Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
94 {
95 int err;
96
97 err = btrfs_init_acl(trans, inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(trans, inode, dir);
100 return err;
101 }
102
103 /*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112 {
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int use_compress = 0;
126
127 if (compressed_size && compressed_pages) {
128 use_compress = 1;
129 cur_size = compressed_size;
130 }
131
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
135
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
169
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
204
205 return 0;
206 fail:
207 btrfs_free_path(path);
208 return err;
209 }
210
211
212 /*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222 {
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 &hint_byte, 1);
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 return 0;
258 }
259
260 struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
266 struct list_head list;
267 };
268
269 struct async_cow {
270 struct inode *inode;
271 struct btrfs_root *root;
272 struct page *locked_page;
273 u64 start;
274 u64 end;
275 struct list_head extents;
276 struct btrfs_work work;
277 };
278
279 static noinline int add_async_extent(struct async_cow *cow,
280 u64 start, u64 ram_size,
281 u64 compressed_size,
282 struct page **pages,
283 unsigned long nr_pages)
284 {
285 struct async_extent *async_extent;
286
287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288 async_extent->start = start;
289 async_extent->ram_size = ram_size;
290 async_extent->compressed_size = compressed_size;
291 async_extent->pages = pages;
292 async_extent->nr_pages = nr_pages;
293 list_add_tail(&async_extent->list, &cow->extents);
294 return 0;
295 }
296
297 /*
298 * we create compressed extents in two phases. The first
299 * phase compresses a range of pages that have already been
300 * locked (both pages and state bits are locked).
301 *
302 * This is done inside an ordered work queue, and the compression
303 * is spread across many cpus. The actual IO submission is step
304 * two, and the ordered work queue takes care of making sure that
305 * happens in the same order things were put onto the queue by
306 * writepages and friends.
307 *
308 * If this code finds it can't get good compression, it puts an
309 * entry onto the work queue to write the uncompressed bytes. This
310 * makes sure that both compressed inodes and uncompressed inodes
311 * are written in the same order that pdflush sent them down.
312 */
313 static noinline int compress_file_range(struct inode *inode,
314 struct page *locked_page,
315 u64 start, u64 end,
316 struct async_cow *async_cow,
317 int *num_added)
318 {
319 struct btrfs_root *root = BTRFS_I(inode)->root;
320 struct btrfs_trans_handle *trans;
321 u64 num_bytes;
322 u64 blocksize = root->sectorsize;
323 u64 actual_end;
324 u64 isize = i_size_read(inode);
325 int ret = 0;
326 struct page **pages = NULL;
327 unsigned long nr_pages;
328 unsigned long nr_pages_ret = 0;
329 unsigned long total_compressed = 0;
330 unsigned long total_in = 0;
331 unsigned long max_compressed = 128 * 1024;
332 unsigned long max_uncompressed = 128 * 1024;
333 int i;
334 int will_compress;
335
336 actual_end = min_t(u64, isize, end + 1);
337 again:
338 will_compress = 0;
339 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
340 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
341
342 /*
343 * we don't want to send crud past the end of i_size through
344 * compression, that's just a waste of CPU time. So, if the
345 * end of the file is before the start of our current
346 * requested range of bytes, we bail out to the uncompressed
347 * cleanup code that can deal with all of this.
348 *
349 * It isn't really the fastest way to fix things, but this is a
350 * very uncommon corner.
351 */
352 if (actual_end <= start)
353 goto cleanup_and_bail_uncompressed;
354
355 total_compressed = actual_end - start;
356
357 /* we want to make sure that amount of ram required to uncompress
358 * an extent is reasonable, so we limit the total size in ram
359 * of a compressed extent to 128k. This is a crucial number
360 * because it also controls how easily we can spread reads across
361 * cpus for decompression.
362 *
363 * We also want to make sure the amount of IO required to do
364 * a random read is reasonably small, so we limit the size of
365 * a compressed extent to 128k.
366 */
367 total_compressed = min(total_compressed, max_uncompressed);
368 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
369 num_bytes = max(blocksize, num_bytes);
370 total_in = 0;
371 ret = 0;
372
373 /*
374 * we do compression for mount -o compress and when the
375 * inode has not been flagged as nocompress. This flag can
376 * change at any time if we discover bad compression ratios.
377 */
378 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
379 (btrfs_test_opt(root, COMPRESS) ||
380 (BTRFS_I(inode)->force_compress))) {
381 WARN_ON(pages);
382 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
383
384 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
385 total_compressed, pages,
386 nr_pages, &nr_pages_ret,
387 &total_in,
388 &total_compressed,
389 max_compressed);
390
391 if (!ret) {
392 unsigned long offset = total_compressed &
393 (PAGE_CACHE_SIZE - 1);
394 struct page *page = pages[nr_pages_ret - 1];
395 char *kaddr;
396
397 /* zero the tail end of the last page, we might be
398 * sending it down to disk
399 */
400 if (offset) {
401 kaddr = kmap_atomic(page, KM_USER0);
402 memset(kaddr + offset, 0,
403 PAGE_CACHE_SIZE - offset);
404 kunmap_atomic(kaddr, KM_USER0);
405 }
406 will_compress = 1;
407 }
408 }
409 if (start == 0) {
410 trans = btrfs_join_transaction(root, 1);
411 BUG_ON(!trans);
412 btrfs_set_trans_block_group(trans, inode);
413 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
414
415 /* lets try to make an inline extent */
416 if (ret || total_in < (actual_end - start)) {
417 /* we didn't compress the entire range, try
418 * to make an uncompressed inline extent.
419 */
420 ret = cow_file_range_inline(trans, root, inode,
421 start, end, 0, NULL);
422 } else {
423 /* try making a compressed inline extent */
424 ret = cow_file_range_inline(trans, root, inode,
425 start, end,
426 total_compressed, pages);
427 }
428 if (ret == 0) {
429 /*
430 * inline extent creation worked, we don't need
431 * to create any more async work items. Unlock
432 * and free up our temp pages.
433 */
434 extent_clear_unlock_delalloc(inode,
435 &BTRFS_I(inode)->io_tree,
436 start, end, NULL,
437 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
438 EXTENT_CLEAR_DELALLOC |
439 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
440
441 btrfs_end_transaction(trans, root);
442 goto free_pages_out;
443 }
444 btrfs_end_transaction(trans, root);
445 }
446
447 if (will_compress) {
448 /*
449 * we aren't doing an inline extent round the compressed size
450 * up to a block size boundary so the allocator does sane
451 * things
452 */
453 total_compressed = (total_compressed + blocksize - 1) &
454 ~(blocksize - 1);
455
456 /*
457 * one last check to make sure the compression is really a
458 * win, compare the page count read with the blocks on disk
459 */
460 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
461 ~(PAGE_CACHE_SIZE - 1);
462 if (total_compressed >= total_in) {
463 will_compress = 0;
464 } else {
465 num_bytes = total_in;
466 }
467 }
468 if (!will_compress && pages) {
469 /*
470 * the compression code ran but failed to make things smaller,
471 * free any pages it allocated and our page pointer array
472 */
473 for (i = 0; i < nr_pages_ret; i++) {
474 WARN_ON(pages[i]->mapping);
475 page_cache_release(pages[i]);
476 }
477 kfree(pages);
478 pages = NULL;
479 total_compressed = 0;
480 nr_pages_ret = 0;
481
482 /* flag the file so we don't compress in the future */
483 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
484 !(BTRFS_I(inode)->force_compress)) {
485 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
486 }
487 }
488 if (will_compress) {
489 *num_added += 1;
490
491 /* the async work queues will take care of doing actual
492 * allocation on disk for these compressed pages,
493 * and will submit them to the elevator.
494 */
495 add_async_extent(async_cow, start, num_bytes,
496 total_compressed, pages, nr_pages_ret);
497
498 if (start + num_bytes < end && start + num_bytes < actual_end) {
499 start += num_bytes;
500 pages = NULL;
501 cond_resched();
502 goto again;
503 }
504 } else {
505 cleanup_and_bail_uncompressed:
506 /*
507 * No compression, but we still need to write the pages in
508 * the file we've been given so far. redirty the locked
509 * page if it corresponds to our extent and set things up
510 * for the async work queue to run cow_file_range to do
511 * the normal delalloc dance
512 */
513 if (page_offset(locked_page) >= start &&
514 page_offset(locked_page) <= end) {
515 __set_page_dirty_nobuffers(locked_page);
516 /* unlocked later on in the async handlers */
517 }
518 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
519 *num_added += 1;
520 }
521
522 out:
523 return 0;
524
525 free_pages_out:
526 for (i = 0; i < nr_pages_ret; i++) {
527 WARN_ON(pages[i]->mapping);
528 page_cache_release(pages[i]);
529 }
530 kfree(pages);
531
532 goto out;
533 }
534
535 /*
536 * phase two of compressed writeback. This is the ordered portion
537 * of the code, which only gets called in the order the work was
538 * queued. We walk all the async extents created by compress_file_range
539 * and send them down to the disk.
540 */
541 static noinline int submit_compressed_extents(struct inode *inode,
542 struct async_cow *async_cow)
543 {
544 struct async_extent *async_extent;
545 u64 alloc_hint = 0;
546 struct btrfs_trans_handle *trans;
547 struct btrfs_key ins;
548 struct extent_map *em;
549 struct btrfs_root *root = BTRFS_I(inode)->root;
550 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
551 struct extent_io_tree *io_tree;
552 int ret = 0;
553
554 if (list_empty(&async_cow->extents))
555 return 0;
556
557
558 while (!list_empty(&async_cow->extents)) {
559 async_extent = list_entry(async_cow->extents.next,
560 struct async_extent, list);
561 list_del(&async_extent->list);
562
563 io_tree = &BTRFS_I(inode)->io_tree;
564
565 retry:
566 /* did the compression code fall back to uncompressed IO? */
567 if (!async_extent->pages) {
568 int page_started = 0;
569 unsigned long nr_written = 0;
570
571 lock_extent(io_tree, async_extent->start,
572 async_extent->start +
573 async_extent->ram_size - 1, GFP_NOFS);
574
575 /* allocate blocks */
576 ret = cow_file_range(inode, async_cow->locked_page,
577 async_extent->start,
578 async_extent->start +
579 async_extent->ram_size - 1,
580 &page_started, &nr_written, 0);
581
582 /*
583 * if page_started, cow_file_range inserted an
584 * inline extent and took care of all the unlocking
585 * and IO for us. Otherwise, we need to submit
586 * all those pages down to the drive.
587 */
588 if (!page_started && !ret)
589 extent_write_locked_range(io_tree,
590 inode, async_extent->start,
591 async_extent->start +
592 async_extent->ram_size - 1,
593 btrfs_get_extent,
594 WB_SYNC_ALL);
595 kfree(async_extent);
596 cond_resched();
597 continue;
598 }
599
600 lock_extent(io_tree, async_extent->start,
601 async_extent->start + async_extent->ram_size - 1,
602 GFP_NOFS);
603
604 trans = btrfs_join_transaction(root, 1);
605 ret = btrfs_reserve_extent(trans, root,
606 async_extent->compressed_size,
607 async_extent->compressed_size,
608 0, alloc_hint,
609 (u64)-1, &ins, 1);
610 btrfs_end_transaction(trans, root);
611
612 if (ret) {
613 int i;
614 for (i = 0; i < async_extent->nr_pages; i++) {
615 WARN_ON(async_extent->pages[i]->mapping);
616 page_cache_release(async_extent->pages[i]);
617 }
618 kfree(async_extent->pages);
619 async_extent->nr_pages = 0;
620 async_extent->pages = NULL;
621 unlock_extent(io_tree, async_extent->start,
622 async_extent->start +
623 async_extent->ram_size - 1, GFP_NOFS);
624 goto retry;
625 }
626
627 /*
628 * here we're doing allocation and writeback of the
629 * compressed pages
630 */
631 btrfs_drop_extent_cache(inode, async_extent->start,
632 async_extent->start +
633 async_extent->ram_size - 1, 0);
634
635 em = alloc_extent_map(GFP_NOFS);
636 em->start = async_extent->start;
637 em->len = async_extent->ram_size;
638 em->orig_start = em->start;
639
640 em->block_start = ins.objectid;
641 em->block_len = ins.offset;
642 em->bdev = root->fs_info->fs_devices->latest_bdev;
643 set_bit(EXTENT_FLAG_PINNED, &em->flags);
644 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
645
646 while (1) {
647 write_lock(&em_tree->lock);
648 ret = add_extent_mapping(em_tree, em);
649 write_unlock(&em_tree->lock);
650 if (ret != -EEXIST) {
651 free_extent_map(em);
652 break;
653 }
654 btrfs_drop_extent_cache(inode, async_extent->start,
655 async_extent->start +
656 async_extent->ram_size - 1, 0);
657 }
658
659 ret = btrfs_add_ordered_extent(inode, async_extent->start,
660 ins.objectid,
661 async_extent->ram_size,
662 ins.offset,
663 BTRFS_ORDERED_COMPRESSED);
664 BUG_ON(ret);
665
666 /*
667 * clear dirty, set writeback and unlock the pages.
668 */
669 extent_clear_unlock_delalloc(inode,
670 &BTRFS_I(inode)->io_tree,
671 async_extent->start,
672 async_extent->start +
673 async_extent->ram_size - 1,
674 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
675 EXTENT_CLEAR_UNLOCK |
676 EXTENT_CLEAR_DELALLOC |
677 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
678
679 ret = btrfs_submit_compressed_write(inode,
680 async_extent->start,
681 async_extent->ram_size,
682 ins.objectid,
683 ins.offset, async_extent->pages,
684 async_extent->nr_pages);
685
686 BUG_ON(ret);
687 alloc_hint = ins.objectid + ins.offset;
688 kfree(async_extent);
689 cond_resched();
690 }
691
692 return 0;
693 }
694
695 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
696 u64 num_bytes)
697 {
698 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
699 struct extent_map *em;
700 u64 alloc_hint = 0;
701
702 read_lock(&em_tree->lock);
703 em = search_extent_mapping(em_tree, start, num_bytes);
704 if (em) {
705 /*
706 * if block start isn't an actual block number then find the
707 * first block in this inode and use that as a hint. If that
708 * block is also bogus then just don't worry about it.
709 */
710 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
711 free_extent_map(em);
712 em = search_extent_mapping(em_tree, 0, 0);
713 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
714 alloc_hint = em->block_start;
715 if (em)
716 free_extent_map(em);
717 } else {
718 alloc_hint = em->block_start;
719 free_extent_map(em);
720 }
721 }
722 read_unlock(&em_tree->lock);
723
724 return alloc_hint;
725 }
726
727 /*
728 * when extent_io.c finds a delayed allocation range in the file,
729 * the call backs end up in this code. The basic idea is to
730 * allocate extents on disk for the range, and create ordered data structs
731 * in ram to track those extents.
732 *
733 * locked_page is the page that writepage had locked already. We use
734 * it to make sure we don't do extra locks or unlocks.
735 *
736 * *page_started is set to one if we unlock locked_page and do everything
737 * required to start IO on it. It may be clean and already done with
738 * IO when we return.
739 */
740 static noinline int cow_file_range(struct inode *inode,
741 struct page *locked_page,
742 u64 start, u64 end, int *page_started,
743 unsigned long *nr_written,
744 int unlock)
745 {
746 struct btrfs_root *root = BTRFS_I(inode)->root;
747 struct btrfs_trans_handle *trans;
748 u64 alloc_hint = 0;
749 u64 num_bytes;
750 unsigned long ram_size;
751 u64 disk_num_bytes;
752 u64 cur_alloc_size;
753 u64 blocksize = root->sectorsize;
754 struct btrfs_key ins;
755 struct extent_map *em;
756 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
757 int ret = 0;
758
759 BUG_ON(root == root->fs_info->tree_root);
760 trans = btrfs_join_transaction(root, 1);
761 BUG_ON(!trans);
762 btrfs_set_trans_block_group(trans, inode);
763 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
764
765 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
766 num_bytes = max(blocksize, num_bytes);
767 disk_num_bytes = num_bytes;
768 ret = 0;
769
770 if (start == 0) {
771 /* lets try to make an inline extent */
772 ret = cow_file_range_inline(trans, root, inode,
773 start, end, 0, NULL);
774 if (ret == 0) {
775 extent_clear_unlock_delalloc(inode,
776 &BTRFS_I(inode)->io_tree,
777 start, end, NULL,
778 EXTENT_CLEAR_UNLOCK_PAGE |
779 EXTENT_CLEAR_UNLOCK |
780 EXTENT_CLEAR_DELALLOC |
781 EXTENT_CLEAR_DIRTY |
782 EXTENT_SET_WRITEBACK |
783 EXTENT_END_WRITEBACK);
784
785 *nr_written = *nr_written +
786 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
787 *page_started = 1;
788 ret = 0;
789 goto out;
790 }
791 }
792
793 BUG_ON(disk_num_bytes >
794 btrfs_super_total_bytes(&root->fs_info->super_copy));
795
796 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
797 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
798
799 while (disk_num_bytes > 0) {
800 unsigned long op;
801
802 cur_alloc_size = disk_num_bytes;
803 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
804 root->sectorsize, 0, alloc_hint,
805 (u64)-1, &ins, 1);
806 BUG_ON(ret);
807
808 em = alloc_extent_map(GFP_NOFS);
809 em->start = start;
810 em->orig_start = em->start;
811 ram_size = ins.offset;
812 em->len = ins.offset;
813
814 em->block_start = ins.objectid;
815 em->block_len = ins.offset;
816 em->bdev = root->fs_info->fs_devices->latest_bdev;
817 set_bit(EXTENT_FLAG_PINNED, &em->flags);
818
819 while (1) {
820 write_lock(&em_tree->lock);
821 ret = add_extent_mapping(em_tree, em);
822 write_unlock(&em_tree->lock);
823 if (ret != -EEXIST) {
824 free_extent_map(em);
825 break;
826 }
827 btrfs_drop_extent_cache(inode, start,
828 start + ram_size - 1, 0);
829 }
830
831 cur_alloc_size = ins.offset;
832 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
833 ram_size, cur_alloc_size, 0);
834 BUG_ON(ret);
835
836 if (root->root_key.objectid ==
837 BTRFS_DATA_RELOC_TREE_OBJECTID) {
838 ret = btrfs_reloc_clone_csums(inode, start,
839 cur_alloc_size);
840 BUG_ON(ret);
841 }
842
843 if (disk_num_bytes < cur_alloc_size)
844 break;
845
846 /* we're not doing compressed IO, don't unlock the first
847 * page (which the caller expects to stay locked), don't
848 * clear any dirty bits and don't set any writeback bits
849 *
850 * Do set the Private2 bit so we know this page was properly
851 * setup for writepage
852 */
853 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
854 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
855 EXTENT_SET_PRIVATE2;
856
857 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
858 start, start + ram_size - 1,
859 locked_page, op);
860 disk_num_bytes -= cur_alloc_size;
861 num_bytes -= cur_alloc_size;
862 alloc_hint = ins.objectid + ins.offset;
863 start += cur_alloc_size;
864 }
865 out:
866 ret = 0;
867 btrfs_end_transaction(trans, root);
868
869 return ret;
870 }
871
872 /*
873 * work queue call back to started compression on a file and pages
874 */
875 static noinline void async_cow_start(struct btrfs_work *work)
876 {
877 struct async_cow *async_cow;
878 int num_added = 0;
879 async_cow = container_of(work, struct async_cow, work);
880
881 compress_file_range(async_cow->inode, async_cow->locked_page,
882 async_cow->start, async_cow->end, async_cow,
883 &num_added);
884 if (num_added == 0)
885 async_cow->inode = NULL;
886 }
887
888 /*
889 * work queue call back to submit previously compressed pages
890 */
891 static noinline void async_cow_submit(struct btrfs_work *work)
892 {
893 struct async_cow *async_cow;
894 struct btrfs_root *root;
895 unsigned long nr_pages;
896
897 async_cow = container_of(work, struct async_cow, work);
898
899 root = async_cow->root;
900 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
901 PAGE_CACHE_SHIFT;
902
903 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
904
905 if (atomic_read(&root->fs_info->async_delalloc_pages) <
906 5 * 1042 * 1024 &&
907 waitqueue_active(&root->fs_info->async_submit_wait))
908 wake_up(&root->fs_info->async_submit_wait);
909
910 if (async_cow->inode)
911 submit_compressed_extents(async_cow->inode, async_cow);
912 }
913
914 static noinline void async_cow_free(struct btrfs_work *work)
915 {
916 struct async_cow *async_cow;
917 async_cow = container_of(work, struct async_cow, work);
918 kfree(async_cow);
919 }
920
921 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
922 u64 start, u64 end, int *page_started,
923 unsigned long *nr_written)
924 {
925 struct async_cow *async_cow;
926 struct btrfs_root *root = BTRFS_I(inode)->root;
927 unsigned long nr_pages;
928 u64 cur_end;
929 int limit = 10 * 1024 * 1042;
930
931 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
932 1, 0, NULL, GFP_NOFS);
933 while (start < end) {
934 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
935 async_cow->inode = inode;
936 async_cow->root = root;
937 async_cow->locked_page = locked_page;
938 async_cow->start = start;
939
940 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
941 cur_end = end;
942 else
943 cur_end = min(end, start + 512 * 1024 - 1);
944
945 async_cow->end = cur_end;
946 INIT_LIST_HEAD(&async_cow->extents);
947
948 async_cow->work.func = async_cow_start;
949 async_cow->work.ordered_func = async_cow_submit;
950 async_cow->work.ordered_free = async_cow_free;
951 async_cow->work.flags = 0;
952
953 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
954 PAGE_CACHE_SHIFT;
955 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
956
957 btrfs_queue_worker(&root->fs_info->delalloc_workers,
958 &async_cow->work);
959
960 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
961 wait_event(root->fs_info->async_submit_wait,
962 (atomic_read(&root->fs_info->async_delalloc_pages) <
963 limit));
964 }
965
966 while (atomic_read(&root->fs_info->async_submit_draining) &&
967 atomic_read(&root->fs_info->async_delalloc_pages)) {
968 wait_event(root->fs_info->async_submit_wait,
969 (atomic_read(&root->fs_info->async_delalloc_pages) ==
970 0));
971 }
972
973 *nr_written += nr_pages;
974 start = cur_end + 1;
975 }
976 *page_started = 1;
977 return 0;
978 }
979
980 static noinline int csum_exist_in_range(struct btrfs_root *root,
981 u64 bytenr, u64 num_bytes)
982 {
983 int ret;
984 struct btrfs_ordered_sum *sums;
985 LIST_HEAD(list);
986
987 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
988 bytenr + num_bytes - 1, &list);
989 if (ret == 0 && list_empty(&list))
990 return 0;
991
992 while (!list_empty(&list)) {
993 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
994 list_del(&sums->list);
995 kfree(sums);
996 }
997 return 1;
998 }
999
1000 /*
1001 * when nowcow writeback call back. This checks for snapshots or COW copies
1002 * of the extents that exist in the file, and COWs the file as required.
