_lock);
588 if (IS_ROOT(dentry))
589 parent = NULL;
590 else
591 parent = dentry->d_parent;
592 if (parent && !spin_trylock(&parent->d_lock)) {
593 spin_unlock(&dentry->d_lock);
594 goto again;
595 }
596 dentry->d_count--;
597 if (dentry->d_count) {
598 if (parent)
599 spin_unlock(&parent->d_lock);
600 spin_unlock(&dentry->d_lock);
601 spin_unlock(&dcache_inode_lock);
602 return;
603 }
604
605 dentry_lru_del(dentry);
606 __d_drop(dentry);
607 dentry = d_kill(dentry, parent);
608 }
609 }
610
611 static void shrink_dentry_list(struct list_head *list)
612 {
613 struct dentry *dentry;
614
615 while (!list_empty(list)) {
616 struct dentry *parent;
617
618 dentry = list_entry(list->prev, struct dentry, d_lru);
619
620 if (!spin_trylock(&dentry->d_lock)) {
621 relock:
622 spin_unlock(&dcache_lru_lock);
623 cpu_relax();
624 spin_lock(&dcache_lru_lock);
625 continue;
626 }
627
628 /*
629 * We found an inuse dentry which was not removed from
630 * the LRU because of laziness during lookup. Do not free
631 * it - just keep it off the LRU list.
632 */
633 if (dentry->d_count) {
634 __dentry_lru_del(dentry);
635 spin_unlock(&dentry->d_lock);
636 continue;
637 }
638 if (IS_ROOT(dentry))
639 parent = NULL;
640 else
641 parent = dentry->d_parent;
642 if (parent && !spin_trylock(&parent->d_lock)) {
643 spin_unlock(&dentry->d_lock);
644 goto relock;
645 }
646 __dentry_lru_del(dentry);
647 spin_unlock(&dcache_lru_lock);
648
649 prune_one_dentry(dentry, parent);
650 /* dcache_inode_lock and dentry->d_lock dropped */
651 spin_lock(&dcache_inode_lock);
652 spin_lock(&dcache_lru_lock);
653 }
654 }
655
656 /**
657 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
658 * @sb: superblock to shrink dentry LRU.
659 * @count: number of entries to prune
660 * @flags: flags to control the dentry processing
661 *
662 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
663 */
664 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
665 {
666 /* called from prune_dcache() and shrink_dcache_parent() */
667 struct dentry *dentry;
668 LIST_HEAD(referenced);
669 LIST_HEAD(tmp);
670 int cnt = *count;
671
672 spin_lock(&dcache_inode_lock);
673 relock:
674 spin_lock(&dcache_lru_lock);
675 while (!list_empty(&sb->s_dentry_lru)) {
676 dentry = list_entry(sb->s_dentry_lru.prev,
677 struct dentry, d_lru);
678 BUG_ON(dentry->d_sb != sb);
679
680 if (!spin_trylock(&dentry->d_lock)) {
681 spin_unlock(&dcache_lru_lock);
682 cpu_relax();
683 goto relock;
684 }
685
686 /*
687 * If we are honouring the DCACHE_REFERENCED flag and the
688 * dentry has this flag set, don't free it. Clear the flag
689 * and put it back on the LRU.
690 */
691 if (flags & DCACHE_REFERENCED &&
692 dentry->d_flags & DCACHE_REFERENCED) {
693 dentry->d_flags &= ~DCACHE_REFERENCED;
694 list_move(&dentry->d_lru, &referenced);
695 spin_unlock(&dentry->d_lock);
696 } else {
697 list_move_tail(&dentry->d_lru, &tmp);
698 spin_unlock(&dentry->d_lock);
699 if (!--cnt)
700 break;
701 }
702 /* XXX: re-add cond_resched_lock when dcache_lock goes away */
703 }
704
705 *count = cnt;
706 shrink_dentry_list(&tmp);
707
708 if (!list_empty(&referenced))
709 list_splice(&referenced, &sb->s_dentry_lru);
710 spin_unlock(&dcache_lru_lock);
711 spin_unlock(&dcache_inode_lock);
712 }
713
714 /**
715 * prune_dcache - shrink the dcache
716 * @count: number of entries to try to free
717 *
718 * Shrink the dcache. This is done when we need more memory, or simply when we
719 * need to unmount something (at which point we need to unuse all dentries).
720 *
721 * This function may fail to free any resources if all the dentries are in use.
722 */
723 static void prune_dcache(int count)
724 {
725 struct super_block *sb, *p = NULL;
726 int w_count;
727 int unused = dentry_stat.nr_unused;
728 int prune_ratio;
729 int pruned;
730
731 if (unused == 0 || count == 0)
732 return;
733 if (count >= unused)
734 prune_ratio = 1;
735 else
736 prune_ratio = unused / count;
737 spin_lock(&sb_lock);
738 list_for_each_entry(sb, &super_blocks, s_list) {
739 if (list_empty(&sb->s_instances))
740 continue;
741 if (sb->s_nr_dentry_unused == 0)
742 continue;
743 sb->s_count++;
744 /* Now, we reclaim unused dentrins with fairness.
745 * We reclaim them same percentage from each superblock.
746 * We calculate number of dentries to scan on this sb
747 * as follows, but the implementation is arranged to avoid
748 * overflows:
749 * number of dentries to scan on this sb =
750 * count * (number of dentries on this sb /
751 * number of dentries in the machine)
752 */
753 spin_unlock(&sb_lock);
754 if (prune_ratio != 1)
755 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
756 else
757 w_count = sb->s_nr_dentry_unused;
758 pruned = w_count;
759 /*
760 * We need to be sure this filesystem isn't being unmounted,
761 * otherwise we could race with generic_shutdown_super(), and
762 * end up holding a reference to an inode while the filesystem
763 * is unmounted. So we try to get s_umount, and make sure
764 * s_root isn't NULL.
765 */
766 if (down_read_trylock(&sb->s_umount)) {
767 if ((sb->s_root != NULL) &&
768 (!list_empty(&sb->s_dentry_lru))) {
769 __shrink_dcache_sb(sb, &w_count,
770 DCACHE_REFERENCED);
771 pruned -= w_count;
772 }
773 up_read(&sb->s_umount);
774 }
775 spin_lock(&sb_lock);
776 if (p)
777 __put_super(p);
778 count -= pruned;
779 p = sb;
780 /* more work left to do? */
781 if (count <= 0)
782 break;
783 }
784 if (p)
785 __put_super(p);
786 spin_unlock(&sb_lock);
787 }
788
789 /**
790 * shrink_dcache_sb - shrink dcache for a superblock
791 * @sb: superblock
792 *
793 * Shrink the dcache for the specified super block. This is used to free
794 * the dcache before unmounting a file system.
795 */
796 void shrink_dcache_sb(struct super_block *sb)
797 {
798 LIST_HEAD(tmp);
799
800 spin_lock(&dcache_inode_lock);
801 spin_lock(&dcache_lru_lock);
802 while (!list_empty(&sb->s_dentry_lru)) {
803 list_splice_init(&sb->s_dentry_lru, &tmp);
804 shrink_dentry_list(&tmp);
805 }
806 spin_unlock(&dcache_lru_lock);
807 spin_unlock(&dcache_inode_lock);
808 }
809 EXPORT_SYMBOL(shrink_dcache_sb);
810
811 /*
812 * destroy a single subtree of dentries for unmount
813 * - see the comments on shrink_dcache_for_umount() for a description of the
814 * locking
815 */
816 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
817 {
818 struct dentry *parent;
819 unsigned detached = 0;
820
821 BUG_ON(!IS_ROOT(dentry));
822
823 /* detach this root from the system */
824 spin_lock(&dentry->d_lock);
825 dentry_lru_del(dentry);
826 __d_drop(dentry);
827 spin_unlock(&dentry->d_lock);
828
829 for (;;) {
830 /* descend to the first leaf in the current subtree */
831 while (!list_empty(&dentry->d_subdirs)) {
832 struct dentry *loop;
833
834 /* this is a branch with children - detach all of them
835 * from the system in one go */
836 spin_lock(&dentry->d_lock);
837 list_for_each_entry(loop, &dentry->d_subdirs,
838 d_u.d_child) {
839 spin_lock_nested(&loop->d_lock,
840 DENTRY_D_LOCK_NESTED);
841 dentry_lru_del(loop);
842 __d_drop(loop);
843 spin_unlock(&loop->d_lock);
844 }
845 spin_unlock(&dentry->d_lock);
846
847 /* move to the first child */
848 dentry = list_entry(dentry->d_subdirs.next,
849 struct dentry, d_u.d_child);
850 }
851
852 /* consume the dentries from this leaf up through its parents
853 * until we find one with children or run out altogether */
854 do {
855 struct inode *inode;
856
857 if (dentry->d_count != 0) {
858 printk(KERN_ERR
859 "BUG: Dentry %p{i=%lx,n=%s}"
860 " still in use (%d)"
861 " [unmount of %s %s]\n",
862 dentry,
863 dentry->d_inode ?
