Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include "compat.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59
60 /* Mask out flags that are inappropriate for the given type of inode. */
61 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
62 {
63 if (S_ISDIR(mode))
64 return flags;
65 else if (S_ISREG(mode))
66 return flags & ~FS_DIRSYNC_FL;
67 else
68 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
69 }
70
71 /*
72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
73 */
74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
75 {
76 unsigned int iflags = 0;
77
78 if (flags & BTRFS_INODE_SYNC)
79 iflags |= FS_SYNC_FL;
80 if (flags & BTRFS_INODE_IMMUTABLE)
81 iflags |= FS_IMMUTABLE_FL;
82 if (flags & BTRFS_INODE_APPEND)
83 iflags |= FS_APPEND_FL;
84 if (flags & BTRFS_INODE_NODUMP)
85 iflags |= FS_NODUMP_FL;
86 if (flags & BTRFS_INODE_NOATIME)
87 iflags |= FS_NOATIME_FL;
88 if (flags & BTRFS_INODE_DIRSYNC)
89 iflags |= FS_DIRSYNC_FL;
90 if (flags & BTRFS_INODE_NODATACOW)
91 iflags |= FS_NOCOW_FL;
92
93 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
94 iflags |= FS_COMPR_FL;
95 else if (flags & BTRFS_INODE_NOCOMPRESS)
96 iflags |= FS_NOCOMP_FL;
97
98 return iflags;
99 }
100
101 /*
102 * Update inode->i_flags based on the btrfs internal flags.
103 */
104 void btrfs_update_iflags(struct inode *inode)
105 {
106 struct btrfs_inode *ip = BTRFS_I(inode);
107
108 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
109
110 if (ip->flags & BTRFS_INODE_SYNC)
111 inode->i_flags |= S_SYNC;
112 if (ip->flags & BTRFS_INODE_IMMUTABLE)
113 inode->i_flags |= S_IMMUTABLE;
114 if (ip->flags & BTRFS_INODE_APPEND)
115 inode->i_flags |= S_APPEND;
116 if (ip->flags & BTRFS_INODE_NOATIME)
117 inode->i_flags |= S_NOATIME;
118 if (ip->flags & BTRFS_INODE_DIRSYNC)
119 inode->i_flags |= S_DIRSYNC;
120 }
121
122 /*
123 * Inherit flags from the parent inode.
124 *
125 * Currently only the compression flags and the cow flags are inherited.
126 */
127 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
128 {
129 unsigned int flags;
130
131 if (!dir)
132 return;
133
134 flags = BTRFS_I(dir)->flags;
135
136 if (flags & BTRFS_INODE_NOCOMPRESS) {
137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
138 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
139 } else if (flags & BTRFS_INODE_COMPRESS) {
140 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
141 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
142 }
143
144 if (flags & BTRFS_INODE_NODATACOW) {
145 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
146 if (S_ISREG(inode->i_mode))
147 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
148 }
149
150 btrfs_update_iflags(inode);
151 }
152
153 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
154 {
155 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
156 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
157
158 if (copy_to_user(arg, &flags, sizeof(flags)))
159 return -EFAULT;
160 return 0;
161 }
162
163 static int check_flags(unsigned int flags)
164 {
165 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
166 FS_NOATIME_FL | FS_NODUMP_FL | \
167 FS_SYNC_FL | FS_DIRSYNC_FL | \
168 FS_NOCOMP_FL | FS_COMPR_FL |
169 FS_NOCOW_FL))
170 return -EOPNOTSUPP;
171
172 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
173 return -EINVAL;
174
175 return 0;
176 }
177
178 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
179 {
180 struct inode *inode = file_inode(file);
181 struct btrfs_inode *ip = BTRFS_I(inode);
182 struct btrfs_root *root = ip->root;
183 struct btrfs_trans_handle *trans;
184 unsigned int flags, oldflags;
185 int ret;
186 u64 ip_oldflags;
187 unsigned int i_oldflags;
188 umode_t mode;
189
190 if (btrfs_root_readonly(root))
191 return -EROFS;
192
193 if (copy_from_user(&flags, arg, sizeof(flags)))
194 return -EFAULT;
195
196 ret = check_flags(flags);
197 if (ret)
198 return ret;
199
200 if (!inode_owner_or_capable(inode))
201 return -EACCES;
202
203 ret = mnt_want_write_file(file);
204 if (ret)
205 return ret;
206
207 mutex_lock(&inode->i_mutex);
208
209 ip_oldflags = ip->flags;
210 i_oldflags = inode->i_flags;
211 mode = inode->i_mode;
212
213 flags = btrfs_mask_flags(inode->i_mode, flags);
214 oldflags = btrfs_flags_to_ioctl(ip->flags);
215 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
216 if (!capable(CAP_LINUX_IMMUTABLE)) {
217 ret = -EPERM;
218 goto out_unlock;
219 }
220 }
221
222 if (flags & FS_SYNC_FL)
223 ip->flags |= BTRFS_INODE_SYNC;
224 else
225 ip->flags &= ~BTRFS_INODE_SYNC;
226 if (flags & FS_IMMUTABLE_FL)
227 ip->flags |= BTRFS_INODE_IMMUTABLE;
228 else
229 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
230 if (flags & FS_APPEND_FL)
231 ip->flags |= BTRFS_INODE_APPEND;
232 else
233 ip->flags &= ~BTRFS_INODE_APPEND;
234 if (flags & FS_NODUMP_FL)
235 ip->flags |= BTRFS_INODE_NODUMP;
236 else
237 ip->flags &= ~BTRFS_INODE_NODUMP;
238 if (flags & FS_NOATIME_FL)
239 ip->flags |= BTRFS_INODE_NOATIME;
240 else
241 ip->flags &= ~BTRFS_INODE_NOATIME;
242 if (flags & FS_DIRSYNC_FL)
243 ip->flags |= BTRFS_INODE_DIRSYNC;
244 else
245 ip->flags &= ~BTRFS_INODE_DIRSYNC;
246 if (flags & FS_NOCOW_FL) {
247 if (S_ISREG(mode)) {
248 /*
249 * It's safe to turn csums off here, no extents exist.
250 * Otherwise we want the flag to reflect the real COW
251 * status of the file and will not set it.
252 */
253 if (inode->i_size == 0)
254 ip->flags |= BTRFS_INODE_NODATACOW
255 | BTRFS_INODE_NODATASUM;
256 } else {
257 ip->flags |= BTRFS_INODE_NODATACOW;
258 }
259 } else {
260 /*
261 * Revert back under same assuptions as above
262 */
263 if (S_ISREG(mode)) {
264 if (inode->i_size == 0)
265 ip->flags &= ~(BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM);
267 } else {
268 ip->flags &= ~BTRFS_INODE_NODATACOW;
269 }
270 }
271
272 /*
273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 * flag may be changed automatically if compression code won't make
275 * things smaller.
276 */
277 if (flags & FS_NOCOMP_FL) {
278 ip->flags &= ~BTRFS_INODE_COMPRESS;
279 ip->flags |= BTRFS_INODE_NOCOMPRESS;
280 } else if (flags & FS_COMPR_FL) {
281 ip->flags |= BTRFS_INODE_COMPRESS;
282 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
283 } else {
284 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
285 }
286
287 trans = btrfs_start_transaction(root, 1);
288 if (IS_ERR(trans)) {
289 ret = PTR_ERR(trans);
290 goto out_drop;
291 }
292
293 btrfs_update_iflags(inode);
294 inode_inc_iversion(inode);
295 inode->i_ctime = CURRENT_TIME;
296 ret = btrfs_update_inode(trans, root, inode);
297
298 btrfs_end_transaction(trans, root);
299 out_drop:
300 if (ret) {
301 ip->flags = ip_oldflags;
302 inode->i_flags = i_oldflags;
303 }
304
305 out_unlock:
306 mutex_unlock(&inode->i_mutex);
307 mnt_drop_write_file(file);
308 return ret;
309 }
310
311 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
312 {
313 struct inode *inode = file_inode(file);
314
315 return put_user(inode->i_generation, arg);
316 }
317
318 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
319 {
320 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
321 struct btrfs_device *device;
322 struct request_queue *q;
323 struct fstrim_range range;
324 u64 minlen = ULLONG_MAX;
325 u64 num_devices = 0;
326 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
327 int ret;
328
329 if (!capable(CAP_SYS_ADMIN))
330 return -EPERM;
331
332 rcu_read_lock();
333 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
334 dev_list) {
335 if (!device->bdev)
336 continue;
337 q = bdev_get_queue(device->bdev);
338 if (blk_queue_discard(q)) {
339 num_devices++;
340 minlen = min((u64)q->limits.discard_granularity,
341 minlen);
342 }
343 }
344 rcu_read_unlock();
345
346 if (!num_devices)
347 return -EOPNOTSUPP;
348 if (copy_from_user(&range, arg, sizeof(range)))
349 return -EFAULT;
350 if (range.start > total_bytes ||
351 range.len < fs_info->sb->s_blocksize)
352 return -EINVAL;
353
354 range.len = min(range.len, total_bytes - range.start);
355 range.minlen = max(range.minlen, minlen);
356 ret = btrfs_trim_fs(fs_info->tree_root, &range);
357 if (ret < 0)
358 return ret;
359
360 if (copy_to_user(arg, &range, sizeof(range)))
361 return -EFAULT;
362
363 return 0;
364 }
365
366 static noinline int create_subvol(struct inode *dir,
367 struct dentry *dentry,
368 char *name, int namelen,
369 u64 *async_transid,
370 struct btrfs_qgroup_inherit *inherit)
371 {
372 struct btrfs_trans_handle *trans;
373 struct btrfs_key key;
374 struct btrfs_root_item root_item;
375 struct btrfs_inode_item *inode_item;
376 struct extent_buffer *leaf;
377 struct btrfs_root *root = BTRFS_I(dir)->root;
378 struct btrfs_root *new_root;
379 struct btrfs_block_rsv block_rsv;
380 struct timespec cur_time = CURRENT_TIME;
381 int ret;
382 int err;
383 u64 objectid;
384 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
385 u64 index = 0;
386 u64 qgroup_reserved;
387 uuid_le new_uuid;
388
389 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
390 if (ret)
391 return ret;
392
393 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
394 /*
395 * The same as the snapshot creation, please see the comment
396 * of create_snapshot().
397 */
398 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
399 7, &qgroup_reserved);
400 if (ret)
401 return ret;
402
403 trans = btrfs_start_transaction(root, 0);
404 if (IS_ERR(trans)) {
405 ret = PTR_ERR(trans);
406 goto out;
407 }
408 trans->block_rsv = &block_rsv;
409 trans->bytes_reserved = block_rsv.size;
410
411 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
412 if (ret)
413 goto fail;
414
415 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
416 0, objectid, NULL, 0, 0, 0);
417 if (IS_ERR(leaf)) {
418 ret = PTR_ERR(leaf);
419 goto fail;
420 }
421
422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
423 btrfs_set_header_bytenr(leaf, leaf->start);
424 btrfs_set_header_generation(leaf, trans->transid);
425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
426 btrfs_set_header_owner(leaf, objectid);
427
428 write_extent_buffer(leaf, root->fs_info->fsid,
429 (unsigned long)btrfs_header_fsid(leaf),
430 BTRFS_FSID_SIZE);
431 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
432 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
433 BTRFS_UUID_SIZE);
434 btrfs_mark_buffer_dirty(leaf);
435
436 memset(&root_item, 0, sizeof(root_item));
437
438 inode_item = &root_item.inode;
439 inode_item->generation = cpu_to_le64(1);
440 inode_item->size = cpu_to_le64(3);
441 inode_item->nlink = cpu_to_le32(1);
442 inode_item->nbytes = cpu_to_le64(root->leafsize);
443 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
444
445 root_item.flags = 0;
446 root_item.byte_limit = 0;
447 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
448
449 btrfs_set_root_bytenr(&root_item, leaf->start);
450 btrfs_set_root_generation(&root_item, trans->transid);
451 btrfs_set_root_level(&root_item, 0);
452 btrfs_set_root_refs(&root_item, 1);
453 btrfs_set_root_used(&root_item, leaf->len);
454 btrfs_set_root_last_snapshot(&root_item, 0);
455
456 btrfs_set_root_generation_v2(&root_item,
457 btrfs_root_generation(&root_item));
458 uuid_le_gen(&new_uuid);
459 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
460 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
461 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
462 root_item.ctime = root_item.otime;
463 btrfs_set_root_ctransid(&root_item, trans->transid);
464 btrfs_set_root_otransid(&root_item, trans->transid);
465
466 btrfs_tree_unlock(leaf);
467 free_extent_buffer(leaf);
468 leaf = NULL;
469
470 btrfs_set_root_dirid(&root_item, new_dirid);
471
472 key.objectid = objectid;
473 key.offset = 0;
474 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
475 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
476 &root_item);
477 if (ret)
478 goto fail;
479
480 key.offset = (u64)-1;
481 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
482 if (IS_ERR(new_root)) {
483 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
484 ret = PTR_ERR(new_root);
485 goto fail;
486 }
487
488 btrfs_record_root_in_trans(trans, new_root);
489
490 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
491 if (ret) {
492 /* We potentially lose an unused inode item here */
493 btrfs_abort_transaction(trans, root, ret);
494 goto fail;
495 }
496
497 /*
498 * insert the directory item
499 */
500 ret = btrfs_set_inode_index(dir, &index);
501 if (ret) {
502 btrfs_abort_transaction(trans, root, ret);
503 goto fail;
504 }
505
506 ret = btrfs_insert_dir_item(trans, root,
507 name, namelen, dir, &key,
508 BTRFS_FT_DIR, index);
509 if (ret) {
510 btrfs_abort_transaction(trans, root, ret);
511 goto fail;
512 }
513
514 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
515 ret = btrfs_update_inode(trans, root, dir);
516 BUG_ON(ret);
517
518 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
519 objectid, root->root_key.objectid,
520 btrfs_ino(dir), index, name, namelen);
521
522 BUG_ON(ret);
523
524 fail:
525 trans->block_rsv = NULL;
526 trans->bytes_reserved = 0;
527 if (async_transid) {
528 *async_transid = trans->transid;
529 err = btrfs_commit_transaction_async(trans, root, 1);
530 if (err)
531 err = btrfs_commit_transaction(trans, root);
532 } else {
533 err = btrfs_commit_transaction(trans, root);
534 }
535 if (err && !ret)
536 ret = err;
537
538 if (!ret)
539 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
540 out:
541 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
542 return ret;
543 }
544
545 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
546 struct dentry *dentry, char *name, int namelen,
547 u64 *async_transid, bool readonly,
548 struct btrfs_qgroup_inherit *inherit)
549 {
550 struct inode *inode;
551 struct btrfs_pending_snapshot *pending_snapshot;
552 struct btrfs_trans_handle *trans;
553 int ret;
554
555 if (!root->ref_cows)
556 return -EINVAL;
557
558 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
559 if (!pending_snapshot)
560 return -ENOMEM;
561
562 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
563 BTRFS_BLOCK_RSV_TEMP);
564 /*
565 * 1 - parent dir inode
566 * 2 - dir entries
567 * 1 - root item
568 * 2 - root ref/backref
569 * 1 - root of snapshot
570 */
571 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
572 &pending_snapshot->block_rsv, 7,
573 &pending_snapshot->qgroup_reserved);
574 if (ret)
575 goto out;
576
577 pending_snapshot->dentry = dentry;
578 pending_snapshot->root = root;
579 pending_snapshot->readonly = readonly;
580 pending_snapshot->dir = dir;
581 pending_snapshot->inherit = inherit;
582
583 trans = btrfs_start_transaction(root, 0);
584 if (IS_ERR(trans)) {
585 ret = PTR_ERR(trans);
586 goto fail;
587 }
588
589 spin_lock(&root->fs_info->trans_lock);
590 list_add(&pending_snapshot->list,
591 &trans->transaction->pending_snapshots);
592 spin_unlock(&root->fs_info->trans_lock);
593 if (async_transid) {
594 *async_transid = trans->transid;
595 ret = btrfs_commit_transaction_async(trans,
596 root->fs_info->extent_root, 1);
597 if (ret)
598 ret = btrfs_commit_transaction(trans, root);
599 } else {
600 ret = btrfs_commit_transaction(trans,
601 root->fs_info->extent_root);
602 }
603 if (ret)
604 goto fail;
605
606 ret = pending_snapshot->error;
607 if (ret)
608 goto fail;
609
610 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
611 if (ret)
612 goto fail;
613
614 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
615 if (IS_ERR(inode)) {
616 ret = PTR_ERR(inode);
617 goto fail;
618 }
619 BUG_ON(!inode);
620 d_instantiate(dentry, inode);
621 ret = 0;
622 fail:
623 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
624 &pending_snapshot->block_rsv,
625 pending_snapshot->qgroup_reserved);
626 out:
627 kfree(pending_snapshot);
628 return ret;
629 }
630
631 /* copy of check_sticky in fs/namei.c()
632 * It's inline, so penalty for filesystems that don't use sticky bit is
633 * minimal.