1003 *
1004 * If no cow copies or snapshots exist, we write directly to the existing
1005 * blocks on disk
1006 */
1007 static noinline int run_delalloc_nocow(struct inode *inode,
1008 struct page *locked_page,
1009 u64 start, u64 end, int *page_started, int force,
1010 unsigned long *nr_written)
1011 {
1012 struct btrfs_root *root = BTRFS_I(inode)->root;
1013 struct btrfs_trans_handle *trans;
1014 struct extent_buffer *leaf;
1015 struct btrfs_path *path;
1016 struct btrfs_file_extent_item *fi;
1017 struct btrfs_key found_key;
1018 u64 cow_start;
1019 u64 cur_offset;
1020 u64 extent_end;
1021 u64 extent_offset;
1022 u64 disk_bytenr;
1023 u64 num_bytes;
1024 int extent_type;
1025 int ret;
1026 int type;
1027 int nocow;
1028 int check_prev = 1;
1029 bool nolock = false;
1030
1031 path = btrfs_alloc_path();
1032 BUG_ON(!path);
1033 if (root == root->fs_info->tree_root) {
1034 nolock = true;
1035 trans = btrfs_join_transaction_nolock(root, 1);
1036 } else {
1037 trans = btrfs_join_transaction(root, 1);
1038 }
1039 BUG_ON(!trans);
1040
1041 cow_start = (u64)-1;
1042 cur_offset = start;
1043 while (1) {
1044 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1045 cur_offset, 0);
1046 BUG_ON(ret < 0);
1047 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1048 leaf = path->nodes[0];
1049 btrfs_item_key_to_cpu(leaf, &found_key,
1050 path->slots[0] - 1);
1051 if (found_key.objectid == inode->i_ino &&
1052 found_key.type == BTRFS_EXTENT_DATA_KEY)
1053 path->slots[0]--;
1054 }
1055 check_prev = 0;
1056 next_slot:
1057 leaf = path->nodes[0];
1058 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1059 ret = btrfs_next_leaf(root, path);
1060 if (ret < 0)
1061 BUG_ON(1);
1062 if (ret > 0)
1063 break;
1064 leaf = path->nodes[0];
1065 }
1066
1067 nocow = 0;
1068 disk_bytenr = 0;
1069 num_bytes = 0;
1070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1071
1072 if (found_key.objectid > inode->i_ino ||
1073 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1074 found_key.offset > end)
1075 break;
1076
1077 if (found_key.offset > cur_offset) {
1078 extent_end = found_key.offset;
1079 extent_type = 0;
1080 goto out_check;
1081 }
1082
1083 fi = btrfs_item_ptr(leaf, path->slots[0],
1084 struct btrfs_file_extent_item);
1085 extent_type = btrfs_file_extent_type(leaf, fi);
1086
1087 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1088 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1089 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1090 extent_offset = btrfs_file_extent_offset(leaf, fi);
1091 extent_end = found_key.offset +
1092 btrfs_file_extent_num_bytes(leaf, fi);
1093 if (extent_end <= start) {
1094 path->slots[0]++;
1095 goto next_slot;
1096 }
1097 if (disk_bytenr == 0)
1098 goto out_check;
1099 if (btrfs_file_extent_compression(leaf, fi) ||
1100 btrfs_file_extent_encryption(leaf, fi) ||
1101 btrfs_file_extent_other_encoding(leaf, fi))
1102 goto out_check;
1103 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1104 goto out_check;
1105 if (btrfs_extent_readonly(root, disk_bytenr))
1106 goto out_check;
1107 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1108 found_key.offset -
1109 extent_offset, disk_bytenr))
1110 goto out_check;
1111 disk_bytenr += extent_offset;
1112 disk_bytenr += cur_offset - found_key.offset;
1113 num_bytes = min(end + 1, extent_end) - cur_offset;
1114 /*
1115 * force cow if csum exists in the range.
1116 * this ensure that csum for a given extent are
1117 * either valid or do not exist.
1118 */
1119 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1120 goto out_check;
1121 nocow = 1;
1122 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1123 extent_end = found_key.offset +
1124 btrfs_file_extent_inline_len(leaf, fi);
1125 extent_end = ALIGN(extent_end, root->sectorsize);
1126 } else {
1127 BUG_ON(1);
1128 }
1129 out_check:
1130 if (extent_end <= start) {
1131 path->slots[0]++;
1132 goto next_slot;
1133 }
1134 if (!nocow) {
1135 if (cow_start == (u64)-1)
1136 cow_start = cur_offset;
1137 cur_offset = extent_end;
1138 if (cur_offset > end)
1139 break;
1140 path->slots[0]++;
1141 goto next_slot;
1142 }
1143
1144 btrfs_release_path(root, path);
1145 if (cow_start != (u64)-1) {
1146 ret = cow_file_range(inode, locked_page, cow_start,
1147 found_key.offset - 1, page_started,
1148 nr_written, 1);
1149 BUG_ON(ret);
1150 cow_start = (u64)-1;
1151 }
1152
1153 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1154 struct extent_map *em;
1155 struct extent_map_tree *em_tree;
1156 em_tree = &BTRFS_I(inode)->extent_tree;
1157 em = alloc_extent_map(GFP_NOFS);
1158 em->start = cur_offset;
1159 em->orig_start = em->start;
1160 em->len = num_bytes;
1161 em->block_len = num_bytes;
1162 em->block_start = disk_bytenr;
1163 em->bdev = root->fs_info->fs_devices->latest_bdev;
1164 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1165 while (1) {
1166 write_lock(&em_tree->lock);
1167 ret = add_extent_mapping(em_tree, em);
1168 write_unlock(&em_tree->lock);
1169 if (ret != -EEXIST) {
1170 free_extent_map(em);
1171 break;
1172 }
1173 btrfs_drop_extent_cache(inode, em->start,
1174 em->start + em->len - 1, 0);
1175 }
1176 type = BTRFS_ORDERED_PREALLOC;
1177 } else {
1178 type = BTRFS_ORDERED_NOCOW;
1179 }
1180
1181 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1182 num_bytes, num_bytes, type);
1183 BUG_ON(ret);
1184
1185 if (root->root_key.objectid ==
1186 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1187 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1188 num_bytes);
1189 BUG_ON(ret);
1190 }
1191
1192 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1193 cur_offset, cur_offset + num_bytes - 1,
1194 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1195 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1196 EXTENT_SET_PRIVATE2);
1197 cur_offset = extent_end;
1198 if (cur_offset > end)
1199 break;
1200 }
1201 btrfs_release_path(root, path);
1202
1203 if (cur_offset <= end && cow_start == (u64)-1)
1204 cow_start = cur_offset;
1205 if (cow_start != (u64)-1) {
1206 ret = cow_file_range(inode, locked_page, cow_start, end,
1207 page_started, nr_written, 1);
1208 BUG_ON(ret);
1209 }
1210
1211 if (nolock) {
1212 ret = btrfs_end_transaction_nolock(trans, root);
1213 BUG_ON(ret);
1214 } else {
1215 ret = btrfs_end_transaction(trans, root);
1216 BUG_ON(ret);
1217 }
1218 btrfs_free_path(path);
1219 return 0;
1220 }
1221
1222 /*
1223 * extent_io.c call back to do delayed allocation processing
1224 */
1225 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1226 u64 start, u64 end, int *page_started,
1227 unsigned long *nr_written)
1228 {
1229 int ret;
1230 struct btrfs_root *root = BTRFS_I(inode)->root;
1231
1232 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1233 ret = run_delalloc_nocow(inode, locked_page, start, end,
1234 page_started, 1, nr_written);
1235 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1236 ret = run_delalloc_nocow(inode, locked_page, start, end,
1237 page_started, 0, nr_written);
1238 else if (!btrfs_test_opt(root, COMPRESS) &&
1239 !(BTRFS_I(inode)->force_compress))
1240 ret = cow_file_range(inode, locked_page, start, end,
1241 page_started, nr_written, 1);
1242 else
1243 ret = cow_file_range_async(inode, locked_page, start, end,
1244 page_started, nr_written);
1245 return ret;
1246 }
1247
1248 static int btrfs_split_extent_hook(struct inode *inode,
1249 struct extent_state *orig, u64 split)
1250 {
1251 /* not delalloc, ignore it */
1252 if (!(orig->state & EXTENT_DELALLOC))
1253 return 0;
1254
1255 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1256 return 0;
1257 }
1258
1259 /*
1260 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1261 * extents so we can keep track of new extents that are just merged onto old
1262 * extents, such as when we are doing sequential writes, so we can properly
1263 * account for the metadata space we'll need.
1264 */
1265 static int btrfs_merge_extent_hook(struct inode *inode,
1266 struct extent_state *new,
1267 struct extent_state *other)
1268 {
1269 /* not delalloc, ignore it */
1270 if (!(other->state & EXTENT_DELALLOC))
1271 return 0;
1272
1273 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1274 return 0;
1275 }
1276
1277 /*
1278 * extent_io.c set_bit_hook, used to track delayed allocation
1279 * bytes in this file, and to maintain the list of inodes that
1280 * have pending delalloc work to be done.
1281 */
1282 static int btrfs_set_bit_hook(struct inode *inode,
1283 struct extent_state *state, int *bits)
1284 {
1285
1286 /*
1287 * set_bit and clear bit hooks normally require _irqsave/restore
1288 * but in this case, we are only testeing for the DELALLOC
1289 * bit, which is only set or cleared with irqs on
1290 */
1291 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1292 struct btrfs_root *root = BTRFS_I(inode)->root;
1293 u64 len = state->end + 1 - state->start;
1294 int do_list = (root->root_key.objectid !=
1295 BTRFS_ROOT_TREE_OBJECTID);
1296
1297 if (*bits & EXTENT_FIRST_DELALLOC)
1298 *bits &= ~EXTENT_FIRST_DELALLOC;
1299 else
1300 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1301
1302 spin_lock(&root->fs_info->delalloc_lock);
1303 BTRFS_I(inode)->delalloc_bytes += len;
1304 root->fs_info->delalloc_bytes += len;
1305 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1306 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1307 &root->fs_info->delalloc_inodes);
1308 }
1309 spin_unlock(&root->fs_info->delalloc_lock);
1310 }
1311 return 0;
1312 }
1313
1314 /*
1315 * extent_io.c clear_bit_hook, see set_bit_hook for why
1316 */
1317 static int btrfs_clear_bit_hook(struct inode *inode,
1318 struct extent_state *state, int *bits)
1319 {
1320 /*
1321 * set_bit and clear bit hooks normally require _irqsave/restore
1322 * but in this case, we are only testeing for the DELALLOC
1323 * bit, which is only set or cleared with irqs on
1324 */
1325 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1326 struct btrfs_root *root = BTRFS_I(inode)->root;
1327 u64 len = state->end + 1 - state->start;
1328 int do_list = (root->root_key.objectid !=
1329 BTRFS_ROOT_TREE_OBJECTID);
1330
1331 if (*bits & EXTENT_FIRST_DELALLOC)
1332 *bits &= ~EXTENT_FIRST_DELALLOC;
1333 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1334 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1335
1336 if (*bits & EXTENT_DO_ACCOUNTING)
1337 btrfs_delalloc_release_metadata(inode, len);
1338
1339 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1340 && do_list)
1341 btrfs_free_reserved_data_space(inode, len);
1342
1343 spin_lock(&root->fs_info->delalloc_lock);
1344 root->fs_info->delalloc_bytes -= len;
1345 BTRFS_I(inode)->delalloc_bytes -= len;
1346
1347 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1348 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1349 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1350 }
1351 spin_unlock(&root->fs_info->delalloc_lock);
1352 }
1353 return 0;
1354 }
1355
1356 /*
1357 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1358 * we don't create bios that span stripes or chunks
1359 */
1360 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1361 size_t size, struct bio *bio,
1362 unsigned long bio_flags)
1363 {
1364 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1365 struct btrfs_mapping_tree *map_tree;
1366 u64 logical = (u64)bio->bi_sector << 9;
1367 u64 length = 0;
1368 u64 map_length;
1369 int ret;
1370
1371 if (bio_flags & EXTENT_BIO_COMPRESSED)
1372 return 0;
1373
1374 length = bio->bi_size;
1375 map_tree = &root->fs_info->mapping_tree;
1376 map_length = length;
1377 ret = btrfs_map_block(map_tree, READ, logical,
1378 &map_length, NULL, 0);
1379
1380 if (map_length < length + size)
1381 return 1;
1382 return ret;
1383 }
1384
1385 /*
1386 * in order to insert checksums into the metadata in large chunks,
1387 * we wait until bio submission time. All the pages in the bio are
1388 * checksummed and sums are attached onto the ordered extent record.
1389 *
1390 * At IO completion time the cums attached on the ordered extent record
1391 * are inserted into the btree
1392 */
1393 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1394 struct bio *bio, int mirror_num,
1395 unsigned long bio_flags,
1396 u64 bio_offset)
1397 {
1398 struct btrfs_root *root = BTRFS_I(inode)->root;
1399 int ret = 0;
1400
1401 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1402 BUG_ON(ret);
1403 return 0;
1404 }
1405
1406 /*
1407 * in order to insert checksums into the metadata in large chunks,
1408 * we wait until bio submission time. All the pages in the bio are
1409 * checksummed and sums are attached onto the ordered extent record.
1410 *
1411 * At IO completion time the cums attached on the ordered extent record
1412 * are inserted into the btree
1413 */
1414 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1415 int mirror_num, unsigned long bio_flags,
1416 u64 bio_offset)
1417 {
1418 struct btrfs_root *root = BTRFS_I(inode)->root;
1419 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1420 }
1421
1422 /*
1423 * extent_io.c submission hook. This does the right thing for csum calculation
1424 * on write, or reading the csums from the tree before a read
1425 */
1426 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1427 int mirror_num, unsigned long bio_flags,
1428 u64 bio_offset)
1429 {
1430 struct btrfs_root *root = BTRFS_I(inode)->root;
1431 int ret = 0;
1432 int skip_sum;
1433
1434 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1435
1436 if (root == root->fs_info->tree_root)
1437 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1438 else
1439 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1440 BUG_ON(ret);
1441
1442 if (!(rw & REQ_WRITE)) {
1443 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1444 return btrfs_submit_compressed_read(inode, bio,
1445 mirror_num, bio_flags);
1446 } else if (!skip_sum)
1447 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1448 goto mapit;
1449 } else if (!skip_sum) {
1450 /* csum items have already been cloned */
1451 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1452 goto mapit;
1453 /* we're doing a write, do the async checksumming */
1454 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1455 inode, rw, bio, mirror_num,
1456 bio_flags, bio_offset,
1457 __btrfs_submit_bio_start,
1458 __btrfs_submit_bio_done);
1459 }
1460
1461 mapit:
1462 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1463 }
1464
1465 /*
1466 * given a list of ordered sums record them in the inode. This happens
1467 * at IO completion time based on sums calculated at bio submission time.
1468 */
1469 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1470 struct inode *inode, u64 file_offset,
1471 struct list_head *list)
1472 {
1473 struct btrfs_ordered_sum *sum;
1474
1475 btrfs_set_trans_block_group(trans, inode);
1476
1477 list_for_each_entry(sum, list, list) {
1478 btrfs_csum_file_blocks(trans,
1479 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1480 }
1481 return 0;
1482 }
1483
1484 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1485 struct extent_state **cached_state)
1486 {
1487 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1488 WARN_ON(1);
1489 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1490 cached_state, GFP_NOFS);
1491 }
1492
1493 /* see btrfs_writepage_start_hook for details on why this is required */
1494 struct btrfs_writepage_fixup {
1495 struct page *page;
1496 struct btrfs_work work;
1497 };
1498
1499 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1500 {
1501 struct btrfs_writepage_fixup *fixup;
1502 struct btrfs_ordered_extent *ordered;
1503 struct extent_state *cached_state = NULL;
1504 struct page *page;
1505 struct inode *inode;
1506 u64 page_start;
1507 u64 page_end;
1508
1509 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1510 page = fixup->page;
1511 again:
1512 lock_page(page);
1513 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1514 ClearPageChecked(page);
1515 goto out_page;
1516 }
1517
1518 inode = page->mapping->host;
1519 page_start = page_offset(page);
1520 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1521
1522 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1523 &cached_state, GFP_NOFS);
1524
1525 /* already ordered? We're done */
1526 if (PagePrivate2(page))
1527 goto out;
1528
1529 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1530 if (ordered) {
1531 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1532 page_end, &cached_state, GFP_NOFS);
1533 unlock_page(page);
1534 btrfs_start_ordered_extent(inode, ordered, 1);
1535 goto again;
1536 }
1537
1538 BUG();
1539 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1540 ClearPageChecked(page);
1541 out:
1542 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1543 &cached_state, GFP_NOFS);
1544 out_page:
1545 unlock_page(page);
1546 page_cache_release(page);
1547 }
1548
1549 /*
1550 * There are a few paths in the higher layers of the kernel that directly
1551 * set the page dirty bit without asking the filesystem if it is a
1552 * good idea. This causes problems because we want to make sure COW
1553 * properly happens and the data=ordered rules are followed.
1554 *
1555 * In our case any range that doesn't have the ORDERED bit set
1556 * hasn't been properly setup for IO. We kick off an async process
1557 * to fix it up. The async helper will wait for ordered extents, set
1558 * the delalloc bit and make it safe to write the page.
1559 */
1560 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1561 {
1562 struct inode *inode = page->mapping->host;
1563 struct btrfs_writepage_fixup *fixup;
1564 struct btrfs_root *root = BTRFS_I(inode)->root;
1565
1566 /* this page is properly in the ordered list */
1567 if (TestClearPagePrivate2(page))
1568 return 0;
1569
1570 if (PageChecked(page))
1571 return -EAGAIN;
1572
1573 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1574 if (!fixup)
1575 return -EAGAIN;
1576
1577 SetPageChecked(page);
1578 page_cache_get(page);
1579 fixup->work.func = btrfs_writepage_fixup_worker;
1580 fixup->page = page;
1581 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1582 return -EAGAIN;
1583 }
1584
1585 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1586 struct inode *inode, u64 file_pos,
1587 u64 disk_bytenr, u64 disk_num_bytes,
1588 u64 num_bytes, u64 ram_bytes,
1589 u8 compression, u8 encryption,
1590 u16 other_encoding, int extent_type)
1591 {
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
1593 struct btrfs_file_extent_item *fi;
1594 struct btrfs_path *path;
1595 struct extent_buffer *leaf;
1596 struct btrfs_key ins;
1597 u64 hint;
1598 int ret;
1599
1600 path = btrfs_alloc_path();
1601 BUG_ON(!path);
1602
1603 path->leave_spinning = 1;
1604
1605 /*
1606 * we may be replacing one extent in the tree with another.
1607 * The new extent is pinned in the extent map, and we don't want
1608 * to drop it from the cache until it is completely in the btree.
1609 *
1610 * So, tell btrfs_drop_extents to leave this extent in the cache.
1611 * the caller is expected to unpin it and allow it to be merged
1612 * with the others.
1613 */
1614 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1615 &hint, 0);
1616 BUG_ON(ret);
1617
1618 ins.objectid = inode->i_ino;
1619 ins.offset = file_pos;
1620 ins.type = BTRFS_EXTENT_DATA_KEY;
1621 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1622 BUG_ON(ret);
1623 leaf = path->nodes[0];
1624 fi = btrfs_item_ptr(leaf, path->slots[0],
1625 struct btrfs_file_extent_item);
1626 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1627 btrfs_set_file_extent_type(leaf, fi, extent_type);
1628 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1629 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1630 btrfs_set_file_extent_offset(leaf, fi, 0);
1631 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1632 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1633 btrfs_set_file_extent_compression(leaf, fi, compression);
1634 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1635 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1636
1637 btrfs_unlock_up_safe(path, 1);
1638 btrfs_set_lock_blocking(leaf);
1639
1640 btrfs_mark_buffer_dirty(leaf);
1641
1642 inode_add_bytes(inode, num_bytes);
1643
1644 ins.objectid = disk_bytenr;
1645 ins.offset = disk_num_bytes;
1646 ins.type = BTRFS_EXTENT_ITEM_KEY;
1647 ret = btrfs_alloc_reserved_file_extent(trans, root,
1648 root->root_key.objectid,
1649 inode->i_ino, file_pos, &ins);
1650 BUG_ON(ret);
1651 btrfs_free_path(path);
1652
1653 return 0;
1654 }
1655
1656 /*
1657 * helper function for btrfs_finish_ordered_io, this
1658 * just reads in some of the csum leaves to prime them into ram
1659 * before we start the transaction. It limits the amount of btree
1660 * reads required while inside the transaction.
1661 */
1662 /* as ordered data IO finishes, this gets called so we can finish
1663 * an ordered extent if the range of bytes in the file it covers are
1664 * fully written.
1665 */
1666 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1667 {
1668 struct btrfs_root *root = BTRFS_I(inode)->root;
1669 struct btrfs_trans_handle *trans = NULL;
1670 struct btrfs_ordered_extent *ordered_extent = NULL;
1671 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1672 struct extent_state *cached_state = NULL;
1673 int compressed = 0;
1674 int ret;
1675 bool nolock = false;
1676
1677 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1678 end - start + 1);
1679 if (!ret)
1680 return 0;
1681 BUG_ON(!ordered_extent);
1682
1683 nolock = (root == root->fs_info->tree_root);
1684
1685 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1686 BUG_ON(!list_empty(&ordered_extent->list));
1687 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1688 if (!ret) {
1689 if (nolock)
1690 trans = btrfs_join_transaction_nolock(root, 1);
1691 else
1692 trans = btrfs_join_transaction(root, 1);
1693 BUG_ON(!trans);
1694 btrfs_set_trans_block_group(trans, inode);
1695 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1696 ret = btrfs_update_inode(trans, root, inode);
1697 BUG_ON(ret);
1698 }
1699 goto out;
1700 }
1701
1702 lock_extent_bits(io_tree, ordered_extent->file_offset,
1703 ordered_extent->file_offset + ordered_extent->len - 1,
1704 0, &cached_state, GFP_NOFS);
1705
1706 if (nolock)
1707 trans = btrfs_join_transaction_nolock(root, 1);
1708 else
1709 trans = btrfs_join_transaction(root, 1);
1710 btrfs_set_trans_block_group(trans, inode);
1711 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1712
1713 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1714 compressed = 1;
1715 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1716 BUG_ON(compressed);
1717 ret = btrfs_mark_extent_written(trans, inode,
1718 ordered_extent->file_offset,
1719 ordered_extent->file_offset +
1720 ordered_extent->len);
1721 BUG_ON(ret);
1722 } else {
1723 BUG_ON(root == root->fs_info->tree_root);
1724 ret = insert_reserved_file_extent(trans, inode,
1725 ordered_extent->file_offset,
1726 ordered_extent->start,
1727 ordered_extent->disk_len,
1728 ordered_extent->len,
1729 ordered_extent->len,
1730 compressed, 0, 0,
1731 BTRFS_FILE_EXTENT_REG);
1732 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1733 ordered_extent->file_offset,
1734 ordered_extent->len);
1735 BUG_ON(ret);
1736 }
1737 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1738 ordered_extent->file_offset +
1739 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1740
1741 add_pending_csums(trans, inode, ordered_extent->file_offset,
1742 &ordered_extent->list);
1743
1744 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1745 ret = btrfs_update_inode(trans, root, inode);
1746 BUG_ON(ret);
1747 out:
1748 if (nolock) {
1749 if (trans)
1750 btrfs_end_transaction_nolock(trans, root);
1751 } else {
1752 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1753 if (trans)
1754 btrfs_end_transaction(trans, root);
1755 }
1756
1757 /* once for us */
1758 btrfs_put_ordered_extent(ordered_extent);
1759 /* once for the tree */
1760 btrfs_put_ordered_extent(ordered_extent);
1761
1762 return 0;
1763 }
1764
1765 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1766 struct extent_state *state, int uptodate)
1767 {
1768 ClearPagePrivate2(page);
1769 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1770 }
1771
1772 /*
1773 * When IO fails, either with EIO or csum verification fails, we
1774 * try other mirrors that might have a good copy of the data. This
1775 * io_failure_record is used to record state as we go through all the
1776 * mirrors. If another mirror has good data, the page is set up to date
1777 * and things continue. If a good mirror can't be found, the original
1778 * bio end_io callback is called to indicate things have failed.