864 dentry->d_inode->i_ino : 0UL,
865 dentry->d_name.name,
866 dentry->d_count,
867 dentry->d_sb->s_type->name,
868 dentry->d_sb->s_id);
869 BUG();
870 }
871
872 if (IS_ROOT(dentry)) {
873 parent = NULL;
874 list_del(&dentry->d_u.d_child);
875 } else {
876 parent = dentry->d_parent;
877 spin_lock(&parent->d_lock);
878 parent->d_count--;
879 list_del(&dentry->d_u.d_child);
880 spin_unlock(&parent->d_lock);
881 }
882
883 detached++;
884
885 inode = dentry->d_inode;
886 if (inode) {
887 dentry->d_inode = NULL;
888 list_del_init(&dentry->d_alias);
889 if (dentry->d_op && dentry->d_op->d_iput)
890 dentry->d_op->d_iput(dentry, inode);
891 else
892 iput(inode);
893 }
894
895 d_free(dentry);
896
897 /* finished when we fall off the top of the tree,
898 * otherwise we ascend to the parent and move to the
899 * next sibling if there is one */
900 if (!parent)
901 return;
902 dentry = parent;
903 } while (list_empty(&dentry->d_subdirs));
904
905 dentry = list_entry(dentry->d_subdirs.next,
906 struct dentry, d_u.d_child);
907 }
908 }
909
910 /*
911 * destroy the dentries attached to a superblock on unmounting
912 * - we don't need to use dentry->d_lock because:
913 * - the superblock is detached from all mountings and open files, so the
914 * dentry trees will not be rearranged by the VFS
915 * - s_umount is write-locked, so the memory pressure shrinker will ignore
916 * any dentries belonging to this superblock that it comes across
917 * - the filesystem itself is no longer permitted to rearrange the dentries
918 * in this superblock
919 */
920 void shrink_dcache_for_umount(struct super_block *sb)
921 {
922 struct dentry *dentry;
923
924 if (down_read_trylock(&sb->s_umount))
925 BUG();
926
927 dentry = sb->s_root;
928 sb->s_root = NULL;
929 spin_lock(&dentry->d_lock);
930 dentry->d_count--;
931 spin_unlock(&dentry->d_lock);
932 shrink_dcache_for_umount_subtree(dentry);
933
934 while (!hlist_empty(&sb->s_anon)) {
935 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
936 shrink_dcache_for_umount_subtree(dentry);
937 }
938 }
939
940 /*
941 * Search for at least 1 mount point in the dentry's subdirs.
942 * We descend to the next level whenever the d_subdirs
943 * list is non-empty and continue searching.
944 */
945
946 /**
947 * have_submounts - check for mounts over a dentry
948 * @parent: dentry to check.
949 *
950 * Return true if the parent or its subdirectories contain
951 * a mount point
952 */
953 int have_submounts(struct dentry *parent)
954 {
955 struct dentry *this_parent;
956 struct list_head *next;
957 unsigned seq;
958 int locked = 0;
959
960 seq = read_seqbegin(&rename_lock);
961 again:
962 this_parent = parent;
963
964 if (d_mountpoint(parent))
965 goto positive;
966 spin_lock(&this_parent->d_lock);
967 repeat:
968 next = this_parent->d_subdirs.next;
969 resume:
970 while (next != &this_parent->d_subdirs) {
971 struct list_head *tmp = next;
972 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
973 next = tmp->next;
974
975 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
976 /* Have we found a mount point ? */
977 if (d_mountpoint(dentry)) {
978 spin_unlock(&dentry->d_lock);
979 spin_unlock(&this_parent->d_lock);
980 goto positive;
981 }
982 if (!list_empty(&dentry->d_subdirs)) {
983 spin_unlock(&this_parent->d_lock);
984 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
985 this_parent = dentry;
986 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
987 goto repeat;
988 }
989 spin_unlock(&dentry->d_lock);
990 }
991 /*
992 * All done at this level ... ascend and resume the search.
993 */
994 if (this_parent != parent) {
995 struct dentry *tmp;
996 struct dentry *child;
997
998 tmp = this_parent->d_parent;
999 rcu_read_lock();
1000 spin_unlock(&this_parent->d_lock);
1001 child = this_parent;
1002 this_parent = tmp;
1003 spin_lock(&this_parent->d_lock);
1004 /* might go back up the wrong parent if we have had a rename
1005 * or deletion */
1006 if (this_parent != child->d_parent ||
1007 (!locked && read_seqretry(&rename_lock, seq))) {
1008 spin_unlock(&this_parent->d_lock);
1009 rcu_read_unlock();
1010 goto rename_retry;
1011 }
1012 rcu_read_unlock();
1013 next = child->d_u.d_child.next;
1014 goto resume;
1015 }
1016 spin_unlock(&this_parent->d_lock);
1017 if (!locked && read_seqretry(&rename_lock, seq))
1018 goto rename_retry;
1019 if (locked)
1020 write_sequnlock(&rename_lock);
1021 return 0; /* No mount points found in tree */
1022 positive:
1023 if (!locked && read_seqretry(&rename_lock, seq))
1024 goto rename_retry;
1025 if (locked)
1026 write_sequnlock(&rename_lock);
1027 return 1;
1028
1029 rename_retry:
1030 locked = 1;
1031 write_seqlock(&rename_lock);
1032 goto again;
1033 }
1034 EXPORT_SYMBOL(have_submounts);
1035
1036 /*
1037 * Search the dentry child list for the specified parent,
1038 * and move any unused dentries to the end of the unused
1039 * list for prune_dcache(). We descend to the next level
1040 * whenever the d_subdirs list is non-empty and continue
1041 * searching.
1042 *
1043 * It returns zero iff there are no unused children,
1044 * otherwise it returns the number of children moved to
1045 * the end of the unused list. This may not be the total
1046 * number of unused children, because select_parent can
1047 * drop the lock and return early due to latency
1048 * constraints.
1049 */
1050 static int select_parent(struct dentry * parent)
1051 {
1052 struct dentry *this_parent;
1053 struct list_head *next;
1054 unsigned seq;
1055 int found = 0;
1056 int locked = 0;
1057
1058 seq = read_seqbegin(&rename_lock);
1059 again:
1060 this_parent = parent;
1061 spin_lock(&this_parent->d_lock);
1062 repeat:
1063 next = this_parent->d_subdirs.next;
1064 resume:
1065 while (next != &this_parent->d_subdirs) {
1066 struct list_head *tmp = next;
1067 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1068 next = tmp->next;
1069
1070 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1071
1072 /*
1073 * move only zero ref count dentries to the end
1074 * of the unused list for prune_dcache
1075 */
1076 if (!dentry->d_count) {
1077 dentry_lru_move_tail(dentry);
1078 found++;
1079 } else {
1080 dentry_lru_del(dentry);
1081 }
1082
1083 /*
1084 * We can return to the caller if we have found some (this
1085 * ensures forward progress). We'll be coming back to find
1086 * the rest.
1087 */
1088 if (found && need_resched()) {
1089 spin_unlock(&dentry->d_lock);
1090 goto out;
1091 }
1092
1093 /*
1094 * Descend a level if the d_subdirs list is non-empty.
1095 */
1096 if (!list_empty(&dentry->d_subdirs)) {
1097 spin_unlock(&this_parent->d_lock);
1098 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1099 this_parent = dentry;
1100 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1101 goto repeat;
1102 }
1103
1104 spin_unlock(&dentry->d_lock);
1105 }
1106 /*
1107 * All done at this level ... ascend and resume the search.
1108 */
1109 if (this_parent != parent) {
1110 struct dentry *tmp;
1111 struct dentry *child;
1112
1113 tmp = this_parent->d_parent;
1114 rcu_read_lock();
1115 spin_unlock(&this_parent->d_lock);
1116 child = this_parent;
1117 this_parent = tmp;
1118 spin_lock(&this_parent->d_lock);
1119 /* might go back up the wrong parent if we have had a rename
1120 * or deletion */
1121 if (this_parent != child->d_parent ||
1122 (!locked && read_seqretry(&rename_lock, seq))) {
1123 spin_unlock(&this_parent->d_lock);
1124 rcu_read_unlock();
1125 goto rename_retry;
1126 }
1127 rcu_read_unlock();
1128 next = child->d_u.d_child.next;
1129 goto resume;
1130 }
1131 out:
1132 spin_unlock(&this_parent->d_lock);
1133 if (!locked && read_seqretry(&rename_lock, seq))
1134 goto rename_retry;
1135 if (locked)
1136 write_sequnlock(&rename_lock);
1137 return found;
1138
1139 rename_retry:
1140 if (found)
1141 return found;
1142 locked = 1;
1143 write_seqlock(&rename_lock);
1144 goto again;
1145 }
1146
1147 /**
1148 * shrink_dcache_parent - prune dcache
1149 * @parent: parent of entries to prune
1150 *
1151 * Prune the dcache to remove unused children of the parent dentry.
