Merge tag 'v3.10.89' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_u.d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_u.d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
107 {
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 return dentry_hashtable + hash_32(hash, d_hash_shift);
110 }
111
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115 };
116
117 static DEFINE_PER_CPU(unsigned int, nr_dentry);
118
119 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
120 static int get_nr_dentry(void)
121 {
122 int i;
123 int sum = 0;
124 for_each_possible_cpu(i)
125 sum += per_cpu(nr_dentry, i);
126 return sum < 0 ? 0 : sum;
127 }
128
129 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
130 size_t *lenp, loff_t *ppos)
131 {
132 dentry_stat.nr_dentry = get_nr_dentry();
133 return proc_dointvec(table, write, buffer, lenp, ppos);
134 }
135 #endif
136
137 /*
138 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
139 * The strings are both count bytes long, and count is non-zero.
140 */
141 #ifdef CONFIG_DCACHE_WORD_ACCESS
142
143 #include <asm/word-at-a-time.h>
144 /*
145 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
146 * aligned allocation for this particular component. We don't
147 * strictly need the load_unaligned_zeropad() safety, but it
148 * doesn't hurt either.
149 *
150 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
151 * need the careful unaligned handling.
152 */
153 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
154 {
155 unsigned long a,b,mask;
156
157 for (;;) {
158 a = *(unsigned long *)cs;
159 b = load_unaligned_zeropad(ct);
160 if (tcount < sizeof(unsigned long))
161 break;
162 if (unlikely(a != b))
163 return 1;
164 cs += sizeof(unsigned long);
165 ct += sizeof(unsigned long);
166 tcount -= sizeof(unsigned long);
167 if (!tcount)
168 return 0;
169 }
170 mask = ~(~0ul << tcount*8);
171 return unlikely(!!((a ^ b) & mask));
172 }
173
174 #else
175
176 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
177 {
178 do {
179 if (*cs != *ct)
180 return 1;
181 cs++;
182 ct++;
183 tcount--;
184 } while (tcount);
185 return 0;
186 }
187
188 #endif
189
190 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
191 {
192 const unsigned char *cs;
193 /*
194 * Be careful about RCU walk racing with rename:
195 * use ACCESS_ONCE to fetch the name pointer.
196 *
197 * NOTE! Even if a rename will mean that the length
198 * was not loaded atomically, we don't care. The
199 * RCU walk will check the sequence count eventually,
200 * and catch it. And we won't overrun the buffer,
201 * because we're reading the name pointer atomically,
202 * and a dentry name is guaranteed to be properly
203 * terminated with a NUL byte.
204 *
205 * End result: even if 'len' is wrong, we'll exit
206 * early because the data cannot match (there can
207 * be no NUL in the ct/tcount data)
208 */
209 cs = ACCESS_ONCE(dentry->d_name.name);
210 smp_read_barrier_depends();
211 return dentry_string_cmp(cs, ct, tcount);
212 }
213
214 static void __d_free(struct rcu_head *head)
215 {
216 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
217
218 if (dname_external(dentry))
219 kfree(dentry->d_name.name);
220 kmem_cache_free(dentry_cache, dentry);
221 }
222
223 /*
224 * no locks, please.
225 */
226 static void d_free(struct dentry *dentry)
227 {
228 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
229 BUG_ON(dentry->d_count);
230 this_cpu_dec(nr_dentry);
231 if (dentry->d_op && dentry->d_op->d_release)
232 dentry->d_op->d_release(dentry);
233
234 /* if dentry was never visible to RCU, immediate free is OK */
235 if (!(dentry->d_flags & DCACHE_RCUACCESS))
236 __d_free(&dentry->d_u.d_rcu);
237 else
238 call_rcu(&dentry->d_u.d_rcu, __d_free);
239 }
240
241 /**
242 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
243 * @dentry: the target dentry
244 * After this call, in-progress rcu-walk path lookup will fail. This
245 * should be called after unhashing, and after changing d_inode (if
246 * the dentry has not already been unhashed).
247 */
248 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
249 {
250 assert_spin_locked(&dentry->d_lock);
251 /* Go through a barrier */
252 write_seqcount_barrier(&dentry->d_seq);
253 }
254
255 /*
256 * Release the dentry's inode, using the filesystem
257 * d_iput() operation if defined. Dentry has no refcount
258 * and is unhashed.
259 */
260 static void dentry_iput(struct dentry * dentry)
261 __releases(dentry->d_lock)
262 __releases(dentry->d_inode->i_lock)
263 {
264 struct inode *inode = dentry->d_inode;
265 if (inode) {
266 dentry->d_inode = NULL;
267 hlist_del_init(&dentry->d_u.d_alias);
268 spin_unlock(&dentry->d_lock);
269 spin_unlock(&inode->i_lock);
270 if (!inode->i_nlink)
271 fsnotify_inoderemove(inode);
272 if (dentry->d_op && dentry->d_op->d_iput)
273 dentry->d_op->d_iput(dentry, inode);
274 else
275 iput(inode);
276 } else {
277 spin_unlock(&dentry->d_lock);
278 }
279 }
280
281 /*
282 * Release the dentry's inode, using the filesystem
283 * d_iput() operation if defined. dentry remains in-use.
284 */
285 static void dentry_unlink_inode(struct dentry * dentry)
286 __releases(dentry->d_lock)
287 __releases(dentry->d_inode->i_lock)
288 {
289 struct inode *inode = dentry->d_inode;
290 dentry->d_inode = NULL;
291 hlist_del_init(&dentry->d_u.d_alias);
292 dentry_rcuwalk_barrier(dentry);
293 spin_unlock(&dentry->d_lock);
294 spin_unlock(&inode->i_lock);
295 if (!inode->i_nlink)
296 fsnotify_inoderemove(inode);
297 if (dentry->d_op && dentry->d_op->d_iput)
298 dentry->d_op->d_iput(dentry, inode);
299 else
300 iput(inode);
301 }
302
303 /*
304 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
305 */
306 static void dentry_lru_add(struct dentry *dentry)
307 {
308 if (list_empty(&dentry->d_lru)) {
309 spin_lock(&dcache_lru_lock);
310 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
311 dentry->d_sb->s_nr_dentry_unused++;
312 dentry_stat.nr_unused++;
313 spin_unlock(&dcache_lru_lock);
314 }
315 }
316
317 static void __dentry_lru_del(struct dentry *dentry)
318 {
319 list_del_init(&dentry->d_lru);
320 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
321 dentry->d_sb->s_nr_dentry_unused--;
322 dentry_stat.nr_unused--;
323 }
324
325 /*
326 * Remove a dentry with references from the LRU.
327 */
328 static void dentry_lru_del(struct dentry *dentry)
329 {
330 if (!list_empty(&dentry->d_lru)) {
331 spin_lock(&dcache_lru_lock);
332 __dentry_lru_del(dentry);
333 spin_unlock(&dcache_lru_lock);
334 }
335 }
336
337 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
338 {
339 spin_lock(&dcache_lru_lock);
340 if (list_empty(&dentry->d_lru)) {
341 list_add_tail(&dentry->d_lru, list);
342 dentry->d_sb->s_nr_dentry_unused++;
343 dentry_stat.nr_unused++;
344 } else {
345 list_move_tail(&dentry->d_lru, list);
346 }
347 spin_unlock(&dcache_lru_lock);
348 }
349
350 /**
351 * d_kill - kill dentry and return parent
352 * @dentry: dentry to kill
353 * @parent: parent dentry
354 *
355 * The dentry must already be unhashed and removed from the LRU.
356 *
357 * If this is the root of the dentry tree, return NULL.
358 *
359 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
360 * d_kill.
361 */
362 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
363 __releases(dentry->d_lock)
364 __releases(parent->d_lock)
365 __releases(dentry->d_inode->i_lock)
366 {
367 __list_del_entry(&dentry->d_child);
368 /*
369 * Inform ascending readers that we are no longer attached to the
370 * dentry tree
371 */
372 dentry->d_flags |= DCACHE_DENTRY_KILLED;
373 if (parent)
374 spin_unlock(&parent->d_lock);
375 dentry_iput(dentry);
376 /*
377 * dentry_iput drops the locks, at which point nobody (except
378 * transient RCU lookups) can reach this dentry.
379 */
380 d_free(dentry);
381 return parent;
382 }
383
384 /*
385 * Unhash a dentry without inserting an RCU walk barrier or checking that
386 * dentry->d_lock is locked. The caller must take care of that, if
387 * appropriate.
388 */
389 static void __d_shrink(struct dentry *dentry)
390 {
391 if (!d_unhashed(dentry)) {
392 struct hlist_bl_head *b;
393 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
394 b = &dentry->d_sb->s_anon;
395 else
396 b = d_hash(dentry->d_parent, dentry->d_name.hash);
397
398 hlist_bl_lock(b);
399 __hlist_bl_del(&dentry->d_hash);
400 dentry->d_hash.pprev = NULL;
401 hlist_bl_unlock(b);
402 }
403 }
404
405 /**
406 * d_drop - drop a dentry
407 * @dentry: dentry to drop
408 *
409 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
410 * be found through a VFS lookup any more. Note that this is different from
411 * deleting the dentry - d_delete will try to mark the dentry negative if
412 * possible, giving a successful _negative_ lookup, while d_drop will
413 * just make the cache lookup fail.
414 *
415 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
416 * reason (NFS timeouts or autofs deletes).
417 *
418 * __d_drop requires dentry->d_lock.
419 */
420 void __d_drop(struct dentry *dentry)
421 {
422 if (!d_unhashed(dentry)) {
423 __d_shrink(dentry);
424 dentry_rcuwalk_barrier(dentry);
425 }
426 }
427 EXPORT_SYMBOL(__d_drop);
428
429 void d_drop(struct dentry *dentry)
430 {
431 spin_lock(&dentry->d_lock);
432 __d_drop(dentry);
433 spin_unlock(&dentry->d_lock);
434 }
435 EXPORT_SYMBOL(d_drop);
436
437 /*
438 * Finish off a dentry we've decided to kill.
439 * dentry->d_lock must be held, returns with it unlocked.
440 * If ref is non-zero, then decrement the refcount too.
441 * Returns dentry requiring refcount drop, or NULL if we're done.
442 */
443 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
444 __releases(dentry->d_lock)
445 {
446 struct inode *inode;
447 struct dentry *parent;
448
449 inode = dentry->d_inode;
450 if (inode && !spin_trylock(&inode->i_lock)) {
451 relock:
452 spin_unlock(&dentry->d_lock);
453 cpu_relax();
454 return dentry; /* try again with same dentry */
455 }
456 if (IS_ROOT(dentry))
457 parent = NULL;
458 else
459 parent = dentry->d_parent;
460 if (parent && !spin_trylock(&parent->d_lock)) {
461 if (inode)
462 spin_unlock(&inode->i_lock);
463 goto relock;
464 }
465
466 if (ref)
467 dentry->d_count--;
468 /*
469 * inform the fs via d_prune that this dentry is about to be
470 * unhashed and destroyed.
471 */
472 if (dentry->d_flags & DCACHE_OP_PRUNE)
473 dentry->d_op->d_prune(dentry);
474
475 dentry_lru_del(dentry);
476 /* if it was on the hash then remove it */
477 __d_drop(dentry);
478 return d_kill(dentry, parent);
479 }
480
481 /*
482 * This is dput
483 *
484 * This is complicated by the fact that we do not want to put
485 * dentries that are no longer on any hash chain on the unused
486 * list: we'd much rather just get rid of them immediately.
487 *
488 * However, that implies that we have to traverse the dentry
489 * tree upwards to the parents which might _also_ now be
490 * scheduled for deletion (it may have been only waiting for
491 * its last child to go away).
492 *
493 * This tail recursion is done by hand as we don't want to depend
494 * on the compiler to always get this right (gcc generally doesn't).
495 * Real recursion would eat up our stack space.