1779 */
1780 struct io_failure_record {
1781 struct page *page;
1782 u64 start;
1783 u64 len;
1784 u64 logical;
1785 unsigned long bio_flags;
1786 int last_mirror;
1787 };
1788
1789 static int btrfs_io_failed_hook(struct bio *failed_bio,
1790 struct page *page, u64 start, u64 end,
1791 struct extent_state *state)
1792 {
1793 struct io_failure_record *failrec = NULL;
1794 u64 private;
1795 struct extent_map *em;
1796 struct inode *inode = page->mapping->host;
1797 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1798 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1799 struct bio *bio;
1800 int num_copies;
1801 int ret;
1802 int rw;
1803 u64 logical;
1804
1805 ret = get_state_private(failure_tree, start, &private);
1806 if (ret) {
1807 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1808 if (!failrec)
1809 return -ENOMEM;
1810 failrec->start = start;
1811 failrec->len = end - start + 1;
1812 failrec->last_mirror = 0;
1813 failrec->bio_flags = 0;
1814
1815 read_lock(&em_tree->lock);
1816 em = lookup_extent_mapping(em_tree, start, failrec->len);
1817 if (em->start > start || em->start + em->len < start) {
1818 free_extent_map(em);
1819 em = NULL;
1820 }
1821 read_unlock(&em_tree->lock);
1822
1823 if (!em || IS_ERR(em)) {
1824 kfree(failrec);
1825 return -EIO;
1826 }
1827 logical = start - em->start;
1828 logical = em->block_start + logical;
1829 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1830 logical = em->block_start;
1831 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1832 }
1833 failrec->logical = logical;
1834 free_extent_map(em);
1835 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1836 EXTENT_DIRTY, GFP_NOFS);
1837 set_state_private(failure_tree, start,
1838 (u64)(unsigned long)failrec);
1839 } else {
1840 failrec = (struct io_failure_record *)(unsigned long)private;
1841 }
1842 num_copies = btrfs_num_copies(
1843 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1844 failrec->logical, failrec->len);
1845 failrec->last_mirror++;
1846 if (!state) {
1847 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1848 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1849 failrec->start,
1850 EXTENT_LOCKED);
1851 if (state && state->start != failrec->start)
1852 state = NULL;
1853 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1854 }
1855 if (!state || failrec->last_mirror > num_copies) {
1856 set_state_private(failure_tree, failrec->start, 0);
1857 clear_extent_bits(failure_tree, failrec->start,
1858 failrec->start + failrec->len - 1,
1859 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1860 kfree(failrec);
1861 return -EIO;
1862 }
1863 bio = bio_alloc(GFP_NOFS, 1);
1864 bio->bi_private = state;
1865 bio->bi_end_io = failed_bio->bi_end_io;
1866 bio->bi_sector = failrec->logical >> 9;
1867 bio->bi_bdev = failed_bio->bi_bdev;
1868 bio->bi_size = 0;
1869
1870 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1871 if (failed_bio->bi_rw & REQ_WRITE)
1872 rw = WRITE;
1873 else
1874 rw = READ;
1875
1876 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1877 failrec->last_mirror,
1878 failrec->bio_flags, 0);
1879 return 0;
1880 }
1881
1882 /*
1883 * each time an IO finishes, we do a fast check in the IO failure tree
1884 * to see if we need to process or clean up an io_failure_record
1885 */
1886 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1887 {
1888 u64 private;
1889 u64 private_failure;
1890 struct io_failure_record *failure;
1891 int ret;
1892
1893 private = 0;
1894 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1895 (u64)-1, 1, EXTENT_DIRTY)) {
1896 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1897 start, &private_failure);
1898 if (ret == 0) {
1899 failure = (struct io_failure_record *)(unsigned long)
1900 private_failure;
1901 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1902 failure->start, 0);
1903 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1904 failure->start,
1905 failure->start + failure->len - 1,
1906 EXTENT_DIRTY | EXTENT_LOCKED,
1907 GFP_NOFS);
1908 kfree(failure);
1909 }
1910 }
1911 return 0;
1912 }
1913
1914 /*
1915 * when reads are done, we need to check csums to verify the data is correct
1916 * if there's a match, we allow the bio to finish. If not, we go through
1917 * the io_failure_record routines to find good copies
1918 */
1919 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1920 struct extent_state *state)
1921 {
1922 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1923 struct inode *inode = page->mapping->host;
1924 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1925 char *kaddr;
1926 u64 private = ~(u32)0;
1927 int ret;
1928 struct btrfs_root *root = BTRFS_I(inode)->root;
1929 u32 csum = ~(u32)0;
1930
1931 if (PageChecked(page)) {
1932 ClearPageChecked(page);
1933 goto good;
1934 }
1935
1936 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1937 return 0;
1938
1939 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1940 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1941 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1942 GFP_NOFS);
1943 return 0;
1944 }
1945
1946 if (state && state->start == start) {
1947 private = state->private;
1948 ret = 0;
1949 } else {
1950 ret = get_state_private(io_tree, start, &private);
1951 }
1952 kaddr = kmap_atomic(page, KM_USER0);
1953 if (ret)
1954 goto zeroit;
1955
1956 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1957 btrfs_csum_final(csum, (char *)&csum);
1958 if (csum != private)
1959 goto zeroit;
1960
1961 kunmap_atomic(kaddr, KM_USER0);
1962 good:
1963 /* if the io failure tree for this inode is non-empty,
1964 * check to see if we've recovered from a failed IO
1965 */
1966 btrfs_clean_io_failures(inode, start);
1967 return 0;
1968
1969 zeroit:
1970 if (printk_ratelimit()) {
1971 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1972 "private %llu\n", page->mapping->host->i_ino,
1973 (unsigned long long)start, csum,
1974 (unsigned long long)private);
1975 }
1976 memset(kaddr + offset, 1, end - start + 1);
1977 flush_dcache_page(page);
1978 kunmap_atomic(kaddr, KM_USER0);
1979 if (private == 0)
1980 return 0;
1981 return -EIO;
1982 }
1983
1984 struct delayed_iput {
1985 struct list_head list;
1986 struct inode *inode;
1987 };
1988
1989 void btrfs_add_delayed_iput(struct inode *inode)
1990 {
1991 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1992 struct delayed_iput *delayed;
1993
1994 if (atomic_add_unless(&inode->i_count, -1, 1))
1995 return;
1996
1997 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1998 delayed->inode = inode;
1999
2000 spin_lock(&fs_info->delayed_iput_lock);
2001 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2002 spin_unlock(&fs_info->delayed_iput_lock);
2003 }
2004
2005 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2006 {
2007 LIST_HEAD(list);
2008 struct btrfs_fs_info *fs_info = root->fs_info;
2009 struct delayed_iput *delayed;
2010 int empty;
2011
2012 spin_lock(&fs_info->delayed_iput_lock);
2013 empty = list_empty(&fs_info->delayed_iputs);
2014 spin_unlock(&fs_info->delayed_iput_lock);
2015 if (empty)
2016 return;
2017
2018 down_read(&root->fs_info->cleanup_work_sem);
2019 spin_lock(&fs_info->delayed_iput_lock);
2020 list_splice_init(&fs_info->delayed_iputs, &list);
2021 spin_unlock(&fs_info->delayed_iput_lock);
2022
2023 while (!list_empty(&list)) {
2024 delayed = list_entry(list.next, struct delayed_iput, list);
2025 list_del(&delayed->list);
2026 iput(delayed->inode);
2027 kfree(delayed);
2028 }
2029 up_read(&root->fs_info->cleanup_work_sem);
2030 }
2031
2032 /*
2033 * calculate extra metadata reservation when snapshotting a subvolume
2034 * contains orphan files.
2035 */
2036 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2037 struct btrfs_pending_snapshot *pending,
2038 u64 *bytes_to_reserve)
2039 {
2040 struct btrfs_root *root;
2041 struct btrfs_block_rsv *block_rsv;
2042 u64 num_bytes;
2043 int index;
2044
2045 root = pending->root;
2046 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2047 return;
2048
2049 block_rsv = root->orphan_block_rsv;
2050
2051 /* orphan block reservation for the snapshot */
2052 num_bytes = block_rsv->size;
2053
2054 /*
2055 * after the snapshot is created, COWing tree blocks may use more
2056 * space than it frees. So we should make sure there is enough
2057 * reserved space.
2058 */
2059 index = trans->transid & 0x1;
2060 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2061 num_bytes += block_rsv->size -
2062 (block_rsv->reserved + block_rsv->freed[index]);
2063 }
2064
2065 *bytes_to_reserve += num_bytes;
2066 }
2067
2068 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2069 struct btrfs_pending_snapshot *pending)
2070 {
2071 struct btrfs_root *root = pending->root;
2072 struct btrfs_root *snap = pending->snap;
2073 struct btrfs_block_rsv *block_rsv;
2074 u64 num_bytes;
2075 int index;
2076 int ret;
2077
2078 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2079 return;
2080
2081 /* refill source subvolume's orphan block reservation */
2082 block_rsv = root->orphan_block_rsv;
2083 index = trans->transid & 0x1;
2084 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2085 num_bytes = block_rsv->size -
2086 (block_rsv->reserved + block_rsv->freed[index]);
2087 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2088 root->orphan_block_rsv,
2089 num_bytes);
2090 BUG_ON(ret);
2091 }
2092
2093 /* setup orphan block reservation for the snapshot */
2094 block_rsv = btrfs_alloc_block_rsv(snap);
2095 BUG_ON(!block_rsv);
2096
2097 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2098 snap->orphan_block_rsv = block_rsv;
2099
2100 num_bytes = root->orphan_block_rsv->size;
2101 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2102 block_rsv, num_bytes);
2103 BUG_ON(ret);
2104
2105 #if 0
2106 /* insert orphan item for the snapshot */
2107 WARN_ON(!root->orphan_item_inserted);
2108 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2109 snap->root_key.objectid);
2110 BUG_ON(ret);
2111 snap->orphan_item_inserted = 1;
2112 #endif
2113 }
2114
2115 enum btrfs_orphan_cleanup_state {
2116 ORPHAN_CLEANUP_STARTED = 1,
2117 ORPHAN_CLEANUP_DONE = 2,
2118 };
2119
2120 /*
2121 * This is called in transaction commmit time. If there are no orphan
2122 * files in the subvolume, it removes orphan item and frees block_rsv
2123 * structure.
2124 */
2125 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root)
2127 {
2128 int ret;
2129
2130 if (!list_empty(&root->orphan_list) ||
2131 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2132 return;
2133
2134 if (root->orphan_item_inserted &&
2135 btrfs_root_refs(&root->root_item) > 0) {
2136 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2137 root->root_key.objectid);
2138 BUG_ON(ret);
2139 root->orphan_item_inserted = 0;
2140 }
2141
2142 if (root->orphan_block_rsv) {
2143 WARN_ON(root->orphan_block_rsv->size > 0);
2144 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2145 root->orphan_block_rsv = NULL;
2146 }
2147 }
2148
2149 /*
2150 * This creates an orphan entry for the given inode in case something goes
2151 * wrong in the middle of an unlink/truncate.
2152 *
2153 * NOTE: caller of this function should reserve 5 units of metadata for
2154 * this function.
2155 */
2156 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2157 {
2158 struct btrfs_root *root = BTRFS_I(inode)->root;
2159 struct btrfs_block_rsv *block_rsv = NULL;
2160 int reserve = 0;
2161 int insert = 0;
2162 int ret;
2163
2164 if (!root->orphan_block_rsv) {
2165 block_rsv = btrfs_alloc_block_rsv(root);
2166 BUG_ON(!block_rsv);
2167 }
2168
2169 spin_lock(&root->orphan_lock);
2170 if (!root->orphan_block_rsv) {
2171 root->orphan_block_rsv = block_rsv;
2172 } else if (block_rsv) {
2173 btrfs_free_block_rsv(root, block_rsv);
2174 block_rsv = NULL;
2175 }
2176
2177 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2178 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2179 #if 0
2180 /*
2181 * For proper ENOSPC handling, we should do orphan
2182 * cleanup when mounting. But this introduces backward
2183 * compatibility issue.
2184 */
2185 if (!xchg(&root->orphan_item_inserted, 1))
2186 insert = 2;
2187 else
2188 insert = 1;
2189 #endif
2190 insert = 1;
2191 } else {
2192 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2193 }
2194
2195 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2196 BTRFS_I(inode)->orphan_meta_reserved = 1;
2197 reserve = 1;
2198 }
2199 spin_unlock(&root->orphan_lock);
2200
2201 if (block_rsv)
2202 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2203
2204 /* grab metadata reservation from transaction handle */
2205 if (reserve) {
2206 ret = btrfs_orphan_reserve_metadata(trans, inode);
2207 BUG_ON(ret);
2208 }
2209
2210 /* insert an orphan item to track this unlinked/truncated file */
2211 if (insert >= 1) {
2212 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2213 BUG_ON(ret);
2214 }
2215
2216 /* insert an orphan item to track subvolume contains orphan files */
2217 if (insert >= 2) {
2218 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2219 root->root_key.objectid);
2220 BUG_ON(ret);
2221 }
2222 return 0;
2223 }
2224
2225 /*
2226 * We have done the truncate/delete so we can go ahead and remove the orphan
2227 * item for this particular inode.
2228 */
2229 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2230 {
2231 struct btrfs_root *root = BTRFS_I(inode)->root;
2232 int delete_item = 0;
2233 int release_rsv = 0;
2234 int ret = 0;
2235
2236 spin_lock(&root->orphan_lock);
2237 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2238 list_del_init(&BTRFS_I(inode)->i_orphan);
2239 delete_item = 1;
2240 }
2241
2242 if (BTRFS_I(inode)->orphan_meta_reserved) {
2243 BTRFS_I(inode)->orphan_meta_reserved = 0;
2244 release_rsv = 1;
2245 }
2246 spin_unlock(&root->orphan_lock);
2247
2248 if (trans && delete_item) {
2249 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2250 BUG_ON(ret);
2251 }
2252
2253 if (release_rsv)
2254 btrfs_orphan_release_metadata(inode);
2255
2256 return 0;
2257 }
2258
2259 /*
2260 * this cleans up any orphans that may be left on the list from the last use
2261 * of this root.
2262 */
2263 void btrfs_orphan_cleanup(struct btrfs_root *root)
2264 {
2265 struct btrfs_path *path;
2266 struct extent_buffer *leaf;
2267 struct btrfs_key key, found_key;
2268 struct btrfs_trans_handle *trans;
2269 struct inode *inode;
2270 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2271
2272 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2273 return;
2274
2275 path = btrfs_alloc_path();
2276 BUG_ON(!path);
2277 path->reada = -1;
2278
2279 key.objectid = BTRFS_ORPHAN_OBJECTID;
2280 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2281 key.offset = (u64)-1;
2282
2283 while (1) {
2284 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2285 if (ret < 0) {
2286 printk(KERN_ERR "Error searching slot for orphan: %d"
2287 "\n", ret);
2288 break;
2289 }
2290
2291 /*
2292 * if ret == 0 means we found what we were searching for, which
2293 * is weird, but possible, so only screw with path if we didnt
2294 * find the key and see if we have stuff that matches
2295 */
2296 if (ret > 0) {
2297 if (path->slots[0] == 0)
2298 break;
2299 path->slots[0]--;
2300 }
2301
2302 /* pull out the item */
2303 leaf = path->nodes[0];
2304 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2305
2306 /* make sure the item matches what we want */
2307 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2308 break;
2309 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2310 break;
2311
2312 /* release the path since we're done with it */
2313 btrfs_release_path(root, path);
2314
2315 /*
2316 * this is where we are basically btrfs_lookup, without the
2317 * crossing root thing. we store the inode number in the
2318 * offset of the orphan item.
2319 */
2320 found_key.objectid = found_key.offset;
2321 found_key.type = BTRFS_INODE_ITEM_KEY;
2322 found_key.offset = 0;
2323 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2324 BUG_ON(IS_ERR(inode));
2325
2326 /*
2327 * add this inode to the orphan list so btrfs_orphan_del does
2328 * the proper thing when we hit it
2329 */
2330 spin_lock(&root->orphan_lock);
2331 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2332 spin_unlock(&root->orphan_lock);
2333
2334 /*
2335 * if this is a bad inode, means we actually succeeded in
2336 * removing the inode, but not the orphan record, which means
2337 * we need to manually delete the orphan since iput will just
2338 * do a destroy_inode
2339 */
2340 if (is_bad_inode(inode)) {
2341 trans = btrfs_start_transaction(root, 0);
2342 btrfs_orphan_del(trans, inode);
2343 btrfs_end_transaction(trans, root);
2344 iput(inode);
2345 continue;
2346 }
2347
2348 /* if we have links, this was a truncate, lets do that */
2349 if (inode->i_nlink) {
2350 nr_truncate++;
2351 btrfs_truncate(inode);
2352 } else {
2353 nr_unlink++;
2354 }
2355
2356 /* this will do delete_inode and everything for us */
2357 iput(inode);
2358 }
2359 btrfs_free_path(path);
2360
2361 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2362
2363 if (root->orphan_block_rsv)
2364 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2365 (u64)-1);
2366
2367 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2368 trans = btrfs_join_transaction(root, 1);
2369 btrfs_end_transaction(trans, root);
2370 }
2371
2372 if (nr_unlink)
2373 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2374 if (nr_truncate)
2375 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2376 }
2377
2378 /*
2379 * very simple check to peek ahead in the leaf looking for xattrs. If we
2380 * don't find any xattrs, we know there can't be any acls.
2381 *
2382 * slot is the slot the inode is in, objectid is the objectid of the inode
2383 */
2384 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2385 int slot, u64 objectid)
2386 {
2387 u32 nritems = btrfs_header_nritems(leaf);
2388 struct btrfs_key found_key;
2389 int scanned = 0;
2390
2391 slot++;
2392 while (slot < nritems) {
2393 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2394
2395 /* we found a different objectid, there must not be acls */
2396 if (found_key.objectid != objectid)
2397 return 0;
2398
2399 /* we found an xattr, assume we've got an acl */
2400 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2401 return 1;
2402
2403 /*
2404 * we found a key greater than an xattr key, there can't
2405 * be any acls later on
2406 */
2407 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2408 return 0;
2409
2410 slot++;
2411 scanned++;
2412
2413 /*
2414 * it goes inode, inode backrefs, xattrs, extents,
2415 * so if there are a ton of hard links to an inode there can
2416 * be a lot of backrefs. Don't waste time searching too hard,
2417 * this is just an optimization
2418 */
2419 if (scanned >= 8)
2420 break;
2421 }
2422 /* we hit the end of the leaf before we found an xattr or
2423 * something larger than an xattr. We have to assume the inode
2424 * has acls
2425 */
2426 return 1;
2427 }
2428
2429 /*
2430 * read an inode from the btree into the in-memory inode
2431 */
2432 static void btrfs_read_locked_inode(struct inode *inode)
2433 {
2434 struct btrfs_path *path;
2435 struct extent_buffer *leaf;
2436 struct btrfs_inode_item *inode_item;
2437 struct btrfs_timespec *tspec;
2438 struct btrfs_root *root = BTRFS_I(inode)->root;
2439 struct btrfs_key location;
2440 int maybe_acls;
2441 u64 alloc_group_block;
2442 u32 rdev;
2443 int ret;
2444
2445 path = btrfs_alloc_path();
2446 BUG_ON(!path);
2447 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2448
2449 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2450 if (ret)
2451 goto make_bad;
2452
2453 leaf = path->nodes[0];
2454 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2455 struct btrfs_inode_item);
2456
2457 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2458 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2459 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2460 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2461 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2462
2463 tspec = btrfs_inode_atime(inode_item);
2464 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2465 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2466
2467 tspec = btrfs_inode_mtime(inode_item);
2468 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2469 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2470
2471 tspec = btrfs_inode_ctime(inode_item);
2472 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2473 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2474
2475 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2476 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2477 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2478 inode->i_generation = BTRFS_I(inode)->generation;
2479 inode->i_rdev = 0;
2480 rdev = btrfs_inode_rdev(leaf, inode_item);
2481
2482 BTRFS_I(inode)->index_cnt = (u64)-1;
2483 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2484
2485 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2486
2487 /*
2488 * try to precache a NULL acl entry for files that don't have
2489 * any xattrs or acls
2490 */
2491 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2492 if (!maybe_acls)
2493 cache_no_acl(inode);
2494
2495 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2496 alloc_group_block, 0);
2497 btrfs_free_path(path);
2498 inode_item = NULL;
2499
2500 switch (inode->i_mode & S_IFMT) {
2501 case S_IFREG:
2502 inode->i_mapping->a_ops = &btrfs_aops;
2503 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2504 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2505 inode->i_fop = &btrfs_file_operations;
2506 inode->i_op = &btrfs_file_inode_operations;
2507 break;
2508 case S_IFDIR:
2509 inode->i_fop = &btrfs_dir_file_operations;
2510 if (root == root->fs_info->tree_root)
2511 inode->i_op = &btrfs_dir_ro_inode_operations;
2512 else
2513 inode->i_op = &btrfs_dir_inode_operations;
2514 break;
2515 case S_IFLNK:
2516 inode->i_op = &btrfs_symlink_inode_operations;
2517 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2518 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2519 break;
2520 default:
2521 inode->i_op = &btrfs_special_inode_operations;
2522 init_special_inode(inode, inode->i_mode, rdev);
2523 break;
2524 }
2525
2526 btrfs_update_iflags(inode);
2527 return;
2528
2529 make_bad:
2530 btrfs_free_path(path);
2531 make_bad_inode(inode);
2532 }
2533
2534 /*
2535 * given a leaf and an inode, copy the inode fields into the leaf
2536 */
2537 static void fill_inode_item(struct btrfs_trans_handle *trans,
2538 struct extent_buffer *leaf,
2539 struct btrfs_inode_item *item,
2540 struct inode *inode)
2541 {
2542 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2543 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2544 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2545 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2546 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2547
2548 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2549 inode->i_atime.tv_sec);
2550 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2551 inode->i_atime.tv_nsec);
2552
2553 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2554 inode->i_mtime.tv_sec);
2555 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2556 inode->i_mtime.tv_nsec);
2557
2558 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2559 inode->i_ctime.tv_sec);
2560 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2561 inode->i_ctime.tv_nsec);
2562
2563 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2564 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2565 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2566 btrfs_set_inode_transid(leaf, item, trans->transid);
2567 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2568 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2569 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2570 }
2571
2572 /*
2573 * copy everything in the in-memory inode into the btree.