1152 */
1153
1154 void shrink_dcache_parent(struct dentry * parent)
1155 {
1156 struct super_block *sb = parent->d_sb;
1157 int found;
1158
1159 while ((found = select_parent(parent)) != 0)
1160 __shrink_dcache_sb(sb, &found, 0);
1161 }
1162 EXPORT_SYMBOL(shrink_dcache_parent);
1163
1164 /*
1165 * Scan `nr' dentries and return the number which remain.
1166 *
1167 * We need to avoid reentering the filesystem if the caller is performing a
1168 * GFP_NOFS allocation attempt. One example deadlock is:
1169 *
1170 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1171 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1172 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1173 *
1174 * In this case we return -1 to tell the caller that we baled.
1175 */
1176 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1177 {
1178 if (nr) {
1179 if (!(gfp_mask & __GFP_FS))
1180 return -1;
1181 prune_dcache(nr);
1182 }
1183
1184 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1185 }
1186
1187 static struct shrinker dcache_shrinker = {
1188 .shrink = shrink_dcache_memory,
1189 .seeks = DEFAULT_SEEKS,
1190 };
1191
1192 /**
1193 * d_alloc - allocate a dcache entry
1194 * @parent: parent of entry to allocate
1195 * @name: qstr of the name
1196 *
1197 * Allocates a dentry. It returns %NULL if there is insufficient memory
1198 * available. On a success the dentry is returned. The name passed in is
1199 * copied and the copy passed in may be reused after this call.
1200 */
1201
1202 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1203 {
1204 struct dentry *dentry;
1205 char *dname;
1206
1207 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1208 if (!dentry)
1209 return NULL;
1210
1211 if (name->len > DNAME_INLINE_LEN-1) {
1212 dname = kmalloc(name->len + 1, GFP_KERNEL);
1213 if (!dname) {
1214 kmem_cache_free(dentry_cache, dentry);
1215 return NULL;
1216 }
1217 } else {
1218 dname = dentry->d_iname;
1219 }
1220 dentry->d_name.name = dname;
1221
1222 dentry->d_name.len = name->len;
1223 dentry->d_name.hash = name->hash;
1224 memcpy(dname, name->name, name->len);
1225 dname[name->len] = 0;
1226
1227 dentry->d_count = 1;
1228 dentry->d_flags = DCACHE_UNHASHED;
1229 spin_lock_init(&dentry->d_lock);
1230 dentry->d_inode = NULL;
1231 dentry->d_parent = NULL;
1232 dentry->d_sb = NULL;
1233 dentry->d_op = NULL;
1234 dentry->d_fsdata = NULL;
1235 dentry->d_mounted = 0;
1236 INIT_HLIST_NODE(&dentry->d_hash);
1237 INIT_LIST_HEAD(&dentry->d_lru);
1238 INIT_LIST_HEAD(&dentry->d_subdirs);
1239 INIT_LIST_HEAD(&dentry->d_alias);
1240 INIT_LIST_HEAD(&dentry->d_u.d_child);
1241
1242 if (parent) {
1243 spin_lock(&parent->d_lock);
1244 /*
1245 * don't need child lock because it is not subject
1246 * to concurrency here
1247 */
1248 __dget_dlock(parent);
1249 dentry->d_parent = parent;
1250 dentry->d_sb = parent->d_sb;
1251 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1252 spin_unlock(&parent->d_lock);
1253 }
1254
1255 this_cpu_inc(nr_dentry);
1256
1257 return dentry;
1258 }
1259 EXPORT_SYMBOL(d_alloc);
1260
1261 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1262 {
1263 struct qstr q;
1264
1265 q.name = name;
1266 q.len = strlen(name);
1267 q.hash = full_name_hash(q.name, q.len);
1268 return d_alloc(parent, &q);
1269 }
1270 EXPORT_SYMBOL(d_alloc_name);
1271
1272 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1273 {
1274 spin_lock(&dentry->d_lock);
1275 if (inode)
1276 list_add(&dentry->d_alias, &inode->i_dentry);
1277 dentry->d_inode = inode;
1278 spin_unlock(&dentry->d_lock);
1279 fsnotify_d_instantiate(dentry, inode);
1280 }
1281
1282 /**
1283 * d_instantiate - fill in inode information for a dentry
1284 * @entry: dentry to complete
1285 * @inode: inode to attach to this dentry
1286 *
1287 * Fill in inode information in the entry.
1288 *
1289 * This turns negative dentries into productive full members
1290 * of society.
1291 *
1292 * NOTE! This assumes that the inode count has been incremented
1293 * (or otherwise set) by the caller to indicate that it is now
1294 * in use by the dcache.
1295 */
1296
1297 void d_instantiate(struct dentry *entry, struct inode * inode)
1298 {
1299 BUG_ON(!list_empty(&entry->d_alias));
1300 spin_lock(&dcache_inode_lock);
1301 __d_instantiate(entry, inode);
1302 spin_unlock(&dcache_inode_lock);
1303 security_d_instantiate(entry, inode);
1304 }
1305 EXPORT_SYMBOL(d_instantiate);
1306
1307 /**
1308 * d_instantiate_unique - instantiate a non-aliased dentry
1309 * @entry: dentry to instantiate
1310 * @inode: inode to attach to this dentry
1311 *
1312 * Fill in inode information in the entry. On success, it returns NULL.
1313 * If an unhashed alias of "entry" already exists, then we return the
1314 * aliased dentry instead and drop one reference to inode.
1315 *
1316 * Note that in order to avoid conflicts with rename() etc, the caller
1317 * had better be holding the parent directory semaphore.
1318 *
1319 * This also assumes that the inode count has been incremented
1320 * (or otherwise set) by the caller to indicate that it is now
1321 * in use by the dcache.
1322 */
1323 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1324 struct inode *inode)
1325 {
1326 struct dentry *alias;
1327 int len = entry->d_name.len;
1328 const char *name = entry->d_name.name;
1329 unsigned int hash = entry->d_name.hash;
1330
1331 if (!inode) {
1332 __d_instantiate(entry, NULL);
1333 return NULL;
1334 }
1335
1336 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1337 struct qstr *qstr = &alias->d_name;
1338
1339 /*
1340 * Don't need alias->d_lock here, because aliases with
1341 * d_parent == entry->d_parent are not subject to name or
1342 * parent changes, because the parent inode i_mutex is held.
1343 */
1344 if (qstr->hash != hash)
1345 continue;
1346 if (alias->d_parent != entry->d_parent)
1347 continue;
1348 if (qstr->len != len)
1349 continue;
1350 if (memcmp(qstr->name, name, len))
1351 continue;
1352 __dget(alias);
1353 return alias;
1354 }
1355
1356 __d_instantiate(entry, inode);
1357 return NULL;
1358 }
1359
1360 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1361 {
1362 struct dentry *result;
1363
1364 BUG_ON(!list_empty(&entry->d_alias));
1365
1366 spin_lock(&dcache_inode_lock);
1367 result = __d_instantiate_unique(entry, inode);
1368 spin_unlock(&dcache_inode_lock);
1369
1370 if (!result) {
1371 security_d_instantiate(entry, inode);
1372 return NULL;
1373 }
1374
1375 BUG_ON(!d_unhashed(result));
1376 iput(inode);
1377 return result;
1378 }
1379
1380 EXPORT_SYMBOL(d_instantiate_unique);
1381
1382 /**
1383 * d_alloc_root - allocate root dentry
1384 * @root_inode: inode to allocate the root for
1385 *
1386 * Allocate a root ("/") dentry for the inode given. The inode is
1387 * instantiated and returned. %NULL is returned if there is insufficient
1388 * memory or the inode passed is %NULL.
1389 */
1390
1391 struct dentry * d_alloc_root(struct inode * root_inode)
1392 {
1393 struct dentry *res = NULL;
1394
1395 if (root_inode) {
1396 static const struct qstr name = { .name = "/", .len = 1 };
1397
1398 res = d_alloc(NULL, &name);
1399 if (res) {
1400 res->d_sb = root_inode->i_sb;
1401 res->d_parent = res;
1402 d_instantiate(res, root_inode);
1403 }
1404 }
1405 return res;
1406 }
1407 EXPORT_SYMBOL(d_alloc_root);
1408
1409 static inline struct hlist_head *d_hash(struct dentry *parent,
1410 unsigned long hash)
1411 {
1412 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1413 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1414 return dentry_hashtable + (hash & D_HASHMASK);
1415 }
1416
1417 /**
1418 * d_obtain_alias - find or allocate a dentry for a given inode
1419 * @inode: inode to allocate the dentry for
1420 *
1421 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1422 * similar open by handle operations. The returned dentry may be anonymous,
1423 * or may have a full name (if the inode was already in the cache).
1424 *
1425 * When called on a directory inode, we must ensure that the inode only ever
1426 * has one dentry. If a dentry is found, that is returned instead of
1427 * allocating a new one.