496 */
497
498 /*
499 * dput - release a dentry
500 * @dentry: dentry to release
501 *
502 * Release a dentry. This will drop the usage count and if appropriate
503 * call the dentry unlink method as well as removing it from the queues and
504 * releasing its resources. If the parent dentries were scheduled for release
505 * they too may now get deleted.
506 */
507 void dput(struct dentry *dentry)
508 {
509 if (!dentry)
510 return;
511
512 repeat:
513 if (dentry->d_count == 1)
514 might_sleep();
515 spin_lock(&dentry->d_lock);
516 BUG_ON(!dentry->d_count);
517 if (dentry->d_count > 1) {
518 dentry->d_count--;
519 spin_unlock(&dentry->d_lock);
520 return;
521 }
522
523 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
524 goto kill_it;
525
526 if (dentry->d_flags & DCACHE_OP_DELETE) {
527 if (dentry->d_op->d_delete(dentry))
528 goto kill_it;
529 }
530
531 /* Unreachable? Get rid of it */
532 if (d_unhashed(dentry))
533 goto kill_it;
534
535 dentry->d_flags |= DCACHE_REFERENCED;
536 dentry_lru_add(dentry);
537
538 dentry->d_count--;
539 spin_unlock(&dentry->d_lock);
540 return;
541
542 kill_it:
543 dentry = dentry_kill(dentry, 1);
544 if (dentry)
545 goto repeat;
546 }
547 EXPORT_SYMBOL(dput);
548
549 /**
550 * d_invalidate - invalidate a dentry
551 * @dentry: dentry to invalidate
552 *
553 * Try to invalidate the dentry if it turns out to be
554 * possible. If there are other dentries that can be
555 * reached through this one we can't delete it and we
556 * return -EBUSY. On success we return 0.
557 *
558 * no dcache lock.
559 */
560
561 int d_invalidate(struct dentry * dentry)
562 {
563 /*
564 * If it's already been dropped, return OK.
565 */
566 spin_lock(&dentry->d_lock);
567 if (d_unhashed(dentry)) {
568 spin_unlock(&dentry->d_lock);
569 return 0;
570 }
571 /*
572 * Check whether to do a partial shrink_dcache
573 * to get rid of unused child entries.
574 */
575 if (!list_empty(&dentry->d_subdirs)) {
576 spin_unlock(&dentry->d_lock);
577 shrink_dcache_parent(dentry);
578 spin_lock(&dentry->d_lock);
579 }
580
581 /*
582 * Somebody else still using it?
583 *
584 * If it's a directory, we can't drop it
585 * for fear of somebody re-populating it
586 * with children (even though dropping it
587 * would make it unreachable from the root,
588 * we might still populate it if it was a
589 * working directory or similar).
590 * We also need to leave mountpoints alone,
591 * directory or not.
592 */
593 if (dentry->d_count > 1 && dentry->d_inode) {
594 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
595 spin_unlock(&dentry->d_lock);
596 return -EBUSY;
597 }
598 }
599
600 __d_drop(dentry);
601 spin_unlock(&dentry->d_lock);
602 return 0;
603 }
604 EXPORT_SYMBOL(d_invalidate);
605
606 /* This must be called with d_lock held */
607 static inline void __dget_dlock(struct dentry *dentry)
608 {
609 dentry->d_count++;
610 }
611
612 static inline void __dget(struct dentry *dentry)
613 {
614 spin_lock(&dentry->d_lock);
615 __dget_dlock(dentry);
616 spin_unlock(&dentry->d_lock);
617 }
618
619 struct dentry *dget_parent(struct dentry *dentry)
620 {
621 struct dentry *ret;
622
623 repeat:
624 /*
625 * Don't need rcu_dereference because we re-check it was correct under
626 * the lock.
627 */
628 rcu_read_lock();
629 ret = dentry->d_parent;
630 spin_lock(&ret->d_lock);
631 if (unlikely(ret != dentry->d_parent)) {
632 spin_unlock(&ret->d_lock);
633 rcu_read_unlock();
634 goto repeat;
635 }
636 rcu_read_unlock();
637 BUG_ON(!ret->d_count);
638 ret->d_count++;
639 spin_unlock(&ret->d_lock);
640 return ret;
641 }
642 EXPORT_SYMBOL(dget_parent);
643
644 /**
645 * d_find_alias - grab a hashed alias of inode
646 * @inode: inode in question
647 * @want_discon: flag, used by d_splice_alias, to request
648 * that only a DISCONNECTED alias be returned.
649 *
650 * If inode has a hashed alias, or is a directory and has any alias,
651 * acquire the reference to alias and return it. Otherwise return NULL.
652 * Notice that if inode is a directory there can be only one alias and
653 * it can be unhashed only if it has no children, or if it is the root
654 * of a filesystem.
655 *
656 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
657 * any other hashed alias over that one unless @want_discon is set,
658 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
659 */
660 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
661 {
662 struct dentry *alias, *discon_alias;
663
664 again:
665 discon_alias = NULL;
666 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
667 spin_lock(&alias->d_lock);
668 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
669 if (IS_ROOT(alias) &&
670 (alias->d_flags & DCACHE_DISCONNECTED)) {
671 discon_alias = alias;
672 } else if (!want_discon) {
673 __dget_dlock(alias);
674 spin_unlock(&alias->d_lock);
675 return alias;
676 }
677 }
678 spin_unlock(&alias->d_lock);
679 }
680 if (discon_alias) {
681 alias = discon_alias;
682 spin_lock(&alias->d_lock);
683 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
684 if (IS_ROOT(alias) &&
685 (alias->d_flags & DCACHE_DISCONNECTED)) {
686 __dget_dlock(alias);
687 spin_unlock(&alias->d_lock);
688 return alias;
689 }
690 }
691 spin_unlock(&alias->d_lock);
692 goto again;
693 }
694 return NULL;
695 }
696
697 struct dentry *d_find_alias(struct inode *inode)
698 {
699 struct dentry *de = NULL;
700
701 if (!hlist_empty(&inode->i_dentry)) {
702 spin_lock(&inode->i_lock);
703 de = __d_find_alias(inode, 0);
704 spin_unlock(&inode->i_lock);
705 }
706 return de;
707 }
708 EXPORT_SYMBOL(d_find_alias);
709
710 /*
711 * Try to kill dentries associated with this inode.
712 * WARNING: you must own a reference to inode.
713 */
714 void d_prune_aliases(struct inode *inode)
715 {
716 struct dentry *dentry;
717 restart:
718 spin_lock(&inode->i_lock);
719 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
720 spin_lock(&dentry->d_lock);
721 if (!dentry->d_count) {
722 __dget_dlock(dentry);
723 __d_drop(dentry);
724 spin_unlock(&dentry->d_lock);
725 spin_unlock(&inode->i_lock);
726 dput(dentry);
727 goto restart;
728 }
729 spin_unlock(&dentry->d_lock);
730 }
731 spin_unlock(&inode->i_lock);
732 }
733 EXPORT_SYMBOL(d_prune_aliases);
734
735 /*
736 * Try to throw away a dentry - free the inode, dput the parent.
737 * Requires dentry->d_lock is held, and dentry->d_count == 0.
738 * Releases dentry->d_lock.
739 *
740 * This may fail if locks cannot be acquired no problem, just try again.
741 */
742 static void try_prune_one_dentry(struct dentry *dentry)
743 __releases(dentry->d_lock)
744 {
745 struct dentry *parent;
746
747 parent = dentry_kill(dentry, 0);
748 /*
749 * If dentry_kill returns NULL, we have nothing more to do.
750 * if it returns the same dentry, trylocks failed. In either
751 * case, just loop again.
752 *
753 * Otherwise, we need to prune ancestors too. This is necessary
754 * to prevent quadratic behavior of shrink_dcache_parent(), but
755 * is also expected to be beneficial in reducing dentry cache
756 * fragmentation.
757 */
758 if (!parent)
759 return;
760 if (parent == dentry)
761 return;
762
763 /* Prune ancestors. */
764 dentry = parent;
765 while (dentry) {
766 spin_lock(&dentry->d_lock);
767 if (dentry->d_count > 1) {
768 dentry->d_count--;
769 spin_unlock(&dentry->d_lock);
770 return;
771 }
772 dentry = dentry_kill(dentry, 1);
773 }
774 }
775
776 static void shrink_dentry_list(struct list_head *list)
777 {
778 struct dentry *dentry;
779
780 rcu_read_lock();
781 for (;;) {
782 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
783 if (&dentry->d_lru == list)
784 break; /* empty */
785 spin_lock(&dentry->d_lock);
786 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
787 spin_unlock(&dentry->d_lock);
788 continue;
789 }
790
791 /*
792 * We found an inuse dentry which was not removed from
793 * the LRU because of laziness during lookup. Do not free
794 * it - just keep it off the LRU list.
795 */
796 if (dentry->d_count) {
797 dentry_lru_del(dentry);
798 spin_unlock(&dentry->d_lock);
799 continue;
800 }
801
802 rcu_read_unlock();
803
804 try_prune_one_dentry(dentry);
805
806 rcu_read_lock();
807 }
808 rcu_read_unlock();
809 }
810
811 /**
812 * prune_dcache_sb - shrink the dcache
813 * @sb: superblock
814 * @count: number of entries to try to free
815 *
816 * Attempt to shrink the superblock dcache LRU by @count entries. This is
817 * done when we need more memory an called from the superblock shrinker
818 * function.
819 *
820 * This function may fail to free any resources if all the dentries are in
821 * use.
822 */
823 void prune_dcache_sb(struct super_block *sb, int count)
824 {
825 struct dentry *dentry;
826 LIST_HEAD(referenced);
827 LIST_HEAD(tmp);
828
829 relock:
830 spin_lock(&dcache_lru_lock);
831 while (!list_empty(&sb->s_dentry_lru)) {
832 dentry = list_entry(sb->s_dentry_lru.prev,
833 struct dentry, d_lru);
834 BUG_ON(dentry->d_sb != sb);
835
836 if (!spin_trylock(&dentry->d_lock)) {
837 spin_unlock(&dcache_lru_lock);
838 cpu_relax();
839 goto relock;
840 }
841
842 if (dentry->d_flags & DCACHE_REFERENCED) {
843 dentry->d_flags &= ~DCACHE_REFERENCED;
844 list_move(&dentry->d_lru, &referenced);
845 spin_unlock(&dentry->d_lock);
846 } else {
847 list_move_tail(&dentry->d_lru, &tmp);
848 dentry->d_flags |= DCACHE_SHRINK_LIST;
849 spin_unlock(&dentry->d_lock);
850 if (!--count)
851 break;
852 }
853 cond_resched_lock(&dcache_lru_lock);
854 }
855 if (!list_empty(&referenced))
856 list_splice(&referenced, &sb->s_dentry_lru);
857 spin_unlock(&dcache_lru_lock);
858
859 shrink_dentry_list(&tmp);
860 }
861
862 /**
863 * shrink_dcache_sb - shrink dcache for a superblock
864 * @sb: superblock
865 *
866 * Shrink the dcache for the specified super block. This is used to free
867 * the dcache before unmounting a file system.
868 */
869 void shrink_dcache_sb(struct super_block *sb)
870 {
871 LIST_HEAD(tmp);
872
873 spin_lock(&dcache_lru_lock);
874 while (!list_empty(&sb->s_dentry_lru)) {
875 list_splice_init(&sb->s_dentry_lru, &tmp);
876 spin_unlock(&dcache_lru_lock);
877 shrink_dentry_list(&tmp);
878 spin_lock(&dcache_lru_lock);
879 }
880 spin_unlock(&dcache_lru_lock);
881 }
882 EXPORT_SYMBOL(shrink_dcache_sb);
883
884 /*
885 * destroy a single subtree of dentries for unmount
886 * - see the comments on shrink_dcache_for_umount() for a description of the
887 * locking
888 */
889 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
890 {
891 struct dentry *parent;
892
893 BUG_ON(!IS_ROOT(dentry));
894
895 for (;;) {
896 /* descend to the first leaf in the current subtree */
897 while (!list_empty(&dentry->d_subdirs))
898 dentry = list_entry(dentry->d_subdirs.next,
899 struct dentry, d_child);
900
901 /* consume the dentries from this leaf up through its parents
902 * until we find one with children or run out altogether */
903 do {
904 struct inode *inode;
905
906 /*
907 * inform the fs that this dentry is about to be
908 * unhashed and destroyed.