2574 */
2575 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2576 struct btrfs_root *root, struct inode *inode)
2577 {
2578 struct btrfs_inode_item *inode_item;
2579 struct btrfs_path *path;
2580 struct extent_buffer *leaf;
2581 int ret;
2582
2583 path = btrfs_alloc_path();
2584 BUG_ON(!path);
2585 path->leave_spinning = 1;
2586 ret = btrfs_lookup_inode(trans, root, path,
2587 &BTRFS_I(inode)->location, 1);
2588 if (ret) {
2589 if (ret > 0)
2590 ret = -ENOENT;
2591 goto failed;
2592 }
2593
2594 btrfs_unlock_up_safe(path, 1);
2595 leaf = path->nodes[0];
2596 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2597 struct btrfs_inode_item);
2598
2599 fill_inode_item(trans, leaf, inode_item, inode);
2600 btrfs_mark_buffer_dirty(leaf);
2601 btrfs_set_inode_last_trans(trans, inode);
2602 ret = 0;
2603 failed:
2604 btrfs_free_path(path);
2605 return ret;
2606 }
2607
2608
2609 /*
2610 * unlink helper that gets used here in inode.c and in the tree logging
2611 * recovery code. It remove a link in a directory with a given name, and
2612 * also drops the back refs in the inode to the directory
2613 */
2614 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2615 struct btrfs_root *root,
2616 struct inode *dir, struct inode *inode,
2617 const char *name, int name_len)
2618 {
2619 struct btrfs_path *path;
2620 int ret = 0;
2621 struct extent_buffer *leaf;
2622 struct btrfs_dir_item *di;
2623 struct btrfs_key key;
2624 u64 index;
2625
2626 path = btrfs_alloc_path();
2627 if (!path) {
2628 ret = -ENOMEM;
2629 goto err;
2630 }
2631
2632 path->leave_spinning = 1;
2633 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2634 name, name_len, -1);
2635 if (IS_ERR(di)) {
2636 ret = PTR_ERR(di);
2637 goto err;
2638 }
2639 if (!di) {
2640 ret = -ENOENT;
2641 goto err;
2642 }
2643 leaf = path->nodes[0];
2644 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2645 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2646 if (ret)
2647 goto err;
2648 btrfs_release_path(root, path);
2649
2650 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2651 inode->i_ino,
2652 dir->i_ino, &index);
2653 if (ret) {
2654 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2655 "inode %lu parent %lu\n", name_len, name,
2656 inode->i_ino, dir->i_ino);
2657 goto err;
2658 }
2659
2660 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2661 index, name, name_len, -1);
2662 if (IS_ERR(di)) {
2663 ret = PTR_ERR(di);
2664 goto err;
2665 }
2666 if (!di) {
2667 ret = -ENOENT;
2668 goto err;
2669 }
2670 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2671 btrfs_release_path(root, path);
2672
2673 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2674 inode, dir->i_ino);
2675 BUG_ON(ret != 0 && ret != -ENOENT);
2676
2677 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2678 dir, index);
2679 if (ret == -ENOENT)
2680 ret = 0;
2681 err:
2682 btrfs_free_path(path);
2683 if (ret)
2684 goto out;
2685
2686 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2687 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2688 btrfs_update_inode(trans, root, dir);
2689 btrfs_drop_nlink(inode);
2690 ret = btrfs_update_inode(trans, root, inode);
2691 out:
2692 return ret;
2693 }
2694
2695 /* helper to check if there is any shared block in the path */
2696 static int check_path_shared(struct btrfs_root *root,
2697 struct btrfs_path *path)
2698 {
2699 struct extent_buffer *eb;
2700 int level;
2701 u64 refs = 1;
2702 int uninitialized_var(ret);
2703
2704 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2705 if (!path->nodes[level])
2706 break;
2707 eb = path->nodes[level];
2708 if (!btrfs_block_can_be_shared(root, eb))
2709 continue;
2710 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2711 &refs, NULL);
2712 if (refs > 1)
2713 return 1;
2714 }
2715 return ret; /* XXX callers? */
2716 }
2717
2718 /*
2719 * helper to start transaction for unlink and rmdir.
2720 *
2721 * unlink and rmdir are special in btrfs, they do not always free space.
2722 * so in enospc case, we should make sure they will free space before
2723 * allowing them to use the global metadata reservation.
2724 */
2725 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2726 struct dentry *dentry)
2727 {
2728 struct btrfs_trans_handle *trans;
2729 struct btrfs_root *root = BTRFS_I(dir)->root;
2730 struct btrfs_path *path;
2731 struct btrfs_inode_ref *ref;
2732 struct btrfs_dir_item *di;
2733 struct inode *inode = dentry->d_inode;
2734 u64 index;
2735 int check_link = 1;
2736 int err = -ENOSPC;
2737 int ret;
2738
2739 trans = btrfs_start_transaction(root, 10);
2740 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2741 return trans;
2742
2743 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2744 return ERR_PTR(-ENOSPC);
2745
2746 /* check if there is someone else holds reference */
2747 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2748 return ERR_PTR(-ENOSPC);
2749
2750 if (atomic_read(&inode->i_count) > 2)
2751 return ERR_PTR(-ENOSPC);
2752
2753 if (xchg(&root->fs_info->enospc_unlink, 1))
2754 return ERR_PTR(-ENOSPC);
2755
2756 path = btrfs_alloc_path();
2757 if (!path) {
2758 root->fs_info->enospc_unlink = 0;
2759 return ERR_PTR(-ENOMEM);
2760 }
2761
2762 trans = btrfs_start_transaction(root, 0);
2763 if (IS_ERR(trans)) {
2764 btrfs_free_path(path);
2765 root->fs_info->enospc_unlink = 0;
2766 return trans;
2767 }
2768
2769 path->skip_locking = 1;
2770 path->search_commit_root = 1;
2771
2772 ret = btrfs_lookup_inode(trans, root, path,
2773 &BTRFS_I(dir)->location, 0);
2774 if (ret < 0) {
2775 err = ret;
2776 goto out;
2777 }
2778 if (ret == 0) {
2779 if (check_path_shared(root, path))
2780 goto out;
2781 } else {
2782 check_link = 0;
2783 }
2784 btrfs_release_path(root, path);
2785
2786 ret = btrfs_lookup_inode(trans, root, path,
2787 &BTRFS_I(inode)->location, 0);
2788 if (ret < 0) {
2789 err = ret;
2790 goto out;
2791 }
2792 if (ret == 0) {
2793 if (check_path_shared(root, path))
2794 goto out;
2795 } else {
2796 check_link = 0;
2797 }
2798 btrfs_release_path(root, path);
2799
2800 if (ret == 0 && S_ISREG(inode->i_mode)) {
2801 ret = btrfs_lookup_file_extent(trans, root, path,
2802 inode->i_ino, (u64)-1, 0);
2803 if (ret < 0) {
2804 err = ret;
2805 goto out;
2806 }
2807 BUG_ON(ret == 0);
2808 if (check_path_shared(root, path))
2809 goto out;
2810 btrfs_release_path(root, path);
2811 }
2812
2813 if (!check_link) {
2814 err = 0;
2815 goto out;
2816 }
2817
2818 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2819 dentry->d_name.name, dentry->d_name.len, 0);
2820 if (IS_ERR(di)) {
2821 err = PTR_ERR(di);
2822 goto out;
2823 }
2824 if (di) {
2825 if (check_path_shared(root, path))
2826 goto out;
2827 } else {
2828 err = 0;
2829 goto out;
2830 }
2831 btrfs_release_path(root, path);
2832
2833 ref = btrfs_lookup_inode_ref(trans, root, path,
2834 dentry->d_name.name, dentry->d_name.len,
2835 inode->i_ino, dir->i_ino, 0);
2836 if (IS_ERR(ref)) {
2837 err = PTR_ERR(ref);
2838 goto out;
2839 }
2840 BUG_ON(!ref);
2841 if (check_path_shared(root, path))
2842 goto out;
2843 index = btrfs_inode_ref_index(path->nodes[0], ref);
2844 btrfs_release_path(root, path);
2845
2846 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2847 dentry->d_name.name, dentry->d_name.len, 0);
2848 if (IS_ERR(di)) {
2849 err = PTR_ERR(di);
2850 goto out;
2851 }
2852 BUG_ON(ret == -ENOENT);
2853 if (check_path_shared(root, path))
2854 goto out;
2855
2856 err = 0;
2857 out:
2858 btrfs_free_path(path);
2859 if (err) {
2860 btrfs_end_transaction(trans, root);
2861 root->fs_info->enospc_unlink = 0;
2862 return ERR_PTR(err);
2863 }
2864
2865 trans->block_rsv = &root->fs_info->global_block_rsv;
2866 return trans;
2867 }
2868
2869 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2870 struct btrfs_root *root)
2871 {
2872 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2873 BUG_ON(!root->fs_info->enospc_unlink);
2874 root->fs_info->enospc_unlink = 0;
2875 }
2876 btrfs_end_transaction_throttle(trans, root);
2877 }
2878
2879 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2880 {
2881 struct btrfs_root *root = BTRFS_I(dir)->root;
2882 struct btrfs_trans_handle *trans;
2883 struct inode *inode = dentry->d_inode;
2884 int ret;
2885 unsigned long nr = 0;
2886
2887 trans = __unlink_start_trans(dir, dentry);
2888 if (IS_ERR(trans))
2889 return PTR_ERR(trans);
2890
2891 btrfs_set_trans_block_group(trans, dir);
2892
2893 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2894
2895 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2896 dentry->d_name.name, dentry->d_name.len);
2897 BUG_ON(ret);
2898
2899 if (inode->i_nlink == 0) {
2900 ret = btrfs_orphan_add(trans, inode);
2901 BUG_ON(ret);
2902 }
2903
2904 nr = trans->blocks_used;
2905 __unlink_end_trans(trans, root);
2906 btrfs_btree_balance_dirty(root, nr);
2907 return ret;
2908 }
2909
2910 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2911 struct btrfs_root *root,
2912 struct inode *dir, u64 objectid,
2913 const char *name, int name_len)
2914 {
2915 struct btrfs_path *path;
2916 struct extent_buffer *leaf;
2917 struct btrfs_dir_item *di;
2918 struct btrfs_key key;
2919 u64 index;
2920 int ret;
2921
2922 path = btrfs_alloc_path();
2923 if (!path)
2924 return -ENOMEM;
2925
2926 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2927 name, name_len, -1);
2928 BUG_ON(!di || IS_ERR(di));
2929
2930 leaf = path->nodes[0];
2931 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2932 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2933 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2934 BUG_ON(ret);
2935 btrfs_release_path(root, path);
2936
2937 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2938 objectid, root->root_key.objectid,
2939 dir->i_ino, &index, name, name_len);
2940 if (ret < 0) {
2941 BUG_ON(ret != -ENOENT);
2942 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2943 name, name_len);
2944 BUG_ON(!di || IS_ERR(di));
2945
2946 leaf = path->nodes[0];
2947 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2948 btrfs_release_path(root, path);
2949 index = key.offset;
2950 }
2951
2952 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2953 index, name, name_len, -1);
2954 BUG_ON(!di || IS_ERR(di));
2955
2956 leaf = path->nodes[0];
2957 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2958 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2959 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2960 BUG_ON(ret);
2961 btrfs_release_path(root, path);
2962
2963 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2964 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2965 ret = btrfs_update_inode(trans, root, dir);
2966 BUG_ON(ret);
2967
2968 btrfs_free_path(path);
2969 return 0;
2970 }
2971
2972 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2973 {
2974 struct inode *inode = dentry->d_inode;
2975 int err = 0;
2976 struct btrfs_root *root = BTRFS_I(dir)->root;
2977 struct btrfs_trans_handle *trans;
2978 unsigned long nr = 0;
2979
2980 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2981 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2982 return -ENOTEMPTY;
2983
2984 trans = __unlink_start_trans(dir, dentry);
2985 if (IS_ERR(trans))
2986 return PTR_ERR(trans);
2987
2988 btrfs_set_trans_block_group(trans, dir);
2989
2990 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2991 err = btrfs_unlink_subvol(trans, root, dir,
2992 BTRFS_I(inode)->location.objectid,
2993 dentry->d_name.name,
2994 dentry->d_name.len);
2995 goto out;
2996 }
2997
2998 err = btrfs_orphan_add(trans, inode);
2999 if (err)
3000 goto out;
3001
3002 /* now the directory is empty */
3003 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3004 dentry->d_name.name, dentry->d_name.len);
3005 if (!err)
3006 btrfs_i_size_write(inode, 0);
3007 out:
3008 nr = trans->blocks_used;
3009 __unlink_end_trans(trans, root);
3010 btrfs_btree_balance_dirty(root, nr);
3011
3012 return err;
3013 }
3014
3015 #if 0
3016 /*
3017 * when truncating bytes in a file, it is possible to avoid reading
3018 * the leaves that contain only checksum items. This can be the
3019 * majority of the IO required to delete a large file, but it must
3020 * be done carefully.
3021 *
3022 * The keys in the level just above the leaves are checked to make sure
3023 * the lowest key in a given leaf is a csum key, and starts at an offset
3024 * after the new size.
3025 *
3026 * Then the key for the next leaf is checked to make sure it also has
3027 * a checksum item for the same file. If it does, we know our target leaf
3028 * contains only checksum items, and it can be safely freed without reading
3029 * it.
3030 *
3031 * This is just an optimization targeted at large files. It may do
3032 * nothing. It will return 0 unless things went badly.
3033 */
3034 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3035 struct btrfs_root *root,
3036 struct btrfs_path *path,
3037 struct inode *inode, u64 new_size)
3038 {
3039 struct btrfs_key key;
3040 int ret;
3041 int nritems;
3042 struct btrfs_key found_key;
3043 struct btrfs_key other_key;
3044 struct btrfs_leaf_ref *ref;
3045 u64 leaf_gen;
3046 u64 leaf_start;
3047
3048 path->lowest_level = 1;
3049 key.objectid = inode->i_ino;
3050 key.type = BTRFS_CSUM_ITEM_KEY;
3051 key.offset = new_size;
3052 again:
3053 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3054 if (ret < 0)
3055 goto out;
3056
3057 if (path->nodes[1] == NULL) {
3058 ret = 0;
3059 goto out;
3060 }
3061 ret = 0;
3062 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3063 nritems = btrfs_header_nritems(path->nodes[1]);
3064
3065 if (!nritems)
3066 goto out;
3067
3068 if (path->slots[1] >= nritems)
3069 goto next_node;
3070
3071 /* did we find a key greater than anything we want to delete? */
3072 if (found_key.objectid > inode->i_ino ||
3073 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3074 goto out;
3075
3076 /* we check the next key in the node to make sure the leave contains
3077 * only checksum items. This comparison doesn't work if our
3078 * leaf is the last one in the node
3079 */
3080 if (path->slots[1] + 1 >= nritems) {
3081 next_node:
3082 /* search forward from the last key in the node, this
3083 * will bring us into the next node in the tree
3084 */
3085 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3086
3087 /* unlikely, but we inc below, so check to be safe */
3088 if (found_key.offset == (u64)-1)
3089 goto out;
3090
3091 /* search_forward needs a path with locks held, do the
3092 * search again for the original key. It is possible
3093 * this will race with a balance and return a path that
3094 * we could modify, but this drop is just an optimization
3095 * and is allowed to miss some leaves.
3096 */
3097 btrfs_release_path(root, path);
3098 found_key.offset++;
3099
3100 /* setup a max key for search_forward */
3101 other_key.offset = (u64)-1;
3102 other_key.type = key.type;
3103 other_key.objectid = key.objectid;
3104
3105 path->keep_locks = 1;
3106 ret = btrfs_search_forward(root, &found_key, &other_key,
3107 path, 0, 0);
3108 path->keep_locks = 0;
3109 if (ret || found_key.objectid != key.objectid ||
3110 found_key.type != key.type) {
3111 ret = 0;
3112 goto out;
3113 }
3114
3115 key.offset = found_key.offset;
3116 btrfs_release_path(root, path);
3117 cond_resched();
3118 goto again;
3119 }
3120
3121 /* we know there's one more slot after us in the tree,
3122 * read that key so we can verify it is also a checksum item
3123 */
3124 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3125
3126 if (found_key.objectid < inode->i_ino)
3127 goto next_key;
3128
3129 if (found_key.type != key.type || found_key.offset < new_size)
3130 goto next_key;
3131
3132 /*
3133 * if the key for the next leaf isn't a csum key from this objectid,
3134 * we can't be sure there aren't good items inside this leaf.
3135 * Bail out
3136 */
3137 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3138 goto out;
3139
3140 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3141 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3142 /*
3143 * it is safe to delete this leaf, it contains only
3144 * csum items from this inode at an offset >= new_size
3145 */
3146 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3147 BUG_ON(ret);
3148
3149 if (root->ref_cows && leaf_gen < trans->transid) {
3150 ref = btrfs_alloc_leaf_ref(root, 0);
3151 if (ref) {
3152 ref->root_gen = root->root_key.offset;
3153 ref->bytenr = leaf_start;
3154 ref->owner = 0;
3155 ref->generation = leaf_gen;
3156 ref->nritems = 0;
3157
3158 btrfs_sort_leaf_ref(ref);
3159
3160 ret = btrfs_add_leaf_ref(root, ref, 0);
3161 WARN_ON(ret);
3162 btrfs_free_leaf_ref(root, ref);
3163 } else {
3164 WARN_ON(1);
3165 }
3166 }
3167 next_key:
3168 btrfs_release_path(root, path);
3169
3170 if (other_key.objectid == inode->i_ino &&
3171 other_key.type == key.type && other_key.offset > key.offset) {
3172 key.offset = other_key.offset;
3173 cond_resched();
3174 goto again;
3175 }
3176 ret = 0;
3177 out:
3178 /* fixup any changes we've made to the path */
3179 path->lowest_level = 0;
3180 path->keep_locks = 0;
3181 btrfs_release_path(root, path);
3182 return ret;
3183 }
3184
3185 #endif
3186
3187 /*
3188 * this can truncate away extent items, csum items and directory items.
3189 * It starts at a high offset and removes keys until it can't find
3190 * any higher than new_size
3191 *
3192 * csum items that cross the new i_size are truncated to the new size
3193 * as well.
3194 *
3195 * min_type is the minimum key type to truncate down to. If set to 0, this
3196 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3197 */
3198 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3199 struct btrfs_root *root,
3200 struct inode *inode,
3201 u64 new_size, u32 min_type)
3202 {
3203 struct btrfs_path *path;
3204 struct extent_buffer *leaf;
3205 struct btrfs_file_extent_item *fi;
3206 struct btrfs_key key;
3207 struct btrfs_key found_key;
3208 u64 extent_start = 0;
3209 u64 extent_num_bytes = 0;
3210 u64 extent_offset = 0;
3211 u64 item_end = 0;
3212 u64 mask = root->sectorsize - 1;
3213 u32 found_type = (u8)-1;
3214 int found_extent;
3215 int del_item;
3216 int pending_del_nr = 0;
3217 int pending_del_slot = 0;
3218 int extent_type = -1;
3219 int encoding;
3220 int ret;
3221 int err = 0;
3222
3223 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3224
3225 if (root->ref_cows || root == root->fs_info->tree_root)
3226 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3227
3228 path = btrfs_alloc_path();
3229 BUG_ON(!path);
3230 path->reada = -1;
3231
3232 key.objectid = inode->i_ino;
3233 key.offset = (u64)-1;
3234 key.type = (u8)-1;
3235
3236 search_again:
3237 path->leave_spinning = 1;
3238 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3239 if (ret < 0) {
3240 err = ret;
3241 goto out;
3242 }
3243
3244 if (ret > 0) {
3245 /* there are no items in the tree for us to truncate, we're
3246 * done
3247 */
3248 if (path->slots[0] == 0)
3249 goto out;
3250 path->slots[0]--;
3251 }
3252
3253 while (1) {
3254 fi = NULL;
3255 leaf = path->nodes[0];
3256 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3257 found_type = btrfs_key_type(&found_key);
3258 encoding = 0;
3259
3260 if (found_key.objectid != inode->i_ino)
3261 break;
3262
3263 if (found_type < min_type)
3264 break;
3265
3266 item_end = found_key.offset;
3267 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3268 fi = btrfs_item_ptr(leaf, path->slots[0],
3269 struct btrfs_file_extent_item);
3270 extent_type = btrfs_file_extent_type(leaf, fi);
3271 encoding = btrfs_file_extent_compression(leaf, fi);
3272 encoding |= btrfs_file_extent_encryption(leaf, fi);
3273 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3274
3275 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3276 item_end +=
3277 btrfs_file_extent_num_bytes(leaf, fi);
3278 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3279 item_end += btrfs_file_extent_inline_len(leaf,
3280 fi);
3281 }
3282 item_end--;
3283 }
3284 if (found_type > min_type) {
3285 del_item = 1;
3286 } else {
3287 if (item_end < new_size)
3288 break;
3289 if (found_key.offset >= new_size)
3290 del_item = 1;
3291 else
3292 del_item = 0;
3293 }
3294 found_extent = 0;
3295 /* FIXME, shrink the extent if the ref count is only 1 */
3296 if (found_type != BTRFS_EXTENT_DATA_KEY)
3297 goto delete;
3298
3299 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3300 u64 num_dec;
3301 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3302 if (!del_item && !encoding) {
3303 u64 orig_num_bytes =
3304 btrfs_file_extent_num_bytes(leaf, fi);
3305 extent_num_bytes = new_size -
3306 found_key.offset + root->sectorsize - 1;
3307 extent_num_bytes = extent_num_bytes &
3308 ~((u64)root->sectorsize - 1);
3309 btrfs_set_file_extent_num_bytes(leaf, fi,
3310 extent_num_bytes);
3311 num_dec = (orig_num_bytes -
3312 extent_num_bytes);
3313 if (root->ref_cows && extent_start != 0)
3314 inode_sub_bytes(inode, num_dec);
3315 btrfs_mark_buffer_dirty(leaf);
3316 } else {
3317 extent_num_bytes =
3318 btrfs_file_extent_disk_num_bytes(leaf,
3319 fi);
3320 extent_offset = found_key.offset -
3321 btrfs_file_extent_offset(leaf, fi);
3322
3323 /* FIXME blocksize != 4096 */
3324 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3325 if (extent_start != 0) {
3326 found_extent = 1;
3327 if (root->ref_cows)
3328 inode_sub_bytes(inode, num_dec);
3329 }
3330 }
3331 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3332 /*
3333 * we can't truncate inline items that have had
3334 * special encodings
3335 */
3336 if (!del_item &&
3337 btrfs_file_extent_compression(leaf, fi) == 0 &&
3338 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3339 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3340 u32 size = new_size - found_key.offset;
3341
3342 if (root->ref_cows) {
3343 inode_sub_bytes(inode, item_end + 1 -
3344 new_size);
3345 }
3346 size =
3347 btrfs_file_extent_calc_inline_size(size);
3348 ret = btrfs_truncate_item(trans, root, path,
3349 size, 1);
3350 BUG_ON(ret);
3351 } else if (root->ref_cows) {
3352 inode_sub_bytes(inode, item_end + 1 -
3353 found_key.offset);
3354 }
3355 }
3356 delete:
3357 if (del_item) {
3358 if (!pending_del_nr) {
3359 /* no pending yet, add ourselves */
3360 pending_del_slot = path->slots[0];
3361 pending_del_nr = 1;
3362 } else if (pending_del_nr &&
3363 path->slots[0] + 1 == pending_del_slot) {
3364 /* hop on the pending chunk */
3365 pending_del_nr++;
3366 pending_del_slot = path->slots[0];
3367 } else {
3368 BUG();
3369 }
3370 } else {
3371 break;
3372 }
3373 if (found_extent && (root->ref_cows ||
3374 root == root->fs_info->tree_root)) {
3375 btrfs_set_path_blocking(path);
3376 ret = btrfs_free_extent(trans, root, extent_start,
3377 extent_num_bytes, 0,
3378 btrfs_header_owner(leaf),
3379 inode->i_ino, extent_offset);
3380 BUG_ON(ret);
3381 }
3382
3383 if (found_type == BTRFS_INODE_ITEM_KEY)
3384 break;
3385
3386 if (path->slots[0] == 0 ||
3387 path->slots[0] != pending_del_slot) {
3388 if (root->ref_cows) {
3389 err = -EAGAIN;
3390 goto out;
3391 }
3392 if (pending_del_nr) {
3393 ret = btrfs_del_items(trans, root, path,
3394 pending_del_slot,
3395 pending_del_nr);
3396 BUG_ON(ret);
3397 pending_del_nr = 0;
3398 }
3399 btrfs_release_path(root, path);
3400 goto search_again;
3401 } else {
3402 path->slots[0]--;
3403 }
3404 }
3405 out:
3406 if (pending_del_nr) {
3407 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3408 pending_del_nr);
3409 BUG_ON(ret);
3410 }
3411 btrfs_free_path(path);
3412 return err;
3413 }
3414
3415 /*
3416 * taken from block_truncate_page, but does cow as it zeros out
3417 * any bytes left in the last page in the file.