1428 *
1429 * On successful return, the reference to the inode has been transferred
1430 * to the dentry. In case of an error the reference on the inode is released.
1431 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1432 * be passed in and will be the error will be propagate to the return value,
1433 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1434 */
1435 struct dentry *d_obtain_alias(struct inode *inode)
1436 {
1437 static const struct qstr anonstring = { .name = "" };
1438 struct dentry *tmp;
1439 struct dentry *res;
1440
1441 if (!inode)
1442 return ERR_PTR(-ESTALE);
1443 if (IS_ERR(inode))
1444 return ERR_CAST(inode);
1445
1446 res = d_find_alias(inode);
1447 if (res)
1448 goto out_iput;
1449
1450 tmp = d_alloc(NULL, &anonstring);
1451 if (!tmp) {
1452 res = ERR_PTR(-ENOMEM);
1453 goto out_iput;
1454 }
1455 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1456
1457
1458 spin_lock(&dcache_inode_lock);
1459 res = __d_find_alias(inode, 0);
1460 if (res) {
1461 spin_unlock(&dcache_inode_lock);
1462 dput(tmp);
1463 goto out_iput;
1464 }
1465
1466 /* attach a disconnected dentry */
1467 spin_lock(&tmp->d_lock);
1468 tmp->d_sb = inode->i_sb;
1469 tmp->d_inode = inode;
1470 tmp->d_flags |= DCACHE_DISCONNECTED;
1471 tmp->d_flags &= ~DCACHE_UNHASHED;
1472 list_add(&tmp->d_alias, &inode->i_dentry);
1473 spin_lock(&dcache_hash_lock);
1474 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1475 spin_unlock(&dcache_hash_lock);
1476 spin_unlock(&tmp->d_lock);
1477 spin_unlock(&dcache_inode_lock);
1478
1479 return tmp;
1480
1481 out_iput:
1482 iput(inode);
1483 return res;
1484 }
1485 EXPORT_SYMBOL(d_obtain_alias);
1486
1487 /**
1488 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1489 * @inode: the inode which may have a disconnected dentry
1490 * @dentry: a negative dentry which we want to point to the inode.
1491 *
1492 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1493 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1494 * and return it, else simply d_add the inode to the dentry and return NULL.
1495 *
1496 * This is needed in the lookup routine of any filesystem that is exportable
1497 * (via knfsd) so that we can build dcache paths to directories effectively.
1498 *
1499 * If a dentry was found and moved, then it is returned. Otherwise NULL
1500 * is returned. This matches the expected return value of ->lookup.
1501 *
1502 */
1503 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1504 {
1505 struct dentry *new = NULL;
1506
1507 if (inode && S_ISDIR(inode->i_mode)) {
1508 spin_lock(&dcache_inode_lock);
1509 new = __d_find_alias(inode, 1);
1510 if (new) {
1511 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1512 spin_unlock(&dcache_inode_lock);
1513 security_d_instantiate(new, inode);
1514 d_move(new, dentry);
1515 iput(inode);
1516 } else {
1517 /* already taking dcache_inode_lock, so d_add() by hand */
1518 __d_instantiate(dentry, inode);
1519 spin_unlock(&dcache_inode_lock);
1520 security_d_instantiate(dentry, inode);
1521 d_rehash(dentry);
1522 }
1523 } else
1524 d_add(dentry, inode);
1525 return new;
1526 }
1527 EXPORT_SYMBOL(d_splice_alias);
1528
1529 /**
1530 * d_add_ci - lookup or allocate new dentry with case-exact name
1531 * @inode: the inode case-insensitive lookup has found
1532 * @dentry: the negative dentry that was passed to the parent's lookup func
1533 * @name: the case-exact name to be associated with the returned dentry
1534 *
1535 * This is to avoid filling the dcache with case-insensitive names to the
1536 * same inode, only the actual correct case is stored in the dcache for
1537 * case-insensitive filesystems.
1538 *
1539 * For a case-insensitive lookup match and if the the case-exact dentry
1540 * already exists in in the dcache, use it and return it.
1541 *
1542 * If no entry exists with the exact case name, allocate new dentry with
1543 * the exact case, and return the spliced entry.
1544 */
1545 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1546 struct qstr *name)
1547 {
1548 int error;
1549 struct dentry *found;
1550 struct dentry *new;
1551
1552 /*
1553 * First check if a dentry matching the name already exists,
1554 * if not go ahead and create it now.
1555 */
1556 found = d_hash_and_lookup(dentry->d_parent, name);
1557 if (!found) {
1558 new = d_alloc(dentry->d_parent, name);
1559 if (!new) {
1560 error = -ENOMEM;
1561 goto err_out;
1562 }
1563
1564 found = d_splice_alias(inode, new);
1565 if (found) {
1566 dput(new);
1567 return found;
1568 }
1569 return new;
1570 }
1571
1572 /*
1573 * If a matching dentry exists, and it's not negative use it.
1574 *
1575 * Decrement the reference count to balance the iget() done
1576 * earlier on.
1577 */
1578 if (found->d_inode) {
1579 if (unlikely(found->d_inode != inode)) {
1580 /* This can't happen because bad inodes are unhashed. */
1581 BUG_ON(!is_bad_inode(inode));
1582 BUG_ON(!is_bad_inode(found->d_inode));
1583 }
1584 iput(inode);
1585 return found;
1586 }
1587
1588 /*
1589 * Negative dentry: instantiate it unless the inode is a directory and
1590 * already has a dentry.
1591 */
1592 spin_lock(&dcache_inode_lock);
1593 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1594 __d_instantiate(found, inode);
1595 spin_unlock(&dcache_inode_lock);
1596 security_d_instantiate(found, inode);
1597 return found;
1598 }
1599
1600 /*
1601 * In case a directory already has a (disconnected) entry grab a
1602 * reference to it, move it in place and use it.
1603 */
1604 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1605 __dget(new);
1606 spin_unlock(&dcache_inode_lock);
1607 security_d_instantiate(found, inode);
1608 d_move(new, found);
1609 iput(inode);
1610 dput(found);
1611 return new;
1612
1613 err_out:
1614 iput(inode);
1615 return ERR_PTR(error);
1616 }
1617 EXPORT_SYMBOL(d_add_ci);
1618
1619 /**
1620 * d_lookup - search for a dentry
1621 * @parent: parent dentry
1622 * @name: qstr of name we wish to find
1623 * Returns: dentry, or NULL
1624 *
1625 * d_lookup searches the children of the parent dentry for the name in
1626 * question. If the dentry is found its reference count is incremented and the
1627 * dentry is returned. The caller must use dput to free the entry when it has
1628 * finished using it. %NULL is returned if the dentry does not exist.
1629 */
1630 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1631 {
1632 struct dentry * dentry = NULL;
1633 unsigned seq;
1634
1635 do {
1636 seq = read_seqbegin(&rename_lock);
1637 dentry = __d_lookup(parent, name);
1638 if (dentry)
1639 break;
1640 } while (read_seqretry(&rename_lock, seq));
1641 return dentry;
1642 }
1643 EXPORT_SYMBOL(d_lookup);
1644
1645 /*
1646 * __d_lookup - search for a dentry (racy)
1647 * @parent: parent dentry
1648 * @name: qstr of name we wish to find
1649 * Returns: dentry, or NULL
1650 *
1651 * __d_lookup is like d_lookup, however it may (rarely) return a
1652 * false-negative result due to unrelated rename activity.
1653 *
1654 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1655 * however it must be used carefully, eg. with a following d_lookup in
1656 * the case of failure.
1657 *
1658 * __d_lookup callers must be commented.
1659 */
1660 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1661 {
1662 unsigned int len = name->len;
1663 unsigned int hash = name->hash;
1664 const unsigned char *str = name->name;
1665 struct hlist_head *head = d_hash(parent,hash);
1666 struct dentry *found = NULL;
1667 struct hlist_node *node;
1668 struct dentry *dentry;
1669
1670 /*
1671 * The hash list is protected using RCU.
1672 *
1673 * Take d_lock when comparing a candidate dentry, to avoid races
1674 * with d_move().
1675 *
1676 * It is possible that concurrent renames can mess up our list
1677 * walk here and result in missing our dentry, resulting in the
1678 * false-negative result. d_lookup() protects against concurrent
1679 * renames using rename_lock seqlock.
1680 *
1681 * See Documentation/vfs/dcache-locking.txt for more details.
1682 */
1683 rcu_read_lock();
1684
1685 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1686 struct qstr *qstr;
1687
1688 if (dentry->d_name.hash != hash)
1689 continue;
1690 if (dentry->d_parent != parent)
1691 continue;
1692
1693 spin_lock(&dentry->d_lock);
1694
1695 /*
1696 * Recheck the dentry after taking the lock - d_move may have
1697 * changed things. Don't bother checking the hash because
1698 * we're about to compare the whole name anyway.