634 */
635 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
636 {
637 kuid_t fsuid = current_fsuid();
638
639 if (!(dir->i_mode & S_ISVTX))
640 return 0;
641 if (uid_eq(inode->i_uid, fsuid))
642 return 0;
643 if (uid_eq(dir->i_uid, fsuid))
644 return 0;
645 return !capable(CAP_FOWNER);
646 }
647
648 /* copy of may_delete in fs/namei.c()
649 * Check whether we can remove a link victim from directory dir, check
650 * whether the type of victim is right.
651 * 1. We can't do it if dir is read-only (done in permission())
652 * 2. We should have write and exec permissions on dir
653 * 3. We can't remove anything from append-only dir
654 * 4. We can't do anything with immutable dir (done in permission())
655 * 5. If the sticky bit on dir is set we should either
656 * a. be owner of dir, or
657 * b. be owner of victim, or
658 * c. have CAP_FOWNER capability
659 * 6. If the victim is append-only or immutable we can't do antyhing with
660 * links pointing to it.
661 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
662 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
663 * 9. We can't remove a root or mountpoint.
664 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
665 * nfs_async_unlink().
666 */
667
668 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
669 {
670 int error;
671
672 if (!victim->d_inode)
673 return -ENOENT;
674
675 BUG_ON(victim->d_parent->d_inode != dir);
676 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
677
678 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
679 if (error)
680 return error;
681 if (IS_APPEND(dir))
682 return -EPERM;
683 if (btrfs_check_sticky(dir, victim->d_inode)||
684 IS_APPEND(victim->d_inode)||
685 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
686 return -EPERM;
687 if (isdir) {
688 if (!S_ISDIR(victim->d_inode->i_mode))
689 return -ENOTDIR;
690 if (IS_ROOT(victim))
691 return -EBUSY;
692 } else if (S_ISDIR(victim->d_inode->i_mode))
693 return -EISDIR;
694 if (IS_DEADDIR(dir))
695 return -ENOENT;
696 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
697 return -EBUSY;
698 return 0;
699 }
700
701 /* copy of may_create in fs/namei.c() */
702 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
703 {
704 if (child->d_inode)
705 return -EEXIST;
706 if (IS_DEADDIR(dir))
707 return -ENOENT;
708 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
709 }
710
711 /*
712 * Create a new subvolume below @parent. This is largely modeled after
713 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
714 * inside this filesystem so it's quite a bit simpler.
715 */
716 static noinline int btrfs_mksubvol(struct path *parent,
717 char *name, int namelen,
718 struct btrfs_root *snap_src,
719 u64 *async_transid, bool readonly,
720 struct btrfs_qgroup_inherit *inherit)
721 {
722 struct inode *dir = parent->dentry->d_inode;
723 struct dentry *dentry;
724 int error;
725
726 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
727 if (error == -EINTR)
728 return error;
729
730 dentry = lookup_one_len(name, parent->dentry, namelen);
731 error = PTR_ERR(dentry);
732 if (IS_ERR(dentry))
733 goto out_unlock;
734
735 error = -EEXIST;
736 if (dentry->d_inode)
737 goto out_dput;
738
739 error = btrfs_may_create(dir, dentry);
740 if (error)
741 goto out_dput;
742
743 /*
744 * even if this name doesn't exist, we may get hash collisions.
745 * check for them now when we can safely fail
746 */
747 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
748 dir->i_ino, name,
749 namelen);
750 if (error)
751 goto out_dput;
752
753 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
754
755 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
756 goto out_up_read;
757
758 if (snap_src) {
759 error = create_snapshot(snap_src, dir, dentry, name, namelen,
760 async_transid, readonly, inherit);
761 } else {
762 error = create_subvol(dir, dentry, name, namelen,
763 async_transid, inherit);
764 }
765 if (!error)
766 fsnotify_mkdir(dir, dentry);
767 out_up_read:
768 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
769 out_dput:
770 dput(dentry);
771 out_unlock:
772 mutex_unlock(&dir->i_mutex);
773 return error;
774 }
775
776 /*
777 * When we're defragging a range, we don't want to kick it off again
778 * if it is really just waiting for delalloc to send it down.
779 * If we find a nice big extent or delalloc range for the bytes in the
780 * file you want to defrag, we return 0 to let you know to skip this
781 * part of the file
782 */
783 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
784 {
785 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
786 struct extent_map *em = NULL;
787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
788 u64 end;
789
790 read_lock(&em_tree->lock);
791 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
792 read_unlock(&em_tree->lock);
793
794 if (em) {
795 end = extent_map_end(em);
796 free_extent_map(em);
797 if (end - offset > thresh)
798 return 0;
799 }
800 /* if we already have a nice delalloc here, just stop */
801 thresh /= 2;
802 end = count_range_bits(io_tree, &offset, offset + thresh,
803 thresh, EXTENT_DELALLOC, 1);
804 if (end >= thresh)
805 return 0;
806 return 1;
807 }
808
809 /*
810 * helper function to walk through a file and find extents
811 * newer than a specific transid, and smaller than thresh.
812 *
813 * This is used by the defragging code to find new and small
814 * extents
815 */
816 static int find_new_extents(struct btrfs_root *root,
817 struct inode *inode, u64 newer_than,
818 u64 *off, int thresh)
819 {
820 struct btrfs_path *path;
821 struct btrfs_key min_key;
822 struct btrfs_key max_key;
823 struct extent_buffer *leaf;
824 struct btrfs_file_extent_item *extent;
825 int type;
826 int ret;
827 u64 ino = btrfs_ino(inode);
828
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
833 min_key.objectid = ino;
834 min_key.type = BTRFS_EXTENT_DATA_KEY;
835 min_key.offset = *off;
836
837 max_key.objectid = ino;
838 max_key.type = (u8)-1;
839 max_key.offset = (u64)-1;
840
841 path->keep_locks = 1;
842
843 while(1) {
844 ret = btrfs_search_forward(root, &min_key, &max_key,
845 path, newer_than);
846 if (ret != 0)
847 goto none;
848 if (min_key.objectid != ino)
849 goto none;
850 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
851 goto none;
852
853 leaf = path->nodes[0];
854 extent = btrfs_item_ptr(leaf, path->slots[0],
855 struct btrfs_file_extent_item);
856
857 type = btrfs_file_extent_type(leaf, extent);
858 if (type == BTRFS_FILE_EXTENT_REG &&
859 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
860 check_defrag_in_cache(inode, min_key.offset, thresh)) {
861 *off = min_key.offset;
862 btrfs_free_path(path);
863 return 0;
864 }
865
866 if (min_key.offset == (u64)-1)
867 goto none;
868
869 min_key.offset++;
870 btrfs_release_path(path);
871 }
872 none:
873 btrfs_free_path(path);
874 return -ENOENT;
875 }
876
877 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
878 {
879 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
880 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
881 struct extent_map *em;
882 u64 len = PAGE_CACHE_SIZE;
883
884 /*
885 * hopefully we have this extent in the tree already, try without
886 * the full extent lock
887 */
888 read_lock(&em_tree->lock);
889 em = lookup_extent_mapping(em_tree, start, len);
890 read_unlock(&em_tree->lock);
891
892 if (!em) {
893 /* get the big lock and read metadata off disk */
894 lock_extent(io_tree, start, start + len - 1);
895 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
896 unlock_extent(io_tree, start, start + len - 1);
897
898 if (IS_ERR(em))
899 return NULL;
900 }
901
902 return em;
903 }
904
905 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
906 {
907 struct extent_map *next;
908 bool ret = true;
909
910 /* this is the last extent */
911 if (em->start + em->len >= i_size_read(inode))
912 return false;
913
914 next = defrag_lookup_extent(inode, em->start + em->len);
915 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
916 ret = false;
917
918 free_extent_map(next);
919 return ret;
920 }
921
922 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
923 u64 *last_len, u64 *skip, u64 *defrag_end,
924 int compress)
925 {
926 struct extent_map *em;
927 int ret = 1;
928 bool next_mergeable = true;
929
930 /*
931 * make sure that once we start defragging an extent, we keep on
932 * defragging it
933 */
934 if (start < *defrag_end)
935 return 1;
936
937 *skip = 0;
938
939 em = defrag_lookup_extent(inode, start);
940 if (!em)
941 return 0;
942
943 /* this will cover holes, and inline extents */
944 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
945 ret = 0;
946 goto out;
947 }
948
949 next_mergeable = defrag_check_next_extent(inode, em);
950
951 /*
952 * we hit a real extent, if it is big or the next extent is not a
953 * real extent, don't bother defragging it
954 */
955 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
956 (em->len >= thresh || !next_mergeable))
957 ret = 0;
958 out:
959 /*
960 * last_len ends up being a counter of how many bytes we've defragged.
961 * every time we choose not to defrag an extent, we reset *last_len
962 * so that the next tiny extent will force a defrag.
963 *
964 * The end result of this is that tiny extents before a single big
965 * extent will force at least part of that big extent to be defragged.
966 */
967 if (ret) {
968 *defrag_end = extent_map_end(em);
969 } else {
970 *last_len = 0;
971 *skip = extent_map_end(em);
972 *defrag_end = 0;
973 }
974
975 free_extent_map(em);
976 return ret;
977 }
978
979 /*
980 * it doesn't do much good to defrag one or two pages
981 * at a time. This pulls in a nice chunk of pages
982 * to COW and defrag.
983 *
984 * It also makes sure the delalloc code has enough
985 * dirty data to avoid making new small extents as part
986 * of the defrag
987 *
988 * It's a good idea to start RA on this range
989 * before calling this.
990 */
991 static int cluster_pages_for_defrag(struct inode *inode,
992 struct page **pages,
993 unsigned long start_index,
994 int num_pages)
995 {
996 unsigned long file_end;
997 u64 isize = i_size_read(inode);
998 u64 page_start;
999 u64 page_end;
1000 u64 page_cnt;
1001 int ret;
1002 int i;
1003 int i_done;
1004 struct btrfs_ordered_extent *ordered;
1005 struct extent_state *cached_state = NULL;
1006 struct extent_io_tree *tree;
1007 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1008
1009 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1010 if (!isize || start_index > file_end)
1011 return 0;
1012
1013 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1014
1015 ret = btrfs_delalloc_reserve_space(inode,
1016 page_cnt << PAGE_CACHE_SHIFT);
1017 if (ret)
1018 return ret;
1019 i_done = 0;
1020 tree = &BTRFS_I(inode)->io_tree;
1021
1022 /* step one, lock all the pages */
1023 for (i = 0; i < page_cnt; i++) {
1024 struct page *page;
1025 again:
1026 page = find_or_create_page(inode->i_mapping,
1027 start_index + i, mask);
1028 if (!page)
1029 break;
1030
1031 page_start = page_offset(page);
1032 page_end = page_start + PAGE_CACHE_SIZE - 1;
1033 while (1) {
1034 lock_extent(tree, page_start, page_end);
1035 ordered = btrfs_lookup_ordered_extent(inode,
1036 page_start);
1037 unlock_extent(tree, page_start, page_end);
1038 if (!ordered)
1039 break;
1040
1041 unlock_page(page);
1042 btrfs_start_ordered_extent(inode, ordered, 1);
1043 btrfs_put_ordered_extent(ordered);
1044 lock_page(page);
1045 /*
1046 * we unlocked the page above, so we need check if
1047 * it was released or not.