3418 */
3419 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3420 {
3421 struct inode *inode = mapping->host;
3422 struct btrfs_root *root = BTRFS_I(inode)->root;
3423 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3424 struct btrfs_ordered_extent *ordered;
3425 struct extent_state *cached_state = NULL;
3426 char *kaddr;
3427 u32 blocksize = root->sectorsize;
3428 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3429 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3430 struct page *page;
3431 int ret = 0;
3432 u64 page_start;
3433 u64 page_end;
3434
3435 if ((offset & (blocksize - 1)) == 0)
3436 goto out;
3437 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3438 if (ret)
3439 goto out;
3440
3441 ret = -ENOMEM;
3442 again:
3443 page = grab_cache_page(mapping, index);
3444 if (!page) {
3445 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3446 goto out;
3447 }
3448
3449 page_start = page_offset(page);
3450 page_end = page_start + PAGE_CACHE_SIZE - 1;
3451
3452 if (!PageUptodate(page)) {
3453 ret = btrfs_readpage(NULL, page);
3454 lock_page(page);
3455 if (page->mapping != mapping) {
3456 unlock_page(page);
3457 page_cache_release(page);
3458 goto again;
3459 }
3460 if (!PageUptodate(page)) {
3461 ret = -EIO;
3462 goto out_unlock;
3463 }
3464 }
3465 wait_on_page_writeback(page);
3466
3467 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3468 GFP_NOFS);
3469 set_page_extent_mapped(page);
3470
3471 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3472 if (ordered) {
3473 unlock_extent_cached(io_tree, page_start, page_end,
3474 &cached_state, GFP_NOFS);
3475 unlock_page(page);
3476 page_cache_release(page);
3477 btrfs_start_ordered_extent(inode, ordered, 1);
3478 btrfs_put_ordered_extent(ordered);
3479 goto again;
3480 }
3481
3482 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3483 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3484 0, 0, &cached_state, GFP_NOFS);
3485
3486 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3487 &cached_state);
3488 if (ret) {
3489 unlock_extent_cached(io_tree, page_start, page_end,
3490 &cached_state, GFP_NOFS);
3491 goto out_unlock;
3492 }
3493
3494 ret = 0;
3495 if (offset != PAGE_CACHE_SIZE) {
3496 kaddr = kmap(page);
3497 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3498 flush_dcache_page(page);
3499 kunmap(page);
3500 }
3501 ClearPageChecked(page);
3502 set_page_dirty(page);
3503 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3504 GFP_NOFS);
3505
3506 out_unlock:
3507 if (ret)
3508 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3509 unlock_page(page);
3510 page_cache_release(page);
3511 out:
3512 return ret;
3513 }
3514
3515 int btrfs_cont_expand(struct inode *inode, loff_t size)
3516 {
3517 struct btrfs_trans_handle *trans;
3518 struct btrfs_root *root = BTRFS_I(inode)->root;
3519 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3520 struct extent_map *em = NULL;
3521 struct extent_state *cached_state = NULL;
3522 u64 mask = root->sectorsize - 1;
3523 u64 hole_start = (inode->i_size + mask) & ~mask;
3524 u64 block_end = (size + mask) & ~mask;
3525 u64 last_byte;
3526 u64 cur_offset;
3527 u64 hole_size;
3528 int err = 0;
3529
3530 if (size <= hole_start)
3531 return 0;
3532
3533 while (1) {
3534 struct btrfs_ordered_extent *ordered;
3535 btrfs_wait_ordered_range(inode, hole_start,
3536 block_end - hole_start);
3537 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3538 &cached_state, GFP_NOFS);
3539 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3540 if (!ordered)
3541 break;
3542 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3543 &cached_state, GFP_NOFS);
3544 btrfs_put_ordered_extent(ordered);
3545 }
3546
3547 cur_offset = hole_start;
3548 while (1) {
3549 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3550 block_end - cur_offset, 0);
3551 BUG_ON(IS_ERR(em) || !em);
3552 last_byte = min(extent_map_end(em), block_end);
3553 last_byte = (last_byte + mask) & ~mask;
3554 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3555 u64 hint_byte = 0;
3556 hole_size = last_byte - cur_offset;
3557
3558 trans = btrfs_start_transaction(root, 2);
3559 if (IS_ERR(trans)) {
3560 err = PTR_ERR(trans);
3561 break;
3562 }
3563 btrfs_set_trans_block_group(trans, inode);
3564
3565 err = btrfs_drop_extents(trans, inode, cur_offset,
3566 cur_offset + hole_size,
3567 &hint_byte, 1);
3568 BUG_ON(err);
3569
3570 err = btrfs_insert_file_extent(trans, root,
3571 inode->i_ino, cur_offset, 0,
3572 0, hole_size, 0, hole_size,
3573 0, 0, 0);
3574 BUG_ON(err);
3575
3576 btrfs_drop_extent_cache(inode, hole_start,
3577 last_byte - 1, 0);
3578
3579 btrfs_end_transaction(trans, root);
3580 }
3581 free_extent_map(em);
3582 em = NULL;
3583 cur_offset = last_byte;
3584 if (cur_offset >= block_end)
3585 break;
3586 }
3587
3588 free_extent_map(em);
3589 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3590 GFP_NOFS);
3591 return err;
3592 }
3593
3594 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3595 {
3596 struct btrfs_root *root = BTRFS_I(inode)->root;
3597 struct btrfs_trans_handle *trans;
3598 unsigned long nr;
3599 int ret;
3600
3601 if (attr->ia_size == inode->i_size)
3602 return 0;
3603
3604 if (attr->ia_size > inode->i_size) {
3605 unsigned long limit;
3606 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3607 if (attr->ia_size > inode->i_sb->s_maxbytes)
3608 return -EFBIG;
3609 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3610 send_sig(SIGXFSZ, current, 0);
3611 return -EFBIG;
3612 }
3613 }
3614
3615 trans = btrfs_start_transaction(root, 5);
3616 if (IS_ERR(trans))
3617 return PTR_ERR(trans);
3618
3619 btrfs_set_trans_block_group(trans, inode);
3620
3621 ret = btrfs_orphan_add(trans, inode);
3622 BUG_ON(ret);
3623
3624 nr = trans->blocks_used;
3625 btrfs_end_transaction(trans, root);
3626 btrfs_btree_balance_dirty(root, nr);
3627
3628 if (attr->ia_size > inode->i_size) {
3629 ret = btrfs_cont_expand(inode, attr->ia_size);
3630 if (ret) {
3631 btrfs_truncate(inode);
3632 return ret;
3633 }
3634
3635 i_size_write(inode, attr->ia_size);
3636 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3637
3638 trans = btrfs_start_transaction(root, 0);
3639 BUG_ON(IS_ERR(trans));
3640 btrfs_set_trans_block_group(trans, inode);
3641 trans->block_rsv = root->orphan_block_rsv;
3642 BUG_ON(!trans->block_rsv);
3643
3644 ret = btrfs_update_inode(trans, root, inode);
3645 BUG_ON(ret);
3646 if (inode->i_nlink > 0) {
3647 ret = btrfs_orphan_del(trans, inode);
3648 BUG_ON(ret);
3649 }
3650 nr = trans->blocks_used;
3651 btrfs_end_transaction(trans, root);
3652 btrfs_btree_balance_dirty(root, nr);
3653 return 0;
3654 }
3655
3656 /*
3657 * We're truncating a file that used to have good data down to
3658 * zero. Make sure it gets into the ordered flush list so that
3659 * any new writes get down to disk quickly.
3660 */
3661 if (attr->ia_size == 0)
3662 BTRFS_I(inode)->ordered_data_close = 1;
3663
3664 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3665 ret = vmtruncate(inode, attr->ia_size);
3666 BUG_ON(ret);
3667
3668 return 0;
3669 }
3670
3671 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3672 {
3673 struct inode *inode = dentry->d_inode;
3674 int err;
3675
3676 err = inode_change_ok(inode, attr);
3677 if (err)
3678 return err;
3679
3680 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3681 err = btrfs_setattr_size(inode, attr);
3682 if (err)
3683 return err;
3684 }
3685
3686 if (attr->ia_valid) {
3687 setattr_copy(inode, attr);
3688 mark_inode_dirty(inode);
3689
3690 if (attr->ia_valid & ATTR_MODE)
3691 err = btrfs_acl_chmod(inode);
3692 }
3693
3694 return err;
3695 }
3696
3697 void btrfs_evict_inode(struct inode *inode)
3698 {
3699 struct btrfs_trans_handle *trans;
3700 struct btrfs_root *root = BTRFS_I(inode)->root;
3701 unsigned long nr;
3702 int ret;
3703
3704 truncate_inode_pages(&inode->i_data, 0);
3705 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3706 root == root->fs_info->tree_root))
3707 goto no_delete;
3708
3709 if (is_bad_inode(inode)) {
3710 btrfs_orphan_del(NULL, inode);
3711 goto no_delete;
3712 }
3713 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3714 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3715
3716 if (root->fs_info->log_root_recovering) {
3717 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3718 goto no_delete;
3719 }
3720
3721 if (inode->i_nlink > 0) {
3722 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3723 goto no_delete;
3724 }
3725
3726 btrfs_i_size_write(inode, 0);
3727
3728 while (1) {
3729 trans = btrfs_start_transaction(root, 0);
3730 BUG_ON(IS_ERR(trans));
3731 btrfs_set_trans_block_group(trans, inode);
3732 trans->block_rsv = root->orphan_block_rsv;
3733
3734 ret = btrfs_block_rsv_check(trans, root,
3735 root->orphan_block_rsv, 0, 5);
3736 if (ret) {
3737 BUG_ON(ret != -EAGAIN);
3738 ret = btrfs_commit_transaction(trans, root);
3739 BUG_ON(ret);
3740 continue;
3741 }
3742
3743 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3744 if (ret != -EAGAIN)
3745 break;
3746
3747 nr = trans->blocks_used;
3748 btrfs_end_transaction(trans, root);
3749 trans = NULL;
3750 btrfs_btree_balance_dirty(root, nr);
3751
3752 }
3753
3754 if (ret == 0) {
3755 ret = btrfs_orphan_del(trans, inode);
3756 BUG_ON(ret);
3757 }
3758
3759 nr = trans->blocks_used;
3760 btrfs_end_transaction(trans, root);
3761 btrfs_btree_balance_dirty(root, nr);
3762 no_delete:
3763 end_writeback(inode);
3764 return;
3765 }
3766
3767 /*
3768 * this returns the key found in the dir entry in the location pointer.
3769 * If no dir entries were found, location->objectid is 0.
3770 */
3771 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3772 struct btrfs_key *location)
3773 {
3774 const char *name = dentry->d_name.name;
3775 int namelen = dentry->d_name.len;
3776 struct btrfs_dir_item *di;
3777 struct btrfs_path *path;
3778 struct btrfs_root *root = BTRFS_I(dir)->root;
3779 int ret = 0;
3780
3781 path = btrfs_alloc_path();
3782 BUG_ON(!path);
3783
3784 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3785 namelen, 0);
3786 if (IS_ERR(di))
3787 ret = PTR_ERR(di);
3788
3789 if (!di || IS_ERR(di))
3790 goto out_err;
3791
3792 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3793 out:
3794 btrfs_free_path(path);
3795 return ret;
3796 out_err:
3797 location->objectid = 0;
3798 goto out;
3799 }
3800
3801 /*
3802 * when we hit a tree root in a directory, the btrfs part of the inode
3803 * needs to be changed to reflect the root directory of the tree root. This
3804 * is kind of like crossing a mount point.
3805 */
3806 static int fixup_tree_root_location(struct btrfs_root *root,
3807 struct inode *dir,
3808 struct dentry *dentry,
3809 struct btrfs_key *location,
3810 struct btrfs_root **sub_root)
3811 {
3812 struct btrfs_path *path;
3813 struct btrfs_root *new_root;
3814 struct btrfs_root_ref *ref;
3815 struct extent_buffer *leaf;
3816 int ret;
3817 int err = 0;
3818
3819 path = btrfs_alloc_path();
3820 if (!path) {
3821 err = -ENOMEM;
3822 goto out;
3823 }
3824
3825 err = -ENOENT;
3826 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3827 BTRFS_I(dir)->root->root_key.objectid,
3828 location->objectid);
3829 if (ret) {
3830 if (ret < 0)
3831 err = ret;
3832 goto out;
3833 }
3834
3835 leaf = path->nodes[0];
3836 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3837 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3838 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3839 goto out;
3840
3841 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3842 (unsigned long)(ref + 1),
3843 dentry->d_name.len);
3844 if (ret)
3845 goto out;
3846
3847 btrfs_release_path(root->fs_info->tree_root, path);
3848
3849 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3850 if (IS_ERR(new_root)) {
3851 err = PTR_ERR(new_root);
3852 goto out;
3853 }
3854
3855 if (btrfs_root_refs(&new_root->root_item) == 0) {
3856 err = -ENOENT;
3857 goto out;
3858 }
3859
3860 *sub_root = new_root;
3861 location->objectid = btrfs_root_dirid(&new_root->root_item);
3862 location->type = BTRFS_INODE_ITEM_KEY;
3863 location->offset = 0;
3864 err = 0;
3865 out:
3866 btrfs_free_path(path);
3867 return err;
3868 }
3869
3870 static void inode_tree_add(struct inode *inode)
3871 {
3872 struct btrfs_root *root = BTRFS_I(inode)->root;
3873 struct btrfs_inode *entry;
3874 struct rb_node **p;
3875 struct rb_node *parent;
3876 again:
3877 p = &root->inode_tree.rb_node;
3878 parent = NULL;
3879
3880 if (inode_unhashed(inode))
3881 return;
3882
3883 spin_lock(&root->inode_lock);
3884 while (*p) {
3885 parent = *p;
3886 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3887
3888 if (inode->i_ino < entry->vfs_inode.i_ino)
3889 p = &parent->rb_left;
3890 else if (inode->i_ino > entry->vfs_inode.i_ino)
3891 p = &parent->rb_right;
3892 else {
3893 WARN_ON(!(entry->vfs_inode.i_state &
3894 (I_WILL_FREE | I_FREEING)));
3895 rb_erase(parent, &root->inode_tree);
3896 RB_CLEAR_NODE(parent);
3897 spin_unlock(&root->inode_lock);
3898 goto again;
3899 }
3900 }
3901 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3902 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3903 spin_unlock(&root->inode_lock);
3904 }
3905
3906 static void inode_tree_del(struct inode *inode)
3907 {
3908 struct btrfs_root *root = BTRFS_I(inode)->root;
3909 int empty = 0;
3910
3911 spin_lock(&root->inode_lock);
3912 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3913 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3914 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3915 empty = RB_EMPTY_ROOT(&root->inode_tree);
3916 }
3917 spin_unlock(&root->inode_lock);
3918
3919 /*
3920 * Free space cache has inodes in the tree root, but the tree root has a
3921 * root_refs of 0, so this could end up dropping the tree root as a
3922 * snapshot, so we need the extra !root->fs_info->tree_root check to
3923 * make sure we don't drop it.
3924 */
3925 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3926 root != root->fs_info->tree_root) {
3927 synchronize_srcu(&root->fs_info->subvol_srcu);
3928 spin_lock(&root->inode_lock);
3929 empty = RB_EMPTY_ROOT(&root->inode_tree);
3930 spin_unlock(&root->inode_lock);
3931 if (empty)
3932 btrfs_add_dead_root(root);
3933 }
3934 }
3935
3936 int btrfs_invalidate_inodes(struct btrfs_root *root)
3937 {
3938 struct rb_node *node;
3939 struct rb_node *prev;
3940 struct btrfs_inode *entry;
3941 struct inode *inode;
3942 u64 objectid = 0;
3943
3944 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3945
3946 spin_lock(&root->inode_lock);
3947 again:
3948 node = root->inode_tree.rb_node;
3949 prev = NULL;
3950 while (node) {
3951 prev = node;
3952 entry = rb_entry(node, struct btrfs_inode, rb_node);
3953
3954 if (objectid < entry->vfs_inode.i_ino)
3955 node = node->rb_left;
3956 else if (objectid > entry->vfs_inode.i_ino)
3957 node = node->rb_right;
3958 else
3959 break;
3960 }
3961 if (!node) {
3962 while (prev) {
3963 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3964 if (objectid <= entry->vfs_inode.i_ino) {
3965 node = prev;
3966 break;
3967 }
3968 prev = rb_next(prev);
3969 }
3970 }
3971 while (node) {
3972 entry = rb_entry(node, struct btrfs_inode, rb_node);
3973 objectid = entry->vfs_inode.i_ino + 1;
3974 inode = igrab(&entry->vfs_inode);
3975 if (inode) {
3976 spin_unlock(&root->inode_lock);
3977 if (atomic_read(&inode->i_count) > 1)
3978 d_prune_aliases(inode);
3979 /*
3980 * btrfs_drop_inode will have it removed from
3981 * the inode cache when its usage count
3982 * hits zero.
3983 */
3984 iput(inode);
3985 cond_resched();
3986 spin_lock(&root->inode_lock);
3987 goto again;
3988 }
3989
3990 if (cond_resched_lock(&root->inode_lock))
3991 goto again;
3992
3993 node = rb_next(node);
3994 }
3995 spin_unlock(&root->inode_lock);
3996 return 0;
3997 }
3998
3999 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4000 {
4001 struct btrfs_iget_args *args = p;
4002 inode->i_ino = args->ino;
4003 BTRFS_I(inode)->root = args->root;
4004 btrfs_set_inode_space_info(args->root, inode);
4005 return 0;
4006 }
4007
4008 static int btrfs_find_actor(struct inode *inode, void *opaque)
4009 {
4010 struct btrfs_iget_args *args = opaque;
4011 return args->ino == inode->i_ino &&
4012 args->root == BTRFS_I(inode)->root;
4013 }
4014
4015 static struct inode *btrfs_iget_locked(struct super_block *s,
4016 u64 objectid,
4017 struct btrfs_root *root)
4018 {
4019 struct inode *inode;
4020 struct btrfs_iget_args args;
4021 args.ino = objectid;
4022 args.root = root;
4023
4024 inode = iget5_locked(s, objectid, btrfs_find_actor,
4025 btrfs_init_locked_inode,
4026 (void *)&args);
4027 return inode;
4028 }
4029
4030 /* Get an inode object given its location and corresponding root.