1699 */
1700 if (dentry->d_parent != parent)
1701 goto next;
1702
1703 /* non-existing due to RCU? */
1704 if (d_unhashed(dentry))
1705 goto next;
1706
1707 /*
1708 * It is safe to compare names since d_move() cannot
1709 * change the qstr (protected by d_lock).
1710 */
1711 qstr = &dentry->d_name;
1712 if (parent->d_op && parent->d_op->d_compare) {
1713 if (parent->d_op->d_compare(parent, parent->d_inode,
1714 dentry, dentry->d_inode,
1715 qstr->len, qstr->name, name))
1716 goto next;
1717 } else {
1718 if (qstr->len != len)
1719 goto next;
1720 if (memcmp(qstr->name, str, len))
1721 goto next;
1722 }
1723
1724 dentry->d_count++;
1725 found = dentry;
1726 spin_unlock(&dentry->d_lock);
1727 break;
1728 next:
1729 spin_unlock(&dentry->d_lock);
1730 }
1731 rcu_read_unlock();
1732
1733 return found;
1734 }
1735
1736 /**
1737 * d_hash_and_lookup - hash the qstr then search for a dentry
1738 * @dir: Directory to search in
1739 * @name: qstr of name we wish to find
1740 *
1741 * On hash failure or on lookup failure NULL is returned.
1742 */
1743 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1744 {
1745 struct dentry *dentry = NULL;
1746
1747 /*
1748 * Check for a fs-specific hash function. Note that we must
1749 * calculate the standard hash first, as the d_op->d_hash()
1750 * routine may choose to leave the hash value unchanged.
1751 */
1752 name->hash = full_name_hash(name->name, name->len);
1753 if (dir->d_op && dir->d_op->d_hash) {
1754 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1755 goto out;
1756 }
1757 dentry = d_lookup(dir, name);
1758 out:
1759 return dentry;
1760 }
1761
1762 /**
1763 * d_validate - verify dentry provided from insecure source (deprecated)
1764 * @dentry: The dentry alleged to be valid child of @dparent
1765 * @dparent: The parent dentry (known to be valid)
1766 *
1767 * An insecure source has sent us a dentry, here we verify it and dget() it.
1768 * This is used by ncpfs in its readdir implementation.
1769 * Zero is returned in the dentry is invalid.
1770 *
1771 * This function is slow for big directories, and deprecated, do not use it.
1772 */
1773 int d_validate(struct dentry *dentry, struct dentry *dparent)
1774 {
1775 struct dentry *child;
1776
1777 spin_lock(&dparent->d_lock);
1778 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1779 if (dentry == child) {
1780 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1781 __dget_dlock(dentry);
1782 spin_unlock(&dentry->d_lock);
1783 spin_unlock(&dparent->d_lock);
1784 return 1;
1785 }
1786 }
1787 spin_unlock(&dparent->d_lock);
1788
1789 return 0;
1790 }
1791 EXPORT_SYMBOL(d_validate);
1792
1793 /*
1794 * When a file is deleted, we have two options:
1795 * - turn this dentry into a negative dentry
1796 * - unhash this dentry and free it.
1797 *
1798 * Usually, we want to just turn this into
1799 * a negative dentry, but if anybody else is
1800 * currently using the dentry or the inode
1801 * we can't do that and we fall back on removing
1802 * it from the hash queues and waiting for
1803 * it to be deleted later when it has no users
1804 */
1805
1806 /**
1807 * d_delete - delete a dentry
1808 * @dentry: The dentry to delete
1809 *
1810 * Turn the dentry into a negative dentry if possible, otherwise
1811 * remove it from the hash queues so it can be deleted later
1812 */
1813
1814 void d_delete(struct dentry * dentry)
1815 {
1816 int isdir = 0;
1817 /*
1818 * Are we the only user?
1819 */
1820 again:
1821 spin_lock(&dentry->d_lock);
1822 isdir = S_ISDIR(dentry->d_inode->i_mode);
1823 if (dentry->d_count == 1) {
1824 if (!spin_trylock(&dcache_inode_lock)) {
1825 spin_unlock(&dentry->d_lock);
1826 cpu_relax();
1827 goto again;
1828 }
1829 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1830 dentry_iput(dentry);
1831 fsnotify_nameremove(dentry, isdir);
1832 return;
1833 }
1834
1835 if (!d_unhashed(dentry))
1836 __d_drop(dentry);
1837
1838 spin_unlock(&dentry->d_lock);
1839
1840 fsnotify_nameremove(dentry, isdir);
1841 }
1842 EXPORT_SYMBOL(d_delete);
1843
1844 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1845 {
1846
1847 entry->d_flags &= ~DCACHE_UNHASHED;
1848 hlist_add_head_rcu(&entry->d_hash, list);
1849 }
1850
1851 static void _d_rehash(struct dentry * entry)
1852 {
1853 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1854 }
1855
1856 /**
1857 * d_rehash - add an entry back to the hash
1858 * @entry: dentry to add to the hash
1859 *
1860 * Adds a dentry to the hash according to its name.
1861 */
1862
1863 void d_rehash(struct dentry * entry)
1864 {
1865 spin_lock(&entry->d_lock);
1866 spin_lock(&dcache_hash_lock);
1867 _d_rehash(entry);
1868 spin_unlock(&dcache_hash_lock);
1869 spin_unlock(&entry->d_lock);
1870 }
1871 EXPORT_SYMBOL(d_rehash);
1872
1873 /**
1874 * dentry_update_name_case - update case insensitive dentry with a new name
1875 * @dentry: dentry to be updated
1876 * @name: new name
1877 *
1878 * Update a case insensitive dentry with new case of name.
1879 *
1880 * dentry must have been returned by d_lookup with name @name. Old and new
1881 * name lengths must match (ie. no d_compare which allows mismatched name
1882 * lengths).
1883 *
1884 * Parent inode i_mutex must be held over d_lookup and into this call (to
1885 * keep renames and concurrent inserts, and readdir(2) away).
1886 */
1887 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
1888 {
1889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
1890 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
1891
1892 spin_lock(&dentry->d_lock);
1893 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
1894 spin_unlock(&dentry->d_lock);
1895 }
1896 EXPORT_SYMBOL(dentry_update_name_case);
1897
1898 static void switch_names(struct dentry *dentry, struct dentry *target)
1899 {
1900 if (dname_external(target)) {
1901 if (dname_external(dentry)) {
1902 /*
1903 * Both external: swap the pointers
1904 */
1905 swap(target->d_name.name, dentry->d_name.name);
1906 } else {
1907 /*
1908 * dentry:internal, target:external. Steal target's
1909 * storage and make target internal.
1910 */
1911 memcpy(target->d_iname, dentry->d_name.name,
1912 dentry->d_name.len + 1);
1913 dentry->d_name.name = target->d_name.name;
1914 target->d_name.name = target->d_iname;
1915 }
1916 } else {
1917 if (dname_external(dentry)) {
1918 /*
1919 * dentry:external, target:internal. Give dentry's
1920 * storage to target and make dentry internal
1921 */
1922 memcpy(dentry->d_iname, target->d_name.name,
1923 target->d_name.len + 1);
1924 target->d_name.name = dentry->d_name.name;
1925 dentry->d_name.name = dentry->d_iname;
1926 } else {
1927 /*
1928 * Both are internal. Just copy target to dentry
1929 */
1930 memcpy(dentry->d_iname, target->d_name.name,
1931 target->d_name.len + 1);
1932 dentry->d_name.len = target->d_name.len;
1933 return;
1934 }
1935 }
1936 swap(dentry->d_name.len, target->d_name.len);
1937 }
1938
1939 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
1940 {
1941 /*
1942 * XXXX: do we really need to take target->d_lock?
1943 */
1944 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
1945 spin_lock(&target->d_parent->d_lock);
1946 else {
1947 if (d_ancestor(dentry->d_parent, target->d_parent)) {
1948 spin_lock(&dentry->d_parent->d_lock);
1949 spin_lock_nested(&target->d_parent->d_lock,
1950 DENTRY_D_LOCK_NESTED);
1951 } else {
1952 spin_lock(&target->d_parent->d_lock);
1953 spin_lock_nested(&dentry->d_parent->d_lock,
1954 DENTRY_D_LOCK_NESTED);
1955 }
1956 }
1957 if (target < dentry) {
1958 spin_lock_nested(&target->d_lock, 2);
1959 spin_lock_nested(&dentry->d_lock, 3);
1960 } else {
1961 spin_lock_nested(&dentry->d_lock, 2);
1962 spin_lock_nested(&target->d_lock, 3);
1963 }
1964 }
1965
1966 static void dentry_unlock_parents_for_move(struct dentry *dentry,
1967 struct dentry *target)
1968 {
1969 if (target->d_parent != dentry->d_parent)
1970 spin_unlock(&dentry->d_parent->d_lock);
1971 if (target->d_parent != target)
1972 spin_unlock(&target->d_parent->d_lock);
1973 }
1974
1975 /*
1976 * When switching names, the actual string doesn't strictly have to
1977 * be preserved in the target - because we're dropping the target
1978 * anyway. As such, we can just do a simple memcpy() to copy over
1979 * the new name before we switch.