909 */
910 if (dentry->d_flags & DCACHE_OP_PRUNE)
911 dentry->d_op->d_prune(dentry);
912
913 dentry_lru_del(dentry);
914 __d_shrink(dentry);
915
916 if (dentry->d_count != 0) {
917 printk(KERN_ERR
918 "BUG: Dentry %p{i=%lx,n=%s}"
919 " still in use (%d)"
920 " [unmount of %s %s]\n",
921 dentry,
922 dentry->d_inode ?
923 dentry->d_inode->i_ino : 0UL,
924 dentry->d_name.name,
925 dentry->d_count,
926 dentry->d_sb->s_type->name,
927 dentry->d_sb->s_id);
928 BUG();
929 }
930
931 if (IS_ROOT(dentry)) {
932 parent = NULL;
933 list_del(&dentry->d_child);
934 } else {
935 parent = dentry->d_parent;
936 parent->d_count--;
937 list_del(&dentry->d_child);
938 }
939
940 inode = dentry->d_inode;
941 if (inode) {
942 dentry->d_inode = NULL;
943 hlist_del_init(&dentry->d_u.d_alias);
944 if (dentry->d_op && dentry->d_op->d_iput)
945 dentry->d_op->d_iput(dentry, inode);
946 else
947 iput(inode);
948 }
949
950 d_free(dentry);
951
952 /* finished when we fall off the top of the tree,
953 * otherwise we ascend to the parent and move to the
954 * next sibling if there is one */
955 if (!parent)
956 return;
957 dentry = parent;
958 } while (list_empty(&dentry->d_subdirs));
959
960 dentry = list_entry(dentry->d_subdirs.next,
961 struct dentry, d_child);
962 }
963 }
964
965 /*
966 * destroy the dentries attached to a superblock on unmounting
967 * - we don't need to use dentry->d_lock because:
968 * - the superblock is detached from all mountings and open files, so the
969 * dentry trees will not be rearranged by the VFS
970 * - s_umount is write-locked, so the memory pressure shrinker will ignore
971 * any dentries belonging to this superblock that it comes across
972 * - the filesystem itself is no longer permitted to rearrange the dentries
973 * in this superblock
974 */
975 void shrink_dcache_for_umount(struct super_block *sb)
976 {
977 struct dentry *dentry;
978
979 if (down_read_trylock(&sb->s_umount))
980 BUG();
981
982 dentry = sb->s_root;
983 sb->s_root = NULL;
984 dentry->d_count--;
985 shrink_dcache_for_umount_subtree(dentry);
986
987 while (!hlist_bl_empty(&sb->s_anon)) {
988 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
989 shrink_dcache_for_umount_subtree(dentry);
990 }
991 }
992
993 /*
994 * Search for at least 1 mount point in the dentry's subdirs.
995 * We descend to the next level whenever the d_subdirs
996 * list is non-empty and continue searching.
997 */
998
999 /**
1000 * have_submounts - check for mounts over a dentry
1001 * @parent: dentry to check.
1002 *
1003 * Return true if the parent or its subdirectories contain
1004 * a mount point
1005 */
1006 int have_submounts(struct dentry *parent)
1007 {
1008 struct dentry *this_parent;
1009 struct list_head *next;
1010 unsigned seq;
1011 int locked = 0;
1012
1013 seq = read_seqbegin(&rename_lock);
1014 again:
1015 this_parent = parent;
1016
1017 if (d_mountpoint(parent))
1018 goto positive;
1019 spin_lock(&this_parent->d_lock);
1020 repeat:
1021 next = this_parent->d_subdirs.next;
1022 resume:
1023 while (next != &this_parent->d_subdirs) {
1024 struct list_head *tmp = next;
1025 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1026 next = tmp->next;
1027
1028 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1029 /* Have we found a mount point ? */
1030 if (d_mountpoint(dentry)) {
1031 spin_unlock(&dentry->d_lock);
1032 spin_unlock(&this_parent->d_lock);
1033 goto positive;
1034 }
1035 if (!list_empty(&dentry->d_subdirs)) {
1036 spin_unlock(&this_parent->d_lock);
1037 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1038 this_parent = dentry;
1039 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1040 goto repeat;
1041 }
1042 spin_unlock(&dentry->d_lock);
1043 }
1044 /*
1045 * All done at this level ... ascend and resume the search.
1046 */
1047 rcu_read_lock();
1048 ascend:
1049 if (this_parent != parent) {
1050 struct dentry *child = this_parent;
1051 this_parent = child->d_parent;
1052
1053 spin_unlock(&child->d_lock);
1054 spin_lock(&this_parent->d_lock);
1055
1056 /* might go back up the wrong parent if we have had a rename. */
1057 if (!locked && read_seqretry(&rename_lock, seq))
1058 goto rename_retry;
1059 /* go into the first sibling still alive */
1060 do {
1061 next = child->d_child.next;
1062 if (next == &this_parent->d_subdirs)
1063 goto ascend;
1064 child = list_entry(next, struct dentry, d_child);
1065 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1066 rcu_read_unlock();
1067 goto resume;
1068 }
1069 if (!locked && read_seqretry(&rename_lock, seq))
1070 goto rename_retry;
1071 spin_unlock(&this_parent->d_lock);
1072 rcu_read_unlock();
1073 if (locked)
1074 write_sequnlock(&rename_lock);
1075 return 0; /* No mount points found in tree */
1076 positive:
1077 if (!locked && read_seqretry(&rename_lock, seq))
1078 goto rename_retry_unlocked;
1079 if (locked)
1080 write_sequnlock(&rename_lock);
1081 return 1;
1082
1083 rename_retry:
1084 spin_unlock(&this_parent->d_lock);
1085 rcu_read_unlock();
1086 if (locked)
1087 goto again;
1088 rename_retry_unlocked:
1089 locked = 1;
1090 write_seqlock(&rename_lock);
1091 goto again;
1092 }
1093 EXPORT_SYMBOL(have_submounts);
1094
1095 /*
1096 * Search the dentry child list of the specified parent,
1097 * and move any unused dentries to the end of the unused
1098 * list for prune_dcache(). We descend to the next level
1099 * whenever the d_subdirs list is non-empty and continue
1100 * searching.
1101 *
1102 * It returns zero iff there are no unused children,
1103 * otherwise it returns the number of children moved to
1104 * the end of the unused list. This may not be the total
1105 * number of unused children, because select_parent can
1106 * drop the lock and return early due to latency
1107 * constraints.
1108 */
1109 static int select_parent(struct dentry *parent, struct list_head *dispose)
1110 {
1111 struct dentry *this_parent;
1112 struct list_head *next;
1113 unsigned seq;
1114 int found = 0;
1115 int locked = 0;
1116
1117 seq = read_seqbegin(&rename_lock);
1118 again:
1119 this_parent = parent;
1120 spin_lock(&this_parent->d_lock);
1121 repeat:
1122 next = this_parent->d_subdirs.next;
1123 resume:
1124 while (next != &this_parent->d_subdirs) {
1125 struct list_head *tmp = next;
1126 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1127 next = tmp->next;
1128
1129 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1130
1131 /*
1132 * move only zero ref count dentries to the dispose list.
1133 *
1134 * Those which are presently on the shrink list, being processed
1135 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1136 * loop in shrink_dcache_parent() might not make any progress
1137 * and loop forever.
1138 */
1139 if (dentry->d_count) {
1140 dentry_lru_del(dentry);
1141 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1142 dentry_lru_move_list(dentry, dispose);
1143 dentry->d_flags |= DCACHE_SHRINK_LIST;
1144 found++;
1145 }
1146 /*
1147 * We can return to the caller if we have found some (this
1148 * ensures forward progress). We'll be coming back to find
1149 * the rest.
1150 */
1151 if (found && need_resched()) {
1152 spin_unlock(&dentry->d_lock);
1153 rcu_read_lock();
1154 goto out;
1155 }
1156
1157 /*
1158 * Descend a level if the d_subdirs list is non-empty.
1159 */
1160 if (!list_empty(&dentry->d_subdirs)) {
1161 spin_unlock(&this_parent->d_lock);
1162 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1163 this_parent = dentry;
1164 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1165 goto repeat;
1166 }
1167
1168 spin_unlock(&dentry->d_lock);
1169 }
1170 /*
1171 * All done at this level ... ascend and resume the search.
1172 */
1173 rcu_read_lock();
1174 ascend:
1175 if (this_parent != parent) {
1176 struct dentry *child = this_parent;
1177 this_parent = child->d_parent;
1178
1179 spin_unlock(&child->d_lock);
1180 spin_lock(&this_parent->d_lock);
1181
1182 /* might go back up the wrong parent if we have had a rename. */
1183 if (!locked && read_seqretry(&rename_lock, seq))
1184 goto rename_retry;
1185 /* go into the first sibling still alive */
1186 do {
1187 next = child->d_child.next;
1188 if (next == &this_parent->d_subdirs)
1189 goto ascend;
1190 child = list_entry(next, struct dentry, d_child);
1191 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1192 rcu_read_unlock();
1193 goto resume;
1194 }
1195 out:
1196 if (!locked && read_seqretry(&rename_lock, seq))
1197 goto rename_retry;
1198 spin_unlock(&this_parent->d_lock);
1199 rcu_read_unlock();
1200 if (locked)
1201 write_sequnlock(&rename_lock);
1202 return found;
1203
1204 rename_retry:
1205 spin_unlock(&this_parent->d_lock);
1206 rcu_read_unlock();
1207 if (found)
1208 return found;
1209 if (locked)
1210 goto again;
1211 locked = 1;
1212 write_seqlock(&rename_lock);
1213 goto again;
1214 }
1215
1216 /**
1217 * shrink_dcache_parent - prune dcache
1218 * @parent: parent of entries to prune
1219 *
1220 * Prune the dcache to remove unused children of the parent dentry.
1221 */
1222 void shrink_dcache_parent(struct dentry * parent)
1223 {
1224 LIST_HEAD(dispose);
1225 int found;
1226
1227 while ((found = select_parent(parent, &dispose)) != 0) {
1228 shrink_dentry_list(&dispose);
1229 cond_resched();
1230 }
1231 }
1232 EXPORT_SYMBOL(shrink_dcache_parent);
1233
1234 /**
1235 * __d_alloc - allocate a dcache entry
1236 * @sb: filesystem it will belong to
1237 * @name: qstr of the name
1238 *
1239 * Allocates a dentry. It returns %NULL if there is insufficient memory
1240 * available. On a success the dentry is returned. The name passed in is
1241 * copied and the copy passed in may be reused after this call.
1242 */
1243
1244 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1245 {
1246 struct dentry *dentry;
1247 char *dname;
1248
1249 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1250 if (!dentry)
1251 return NULL;
1252
1253 /*
1254 * We guarantee that the inline name is always NUL-terminated.