4031 * Returns in *is_new if the inode was read from disk
4032 */
4033 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4034 struct btrfs_root *root, int *new)
4035 {
4036 struct inode *inode;
4037
4038 inode = btrfs_iget_locked(s, location->objectid, root);
4039 if (!inode)
4040 return ERR_PTR(-ENOMEM);
4041
4042 if (inode->i_state & I_NEW) {
4043 BTRFS_I(inode)->root = root;
4044 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4045 btrfs_read_locked_inode(inode);
4046
4047 inode_tree_add(inode);
4048 unlock_new_inode(inode);
4049 if (new)
4050 *new = 1;
4051 }
4052
4053 return inode;
4054 }
4055
4056 static struct inode *new_simple_dir(struct super_block *s,
4057 struct btrfs_key *key,
4058 struct btrfs_root *root)
4059 {
4060 struct inode *inode = new_inode(s);
4061
4062 if (!inode)
4063 return ERR_PTR(-ENOMEM);
4064
4065 BTRFS_I(inode)->root = root;
4066 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4067 BTRFS_I(inode)->dummy_inode = 1;
4068
4069 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4070 inode->i_op = &simple_dir_inode_operations;
4071 inode->i_fop = &simple_dir_operations;
4072 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4073 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4074
4075 return inode;
4076 }
4077
4078 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4079 {
4080 struct inode *inode;
4081 struct btrfs_root *root = BTRFS_I(dir)->root;
4082 struct btrfs_root *sub_root = root;
4083 struct btrfs_key location;
4084 int index;
4085 int ret;
4086
4087 dentry->d_op = &btrfs_dentry_operations;
4088
4089 if (dentry->d_name.len > BTRFS_NAME_LEN)
4090 return ERR_PTR(-ENAMETOOLONG);
4091
4092 ret = btrfs_inode_by_name(dir, dentry, &location);
4093
4094 if (ret < 0)
4095 return ERR_PTR(ret);
4096
4097 if (location.objectid == 0)
4098 return NULL;
4099
4100 if (location.type == BTRFS_INODE_ITEM_KEY) {
4101 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4102 return inode;
4103 }
4104
4105 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4106
4107 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4108 ret = fixup_tree_root_location(root, dir, dentry,
4109 &location, &sub_root);
4110 if (ret < 0) {
4111 if (ret != -ENOENT)
4112 inode = ERR_PTR(ret);
4113 else
4114 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4115 } else {
4116 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4117 }
4118 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4119
4120 if (root != sub_root) {
4121 down_read(&root->fs_info->cleanup_work_sem);
4122 if (!(inode->i_sb->s_flags & MS_RDONLY))
4123 btrfs_orphan_cleanup(sub_root);
4124 up_read(&root->fs_info->cleanup_work_sem);
4125 }
4126
4127 return inode;
4128 }
4129
4130 static int btrfs_dentry_delete(struct dentry *dentry)
4131 {
4132 struct btrfs_root *root;
4133
4134 if (!dentry->d_inode && !IS_ROOT(dentry))
4135 dentry = dentry->d_parent;
4136
4137 if (dentry->d_inode) {
4138 root = BTRFS_I(dentry->d_inode)->root;
4139 if (btrfs_root_refs(&root->root_item) == 0)
4140 return 1;
4141 }
4142 return 0;
4143 }
4144
4145 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4146 struct nameidata *nd)
4147 {
4148 struct inode *inode;
4149
4150 inode = btrfs_lookup_dentry(dir, dentry);
4151 if (IS_ERR(inode))
4152 return ERR_CAST(inode);
4153
4154 return d_splice_alias(inode, dentry);
4155 }
4156
4157 static unsigned char btrfs_filetype_table[] = {
4158 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4159 };
4160
4161 static int btrfs_real_readdir(struct file *filp, void *dirent,
4162 filldir_t filldir)
4163 {
4164 struct inode *inode = filp->f_dentry->d_inode;
4165 struct btrfs_root *root = BTRFS_I(inode)->root;
4166 struct btrfs_item *item;
4167 struct btrfs_dir_item *di;
4168 struct btrfs_key key;
4169 struct btrfs_key found_key;
4170 struct btrfs_path *path;
4171 int ret;
4172 u32 nritems;
4173 struct extent_buffer *leaf;
4174 int slot;
4175 int advance;
4176 unsigned char d_type;
4177 int over = 0;
4178 u32 di_cur;
4179 u32 di_total;
4180 u32 di_len;
4181 int key_type = BTRFS_DIR_INDEX_KEY;
4182 char tmp_name[32];
4183 char *name_ptr;
4184 int name_len;
4185
4186 /* FIXME, use a real flag for deciding about the key type */
4187 if (root->fs_info->tree_root == root)
4188 key_type = BTRFS_DIR_ITEM_KEY;
4189
4190 /* special case for "." */
4191 if (filp->f_pos == 0) {
4192 over = filldir(dirent, ".", 1,
4193 1, inode->i_ino,
4194 DT_DIR);
4195 if (over)
4196 return 0;
4197 filp->f_pos = 1;
4198 }
4199 /* special case for .., just use the back ref */
4200 if (filp->f_pos == 1) {
4201 u64 pino = parent_ino(filp->f_path.dentry);
4202 over = filldir(dirent, "..", 2,
4203 2, pino, DT_DIR);
4204 if (over)
4205 return 0;
4206 filp->f_pos = 2;
4207 }
4208 path = btrfs_alloc_path();
4209 path->reada = 2;
4210
4211 btrfs_set_key_type(&key, key_type);
4212 key.offset = filp->f_pos;
4213 key.objectid = inode->i_ino;
4214
4215 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4216 if (ret < 0)
4217 goto err;
4218 advance = 0;
4219
4220 while (1) {
4221 leaf = path->nodes[0];
4222 nritems = btrfs_header_nritems(leaf);
4223 slot = path->slots[0];
4224 if (advance || slot >= nritems) {
4225 if (slot >= nritems - 1) {
4226 ret = btrfs_next_leaf(root, path);
4227 if (ret)
4228 break;
4229 leaf = path->nodes[0];
4230 nritems = btrfs_header_nritems(leaf);
4231 slot = path->slots[0];
4232 } else {
4233 slot++;
4234 path->slots[0]++;
4235 }
4236 }
4237
4238 advance = 1;
4239 item = btrfs_item_nr(leaf, slot);
4240 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4241
4242 if (found_key.objectid != key.objectid)
4243 break;
4244 if (btrfs_key_type(&found_key) != key_type)
4245 break;
4246 if (found_key.offset < filp->f_pos)
4247 continue;
4248
4249 filp->f_pos = found_key.offset;
4250
4251 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4252 di_cur = 0;
4253 di_total = btrfs_item_size(leaf, item);
4254
4255 while (di_cur < di_total) {
4256 struct btrfs_key location;
4257
4258 name_len = btrfs_dir_name_len(leaf, di);
4259 if (name_len <= sizeof(tmp_name)) {
4260 name_ptr = tmp_name;
4261 } else {
4262 name_ptr = kmalloc(name_len, GFP_NOFS);
4263 if (!name_ptr) {
4264 ret = -ENOMEM;
4265 goto err;
4266 }
4267 }
4268 read_extent_buffer(leaf, name_ptr,
4269 (unsigned long)(di + 1), name_len);
4270
4271 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4272 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4273
4274 /* is this a reference to our own snapshot? If so
4275 * skip it
4276 */
4277 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4278 location.objectid == root->root_key.objectid) {
4279 over = 0;
4280 goto skip;
4281 }
4282 over = filldir(dirent, name_ptr, name_len,
4283 found_key.offset, location.objectid,
4284 d_type);
4285
4286 skip:
4287 if (name_ptr != tmp_name)
4288 kfree(name_ptr);
4289
4290 if (over)
4291 goto nopos;
4292 di_len = btrfs_dir_name_len(leaf, di) +
4293 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4294 di_cur += di_len;
4295 di = (struct btrfs_dir_item *)((char *)di + di_len);
4296 }
4297 }
4298
4299 /* Reached end of directory/root. Bump pos past the last item. */
4300 if (key_type == BTRFS_DIR_INDEX_KEY)
4301 /*
4302 * 32-bit glibc will use getdents64, but then strtol -
4303 * so the last number we can serve is this.
4304 */
4305 filp->f_pos = 0x7fffffff;
4306 else
4307 filp->f_pos++;
4308 nopos:
4309 ret = 0;
4310 err:
4311 btrfs_free_path(path);
4312 return ret;
4313 }
4314
4315 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4316 {
4317 struct btrfs_root *root = BTRFS_I(inode)->root;
4318 struct btrfs_trans_handle *trans;
4319 int ret = 0;
4320 bool nolock = false;
4321
4322 if (BTRFS_I(inode)->dummy_inode)
4323 return 0;
4324
4325 smp_mb();
4326 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4327
4328 if (wbc->sync_mode == WB_SYNC_ALL) {
4329 if (nolock)
4330 trans = btrfs_join_transaction_nolock(root, 1);
4331 else
4332 trans = btrfs_join_transaction(root, 1);
4333 btrfs_set_trans_block_group(trans, inode);
4334 if (nolock)
4335 ret = btrfs_end_transaction_nolock(trans, root);
4336 else
4337 ret = btrfs_commit_transaction(trans, root);
4338 }
4339 return ret;
4340 }
4341
4342 /*
4343 * This is somewhat expensive, updating the tree every time the
4344 * inode changes. But, it is most likely to find the inode in cache.
4345 * FIXME, needs more benchmarking...there are no reasons other than performance
4346 * to keep or drop this code.
4347 */
4348 void btrfs_dirty_inode(struct inode *inode)
4349 {
4350 struct btrfs_root *root = BTRFS_I(inode)->root;
4351 struct btrfs_trans_handle *trans;
4352 int ret;
4353
4354 if (BTRFS_I(inode)->dummy_inode)
4355 return;
4356
4357 trans = btrfs_join_transaction(root, 1);
4358 btrfs_set_trans_block_group(trans, inode);
4359
4360 ret = btrfs_update_inode(trans, root, inode);
4361 if (ret && ret == -ENOSPC) {
4362 /* whoops, lets try again with the full transaction */
4363 btrfs_end_transaction(trans, root);
4364 trans = btrfs_start_transaction(root, 1);
4365 if (IS_ERR(trans)) {
4366 if (printk_ratelimit()) {
4367 printk(KERN_ERR "btrfs: fail to "
4368 "dirty inode %lu error %ld\n",
4369 inode->i_ino, PTR_ERR(trans));
4370 }
4371 return;
4372 }
4373 btrfs_set_trans_block_group(trans, inode);
4374
4375 ret = btrfs_update_inode(trans, root, inode);
4376 if (ret) {
4377 if (printk_ratelimit()) {
4378 printk(KERN_ERR "btrfs: fail to "
4379 "dirty inode %lu error %d\n",
4380 inode->i_ino, ret);
4381 }
4382 }
4383 }
4384 btrfs_end_transaction(trans, root);
4385 }
4386
4387 /*
4388 * find the highest existing sequence number in a directory
4389 * and then set the in-memory index_cnt variable to reflect
4390 * free sequence numbers
4391 */
4392 static int btrfs_set_inode_index_count(struct inode *inode)
4393 {
4394 struct btrfs_root *root = BTRFS_I(inode)->root;
4395 struct btrfs_key key, found_key;
4396 struct btrfs_path *path;
4397 struct extent_buffer *leaf;
4398 int ret;
4399
4400 key.objectid = inode->i_ino;
4401 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4402 key.offset = (u64)-1;
4403
4404 path = btrfs_alloc_path();
4405 if (!path)
4406 return -ENOMEM;
4407
4408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4409 if (ret < 0)
4410 goto out;
4411 /* FIXME: we should be able to handle this */
4412 if (ret == 0)
4413 goto out;
4414 ret = 0;
4415
4416 /*
4417 * MAGIC NUMBER EXPLANATION:
4418 * since we search a directory based on f_pos we have to start at 2
4419 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4420 * else has to start at 2
4421 */
4422 if (path->slots[0] == 0) {
4423 BTRFS_I(inode)->index_cnt = 2;
4424 goto out;
4425 }
4426
4427 path->slots[0]--;
4428
4429 leaf = path->nodes[0];
4430 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4431
4432 if (found_key.objectid != inode->i_ino ||
4433 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4434 BTRFS_I(inode)->index_cnt = 2;
4435 goto out;
4436 }
4437
4438 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4439 out:
4440 btrfs_free_path(path);
4441 return ret;
4442 }
4443
4444 /*
4445 * helper to find a free sequence number in a given directory. This current
4446 * code is very simple, later versions will do smarter things in the btree
4447 */
4448 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4449 {
4450 int ret = 0;
4451
4452 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4453 ret = btrfs_set_inode_index_count(dir);
4454 if (ret)
4455 return ret;
4456 }
4457
4458 *index = BTRFS_I(dir)->index_cnt;
4459 BTRFS_I(dir)->index_cnt++;
4460
4461 return ret;
4462 }
4463
4464 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4465 struct btrfs_root *root,
4466 struct inode *dir,
4467 const char *name, int name_len,
4468 u64 ref_objectid, u64 objectid,
4469 u64 alloc_hint, int mode, u64 *index)
4470 {
4471 struct inode *inode;
4472 struct btrfs_inode_item *inode_item;
4473 struct btrfs_key *location;
4474 struct btrfs_path *path;
4475 struct btrfs_inode_ref *ref;
4476 struct btrfs_key key[2];
4477 u32 sizes[2];
4478 unsigned long ptr;
4479 int ret;
4480 int owner;
4481
4482 path = btrfs_alloc_path();
4483 BUG_ON(!path);
4484
4485 inode = new_inode(root->fs_info->sb);
4486 if (!inode)
4487 return ERR_PTR(-ENOMEM);
4488
4489 if (dir) {
4490 ret = btrfs_set_inode_index(dir, index);
4491 if (ret) {
4492 iput(inode);
4493 return ERR_PTR(ret);
4494 }
4495 }
4496 /*
4497 * index_cnt is ignored for everything but a dir,
4498 * btrfs_get_inode_index_count has an explanation for the magic
4499 * number
4500 */
4501 BTRFS_I(inode)->index_cnt = 2;
4502 BTRFS_I(inode)->root = root;
4503 BTRFS_I(inode)->generation = trans->transid;
4504 btrfs_set_inode_space_info(root, inode);
4505
4506 if (mode & S_IFDIR)
4507 owner = 0;
4508 else
4509 owner = 1;
4510 BTRFS_I(inode)->block_group =
4511 btrfs_find_block_group(root, 0, alloc_hint, owner);
4512
4513 key[0].objectid = objectid;
4514 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4515 key[0].offset = 0;
4516
4517 key[1].objectid = objectid;
4518 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4519 key[1].offset = ref_objectid;
4520
4521 sizes[0] = sizeof(struct btrfs_inode_item);
4522 sizes[1] = name_len + sizeof(*ref);
4523
4524 path->leave_spinning = 1;
4525 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4526 if (ret != 0)
4527 goto fail;
4528
4529 inode_init_owner(inode, dir, mode);
4530 inode->i_ino = objectid;
4531 inode_set_bytes(inode, 0);
4532 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4533 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4534 struct btrfs_inode_item);
4535 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4536
4537 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4538 struct btrfs_inode_ref);
4539 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4540 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4541 ptr = (unsigned long)(ref + 1);
4542 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4543
4544 btrfs_mark_buffer_dirty(path->nodes[0]);
4545 btrfs_free_path(path);
4546
4547 location = &BTRFS_I(inode)->location;
4548 location->objectid = objectid;
4549 location->offset = 0;
4550 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4551
4552 btrfs_inherit_iflags(inode, dir);
4553
4554 if ((mode & S_IFREG)) {
4555 if (btrfs_test_opt(root, NODATASUM))
4556 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4557 if (btrfs_test_opt(root, NODATACOW))
4558 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4559 }
4560
4561 insert_inode_hash(inode);
4562 inode_tree_add(inode);
4563 return inode;
4564 fail:
4565 if (dir)
4566 BTRFS_I(dir)->index_cnt--;
4567 btrfs_free_path(path);
4568 iput(inode);
4569 return ERR_PTR(ret);
4570 }
4571
4572 static inline u8 btrfs_inode_type(struct inode *inode)
4573 {
4574 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4575 }
4576
4577 /*
4578 * utility function to add 'inode' into 'parent_inode' with
4579 * a give name and a given sequence number.
4580 * if 'add_backref' is true, also insert a backref from the
4581 * inode to the parent directory.
4582 */
4583 int btrfs_add_link(struct btrfs_trans_handle *trans,
4584 struct inode *parent_inode, struct inode *inode,
4585 const char *name, int name_len, int add_backref, u64 index)
4586 {
4587 int ret = 0;
4588 struct btrfs_key key;
4589 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4590
4591 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4592 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4593 } else {
4594 key.objectid = inode->i_ino;
4595 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4596 key.offset = 0;
4597 }
4598
4599 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4600 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4601 key.objectid, root->root_key.objectid,
4602 parent_inode->i_ino,
4603 index, name, name_len);
4604 } else if (add_backref) {
4605 ret = btrfs_insert_inode_ref(trans, root,
4606 name, name_len, inode->i_ino,
4607 parent_inode->i_ino, index);
4608 }
4609
4610 if (ret == 0) {
4611 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4612 parent_inode->i_ino, &key,
4613 btrfs_inode_type(inode), index);
4614 BUG_ON(ret);
4615
4616 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4617 name_len * 2);
4618 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4619 ret = btrfs_update_inode(trans, root, parent_inode);
4620 }
4621 return ret;
4622 }
4623
4624 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4625 struct dentry *dentry, struct inode *inode,
4626 int backref, u64 index)
4627 {
4628 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4629 inode, dentry->d_name.name,
4630 dentry->d_name.len, backref, index);
4631 if (!err) {
4632 d_instantiate(dentry, inode);
4633 return 0;
4634 }
4635 if (err > 0)
4636 err = -EEXIST;
4637 return err;
4638 }
4639
4640 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4641 int mode, dev_t rdev)
4642 {
4643 struct btrfs_trans_handle *trans;
4644 struct btrfs_root *root = BTRFS_I(dir)->root;
4645 struct inode *inode = NULL;
4646 int err;
4647 int drop_inode = 0;
4648 u64 objectid;
4649 unsigned long nr = 0;
4650 u64 index = 0;
4651
4652 if (!new_valid_dev(rdev))
4653 return -EINVAL;
4654
4655 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4656 if (err)
4657 return err;
4658
4659 /*
4660 * 2 for inode item and ref
4661 * 2 for dir items
4662 * 1 for xattr if selinux is on
4663 */
4664 trans = btrfs_start_transaction(root, 5);
4665 if (IS_ERR(trans))
4666 return PTR_ERR(trans);
4667
4668 btrfs_set_trans_block_group(trans, dir);
4669
4670 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4671 dentry->d_name.len,
4672 dentry->d_parent->d_inode->i_ino, objectid,
4673 BTRFS_I(dir)->block_group, mode, &index);
4674 err = PTR_ERR(inode);
4675 if (IS_ERR(inode))
4676 goto out_unlock;
4677
4678 err = btrfs_init_inode_security(trans, inode, dir);
4679 if (err) {
4680 drop_inode = 1;
4681 goto out_unlock;
4682 }
4683
4684 btrfs_set_trans_block_group(trans, inode);
4685 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4686 if (err)
4687 drop_inode = 1;
4688 else {
4689 inode->i_op = &btrfs_special_inode_operations;
4690 init_special_inode(inode, inode->i_mode, rdev);
4691 btrfs_update_inode(trans, root, inode);
4692 }
4693 btrfs_update_inode_block_group(trans, inode);
4694 btrfs_update_inode_block_group(trans, dir);
4695 out_unlock:
4696 nr = trans->blocks_used;
4697 btrfs_end_transaction_throttle(trans, root);
4698 btrfs_btree_balance_dirty(root, nr);
4699 if (drop_inode) {
4700 inode_dec_link_count(inode);
4701 iput(inode);
4702 }
4703 return err;
4704 }
4705
4706 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4707 int mode, struct nameidata *nd)
4708 {
4709 struct btrfs_trans_handle *trans;
4710 struct btrfs_root *root = BTRFS_I(dir)->root;
4711 struct inode *inode = NULL;
4712 int drop_inode = 0;
4713 int err;
4714 unsigned long nr = 0;
4715 u64 objectid;
4716 u64 index = 0;
4717
4718 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4719 if (err)
4720 return err;
4721 /*
4722 * 2 for inode item and ref
4723 * 2 for dir items
4724 * 1 for xattr if selinux is on
4725 */
4726 trans = btrfs_start_transaction(root, 5);
4727 if (IS_ERR(trans))
4728 return PTR_ERR(trans);
4729
4730 btrfs_set_trans_block_group(trans, dir);
4731
4732 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4733 dentry->d_name.len,
4734 dentry->d_parent->d_inode->i_ino,
4735 objectid, BTRFS_I(dir)->block_group, mode,
4736 &index);
4737 err = PTR_ERR(inode);
4738 if (IS_ERR(inode))
4739 goto out_unlock;
4740
4741 err = btrfs_init_inode_security(trans, inode, dir);
4742 if (err) {
4743 drop_inode = 1;
4744 goto out_unlock;
4745 }
4746
4747 btrfs_set_trans_block_group(trans, inode);
4748 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4749 if (err)
4750 drop_inode = 1;
4751 else {
4752 inode->i_mapping->a_ops = &btrfs_aops;
4753 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4754 inode->i_fop = &btrfs_file_operations;
4755 inode->i_op = &btrfs_file_inode_operations;
4756 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4757 }
4758 btrfs_update_inode_block_group(trans, inode);
4759 btrfs_update_inode_block_group(trans, dir);
4760 out_unlock:
4761 nr = trans->blocks_used;
4762 btrfs_end_transaction_throttle(trans, root);
4763 if (drop_inode) {
4764 inode_dec_link_count(inode);
4765 iput(inode);
4766 }
4767 btrfs_btree_balance_dirty(root, nr);
4768 return err;
4769 }
4770
4771 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4772 struct dentry *dentry)
4773 {
4774 struct btrfs_trans_handle *trans;
4775 struct btrfs_root *root = BTRFS_I(dir)->root;
4776 struct inode *inode = old_dentry->d_inode;
4777 u64 index;
4778 unsigned long nr = 0;
4779 int err;
4780 int drop_inode = 0;
4781
4782 if (inode->i_nlink == 0)
4783 return -ENOENT;
4784
4785 /* do not allow sys_link's with other subvols of the same device */
4786 if (root->objectid != BTRFS_I(inode)->root->objectid)
4787 return -EPERM;
4788
4789 btrfs_inc_nlink(inode);
4790
4791 err = btrfs_set_inode_index(dir, &index);
4792 if (err)
4793 goto fail;
4794
4795 /*
4796 * 1 item for inode ref
4797 * 2 items for dir items
4798 */
4799 trans = btrfs_start_transaction(root, 3);
4800 if (IS_ERR(trans)) {
4801 err = PTR_ERR(trans);
4802 goto fail;
4803 }
4804
4805 btrfs_set_trans_block_group(trans, dir);
4806 ihold(inode);
4807
4808 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4809
4810 if (err) {
4811 drop_inode = 1;
4812 } else {
4813 btrfs_update_inode_block_group(trans, dir);
4814 err = btrfs_update_inode(trans, root, inode);
4815 BUG_ON(err);
4816 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4817 }
4818
4819 nr = trans->blocks_used;
4820 btrfs_end_transaction_throttle(trans, root);
4821 fail:
4822 if (drop_inode) {
4823 inode_dec_link_count(inode);
4824 iput(inode);
4825 }
4826 btrfs_btree_balance_dirty(root, nr);
4827 return err;
4828 }
4829
4830 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4831 {
4832 struct inode *inode = NULL;
4833 struct btrfs_trans_handle *trans;
4834 struct btrfs_root *root = BTRFS_I(dir)->root;
4835 int err = 0;
4836 int drop_on_err = 0;
4837 u64 objectid = 0;
4838 u64 index = 0;
4839 unsigned long nr = 1;
4840
4841 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4842 if (err)
4843 return err;
4844
4845 /*
4846 * 2 items for inode and ref
4847 * 2 items for dir items
4848 * 1 for xattr if selinux is on
4849 */
4850 trans = btrfs_start_transaction(root, 5);
4851 if (IS_ERR(trans))
4852 return PTR_ERR(trans);
4853 btrfs_set_trans_block_group(trans, dir);
4854
4855 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4856 dentry->d_name.len,
4857 dentry->d_parent->d_inode->i_ino, objectid,
4858 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4859 &index);
4860 if (IS_ERR(inode)) {
4861 err = PTR_ERR(inode);
4862 goto out_fail;
4863 }
4864
4865 drop_on_err = 1;
4866
4867 err = btrfs_init_inode_security(trans, inode, dir);
4868 if (err)
4869 goto out_fail;
4870
4871 inode->i_op = &btrfs_dir_inode_operations;
4872 inode->i_fop = &btrfs_dir_file_operations;
4873 btrfs_set_trans_block_group(trans, inode);
4874
4875 btrfs_i_size_write(inode, 0);
4876 err = btrfs_update_inode(trans, root, inode);
4877 if (err)
4878 goto out_fail;
4879
4880 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4881 inode, dentry->d_name.name,
4882 dentry->d_name.len, 0, index);
4883 if (err)
4884 goto out_fail;
4885
4886 d_instantiate(dentry, inode);
4887 drop_on_err = 0;
4888 btrfs_update_inode_block_group(trans, inode);
4889 btrfs_update_inode_block_group(trans, dir);
4890
4891 out_fail:
4892 nr = trans->blocks_used;
4893 btrfs_end_transaction_throttle(trans, root);
4894 if (drop_on_err)
4895 iput(inode);
4896 btrfs_btree_balance_dirty(root, nr);
4897 return err;
4898 }
4899
4900 /* helper for btfs_get_extent. Given an existing extent in the tree,
4901 * and an extent that you want to insert, deal with overlap and insert
4902 * the new extent into the tree.