1980 *
1981 * Note that we have to be a lot more careful about getting the hash
1982 * switched - we have to switch the hash value properly even if it
1983 * then no longer matches the actual (corrupted) string of the target.
1984 * The hash value has to match the hash queue that the dentry is on..
1985 */
1986 /*
1987 * d_move - move a dentry
1988 * @dentry: entry to move
1989 * @target: new dentry
1990 *
1991 * Update the dcache to reflect the move of a file name. Negative
1992 * dcache entries should not be moved in this way.
1993 */
1994 void d_move(struct dentry * dentry, struct dentry * target)
1995 {
1996 if (!dentry->d_inode)
1997 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1998
1999 BUG_ON(d_ancestor(dentry, target));
2000 BUG_ON(d_ancestor(target, dentry));
2001
2002 write_seqlock(&rename_lock);
2003
2004 dentry_lock_for_move(dentry, target);
2005
2006 /* Move the dentry to the target hash queue, if on different bucket */
2007 spin_lock(&dcache_hash_lock);
2008 if (!d_unhashed(dentry))
2009 hlist_del_rcu(&dentry->d_hash);
2010 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2011 spin_unlock(&dcache_hash_lock);
2012
2013 /* Unhash the target: dput() will then get rid of it */
2014 __d_drop(target);
2015
2016 list_del(&dentry->d_u.d_child);
2017 list_del(&target->d_u.d_child);
2018
2019 /* Switch the names.. */
2020 switch_names(dentry, target);
2021 swap(dentry->d_name.hash, target->d_name.hash);
2022
2023 /* ... and switch the parents */
2024 if (IS_ROOT(dentry)) {
2025 dentry->d_parent = target->d_parent;
2026 target->d_parent = target;
2027 INIT_LIST_HEAD(&target->d_u.d_child);
2028 } else {
2029 swap(dentry->d_parent, target->d_parent);
2030
2031 /* And add them back to the (new) parent lists */
2032 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2033 }
2034
2035 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2036
2037 dentry_unlock_parents_for_move(dentry, target);
2038 spin_unlock(&target->d_lock);
2039 fsnotify_d_move(dentry);
2040 spin_unlock(&dentry->d_lock);
2041 write_sequnlock(&rename_lock);
2042 }
2043 EXPORT_SYMBOL(d_move);
2044
2045 /**
2046 * d_ancestor - search for an ancestor
2047 * @p1: ancestor dentry
2048 * @p2: child dentry
2049 *
2050 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2051 * an ancestor of p2, else NULL.
2052 */
2053 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2054 {
2055 struct dentry *p;
2056
2057 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2058 if (p->d_parent == p1)
2059 return p;
2060 }
2061 return NULL;
2062 }
2063
2064 /*
2065 * This helper attempts to cope with remotely renamed directories
2066 *
2067 * It assumes that the caller is already holding
2068 * dentry->d_parent->d_inode->i_mutex and the dcache_inode_lock
2069 *
2070 * Note: If ever the locking in lock_rename() changes, then please
2071 * remember to update this too...
2072 */
2073 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
2074 __releases(dcache_inode_lock)
2075 {
2076 struct mutex *m1 = NULL, *m2 = NULL;
2077 struct dentry *ret;
2078
2079 /* If alias and dentry share a parent, then no extra locks required */
2080 if (alias->d_parent == dentry->d_parent)
2081 goto out_unalias;
2082
2083 /* Check for loops */
2084 ret = ERR_PTR(-ELOOP);
2085 if (d_ancestor(alias, dentry))
2086 goto out_err;
2087
2088 /* See lock_rename() */
2089 ret = ERR_PTR(-EBUSY);
2090 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2091 goto out_err;
2092 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2093 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2094 goto out_err;
2095 m2 = &alias->d_parent->d_inode->i_mutex;
2096 out_unalias:
2097 d_move(alias, dentry);
2098 ret = alias;
2099 out_err:
2100 spin_unlock(&dcache_inode_lock);
2101 if (m2)
2102 mutex_unlock(m2);
2103 if (m1)
2104 mutex_unlock(m1);
2105 return ret;
2106 }
2107
2108 /*
2109 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2110 * named dentry in place of the dentry to be replaced.
2111 * returns with anon->d_lock held!
2112 */
2113 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2114 {
2115 struct dentry *dparent, *aparent;
2116
2117 dentry_lock_for_move(anon, dentry);
2118
2119 dparent = dentry->d_parent;
2120 aparent = anon->d_parent;
2121
2122 switch_names(dentry, anon);
2123 swap(dentry->d_name.hash, anon->d_name.hash);
2124
2125 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2126 list_del(&dentry->d_u.d_child);
2127 if (!IS_ROOT(dentry))
2128 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2129 else
2130 INIT_LIST_HEAD(&dentry->d_u.d_child);
2131
2132 anon->d_parent = (dparent == dentry) ? anon : dparent;
2133 list_del(&anon->d_u.d_child);
2134 if (!IS_ROOT(anon))
2135 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2136 else
2137 INIT_LIST_HEAD(&anon->d_u.d_child);
2138
2139 dentry_unlock_parents_for_move(anon, dentry);
2140 spin_unlock(&dentry->d_lock);
2141
2142 /* anon->d_lock still locked, returns locked */
2143 anon->d_flags &= ~DCACHE_DISCONNECTED;
2144 }
2145
2146 /**
2147 * d_materialise_unique - introduce an inode into the tree
2148 * @dentry: candidate dentry
2149 * @inode: inode to bind to the dentry, to which aliases may be attached
2150 *
2151 * Introduces an dentry into the tree, substituting an extant disconnected
2152 * root directory alias in its place if there is one
2153 */
2154 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2155 {
2156 struct dentry *actual;
2157
2158 BUG_ON(!d_unhashed(dentry));
2159
2160 if (!inode) {
2161 actual = dentry;
2162 __d_instantiate(dentry, NULL);
2163 d_rehash(actual);
2164 goto out_nolock;
2165 }
2166
2167 spin_lock(&dcache_inode_lock);
2168
2169 if (S_ISDIR(inode->i_mode)) {
2170 struct dentry *alias;
2171
2172 /* Does an aliased dentry already exist? */
2173 alias = __d_find_alias(inode, 0);
2174 if (alias) {
2175 actual = alias;
2176 /* Is this an anonymous mountpoint that we could splice
2177 * into our tree? */
2178 if (IS_ROOT(alias)) {
2179 __d_materialise_dentry(dentry, alias);
2180 __d_drop(alias);
2181 goto found;
2182 }
2183 /* Nope, but we must(!) avoid directory aliasing */
2184 actual = __d_unalias(dentry, alias);
2185 if (IS_ERR(actual))
2186 dput(alias);
2187 goto out_nolock;
2188 }
2189 }
2190
2191 /* Add a unique reference */
2192 actual = __d_instantiate_unique(dentry, inode);
2193 if (!actual)
2194 actual = dentry;
2195 else
2196 BUG_ON(!d_unhashed(actual));
2197
2198 spin_lock(&actual->d_lock);
2199 found:
2200 spin_lock(&dcache_hash_lock);
2201 _d_rehash(actual);
2202 spin_unlock(&dcache_hash_lock);
2203 spin_unlock(&actual->d_lock);
2204 spin_unlock(&dcache_inode_lock);
2205 out_nolock:
2206 if (actual == dentry) {
2207 security_d_instantiate(dentry, inode);
2208 return NULL;
2209 }
2210
2211 iput(inode);
2212 return actual;
2213 }
2214 EXPORT_SYMBOL_GPL(d_materialise_unique);
2215
2216 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2217 {
2218 *buflen -= namelen;
2219 if (*buflen < 0)
2220 return -ENAMETOOLONG;
2221 *buffer -= namelen;
2222 memcpy(*buffer, str, namelen);
2223 return 0;
2224 }
2225
2226 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2227 {
2228 return prepend(buffer, buflen, name->name, name->len);
2229 }
2230
2231 /**
2232 * Prepend path string to a buffer
2233 *
2234 * @path: the dentry/vfsmount to report
2235 * @root: root vfsmnt/dentry (may be modified by this function)
2236 * @buffer: pointer to the end of the buffer
2237 * @buflen: pointer to buffer length
2238 *
2239 * Caller holds the rename_lock.
2240 *
2241 * If path is not reachable from the supplied root, then the value of
2242 * root is changed (without modifying refcounts).