1048 */
1049 if (page->mapping != inode->i_mapping) {
1050 unlock_page(page);
1051 page_cache_release(page);
1052 goto again;
1053 }
1054 }
1055
1056 if (!PageUptodate(page)) {
1057 btrfs_readpage(NULL, page);
1058 lock_page(page);
1059 if (!PageUptodate(page)) {
1060 unlock_page(page);
1061 page_cache_release(page);
1062 ret = -EIO;
1063 break;
1064 }
1065 }
1066
1067 if (page->mapping != inode->i_mapping) {
1068 unlock_page(page);
1069 page_cache_release(page);
1070 goto again;
1071 }
1072
1073 pages[i] = page;
1074 i_done++;
1075 }
1076 if (!i_done || ret)
1077 goto out;
1078
1079 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1080 goto out;
1081
1082 /*
1083 * so now we have a nice long stream of locked
1084 * and up to date pages, lets wait on them
1085 */
1086 for (i = 0; i < i_done; i++)
1087 wait_on_page_writeback(pages[i]);
1088
1089 page_start = page_offset(pages[0]);
1090 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1091
1092 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1093 page_start, page_end - 1, 0, &cached_state);
1094 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1095 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1096 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1097 &cached_state, GFP_NOFS);
1098
1099 if (i_done != page_cnt) {
1100 spin_lock(&BTRFS_I(inode)->lock);
1101 BTRFS_I(inode)->outstanding_extents++;
1102 spin_unlock(&BTRFS_I(inode)->lock);
1103 btrfs_delalloc_release_space(inode,
1104 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1105 }
1106
1107
1108 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1109 &cached_state, GFP_NOFS);
1110
1111 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1112 page_start, page_end - 1, &cached_state,
1113 GFP_NOFS);
1114
1115 for (i = 0; i < i_done; i++) {
1116 clear_page_dirty_for_io(pages[i]);
1117 ClearPageChecked(pages[i]);
1118 set_page_extent_mapped(pages[i]);
1119 set_page_dirty(pages[i]);
1120 unlock_page(pages[i]);
1121 page_cache_release(pages[i]);
1122 }
1123 return i_done;
1124 out:
1125 for (i = 0; i < i_done; i++) {
1126 unlock_page(pages[i]);
1127 page_cache_release(pages[i]);
1128 }
1129 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1130 return ret;
1131
1132 }
1133
1134 int btrfs_defrag_file(struct inode *inode, struct file *file,
1135 struct btrfs_ioctl_defrag_range_args *range,
1136 u64 newer_than, unsigned long max_to_defrag)
1137 {
1138 struct btrfs_root *root = BTRFS_I(inode)->root;
1139 struct file_ra_state *ra = NULL;
1140 unsigned long last_index;
1141 u64 isize = i_size_read(inode);
1142 u64 last_len = 0;
1143 u64 skip = 0;
1144 u64 defrag_end = 0;
1145 u64 newer_off = range->start;
1146 unsigned long i;
1147 unsigned long ra_index = 0;
1148 int ret;
1149 int defrag_count = 0;
1150 int compress_type = BTRFS_COMPRESS_ZLIB;
1151 int extent_thresh = range->extent_thresh;
1152 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1153 int cluster = max_cluster;
1154 u64 new_align = ~((u64)128 * 1024 - 1);
1155 struct page **pages = NULL;
1156
1157 if (isize == 0)
1158 return 0;
1159
1160 if (range->start >= isize)
1161 return -EINVAL;
1162
1163 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1164 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1165 return -EINVAL;
1166 if (range->compress_type)
1167 compress_type = range->compress_type;
1168 }
1169
1170 if (extent_thresh == 0)
1171 extent_thresh = 256 * 1024;
1172
1173 /*
1174 * if we were not given a file, allocate a readahead
1175 * context
1176 */
1177 if (!file) {
1178 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1179 if (!ra)
1180 return -ENOMEM;
1181 file_ra_state_init(ra, inode->i_mapping);
1182 } else {
1183 ra = &file->f_ra;
1184 }
1185
1186 pages = kmalloc(sizeof(struct page *) * max_cluster,
1187 GFP_NOFS);
1188 if (!pages) {
1189 ret = -ENOMEM;
1190 goto out_ra;
1191 }
1192
1193 /* find the last page to defrag */
1194 if (range->start + range->len > range->start) {
1195 last_index = min_t(u64, isize - 1,
1196 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1197 } else {
1198 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1199 }
1200
1201 if (newer_than) {
1202 ret = find_new_extents(root, inode, newer_than,
1203 &newer_off, 64 * 1024);
1204 if (!ret) {
1205 range->start = newer_off;
1206 /*
1207 * we always align our defrag to help keep
1208 * the extents in the file evenly spaced
1209 */
1210 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1211 } else
1212 goto out_ra;
1213 } else {
1214 i = range->start >> PAGE_CACHE_SHIFT;
1215 }
1216 if (!max_to_defrag)
1217 max_to_defrag = last_index + 1;
1218
1219 /*
1220 * make writeback starts from i, so the defrag range can be
1221 * written sequentially.
1222 */
1223 if (i < inode->i_mapping->writeback_index)
1224 inode->i_mapping->writeback_index = i;
1225
1226 while (i <= last_index && defrag_count < max_to_defrag &&
1227 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1228 PAGE_CACHE_SHIFT)) {
1229 /*
1230 * make sure we stop running if someone unmounts
1231 * the FS
1232 */
1233 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1234 break;
1235
1236 if (btrfs_defrag_cancelled(root->fs_info)) {
1237 printk(KERN_DEBUG "btrfs: defrag_file cancelled\n");
1238 ret = -EAGAIN;
1239 break;
1240 }
1241
1242 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1243 extent_thresh, &last_len, &skip,
1244 &defrag_end, range->flags &
1245 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1246 unsigned long next;
1247 /*
1248 * the should_defrag function tells us how much to skip
1249 * bump our counter by the suggested amount
1250 */
1251 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1252 i = max(i + 1, next);
1253 continue;
1254 }
1255
1256 if (!newer_than) {
1257 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1258 PAGE_CACHE_SHIFT) - i;
1259 cluster = min(cluster, max_cluster);
1260 } else {
1261 cluster = max_cluster;
1262 }
1263
1264 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1265 BTRFS_I(inode)->force_compress = compress_type;
1266
1267 if (i + cluster > ra_index) {
1268 ra_index = max(i, ra_index);
1269 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1270 cluster);
1271 ra_index += max_cluster;
1272 }
1273
1274 mutex_lock(&inode->i_mutex);
1275 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1276 if (ret < 0) {
1277 mutex_unlock(&inode->i_mutex);
1278 goto out_ra;
1279 }
1280
1281 defrag_count += ret;
1282 balance_dirty_pages_ratelimited(inode->i_mapping);
1283 mutex_unlock(&inode->i_mutex);
1284
1285 if (newer_than) {
1286 if (newer_off == (u64)-1)
1287 break;
1288
1289 if (ret > 0)
1290 i += ret;
1291
1292 newer_off = max(newer_off + 1,
1293 (u64)i << PAGE_CACHE_SHIFT);
1294
1295 ret = find_new_extents(root, inode,
1296 newer_than, &newer_off,
1297 64 * 1024);
1298 if (!ret) {
1299 range->start = newer_off;
1300 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1301 } else {
1302 break;
1303 }
1304 } else {
1305 if (ret > 0) {
1306 i += ret;
1307 last_len += ret << PAGE_CACHE_SHIFT;
1308 } else {
1309 i++;
1310 last_len = 0;
1311 }
1312 }
1313 }
1314
1315 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1316 filemap_flush(inode->i_mapping);
1317
1318 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1319 /* the filemap_flush will queue IO into the worker threads, but
1320 * we have to make sure the IO is actually started and that
1321 * ordered extents get created before we return
1322 */
1323 atomic_inc(&root->fs_info->async_submit_draining);
1324 while (atomic_read(&root->fs_info->nr_async_submits) ||
1325 atomic_read(&root->fs_info->async_delalloc_pages)) {
1326 wait_event(root->fs_info->async_submit_wait,
1327 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1328 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1329 }
1330 atomic_dec(&root->fs_info->async_submit_draining);
1331
1332 mutex_lock(&inode->i_mutex);
1333 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1334 mutex_unlock(&inode->i_mutex);
1335 }
1336
1337 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1338 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1339 }
1340
1341 ret = defrag_count;
1342
1343 out_ra:
1344 if (!file)
1345 kfree(ra);
1346 kfree(pages);
1347 return ret;
1348 }
1349
1350 static noinline int btrfs_ioctl_resize(struct file *file,
1351 void __user *arg)
1352 {
1353 u64 new_size;
1354 u64 old_size;
1355 u64 devid = 1;
1356 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1357 struct btrfs_ioctl_vol_args *vol_args;
1358 struct btrfs_trans_handle *trans;
1359 struct btrfs_device *device = NULL;
1360 char *sizestr;
1361 char *devstr = NULL;
1362 int ret = 0;
1363 int mod = 0;
1364
1365 if (!capable(CAP_SYS_ADMIN))
1366 return -EPERM;
1367
1368 ret = mnt_want_write_file(file);
1369 if (ret)
1370 return ret;
1371
1372 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1373 1)) {
1374 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1375 mnt_drop_write_file(file);
1376 return -EINVAL;
1377 }
1378
1379 mutex_lock(&root->fs_info->volume_mutex);
1380 vol_args = memdup_user(arg, sizeof(*vol_args));
1381 if (IS_ERR(vol_args)) {
1382 ret = PTR_ERR(vol_args);
1383 goto out;
1384 }
1385
1386 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1387
1388 sizestr = vol_args->name;
1389 devstr = strchr(sizestr, ':');
1390 if (devstr) {
1391 char *end;
1392 sizestr = devstr + 1;
1393 *devstr = '\0';
1394 devstr = vol_args->name;
1395 devid = simple_strtoull(devstr, &end, 10);
1396 if (!devid) {
1397 ret = -EINVAL;
1398 goto out_free;
1399 }
1400 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1401 (unsigned long long)devid);
1402 }
1403
1404 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1405 if (!device) {
1406 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1407 (unsigned long long)devid);
1408 ret = -ENODEV;
1409 goto out_free;
1410 }
1411
1412 if (!device->writeable) {
1413 printk(KERN_INFO "btrfs: resizer unable to apply on "
1414 "readonly device %llu\n",
1415 (unsigned long long)devid);
1416 ret = -EPERM;
1417 goto out_free;
1418 }
1419
1420 if (!strcmp(sizestr, "max"))
1421 new_size = device->bdev->bd_inode->i_size;
1422 else {
1423 if (sizestr[0] == '-') {
1424 mod = -1;
1425 sizestr++;
1426 } else if (sizestr[0] == '+') {
1427 mod = 1;
1428 sizestr++;
1429 }
1430 new_size = memparse(sizestr, NULL);
1431 if (new_size == 0) {
1432 ret = -EINVAL;
1433 goto out_free;
1434 }
1435 }
1436
1437 if (device->is_tgtdev_for_dev_replace) {
1438 ret = -EPERM;
1439 goto out_free;
1440 }
1441
1442 old_size = device->total_bytes;
1443
1444 if (mod < 0) {
1445 if (new_size > old_size) {
1446 ret = -EINVAL;
1447 goto out_free;
1448 }
1449 new_size = old_size - new_size;
1450 } else if (mod > 0) {
1451 new_size = old_size + new_size;
1452 }
1453
1454 if (new_size < 256 * 1024 * 1024) {
1455 ret = -EINVAL;
1456 goto out_free;
1457 }
1458 if (new_size > device->bdev->bd_inode->i_size) {
1459 ret = -EFBIG;
1460 goto out_free;
1461 }
1462
1463 do_div(new_size, root->sectorsize);
1464 new_size *= root->sectorsize;
1465
1466 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1467 rcu_str_deref(device->name),
1468 (unsigned long long)new_size);
1469
1470 if (new_size > old_size) {
1471 trans = btrfs_start_transaction(root, 0);
1472 if (IS_ERR(trans)) {
1473 ret = PTR_ERR(trans);
1474 goto out_free;
1475 }
1476 ret = btrfs_grow_device(trans, device, new_size);
1477 btrfs_commit_transaction(trans, root);
1478 } else if (new_size < old_size) {
1479 ret = btrfs_shrink_device(device, new_size);
1480 } /* equal, nothing need to do */
1481
1482 out_free:
1483 kfree(vol_args);
1484 out:
1485 mutex_unlock(&root->fs_info->volume_mutex);
1486 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1487 mnt_drop_write_file(file);
1488 return ret;
1489 }
1490
1491 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1492 char *name, unsigned long fd, int subvol,
1493 u64 *transid, bool readonly,
1494 struct btrfs_qgroup_inherit *inherit)
1495 {
1496 int namelen;
1497 int ret = 0;
1498
1499 ret = mnt_want_write_file(file);
1500 if (ret)
1501 goto out;
1502
1503 namelen = strlen(name);
1504 if (strchr(name, '/')) {
1505 ret = -EINVAL;
1506 goto out_drop_write;
1507 }
1508
1509 if (name[0] == '.' &&
1510 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1511 ret = -EEXIST;
1512 goto out_drop_write;
1513 }
1514
1515 if (subvol) {
1516 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1517 NULL, transid, readonly, inherit);
1518 } else {
1519 struct fd src = fdget(fd);
1520 struct inode *src_inode;
1521 if (!src.file) {
1522 ret = -EINVAL;
1523 goto out_drop_write;
1524 }
1525
1526 src_inode = file_inode(src.file);
1527 if (src_inode->i_sb != file_inode(file)->i_sb) {
1528 printk(KERN_INFO "btrfs: Snapshot src from "
1529 "another FS\n");
1530 ret = -EINVAL;
1531 } else {
1532 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1533 BTRFS_I(src_inode)->root,
1534 transid, readonly, inherit);
1535 }
1536 fdput(src);
1537 }
1538 out_drop_write:
1539 mnt_drop_write_file(file);
1540 out:
1541 return ret;
1542 }
1543
1544 static noinline int btrfs_ioctl_snap_create(struct file *file,
1545 void __user *arg, int subvol)
1546 {
1547 struct btrfs_ioctl_vol_args *vol_args;
1548 int ret;
1549
1550 vol_args = memdup_user(arg, sizeof(*vol_args));
1551 if (IS_ERR(vol_args))
1552 return PTR_ERR(vol_args);
1553 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1554
1555 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1556 vol_args->fd, subvol,
1557 NULL, false, NULL);
1558
1559 kfree(vol_args);
1560 return ret;
1561 }
1562
1563 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1564 void __user *arg, int subvol)
1565 {
1566 struct btrfs_ioctl_vol_args_v2 *vol_args;
1567 int ret;
1568 u64 transid = 0;
1569 u64 *ptr = NULL;
1570 bool readonly = false;
1571 struct btrfs_qgroup_inherit *inherit = NULL;
1572
1573 vol_args = memdup_user(arg, sizeof(*vol_args));
1574 if (IS_ERR(vol_args))
1575 return PTR_ERR(vol_args);
1576 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1577
1578 if (vol_args->flags &
1579 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1580 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1581 ret = -EOPNOTSUPP;
1582 goto out;
1583 }
1584
1585 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1586 ptr = &transid;
1587 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1588 readonly = true;
1589 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1590 if (vol_args->size > PAGE_CACHE_SIZE) {
1591 ret = -EINVAL;
1592 goto out;
1593 }