4903 */
4904 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4905 struct extent_map *existing,
4906 struct extent_map *em,
4907 u64 map_start, u64 map_len)
4908 {
4909 u64 start_diff;
4910
4911 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4912 start_diff = map_start - em->start;
4913 em->start = map_start;
4914 em->len = map_len;
4915 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4916 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4917 em->block_start += start_diff;
4918 em->block_len -= start_diff;
4919 }
4920 return add_extent_mapping(em_tree, em);
4921 }
4922
4923 static noinline int uncompress_inline(struct btrfs_path *path,
4924 struct inode *inode, struct page *page,
4925 size_t pg_offset, u64 extent_offset,
4926 struct btrfs_file_extent_item *item)
4927 {
4928 int ret;
4929 struct extent_buffer *leaf = path->nodes[0];
4930 char *tmp;
4931 size_t max_size;
4932 unsigned long inline_size;
4933 unsigned long ptr;
4934
4935 WARN_ON(pg_offset != 0);
4936 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4937 inline_size = btrfs_file_extent_inline_item_len(leaf,
4938 btrfs_item_nr(leaf, path->slots[0]));
4939 tmp = kmalloc(inline_size, GFP_NOFS);
4940 ptr = btrfs_file_extent_inline_start(item);
4941
4942 read_extent_buffer(leaf, tmp, ptr, inline_size);
4943
4944 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4945 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4946 inline_size, max_size);
4947 if (ret) {
4948 char *kaddr = kmap_atomic(page, KM_USER0);
4949 unsigned long copy_size = min_t(u64,
4950 PAGE_CACHE_SIZE - pg_offset,
4951 max_size - extent_offset);
4952 memset(kaddr + pg_offset, 0, copy_size);
4953 kunmap_atomic(kaddr, KM_USER0);
4954 }
4955 kfree(tmp);
4956 return 0;
4957 }
4958
4959 /*
4960 * a bit scary, this does extent mapping from logical file offset to the disk.
4961 * the ugly parts come from merging extents from the disk with the in-ram
4962 * representation. This gets more complex because of the data=ordered code,
4963 * where the in-ram extents might be locked pending data=ordered completion.
4964 *
4965 * This also copies inline extents directly into the page.
4966 */
4967
4968 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4969 size_t pg_offset, u64 start, u64 len,
4970 int create)
4971 {
4972 int ret;
4973 int err = 0;
4974 u64 bytenr;
4975 u64 extent_start = 0;
4976 u64 extent_end = 0;
4977 u64 objectid = inode->i_ino;
4978 u32 found_type;
4979 struct btrfs_path *path = NULL;
4980 struct btrfs_root *root = BTRFS_I(inode)->root;
4981 struct btrfs_file_extent_item *item;
4982 struct extent_buffer *leaf;
4983 struct btrfs_key found_key;
4984 struct extent_map *em = NULL;
4985 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4986 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4987 struct btrfs_trans_handle *trans = NULL;
4988 int compressed;
4989
4990 again:
4991 read_lock(&em_tree->lock);
4992 em = lookup_extent_mapping(em_tree, start, len);
4993 if (em)
4994 em->bdev = root->fs_info->fs_devices->latest_bdev;
4995 read_unlock(&em_tree->lock);
4996
4997 if (em) {
4998 if (em->start > start || em->start + em->len <= start)
4999 free_extent_map(em);
5000 else if (em->block_start == EXTENT_MAP_INLINE && page)
5001 free_extent_map(em);
5002 else
5003 goto out;
5004 }
5005 em = alloc_extent_map(GFP_NOFS);
5006 if (!em) {
5007 err = -ENOMEM;
5008 goto out;
5009 }
5010 em->bdev = root->fs_info->fs_devices->latest_bdev;
5011 em->start = EXTENT_MAP_HOLE;
5012 em->orig_start = EXTENT_MAP_HOLE;
5013 em->len = (u64)-1;
5014 em->block_len = (u64)-1;
5015
5016 if (!path) {
5017 path = btrfs_alloc_path();
5018 BUG_ON(!path);
5019 }
5020
5021 ret = btrfs_lookup_file_extent(trans, root, path,
5022 objectid, start, trans != NULL);
5023 if (ret < 0) {
5024 err = ret;
5025 goto out;
5026 }
5027
5028 if (ret != 0) {
5029 if (path->slots[0] == 0)
5030 goto not_found;
5031 path->slots[0]--;
5032 }
5033
5034 leaf = path->nodes[0];
5035 item = btrfs_item_ptr(leaf, path->slots[0],
5036 struct btrfs_file_extent_item);
5037 /* are we inside the extent that was found? */
5038 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5039 found_type = btrfs_key_type(&found_key);
5040 if (found_key.objectid != objectid ||
5041 found_type != BTRFS_EXTENT_DATA_KEY) {
5042 goto not_found;
5043 }
5044
5045 found_type = btrfs_file_extent_type(leaf, item);
5046 extent_start = found_key.offset;
5047 compressed = btrfs_file_extent_compression(leaf, item);
5048 if (found_type == BTRFS_FILE_EXTENT_REG ||
5049 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5050 extent_end = extent_start +
5051 btrfs_file_extent_num_bytes(leaf, item);
5052 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5053 size_t size;
5054 size = btrfs_file_extent_inline_len(leaf, item);
5055 extent_end = (extent_start + size + root->sectorsize - 1) &
5056 ~((u64)root->sectorsize - 1);
5057 }
5058
5059 if (start >= extent_end) {
5060 path->slots[0]++;
5061 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5062 ret = btrfs_next_leaf(root, path);
5063 if (ret < 0) {
5064 err = ret;
5065 goto out;
5066 }
5067 if (ret > 0)
5068 goto not_found;
5069 leaf = path->nodes[0];
5070 }
5071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5072 if (found_key.objectid != objectid ||
5073 found_key.type != BTRFS_EXTENT_DATA_KEY)
5074 goto not_found;
5075 if (start + len <= found_key.offset)
5076 goto not_found;
5077 em->start = start;
5078 em->len = found_key.offset - start;
5079 goto not_found_em;
5080 }
5081
5082 if (found_type == BTRFS_FILE_EXTENT_REG ||
5083 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5084 em->start = extent_start;
5085 em->len = extent_end - extent_start;
5086 em->orig_start = extent_start -
5087 btrfs_file_extent_offset(leaf, item);
5088 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5089 if (bytenr == 0) {
5090 em->block_start = EXTENT_MAP_HOLE;
5091 goto insert;
5092 }
5093 if (compressed) {
5094 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5095 em->block_start = bytenr;
5096 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5097 item);
5098 } else {
5099 bytenr += btrfs_file_extent_offset(leaf, item);
5100 em->block_start = bytenr;
5101 em->block_len = em->len;
5102 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5103 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5104 }
5105 goto insert;
5106 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5107 unsigned long ptr;
5108 char *map;
5109 size_t size;
5110 size_t extent_offset;
5111 size_t copy_size;
5112
5113 em->block_start = EXTENT_MAP_INLINE;
5114 if (!page || create) {
5115 em->start = extent_start;
5116 em->len = extent_end - extent_start;
5117 goto out;
5118 }
5119
5120 size = btrfs_file_extent_inline_len(leaf, item);
5121 extent_offset = page_offset(page) + pg_offset - extent_start;
5122 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5123 size - extent_offset);
5124 em->start = extent_start + extent_offset;
5125 em->len = (copy_size + root->sectorsize - 1) &
5126 ~((u64)root->sectorsize - 1);
5127 em->orig_start = EXTENT_MAP_INLINE;
5128 if (compressed)
5129 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5130 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5131 if (create == 0 && !PageUptodate(page)) {
5132 if (btrfs_file_extent_compression(leaf, item) ==
5133 BTRFS_COMPRESS_ZLIB) {
5134 ret = uncompress_inline(path, inode, page,
5135 pg_offset,
5136 extent_offset, item);
5137 BUG_ON(ret);
5138 } else {
5139 map = kmap(page);
5140 read_extent_buffer(leaf, map + pg_offset, ptr,
5141 copy_size);
5142 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5143 memset(map + pg_offset + copy_size, 0,
5144 PAGE_CACHE_SIZE - pg_offset -
5145 copy_size);
5146 }
5147 kunmap(page);
5148 }
5149 flush_dcache_page(page);
5150 } else if (create && PageUptodate(page)) {
5151 WARN_ON(1);
5152 if (!trans) {
5153 kunmap(page);
5154 free_extent_map(em);
5155 em = NULL;
5156 btrfs_release_path(root, path);
5157 trans = btrfs_join_transaction(root, 1);
5158 goto again;
5159 }
5160 map = kmap(page);
5161 write_extent_buffer(leaf, map + pg_offset, ptr,
5162 copy_size);
5163 kunmap(page);
5164 btrfs_mark_buffer_dirty(leaf);
5165 }
5166 set_extent_uptodate(io_tree, em->start,
5167 extent_map_end(em) - 1, GFP_NOFS);
5168 goto insert;
5169 } else {
5170 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5171 WARN_ON(1);
5172 }
5173 not_found:
5174 em->start = start;
5175 em->len = len;
5176 not_found_em:
5177 em->block_start = EXTENT_MAP_HOLE;
5178 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5179 insert:
5180 btrfs_release_path(root, path);
5181 if (em->start > start || extent_map_end(em) <= start) {
5182 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5183 "[%llu %llu]\n", (unsigned long long)em->start,
5184 (unsigned long long)em->len,
5185 (unsigned long long)start,
5186 (unsigned long long)len);
5187 err = -EIO;
5188 goto out;
5189 }
5190
5191 err = 0;
5192 write_lock(&em_tree->lock);
5193 ret = add_extent_mapping(em_tree, em);
5194 /* it is possible that someone inserted the extent into the tree
5195 * while we had the lock dropped. It is also possible that
5196 * an overlapping map exists in the tree
5197 */
5198 if (ret == -EEXIST) {
5199 struct extent_map *existing;
5200
5201 ret = 0;
5202
5203 existing = lookup_extent_mapping(em_tree, start, len);
5204 if (existing && (existing->start > start ||
5205 existing->start + existing->len <= start)) {
5206 free_extent_map(existing);
5207 existing = NULL;
5208 }
5209 if (!existing) {
5210 existing = lookup_extent_mapping(em_tree, em->start,
5211 em->len);
5212 if (existing) {
5213 err = merge_extent_mapping(em_tree, existing,
5214 em, start,
5215 root->sectorsize);
5216 free_extent_map(existing);
5217 if (err) {
5218 free_extent_map(em);
5219 em = NULL;
5220 }
5221 } else {
5222 err = -EIO;
5223 free_extent_map(em);
5224 em = NULL;
5225 }
5226 } else {
5227 free_extent_map(em);
5228 em = existing;
5229 err = 0;
5230 }
5231 }
5232 write_unlock(&em_tree->lock);
5233 out:
5234 if (path)
5235 btrfs_free_path(path);
5236 if (trans) {
5237 ret = btrfs_end_transaction(trans, root);
5238 if (!err)
5239 err = ret;
5240 }
5241 if (err) {
5242 free_extent_map(em);
5243 return ERR_PTR(err);
5244 }
5245 return em;
5246 }
5247
5248 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5249 u64 start, u64 len)
5250 {
5251 struct btrfs_root *root = BTRFS_I(inode)->root;
5252 struct btrfs_trans_handle *trans;
5253 struct extent_map *em;
5254 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5255 struct btrfs_key ins;
5256 u64 alloc_hint;
5257 int ret;
5258
5259 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5260
5261 trans = btrfs_join_transaction(root, 0);
5262 if (!trans)
5263 return ERR_PTR(-ENOMEM);
5264
5265 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5266
5267 alloc_hint = get_extent_allocation_hint(inode, start, len);
5268 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5269 alloc_hint, (u64)-1, &ins, 1);
5270 if (ret) {
5271 em = ERR_PTR(ret);
5272 goto out;
5273 }
5274
5275 em = alloc_extent_map(GFP_NOFS);
5276 if (!em) {
5277 em = ERR_PTR(-ENOMEM);
5278 goto out;
5279 }
5280
5281 em->start = start;
5282 em->orig_start = em->start;
5283 em->len = ins.offset;
5284
5285 em->block_start = ins.objectid;
5286 em->block_len = ins.offset;
5287 em->bdev = root->fs_info->fs_devices->latest_bdev;
5288 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5289
5290 while (1) {
5291 write_lock(&em_tree->lock);
5292 ret = add_extent_mapping(em_tree, em);
5293 write_unlock(&em_tree->lock);
5294 if (ret != -EEXIST)
5295 break;
5296 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5297 }
5298
5299 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5300 ins.offset, ins.offset, 0);
5301 if (ret) {
5302 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5303 em = ERR_PTR(ret);
5304 }
5305 out:
5306 btrfs_end_transaction(trans, root);
5307 return em;
5308 }
5309
5310 /*
5311 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5312 * block must be cow'd
5313 */
5314 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5315 struct inode *inode, u64 offset, u64 len)
5316 {
5317 struct btrfs_path *path;
5318 int ret;
5319 struct extent_buffer *leaf;
5320 struct btrfs_root *root = BTRFS_I(inode)->root;
5321 struct btrfs_file_extent_item *fi;
5322 struct btrfs_key key;
5323 u64 disk_bytenr;
5324 u64 backref_offset;
5325 u64 extent_end;
5326 u64 num_bytes;
5327 int slot;
5328 int found_type;
5329
5330 path = btrfs_alloc_path();
5331 if (!path)
5332 return -ENOMEM;
5333
5334 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5335 offset, 0);
5336 if (ret < 0)
5337 goto out;
5338
5339 slot = path->slots[0];
5340 if (ret == 1) {
5341 if (slot == 0) {
5342 /* can't find the item, must cow */
5343 ret = 0;
5344 goto out;
5345 }
5346 slot--;
5347 }
5348 ret = 0;
5349 leaf = path->nodes[0];
5350 btrfs_item_key_to_cpu(leaf, &key, slot);
5351 if (key.objectid != inode->i_ino ||
5352 key.type != BTRFS_EXTENT_DATA_KEY) {
5353 /* not our file or wrong item type, must cow */
5354 goto out;
5355 }
5356
5357 if (key.offset > offset) {
5358 /* Wrong offset, must cow */
5359 goto out;
5360 }
5361
5362 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5363 found_type = btrfs_file_extent_type(leaf, fi);
5364 if (found_type != BTRFS_FILE_EXTENT_REG &&
5365 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5366 /* not a regular extent, must cow */
5367 goto out;
5368 }
5369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5370 backref_offset = btrfs_file_extent_offset(leaf, fi);
5371
5372 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5373 if (extent_end < offset + len) {
5374 /* extent doesn't include our full range, must cow */
5375 goto out;
5376 }
5377
5378 if (btrfs_extent_readonly(root, disk_bytenr))
5379 goto out;
5380
5381 /*
5382 * look for other files referencing this extent, if we
5383 * find any we must cow
5384 */
5385 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5386 key.offset - backref_offset, disk_bytenr))
5387 goto out;
5388
5389 /*
5390 * adjust disk_bytenr and num_bytes to cover just the bytes
5391 * in this extent we are about to write. If there
5392 * are any csums in that range we have to cow in order
5393 * to keep the csums correct
5394 */
5395 disk_bytenr += backref_offset;
5396 disk_bytenr += offset - key.offset;
5397 num_bytes = min(offset + len, extent_end) - offset;
5398 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5399 goto out;
5400 /*
5401 * all of the above have passed, it is safe to overwrite this extent
5402 * without cow
5403 */
5404 ret = 1;
5405 out:
5406 btrfs_free_path(path);
5407 return ret;
5408 }
5409
5410 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5411 struct buffer_head *bh_result, int create)
5412 {
5413 struct extent_map *em;
5414 struct btrfs_root *root = BTRFS_I(inode)->root;
5415 u64 start = iblock << inode->i_blkbits;
5416 u64 len = bh_result->b_size;
5417 struct btrfs_trans_handle *trans;
5418
5419 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5420 if (IS_ERR(em))
5421 return PTR_ERR(em);
5422
5423 /*
5424 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5425 * io. INLINE is special, and we could probably kludge it in here, but
5426 * it's still buffered so for safety lets just fall back to the generic
5427 * buffered path.
5428 *
5429 * For COMPRESSED we _have_ to read the entire extent in so we can
5430 * decompress it, so there will be buffering required no matter what we
5431 * do, so go ahead and fallback to buffered.
5432 *
5433 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5434 * to buffered IO. Don't blame me, this is the price we pay for using
5435 * the generic code.
5436 */
5437 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5438 em->block_start == EXTENT_MAP_INLINE) {
5439 free_extent_map(em);
5440 return -ENOTBLK;
5441 }
5442
5443 /* Just a good old fashioned hole, return */
5444 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5445 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5446 free_extent_map(em);
5447 /* DIO will do one hole at a time, so just unlock a sector */
5448 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5449 start + root->sectorsize - 1, GFP_NOFS);
5450 return 0;
5451 }
5452
5453 /*
5454 * We don't allocate a new extent in the following cases
5455 *
5456 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5457 * existing extent.
5458 * 2) The extent is marked as PREALLOC. We're good to go here and can
5459 * just use the extent.