1255 * This way the memcpy() done by the name switching in rename
1256 * will still always have a NUL at the end, even if we might
1257 * be overwriting an internal NUL character
1258 */
1259 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1260 if (name->len > DNAME_INLINE_LEN-1) {
1261 dname = kmalloc(name->len + 1, GFP_KERNEL);
1262 if (!dname) {
1263 kmem_cache_free(dentry_cache, dentry);
1264 return NULL;
1265 }
1266 } else {
1267 dname = dentry->d_iname;
1268 }
1269
1270 dentry->d_name.len = name->len;
1271 dentry->d_name.hash = name->hash;
1272 memcpy(dname, name->name, name->len);
1273 dname[name->len] = 0;
1274
1275 /* Make sure we always see the terminating NUL character */
1276 smp_wmb();
1277 dentry->d_name.name = dname;
1278
1279 dentry->d_count = 1;
1280 dentry->d_flags = 0;
1281 spin_lock_init(&dentry->d_lock);
1282 seqcount_init(&dentry->d_seq);
1283 dentry->d_inode = NULL;
1284 dentry->d_parent = dentry;
1285 dentry->d_sb = sb;
1286 dentry->d_op = NULL;
1287 dentry->d_fsdata = NULL;
1288 INIT_HLIST_BL_NODE(&dentry->d_hash);
1289 INIT_LIST_HEAD(&dentry->d_lru);
1290 INIT_LIST_HEAD(&dentry->d_subdirs);
1291 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1292 INIT_LIST_HEAD(&dentry->d_child);
1293 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1294
1295 this_cpu_inc(nr_dentry);
1296
1297 return dentry;
1298 }
1299
1300 /**
1301 * d_alloc - allocate a dcache entry
1302 * @parent: parent of entry to allocate
1303 * @name: qstr of the name
1304 *
1305 * Allocates a dentry. It returns %NULL if there is insufficient memory
1306 * available. On a success the dentry is returned. The name passed in is
1307 * copied and the copy passed in may be reused after this call.
1308 */
1309 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1310 {
1311 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1312 if (!dentry)
1313 return NULL;
1314
1315 spin_lock(&parent->d_lock);
1316 /*
1317 * don't need child lock because it is not subject
1318 * to concurrency here
1319 */
1320 __dget_dlock(parent);
1321 dentry->d_parent = parent;
1322 list_add(&dentry->d_child, &parent->d_subdirs);
1323 spin_unlock(&parent->d_lock);
1324
1325 return dentry;
1326 }
1327 EXPORT_SYMBOL(d_alloc);
1328
1329 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1330 {
1331 struct dentry *dentry = __d_alloc(sb, name);
1332 if (dentry)
1333 dentry->d_flags |= DCACHE_DISCONNECTED;
1334 return dentry;
1335 }
1336 EXPORT_SYMBOL(d_alloc_pseudo);
1337
1338 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1339 {
1340 struct qstr q;
1341
1342 q.name = name;
1343 q.len = strlen(name);
1344 q.hash = full_name_hash(q.name, q.len);
1345 return d_alloc(parent, &q);
1346 }
1347 EXPORT_SYMBOL(d_alloc_name);
1348
1349 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1350 {
1351 WARN_ON_ONCE(dentry->d_op);
1352 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1353 DCACHE_OP_COMPARE |
1354 DCACHE_OP_REVALIDATE |
1355 DCACHE_OP_WEAK_REVALIDATE |
1356 DCACHE_OP_DELETE ));
1357 dentry->d_op = op;
1358 if (!op)
1359 return;
1360 if (op->d_hash)
1361 dentry->d_flags |= DCACHE_OP_HASH;
1362 if (op->d_compare)
1363 dentry->d_flags |= DCACHE_OP_COMPARE;
1364 if (op->d_revalidate)
1365 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1366 if (op->d_weak_revalidate)
1367 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1368 if (op->d_delete)
1369 dentry->d_flags |= DCACHE_OP_DELETE;
1370 if (op->d_prune)
1371 dentry->d_flags |= DCACHE_OP_PRUNE;
1372
1373 }
1374 EXPORT_SYMBOL(d_set_d_op);
1375
1376 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1377 {
1378 spin_lock(&dentry->d_lock);
1379 if (inode) {
1380 if (unlikely(IS_AUTOMOUNT(inode)))
1381 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1382 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1383 }
1384 dentry->d_inode = inode;
1385 dentry_rcuwalk_barrier(dentry);
1386 spin_unlock(&dentry->d_lock);
1387 fsnotify_d_instantiate(dentry, inode);
1388 }
1389
1390 /**
1391 * d_instantiate - fill in inode information for a dentry
1392 * @entry: dentry to complete
1393 * @inode: inode to attach to this dentry
1394 *
1395 * Fill in inode information in the entry.
1396 *
1397 * This turns negative dentries into productive full members
1398 * of society.
1399 *
1400 * NOTE! This assumes that the inode count has been incremented
1401 * (or otherwise set) by the caller to indicate that it is now
1402 * in use by the dcache.
1403 */
1404
1405 void d_instantiate(struct dentry *entry, struct inode * inode)
1406 {
1407 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1408 if (inode)
1409 spin_lock(&inode->i_lock);
1410 __d_instantiate(entry, inode);
1411 if (inode)
1412 spin_unlock(&inode->i_lock);
1413 security_d_instantiate(entry, inode);
1414 }
1415 EXPORT_SYMBOL(d_instantiate);
1416
1417 /**
1418 * d_instantiate_unique - instantiate a non-aliased dentry
1419 * @entry: dentry to instantiate
1420 * @inode: inode to attach to this dentry
1421 *
1422 * Fill in inode information in the entry. On success, it returns NULL.
1423 * If an unhashed alias of "entry" already exists, then we return the
1424 * aliased dentry instead and drop one reference to inode.
1425 *
1426 * Note that in order to avoid conflicts with rename() etc, the caller
1427 * had better be holding the parent directory semaphore.
1428 *
1429 * This also assumes that the inode count has been incremented
1430 * (or otherwise set) by the caller to indicate that it is now
1431 * in use by the dcache.
1432 */
1433 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1434 struct inode *inode)
1435 {
1436 struct dentry *alias;
1437 int len = entry->d_name.len;
1438 const char *name = entry->d_name.name;
1439 unsigned int hash = entry->d_name.hash;
1440
1441 if (!inode) {
1442 __d_instantiate(entry, NULL);
1443 return NULL;
1444 }
1445
1446 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1447 /*
1448 * Don't need alias->d_lock here, because aliases with
1449 * d_parent == entry->d_parent are not subject to name or
1450 * parent changes, because the parent inode i_mutex is held.
1451 */
1452 if (alias->d_name.hash != hash)
1453 continue;
1454 if (alias->d_parent != entry->d_parent)
1455 continue;
1456 if (alias->d_name.len != len)
1457 continue;
1458 if (dentry_cmp(alias, name, len))
1459 continue;
1460 __dget(alias);
1461 return alias;
1462 }
1463
1464 __d_instantiate(entry, inode);
1465 return NULL;
1466 }
1467
1468 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1469 {
1470 struct dentry *result;
1471
1472 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1473
1474 if (inode)
1475 spin_lock(&inode->i_lock);
1476 result = __d_instantiate_unique(entry, inode);
1477 if (inode)
1478 spin_unlock(&inode->i_lock);
1479
1480 if (!result) {
1481 security_d_instantiate(entry, inode);
1482 return NULL;
1483 }
1484
1485 BUG_ON(!d_unhashed(result));
1486 iput(inode);
1487 return result;
1488 }
1489
1490 EXPORT_SYMBOL(d_instantiate_unique);
1491
1492 struct dentry *d_make_root(struct inode *root_inode)
1493 {
1494 struct dentry *res = NULL;
1495
1496 if (root_inode) {
1497 static const struct qstr name = QSTR_INIT("/", 1);
1498
1499 res = __d_alloc(root_inode->i_sb, &name);
1500 if (res)
1501 d_instantiate(res, root_inode);
1502 else
1503 iput(root_inode);
1504 }
1505 return res;
1506 }
1507 EXPORT_SYMBOL(d_make_root);
1508
1509 static struct dentry * __d_find_any_alias(struct inode *inode)
1510 {
1511 struct dentry *alias;
1512
1513 if (hlist_empty(&inode->i_dentry))
1514 return NULL;
1515 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1516 __dget(alias);
1517 return alias;
1518 }
1519
1520 /**
1521 * d_find_any_alias - find any alias for a given inode
1522 * @inode: inode to find an alias for
1523 *
1524 * If any aliases exist for the given inode, take and return a
1525 * reference for one of them. If no aliases exist, return %NULL.
1526 */
1527 struct dentry *d_find_any_alias(struct inode *inode)
1528 {
1529 struct dentry *de;
1530
1531 spin_lock(&inode->i_lock);
1532 de = __d_find_any_alias(inode);
1533 spin_unlock(&inode->i_lock);
1534 return de;
1535 }
1536 EXPORT_SYMBOL(d_find_any_alias);
1537
1538 /**
1539 * d_obtain_alias - find or allocate a dentry for a given inode
1540 * @inode: inode to allocate the dentry for
1541 *
1542 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1543 * similar open by handle operations. The returned dentry may be anonymous,
1544 * or may have a full name (if the inode was already in the cache).
1545 *
1546 * When called on a directory inode, we must ensure that the inode only ever
1547 * has one dentry. If a dentry is found, that is returned instead of
1548 * allocating a new one.
1549 *
1550 * On successful return, the reference to the inode has been transferred
1551 * to the dentry. In case of an error the reference on the inode is released.
1552 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1553 * be passed in and will be the error will be propagate to the return value,
1554 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1555 */
1556 struct dentry *d_obtain_alias(struct inode *inode)
1557 {
1558 static const struct qstr anonstring = QSTR_INIT("/", 1);
1559 struct dentry *tmp;
1560 struct dentry *res;
1561
1562 if (!inode)
1563 return ERR_PTR(-ESTALE);
1564 if (IS_ERR(inode))
1565 return ERR_CAST(inode);
1566
1567 res = d_find_any_alias(inode);
1568 if (res)
1569 goto out_iput;
1570
1571 tmp = __d_alloc(inode->i_sb, &anonstring);
1572 if (!tmp) {
1573 res = ERR_PTR(-ENOMEM);
1574 goto out_iput;
1575 }
1576
1577 spin_lock(&inode->i_lock);
1578 res = __d_find_any_alias(inode);
1579 if (res) {
1580 spin_unlock(&inode->i_lock);
1581 dput(tmp);
1582 goto out_iput;
1583 }
1584
1585 /* attach a disconnected dentry */
1586 spin_lock(&tmp->d_lock);
1587 tmp->d_inode = inode;
1588 tmp->d_flags |= DCACHE_DISCONNECTED;
1589 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1590 hlist_bl_lock(&tmp->d_sb->s_anon);
1591 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1592 hlist_bl_unlock(&tmp->d_sb->s_anon);
1593 spin_unlock(&tmp->d_lock);
1594 spin_unlock(&inode->i_lock);
1595 security_d_instantiate(tmp, inode);
1596
1597 return tmp;
1598
1599 out_iput:
1600 if (res && !IS_ERR(res))
1601 security_d_instantiate(res, inode);
1602 iput(inode);
1603 return res;
1604 }
1605 EXPORT_SYMBOL(d_obtain_alias);
1606
1607 /**
1608 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1609 * @inode: the inode which may have a disconnected dentry
1610 * @dentry: a negative dentry which we want to point to the inode.
1611 *
1612 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1613 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1614 * and return it, else simply d_add the inode to the dentry and return NULL.
1615 *
1616 * This is needed in the lookup routine of any filesystem that is exportable
1617 * (via knfsd) so that we can build dcache paths to directories effectively.
1618 *
1619 * If a dentry was found and moved, then it is returned. Otherwise NULL
1620 * is returned. This matches the expected return value of ->lookup.