1594 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1595 if (IS_ERR(inherit)) {
1596 ret = PTR_ERR(inherit);
1597 goto out;
1598 }
1599 }
1600
1601 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1602 vol_args->fd, subvol, ptr,
1603 readonly, inherit);
1604
1605 if (ret == 0 && ptr &&
1606 copy_to_user(arg +
1607 offsetof(struct btrfs_ioctl_vol_args_v2,
1608 transid), ptr, sizeof(*ptr)))
1609 ret = -EFAULT;
1610 out:
1611 kfree(vol_args);
1612 kfree(inherit);
1613 return ret;
1614 }
1615
1616 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1617 void __user *arg)
1618 {
1619 struct inode *inode = file_inode(file);
1620 struct btrfs_root *root = BTRFS_I(inode)->root;
1621 int ret = 0;
1622 u64 flags = 0;
1623
1624 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1625 return -EINVAL;
1626
1627 down_read(&root->fs_info->subvol_sem);
1628 if (btrfs_root_readonly(root))
1629 flags |= BTRFS_SUBVOL_RDONLY;
1630 up_read(&root->fs_info->subvol_sem);
1631
1632 if (copy_to_user(arg, &flags, sizeof(flags)))
1633 ret = -EFAULT;
1634
1635 return ret;
1636 }
1637
1638 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1639 void __user *arg)
1640 {
1641 struct inode *inode = file_inode(file);
1642 struct btrfs_root *root = BTRFS_I(inode)->root;
1643 struct btrfs_trans_handle *trans;
1644 u64 root_flags;
1645 u64 flags;
1646 int ret = 0;
1647
1648 ret = mnt_want_write_file(file);
1649 if (ret)
1650 goto out;
1651
1652 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1653 ret = -EINVAL;
1654 goto out_drop_write;
1655 }
1656
1657 if (copy_from_user(&flags, arg, sizeof(flags))) {
1658 ret = -EFAULT;
1659 goto out_drop_write;
1660 }
1661
1662 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1663 ret = -EINVAL;
1664 goto out_drop_write;
1665 }
1666
1667 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1668 ret = -EOPNOTSUPP;
1669 goto out_drop_write;
1670 }
1671
1672 if (!inode_owner_or_capable(inode)) {
1673 ret = -EACCES;
1674 goto out_drop_write;
1675 }
1676
1677 down_write(&root->fs_info->subvol_sem);
1678
1679 /* nothing to do */
1680 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1681 goto out_drop_sem;
1682
1683 root_flags = btrfs_root_flags(&root->root_item);
1684 if (flags & BTRFS_SUBVOL_RDONLY)
1685 btrfs_set_root_flags(&root->root_item,
1686 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1687 else
1688 btrfs_set_root_flags(&root->root_item,
1689 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1690
1691 trans = btrfs_start_transaction(root, 1);
1692 if (IS_ERR(trans)) {
1693 ret = PTR_ERR(trans);
1694 goto out_reset;
1695 }
1696
1697 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1698 &root->root_key, &root->root_item);
1699
1700 btrfs_commit_transaction(trans, root);
1701 out_reset:
1702 if (ret)
1703 btrfs_set_root_flags(&root->root_item, root_flags);
1704 out_drop_sem:
1705 up_write(&root->fs_info->subvol_sem);
1706 out_drop_write:
1707 mnt_drop_write_file(file);
1708 out:
1709 return ret;
1710 }
1711
1712 /*
1713 * helper to check if the subvolume references other subvolumes
1714 */
1715 static noinline int may_destroy_subvol(struct btrfs_root *root)
1716 {
1717 struct btrfs_path *path;
1718 struct btrfs_key key;
1719 int ret;
1720
1721 path = btrfs_alloc_path();
1722 if (!path)
1723 return -ENOMEM;
1724
1725 key.objectid = root->root_key.objectid;
1726 key.type = BTRFS_ROOT_REF_KEY;
1727 key.offset = (u64)-1;
1728
1729 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1730 &key, path, 0, 0);
1731 if (ret < 0)
1732 goto out;
1733 BUG_ON(ret == 0);
1734
1735 ret = 0;
1736 if (path->slots[0] > 0) {
1737 path->slots[0]--;
1738 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1739 if (key.objectid == root->root_key.objectid &&
1740 key.type == BTRFS_ROOT_REF_KEY)
1741 ret = -ENOTEMPTY;
1742 }
1743 out:
1744 btrfs_free_path(path);
1745 return ret;
1746 }
1747
1748 static noinline int key_in_sk(struct btrfs_key *key,
1749 struct btrfs_ioctl_search_key *sk)
1750 {
1751 struct btrfs_key test;
1752 int ret;
1753
1754 test.objectid = sk->min_objectid;
1755 test.type = sk->min_type;
1756 test.offset = sk->min_offset;
1757
1758 ret = btrfs_comp_cpu_keys(key, &test);
1759 if (ret < 0)
1760 return 0;
1761
1762 test.objectid = sk->max_objectid;
1763 test.type = sk->max_type;
1764 test.offset = sk->max_offset;
1765
1766 ret = btrfs_comp_cpu_keys(key, &test);
1767 if (ret > 0)
1768 return 0;
1769 return 1;
1770 }
1771
1772 static noinline int copy_to_sk(struct btrfs_root *root,
1773 struct btrfs_path *path,
1774 struct btrfs_key *key,
1775 struct btrfs_ioctl_search_key *sk,
1776 char *buf,
1777 unsigned long *sk_offset,
1778 int *num_found)
1779 {
1780 u64 found_transid;
1781 struct extent_buffer *leaf;
1782 struct btrfs_ioctl_search_header sh;
1783 unsigned long item_off;
1784 unsigned long item_len;
1785 int nritems;
1786 int i;
1787 int slot;
1788 int ret = 0;
1789
1790 leaf = path->nodes[0];
1791 slot = path->slots[0];
1792 nritems = btrfs_header_nritems(leaf);
1793
1794 if (btrfs_header_generation(leaf) > sk->max_transid) {
1795 i = nritems;
1796 goto advance_key;
1797 }
1798 found_transid = btrfs_header_generation(leaf);
1799
1800 for (i = slot; i < nritems; i++) {
1801 item_off = btrfs_item_ptr_offset(leaf, i);
1802 item_len = btrfs_item_size_nr(leaf, i);
1803
1804 btrfs_item_key_to_cpu(leaf, key, i);
1805 if (!key_in_sk(key, sk))
1806 continue;
1807
1808 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1809 item_len = 0;
1810
1811 if (sizeof(sh) + item_len + *sk_offset >
1812 BTRFS_SEARCH_ARGS_BUFSIZE) {
1813 ret = 1;
1814 goto overflow;
1815 }
1816
1817 sh.objectid = key->objectid;
1818 sh.offset = key->offset;
1819 sh.type = key->type;
1820 sh.len = item_len;
1821 sh.transid = found_transid;
1822
1823 /* copy search result header */
1824 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1825 *sk_offset += sizeof(sh);
1826
1827 if (item_len) {
1828 char *p = buf + *sk_offset;
1829 /* copy the item */
1830 read_extent_buffer(leaf, p,
1831 item_off, item_len);
1832 *sk_offset += item_len;
1833 }
1834 (*num_found)++;
1835
1836 if (*num_found >= sk->nr_items)
1837 break;
1838 }
1839 advance_key:
1840 ret = 0;
1841 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1842 key->offset++;
1843 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1844 key->offset = 0;
1845 key->type++;
1846 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1847 key->offset = 0;
1848 key->type = 0;
1849 key->objectid++;
1850 } else
1851 ret = 1;
1852 overflow:
1853 return ret;
1854 }
1855
1856 static noinline int search_ioctl(struct inode *inode,
1857 struct btrfs_ioctl_search_args *args)
1858 {
1859 struct btrfs_root *root;
1860 struct btrfs_key key;
1861 struct btrfs_key max_key;
1862 struct btrfs_path *path;
1863 struct btrfs_ioctl_search_key *sk = &args->key;
1864 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1865 int ret;
1866 int num_found = 0;
1867 unsigned long sk_offset = 0;
1868
1869 path = btrfs_alloc_path();
1870 if (!path)
1871 return -ENOMEM;
1872
1873 if (sk->tree_id == 0) {
1874 /* search the root of the inode that was passed */
1875 root = BTRFS_I(inode)->root;
1876 } else {
1877 key.objectid = sk->tree_id;
1878 key.type = BTRFS_ROOT_ITEM_KEY;
1879 key.offset = (u64)-1;
1880 root = btrfs_read_fs_root_no_name(info, &key);
1881 if (IS_ERR(root)) {
1882 printk(KERN_ERR "could not find root %llu\n",
1883 sk->tree_id);
1884 btrfs_free_path(path);
1885 return -ENOENT;
1886 }
1887 }
1888
1889 key.objectid = sk->min_objectid;
1890 key.type = sk->min_type;
1891 key.offset = sk->min_offset;
1892
1893 max_key.objectid = sk->max_objectid;
1894 max_key.type = sk->max_type;
1895 max_key.offset = sk->max_offset;
1896
1897 path->keep_locks = 1;
1898
1899 while(1) {
1900 ret = btrfs_search_forward(root, &key, &max_key, path,
1901 sk->min_transid);
1902 if (ret != 0) {
1903 if (ret > 0)
1904 ret = 0;
1905 goto err;
1906 }
1907 ret = copy_to_sk(root, path, &key, sk, args->buf,
1908 &sk_offset, &num_found);
1909 btrfs_release_path(path);
1910 if (ret || num_found >= sk->nr_items)
1911 break;
1912
1913 }
1914 ret = 0;
1915 err:
1916 sk->nr_items = num_found;
1917 btrfs_free_path(path);
1918 return ret;
1919 }
1920
1921 static noinline int btrfs_ioctl_tree_search(struct file *file,
1922 void __user *argp)
1923 {
1924 struct btrfs_ioctl_search_args *args;
1925 struct inode *inode;
1926 int ret;
1927
1928 if (!capable(CAP_SYS_ADMIN))
1929 return -EPERM;
1930
1931 args = memdup_user(argp, sizeof(*args));
1932 if (IS_ERR(args))
1933 return PTR_ERR(args);
1934
1935 inode = file_inode(file);
1936 ret = search_ioctl(inode, args);
1937 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1938 ret = -EFAULT;
1939 kfree(args);
1940 return ret;
1941 }
1942
1943 /*
1944 * Search INODE_REFs to identify path name of 'dirid' directory
1945 * in a 'tree_id' tree. and sets path name to 'name'.
1946 */
1947 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1948 u64 tree_id, u64 dirid, char *name)
1949 {
1950 struct btrfs_root *root;
1951 struct btrfs_key key;
1952 char *ptr;
1953 int ret = -1;
1954 int slot;
1955 int len;
1956 int total_len = 0;
1957 struct btrfs_inode_ref *iref;
1958 struct extent_buffer *l;
1959 struct btrfs_path *path;
1960
1961 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1962 name[0]='\0';
1963 return 0;
1964 }
1965
1966 path = btrfs_alloc_path();
1967 if (!path)
1968 return -ENOMEM;
1969
1970 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1971
1972 key.objectid = tree_id;
1973 key.type = BTRFS_ROOT_ITEM_KEY;
1974 key.offset = (u64)-1;
1975 root = btrfs_read_fs_root_no_name(info, &key);
1976 if (IS_ERR(root)) {
1977 printk(KERN_ERR "could not find root %llu\n", tree_id);
1978 ret = -ENOENT;
1979 goto out;
1980 }
1981
1982 key.objectid = dirid;
1983 key.type = BTRFS_INODE_REF_KEY;
1984 key.offset = (u64)-1;
1985
1986 while(1) {
1987 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1988 if (ret < 0)
1989 goto out;
1990
1991 l = path->nodes[0];
1992 slot = path->slots[0];
1993 if (ret > 0 && slot > 0)
1994 slot--;
1995 btrfs_item_key_to_cpu(l, &key, slot);
1996
1997 if (ret > 0 && (key.objectid != dirid ||
1998 key.type != BTRFS_INODE_REF_KEY)) {
1999 ret = -ENOENT;
2000 goto out;
2001 }
2002
2003 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2004 len = btrfs_inode_ref_name_len(l, iref);
2005 ptr -= len + 1;
2006 total_len += len + 1;
2007 if (ptr < name)
2008 goto out;
2009
2010 *(ptr + len) = '/';
2011 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
2012
2013 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2014 break;
2015
2016 btrfs_release_path(path);
2017 key.objectid = key.offset;
2018 key.offset = (u64)-1;
2019 dirid = key.objectid;
2020 }
2021 if (ptr < name)
2022 goto out;
2023 memmove(name, ptr, total_len);
2024 name[total_len]='\0';
2025 ret = 0;
2026 out:
2027 btrfs_free_path(path);
2028 return ret;
2029 }
2030
2031 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2032 void __user *argp)
2033 {
2034 struct btrfs_ioctl_ino_lookup_args *args;
2035 struct inode *inode;
2036 int ret;
2037
2038 if (!capable(CAP_SYS_ADMIN))
2039 return -EPERM;
2040
2041 args = memdup_user(argp, sizeof(*args));
2042 if (IS_ERR(args))
2043 return PTR_ERR(args);
2044
2045 inode = file_inode(file);
2046
2047 if (args->treeid == 0)
2048 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2049
2050 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2051 args->treeid, args->objectid,
2052 args->name);
2053
2054 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2055 ret = -EFAULT;
2056
2057 kfree(args);
2058 return ret;
2059 }
2060
2061 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2062 void __user *arg)
2063 {
2064 struct dentry *parent = fdentry(file);
2065 struct dentry *dentry;
2066 struct inode *dir = parent->d_inode;
2067 struct inode *inode;
2068 struct btrfs_root *root = BTRFS_I(dir)->root;
2069 struct btrfs_root *dest = NULL;
2070 struct btrfs_ioctl_vol_args *vol_args;
2071 struct btrfs_trans_handle *trans;
2072 struct btrfs_block_rsv block_rsv;
2073 u64 qgroup_reserved;
2074 int namelen;
2075 int ret;
2076 int err = 0;
2077
2078 vol_args = memdup_user(arg, sizeof(*vol_args));
2079 if (IS_ERR(vol_args))
2080 return PTR_ERR(vol_args);
2081
2082 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2083 namelen = strlen(vol_args->name);
2084 if (strchr(vol_args->name, '/') ||
2085 strncmp(vol_args->name, "..", namelen) == 0) {
2086 err = -EINVAL;
2087 goto out;
2088 }
2089
2090 err = mnt_want_write_file(file);
2091 if (err)
2092 goto out;
2093
2094 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2095 if (err == -EINTR)
2096 goto out;
2097 dentry = lookup_one_len(vol_args->name, parent, namelen);
2098 if (IS_ERR(dentry)) {
2099 err = PTR_ERR(dentry);
2100 goto out_unlock_dir;
2101 }
2102
2103 if (!dentry->d_inode) {
2104 err = -ENOENT;
2105 goto out_dput;
2106 }
2107
2108 inode = dentry->d_inode;
2109 dest = BTRFS_I(inode)->root;
2110 if (!capable(CAP_SYS_ADMIN)){
2111 /*
2112 * Regular user. Only allow this with a special mount
2113 * option, when the user has write+exec access to the
2114 * subvol root, and when rmdir(2) would have been
2115 * allowed.
2116 *
2117 * Note that this is _not_ check that the subvol is
2118 * empty or doesn't contain data that we wouldn't
2119 * otherwise be able to delete.
2120 *
2121 * Users who want to delete empty subvols should try
2122 * rmdir(2).
2123 */
2124 err = -EPERM;
2125 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2126 goto out_dput;
2127
2128 /*
2129 * Do not allow deletion if the parent dir is the same
2130 * as the dir to be deleted. That means the ioctl
2131 * must be called on the dentry referencing the root
2132 * of the subvol, not a random directory contained
2133 * within it.
2134 */
2135 err = -EINVAL;
2136 if (root == dest)
2137 goto out_dput;
2138
2139 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2140 if (err)
2141 goto out_dput;
2142 }
2143
2144 /* check if subvolume may be deleted by a user */
2145 err = btrfs_may_delete(dir, dentry, 1);
2146 if (err)
2147 goto out_dput;
2148
2149 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2150 err = -EINVAL;
2151 goto out_dput;
2152 }
2153
2154 mutex_lock(&inode->i_mutex);
2155 err = d_invalidate(dentry);
2156 if (err)
2157 goto out_unlock;
2158
2159 down_write(&root->fs_info->subvol_sem);
2160
2161 err = may_destroy_subvol(dest);
2162 if (err)
2163 goto out_up_write;
2164
2165 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2166 /*
2167 * One for dir inode, two for dir entries, two for root
2168 * ref/backref.
