Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "xattr.h"
50 #include "volumes.h"
51 #include "version.h"
52 #include "export.h"
53 #include "compression.h"
54
55 static const struct super_operations btrfs_super_ops;
56
57 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
58 char nbuf[16])
59 {
60 char *errstr = NULL;
61
62 switch (errno) {
63 case -EIO:
64 errstr = "IO failure";
65 break;
66 case -ENOMEM:
67 errstr = "Out of memory";
68 break;
69 case -EROFS:
70 errstr = "Readonly filesystem";
71 break;
72 default:
73 if (nbuf) {
74 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
75 errstr = nbuf;
76 }
77 break;
78 }
79
80 return errstr;
81 }
82
83 static void __save_error_info(struct btrfs_fs_info *fs_info)
84 {
85 /*
86 * today we only save the error info into ram. Long term we'll
87 * also send it down to the disk
88 */
89 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
90 }
91
92 /* NOTE:
93 * We move write_super stuff at umount in order to avoid deadlock
94 * for umount hold all lock.
95 */
96 static void save_error_info(struct btrfs_fs_info *fs_info)
97 {
98 __save_error_info(fs_info);
99 }
100
101 /* btrfs handle error by forcing the filesystem readonly */
102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
103 {
104 struct super_block *sb = fs_info->sb;
105
106 if (sb->s_flags & MS_RDONLY)
107 return;
108
109 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
110 sb->s_flags |= MS_RDONLY;
111 printk(KERN_INFO "btrfs is forced readonly\n");
112 }
113 }
114
115 /*
116 * __btrfs_std_error decodes expected errors from the caller and
117 * invokes the approciate error response.
118 */
119 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
120 unsigned int line, int errno)
121 {
122 struct super_block *sb = fs_info->sb;
123 char nbuf[16];
124 const char *errstr;
125
126 /*
127 * Special case: if the error is EROFS, and we're already
128 * under MS_RDONLY, then it is safe here.
129 */
130 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
131 return;
132
133 errstr = btrfs_decode_error(fs_info, errno, nbuf);
134 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
135 sb->s_id, function, line, errstr);
136 save_error_info(fs_info);
137
138 btrfs_handle_error(fs_info);
139 }
140
141 static void btrfs_put_super(struct super_block *sb)
142 {
143 struct btrfs_root *root = btrfs_sb(sb);
144 int ret;
145
146 ret = close_ctree(root);
147 sb->s_fs_info = NULL;
148
149 (void)ret; /* FIXME: need to fix VFS to return error? */
150 }
151
152 enum {
153 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
154 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
155 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
156 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
157 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
158 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed, Opt_err,
159 };
160
161 static match_table_t tokens = {
162 {Opt_degraded, "degraded"},
163 {Opt_subvol, "subvol=%s"},
164 {Opt_subvolid, "subvolid=%d"},
165 {Opt_device, "device=%s"},
166 {Opt_nodatasum, "nodatasum"},
167 {Opt_nodatacow, "nodatacow"},
168 {Opt_nobarrier, "nobarrier"},
169 {Opt_max_inline, "max_inline=%s"},
170 {Opt_alloc_start, "alloc_start=%s"},
171 {Opt_thread_pool, "thread_pool=%d"},
172 {Opt_compress, "compress"},
173 {Opt_compress_type, "compress=%s"},
174 {Opt_compress_force, "compress-force"},
175 {Opt_compress_force_type, "compress-force=%s"},
176 {Opt_ssd, "ssd"},
177 {Opt_ssd_spread, "ssd_spread"},
178 {Opt_nossd, "nossd"},
179 {Opt_noacl, "noacl"},
180 {Opt_notreelog, "notreelog"},
181 {Opt_flushoncommit, "flushoncommit"},
182 {Opt_ratio, "metadata_ratio=%d"},
183 {Opt_discard, "discard"},
184 {Opt_space_cache, "space_cache"},
185 {Opt_clear_cache, "clear_cache"},
186 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
187 {Opt_err, NULL},
188 };
189
190 /*
191 * Regular mount options parser. Everything that is needed only when
192 * reading in a new superblock is parsed here.