2243 */
2244 static int prepend_path(const struct path *path, struct path *root,
2245 char **buffer, int *buflen)
2246 {
2247 struct dentry *dentry = path->dentry;
2248 struct vfsmount *vfsmnt = path->mnt;
2249 bool slash = false;
2250 int error = 0;
2251
2252 br_read_lock(vfsmount_lock);
2253 while (dentry != root->dentry || vfsmnt != root->mnt) {
2254 struct dentry * parent;
2255
2256 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2257 /* Global root? */
2258 if (vfsmnt->mnt_parent == vfsmnt) {
2259 goto global_root;
2260 }
2261 dentry = vfsmnt->mnt_mountpoint;
2262 vfsmnt = vfsmnt->mnt_parent;
2263 continue;
2264 }
2265 parent = dentry->d_parent;
2266 prefetch(parent);
2267 spin_lock(&dentry->d_lock);
2268 error = prepend_name(buffer, buflen, &dentry->d_name);
2269 spin_unlock(&dentry->d_lock);
2270 if (!error)
2271 error = prepend(buffer, buflen, "/", 1);
2272 if (error)
2273 break;
2274
2275 slash = true;
2276 dentry = parent;
2277 }
2278
2279 out:
2280 if (!error && !slash)
2281 error = prepend(buffer, buflen, "/", 1);
2282
2283 br_read_unlock(vfsmount_lock);
2284 return error;
2285
2286 global_root:
2287 /*
2288 * Filesystems needing to implement special "root names"
2289 * should do so with ->d_dname()
2290 */
2291 if (IS_ROOT(dentry) &&
2292 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2293 WARN(1, "Root dentry has weird name <%.*s>\n",
2294 (int) dentry->d_name.len, dentry->d_name.name);
2295 }
2296 root->mnt = vfsmnt;
2297 root->dentry = dentry;
2298 goto out;
2299 }
2300
2301 /**
2302 * __d_path - return the path of a dentry
2303 * @path: the dentry/vfsmount to report
2304 * @root: root vfsmnt/dentry (may be modified by this function)
2305 * @buf: buffer to return value in
2306 * @buflen: buffer length
2307 *
2308 * Convert a dentry into an ASCII path name.
2309 *
2310 * Returns a pointer into the buffer or an error code if the
2311 * path was too long.
2312 *
2313 * "buflen" should be positive.
2314 *
2315 * If path is not reachable from the supplied root, then the value of
2316 * root is changed (without modifying refcounts).
2317 */
2318 char *__d_path(const struct path *path, struct path *root,
2319 char *buf, int buflen)
2320 {
2321 char *res = buf + buflen;
2322 int error;
2323
2324 prepend(&res, &buflen, "\0", 1);
2325 write_seqlock(&rename_lock);
2326 error = prepend_path(path, root, &res, &buflen);
2327 write_sequnlock(&rename_lock);
2328
2329 if (error)
2330 return ERR_PTR(error);
2331 return res;
2332 }
2333
2334 /*
2335 * same as __d_path but appends "(deleted)" for unlinked files.
2336 */
2337 static int path_with_deleted(const struct path *path, struct path *root,
2338 char **buf, int *buflen)
2339 {
2340 prepend(buf, buflen, "\0", 1);
2341 if (d_unlinked(path->dentry)) {
2342 int error = prepend(buf, buflen, " (deleted)", 10);
2343 if (error)
2344 return error;
2345 }
2346
2347 return prepend_path(path, root, buf, buflen);
2348 }
2349
2350 static int prepend_unreachable(char **buffer, int *buflen)
2351 {
2352 return prepend(buffer, buflen, "(unreachable)", 13);
2353 }
2354
2355 /**
2356 * d_path - return the path of a dentry
2357 * @path: path to report
2358 * @buf: buffer to return value in
2359 * @buflen: buffer length
2360 *
2361 * Convert a dentry into an ASCII path name. If the entry has been deleted
2362 * the string " (deleted)" is appended. Note that this is ambiguous.
2363 *
2364 * Returns a pointer into the buffer or an error code if the path was
2365 * too long. Note: Callers should use the returned pointer, not the passed
2366 * in buffer, to use the name! The implementation often starts at an offset
2367 * into the buffer, and may leave 0 bytes at the start.
2368 *
2369 * "buflen" should be positive.
2370 */
2371 char *d_path(const struct path *path, char *buf, int buflen)
2372 {
2373 char *res = buf + buflen;
2374 struct path root;
2375 struct path tmp;
2376 int error;
2377
2378 /*
2379 * We have various synthetic filesystems that never get mounted. On
2380 * these filesystems dentries are never used for lookup purposes, and
2381 * thus don't need to be hashed. They also don't need a name until a
2382 * user wants to identify the object in /proc/pid/fd/. The little hack
2383 * below allows us to generate a name for these objects on demand:
2384 */
2385 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2386 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2387
2388 get_fs_root(current->fs, &root);
2389 write_seqlock(&rename_lock);
2390 tmp = root;
2391 error = path_with_deleted(path, &tmp, &res, &buflen);
2392 if (error)
2393 res = ERR_PTR(error);
2394 write_sequnlock(&rename_lock);
2395 path_put(&root);
2396 return res;
2397 }
2398 EXPORT_SYMBOL(d_path);
2399
2400 /**
2401 * d_path_with_unreachable - return the path of a dentry
2402 * @path: path to report
2403 * @buf: buffer to return value in
2404 * @buflen: buffer length
2405 *
2406 * The difference from d_path() is that this prepends "(unreachable)"
2407 * to paths which are unreachable from the current process' root.
2408 */
2409 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2410 {
2411 char *res = buf + buflen;
2412 struct path root;
2413 struct path tmp;
2414 int error;
2415
2416 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2417 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2418
2419 get_fs_root(current->fs, &root);
2420 write_seqlock(&rename_lock);
2421 tmp = root;
2422 error = path_with_deleted(path, &tmp, &res, &buflen);
2423 if (!error && !path_equal(&tmp, &root))
2424 error = prepend_unreachable(&res, &buflen);
2425 write_sequnlock(&rename_lock);
2426 path_put(&root);
2427 if (error)
2428 res = ERR_PTR(error);
2429
2430 return res;
2431 }
2432
2433 /*
2434 * Helper function for dentry_operations.d_dname() members
2435 */
2436 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2437 const char *fmt, ...)
2438 {
2439 va_list args;
2440 char temp[64];
2441 int sz;
2442
2443 va_start(args, fmt);
2444 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2445 va_end(args);
2446
2447 if (sz > sizeof(temp) || sz > buflen)
2448 return ERR_PTR(-ENAMETOOLONG);
2449
2450 buffer += buflen - sz;
2451 return memcpy(buffer, temp, sz);
2452 }
2453
2454 /*
2455 * Write full pathname from the root of the filesystem into the buffer.
2456 */
2457 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2458 {
2459 char *end = buf + buflen;
2460 char *retval;
2461
2462 prepend(&end, &buflen, "\0", 1);
2463 if (buflen < 1)
2464 goto Elong;
2465 /* Get '/' right */
2466 retval = end-1;
2467 *retval = '/';
2468
2469 while (!IS_ROOT(dentry)) {
2470 struct dentry *parent = dentry->d_parent;
2471 int error;
2472
2473 prefetch(parent);
2474 spin_lock(&dentry->d_lock);
2475 error = prepend_name(&end, &buflen, &dentry->d_name);
2476 spin_unlock(&dentry->d_lock);
2477 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2478 goto Elong;
2479
2480 retval = end;
2481 dentry = parent;
2482 }
2483 return retval;
2484 Elong:
2485 return ERR_PTR(-ENAMETOOLONG);
2486 }
2487
2488 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2489 {
2490 char *retval;
2491
2492 write_seqlock(&rename_lock);
2493 retval = __dentry_path(dentry, buf, buflen);
2494 write_sequnlock(&rename_lock);
2495
2496 return retval;
2497 }
2498 EXPORT_SYMBOL(dentry_path_raw);
2499
2500 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2501 {
2502 char *p = NULL;
2503 char *retval;
2504
2505 write_seqlock(&rename_lock);
2506 if (d_unlinked(dentry)) {
2507 p = buf + buflen;
2508 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2509 goto Elong;
2510 buflen++;
2511 }
2512 retval = __dentry_path(dentry, buf, buflen);
2513 write_sequnlock(&rename_lock);
2514 if (!IS_ERR(retval) && p)
2515 *p = '/'; /* restore '/' overriden with '\0' */
2516 return retval;
2517 Elong:
2518 return ERR_PTR(-ENAMETOOLONG);
2519 }
2520
2521 /*
2522 * NOTE! The user-level library version returns a
2523 * character pointer. The kernel system call just
2524 * returns the length of the buffer filled (which
2525 * includes the ending '\0' character), or a negative
2526 * error value. So libc would do something like
2527 *
2528 * char *getcwd(char * buf, size_t size)
2529 * {
2530 * int retval;
2531 *
2532 * retval = sys_getcwd(buf, size);
2533 * if (retval >= 0)
2534 * return buf;
2535 * errno = -retval;
2536 * return NULL;
2537 * }
2538 */
2539 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2540 {
2541 int error;
2542 struct path pwd, root;
2543 char *page = (char *) __get_free_page(GFP_USER);
2544
2545 if (!page)
2546 return -ENOMEM;
2547
2548 get_fs_root_and_pwd(current->fs, &root, &pwd);
2549
2550 error = -ENOENT;
2551 write_seqlock(&rename_lock);
2552 if (!d_unlinked(pwd.dentry)) {
2553 unsigned long len;
2554 struct path tmp = root;
2555 char *cwd = page + PAGE_SIZE;
2556 int buflen = PAGE_SIZE;
2557
2558 prepend(&cwd, &buflen, "\0", 1);
2559 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2560 write_sequnlock(&rename_lock);
2561
2562 if (error)
2563 goto out;
2564
2565 /* Unreachable from current root */
2566 if (!path_equal(&tmp, &root)) {
2567 error = prepend_unreachable(&cwd, &buflen);
2568 if (error)
2569 goto out;
2570 }
2571
2572 error = -ERANGE;
2573 len = PAGE_SIZE + page - cwd;
2574 if (len <= size) {
2575 error = len;
2576 if (copy_to_user(buf, cwd, len))
2577 error = -EFAULT;
2578 }
2579 } else {
2580 write_sequnlock(&rename_lock);
2581 }
2582
2583 out:
2584 path_put(&pwd);
2585 path_put(&root);
2586 free_page((unsigned long) page);
2587 return error;
2588 }
2589
2590 /*
2591 * Test whether new_dentry is a subdirectory of old_dentry.