2169 */
2170 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2171 5, &qgroup_reserved);
2172 if (err)
2173 goto out_up_write;
2174
2175 trans = btrfs_start_transaction(root, 0);
2176 if (IS_ERR(trans)) {
2177 err = PTR_ERR(trans);
2178 goto out_release;
2179 }
2180 trans->block_rsv = &block_rsv;
2181 trans->bytes_reserved = block_rsv.size;
2182
2183 ret = btrfs_unlink_subvol(trans, root, dir,
2184 dest->root_key.objectid,
2185 dentry->d_name.name,
2186 dentry->d_name.len);
2187 if (ret) {
2188 err = ret;
2189 btrfs_abort_transaction(trans, root, ret);
2190 goto out_end_trans;
2191 }
2192
2193 btrfs_record_root_in_trans(trans, dest);
2194
2195 memset(&dest->root_item.drop_progress, 0,
2196 sizeof(dest->root_item.drop_progress));
2197 dest->root_item.drop_level = 0;
2198 btrfs_set_root_refs(&dest->root_item, 0);
2199
2200 if (!xchg(&dest->orphan_item_inserted, 1)) {
2201 ret = btrfs_insert_orphan_item(trans,
2202 root->fs_info->tree_root,
2203 dest->root_key.objectid);
2204 if (ret) {
2205 btrfs_abort_transaction(trans, root, ret);
2206 err = ret;
2207 goto out_end_trans;
2208 }
2209 }
2210 out_end_trans:
2211 trans->block_rsv = NULL;
2212 trans->bytes_reserved = 0;
2213 ret = btrfs_end_transaction(trans, root);
2214 if (ret && !err)
2215 err = ret;
2216 inode->i_flags |= S_DEAD;
2217 out_release:
2218 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2219 out_up_write:
2220 up_write(&root->fs_info->subvol_sem);
2221 out_unlock:
2222 mutex_unlock(&inode->i_mutex);
2223 if (!err) {
2224 shrink_dcache_sb(root->fs_info->sb);
2225 btrfs_invalidate_inodes(dest);
2226 d_delete(dentry);
2227
2228 /* the last ref */
2229 if (dest->cache_inode) {
2230 iput(dest->cache_inode);
2231 dest->cache_inode = NULL;
2232 }
2233 }
2234 out_dput:
2235 dput(dentry);
2236 out_unlock_dir:
2237 mutex_unlock(&dir->i_mutex);
2238 mnt_drop_write_file(file);
2239 out:
2240 kfree(vol_args);
2241 return err;
2242 }
2243
2244 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2245 {
2246 struct inode *inode = file_inode(file);
2247 struct btrfs_root *root = BTRFS_I(inode)->root;
2248 struct btrfs_ioctl_defrag_range_args *range;
2249 int ret;
2250
2251 ret = mnt_want_write_file(file);
2252 if (ret)
2253 return ret;
2254
2255 if (btrfs_root_readonly(root)) {
2256 ret = -EROFS;
2257 goto out;
2258 }
2259
2260 switch (inode->i_mode & S_IFMT) {
2261 case S_IFDIR:
2262 if (!capable(CAP_SYS_ADMIN)) {
2263 ret = -EPERM;
2264 goto out;
2265 }
2266 ret = btrfs_defrag_root(root);
2267 if (ret)
2268 goto out;
2269 ret = btrfs_defrag_root(root->fs_info->extent_root);
2270 break;
2271 case S_IFREG:
2272 if (!(file->f_mode & FMODE_WRITE)) {
2273 ret = -EINVAL;
2274 goto out;
2275 }
2276
2277 range = kzalloc(sizeof(*range), GFP_KERNEL);
2278 if (!range) {
2279 ret = -ENOMEM;
2280 goto out;
2281 }
2282
2283 if (argp) {
2284 if (copy_from_user(range, argp,
2285 sizeof(*range))) {
2286 ret = -EFAULT;
2287 kfree(range);
2288 goto out;
2289 }
2290 /* compression requires us to start the IO */
2291 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2292 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2293 range->extent_thresh = (u32)-1;
2294 }
2295 } else {
2296 /* the rest are all set to zero by kzalloc */
2297 range->len = (u64)-1;
2298 }
2299 ret = btrfs_defrag_file(file_inode(file), file,
2300 range, 0, 0);
2301 if (ret > 0)
2302 ret = 0;
2303 kfree(range);
2304 break;
2305 default:
2306 ret = -EINVAL;
2307 }
2308 out:
2309 mnt_drop_write_file(file);
2310 return ret;
2311 }
2312
2313 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2314 {
2315 struct btrfs_ioctl_vol_args *vol_args;
2316 int ret;
2317
2318 if (!capable(CAP_SYS_ADMIN))
2319 return -EPERM;
2320
2321 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2322 1)) {
2323 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2324 return -EINVAL;
2325 }
2326
2327 mutex_lock(&root->fs_info->volume_mutex);
2328 vol_args = memdup_user(arg, sizeof(*vol_args));
2329 if (IS_ERR(vol_args)) {
2330 ret = PTR_ERR(vol_args);
2331 goto out;
2332 }
2333
2334 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2335 ret = btrfs_init_new_device(root, vol_args->name);
2336
2337 kfree(vol_args);
2338 out:
2339 mutex_unlock(&root->fs_info->volume_mutex);
2340 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2341 return ret;
2342 }
2343
2344 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2345 {
2346 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2347 struct btrfs_ioctl_vol_args *vol_args;
2348 int ret;
2349
2350 if (!capable(CAP_SYS_ADMIN))
2351 return -EPERM;
2352
2353 ret = mnt_want_write_file(file);
2354 if (ret)
2355 return ret;
2356
2357 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2358 1)) {
2359 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2360 mnt_drop_write_file(file);
2361 return -EINVAL;
2362 }
2363
2364 mutex_lock(&root->fs_info->volume_mutex);
2365 vol_args = memdup_user(arg, sizeof(*vol_args));
2366 if (IS_ERR(vol_args)) {
2367 ret = PTR_ERR(vol_args);
2368 goto out;
2369 }
2370
2371 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2372 ret = btrfs_rm_device(root, vol_args->name);
2373
2374 kfree(vol_args);
2375 out:
2376 mutex_unlock(&root->fs_info->volume_mutex);
2377 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2378 mnt_drop_write_file(file);
2379 return ret;
2380 }
2381
2382 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2383 {
2384 struct btrfs_ioctl_fs_info_args *fi_args;
2385 struct btrfs_device *device;
2386 struct btrfs_device *next;
2387 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2388 int ret = 0;
2389
2390 if (!capable(CAP_SYS_ADMIN))
2391 return -EPERM;
2392
2393 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2394 if (!fi_args)
2395 return -ENOMEM;
2396
2397 fi_args->num_devices = fs_devices->num_devices;
2398 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2399
2400 mutex_lock(&fs_devices->device_list_mutex);
2401 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2402 if (device->devid > fi_args->max_id)
2403 fi_args->max_id = device->devid;
2404 }
2405 mutex_unlock(&fs_devices->device_list_mutex);
2406
2407 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2408 ret = -EFAULT;
2409
2410 kfree(fi_args);
2411 return ret;
2412 }
2413
2414 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2415 {
2416 struct btrfs_ioctl_dev_info_args *di_args;
2417 struct btrfs_device *dev;
2418 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2419 int ret = 0;
2420 char *s_uuid = NULL;
2421 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2422
2423 if (!capable(CAP_SYS_ADMIN))
2424 return -EPERM;
2425
2426 di_args = memdup_user(arg, sizeof(*di_args));
2427 if (IS_ERR(di_args))
2428 return PTR_ERR(di_args);
2429
2430 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2431 s_uuid = di_args->uuid;
2432
2433 mutex_lock(&fs_devices->device_list_mutex);
2434 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2435
2436 if (!dev) {
2437 ret = -ENODEV;
2438 goto out;
2439 }
2440
2441 di_args->devid = dev->devid;
2442 di_args->bytes_used = dev->bytes_used;
2443 di_args->total_bytes = dev->total_bytes;
2444 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2445 if (dev->name) {
2446 struct rcu_string *name;
2447
2448 rcu_read_lock();
2449 name = rcu_dereference(dev->name);
2450 strncpy(di_args->path, name->str, sizeof(di_args->path));
2451 rcu_read_unlock();
2452 di_args->path[sizeof(di_args->path) - 1] = 0;
2453 } else {
2454 di_args->path[0] = '\0';
2455 }
2456
2457 out:
2458 mutex_unlock(&fs_devices->device_list_mutex);
2459 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2460 ret = -EFAULT;
2461
2462 kfree(di_args);
2463 return ret;
2464 }
2465
2466 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2467 u64 off, u64 olen, u64 destoff)
2468 {
2469 struct inode *inode = file_inode(file);
2470 struct btrfs_root *root = BTRFS_I(inode)->root;
2471 struct fd src_file;
2472 struct inode *src;
2473 struct btrfs_trans_handle *trans;
2474 struct btrfs_path *path;
2475 struct extent_buffer *leaf;
2476 char *buf;
2477 struct btrfs_key key;
2478 u32 nritems;
2479 int slot;
2480 int ret;
2481 u64 len = olen;
2482 u64 bs = root->fs_info->sb->s_blocksize;
2483
2484 /*
2485 * TODO:
2486 * - split compressed inline extents. annoying: we need to
2487 * decompress into destination's address_space (the file offset
2488 * may change, so source mapping won't do), then recompress (or
2489 * otherwise reinsert) a subrange.
2490 * - allow ranges within the same file to be cloned (provided
2491 * they don't overlap)?
2492 */
2493
2494 /* the destination must be opened for writing */
2495 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2496 return -EINVAL;
2497
2498 if (btrfs_root_readonly(root))
2499 return -EROFS;
2500
2501 ret = mnt_want_write_file(file);
2502 if (ret)
2503 return ret;
2504
2505 src_file = fdget(srcfd);
2506 if (!src_file.file) {
2507 ret = -EBADF;
2508 goto out_drop_write;
2509 }
2510
2511 ret = -EXDEV;
2512 if (src_file.file->f_path.mnt != file->f_path.mnt)
2513 goto out_fput;
2514
2515 src = file_inode(src_file.file);
2516
2517 ret = -EINVAL;
2518 if (src == inode)
2519 goto out_fput;
2520
2521 /* the src must be open for reading */
2522 if (!(src_file.file->f_mode & FMODE_READ))
2523 goto out_fput;
2524
2525 /* don't make the dst file partly checksummed */
2526 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2527 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2528 goto out_fput;
2529
2530 ret = -EISDIR;
2531 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2532 goto out_fput;
2533
2534 ret = -EXDEV;
2535 if (src->i_sb != inode->i_sb)
2536 goto out_fput;
2537
2538 ret = -ENOMEM;
2539 buf = vmalloc(btrfs_level_size(root, 0));
2540 if (!buf)
2541 goto out_fput;
2542
2543 path = btrfs_alloc_path();
2544 if (!path) {
2545 vfree(buf);
2546 goto out_fput;
2547 }
2548 path->reada = 2;
2549
2550 if (inode < src) {
2551 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2552 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2553 } else {
2554 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2555 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2556 }
2557
2558 /* determine range to clone */
2559 ret = -EINVAL;
2560 if (off + len > src->i_size || off + len < off)
2561 goto out_unlock;
2562 if (len == 0)
2563 olen = len = src->i_size - off;
2564 /* if we extend to eof, continue to block boundary */
2565 if (off + len == src->i_size)
2566 len = ALIGN(src->i_size, bs) - off;
2567
2568 /* verify the end result is block aligned */
2569 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2570 !IS_ALIGNED(destoff, bs))
2571 goto out_unlock;
2572
2573 if (destoff > inode->i_size) {
2574 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2575 if (ret)
2576 goto out_unlock;
2577 }
2578
2579 /* truncate page cache pages from target inode range */
2580 truncate_inode_pages_range(&inode->i_data, destoff,
2581 PAGE_CACHE_ALIGN(destoff + len) - 1);
2582
2583 /* do any pending delalloc/csum calc on src, one way or
2584 another, and lock file content */
2585 while (1) {
2586 struct btrfs_ordered_extent *ordered;
2587 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2588 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1);
2589 if (!ordered &&
2590 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1,
2591 EXTENT_DELALLOC, 0, NULL))
2592 break;
2593 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2594 if (ordered)
2595 btrfs_put_ordered_extent(ordered);
2596 btrfs_wait_ordered_range(src, off, len);
2597 }
2598
2599 /* clone data */
2600 key.objectid = btrfs_ino(src);
2601 key.type = BTRFS_EXTENT_DATA_KEY;
2602 key.offset = 0;
2603
2604 while (1) {
2605 /*
2606 * note the key will change type as we walk through the
2607 * tree.