193 */
194 int btrfs_parse_options(struct btrfs_root *root, char *options)
195 {
196 struct btrfs_fs_info *info = root->fs_info;
197 substring_t args[MAX_OPT_ARGS];
198 char *p, *num, *orig;
199 int intarg;
200 int ret = 0;
201 char *compress_type;
202 bool compress_force = false;
203
204 if (!options)
205 return 0;
206
207 /*
208 * strsep changes the string, duplicate it because parse_options
209 * gets called twice
210 */
211 options = kstrdup(options, GFP_NOFS);
212 if (!options)
213 return -ENOMEM;
214
215 orig = options;
216
217 while ((p = strsep(&options, ",")) != NULL) {
218 int token;
219 if (!*p)
220 continue;
221
222 token = match_token(p, tokens, args);
223 switch (token) {
224 case Opt_degraded:
225 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
226 btrfs_set_opt(info->mount_opt, DEGRADED);
227 break;
228 case Opt_subvol:
229 case Opt_subvolid:
230 case Opt_device:
231 /*
232 * These are parsed by btrfs_parse_early_options
233 * and can be happily ignored here.
234 */
235 break;
236 case Opt_nodatasum:
237 printk(KERN_INFO "btrfs: setting nodatasum\n");
238 btrfs_set_opt(info->mount_opt, NODATASUM);
239 break;
240 case Opt_nodatacow:
241 printk(KERN_INFO "btrfs: setting nodatacow\n");
242 btrfs_set_opt(info->mount_opt, NODATACOW);
243 btrfs_set_opt(info->mount_opt, NODATASUM);
244 break;
245 case Opt_compress_force:
246 case Opt_compress_force_type:
247 compress_force = true;
248 case Opt_compress:
249 case Opt_compress_type:
250 if (token == Opt_compress ||
251 token == Opt_compress_force ||
252 strcmp(args[0].from, "zlib") == 0) {
253 compress_type = "zlib";
254 info->compress_type = BTRFS_COMPRESS_ZLIB;
255 } else if (strcmp(args[0].from, "lzo") == 0) {
256 compress_type = "lzo";
257 info->compress_type = BTRFS_COMPRESS_LZO;
258 } else {
259 ret = -EINVAL;
260 goto out;
261 }
262
263 btrfs_set_opt(info->mount_opt, COMPRESS);
264 if (compress_force) {
265 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
266 pr_info("btrfs: force %s compression\n",
267 compress_type);
268 } else
269 pr_info("btrfs: use %s compression\n",
270 compress_type);
271 break;
272 case Opt_ssd:
273 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
274 btrfs_set_opt(info->mount_opt, SSD);
275 break;
276 case Opt_ssd_spread:
277 printk(KERN_INFO "btrfs: use spread ssd "
278 "allocation scheme\n");
279 btrfs_set_opt(info->mount_opt, SSD);
280 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
281 break;
282 case Opt_nossd:
283 printk(KERN_INFO "btrfs: not using ssd allocation "
284 "scheme\n");
285 btrfs_set_opt(info->mount_opt, NOSSD);
286 btrfs_clear_opt(info->mount_opt, SSD);
287 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
288 break;
289 case Opt_nobarrier:
290 printk(KERN_INFO "btrfs: turning off barriers\n");
291 btrfs_set_opt(info->mount_opt, NOBARRIER);
292 break;
293 case Opt_thread_pool:
294 intarg = 0;
295 match_int(&args[0], &intarg);
296 if (intarg) {
297 info->thread_pool_size = intarg;
298 printk(KERN_INFO "btrfs: thread pool %d\n",
299 info->thread_pool_size);
300 }
301 break;
302 case Opt_max_inline:
303 num = match_strdup(&args[0]);
304 if (num) {
305 info->max_inline = memparse(num, NULL);
306 kfree(num);
307
308 if (info->max_inline) {
309 info->max_inline = max_t(u64,
310 info->max_inline,
311 root->sectorsize);
312 }
313 printk(KERN_INFO "btrfs: max_inline at %llu\n",
314 (unsigned long long)info->max_inline);
315 }
316 break;
317 case Opt_alloc_start:
318 num = match_strdup(&args[0]);
319 if (num) {
320 info->alloc_start = memparse(num, NULL);
321 kfree(num);
322 printk(KERN_INFO
323 "btrfs: allocations start at %llu\n",
324 (unsigned long long)info->alloc_start);
325 }
326 break;
327 case Opt_noacl:
328 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
329 break;
330 case Opt_notreelog:
331 printk(KERN_INFO "btrfs: disabling tree log\n");
332 btrfs_set_opt(info->mount_opt, NOTREELOG);
333 break;
334 case Opt_flushoncommit:
335 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
336 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
337 break;
338 case Opt_ratio:
339 intarg = 0;
340 match_int(&args[0], &intarg);
341 if (intarg) {
342 info->metadata_ratio = intarg;
343 printk(KERN_INFO "btrfs: metadata ratio %d\n",
344 info->metadata_ratio);
345 }
346 break;
347 case Opt_discard:
348 btrfs_set_opt(info->mount_opt, DISCARD);
349 break;
350 case Opt_space_cache:
351 printk(KERN_INFO "btrfs: enabling disk space caching\n");
352 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
353 break;
354 case Opt_clear_cache:
355 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
356 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
357 break;
358 case Opt_user_subvol_rm_allowed:
359 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
360 break;
361 case Opt_err:
362 printk(KERN_INFO "btrfs: unrecognized mount option "
363 "'%s'\n", p);
364 ret = -EINVAL;
365 goto out;
366 default:
367 break;
368 }
369 }
370 out:
371 kfree(orig);
372 return ret;
373 }
374
375 /*
376 * Parse mount options that are required early in the mount process.