2592 *
2593 * Trivially implemented using the dcache structure
2594 */
2595
2596 /**
2597 * is_subdir - is new dentry a subdirectory of old_dentry
2598 * @new_dentry: new dentry
2599 * @old_dentry: old dentry
2600 *
2601 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2602 * Returns 0 otherwise.
2603 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2604 */
2605
2606 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2607 {
2608 int result;
2609 unsigned seq;
2610
2611 if (new_dentry == old_dentry)
2612 return 1;
2613
2614 do {
2615 /* for restarting inner loop in case of seq retry */
2616 seq = read_seqbegin(&rename_lock);
2617 /*
2618 * Need rcu_readlock to protect against the d_parent trashing
2619 * due to d_move
2620 */
2621 rcu_read_lock();
2622 if (d_ancestor(old_dentry, new_dentry))
2623 result = 1;
2624 else
2625 result = 0;
2626 rcu_read_unlock();
2627 } while (read_seqretry(&rename_lock, seq));
2628
2629 return result;
2630 }
2631
2632 int path_is_under(struct path *path1, struct path *path2)
2633 {
2634 struct vfsmount *mnt = path1->mnt;
2635 struct dentry *dentry = path1->dentry;
2636 int res;
2637
2638 br_read_lock(vfsmount_lock);
2639 if (mnt != path2->mnt) {
2640 for (;;) {
2641 if (mnt->mnt_parent == mnt) {
2642 br_read_unlock(vfsmount_lock);
2643 return 0;
2644 }
2645 if (mnt->mnt_parent == path2->mnt)
2646 break;
2647 mnt = mnt->mnt_parent;
2648 }
2649 dentry = mnt->mnt_mountpoint;
2650 }
2651 res = is_subdir(dentry, path2->dentry);
2652 br_read_unlock(vfsmount_lock);
2653 return res;
2654 }
2655 EXPORT_SYMBOL(path_is_under);
2656
2657 void d_genocide(struct dentry *root)
2658 {
2659 struct dentry *this_parent;
2660 struct list_head *next;
2661 unsigned seq;
2662 int locked = 0;
2663
2664 seq = read_seqbegin(&rename_lock);
2665 again:
2666 this_parent = root;
2667 spin_lock(&this_parent->d_lock);
2668 repeat:
2669 next = this_parent->d_subdirs.next;
2670 resume:
2671 while (next != &this_parent->d_subdirs) {
2672 struct list_head *tmp = next;
2673 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2674 next = tmp->next;
2675
2676 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2677 if (d_unhashed(dentry) || !dentry->d_inode) {
2678 spin_unlock(&dentry->d_lock);
2679 continue;
2680 }
2681 if (!list_empty(&dentry->d_subdirs)) {
2682 spin_unlock(&this_parent->d_lock);
2683 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2684 this_parent = dentry;
2685 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2686 goto repeat;
2687 }
2688 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2689 dentry->d_flags |= DCACHE_GENOCIDE;
2690 dentry->d_count--;
2691 }
2692 spin_unlock(&dentry->d_lock);
2693 }
2694 if (this_parent != root) {
2695 struct dentry *tmp;
2696 struct dentry *child;
2697
2698 tmp = this_parent->d_parent;
2699 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2700 this_parent->d_flags |= DCACHE_GENOCIDE;
2701 this_parent->d_count--;
2702 }
2703 rcu_read_lock();
2704 spin_unlock(&this_parent->d_lock);
2705 child = this_parent;
2706 this_parent = tmp;
2707 spin_lock(&this_parent->d_lock);
2708 /* might go back up the wrong parent if we have had a rename
2709 * or deletion */
2710 if (this_parent != child->d_parent ||
2711 (!locked && read_seqretry(&rename_lock, seq))) {
2712 spin_unlock(&this_parent->d_lock);
2713 rcu_read_unlock();
2714 goto rename_retry;
2715 }
2716 rcu_read_unlock();
2717 next = child->d_u.d_child.next;
2718 goto resume;
2719 }
2720 spin_unlock(&this_parent->d_lock);
2721 if (!locked && read_seqretry(&rename_lock, seq))
2722 goto rename_retry;
2723 if (locked)
2724 write_sequnlock(&rename_lock);
2725 return;
2726
2727 rename_retry:
2728 locked = 1;
2729 write_seqlock(&rename_lock);
2730 goto again;
2731 }
2732
2733 /**
2734 * find_inode_number - check for dentry with name
2735 * @dir: directory to check
2736 * @name: Name to find.
2737 *
2738 * Check whether a dentry already exists for the given name,
2739 * and return the inode number if it has an inode. Otherwise
2740 * 0 is returned.
2741 *
2742 * This routine is used to post-process directory listings for
2743 * filesystems using synthetic inode numbers, and is necessary
2744 * to keep getcwd() working.
2745 */
2746
2747 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2748 {
2749 struct dentry * dentry;
2750 ino_t ino = 0;
2751
2752 dentry = d_hash_and_lookup(dir, name);
2753 if (dentry) {
2754 if (dentry->d_inode)
2755 ino = dentry->d_inode->i_ino;
2756 dput(dentry);
2757 }
2758 return ino;
2759 }
2760 EXPORT_SYMBOL(find_inode_number);
2761
2762 static __initdata unsigned long dhash_entries;
2763 static int __init set_dhash_entries(char *str)
2764 {
2765 if (!str)
2766 return 0;
2767 dhash_entries = simple_strtoul(str, &str, 0);
2768 return 1;
2769 }
2770 __setup("dhash_entries=", set_dhash_entries);
2771
2772 static void __init dcache_init_early(void)
2773 {
2774 int loop;
2775
2776 /* If hashes are distributed across NUMA nodes, defer
2777 * hash allocation until vmalloc space is available.
2778 */
2779 if (hashdist)
2780 return;
2781
2782 dentry_hashtable =
2783 alloc_large_system_hash("Dentry cache",
2784 sizeof(struct hlist_head),
2785 dhash_entries,
2786 13,
2787 HASH_EARLY,
2788 &d_hash_shift,
2789 &d_hash_mask,
2790 0);
2791
2792 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2793 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2794 }
2795
2796 static void __init dcache_init(void)
2797 {
2798 int loop;
2799
2800 /*
2801 * A constructor could be added for stable state like the lists,
2802 * but it is probably not worth it because of the cache nature
2803 * of the dcache.
2804 */
2805 dentry_cache = KMEM_CACHE(dentry,
2806 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2807
2808 register_shrinker(&dcache_shrinker);
2809
2810 /* Hash may have been set up in dcache_init_early */
2811 if (!hashdist)
2812 return;
2813
2814 dentry_hashtable =
2815 alloc_large_system_hash("Dentry cache",
2816 sizeof(struct hlist_head),
2817 dhash_entries,
2818 13,
2819 0,
2820 &d_hash_shift,
2821 &d_hash_mask,
2822 0);
2823
2824 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2825 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2826 }
2827
2828 /* SLAB cache for __getname() consumers */
2829 struct kmem_cache *names_cachep __read_mostly;
2830 EXPORT_SYMBOL(names_cachep);
2831
2832 EXPORT_SYMBOL(d_genocide);
2833
2834 void __init vfs_caches_init_early(void)
2835 {
2836 dcache_init_early();
2837 inode_init_early();
2838 }
2839
2840 void __init vfs_caches_init(unsigned long mempages)
2841 {
2842 unsigned long reserve;
2843
2844 /* Base hash sizes on available memory, with a reserve equal to
2845 150% of current kernel size */
2846
2847 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2848 mempages -= reserve;
2849
2850 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2851 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2852
2853 dcache_init();
2854 inode_init();
2855 files_init(mempages);
2856 mnt_init();
2857 bdev_cache_init();
2858 chrdev_init();
2859 }