1621 *
1622 */
1623 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1624 {
1625 struct dentry *new = NULL;
1626
1627 if (IS_ERR(inode))
1628 return ERR_CAST(inode);
1629
1630 if (inode && S_ISDIR(inode->i_mode)) {
1631 spin_lock(&inode->i_lock);
1632 new = __d_find_alias(inode, 1);
1633 if (new) {
1634 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1635 spin_unlock(&inode->i_lock);
1636 security_d_instantiate(new, inode);
1637 d_move(new, dentry);
1638 iput(inode);
1639 } else {
1640 /* already taking inode->i_lock, so d_add() by hand */
1641 __d_instantiate(dentry, inode);
1642 spin_unlock(&inode->i_lock);
1643 security_d_instantiate(dentry, inode);
1644 d_rehash(dentry);
1645 }
1646 } else
1647 d_add(dentry, inode);
1648 return new;
1649 }
1650 EXPORT_SYMBOL(d_splice_alias);
1651
1652 /**
1653 * d_add_ci - lookup or allocate new dentry with case-exact name
1654 * @inode: the inode case-insensitive lookup has found
1655 * @dentry: the negative dentry that was passed to the parent's lookup func
1656 * @name: the case-exact name to be associated with the returned dentry
1657 *
1658 * This is to avoid filling the dcache with case-insensitive names to the
1659 * same inode, only the actual correct case is stored in the dcache for
1660 * case-insensitive filesystems.
1661 *
1662 * For a case-insensitive lookup match and if the the case-exact dentry
1663 * already exists in in the dcache, use it and return it.
1664 *
1665 * If no entry exists with the exact case name, allocate new dentry with
1666 * the exact case, and return the spliced entry.
1667 */
1668 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1669 struct qstr *name)
1670 {
1671 struct dentry *found;
1672 struct dentry *new;
1673
1674 /*
1675 * First check if a dentry matching the name already exists,
1676 * if not go ahead and create it now.
1677 */
1678 found = d_hash_and_lookup(dentry->d_parent, name);
1679 if (unlikely(IS_ERR(found)))
1680 goto err_out;
1681 if (!found) {
1682 new = d_alloc(dentry->d_parent, name);
1683 if (!new) {
1684 found = ERR_PTR(-ENOMEM);
1685 goto err_out;
1686 }
1687
1688 found = d_splice_alias(inode, new);
1689 if (found) {
1690 dput(new);
1691 return found;
1692 }
1693 return new;
1694 }
1695
1696 /*
1697 * If a matching dentry exists, and it's not negative use it.
1698 *
1699 * Decrement the reference count to balance the iget() done
1700 * earlier on.
1701 */
1702 if (found->d_inode) {
1703 if (unlikely(found->d_inode != inode)) {
1704 /* This can't happen because bad inodes are unhashed. */
1705 BUG_ON(!is_bad_inode(inode));
1706 BUG_ON(!is_bad_inode(found->d_inode));
1707 }
1708 iput(inode);
1709 return found;
1710 }
1711
1712 /*
1713 * Negative dentry: instantiate it unless the inode is a directory and
1714 * already has a dentry.
1715 */
1716 new = d_splice_alias(inode, found);
1717 if (new) {
1718 dput(found);
1719 found = new;
1720 }
1721 return found;
1722
1723 err_out:
1724 iput(inode);
1725 return found;
1726 }
1727 EXPORT_SYMBOL(d_add_ci);
1728
1729 /*
1730 * Do the slow-case of the dentry name compare.
1731 *
1732 * Unlike the dentry_cmp() function, we need to atomically
1733 * load the name, length and inode information, so that the
1734 * filesystem can rely on them, and can use the 'name' and
1735 * 'len' information without worrying about walking off the
1736 * end of memory etc.
1737 *
1738 * Thus the read_seqcount_retry() and the "duplicate" info
1739 * in arguments (the low-level filesystem should not look
1740 * at the dentry inode or name contents directly, since
1741 * rename can change them while we're in RCU mode).
1742 */
1743 enum slow_d_compare {
1744 D_COMP_OK,
1745 D_COMP_NOMATCH,
1746 D_COMP_SEQRETRY,
1747 };
1748
1749 static noinline enum slow_d_compare slow_dentry_cmp(
1750 const struct dentry *parent,
1751 struct inode *inode,
1752 struct dentry *dentry,
1753 unsigned int seq,
1754 const struct qstr *name)
1755 {
1756 int tlen = dentry->d_name.len;
1757 const char *tname = dentry->d_name.name;
1758 struct inode *i = dentry->d_inode;
1759
1760 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1761 cpu_relax();
1762 return D_COMP_SEQRETRY;
1763 }
1764 if (parent->d_op->d_compare(parent, inode,
1765 dentry, i,
1766 tlen, tname, name))
1767 return D_COMP_NOMATCH;
1768 return D_COMP_OK;
1769 }
1770
1771 /**
1772 * __d_lookup_rcu - search for a dentry (racy, store-free)
1773 * @parent: parent dentry
1774 * @name: qstr of name we wish to find
1775 * @seqp: returns d_seq value at the point where the dentry was found
1776 * @inode: returns dentry->d_inode when the inode was found valid.
1777 * Returns: dentry, or NULL
1778 *
1779 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1780 * resolution (store-free path walking) design described in
1781 * Documentation/filesystems/path-lookup.txt.
1782 *
1783 * This is not to be used outside core vfs.
1784 *
1785 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1786 * held, and rcu_read_lock held. The returned dentry must not be stored into
1787 * without taking d_lock and checking d_seq sequence count against @seq
1788 * returned here.
1789 *
1790 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1791 * function.
1792 *
1793 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1794 * the returned dentry, so long as its parent's seqlock is checked after the
1795 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1796 * is formed, giving integrity down the path walk.
1797 *
1798 * NOTE! The caller *has* to check the resulting dentry against the sequence
1799 * number we've returned before using any of the resulting dentry state!
1800 */
1801 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1802 const struct qstr *name,
1803 unsigned *seqp, struct inode *inode)
1804 {
1805 u64 hashlen = name->hash_len;
1806 const unsigned char *str = name->name;
1807 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1808 struct hlist_bl_node *node;
1809 struct dentry *dentry;
1810
1811 /*
1812 * Note: There is significant duplication with __d_lookup_rcu which is
1813 * required to prevent single threaded performance regressions
1814 * especially on architectures where smp_rmb (in seqcounts) are costly.
1815 * Keep the two functions in sync.
1816 */
1817
1818 /*
1819 * The hash list is protected using RCU.
1820 *
1821 * Carefully use d_seq when comparing a candidate dentry, to avoid
1822 * races with d_move().
1823 *
1824 * It is possible that concurrent renames can mess up our list
1825 * walk here and result in missing our dentry, resulting in the
1826 * false-negative result. d_lookup() protects against concurrent
1827 * renames using rename_lock seqlock.
1828 *
1829 * See Documentation/filesystems/path-lookup.txt for more details.
1830 */
1831 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1832 unsigned seq;
1833
1834 seqretry:
1835 /*
1836 * The dentry sequence count protects us from concurrent
1837 * renames, and thus protects inode, parent and name fields.
1838 *
1839 * The caller must perform a seqcount check in order
1840 * to do anything useful with the returned dentry,
1841 * including using the 'd_inode' pointer.
1842 *
1843 * NOTE! We do a "raw" seqcount_begin here. That means that
1844 * we don't wait for the sequence count to stabilize if it
1845 * is in the middle of a sequence change. If we do the slow
1846 * dentry compare, we will do seqretries until it is stable,
1847 * and if we end up with a successful lookup, we actually
1848 * want to exit RCU lookup anyway.
1849 */
1850 seq = raw_seqcount_begin(&dentry->d_seq);
1851 if (dentry->d_parent != parent)
1852 continue;
1853 if (d_unhashed(dentry))
1854 continue;
1855 *seqp = seq;
1856
1857 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1858 if (dentry->d_name.hash != hashlen_hash(hashlen))
1859 continue;
1860 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1861 case D_COMP_OK:
1862 return dentry;
1863 case D_COMP_NOMATCH:
1864 continue;
1865 default:
1866 goto seqretry;
1867 }
1868 }
1869
1870 if (dentry->d_name.hash_len != hashlen)
1871 continue;
1872 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1873 return dentry;
1874 }
1875 return NULL;
1876 }
1877
1878 /**
1879 * d_lookup - search for a dentry
1880 * @parent: parent dentry
1881 * @name: qstr of name we wish to find
1882 * Returns: dentry, or NULL
1883 *
1884 * d_lookup searches the children of the parent dentry for the name in
1885 * question. If the dentry is found its reference count is incremented and the
1886 * dentry is returned. The caller must use dput to free the entry when it has
1887 * finished using it. %NULL is returned if the dentry does not exist.
1888 */
1889 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1890 {
1891 struct dentry *dentry;
1892 unsigned seq;
1893
1894 do {
1895 seq = read_seqbegin(&rename_lock);
1896 dentry = __d_lookup(parent, name);
1897 if (dentry)
1898 break;
1899 } while (read_seqretry(&rename_lock, seq));
1900 return dentry;
1901 }
1902 EXPORT_SYMBOL(d_lookup);
1903
1904 /**
1905 * __d_lookup - search for a dentry (racy)
1906 * @parent: parent dentry
1907 * @name: qstr of name we wish to find
1908 * Returns: dentry, or NULL
1909 *
1910 * __d_lookup is like d_lookup, however it may (rarely) return a
1911 * false-negative result due to unrelated rename activity.
1912 *
1913 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1914 * however it must be used carefully, eg. with a following d_lookup in
1915 * the case of failure.
1916 *
1917 * __d_lookup callers must be commented.
1918 */
1919 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1920 {
1921 unsigned int len = name->len;
1922 unsigned int hash = name->hash;
1923 const unsigned char *str = name->name;
1924 struct hlist_bl_head *b = d_hash(parent, hash);
1925 struct hlist_bl_node *node;
1926 struct dentry *found = NULL;
1927 struct dentry *dentry;
1928
1929 /*
1930 * Note: There is significant duplication with __d_lookup_rcu which is
1931 * required to prevent single threaded performance regressions
1932 * especially on architectures where smp_rmb (in seqcounts) are costly.
1933 * Keep the two functions in sync.
1934 */
1935
1936 /*
1937 * The hash list is protected using RCU.
1938 *
1939 * Take d_lock when comparing a candidate dentry, to avoid races
1940 * with d_move().
1941 *
1942 * It is possible that concurrent renames can mess up our list
1943 * walk here and result in missing our dentry, resulting in the
1944 * false-negative result. d_lookup() protects against concurrent
1945 * renames using rename_lock seqlock.
1946 *
1947 * See Documentation/filesystems/path-lookup.txt for more details.
1948 */
1949 rcu_read_lock();
1950
1951 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1952
1953 if (dentry->d_name.hash != hash)
1954 continue;
1955
1956 spin_lock(&dentry->d_lock);
1957 if (dentry->d_parent != parent)
1958 goto next;
1959 if (d_unhashed(dentry))
1960 goto next;
1961
1962 /*
1963 * It is safe to compare names since d_move() cannot
1964 * change the qstr (protected by d_lock).
1965 */
1966 if (parent->d_flags & DCACHE_OP_COMPARE) {
1967 int tlen = dentry->d_name.len;
1968 const char *tname = dentry->d_name.name;
1969 if (parent->d_op->d_compare(parent, parent->d_inode,
1970 dentry, dentry->d_inode,
1971 tlen, tname, name))
1972 goto next;
1973 } else {
1974 if (dentry->d_name.len != len)
1975 goto next;
1976 if (dentry_cmp(dentry, str, len))
1977 goto next;
1978 }
1979
1980 dentry->d_count++;
1981 found = dentry;
1982 spin_unlock(&dentry->d_lock);
1983 break;
1984 next:
1985 spin_unlock(&dentry->d_lock);
1986 }
1987 rcu_read_unlock();
1988
1989 return found;
1990 }
1991
1992 /**
1993 * d_hash_and_lookup - hash the qstr then search for a dentry
1994 * @dir: Directory to search in
1995 * @name: qstr of name we wish to find
1996 *
1997 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
1998 */
1999 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2000 {
2001 /*
2002 * Check for a fs-specific hash function. Note that we must
2003 * calculate the standard hash first, as the d_op->d_hash()
2004 * routine may choose to leave the hash value unchanged.