377 *
378 * All other options will be parsed on much later in the mount process and
379 * only when we need to allocate a new super block.
380 */
381 static int btrfs_parse_early_options(const char *options, fmode_t flags,
382 void *holder, char **subvol_name, u64 *subvol_objectid,
383 struct btrfs_fs_devices **fs_devices)
384 {
385 substring_t args[MAX_OPT_ARGS];
386 char *opts, *p;
387 int error = 0;
388 int intarg;
389
390 if (!options)
391 goto out;
392
393 /*
394 * strsep changes the string, duplicate it because parse_options
395 * gets called twice
396 */
397 opts = kstrdup(options, GFP_KERNEL);
398 if (!opts)
399 return -ENOMEM;
400
401 while ((p = strsep(&opts, ",")) != NULL) {
402 int token;
403 if (!*p)
404 continue;
405
406 token = match_token(p, tokens, args);
407 switch (token) {
408 case Opt_subvol:
409 *subvol_name = match_strdup(&args[0]);
410 break;
411 case Opt_subvolid:
412 intarg = 0;
413 error = match_int(&args[0], &intarg);
414 if (!error) {
415 /* we want the original fs_tree */
416 if (!intarg)
417 *subvol_objectid =
418 BTRFS_FS_TREE_OBJECTID;
419 else
420 *subvol_objectid = intarg;
421 }
422 break;
423 case Opt_device:
424 error = btrfs_scan_one_device(match_strdup(&args[0]),
425 flags, holder, fs_devices);
426 if (error)
427 goto out_free_opts;
428 break;
429 default:
430 break;
431 }
432 }
433
434 out_free_opts:
435 kfree(opts);
436 out:
437 /*
438 * If no subvolume name is specified we use the default one. Allocate
439 * a copy of the string "." here so that code later in the
440 * mount path doesn't care if it's the default volume or another one.
441 */
442 if (!*subvol_name) {
443 *subvol_name = kstrdup(".", GFP_KERNEL);
444 if (!*subvol_name)
445 return -ENOMEM;
446 }
447 return error;
448 }
449
450 static struct dentry *get_default_root(struct super_block *sb,
451 u64 subvol_objectid)
452 {
453 struct btrfs_root *root = sb->s_fs_info;
454 struct btrfs_root *new_root;
455 struct btrfs_dir_item *di;
456 struct btrfs_path *path;
457 struct btrfs_key location;
458 struct inode *inode;
459 struct dentry *dentry;
460 u64 dir_id;
461 int new = 0;
462
463 /*
464 * We have a specific subvol we want to mount, just setup location and
465 * go look up the root.
466 */
467 if (subvol_objectid) {
468 location.objectid = subvol_objectid;
469 location.type = BTRFS_ROOT_ITEM_KEY;
470 location.offset = (u64)-1;
471 goto find_root;
472 }
473
474 path = btrfs_alloc_path();
475 if (!path)
476 return ERR_PTR(-ENOMEM);
477 path->leave_spinning = 1;
478
479 /*
480 * Find the "default" dir item which points to the root item that we
481 * will mount by default if we haven't been given a specific subvolume
482 * to mount.
483 */
484 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
485 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
486 if (IS_ERR(di))
487 return ERR_CAST(di);
488 if (!di) {
489 /*
490 * Ok the default dir item isn't there. This is weird since
491 * it's always been there, but don't freak out, just try and
492 * mount to root most subvolume.