2608 */
2609 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2610 0, 0);
2611 if (ret < 0)
2612 goto out;
2613
2614 nritems = btrfs_header_nritems(path->nodes[0]);
2615 if (path->slots[0] >= nritems) {
2616 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2617 if (ret < 0)
2618 goto out;
2619 if (ret > 0)
2620 break;
2621 nritems = btrfs_header_nritems(path->nodes[0]);
2622 }
2623 leaf = path->nodes[0];
2624 slot = path->slots[0];
2625
2626 btrfs_item_key_to_cpu(leaf, &key, slot);
2627 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2628 key.objectid != btrfs_ino(src))
2629 break;
2630
2631 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2632 struct btrfs_file_extent_item *extent;
2633 int type;
2634 u32 size;
2635 struct btrfs_key new_key;
2636 u64 disko = 0, diskl = 0;
2637 u64 datao = 0, datal = 0;
2638 u8 comp;
2639 u64 endoff;
2640
2641 size = btrfs_item_size_nr(leaf, slot);
2642 read_extent_buffer(leaf, buf,
2643 btrfs_item_ptr_offset(leaf, slot),
2644 size);
2645
2646 extent = btrfs_item_ptr(leaf, slot,
2647 struct btrfs_file_extent_item);
2648 comp = btrfs_file_extent_compression(leaf, extent);
2649 type = btrfs_file_extent_type(leaf, extent);
2650 if (type == BTRFS_FILE_EXTENT_REG ||
2651 type == BTRFS_FILE_EXTENT_PREALLOC) {
2652 disko = btrfs_file_extent_disk_bytenr(leaf,
2653 extent);
2654 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2655 extent);
2656 datao = btrfs_file_extent_offset(leaf, extent);
2657 datal = btrfs_file_extent_num_bytes(leaf,
2658 extent);
2659 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2660 /* take upper bound, may be compressed */
2661 datal = btrfs_file_extent_ram_bytes(leaf,
2662 extent);
2663 }
2664 btrfs_release_path(path);
2665
2666 if (key.offset + datal <= off ||
2667 key.offset >= off + len - 1)
2668 goto next;
2669
2670 memcpy(&new_key, &key, sizeof(new_key));
2671 new_key.objectid = btrfs_ino(inode);
2672 if (off <= key.offset)
2673 new_key.offset = key.offset + destoff - off;
2674 else
2675 new_key.offset = destoff;
2676
2677 /*
2678 * 1 - adjusting old extent (we may have to split it)
2679 * 1 - add new extent
2680 * 1 - inode update
2681 */
2682 trans = btrfs_start_transaction(root, 3);
2683 if (IS_ERR(trans)) {
2684 ret = PTR_ERR(trans);
2685 goto out;
2686 }
2687
2688 if (type == BTRFS_FILE_EXTENT_REG ||
2689 type == BTRFS_FILE_EXTENT_PREALLOC) {
2690 /*
2691 * a | --- range to clone ---| b
2692 * | ------------- extent ------------- |
2693 */
2694
2695 /* substract range b */
2696 if (key.offset + datal > off + len)
2697 datal = off + len - key.offset;
2698
2699 /* substract range a */
2700 if (off > key.offset) {
2701 datao += off - key.offset;
2702 datal -= off - key.offset;
2703 }
2704
2705 ret = btrfs_drop_extents(trans, root, inode,
2706 new_key.offset,
2707 new_key.offset + datal,
2708 1);
2709 if (ret) {
2710 btrfs_abort_transaction(trans, root,
2711 ret);
2712 btrfs_end_transaction(trans, root);
2713 goto out;
2714 }
2715
2716 ret = btrfs_insert_empty_item(trans, root, path,
2717 &new_key, size);
2718 if (ret) {
2719 btrfs_abort_transaction(trans, root,
2720 ret);
2721 btrfs_end_transaction(trans, root);
2722 goto out;
2723 }
2724
2725 leaf = path->nodes[0];
2726 slot = path->slots[0];
2727 write_extent_buffer(leaf, buf,
2728 btrfs_item_ptr_offset(leaf, slot),
2729 size);
2730
2731 extent = btrfs_item_ptr(leaf, slot,
2732 struct btrfs_file_extent_item);
2733
2734 /* disko == 0 means it's a hole */
2735 if (!disko)
2736 datao = 0;
2737
2738 btrfs_set_file_extent_offset(leaf, extent,
2739 datao);
2740 btrfs_set_file_extent_num_bytes(leaf, extent,
2741 datal);
2742 if (disko) {
2743 inode_add_bytes(inode, datal);
2744 ret = btrfs_inc_extent_ref(trans, root,
2745 disko, diskl, 0,
2746 root->root_key.objectid,
2747 btrfs_ino(inode),
2748 new_key.offset - datao,
2749 0);
2750 if (ret) {
2751 btrfs_abort_transaction(trans,
2752 root,
2753 ret);
2754 btrfs_end_transaction(trans,
2755 root);
2756 goto out;
2757
2758 }
2759 }
2760 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2761 u64 skip = 0;
2762 u64 trim = 0;
2763 if (off > key.offset) {
2764 skip = off - key.offset;
2765 new_key.offset += skip;
2766 }
2767
2768 if (key.offset + datal > off + len)
2769 trim = key.offset + datal - (off + len);
2770
2771 if (comp && (skip || trim)) {
2772 ret = -EINVAL;
2773 btrfs_end_transaction(trans, root);
2774 goto out;
2775 }
2776 size -= skip + trim;
2777 datal -= skip + trim;
2778
2779 ret = btrfs_drop_extents(trans, root, inode,
2780 new_key.offset,
2781 new_key.offset + datal,
2782 1);
2783 if (ret) {
2784 btrfs_abort_transaction(trans, root,
2785 ret);
2786 btrfs_end_transaction(trans, root);
2787 goto out;
2788 }
2789
2790 ret = btrfs_insert_empty_item(trans, root, path,
2791 &new_key, size);
2792 if (ret) {
2793 btrfs_abort_transaction(trans, root,
2794 ret);
2795 btrfs_end_transaction(trans, root);
2796 goto out;
2797 }
2798
2799 if (skip) {
2800 u32 start =
2801 btrfs_file_extent_calc_inline_size(0);
2802 memmove(buf+start, buf+start+skip,
2803 datal);
2804 }
2805
2806 leaf = path->nodes[0];
2807 slot = path->slots[0];
2808 write_extent_buffer(leaf, buf,
2809 btrfs_item_ptr_offset(leaf, slot),
2810 size);
2811 inode_add_bytes(inode, datal);
2812 }
2813
2814 btrfs_mark_buffer_dirty(leaf);
2815 btrfs_release_path(path);
2816
2817 inode_inc_iversion(inode);
2818 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2819
2820 /*
2821 * we round up to the block size at eof when
2822 * determining which extents to clone above,
2823 * but shouldn't round up the file size
2824 */
2825 endoff = new_key.offset + datal;
2826 if (endoff > destoff+olen)
2827 endoff = destoff+olen;
2828 if (endoff > inode->i_size)
2829 btrfs_i_size_write(inode, endoff);
2830
2831 ret = btrfs_update_inode(trans, root, inode);
2832 if (ret) {
2833 btrfs_abort_transaction(trans, root, ret);
2834 btrfs_end_transaction(trans, root);
2835 goto out;
2836 }
2837 ret = btrfs_end_transaction(trans, root);
2838 }
2839 next:
2840 btrfs_release_path(path);
2841 key.offset++;
2842 }
2843 ret = 0;
2844 out:
2845 btrfs_release_path(path);
2846 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2847 out_unlock:
2848 mutex_unlock(&src->i_mutex);
2849 mutex_unlock(&inode->i_mutex);
2850 vfree(buf);
2851 btrfs_free_path(path);
2852 out_fput:
2853 fdput(src_file);
2854 out_drop_write:
2855 mnt_drop_write_file(file);
2856 return ret;
2857 }
2858
2859 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2860 {
2861 struct btrfs_ioctl_clone_range_args args;
2862
2863 if (copy_from_user(&args, argp, sizeof(args)))
2864 return -EFAULT;
2865 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2866 args.src_length, args.dest_offset);
2867 }
2868
2869 /*
2870 * there are many ways the trans_start and trans_end ioctls can lead
2871 * to deadlocks. They should only be used by applications that
2872 * basically own the machine, and have a very in depth understanding
2873 * of all the possible deadlocks and enospc problems.
2874 */
2875 static long btrfs_ioctl_trans_start(struct file *file)
2876 {
2877 struct inode *inode = file_inode(file);
2878 struct btrfs_root *root = BTRFS_I(inode)->root;
2879 struct btrfs_trans_handle *trans;
2880 int ret;
2881
2882 ret = -EPERM;
2883 if (!capable(CAP_SYS_ADMIN))
2884 goto out;
2885
2886 ret = -EINPROGRESS;
2887 if (file->private_data)
2888 goto out;
2889
2890 ret = -EROFS;
2891 if (btrfs_root_readonly(root))
2892 goto out;
2893
2894 ret = mnt_want_write_file(file);
2895 if (ret)
2896 goto out;
2897
2898 atomic_inc(&root->fs_info->open_ioctl_trans);
2899
2900 ret = -ENOMEM;
2901 trans = btrfs_start_ioctl_transaction(root);
2902 if (IS_ERR(trans))
2903 goto out_drop;
2904
2905 file->private_data = trans;
2906 return 0;
2907
2908 out_drop:
2909 atomic_dec(&root->fs_info->open_ioctl_trans);
2910 mnt_drop_write_file(file);
2911 out:
2912 return ret;
2913 }
2914
2915 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2916 {
2917 struct inode *inode = file_inode(file);
2918 struct btrfs_root *root = BTRFS_I(inode)->root;
2919 struct btrfs_root *new_root;
2920 struct btrfs_dir_item *di;
2921 struct btrfs_trans_handle *trans;
2922 struct btrfs_path *path;
2923 struct btrfs_key location;
2924 struct btrfs_disk_key disk_key;
2925 u64 objectid = 0;
2926 u64 dir_id;
2927 int ret;
2928
2929 if (!capable(CAP_SYS_ADMIN))
2930 return -EPERM;
2931
2932 ret = mnt_want_write_file(file);
2933 if (ret)
2934 return ret;
2935
2936 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2937 ret = -EFAULT;
2938 goto out;
2939 }
2940
2941 if (!objectid)
2942 objectid = root->root_key.objectid;
2943
2944 location.objectid = objectid;
2945 location.type = BTRFS_ROOT_ITEM_KEY;
2946 location.offset = (u64)-1;
2947
2948 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2949 if (IS_ERR(new_root)) {
2950 ret = PTR_ERR(new_root);
2951 goto out;
2952 }
2953
2954 if (btrfs_root_refs(&new_root->root_item) == 0) {
2955 ret = -ENOENT;
2956 goto out;
2957 }
2958
2959 path = btrfs_alloc_path();
2960 if (!path) {
2961 ret = -ENOMEM;
2962 goto out;
2963 }
2964 path->leave_spinning = 1;
2965
2966 trans = btrfs_start_transaction(root, 1);
2967 if (IS_ERR(trans)) {
2968 btrfs_free_path(path);
2969 ret = PTR_ERR(trans);
2970 goto out;
2971 }
2972
2973 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2974 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2975 dir_id, "default", 7, 1);
2976 if (IS_ERR_OR_NULL(di)) {
2977 btrfs_free_path(path);
2978 btrfs_end_transaction(trans, root);
2979 printk(KERN_ERR "Umm, you don't have the default dir item, "
2980 "this isn't going to work\n");
2981 ret = -ENOENT;
2982 goto out;
2983 }
2984
2985 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2986 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2987 btrfs_mark_buffer_dirty(path->nodes[0]);
2988 btrfs_free_path(path);
2989
2990 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2991 btrfs_end_transaction(trans, root);
2992 out:
2993 mnt_drop_write_file(file);
2994 return ret;
2995 }
2996
2997 void btrfs_get_block_group_info(struct list_head *groups_list,
2998 struct btrfs_ioctl_space_info *space)
2999 {
3000 struct btrfs_block_group_cache *block_group;
3001
3002 space->total_bytes = 0;
3003 space->used_bytes = 0;
3004 space->flags = 0;
3005 list_for_each_entry(block_group, groups_list, list) {
3006 space->flags = block_group->flags;
3007 space->total_bytes += block_group->key.offset;
3008 space->used_bytes +=
3009 btrfs_block_group_used(&block_group->item);
3010 }
3011 }
3012
3013 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3014 {
3015 struct btrfs_ioctl_space_args space_args;
3016 struct btrfs_ioctl_space_info space;
3017 struct btrfs_ioctl_space_info *dest;
3018 struct btrfs_ioctl_space_info *dest_orig;
3019 struct btrfs_ioctl_space_info __user *user_dest;
3020 struct btrfs_space_info *info;
3021 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3022 BTRFS_BLOCK_GROUP_SYSTEM,
3023 BTRFS_BLOCK_GROUP_METADATA,
3024 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3025 int num_types = 4;
3026 int alloc_size;
3027 int ret = 0;
3028 u64 slot_count = 0;
3029 int i, c;
3030
3031 if (copy_from_user(&space_args,
3032 (struct btrfs_ioctl_space_args __user *)arg,
3033 sizeof(space_args)))
3034 return -EFAULT;
3035
3036 for (i = 0; i < num_types; i++) {
3037 struct btrfs_space_info *tmp;
3038
3039 info = NULL;
3040 rcu_read_lock();
3041 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3042 list) {
3043 if (tmp->flags == types[i]) {
3044 info = tmp;
3045 break;
3046 }
3047 }
3048 rcu_read_unlock();
3049
3050 if (!info)
3051 continue;
3052
3053 down_read(&info->groups_sem);
3054 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3055 if (!list_empty(&info->block_groups[c]))
3056 slot_count++;
3057 }
3058 up_read(&info->groups_sem);
3059 }
3060
3061 /* space_slots == 0 means they are asking for a count */
3062 if (space_args.space_slots == 0) {
3063 space_args.total_spaces = slot_count;
3064 goto out;
3065 }
3066
3067 slot_count = min_t(u64, space_args.space_slots, slot_count);
3068
3069 alloc_size = sizeof(*dest) * slot_count;
3070
3071 /* we generally have at most 6 or so space infos, one for each raid
3072 * level. So, a whole page should be more than enough for everyone
3073 */
3074 if (alloc_size > PAGE_CACHE_SIZE)
3075 return -ENOMEM;
3076
3077 space_args.total_spaces = 0;
3078 dest = kmalloc(alloc_size, GFP_NOFS);
3079 if (!dest)
3080 return -ENOMEM;
3081 dest_orig = dest;
3082
3083 /* now we have a buffer to copy into */
3084 for (i = 0; i < num_types; i++) {
3085 struct btrfs_space_info *tmp;
3086
3087 if (!slot_count)
3088 break;
3089
3090 info = NULL;
3091 rcu_read_lock();
3092 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3093 list) {
3094 if (tmp->flags == types[i]) {
3095 info = tmp;
3096 break;
3097 }
3098 }
3099 rcu_read_unlock();
3100
3101 if (!info)
3102 continue;
3103 down_read(&info->groups_sem);
3104 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3105 if (!list_empty(&info->block_groups[c])) {
3106 btrfs_get_block_group_info(
3107 &info->block_groups[c], &space);
3108 memcpy(dest, &space, sizeof(space));
3109 dest++;
3110 space_args.total_spaces++;
3111 slot_count--;
3112 }
3113 if (!slot_count)
3114 break;
3115 }
3116 up_read(&info->groups_sem);
3117 }
3118
3119 user_dest = (struct btrfs_ioctl_space_info __user *)
3120 (arg + sizeof(struct btrfs_ioctl_space_args));
3121
3122 if (copy_to_user(user_dest, dest_orig, alloc_size))
3123 ret = -EFAULT;
3124
3125 kfree(dest_orig);
3126 out:
3127 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3128 ret = -EFAULT;
3129
3130 return ret;
3131 }
3132
3133 /*
3134 * there are many ways the trans_start and trans_end ioctls can lead
3135 * to deadlocks. They should only be used by applications that
3136 * basically own the machine, and have a very in depth understanding
3137 * of all the possible deadlocks and enospc problems.