2005 */
2006 name->hash = full_name_hash(name->name, name->len);
2007 if (dir->d_flags & DCACHE_OP_HASH) {
2008 int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2009 if (unlikely(err < 0))
2010 return ERR_PTR(err);
2011 }
2012 return d_lookup(dir, name);
2013 }
2014 EXPORT_SYMBOL(d_hash_and_lookup);
2015
2016 /**
2017 * d_validate - verify dentry provided from insecure source (deprecated)
2018 * @dentry: The dentry alleged to be valid child of @dparent
2019 * @dparent: The parent dentry (known to be valid)
2020 *
2021 * An insecure source has sent us a dentry, here we verify it and dget() it.
2022 * This is used by ncpfs in its readdir implementation.
2023 * Zero is returned in the dentry is invalid.
2024 *
2025 * This function is slow for big directories, and deprecated, do not use it.
2026 */
2027 int d_validate(struct dentry *dentry, struct dentry *dparent)
2028 {
2029 struct dentry *child;
2030
2031 spin_lock(&dparent->d_lock);
2032 list_for_each_entry(child, &dparent->d_subdirs, d_child) {
2033 if (dentry == child) {
2034 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2035 __dget_dlock(dentry);
2036 spin_unlock(&dentry->d_lock);
2037 spin_unlock(&dparent->d_lock);
2038 return 1;
2039 }
2040 }
2041 spin_unlock(&dparent->d_lock);
2042
2043 return 0;
2044 }
2045 EXPORT_SYMBOL(d_validate);
2046
2047 /*
2048 * When a file is deleted, we have two options:
2049 * - turn this dentry into a negative dentry
2050 * - unhash this dentry and free it.
2051 *
2052 * Usually, we want to just turn this into
2053 * a negative dentry, but if anybody else is
2054 * currently using the dentry or the inode
2055 * we can't do that and we fall back on removing
2056 * it from the hash queues and waiting for
2057 * it to be deleted later when it has no users
2058 */
2059
2060 /**
2061 * d_delete - delete a dentry
2062 * @dentry: The dentry to delete
2063 *
2064 * Turn the dentry into a negative dentry if possible, otherwise
2065 * remove it from the hash queues so it can be deleted later
2066 */
2067
2068 void d_delete(struct dentry * dentry)
2069 {
2070 struct inode *inode;
2071 int isdir = 0;
2072 /*
2073 * Are we the only user?
2074 */
2075 again:
2076 spin_lock(&dentry->d_lock);
2077 inode = dentry->d_inode;
2078 isdir = S_ISDIR(inode->i_mode);
2079 if (dentry->d_count == 1) {
2080 if (!spin_trylock(&inode->i_lock)) {
2081 spin_unlock(&dentry->d_lock);
2082 cpu_relax();
2083 goto again;
2084 }
2085 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2086 dentry_unlink_inode(dentry);
2087 fsnotify_nameremove(dentry, isdir);
2088 return;
2089 }
2090
2091 if (!d_unhashed(dentry))
2092 __d_drop(dentry);
2093
2094 spin_unlock(&dentry->d_lock);
2095
2096 fsnotify_nameremove(dentry, isdir);
2097 }
2098 EXPORT_SYMBOL(d_delete);
2099
2100 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2101 {
2102 BUG_ON(!d_unhashed(entry));
2103 hlist_bl_lock(b);
2104 entry->d_flags |= DCACHE_RCUACCESS;
2105 hlist_bl_add_head_rcu(&entry->d_hash, b);
2106 hlist_bl_unlock(b);
2107 }
2108
2109 static void _d_rehash(struct dentry * entry)
2110 {
2111 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2112 }
2113
2114 /**
2115 * d_rehash - add an entry back to the hash
2116 * @entry: dentry to add to the hash
2117 *
2118 * Adds a dentry to the hash according to its name.
2119 */
2120
2121 void d_rehash(struct dentry * entry)
2122 {
2123 spin_lock(&entry->d_lock);
2124 _d_rehash(entry);
2125 spin_unlock(&entry->d_lock);
2126 }
2127 EXPORT_SYMBOL(d_rehash);
2128
2129 /**
2130 * dentry_update_name_case - update case insensitive dentry with a new name
2131 * @dentry: dentry to be updated
2132 * @name: new name
2133 *
2134 * Update a case insensitive dentry with new case of name.
2135 *
2136 * dentry must have been returned by d_lookup with name @name. Old and new
2137 * name lengths must match (ie. no d_compare which allows mismatched name
2138 * lengths).
2139 *
2140 * Parent inode i_mutex must be held over d_lookup and into this call (to
2141 * keep renames and concurrent inserts, and readdir(2) away).
2142 */
2143 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2144 {
2145 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2146 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2147
2148 spin_lock(&dentry->d_lock);
2149 write_seqcount_begin(&dentry->d_seq);
2150 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2151 write_seqcount_end(&dentry->d_seq);
2152 spin_unlock(&dentry->d_lock);
2153 }
2154 EXPORT_SYMBOL(dentry_update_name_case);
2155
2156 static void switch_names(struct dentry *dentry, struct dentry *target)
2157 {
2158 if (dname_external(target)) {
2159 if (dname_external(dentry)) {
2160 /*
2161 * Both external: swap the pointers
2162 */
2163 swap(target->d_name.name, dentry->d_name.name);
2164 } else {
2165 /*
2166 * dentry:internal, target:external. Steal target's
2167 * storage and make target internal.
2168 */
2169 memcpy(target->d_iname, dentry->d_name.name,
2170 dentry->d_name.len + 1);
2171 dentry->d_name.name = target->d_name.name;
2172 target->d_name.name = target->d_iname;
2173 }
2174 } else {
2175 if (dname_external(dentry)) {
2176 /*
2177 * dentry:external, target:internal. Give dentry's
2178 * storage to target and make dentry internal
2179 */
2180 memcpy(dentry->d_iname, target->d_name.name,
2181 target->d_name.len + 1);
2182 target->d_name.name = dentry->d_name.name;
2183 dentry->d_name.name = dentry->d_iname;
2184 } else {
2185 /*
2186 * Both are internal. Just copy target to dentry
2187 */
2188 memcpy(dentry->d_iname, target->d_name.name,
2189 target->d_name.len + 1);
2190 dentry->d_name.len = target->d_name.len;
2191 return;
2192 }
2193 }
2194 swap(dentry->d_name.len, target->d_name.len);
2195 }
2196
2197 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2198 {
2199 /*
2200 * XXXX: do we really need to take target->d_lock?
2201 */
2202 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2203 spin_lock(&target->d_parent->d_lock);
2204 else {
2205 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2206 spin_lock(&dentry->d_parent->d_lock);
2207 spin_lock_nested(&target->d_parent->d_lock,
2208 DENTRY_D_LOCK_NESTED);
2209 } else {
2210 spin_lock(&target->d_parent->d_lock);
2211 spin_lock_nested(&dentry->d_parent->d_lock,
2212 DENTRY_D_LOCK_NESTED);
2213 }
2214 }
2215 if (target < dentry) {
2216 spin_lock_nested(&target->d_lock, 2);
2217 spin_lock_nested(&dentry->d_lock, 3);
2218 } else {
2219 spin_lock_nested(&dentry->d_lock, 2);
2220 spin_lock_nested(&target->d_lock, 3);
2221 }
2222 }
2223
2224 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2225 struct dentry *target)
2226 {
2227 if (target->d_parent != dentry->d_parent)
2228 spin_unlock(&dentry->d_parent->d_lock);
2229 if (target->d_parent != target)
2230 spin_unlock(&target->d_parent->d_lock);
2231 }
2232
2233 /*
2234 * When switching names, the actual string doesn't strictly have to
2235 * be preserved in the target - because we're dropping the target
2236 * anyway. As such, we can just do a simple memcpy() to copy over
2237 * the new name before we switch.
2238 *
2239 * Note that we have to be a lot more careful about getting the hash
2240 * switched - we have to switch the hash value properly even if it
2241 * then no longer matches the actual (corrupted) string of the target.
2242 * The hash value has to match the hash queue that the dentry is on..
2243 */
2244 /*
2245 * __d_move - move a dentry
2246 * @dentry: entry to move
2247 * @target: new dentry
2248 *
2249 * Update the dcache to reflect the move of a file name. Negative
2250 * dcache entries should not be moved in this way. Caller must hold
2251 * rename_lock, the i_mutex of the source and target directories,
2252 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2253 */
2254 static void __d_move(struct dentry * dentry, struct dentry * target)
2255 {
2256 if (!dentry->d_inode)
2257 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2258
2259 BUG_ON(d_ancestor(dentry, target));
2260 BUG_ON(d_ancestor(target, dentry));
2261
2262 dentry_lock_for_move(dentry, target);
2263
2264 write_seqcount_begin(&dentry->d_seq);
2265 write_seqcount_begin(&target->d_seq);
2266
2267 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2268
2269 /*
2270 * Move the dentry to the target hash queue. Don't bother checking
2271 * for the same hash queue because of how unlikely it is.
2272 */
2273 __d_drop(dentry);
2274 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2275
2276 /* Unhash the target: dput() will then get rid of it */
2277 __d_drop(target);
2278
2279 list_del(&dentry->d_child);
2280 list_del(&target->d_child);
2281
2282 /* Switch the names.. */
2283 switch_names(dentry, target);
2284 swap(dentry->d_name.hash, target->d_name.hash);
2285
2286 /* ... and switch the parents */
2287 if (IS_ROOT(dentry)) {
2288 dentry->d_parent = target->d_parent;
2289 target->d_parent = target;
2290 INIT_LIST_HEAD(&target->d_child);
2291 } else {
2292 swap(dentry->d_parent, target->d_parent);
2293
2294 /* And add them back to the (new) parent lists */
2295 list_add(&target->d_child, &target->d_parent->d_subdirs);
2296 }
2297
2298 list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
2299
2300 write_seqcount_end(&target->d_seq);
2301 write_seqcount_end(&dentry->d_seq);
2302
2303 dentry_unlock_parents_for_move(dentry, target);
2304 spin_unlock(&target->d_lock);
2305 fsnotify_d_move(dentry);
2306 spin_unlock(&dentry->d_lock);
2307 }
2308
2309 /*
2310 * d_move - move a dentry
2311 * @dentry: entry to move
2312 * @target: new dentry
2313 *
2314 * Update the dcache to reflect the move of a file name. Negative
2315 * dcache entries should not be moved in this way. See the locking
2316 * requirements for __d_move.
2317 */
2318 void d_move(struct dentry *dentry, struct dentry *target)
2319 {
2320 write_seqlock(&rename_lock);
2321 __d_move(dentry, target);
2322 write_sequnlock(&rename_lock);
2323 }
2324 EXPORT_SYMBOL(d_move);
2325
2326 /**
2327 * d_ancestor - search for an ancestor
2328 * @p1: ancestor dentry
2329 * @p2: child dentry
2330 *
2331 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2332 * an ancestor of p2, else NULL.
2333 */
2334 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2335 {
2336 struct dentry *p;
2337
2338 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2339 if (p->d_parent == p1)
2340 return p;
2341 }
2342 return NULL;
2343 }
2344
2345 /*
2346 * This helper attempts to cope with remotely renamed directories
2347 *
2348 * It assumes that the caller is already holding
2349 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2350 *
2351 * Note: If ever the locking in lock_rename() changes, then please
2352 * remember to update this too...