493 */
494 btrfs_free_path(path);
495 dir_id = BTRFS_FIRST_FREE_OBJECTID;
496 new_root = root->fs_info->fs_root;
497 goto setup_root;
498 }
499
500 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
501 btrfs_free_path(path);
502
503 find_root:
504 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
505 if (IS_ERR(new_root))
506 return ERR_CAST(new_root);
507
508 if (btrfs_root_refs(&new_root->root_item) == 0)
509 return ERR_PTR(-ENOENT);
510
511 dir_id = btrfs_root_dirid(&new_root->root_item);
512 setup_root:
513 location.objectid = dir_id;
514 location.type = BTRFS_INODE_ITEM_KEY;
515 location.offset = 0;
516
517 inode = btrfs_iget(sb, &location, new_root, &new);
518 if (IS_ERR(inode))
519 return ERR_CAST(inode);
520
521 /*
522 * If we're just mounting the root most subvol put the inode and return
523 * a reference to the dentry. We will have already gotten a reference
524 * to the inode in btrfs_fill_super so we're good to go.
525 */
526 if (!new && sb->s_root->d_inode == inode) {
527 iput(inode);
528 return dget(sb->s_root);
529 }
530
531 if (new) {
532 const struct qstr name = { .name = "/", .len = 1 };
533
534 /*
535 * New inode, we need to make the dentry a sibling of s_root so
536 * everything gets cleaned up properly on unmount.
537 */
538 dentry = d_alloc(sb->s_root, &name);
539 if (!dentry) {
540 iput(inode);
541 return ERR_PTR(-ENOMEM);
542 }
543 d_splice_alias(inode, dentry);
544 } else {
545 /*
546 * We found the inode in cache, just find a dentry for it and
547 * put the reference to the inode we just got.
548 */
549 dentry = d_find_alias(inode);
550 iput(inode);
551 }
552
553 return dentry;
554 }
555
556 static int btrfs_fill_super(struct super_block *sb,
557 struct btrfs_fs_devices *fs_devices,
558 void *data, int silent)
559 {
560 struct inode *inode;
561 struct dentry *root_dentry;
562 struct btrfs_root *tree_root;
563 struct btrfs_key key;
564 int err;
565
566 sb->s_maxbytes = MAX_LFS_FILESIZE;
567 sb->s_magic = BTRFS_SUPER_MAGIC;
568 sb->s_op = &btrfs_super_ops;
569 sb->s_d_op = &btrfs_dentry_operations;
570 sb->s_export_op = &btrfs_export_ops;
571 sb->s_xattr = btrfs_xattr_handlers;
572 sb->s_time_gran = 1;
573 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
574 sb->s_flags |= MS_POSIXACL;
575 #endif
576
577 tree_root = open_ctree(sb, fs_devices, (char *)data);
578
579 if (IS_ERR(tree_root)) {
580 printk("btrfs: open_ctree failed\n");
581 return PTR_ERR(tree_root);
582 }
583 sb->s_fs_info = tree_root;
584
585 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
586 key.type = BTRFS_INODE_ITEM_KEY;
587 key.offset = 0;
588 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
589 if (IS_ERR(inode)) {
590 err = PTR_ERR(inode);
591 goto fail_close;
592 }
593
594 root_dentry = d_alloc_root(inode);
595 if (!root_dentry) {
596 iput(inode);
597 err = -ENOMEM;
598 goto fail_close;
599 }
600
601 sb->s_root = root_dentry;
602
603 save_mount_options(sb, data);
604 return 0;
605
606 fail_close:
607 close_ctree(tree_root);
608 return err;
609 }
610
611 int btrfs_sync_fs(struct super_block *sb, int wait)
612 {
613 struct btrfs_trans_handle *trans;
614 struct btrfs_root *root = btrfs_sb(sb);
615 int ret;
616
617 if (!wait) {
618 filemap_flush(root->fs_info->btree_inode->i_mapping);
619 return 0;
620 }
621
622 btrfs_start_delalloc_inodes(root, 0);
623 btrfs_wait_ordered_extents(root, 0, 0);
624
625 trans = btrfs_start_transaction(root, 0);
626 ret = btrfs_commit_transaction(trans, root);
627 return ret;
628 }
629