3138 */
3139 long btrfs_ioctl_trans_end(struct file *file)
3140 {
3141 struct inode *inode = file_inode(file);
3142 struct btrfs_root *root = BTRFS_I(inode)->root;
3143 struct btrfs_trans_handle *trans;
3144
3145 trans = file->private_data;
3146 if (!trans)
3147 return -EINVAL;
3148 file->private_data = NULL;
3149
3150 btrfs_end_transaction(trans, root);
3151
3152 atomic_dec(&root->fs_info->open_ioctl_trans);
3153
3154 mnt_drop_write_file(file);
3155 return 0;
3156 }
3157
3158 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3159 void __user *argp)
3160 {
3161 struct btrfs_trans_handle *trans;
3162 u64 transid;
3163 int ret;
3164
3165 trans = btrfs_attach_transaction_barrier(root);
3166 if (IS_ERR(trans)) {
3167 if (PTR_ERR(trans) != -ENOENT)
3168 return PTR_ERR(trans);
3169
3170 /* No running transaction, don't bother */
3171 transid = root->fs_info->last_trans_committed;
3172 goto out;
3173 }
3174 transid = trans->transid;
3175 ret = btrfs_commit_transaction_async(trans, root, 0);
3176 if (ret) {
3177 btrfs_end_transaction(trans, root);
3178 return ret;
3179 }
3180 out:
3181 if (argp)
3182 if (copy_to_user(argp, &transid, sizeof(transid)))
3183 return -EFAULT;
3184 return 0;
3185 }
3186
3187 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3188 void __user *argp)
3189 {
3190 u64 transid;
3191
3192 if (argp) {
3193 if (copy_from_user(&transid, argp, sizeof(transid)))
3194 return -EFAULT;
3195 } else {
3196 transid = 0; /* current trans */
3197 }
3198 return btrfs_wait_for_commit(root, transid);
3199 }
3200
3201 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3202 {
3203 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3204 struct btrfs_ioctl_scrub_args *sa;
3205 int ret;
3206
3207 if (!capable(CAP_SYS_ADMIN))
3208 return -EPERM;
3209
3210 sa = memdup_user(arg, sizeof(*sa));
3211 if (IS_ERR(sa))
3212 return PTR_ERR(sa);
3213
3214 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3215 ret = mnt_want_write_file(file);
3216 if (ret)
3217 goto out;
3218 }
3219
3220 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3221 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3222 0);
3223
3224 if (copy_to_user(arg, sa, sizeof(*sa)))
3225 ret = -EFAULT;
3226
3227 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3228 mnt_drop_write_file(file);
3229 out:
3230 kfree(sa);
3231 return ret;
3232 }
3233
3234 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3235 {
3236 if (!capable(CAP_SYS_ADMIN))
3237 return -EPERM;
3238
3239 return btrfs_scrub_cancel(root->fs_info);
3240 }
3241
3242 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3243 void __user *arg)
3244 {
3245 struct btrfs_ioctl_scrub_args *sa;
3246 int ret;
3247
3248 if (!capable(CAP_SYS_ADMIN))
3249 return -EPERM;
3250
3251 sa = memdup_user(arg, sizeof(*sa));
3252 if (IS_ERR(sa))
3253 return PTR_ERR(sa);
3254
3255 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3256
3257 if (copy_to_user(arg, sa, sizeof(*sa)))
3258 ret = -EFAULT;
3259
3260 kfree(sa);
3261 return ret;
3262 }
3263
3264 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3265 void __user *arg)
3266 {
3267 struct btrfs_ioctl_get_dev_stats *sa;
3268 int ret;
3269
3270 sa = memdup_user(arg, sizeof(*sa));
3271 if (IS_ERR(sa))
3272 return PTR_ERR(sa);
3273
3274 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3275 kfree(sa);
3276 return -EPERM;
3277 }
3278
3279 ret = btrfs_get_dev_stats(root, sa);
3280
3281 if (copy_to_user(arg, sa, sizeof(*sa)))
3282 ret = -EFAULT;
3283
3284 kfree(sa);
3285 return ret;
3286 }
3287
3288 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3289 {
3290 struct btrfs_ioctl_dev_replace_args *p;
3291 int ret;
3292
3293 if (!capable(CAP_SYS_ADMIN))
3294 return -EPERM;
3295
3296 p = memdup_user(arg, sizeof(*p));
3297 if (IS_ERR(p))
3298 return PTR_ERR(p);
3299
3300 switch (p->cmd) {
3301 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3302 if (atomic_xchg(
3303 &root->fs_info->mutually_exclusive_operation_running,
3304 1)) {
3305 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3306 ret = -EINPROGRESS;
3307 } else {
3308 ret = btrfs_dev_replace_start(root, p);
3309 atomic_set(
3310 &root->fs_info->mutually_exclusive_operation_running,
3311 0);
3312 }
3313 break;
3314 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3315 btrfs_dev_replace_status(root->fs_info, p);
3316 ret = 0;
3317 break;
3318 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3319 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3320 break;
3321 default:
3322 ret = -EINVAL;
3323 break;
3324 }
3325
3326 if (copy_to_user(arg, p, sizeof(*p)))
3327 ret = -EFAULT;
3328
3329 kfree(p);
3330 return ret;
3331 }
3332
3333 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3334 {
3335 int ret = 0;
3336 int i;
3337 u64 rel_ptr;
3338 int size;
3339 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3340 struct inode_fs_paths *ipath = NULL;
3341 struct btrfs_path *path;
3342
3343 if (!capable(CAP_DAC_READ_SEARCH))
3344 return -EPERM;
3345
3346 path = btrfs_alloc_path();
3347 if (!path) {
3348 ret = -ENOMEM;
3349 goto out;
3350 }
3351
3352 ipa = memdup_user(arg, sizeof(*ipa));
3353 if (IS_ERR(ipa)) {
3354 ret = PTR_ERR(ipa);
3355 ipa = NULL;
3356 goto out;
3357 }
3358
3359 size = min_t(u32, ipa->size, 4096);
3360 ipath = init_ipath(size, root, path);
3361 if (IS_ERR(ipath)) {
3362 ret = PTR_ERR(ipath);
3363 ipath = NULL;
3364 goto out;
3365 }
3366
3367 ret = paths_from_inode(ipa->inum, ipath);
3368 if (ret < 0)
3369 goto out;
3370
3371 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3372 rel_ptr = ipath->fspath->val[i] -
3373 (u64)(unsigned long)ipath->fspath->val;
3374 ipath->fspath->val[i] = rel_ptr;
3375 }
3376
3377 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3378 (void *)(unsigned long)ipath->fspath, size);
3379 if (ret) {
3380 ret = -EFAULT;
3381 goto out;
3382 }
3383
3384 out:
3385 btrfs_free_path(path);
3386 free_ipath(ipath);
3387 kfree(ipa);
3388
3389 return ret;
3390 }
3391
3392 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3393 {
3394 struct btrfs_data_container *inodes = ctx;
3395 const size_t c = 3 * sizeof(u64);
3396
3397 if (inodes->bytes_left >= c) {
3398 inodes->bytes_left -= c;
3399 inodes->val[inodes->elem_cnt] = inum;
3400 inodes->val[inodes->elem_cnt + 1] = offset;
3401 inodes->val[inodes->elem_cnt + 2] = root;
3402 inodes->elem_cnt += 3;
3403 } else {
3404 inodes->bytes_missing += c - inodes->bytes_left;
3405 inodes->bytes_left = 0;
3406 inodes->elem_missed += 3;
3407 }
3408
3409 return 0;
3410 }
3411
3412 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3413 void __user *arg)
3414 {
3415 int ret = 0;
3416 int size;
3417 struct btrfs_ioctl_logical_ino_args *loi;
3418 struct btrfs_data_container *inodes = NULL;
3419 struct btrfs_path *path = NULL;
3420
3421 if (!capable(CAP_SYS_ADMIN))
3422 return -EPERM;
3423
3424 loi = memdup_user(arg, sizeof(*loi));
3425 if (IS_ERR(loi)) {
3426 ret = PTR_ERR(loi);
3427 loi = NULL;
3428 goto out;
3429 }
3430
3431 path = btrfs_alloc_path();
3432 if (!path) {
3433 ret = -ENOMEM;
3434 goto out;
3435 }
3436
3437 size = min_t(u32, loi->size, 64 * 1024);
3438 inodes = init_data_container(size);
3439 if (IS_ERR(inodes)) {
3440 ret = PTR_ERR(inodes);
3441 inodes = NULL;
3442 goto out;
3443 }
3444
3445 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3446 build_ino_list, inodes);
3447 if (ret == -EINVAL)
3448 ret = -ENOENT;
3449 if (ret < 0)
3450 goto out;
3451
3452 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3453 (void *)(unsigned long)inodes, size);
3454 if (ret)
3455 ret = -EFAULT;
3456
3457 out:
3458 btrfs_free_path(path);
3459 vfree(inodes);
3460 kfree(loi);
3461
3462 return ret;
3463 }
3464
3465 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3466 struct btrfs_ioctl_balance_args *bargs)
3467 {
3468 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3469
3470 bargs->flags = bctl->flags;
3471
3472 if (atomic_read(&fs_info->balance_running))
3473 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3474 if (atomic_read(&fs_info->balance_pause_req))
3475 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3476 if (atomic_read(&fs_info->balance_cancel_req))
3477 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3478
3479 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3480 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3481 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3482
3483 if (lock) {
3484 spin_lock(&fs_info->balance_lock);
3485 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3486 spin_unlock(&fs_info->balance_lock);
3487 } else {
3488 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3489 }
3490 }
3491
3492 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3493 {
3494 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3495 struct btrfs_fs_info *fs_info = root->fs_info;
3496 struct btrfs_ioctl_balance_args *bargs;
3497 struct btrfs_balance_control *bctl;
3498 bool need_unlock; /* for mut. excl. ops lock */
3499 int ret;
3500
3501 if (!capable(CAP_SYS_ADMIN))
3502 return -EPERM;
3503
3504 ret = mnt_want_write_file(file);
3505 if (ret)
3506 return ret;
3507
3508 again:
3509 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3510 mutex_lock(&fs_info->volume_mutex);
3511 mutex_lock(&fs_info->balance_mutex);
3512 need_unlock = true;
3513 goto locked;
3514 }
3515
3516 /*
3517 * mut. excl. ops lock is locked. Three possibilites:
3518 * (1) some other op is running
3519 * (2) balance is running
3520 * (3) balance is paused -- special case (think resume)
3521 */
3522 mutex_lock(&fs_info->balance_mutex);
3523 if (fs_info->balance_ctl) {
3524 /* this is either (2) or (3) */
3525 if (!atomic_read(&fs_info->balance_running)) {
3526 mutex_unlock(&fs_info->balance_mutex);
3527 if (!mutex_trylock(&fs_info->volume_mutex))
3528 goto again;
3529 mutex_lock(&fs_info->balance_mutex);
3530
3531 if (fs_info->balance_ctl &&
3532 !atomic_read(&fs_info->balance_running)) {
3533 /* this is (3) */
3534 need_unlock = false;
3535 goto locked;
3536 }
3537
3538 mutex_unlock(&fs_info->balance_mutex);
3539 mutex_unlock(&fs_info->volume_mutex);
3540 goto again;
3541 } else {
3542 /* this is (2) */
3543 mutex_unlock(&fs_info->balance_mutex);
3544 ret = -EINPROGRESS;
3545 goto out;
3546 }
3547 } else {
3548 /* this is (1) */
3549 mutex_unlock(&fs_info->balance_mutex);
3550 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3551 ret = -EINVAL;
3552 goto out;
3553 }
3554
3555 locked:
3556 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
3557
3558 if (arg) {
3559 bargs = memdup_user(arg, sizeof(*bargs));
3560 if (IS_ERR(bargs)) {
3561 ret = PTR_ERR(bargs);
3562 goto out_unlock;
3563 }
3564
3565 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3566 if (!fs_info->balance_ctl) {
3567 ret = -ENOTCONN;
3568 goto out_bargs;
3569 }
3570
3571 bctl = fs_info->balance_ctl;
3572 spin_lock(&fs_info->balance_lock);
3573 bctl->flags |= BTRFS_BALANCE_RESUME;
3574 spin_unlock(&fs_info->balance_lock);
3575
3576 goto do_balance;
3577 }
3578 } else {
3579 bargs = NULL;
3580 }
3581
3582 if (fs_info->balance_ctl) {
3583 ret = -EINPROGRESS;
3584 goto out_bargs;
3585 }
3586
3587 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3588 if (!bctl) {
3589 ret = -ENOMEM;
3590 goto out_bargs;
3591 }
3592
3593 bctl->fs_info = fs_info;
3594 if (arg) {
3595 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3596 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3597 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3598
3599 bctl->flags = bargs->flags;
3600 } else {
3601 /* balance everything - no filters */
3602 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3603 }
3604
3605 do_balance:
3606 /*
3607 * Ownership of bctl and mutually_exclusive_operation_running
3608 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
3609 * or, if restriper was paused all the way until unmount, in
3610 * free_fs_info. mutually_exclusive_operation_running is
3611 * cleared in __cancel_balance.