2353 */
2354 static struct dentry *__d_unalias(struct inode *inode,
2355 struct dentry *dentry, struct dentry *alias)
2356 {
2357 struct mutex *m1 = NULL, *m2 = NULL;
2358 struct dentry *ret = ERR_PTR(-EBUSY);
2359
2360 /* If alias and dentry share a parent, then no extra locks required */
2361 if (alias->d_parent == dentry->d_parent)
2362 goto out_unalias;
2363
2364 /* See lock_rename() */
2365 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2366 goto out_err;
2367 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2368 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2369 goto out_err;
2370 m2 = &alias->d_parent->d_inode->i_mutex;
2371 out_unalias:
2372 if (likely(!d_mountpoint(alias))) {
2373 __d_move(alias, dentry);
2374 ret = alias;
2375 }
2376 out_err:
2377 spin_unlock(&inode->i_lock);
2378 if (m2)
2379 mutex_unlock(m2);
2380 if (m1)
2381 mutex_unlock(m1);
2382 return ret;
2383 }
2384
2385 /*
2386 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2387 * named dentry in place of the dentry to be replaced.
2388 * returns with anon->d_lock held!
2389 */
2390 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2391 {
2392 struct dentry *dparent;
2393
2394 dentry_lock_for_move(anon, dentry);
2395
2396 write_seqcount_begin(&dentry->d_seq);
2397 write_seqcount_begin(&anon->d_seq);
2398
2399 dparent = dentry->d_parent;
2400
2401 switch_names(dentry, anon);
2402 swap(dentry->d_name.hash, anon->d_name.hash);
2403
2404 dentry->d_parent = dentry;
2405 list_del_init(&dentry->d_child);
2406 anon->d_parent = dparent;
2407 list_move(&anon->d_child, &dparent->d_subdirs);
2408
2409 write_seqcount_end(&dentry->d_seq);
2410 write_seqcount_end(&anon->d_seq);
2411
2412 dentry_unlock_parents_for_move(anon, dentry);
2413 spin_unlock(&dentry->d_lock);
2414
2415 /* anon->d_lock still locked, returns locked */
2416 anon->d_flags &= ~DCACHE_DISCONNECTED;
2417 }
2418
2419 /**
2420 * d_materialise_unique - introduce an inode into the tree
2421 * @dentry: candidate dentry
2422 * @inode: inode to bind to the dentry, to which aliases may be attached
2423 *
2424 * Introduces an dentry into the tree, substituting an extant disconnected
2425 * root directory alias in its place if there is one. Caller must hold the
2426 * i_mutex of the parent directory.
2427 */
2428 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2429 {
2430 struct dentry *actual;
2431
2432 BUG_ON(!d_unhashed(dentry));
2433
2434 if (!inode) {
2435 actual = dentry;
2436 __d_instantiate(dentry, NULL);
2437 d_rehash(actual);
2438 goto out_nolock;
2439 }
2440
2441 spin_lock(&inode->i_lock);
2442
2443 if (S_ISDIR(inode->i_mode)) {
2444 struct dentry *alias;
2445
2446 /* Does an aliased dentry already exist? */
2447 alias = __d_find_alias(inode, 0);
2448 if (alias) {
2449 actual = alias;
2450 write_seqlock(&rename_lock);
2451
2452 if (d_ancestor(alias, dentry)) {
2453 /* Check for loops */
2454 actual = ERR_PTR(-ELOOP);
2455 spin_unlock(&inode->i_lock);
2456 } else if (IS_ROOT(alias)) {
2457 /* Is this an anonymous mountpoint that we
2458 * could splice into our tree? */
2459 __d_materialise_dentry(dentry, alias);
2460 write_sequnlock(&rename_lock);
2461 __d_drop(alias);
2462 goto found;
2463 } else {
2464 /* Nope, but we must(!) avoid directory
2465 * aliasing. This drops inode->i_lock */
2466 actual = __d_unalias(inode, dentry, alias);
2467 }
2468 write_sequnlock(&rename_lock);
2469 if (IS_ERR(actual)) {
2470 if (PTR_ERR(actual) == -ELOOP)
2471 pr_warn_ratelimited(
2472 "VFS: Lookup of '%s' in %s %s"
2473 " would have caused loop\n",
2474 dentry->d_name.name,
2475 inode->i_sb->s_type->name,
2476 inode->i_sb->s_id);
2477 dput(alias);
2478 }
2479 goto out_nolock;
2480 }
2481 }
2482
2483 /* Add a unique reference */
2484 actual = __d_instantiate_unique(dentry, inode);
2485 if (!actual)
2486 actual = dentry;
2487 else
2488 BUG_ON(!d_unhashed(actual));
2489
2490 spin_lock(&actual->d_lock);
2491 found:
2492 _d_rehash(actual);
2493 spin_unlock(&actual->d_lock);
2494 spin_unlock(&inode->i_lock);
2495 out_nolock:
2496 if (actual == dentry) {
2497 security_d_instantiate(dentry, inode);
2498 return NULL;
2499 }
2500
2501 iput(inode);
2502 return actual;
2503 }
2504 EXPORT_SYMBOL_GPL(d_materialise_unique);
2505
2506 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2507 {
2508 *buflen -= namelen;
2509 if (*buflen < 0)
2510 return -ENAMETOOLONG;
2511 *buffer -= namelen;
2512 memcpy(*buffer, str, namelen);
2513 return 0;
2514 }
2515
2516 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2517 {
2518 return prepend(buffer, buflen, name->name, name->len);
2519 }
2520
2521 /**
2522 * prepend_path - Prepend path string to a buffer
2523 * @path: the dentry/vfsmount to report
2524 * @root: root vfsmnt/dentry
2525 * @buffer: pointer to the end of the buffer
2526 * @buflen: pointer to buffer length
2527 *
2528 * Caller holds the rename_lock.
2529 */
2530 static int prepend_path(const struct path *path,
2531 const struct path *root,
2532 char **buffer, int *buflen)
2533 {
2534 struct dentry *dentry = path->dentry;
2535 struct vfsmount *vfsmnt = path->mnt;
2536 struct mount *mnt = real_mount(vfsmnt);
2537 bool slash = false;
2538 int error = 0;
2539
2540 while (dentry != root->dentry || vfsmnt != root->mnt) {
2541 struct dentry * parent;
2542
2543 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2544 /* Global root? */
2545 if (!mnt_has_parent(mnt))
2546 goto global_root;
2547 dentry = mnt->mnt_mountpoint;
2548 mnt = mnt->mnt_parent;
2549 vfsmnt = &mnt->mnt;
2550 continue;
2551 }
2552 parent = dentry->d_parent;
2553 prefetch(parent);
2554 spin_lock(&dentry->d_lock);
2555 error = prepend_name(buffer, buflen, &dentry->d_name);
2556 spin_unlock(&dentry->d_lock);
2557 if (!error)
2558 error = prepend(buffer, buflen, "/", 1);
2559 if (error)
2560 break;
2561
2562 slash = true;
2563 dentry = parent;
2564 }
2565
2566 if (!error && !slash)
2567 error = prepend(buffer, buflen, "/", 1);
2568
2569 return error;
2570
2571 global_root:
2572 /*
2573 * Filesystems needing to implement special "root names"
2574 * should do so with ->d_dname()
2575 */
2576 if (IS_ROOT(dentry) &&
2577 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2578 WARN(1, "Root dentry has weird name <%.*s>\n",
2579 (int) dentry->d_name.len, dentry->d_name.name);
2580 }
2581 if (!slash)
2582 error = prepend(buffer, buflen, "/", 1);
2583 if (!error)
2584 error = is_mounted(vfsmnt) ? 1 : 2;
2585 return error;
2586 }
2587
2588 /**
2589 * __d_path - return the path of a dentry
2590 * @path: the dentry/vfsmount to report
2591 * @root: root vfsmnt/dentry
2592 * @buf: buffer to return value in
2593 * @buflen: buffer length
2594 *
2595 * Convert a dentry into an ASCII path name.
2596 *
2597 * Returns a pointer into the buffer or an error code if the
2598 * path was too long.
2599 *
2600 * "buflen" should be positive.
2601 *
2602 * If the path is not reachable from the supplied root, return %NULL.
2603 */
2604 char *__d_path(const struct path *path,
2605 const struct path *root,
2606 char *buf, int buflen)
2607 {
2608 char *res = buf + buflen;
2609 int error;
2610
2611 prepend(&res, &buflen, "\0", 1);
2612 br_read_lock(&vfsmount_lock);
2613 write_seqlock(&rename_lock);
2614 error = prepend_path(path, root, &res, &buflen);
2615 write_sequnlock(&rename_lock);
2616 br_read_unlock(&vfsmount_lock);
2617
2618 if (error < 0)
2619 return ERR_PTR(error);
2620 if (error > 0)
2621 return NULL;
2622 return res;
2623 }
2624
2625 char *d_absolute_path(const struct path *path,
2626 char *buf, int buflen)
2627 {
2628 struct path root = {};
2629 char *res = buf + buflen;
2630 int error;
2631
2632 prepend(&res, &buflen, "\0", 1);
2633 br_read_lock(&vfsmount_lock);
2634 write_seqlock(&rename_lock);
2635 error = prepend_path(path, &root, &res, &buflen);
2636 write_sequnlock(&rename_lock);
2637 br_read_unlock(&vfsmount_lock);
2638
2639 if (error > 1)
2640 error = -EINVAL;
2641 if (error < 0)
2642 return ERR_PTR(error);
2643 return res;
2644 }
2645
2646 /*
2647 * same as __d_path but appends "(deleted)" for unlinked files.
2648 */
2649 static int path_with_deleted(const struct path *path,
2650 const struct path *root,
2651 char **buf, int *buflen)
2652 {
2653 prepend(buf, buflen, "\0", 1);
2654 if (d_unlinked(path->dentry)) {
2655 int error = prepend(buf, buflen, " (deleted)", 10);
2656 if (error)
2657 return error;
2658 }
2659
2660 return prepend_path(path, root, buf, buflen);
2661 }
2662
2663 static int prepend_unreachable(char **buffer, int *buflen)
2664 {
2665 return prepend(buffer, buflen, "(unreachable)", 13);
2666 }
2667
2668 /**
2669 * d_path - return the path of a dentry
2670 * @path: path to report
2671 * @buf: buffer to return value in
2672 * @buflen: buffer length
2673 *
2674 * Convert a dentry into an ASCII path name. If the entry has been deleted
2675 * the string " (deleted)" is appended. Note that this is ambiguous.
2676 *
2677 * Returns a pointer into the buffer or an error code if the path was
2678 * too long. Note: Callers should use the returned pointer, not the passed
2679 * in buffer, to use the name! The implementation often starts at an offset
2680 * into the buffer, and may leave 0 bytes at the start.
2681 *
2682 * "buflen" should be positive.
2683 */
2684 char *d_path(const struct path *path, char *buf, int buflen)
2685 {
2686 char *res = buf + buflen;
2687 struct path root;
2688 int error;
2689
2690 /*
2691 * We have various synthetic filesystems that never get mounted. On
2692 * these filesystems dentries are never used for lookup purposes, and
2693 * thus don't need to be hashed. They also don't need a name until a
2694 * user wants to identify the object in /proc/pid/fd/. The little hack
2695 * below allows us to generate a name for these objects on demand:
2696 *
2697 * Some pseudo inodes are mountable. When they are mounted
2698 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
2699 * and instead have d_path return the mounted path.
2700 */
2701 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
2702 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
2703 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2704
2705 get_fs_root(current->fs, &root);
2706 br_read_lock(&vfsmount_lock);
2707 write_seqlock(&rename_lock);
2708 error = path_with_deleted(path, &root, &res, &buflen);
2709 write_sequnlock(&rename_lock);
2710 br_read_unlock(&vfsmount_lock);
2711 if (error < 0)
2712 res = ERR_PTR(error);
2713 path_put(&root);
2714 return res;
2715 }
2716 EXPORT_SYMBOL(d_path);
2717
2718 /*
2719 * Helper function for dentry_operations.d_dname() members
2720 */
2721 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2722 const char *fmt, ...)