630 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
631 {
632 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
633 struct btrfs_fs_info *info = root->fs_info;
634
635 if (btrfs_test_opt(root, DEGRADED))
636 seq_puts(seq, ",degraded");
637 if (btrfs_test_opt(root, NODATASUM))
638 seq_puts(seq, ",nodatasum");
639 if (btrfs_test_opt(root, NODATACOW))
640 seq_puts(seq, ",nodatacow");
641 if (btrfs_test_opt(root, NOBARRIER))
642 seq_puts(seq, ",nobarrier");
643 if (info->max_inline != 8192 * 1024)
644 seq_printf(seq, ",max_inline=%llu",
645 (unsigned long long)info->max_inline);
646 if (info->alloc_start != 0)
647 seq_printf(seq, ",alloc_start=%llu",
648 (unsigned long long)info->alloc_start);
649 if (info->thread_pool_size != min_t(unsigned long,
650 num_online_cpus() + 2, 8))
651 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
652 if (btrfs_test_opt(root, COMPRESS))
653 seq_puts(seq, ",compress");
654 if (btrfs_test_opt(root, NOSSD))
655 seq_puts(seq, ",nossd");
656 if (btrfs_test_opt(root, SSD_SPREAD))
657 seq_puts(seq, ",ssd_spread");
658 else if (btrfs_test_opt(root, SSD))
659 seq_puts(seq, ",ssd");
660 if (btrfs_test_opt(root, NOTREELOG))
661 seq_puts(seq, ",notreelog");
662 if (btrfs_test_opt(root, FLUSHONCOMMIT))
663 seq_puts(seq, ",flushoncommit");
664 if (btrfs_test_opt(root, DISCARD))
665 seq_puts(seq, ",discard");
666 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
667 seq_puts(seq, ",noacl");
668 return 0;
669 }
670
671 static int btrfs_test_super(struct super_block *s, void *data)
672 {
673 struct btrfs_root *test_root = data;
674 struct btrfs_root *root = btrfs_sb(s);
675
676 /*
677 * If this super block is going away, return false as it
678 * can't match as an existing super block.
679 */
680 if (!atomic_read(&s->s_active))
681 return 0;
682 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
683 }
684
685 static int btrfs_set_super(struct super_block *s, void *data)
686 {
687 s->s_fs_info = data;
688
689 return set_anon_super(s, data);
690 }
691
692
693 /*
694 * Find a superblock for the given device / mount point.
695 *
696 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
697 * for multiple device setup. Make sure to keep it in sync.
698 */
699 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
700 const char *dev_name, void *data)
701 {
702 struct block_device *bdev = NULL;
703 struct super_block *s;
704 struct dentry *root;
705 struct btrfs_fs_devices *fs_devices = NULL;
706 struct btrfs_root *tree_root = NULL;
707 struct btrfs_fs_info *fs_info = NULL;
708 fmode_t mode = FMODE_READ;
709 char *subvol_name = NULL;
710 u64 subvol_objectid = 0;
711 int error = 0;
712
713 if (!(flags & MS_RDONLY))
714 mode |= FMODE_WRITE;
715
716 error = btrfs_parse_early_options(data, mode, fs_type,
717 &subvol_name, &subvol_objectid,
718 &fs_devices);
719 if (error)
720 return ERR_PTR(error);
721
722 error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
723 if (error)
724 goto error_free_subvol_name;
725
726 error = btrfs_open_devices(fs_devices, mode, fs_type);
727 if (error)
728 goto error_free_subvol_name;
729
730 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
731 error = -EACCES;
732 goto error_close_devices;
733 }
734
735 /*
736 * Setup a dummy root and fs_info for test/set super. This is because
737 * we don't actually fill this stuff out until open_ctree, but we need
738 * it for searching for existing supers, so this lets us do that and
739 * then open_ctree will properly initialize everything later.