3612 */
3613 need_unlock = false;
3614
3615 ret = btrfs_balance(bctl, bargs);
3616
3617 if (arg) {
3618 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3619 ret = -EFAULT;
3620 }
3621
3622 out_bargs:
3623 kfree(bargs);
3624 out_unlock:
3625 mutex_unlock(&fs_info->balance_mutex);
3626 mutex_unlock(&fs_info->volume_mutex);
3627 if (need_unlock)
3628 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3629 out:
3630 mnt_drop_write_file(file);
3631 return ret;
3632 }
3633
3634 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3635 {
3636 if (!capable(CAP_SYS_ADMIN))
3637 return -EPERM;
3638
3639 switch (cmd) {
3640 case BTRFS_BALANCE_CTL_PAUSE:
3641 return btrfs_pause_balance(root->fs_info);
3642 case BTRFS_BALANCE_CTL_CANCEL:
3643 return btrfs_cancel_balance(root->fs_info);
3644 }
3645
3646 return -EINVAL;
3647 }
3648
3649 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3650 void __user *arg)
3651 {
3652 struct btrfs_fs_info *fs_info = root->fs_info;
3653 struct btrfs_ioctl_balance_args *bargs;
3654 int ret = 0;
3655
3656 if (!capable(CAP_SYS_ADMIN))
3657 return -EPERM;
3658
3659 mutex_lock(&fs_info->balance_mutex);
3660 if (!fs_info->balance_ctl) {
3661 ret = -ENOTCONN;
3662 goto out;
3663 }
3664
3665 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3666 if (!bargs) {
3667 ret = -ENOMEM;
3668 goto out;
3669 }
3670
3671 update_ioctl_balance_args(fs_info, 1, bargs);
3672
3673 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3674 ret = -EFAULT;
3675
3676 kfree(bargs);
3677 out:
3678 mutex_unlock(&fs_info->balance_mutex);
3679 return ret;
3680 }
3681
3682 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3683 {
3684 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3685 struct btrfs_ioctl_quota_ctl_args *sa;
3686 struct btrfs_trans_handle *trans = NULL;
3687 int ret;
3688 int err;
3689
3690 if (!capable(CAP_SYS_ADMIN))
3691 return -EPERM;
3692
3693 ret = mnt_want_write_file(file);
3694 if (ret)
3695 return ret;
3696
3697 sa = memdup_user(arg, sizeof(*sa));
3698 if (IS_ERR(sa)) {
3699 ret = PTR_ERR(sa);
3700 goto drop_write;
3701 }
3702
3703 down_write(&root->fs_info->subvol_sem);
3704 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
3705 if (IS_ERR(trans)) {
3706 ret = PTR_ERR(trans);
3707 goto out;
3708 }
3709
3710 switch (sa->cmd) {
3711 case BTRFS_QUOTA_CTL_ENABLE:
3712 ret = btrfs_quota_enable(trans, root->fs_info);
3713 break;
3714 case BTRFS_QUOTA_CTL_DISABLE:
3715 ret = btrfs_quota_disable(trans, root->fs_info);
3716 break;
3717 default:
3718 ret = -EINVAL;
3719 break;
3720 }
3721
3722 if (copy_to_user(arg, sa, sizeof(*sa)))
3723 ret = -EFAULT;
3724
3725 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
3726 if (err && !ret)
3727 ret = err;
3728 out:
3729 kfree(sa);
3730 up_write(&root->fs_info->subvol_sem);
3731 drop_write:
3732 mnt_drop_write_file(file);
3733 return ret;
3734 }
3735
3736 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3737 {
3738 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3739 struct btrfs_ioctl_qgroup_assign_args *sa;
3740 struct btrfs_trans_handle *trans;
3741 int ret;
3742 int err;
3743
3744 if (!capable(CAP_SYS_ADMIN))
3745 return -EPERM;
3746
3747 ret = mnt_want_write_file(file);
3748 if (ret)
3749 return ret;
3750
3751 sa = memdup_user(arg, sizeof(*sa));
3752 if (IS_ERR(sa)) {
3753 ret = PTR_ERR(sa);
3754 goto drop_write;
3755 }
3756
3757 trans = btrfs_join_transaction(root);
3758 if (IS_ERR(trans)) {
3759 ret = PTR_ERR(trans);
3760 goto out;
3761 }
3762
3763 /* FIXME: check if the IDs really exist */
3764 if (sa->assign) {
3765 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3766 sa->src, sa->dst);
3767 } else {
3768 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3769 sa->src, sa->dst);
3770 }
3771
3772 err = btrfs_end_transaction(trans, root);
3773 if (err && !ret)
3774 ret = err;
3775
3776 out:
3777 kfree(sa);
3778 drop_write:
3779 mnt_drop_write_file(file);
3780 return ret;
3781 }
3782
3783 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3784 {
3785 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3786 struct btrfs_ioctl_qgroup_create_args *sa;
3787 struct btrfs_trans_handle *trans;
3788 int ret;
3789 int err;
3790
3791 if (!capable(CAP_SYS_ADMIN))
3792 return -EPERM;
3793
3794 ret = mnt_want_write_file(file);
3795 if (ret)
3796 return ret;
3797
3798 sa = memdup_user(arg, sizeof(*sa));
3799 if (IS_ERR(sa)) {
3800 ret = PTR_ERR(sa);
3801 goto drop_write;
3802 }
3803
3804 if (!sa->qgroupid) {
3805 ret = -EINVAL;
3806 goto out;
3807 }
3808
3809 trans = btrfs_join_transaction(root);
3810 if (IS_ERR(trans)) {
3811 ret = PTR_ERR(trans);
3812 goto out;
3813 }
3814
3815 /* FIXME: check if the IDs really exist */
3816 if (sa->create) {
3817 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3818 NULL);
3819 } else {
3820 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3821 }
3822
3823 err = btrfs_end_transaction(trans, root);
3824 if (err && !ret)
3825 ret = err;
3826
3827 out:
3828 kfree(sa);
3829 drop_write:
3830 mnt_drop_write_file(file);
3831 return ret;
3832 }
3833
3834 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3835 {
3836 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3837 struct btrfs_ioctl_qgroup_limit_args *sa;
3838 struct btrfs_trans_handle *trans;
3839 int ret;
3840 int err;
3841 u64 qgroupid;
3842
3843 if (!capable(CAP_SYS_ADMIN))
3844 return -EPERM;
3845
3846 ret = mnt_want_write_file(file);
3847 if (ret)
3848 return ret;
3849
3850 sa = memdup_user(arg, sizeof(*sa));
3851 if (IS_ERR(sa)) {
3852 ret = PTR_ERR(sa);
3853 goto drop_write;
3854 }
3855
3856 trans = btrfs_join_transaction(root);
3857 if (IS_ERR(trans)) {
3858 ret = PTR_ERR(trans);
3859 goto out;
3860 }
3861
3862 qgroupid = sa->qgroupid;
3863 if (!qgroupid) {
3864 /* take the current subvol as qgroup */
3865 qgroupid = root->root_key.objectid;
3866 }
3867
3868 /* FIXME: check if the IDs really exist */
3869 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3870
3871 err = btrfs_end_transaction(trans, root);
3872 if (err && !ret)
3873 ret = err;
3874
3875 out:
3876 kfree(sa);
3877 drop_write:
3878 mnt_drop_write_file(file);
3879 return ret;
3880 }
3881
3882 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3883 {
3884 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3885 struct btrfs_ioctl_quota_rescan_args *qsa;
3886 int ret;
3887
3888 if (!capable(CAP_SYS_ADMIN))
3889 return -EPERM;
3890
3891 ret = mnt_want_write_file(file);
3892 if (ret)
3893 return ret;
3894
3895 qsa = memdup_user(arg, sizeof(*qsa));
3896 if (IS_ERR(qsa)) {
3897 ret = PTR_ERR(qsa);
3898 goto drop_write;
3899 }
3900
3901 if (qsa->flags) {
3902 ret = -EINVAL;
3903 goto out;
3904 }
3905
3906 ret = btrfs_qgroup_rescan(root->fs_info);
3907
3908 out:
3909 kfree(qsa);
3910 drop_write:
3911 mnt_drop_write_file(file);
3912 return ret;
3913 }
3914
3915 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
3916 {
3917 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3918 struct btrfs_ioctl_quota_rescan_args *qsa;
3919 int ret = 0;
3920
3921 if (!capable(CAP_SYS_ADMIN))
3922 return -EPERM;
3923
3924 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
3925 if (!qsa)
3926 return -ENOMEM;
3927
3928 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3929 qsa->flags = 1;
3930 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
3931 }
3932
3933 if (copy_to_user(arg, qsa, sizeof(*qsa)))
3934 ret = -EFAULT;
3935
3936 kfree(qsa);
3937 return ret;
3938 }
3939
3940 static long btrfs_ioctl_set_received_subvol(struct file *file,
3941 void __user *arg)
3942 {
3943 struct btrfs_ioctl_received_subvol_args *sa = NULL;
3944 struct inode *inode = file_inode(file);
3945 struct btrfs_root *root = BTRFS_I(inode)->root;
3946 struct btrfs_root_item *root_item = &root->root_item;
3947 struct btrfs_trans_handle *trans;
3948 struct timespec ct = CURRENT_TIME;
3949 int ret = 0;
3950
3951 ret = mnt_want_write_file(file);
3952 if (ret < 0)
3953 return ret;
3954
3955 down_write(&root->fs_info->subvol_sem);
3956
3957 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3958 ret = -EINVAL;
3959 goto out;
3960 }
3961
3962 if (btrfs_root_readonly(root)) {
3963 ret = -EROFS;
3964 goto out;
3965 }
3966
3967 if (!inode_owner_or_capable(inode)) {
3968 ret = -EACCES;
3969 goto out;
3970 }
3971
3972 sa = memdup_user(arg, sizeof(*sa));
3973 if (IS_ERR(sa)) {
3974 ret = PTR_ERR(sa);
3975 sa = NULL;
3976 goto out;
3977 }
3978
3979 trans = btrfs_start_transaction(root, 1);
3980 if (IS_ERR(trans)) {
3981 ret = PTR_ERR(trans);
3982 trans = NULL;
3983 goto out;
3984 }
3985
3986 sa->rtransid = trans->transid;
3987 sa->rtime.sec = ct.tv_sec;
3988 sa->rtime.nsec = ct.tv_nsec;
3989
3990 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3991 btrfs_set_root_stransid(root_item, sa->stransid);
3992 btrfs_set_root_rtransid(root_item, sa->rtransid);
3993 root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3994 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3995 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3996 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3997
3998 ret = btrfs_update_root(trans, root->fs_info->tree_root,
3999 &root->root_key, &root->root_item);
4000 if (ret < 0) {
4001 btrfs_end_transaction(trans, root);
4002 trans = NULL;
4003 goto out;
4004 } else {
4005 ret = btrfs_commit_transaction(trans, root);
4006 if (ret < 0)
4007 goto out;
4008 }
4009
4010 ret = copy_to_user(arg, sa, sizeof(*sa));
4011 if (ret)
4012 ret = -EFAULT;
4013
4014 out:
4015 kfree(sa);
4016 up_write(&root->fs_info->subvol_sem);
4017 mnt_drop_write_file(file);
4018 return ret;
4019 }
4020
4021 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4022 {
4023 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
4024 const char *label = root->fs_info->super_copy->label;
4025 size_t len = strnlen(label, BTRFS_LABEL_SIZE);
4026 int ret;
4027
4028 if (len == BTRFS_LABEL_SIZE) {
4029 pr_warn("btrfs: label is too long, return the first %zu bytes\n",
4030 --len);
4031 }
4032
4033 mutex_lock(&root->fs_info->volume_mutex);
4034 ret = copy_to_user(arg, label, len);
4035 mutex_unlock(&root->fs_info->volume_mutex);
4036
4037 return ret ? -EFAULT : 0;
4038 }
4039
4040 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4041 {
4042 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
4043 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4044 struct btrfs_trans_handle *trans;
4045 char label[BTRFS_LABEL_SIZE];
4046 int ret;
4047
4048 if (!capable(CAP_SYS_ADMIN))
4049 return -EPERM;
4050
4051 if (copy_from_user(label, arg, sizeof(label)))
4052 return -EFAULT;
4053
4054 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4055 pr_err("btrfs: unable to set label with more than %d bytes\n",
4056 BTRFS_LABEL_SIZE - 1);
4057 return -EINVAL;
4058 }
4059
4060 ret = mnt_want_write_file(file);
4061 if (ret)
4062 return ret;
4063
4064 mutex_lock(&root->fs_info->volume_mutex);
4065 trans = btrfs_start_transaction(root, 0);
4066 if (IS_ERR(trans)) {
4067 ret = PTR_ERR(trans);
4068 goto out_unlock;
4069 }
4070
4071 strcpy(super_block->label, label);
4072 ret = btrfs_end_transaction(trans, root);
4073
4074 out_unlock:
4075 mutex_unlock(&root->fs_info->volume_mutex);
4076 mnt_drop_write_file(file);
4077 return ret;
4078 }
4079
4080 long btrfs_ioctl(struct file *file, unsigned int
4081 cmd, unsigned long arg)
4082 {
4083 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4084 void __user *argp = (void __user *)arg;
4085
4086 switch (cmd) {
4087 case FS_IOC_GETFLAGS:
4088 return btrfs_ioctl_getflags(file, argp);
4089 case FS_IOC_SETFLAGS:
4090 return btrfs_ioctl_setflags(file, argp);
4091 case FS_IOC_GETVERSION:
4092 return btrfs_ioctl_getversion(file, argp);
4093 case FITRIM:
4094 return btrfs_ioctl_fitrim(file, argp);
4095 case BTRFS_IOC_SNAP_CREATE:
4096 return btrfs_ioctl_snap_create(file, argp, 0);
4097 case BTRFS_IOC_SNAP_CREATE_V2:
4098 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4099 case BTRFS_IOC_SUBVOL_CREATE:
4100 return btrfs_ioctl_snap_create(file, argp, 1);
4101 case BTRFS_IOC_SUBVOL_CREATE_V2:
4102 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4103 case BTRFS_IOC_SNAP_DESTROY:
4104 return btrfs_ioctl_snap_destroy(file, argp);
4105 case BTRFS_IOC_SUBVOL_GETFLAGS:
4106 return btrfs_ioctl_subvol_getflags(file, argp);
4107 case BTRFS_IOC_SUBVOL_SETFLAGS:
4108 return btrfs_ioctl_subvol_setflags(file, argp);
4109 case BTRFS_IOC_DEFAULT_SUBVOL:
4110 return btrfs_ioctl_default_subvol(file, argp);
4111 case BTRFS_IOC_DEFRAG:
4112 return btrfs_ioctl_defrag(file, NULL);
4113 case BTRFS_IOC_DEFRAG_RANGE:
4114 return btrfs_ioctl_defrag(file, argp);
4115 case BTRFS_IOC_RESIZE:
4116 return btrfs_ioctl_resize(file, argp);
4117 case BTRFS_IOC_ADD_DEV:
4118 return btrfs_ioctl_add_dev(root, argp);
4119 case BTRFS_IOC_RM_DEV:
4120 return btrfs_ioctl_rm_dev(file, argp);
4121 case BTRFS_IOC_FS_INFO:
4122 return btrfs_ioctl_fs_info(root, argp);
4123 case BTRFS_IOC_DEV_INFO:
4124 return btrfs_ioctl_dev_info(root, argp);
4125 case BTRFS_IOC_BALANCE:
4126 return btrfs_ioctl_balance(file, NULL);
4127 case BTRFS_IOC_CLONE:
4128 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4129 case BTRFS_IOC_CLONE_RANGE:
4130 return btrfs_ioctl_clone_range(file, argp);
4131 case BTRFS_IOC_TRANS_START:
4132 return btrfs_ioctl_trans_start(file);
4133 case BTRFS_IOC_TRANS_END:
4134 return btrfs_ioctl_trans_end(file);
4135 case BTRFS_IOC_TREE_SEARCH:
4136 return btrfs_ioctl_tree_search(file, argp);
4137 case BTRFS_IOC_INO_LOOKUP:
4138 return btrfs_ioctl_ino_lookup(file, argp);
4139 case BTRFS_IOC_INO_PATHS:
4140 return btrfs_ioctl_ino_to_path(root, argp);
4141 case BTRFS_IOC_LOGICAL_INO:
4142 return btrfs_ioctl_logical_to_ino(root, argp);
4143 case BTRFS_IOC_SPACE_INFO:
4144 return btrfs_ioctl_space_info(root, argp);
4145 case BTRFS_IOC_SYNC:
4146 btrfs_sync_fs(file->f_dentry->d_sb, 1);
4147 return 0;
4148 case BTRFS_IOC_START_SYNC:
4149 return btrfs_ioctl_start_sync(root, argp);
4150 case BTRFS_IOC_WAIT_SYNC:
4151 return btrfs_ioctl_wait_sync(root, argp);
4152 case BTRFS_IOC_SCRUB:
4153 return btrfs_ioctl_scrub(file, argp);
4154 case BTRFS_IOC_SCRUB_CANCEL:
4155 return btrfs_ioctl_scrub_cancel(root, argp);
4156 case BTRFS_IOC_SCRUB_PROGRESS:
4157 return btrfs_ioctl_scrub_progress(root, argp);
4158 case BTRFS_IOC_BALANCE_V2:
4159 return btrfs_ioctl_balance(file, argp);
4160 case BTRFS_IOC_BALANCE_CTL:
4161 return btrfs_ioctl_balance_ctl(root, arg);
4162 case BTRFS_IOC_BALANCE_PROGRESS:
4163 return btrfs_ioctl_balance_progress(root, argp);
4164 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4165 return btrfs_ioctl_set_received_subvol(file, argp);
4166 case BTRFS_IOC_SEND:
4167 return btrfs_ioctl_send(file, argp);
4168 case BTRFS_IOC_GET_DEV_STATS:
4169 return btrfs_ioctl_get_dev_stats(root, argp);
4170 case BTRFS_IOC_QUOTA_CTL:
4171 return btrfs_ioctl_quota_ctl(file, argp);
4172 case BTRFS_IOC_QGROUP_ASSIGN:
4173 return btrfs_ioctl_qgroup_assign(file, argp);
4174 case BTRFS_IOC_QGROUP_CREATE:
4175 return btrfs_ioctl_qgroup_create(file, argp);
4176 case BTRFS_IOC_QGROUP_LIMIT:
4177 return btrfs_ioctl_qgroup_limit(file, argp);
4178 case BTRFS_IOC_QUOTA_RESCAN:
4179 return btrfs_ioctl_quota_rescan(file, argp);
4180 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4181 return btrfs_ioctl_quota_rescan_status(file, argp);
4182 case BTRFS_IOC_DEV_REPLACE:
4183 return btrfs_ioctl_dev_replace(root, argp);
4184 case BTRFS_IOC_GET_FSLABEL:
4185 return btrfs_ioctl_get_fslabel(file, argp);
4186 case BTRFS_IOC_SET_FSLABEL:
4187 return btrfs_ioctl_set_fslabel(file, argp);
4188 }
4189
4190 return -ENOTTY;
4191 }