2723 {
2724 va_list args;
2725 char temp[64];
2726 int sz;
2727
2728 va_start(args, fmt);
2729 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2730 va_end(args);
2731
2732 if (sz > sizeof(temp) || sz > buflen)
2733 return ERR_PTR(-ENAMETOOLONG);
2734
2735 buffer += buflen - sz;
2736 return memcpy(buffer, temp, sz);
2737 }
2738
2739 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2740 {
2741 char *end = buffer + buflen;
2742 /* these dentries are never renamed, so d_lock is not needed */
2743 if (prepend(&end, &buflen, " (deleted)", 11) ||
2744 prepend_name(&end, &buflen, &dentry->d_name) ||
2745 prepend(&end, &buflen, "/", 1))
2746 end = ERR_PTR(-ENAMETOOLONG);
2747 return end;
2748 }
2749
2750 /*
2751 * Write full pathname from the root of the filesystem into the buffer.
2752 */
2753 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2754 {
2755 char *end = buf + buflen;
2756 char *retval;
2757
2758 prepend(&end, &buflen, "\0", 1);
2759 if (buflen < 1)
2760 goto Elong;
2761 /* Get '/' right */
2762 retval = end-1;
2763 *retval = '/';
2764
2765 while (!IS_ROOT(dentry)) {
2766 struct dentry *parent = dentry->d_parent;
2767 int error;
2768
2769 prefetch(parent);
2770 spin_lock(&dentry->d_lock);
2771 error = prepend_name(&end, &buflen, &dentry->d_name);
2772 spin_unlock(&dentry->d_lock);
2773 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2774 goto Elong;
2775
2776 retval = end;
2777 dentry = parent;
2778 }
2779 return retval;
2780 Elong:
2781 return ERR_PTR(-ENAMETOOLONG);
2782 }
2783
2784 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2785 {
2786 char *retval;
2787
2788 write_seqlock(&rename_lock);
2789 retval = __dentry_path(dentry, buf, buflen);
2790 write_sequnlock(&rename_lock);
2791
2792 return retval;
2793 }
2794 EXPORT_SYMBOL(dentry_path_raw);
2795
2796 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2797 {
2798 char *p = NULL;
2799 char *retval;
2800
2801 write_seqlock(&rename_lock);
2802 if (d_unlinked(dentry)) {
2803 p = buf + buflen;
2804 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2805 goto Elong;
2806 buflen++;
2807 }
2808 retval = __dentry_path(dentry, buf, buflen);
2809 write_sequnlock(&rename_lock);
2810 if (!IS_ERR(retval) && p)
2811 *p = '/'; /* restore '/' overriden with '\0' */
2812 return retval;
2813 Elong:
2814 return ERR_PTR(-ENAMETOOLONG);
2815 }
2816
2817 /*
2818 * NOTE! The user-level library version returns a
2819 * character pointer. The kernel system call just
2820 * returns the length of the buffer filled (which
2821 * includes the ending '\0' character), or a negative
2822 * error value. So libc would do something like
2823 *
2824 * char *getcwd(char * buf, size_t size)
2825 * {
2826 * int retval;
2827 *
2828 * retval = sys_getcwd(buf, size);
2829 * if (retval >= 0)
2830 * return buf;
2831 * errno = -retval;
2832 * return NULL;
2833 * }
2834 */
2835 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2836 {
2837 int error;
2838 struct path pwd, root;
2839 char *page = (char *) __get_free_page(GFP_USER);
2840
2841 if (!page)
2842 return -ENOMEM;
2843
2844 get_fs_root_and_pwd(current->fs, &root, &pwd);
2845
2846 error = -ENOENT;
2847 br_read_lock(&vfsmount_lock);
2848 write_seqlock(&rename_lock);
2849 if (!d_unlinked(pwd.dentry)) {
2850 unsigned long len;
2851 char *cwd = page + PAGE_SIZE;
2852 int buflen = PAGE_SIZE;
2853
2854 prepend(&cwd, &buflen, "\0", 1);
2855 error = prepend_path(&pwd, &root, &cwd, &buflen);
2856 write_sequnlock(&rename_lock);
2857 br_read_unlock(&vfsmount_lock);
2858
2859 if (error < 0)
2860 goto out;
2861
2862 /* Unreachable from current root */
2863 if (error > 0) {
2864 error = prepend_unreachable(&cwd, &buflen);
2865 if (error)
2866 goto out;
2867 }
2868
2869 error = -ERANGE;
2870 len = PAGE_SIZE + page - cwd;
2871 if (len <= size) {
2872 error = len;
2873 if (copy_to_user(buf, cwd, len))
2874 error = -EFAULT;
2875 }
2876 } else {
2877 write_sequnlock(&rename_lock);
2878 br_read_unlock(&vfsmount_lock);
2879 }
2880
2881 out:
2882 path_put(&pwd);
2883 path_put(&root);
2884 free_page((unsigned long) page);
2885 return error;
2886 }
2887
2888 /*
2889 * Test whether new_dentry is a subdirectory of old_dentry.
2890 *
2891 * Trivially implemented using the dcache structure
2892 */
2893
2894 /**
2895 * is_subdir - is new dentry a subdirectory of old_dentry
2896 * @new_dentry: new dentry
2897 * @old_dentry: old dentry
2898 *
2899 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2900 * Returns 0 otherwise.
2901 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2902 */
2903
2904 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2905 {
2906 int result;
2907 unsigned seq;
2908
2909 if (new_dentry == old_dentry)
2910 return 1;
2911
2912 do {
2913 /* for restarting inner loop in case of seq retry */
2914 seq = read_seqbegin(&rename_lock);
2915 /*
2916 * Need rcu_readlock to protect against the d_parent trashing
2917 * due to d_move
2918 */
2919 rcu_read_lock();
2920 if (d_ancestor(old_dentry, new_dentry))
2921 result = 1;
2922 else
2923 result = 0;
2924 rcu_read_unlock();
2925 } while (read_seqretry(&rename_lock, seq));
2926
2927 return result;
2928 }
2929
2930 void d_genocide(struct dentry *root)
2931 {
2932 struct dentry *this_parent;
2933 struct list_head *next;
2934 unsigned seq;
2935 int locked = 0;
2936
2937 seq = read_seqbegin(&rename_lock);
2938 again:
2939 this_parent = root;
2940 spin_lock(&this_parent->d_lock);
2941 repeat:
2942 next = this_parent->d_subdirs.next;
2943 resume:
2944 while (next != &this_parent->d_subdirs) {
2945 struct list_head *tmp = next;
2946 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
2947 next = tmp->next;
2948
2949 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2950 if (d_unhashed(dentry) || !dentry->d_inode) {
2951 spin_unlock(&dentry->d_lock);
2952 continue;
2953 }
2954 if (!list_empty(&dentry->d_subdirs)) {
2955 spin_unlock(&this_parent->d_lock);
2956 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2957 this_parent = dentry;
2958 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2959 goto repeat;
2960 }
2961 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2962 dentry->d_flags |= DCACHE_GENOCIDE;
2963 dentry->d_count--;
2964 }
2965 spin_unlock(&dentry->d_lock);
2966 }
2967 rcu_read_lock();
2968 ascend:
2969 if (this_parent != root) {
2970 struct dentry *child = this_parent;
2971 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2972 this_parent->d_flags |= DCACHE_GENOCIDE;
2973 this_parent->d_count--;
2974 }
2975 this_parent = child->d_parent;
2976
2977 spin_unlock(&child->d_lock);
2978 spin_lock(&this_parent->d_lock);
2979
2980 /* might go back up the wrong parent if we have had a rename. */
2981 if (!locked && read_seqretry(&rename_lock, seq))
2982 goto rename_retry;
2983 /* go into the first sibling still alive */
2984 do {
2985 next = child->d_child.next;
2986 if (next == &this_parent->d_subdirs)
2987 goto ascend;
2988 child = list_entry(next, struct dentry, d_child);
2989 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
2990 rcu_read_unlock();
2991 goto resume;
2992 }
2993 if (!locked && read_seqretry(&rename_lock, seq))
2994 goto rename_retry;
2995 spin_unlock(&this_parent->d_lock);
2996 rcu_read_unlock();
2997 if (locked)
2998 write_sequnlock(&rename_lock);
2999 return;
3000
3001 rename_retry:
3002 spin_unlock(&this_parent->d_lock);
3003 rcu_read_unlock();
3004 if (locked)
3005 goto again;
3006 locked = 1;
3007 write_seqlock(&rename_lock);
3008 goto again;
3009 }
3010
3011 /**
3012 * find_inode_number - check for dentry with name
3013 * @dir: directory to check
3014 * @name: Name to find.
3015 *
3016 * Check whether a dentry already exists for the given name,
3017 * and return the inode number if it has an inode. Otherwise
3018 * 0 is returned.
3019 *
3020 * This routine is used to post-process directory listings for
3021 * filesystems using synthetic inode numbers, and is necessary
3022 * to keep getcwd() working.
3023 */
3024
3025 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3026 {
3027 struct dentry * dentry;
3028 ino_t ino = 0;
3029
3030 dentry = d_hash_and_lookup(dir, name);
3031 if (!IS_ERR_OR_NULL(dentry)) {
3032 if (dentry->d_inode)
3033 ino = dentry->d_inode->i_ino;
3034 dput(dentry);
3035 }
3036 return ino;
3037 }
3038 EXPORT_SYMBOL(find_inode_number);
3039
3040 static __initdata unsigned long dhash_entries;
3041 static int __init set_dhash_entries(char *str)
3042 {
3043 if (!str)
3044 return 0;
3045 dhash_entries = simple_strtoul(str, &str, 0);
3046 return 1;
3047 }
3048 __setup("dhash_entries=", set_dhash_entries);
3049
3050 static void __init dcache_init_early(void)
3051 {
3052 unsigned int loop;
3053
3054 /* If hashes are distributed across NUMA nodes, defer
3055 * hash allocation until vmalloc space is available.
3056 */
3057 if (hashdist)
3058 return;
3059
3060 dentry_hashtable =
3061 alloc_large_system_hash("Dentry cache",
3062 sizeof(struct hlist_bl_head),
3063 dhash_entries,
3064 13,
3065 HASH_EARLY,
3066 &d_hash_shift,
3067 &d_hash_mask,
3068 0,
3069 0);
3070
3071 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3072 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3073 }
3074
3075 static void __init dcache_init(void)
3076 {
3077 unsigned int loop;
3078
3079 /*
3080 * A constructor could be added for stable state like the lists,
3081 * but it is probably not worth it because of the cache nature
3082 * of the dcache.
3083 */
3084 dentry_cache = KMEM_CACHE(dentry,
3085 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3086
3087 /* Hash may have been set up in dcache_init_early */
3088 if (!hashdist)
3089 return;
3090
3091 dentry_hashtable =
3092 alloc_large_system_hash("Dentry cache",
3093 sizeof(struct hlist_bl_head),
3094 dhash_entries,
3095 13,
3096 0,
3097 &d_hash_shift,
3098 &d_hash_mask,
3099 0,
3100 0);
3101
3102 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3103 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3104 }
3105
3106 /* SLAB cache for __getname() consumers */
3107 struct kmem_cache *names_cachep __read_mostly;
3108 EXPORT_SYMBOL(names_cachep);
3109
3110 EXPORT_SYMBOL(d_genocide);
3111
3112 void __init vfs_caches_init_early(void)
3113 {
3114 dcache_init_early();
3115 inode_init_early();
3116 }
3117
3118 void __init vfs_caches_init(unsigned long mempages)
3119 {
3120 unsigned long reserve;
3121
3122 /* Base hash sizes on available memory, with a reserve equal to
3123 150% of current kernel size */
3124
3125 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3126 mempages -= reserve;
3127
3128 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3129 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3130
3131 dcache_init();
3132 inode_init();
3133 files_init(mempages);
3134 mnt_init();
3135 bdev_cache_init();
3136 chrdev_init();
3137 }