740 */
741 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
742 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
743 if (!fs_info || !tree_root) {
744 error = -ENOMEM;
745 goto error_close_devices;
746 }
747 fs_info->tree_root = tree_root;
748 fs_info->fs_devices = fs_devices;
749 tree_root->fs_info = fs_info;
750
751 bdev = fs_devices->latest_bdev;
752 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
753 if (IS_ERR(s))
754 goto error_s;
755
756 if (s->s_root) {
757 if ((flags ^ s->s_flags) & MS_RDONLY) {
758 deactivate_locked_super(s);
759 error = -EBUSY;
760 goto error_close_devices;
761 }
762
763 btrfs_close_devices(fs_devices);
764 } else {
765 char b[BDEVNAME_SIZE];
766
767 s->s_flags = flags;
768 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
769 error = btrfs_fill_super(s, fs_devices, data,
770 flags & MS_SILENT ? 1 : 0);
771 if (error) {
772 deactivate_locked_super(s);
773 goto error_free_subvol_name;
774 }
775
776 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
777 s->s_flags |= MS_ACTIVE;
778 }
779
780 root = get_default_root(s, subvol_objectid);
781 if (IS_ERR(root)) {
782 error = PTR_ERR(root);
783 deactivate_locked_super(s);
784 goto error_free_subvol_name;
785 }
786 /* if they gave us a subvolume name bind mount into that */
787 if (strcmp(subvol_name, ".")) {
788 struct dentry *new_root;
789 mutex_lock(&root->d_inode->i_mutex);
790 new_root = lookup_one_len(subvol_name, root,
791 strlen(subvol_name));
792 mutex_unlock(&root->d_inode->i_mutex);
793
794 if (IS_ERR(new_root)) {
795 dput(root);
796 deactivate_locked_super(s);
797 error = PTR_ERR(new_root);
798 goto error_free_subvol_name;
799 }
800 if (!new_root->d_inode) {
801 dput(root);
802 dput(new_root);
803 deactivate_locked_super(s);
804 error = -ENXIO;
805 goto error_free_subvol_name;
806 }
807 dput(root);
808 root = new_root;
809 }
810
811 kfree(subvol_name);
812 return root;
813
814 error_s:
815 error = PTR_ERR(s);
816 error_close_devices:
817 btrfs_close_devices(fs_devices);
818 kfree(fs_info);
819 kfree(tree_root);
820 error_free_subvol_name:
821 kfree(subvol_name);
822 return ERR_PTR(error);
823 }
824
825 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
826 {
827 struct btrfs_root *root = btrfs_sb(sb);
828 int ret;
829
830 ret = btrfs_parse_options(root, data);
831 if (ret)
832 return -EINVAL;
833
834 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
835 return 0;
836
837 if (*flags & MS_RDONLY) {
838 sb->s_flags |= MS_RDONLY;
839
840 ret = btrfs_commit_super(root);
841 WARN_ON(ret);
842 } else {
843 if (root->fs_info->fs_devices->rw_devices == 0)
844 return -EACCES;
845
846 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
847 return -EINVAL;
848
849 ret = btrfs_cleanup_fs_roots(root->fs_info);
850 WARN_ON(ret);
851
852 /* recover relocation */
853 ret = btrfs_recover_relocation(root);
854 WARN_ON(ret);
855
856 sb->s_flags &= ~MS_RDONLY;
857 }
858
859 return 0;
860 }
861
862 /*
863 * The helper to calc the free space on the devices that can be used to store
864 * file data.
865 */
866 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
867 {
868 struct btrfs_fs_info *fs_info = root->fs_info;
869 struct btrfs_device_info *devices_info;
870 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
871 struct btrfs_device *device;
872 u64 skip_space;
873 u64 type;
874 u64 avail_space;
875 u64 used_space;
876 u64 min_stripe_size;
877 int min_stripes = 1;
878 int i = 0, nr_devices;
879 int ret;
880
881 nr_devices = fs_info->fs_devices->rw_devices;
882 BUG_ON(!nr_devices);
883
884 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
885 GFP_NOFS);
886 if (!devices_info)
887 return -ENOMEM;
888
889 /* calc min stripe number for data space alloction */
890 type = btrfs_get_alloc_profile(root, 1);
891 if (type & BTRFS_BLOCK_GROUP_RAID0)
892 min_stripes = 2;
893 else if (type & BTRFS_BLOCK_GROUP_RAID1)
894 min_stripes = 2;
895 else if (type & BTRFS_BLOCK_GROUP_RAID10)
896 min_stripes = 4;
897
898 if (type & BTRFS_BLOCK_GROUP_DUP)
899 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
900 else
901 min_stripe_size = BTRFS_STRIPE_LEN;
902
903 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
904 if (!device->in_fs_metadata)
905 continue;
906
907 avail_space = device->total_bytes - device->bytes_used;
908
909 /* align with stripe_len */
910 do_div(avail_space, BTRFS_STRIPE_LEN);
911 avail_space *= BTRFS_STRIPE_LEN;
912
913 /*
914 * In order to avoid overwritting the superblock on the drive,
915 * btrfs starts at an offset of at least 1MB when doing chunk
916 * allocation.
917 */
918 skip_space = 1024 * 1024;
919
920 /* user can set the offset in fs_info->alloc_start. */
921 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
922 device->total_bytes)
923 skip_space = max(fs_info->alloc_start, skip_space);
924
925 /*
926 * btrfs can not use the free space in [0, skip_space - 1],
927 * we must subtract it from the total. In order to implement
928 * it, we account the used space in this range first.
929 */
930 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
931 &used_space);
932 if (ret) {
933 kfree(devices_info);
934 return ret;
935 }
936
937 /* calc the free space in [0, skip_space - 1] */
938 skip_space -= used_space;
939
940 /*
941 * we can use the free space in [0, skip_space - 1], subtract
942 * it from the total.
943 */
944 if (avail_space && avail_space >= skip_space)
945 avail_space -= skip_space;
946 else
947 avail_space = 0;
948
949 if (avail_space < min_stripe_size)
950 continue;
951
952 devices_info[i].dev = device;
953 devices_info[i].max_avail = avail_space;
954
955 i++;
956 }
957
958 nr_devices = i;
959
960 btrfs_descending_sort_devices(devices_info, nr_devices);
961
962 i = nr_devices - 1;
963 avail_space = 0;
964 while (nr_devices >= min_stripes) {
965 if (devices_info[i].max_avail >= min_stripe_size) {
966 int j;
967 u64 alloc_size;
968
969 avail_space += devices_info[i].max_avail * min_stripes;
970 alloc_size = devices_info[i].max_avail;
971 for (j = i + 1 - min_stripes; j <= i; j++)
972 devices_info[j].max_avail -= alloc_size;
973 }
974 i--;
975 nr_devices--;
976 }
977
978 kfree(devices_info);
979 *free_bytes = avail_space;
980 return 0;
981 }
982
983 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
984 {
985 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
986 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
987 struct list_head *head = &root->fs_info->space_info;
988 struct btrfs_space_info *found;
989 u64 total_used = 0;
990 u64 total_free_data = 0;
991 int bits = dentry->d_sb->s_blocksize_bits;
992 __be32 *fsid = (__be32 *)root->fs_info->fsid;
993 int ret;
994
995 /* holding chunk_muext to avoid allocating new chunks */
996 mutex_lock(&root->fs_info->chunk_mutex);
997 rcu_read_lock();
998 list_for_each_entry_rcu(found, head, list) {
999 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1000 total_free_data += found->disk_total - found->disk_used;
1001 total_free_data -=
1002 btrfs_account_ro_block_groups_free_space(found);
1003 }
1004
1005 total_used += found->disk_used;
1006 }
1007 rcu_read_unlock();
1008
1009 buf->f_namelen = BTRFS_NAME_LEN;
1010 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1011 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1012 buf->f_bsize = dentry->d_sb->s_blocksize;
1013 buf->f_type = BTRFS_SUPER_MAGIC;
1014 buf->f_bavail = total_free_data;
1015 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1016 if (ret) {
1017 mutex_unlock(&root->fs_info->chunk_mutex);
1018 return ret;
1019 }
1020 buf->f_bavail += total_free_data;
1021 buf->f_bavail = buf->f_bavail >> bits;
1022 mutex_unlock(&root->fs_info->chunk_mutex);
1023
1024 /* We treat it as constant endianness (it doesn't matter _which_)
1025 because we want the fsid to come out the same whether mounted
1026 on a big-endian or little-endian host */
1027 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1028 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1029 /* Mask in the root object ID too, to disambiguate subvols */
1030 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1031 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1032
1033 return 0;
1034 }
1035
1036 static struct file_system_type btrfs_fs_type = {
1037 .owner = THIS_MODULE,
1038 .name = "btrfs",
1039 .mount = btrfs_mount,
1040 .kill_sb = kill_anon_super,
1041 .fs_flags = FS_REQUIRES_DEV,
1042 };
1043
1044 /*
1045 * used by btrfsctl to scan devices when no FS is mounted
1046 */
1047 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1048 unsigned long arg)
1049 {
1050 struct btrfs_ioctl_vol_args *vol;
1051 struct btrfs_fs_devices *fs_devices;
1052 int ret = -ENOTTY;
1053
1054 if (!capable(CAP_SYS_ADMIN))
1055 return -EPERM;
1056
1057 vol = memdup_user((void __user *)arg, sizeof(*vol));
1058 if (IS_ERR(vol))
1059 return PTR_ERR(vol);
1060
1061 switch (cmd) {
1062 case BTRFS_IOC_SCAN_DEV:
1063 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1064 &btrfs_fs_type, &fs_devices);
1065 break;
1066 }
1067
1068 kfree(vol);
1069 return ret;
1070 }
1071
1072 static int btrfs_freeze(struct super_block *sb)
1073 {
1074 struct btrfs_root *root = btrfs_sb(sb);
1075 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1076 mutex_lock(&root->fs_info->cleaner_mutex);
1077 return 0;
1078 }
1079
1080 static int btrfs_unfreeze(struct super_block *sb)
1081 {
1082 struct btrfs_root *root = btrfs_sb(sb);
1083 mutex_unlock(&root->fs_info->cleaner_mutex);
1084 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1085 return 0;
1086 }
1087
1088 static const struct super_operations btrfs_super_ops = {
1089 .drop_inode = btrfs_drop_inode,
1090 .evict_inode = btrfs_evict_inode,
1091 .put_super = btrfs_put_super,
1092 .sync_fs = btrfs_sync_fs,
1093 .show_options = btrfs_show_options,
1094 .write_inode = btrfs_write_inode,
1095 .dirty_inode = btrfs_dirty_inode,
1096 .alloc_inode = btrfs_alloc_inode,
1097 .destroy_inode = btrfs_destroy_inode,
1098 .statfs = btrfs_statfs,
1099 .remount_fs = btrfs_remount,
1100 .freeze_fs = btrfs_freeze,
1101 .unfreeze_fs = btrfs_unfreeze,
1102 };
1103
1104 static const struct file_operations btrfs_ctl_fops = {
1105 .unlocked_ioctl = btrfs_control_ioctl,
1106 .compat_ioctl = btrfs_control_ioctl,
1107 .owner = THIS_MODULE,
1108 .llseek = noop_llseek,
1109 };
1110
1111 static struct miscdevice btrfs_misc = {
1112 .minor = BTRFS_MINOR,
1113 .name = "btrfs-control",
1114 .fops = &btrfs_ctl_fops
1115 };
1116
1117 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1118 MODULE_ALIAS("devname:btrfs-control");
1119
1120 static int btrfs_interface_init(void)
1121 {
1122 return misc_register(&btrfs_misc);
1123 }
1124
1125 static void btrfs_interface_exit(void)
1126 {
1127 if (misc_deregister(&btrfs_misc) < 0)
1128 printk(KERN_INFO "misc_deregister failed for control device");
1129 }
1130
1131 static int __init init_btrfs_fs(void)
1132 {
1133 int err;
1134
1135 err = btrfs_init_sysfs();
1136 if (err)
1137 return err;
1138
1139 err = btrfs_init_compress();
1140 if (err)
1141 goto free_sysfs;
1142
1143 err = btrfs_init_cachep();
1144 if (err)
1145 goto free_compress;
1146
1147 err = extent_io_init();
1148 if (err)
1149 goto free_cachep;
1150
1151 err = extent_map_init();
1152 if (err)
1153 goto free_extent_io;
1154
1155 err = btrfs_interface_init();
1156 if (err)
1157 goto free_extent_map;
1158
1159 err = register_filesystem(&btrfs_fs_type);
1160 if (err)
1161 goto unregister_ioctl;
1162
1163 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1164 return 0;
1165
1166 unregister_ioctl:
1167 btrfs_interface_exit();
1168 free_extent_map:
1169 extent_map_exit();
1170 free_extent_io:
1171 extent_io_exit();
1172 free_cachep:
1173 btrfs_destroy_cachep();
1174 free_compress:
1175 btrfs_exit_compress();
1176 free_sysfs:
1177 btrfs_exit_sysfs();
1178 return err;
1179 }
1180
1181 static void __exit exit_btrfs_fs(void)
1182 {
1183 btrfs_destroy_cachep();
1184 extent_map_exit();
1185 extent_io_exit();
1186 btrfs_interface_exit();
1187 unregister_filesystem(&btrfs_fs_type);
1188 btrfs_exit_sysfs();
1189 btrfs_cleanup_fs_uuids();
1190 btrfs_exit_compress();
1191 }
1192
1193 module_init(init_btrfs_fs)
1194 module_exit(exit_btrfs_fs)
1195
1196 MODULE_LICENSE("GPL");