5460 *
5461 */
5462 if (!create) {
5463 len = em->len - (start - em->start);
5464 goto map;
5465 }
5466
5467 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5468 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5469 em->block_start != EXTENT_MAP_HOLE)) {
5470 int type;
5471 int ret;
5472 u64 block_start;
5473
5474 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5475 type = BTRFS_ORDERED_PREALLOC;
5476 else
5477 type = BTRFS_ORDERED_NOCOW;
5478 len = min(len, em->len - (start - em->start));
5479 block_start = em->block_start + (start - em->start);
5480
5481 /*
5482 * we're not going to log anything, but we do need
5483 * to make sure the current transaction stays open
5484 * while we look for nocow cross refs
5485 */
5486 trans = btrfs_join_transaction(root, 0);
5487 if (!trans)
5488 goto must_cow;
5489
5490 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5491 ret = btrfs_add_ordered_extent_dio(inode, start,
5492 block_start, len, len, type);
5493 btrfs_end_transaction(trans, root);
5494 if (ret) {
5495 free_extent_map(em);
5496 return ret;
5497 }
5498 goto unlock;
5499 }
5500 btrfs_end_transaction(trans, root);
5501 }
5502 must_cow:
5503 /*
5504 * this will cow the extent, reset the len in case we changed
5505 * it above
5506 */
5507 len = bh_result->b_size;
5508 free_extent_map(em);
5509 em = btrfs_new_extent_direct(inode, start, len);
5510 if (IS_ERR(em))
5511 return PTR_ERR(em);
5512 len = min(len, em->len - (start - em->start));
5513 unlock:
5514 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5515 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5516 0, NULL, GFP_NOFS);
5517 map:
5518 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5519 inode->i_blkbits;
5520 bh_result->b_size = len;
5521 bh_result->b_bdev = em->bdev;
5522 set_buffer_mapped(bh_result);
5523 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5524 set_buffer_new(bh_result);
5525
5526 free_extent_map(em);
5527
5528 return 0;
5529 }
5530
5531 struct btrfs_dio_private {
5532 struct inode *inode;
5533 u64 logical_offset;
5534 u64 disk_bytenr;
5535 u64 bytes;
5536 u32 *csums;
5537 void *private;
5538 };
5539
5540 static void btrfs_endio_direct_read(struct bio *bio, int err)
5541 {
5542 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5543 struct bio_vec *bvec = bio->bi_io_vec;
5544 struct btrfs_dio_private *dip = bio->bi_private;
5545 struct inode *inode = dip->inode;
5546 struct btrfs_root *root = BTRFS_I(inode)->root;
5547 u64 start;
5548 u32 *private = dip->csums;
5549
5550 start = dip->logical_offset;
5551 do {
5552 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5553 struct page *page = bvec->bv_page;
5554 char *kaddr;
5555 u32 csum = ~(u32)0;
5556 unsigned long flags;
5557
5558 local_irq_save(flags);
5559 kaddr = kmap_atomic(page, KM_IRQ0);
5560 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5561 csum, bvec->bv_len);
5562 btrfs_csum_final(csum, (char *)&csum);
5563 kunmap_atomic(kaddr, KM_IRQ0);
5564 local_irq_restore(flags);
5565
5566 flush_dcache_page(bvec->bv_page);
5567 if (csum != *private) {
5568 printk(KERN_ERR "btrfs csum failed ino %lu off"
5569 " %llu csum %u private %u\n",
5570 inode->i_ino, (unsigned long long)start,
5571 csum, *private);
5572 err = -EIO;
5573 }
5574 }
5575
5576 start += bvec->bv_len;
5577 private++;
5578 bvec++;
5579 } while (bvec <= bvec_end);
5580
5581 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5582 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5583 bio->bi_private = dip->private;
5584
5585 kfree(dip->csums);
5586 kfree(dip);
5587 dio_end_io(bio, err);
5588 }
5589
5590 static void btrfs_endio_direct_write(struct bio *bio, int err)
5591 {
5592 struct btrfs_dio_private *dip = bio->bi_private;
5593 struct inode *inode = dip->inode;
5594 struct btrfs_root *root = BTRFS_I(inode)->root;
5595 struct btrfs_trans_handle *trans;
5596 struct btrfs_ordered_extent *ordered = NULL;
5597 struct extent_state *cached_state = NULL;
5598 int ret;
5599
5600 if (err)
5601 goto out_done;
5602
5603 ret = btrfs_dec_test_ordered_pending(inode, &ordered,
5604 dip->logical_offset, dip->bytes);
5605 if (!ret)
5606 goto out_done;
5607
5608 BUG_ON(!ordered);
5609
5610 trans = btrfs_join_transaction(root, 1);
5611 if (!trans) {
5612 err = -ENOMEM;
5613 goto out;
5614 }
5615 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5616
5617 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5618 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5619 if (!ret)
5620 ret = btrfs_update_inode(trans, root, inode);
5621 err = ret;
5622 goto out;
5623 }
5624
5625 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5626 ordered->file_offset + ordered->len - 1, 0,
5627 &cached_state, GFP_NOFS);
5628
5629 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5630 ret = btrfs_mark_extent_written(trans, inode,
5631 ordered->file_offset,
5632 ordered->file_offset +
5633 ordered->len);
5634 if (ret) {
5635 err = ret;
5636 goto out_unlock;
5637 }
5638 } else {
5639 ret = insert_reserved_file_extent(trans, inode,
5640 ordered->file_offset,
5641 ordered->start,
5642 ordered->disk_len,
5643 ordered->len,
5644 ordered->len,
5645 0, 0, 0,
5646 BTRFS_FILE_EXTENT_REG);
5647 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5648 ordered->file_offset, ordered->len);
5649 if (ret) {
5650 err = ret;
5651 WARN_ON(1);
5652 goto out_unlock;
5653 }
5654 }
5655
5656 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5657 btrfs_ordered_update_i_size(inode, 0, ordered);
5658 btrfs_update_inode(trans, root, inode);
5659 out_unlock:
5660 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5661 ordered->file_offset + ordered->len - 1,
5662 &cached_state, GFP_NOFS);
5663 out:
5664 btrfs_delalloc_release_metadata(inode, ordered->len);
5665 btrfs_end_transaction(trans, root);
5666 btrfs_put_ordered_extent(ordered);
5667 btrfs_put_ordered_extent(ordered);
5668 out_done:
5669 bio->bi_private = dip->private;
5670
5671 kfree(dip->csums);
5672 kfree(dip);
5673 dio_end_io(bio, err);
5674 }
5675
5676 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5677 struct bio *bio, int mirror_num,
5678 unsigned long bio_flags, u64 offset)
5679 {
5680 int ret;
5681 struct btrfs_root *root = BTRFS_I(inode)->root;
5682 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5683 BUG_ON(ret);
5684 return 0;
5685 }
5686
5687 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5688 loff_t file_offset)
5689 {
5690 struct btrfs_root *root = BTRFS_I(inode)->root;
5691 struct btrfs_dio_private *dip;
5692 struct bio_vec *bvec = bio->bi_io_vec;
5693 int skip_sum;
5694 int write = rw & REQ_WRITE;
5695 int ret = 0;
5696
5697 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5698
5699 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5700 if (!dip) {
5701 ret = -ENOMEM;
5702 goto free_ordered;
5703 }
5704 dip->csums = NULL;
5705
5706 if (!skip_sum) {
5707 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5708 if (!dip->csums) {
5709 ret = -ENOMEM;
5710 goto free_ordered;
5711 }
5712 }
5713
5714 dip->private = bio->bi_private;
5715 dip->inode = inode;
5716 dip->logical_offset = file_offset;
5717
5718 dip->bytes = 0;
5719 do {
5720 dip->bytes += bvec->bv_len;
5721 bvec++;
5722 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5723
5724 dip->disk_bytenr = (u64)bio->bi_sector << 9;
5725 bio->bi_private = dip;
5726
5727 if (write)
5728 bio->bi_end_io = btrfs_endio_direct_write;
5729 else
5730 bio->bi_end_io = btrfs_endio_direct_read;
5731
5732 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5733 if (ret)
5734 goto out_err;
5735
5736 if (write && !skip_sum) {
5737 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
5738 inode, rw, bio, 0, 0,
5739 dip->logical_offset,
5740 __btrfs_submit_bio_start_direct_io,
5741 __btrfs_submit_bio_done);
5742 if (ret)
5743 goto out_err;
5744 return;
5745 } else if (!skip_sum)
5746 btrfs_lookup_bio_sums_dio(root, inode, bio,
5747 dip->logical_offset, dip->csums);
5748
5749 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5750 if (ret)
5751 goto out_err;
5752 return;
5753 out_err:
5754 kfree(dip->csums);
5755 kfree(dip);
5756 free_ordered:
5757 /*
5758 * If this is a write, we need to clean up the reserved space and kill
5759 * the ordered extent.
5760 */
5761 if (write) {
5762 struct btrfs_ordered_extent *ordered;
5763 ordered = btrfs_lookup_ordered_extent(inode,
5764 dip->logical_offset);
5765 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5766 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5767 btrfs_free_reserved_extent(root, ordered->start,
5768 ordered->disk_len);
5769 btrfs_put_ordered_extent(ordered);
5770 btrfs_put_ordered_extent(ordered);
5771 }
5772 bio_endio(bio, ret);
5773 }
5774
5775 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5776 const struct iovec *iov, loff_t offset,
5777 unsigned long nr_segs)
5778 {
5779 int seg;
5780 size_t size;
5781 unsigned long addr;
5782 unsigned blocksize_mask = root->sectorsize - 1;
5783 ssize_t retval = -EINVAL;
5784 loff_t end = offset;
5785
5786 if (offset & blocksize_mask)
5787 goto out;
5788
5789 /* Check the memory alignment. Blocks cannot straddle pages */
5790 for (seg = 0; seg < nr_segs; seg++) {
5791 addr = (unsigned long)iov[seg].iov_base;
5792 size = iov[seg].iov_len;
5793 end += size;
5794 if ((addr & blocksize_mask) || (size & blocksize_mask))
5795 goto out;
5796 }
5797 retval = 0;
5798 out:
5799 return retval;
5800 }
5801 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5802 const struct iovec *iov, loff_t offset,
5803 unsigned long nr_segs)
5804 {
5805 struct file *file = iocb->ki_filp;
5806 struct inode *inode = file->f_mapping->host;
5807 struct btrfs_ordered_extent *ordered;
5808 struct extent_state *cached_state = NULL;
5809 u64 lockstart, lockend;
5810 ssize_t ret;
5811 int writing = rw & WRITE;
5812 int write_bits = 0;
5813 size_t count = iov_length(iov, nr_segs);
5814
5815 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
5816 offset, nr_segs)) {
5817 return 0;
5818 }
5819
5820 lockstart = offset;
5821 lockend = offset + count - 1;
5822
5823 if (writing) {
5824 ret = btrfs_delalloc_reserve_space(inode, count);
5825 if (ret)
5826 goto out;
5827 }
5828
5829 while (1) {
5830 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5831 0, &cached_state, GFP_NOFS);
5832 /*
5833 * We're concerned with the entire range that we're going to be
5834 * doing DIO to, so we need to make sure theres no ordered
5835 * extents in this range.
5836 */
5837 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5838 lockend - lockstart + 1);
5839 if (!ordered)
5840 break;
5841 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5842 &cached_state, GFP_NOFS);
5843 btrfs_start_ordered_extent(inode, ordered, 1);
5844 btrfs_put_ordered_extent(ordered);
5845 cond_resched();
5846 }
5847
5848 /*
5849 * we don't use btrfs_set_extent_delalloc because we don't want
5850 * the dirty or uptodate bits
5851 */
5852 if (writing) {
5853 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
5854 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5855 EXTENT_DELALLOC, 0, NULL, &cached_state,
5856 GFP_NOFS);
5857 if (ret) {
5858 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5859 lockend, EXTENT_LOCKED | write_bits,
5860 1, 0, &cached_state, GFP_NOFS);
5861 goto out;
5862 }
5863 }
5864
5865 free_extent_state(cached_state);
5866 cached_state = NULL;
5867
5868 ret = __blockdev_direct_IO(rw, iocb, inode,
5869 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
5870 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
5871 btrfs_submit_direct, 0);
5872
5873 if (ret < 0 && ret != -EIOCBQUEUED) {
5874 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
5875 offset + iov_length(iov, nr_segs) - 1,
5876 EXTENT_LOCKED | write_bits, 1, 0,
5877 &cached_state, GFP_NOFS);
5878 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
5879 /*
5880 * We're falling back to buffered, unlock the section we didn't
5881 * do IO on.
5882 */
5883 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
5884 offset + iov_length(iov, nr_segs) - 1,
5885 EXTENT_LOCKED | write_bits, 1, 0,
5886 &cached_state, GFP_NOFS);
5887 }
5888 out:
5889 free_extent_state(cached_state);
5890 return ret;
5891 }
5892
5893 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5894 __u64 start, __u64 len)
5895 {
5896 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
5897 }
5898
5899 int btrfs_readpage(struct file *file, struct page *page)
5900 {
5901 struct extent_io_tree *tree;
5902 tree = &BTRFS_I(page->mapping->host)->io_tree;
5903 return extent_read_full_page(tree, page, btrfs_get_extent);
5904 }
5905
5906 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
5907 {
5908 struct extent_io_tree *tree;
5909
5910
5911 if (current->flags & PF_MEMALLOC) {
5912 redirty_page_for_writepage(wbc, page);
5913 unlock_page(page);
5914 return 0;
5915 }
5916 tree = &BTRFS_I(page->mapping->host)->io_tree;
5917 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
5918 }
5919
5920 int btrfs_writepages(struct address_space *mapping,
5921 struct writeback_control *wbc)
5922 {
5923 struct extent_io_tree *tree;
5924
5925 tree = &BTRFS_I(mapping->host)->io_tree;
5926 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
5927 }
5928
5929 static int
5930 btrfs_readpages(struct file *file, struct address_space *mapping,
5931 struct list_head *pages, unsigned nr_pages)
5932 {
5933 struct extent_io_tree *tree;
5934 tree = &BTRFS_I(mapping->host)->io_tree;
5935 return extent_readpages(tree, mapping, pages, nr_pages,
5936 btrfs_get_extent);
5937 }
5938 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5939 {
5940 struct extent_io_tree *tree;
5941 struct extent_map_tree *map;
5942 int ret;
5943
5944 tree = &BTRFS_I(page->mapping->host)->io_tree;
5945 map = &BTRFS_I(page->mapping->host)->extent_tree;
5946 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
5947 if (ret == 1) {
5948 ClearPagePrivate(page);
5949 set_page_private(page, 0);
5950 page_cache_release(page);
5951 }
5952 return ret;
5953 }
5954
5955 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5956 {
5957 if (PageWriteback(page) || PageDirty(page))
5958 return 0;
5959 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5960 }
5961
5962 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5963 {
5964 struct extent_io_tree *tree;
5965 struct btrfs_ordered_extent *ordered;
5966 struct extent_state *cached_state = NULL;
5967 u64 page_start = page_offset(page);
5968 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5969
5970
5971 /*
5972 * we have the page locked, so new writeback can't start,
5973 * and the dirty bit won't be cleared while we are here.
5974 *
5975 * Wait for IO on this page so that we can safely clear
5976 * the PagePrivate2 bit and do ordered accounting
5977 */
5978 wait_on_page_writeback(page);
5979
5980 tree = &BTRFS_I(page->mapping->host)->io_tree;
5981 if (offset) {
5982 btrfs_releasepage(page, GFP_NOFS);
5983 return;
5984 }
5985 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5986 GFP_NOFS);
5987 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5988 page_offset(page));
5989 if (ordered) {
5990 /*
5991 * IO on this page will never be started, so we need
5992 * to account for any ordered extents now
5993 */
5994 clear_extent_bit(tree, page_start, page_end,
5995 EXTENT_DIRTY | EXTENT_DELALLOC |
5996 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5997 &cached_state, GFP_NOFS);
5998 /*
5999 * whoever cleared the private bit is responsible
6000 * for the finish_ordered_io
6001 */
6002 if (TestClearPagePrivate2(page)) {
6003 btrfs_finish_ordered_io(page->mapping->host,
6004 page_start, page_end);
6005 }
6006 btrfs_put_ordered_extent(ordered);
6007 cached_state = NULL;
6008 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6009 GFP_NOFS);
6010 }
6011 clear_extent_bit(tree, page_start, page_end,
6012 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6013 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6014 __btrfs_releasepage(page, GFP_NOFS);
6015
6016 ClearPageChecked(page);
6017 if (PagePrivate(page)) {
6018 ClearPagePrivate(page);
6019 set_page_private(page, 0);
6020 page_cache_release(page);
6021 }
6022 }
6023
6024 /*
6025 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6026 * called from a page fault handler when a page is first dirtied. Hence we must
6027 * be careful to check for EOF conditions here. We set the page up correctly
6028 * for a written page which means we get ENOSPC checking when writing into
6029 * holes and correct delalloc and unwritten extent mapping on filesystems that
6030 * support these features.
6031 *
6032 * We are not allowed to take the i_mutex here so we have to play games to
6033 * protect against truncate races as the page could now be beyond EOF. Because
6034 * vmtruncate() writes the inode size before removing pages, once we have the
6035 * page lock we can determine safely if the page is beyond EOF. If it is not
6036 * beyond EOF, then the page is guaranteed safe against truncation until we
6037 * unlock the page.
6038 */
6039 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6040 {
6041 struct page *page = vmf->page;
6042 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6043 struct btrfs_root *root = BTRFS_I(inode)->root;
6044 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6045 struct btrfs_ordered_extent *ordered;
6046 struct extent_state *cached_state = NULL;
6047 char *kaddr;
6048 unsigned long zero_start;
6049 loff_t size;
6050 int ret;
6051 u64 page_start;
6052 u64 page_end;
6053
6054 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6055 if (ret) {
6056 if (ret == -ENOMEM)
6057 ret = VM_FAULT_OOM;
6058 else /* -ENOSPC, -EIO, etc */
6059 ret = VM_FAULT_SIGBUS;
6060 goto out;
6061 }
6062
6063 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6064 again:
6065 lock_page(page);
6066 size = i_size_read(inode);
6067 page_start = page_offset(page);
6068 page_end = page_start + PAGE_CACHE_SIZE - 1;
6069
6070 if ((page->mapping != inode->i_mapping) ||
6071 (page_start >= size)) {
6072 /* page got truncated out from underneath us */
6073 goto out_unlock;
6074 }
6075 wait_on_page_writeback(page);
6076
6077 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6078 GFP_NOFS);
6079 set_page_extent_mapped(page);
6080
6081 /*
6082 * we can't set the delalloc bits if there are pending ordered
6083 * extents. Drop our locks and wait for them to finish
6084 */
6085 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6086 if (ordered) {
6087 unlock_extent_cached(io_tree, page_start, page_end,
6088 &cached_state, GFP_NOFS);
6089 unlock_page(page);
6090 btrfs_start_ordered_extent(inode, ordered, 1);
6091 btrfs_put_ordered_extent(ordered);
6092 goto again;
6093 }
6094
6095 /*
6096 * XXX - page_mkwrite gets called every time the page is dirtied, even
6097 * if it was already dirty, so for space accounting reasons we need to
6098 * clear any delalloc bits for the range we are fixing to save. There
6099 * is probably a better way to do this, but for now keep consistent with
6100 * prepare_pages in the normal write path.
6101 */
6102 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6103 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6104 0, 0, &cached_state, GFP_NOFS);
6105
6106 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6107 &cached_state);
6108 if (ret) {
6109 unlock_extent_cached(io_tree, page_start, page_end,
6110 &cached_state, GFP_NOFS);
6111 ret = VM_FAULT_SIGBUS;
6112 goto out_unlock;
6113 }
6114 ret = 0;
6115
6116 /* page is wholly or partially inside EOF */
6117 if (page_start + PAGE_CACHE_SIZE > size)
6118 zero_start = size & ~PAGE_CACHE_MASK;
6119 else
6120 zero_start = PAGE_CACHE_SIZE;
6121
6122 if (zero_start != PAGE_CACHE_SIZE) {
6123 kaddr = kmap(page);
6124 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6125 flush_dcache_page(page);
6126 kunmap(page);
6127 }
6128 ClearPageChecked(page);
6129 set_page_dirty(page);
6130 SetPageUptodate(page);
6131
6132 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6133 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6134
6135 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6136
6137 out_unlock:
6138 if (!ret)
6139 return VM_FAULT_LOCKED;
6140 unlock_page(page);
6141 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6142 out:
6143 return ret;
6144 }
6145
6146 static void btrfs_truncate(struct inode *inode)
6147 {
6148 struct btrfs_root *root = BTRFS_I(inode)->root;
6149 int ret;
6150 struct btrfs_trans_handle *trans;
6151 unsigned long nr;
6152 u64 mask = root->sectorsize - 1;
6153
6154 if (!S_ISREG(inode->i_mode)) {
6155 WARN_ON(1);
6156 return;
6157 }
6158
6159 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6160 if (ret)
6161 return;
6162
6163 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6164 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6165
6166 trans = btrfs_start_transaction(root, 0);
6167 BUG_ON(IS_ERR(trans));
6168 btrfs_set_trans_block_group(trans, inode);
6169 trans->block_rsv = root->orphan_block_rsv;
6170
6171 /*
6172 * setattr is responsible for setting the ordered_data_close flag,
6173 * but that is only tested during the last file release. That
6174 * could happen well after the next commit, leaving a great big
6175 * window where new writes may get lost if someone chooses to write
6176 * to this file after truncating to zero
6177 *
6178 * The inode doesn't have any dirty data here, and so if we commit
6179 * this is a noop. If someone immediately starts writing to the inode
6180 * it is very likely we'll catch some of their writes in this
6181 * transaction, and the commit will find this file on the ordered
6182 * data list with good things to send down.
6183 *
6184 * This is a best effort solution, there is still a window where
6185 * using truncate to replace the contents of the file will
6186 * end up with a zero length file after a crash.
6187 */
6188 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6189 btrfs_add_ordered_operation(trans, root, inode);
6190
6191 while (1) {
6192 if (!trans) {
6193 trans = btrfs_start_transaction(root, 0);
6194 BUG_ON(IS_ERR(trans));
6195 btrfs_set_trans_block_group(trans, inode);
6196 trans->block_rsv = root->orphan_block_rsv;
6197 }
6198
6199 ret = btrfs_block_rsv_check(trans, root,
6200 root->orphan_block_rsv, 0, 5);
6201 if (ret) {
6202 BUG_ON(ret != -EAGAIN);
6203 ret = btrfs_commit_transaction(trans, root);
6204 BUG_ON(ret);
6205 trans = NULL;
6206 continue;
6207 }
6208
6209 ret = btrfs_truncate_inode_items(trans, root, inode,
6210 inode->i_size,
6211 BTRFS_EXTENT_DATA_KEY);
6212 if (ret != -EAGAIN)
6213 break;
6214
6215 ret = btrfs_update_inode(trans, root, inode);
6216 BUG_ON(ret);
6217
6218 nr = trans->blocks_used;
6219 btrfs_end_transaction(trans, root);
6220 trans = NULL;
6221 btrfs_btree_balance_dirty(root, nr);
6222 }
6223
6224 if (ret == 0 && inode->i_nlink > 0) {
6225 ret = btrfs_orphan_del(trans, inode);
6226 BUG_ON(ret);
6227 }
6228
6229 ret = btrfs_update_inode(trans, root, inode);
6230 BUG_ON(ret);
6231
6232 nr = trans->blocks_used;
6233 ret = btrfs_end_transaction_throttle(trans, root);
6234 BUG_ON(ret);
6235 btrfs_btree_balance_dirty(root, nr);
6236 }
6237
6238 /*
6239 * create a new subvolume directory/inode (helper for the ioctl).
6240 */
6241 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6242 struct btrfs_root *new_root,
6243 u64 new_dirid, u64 alloc_hint)
6244 {
6245 struct inode *inode;
6246 int err;
6247 u64 index = 0;
6248
6249 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6250 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6251 if (IS_ERR(inode))
6252 return PTR_ERR(inode);
6253 inode->i_op = &btrfs_dir_inode_operations;
6254 inode->i_fop = &btrfs_dir_file_operations;
6255
6256 inode->i_nlink = 1;
6257 btrfs_i_size_write(inode, 0);
6258
6259 err = btrfs_update_inode(trans, new_root, inode);
6260 BUG_ON(err);
6261
6262 iput(inode);
6263 return 0;
6264 }
6265
6266 /* helper function for file defrag and space balancing. This
6267 * forces readahead on a given range of bytes in an inode
6268 */
6269 unsigned long btrfs_force_ra(struct address_space *mapping,
6270 struct file_ra_state *ra, struct file *file,
6271 pgoff_t offset, pgoff_t last_index)
6272 {
6273 pgoff_t req_size = last_index - offset + 1;
6274
6275 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6276 return offset + req_size;
6277 }
6278
6279 struct inode *btrfs_alloc_inode(struct super_block *sb)
6280 {
6281 struct btrfs_inode *ei;
6282 struct inode *inode;
6283
6284 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6285 if (!ei)
6286 return NULL;
6287
6288 ei->root = NULL;
6289 ei->space_info = NULL;
6290 ei->generation = 0;
6291 ei->sequence = 0;
6292 ei->last_trans = 0;
6293 ei->last_sub_trans = 0;
6294 ei->logged_trans = 0;
6295 ei->delalloc_bytes = 0;
6296 ei->reserved_bytes = 0;
6297 ei->disk_i_size = 0;
6298 ei->flags = 0;
6299 ei->index_cnt = (u64)-1;
6300 ei->last_unlink_trans = 0;
6301
6302 spin_lock_init(&ei->accounting_lock);
6303 atomic_set(&ei->outstanding_extents, 0);
6304 ei->reserved_extents = 0;
6305
6306 ei->ordered_data_close = 0;
6307 ei->orphan_meta_reserved = 0;
6308 ei->dummy_inode = 0;
6309 ei->force_compress = 0;
6310
6311 inode = &ei->vfs_inode;
6312 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6313 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6314 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6315 mutex_init(&ei->log_mutex);
6316 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6317 INIT_LIST_HEAD(&ei->i_orphan);
6318 INIT_LIST_HEAD(&ei->delalloc_inodes);
6319 INIT_LIST_HEAD(&ei->ordered_operations);
6320 RB_CLEAR_NODE(&ei->rb_node);
6321
6322 return inode;
6323 }
6324
6325 void btrfs_destroy_inode(struct inode *inode)
6326 {
6327 struct btrfs_ordered_extent *ordered;
6328 struct btrfs_root *root = BTRFS_I(inode)->root;
6329
6330 WARN_ON(!list_empty(&inode->i_dentry));
6331 WARN_ON(inode->i_data.nrpages);
6332 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6333 WARN_ON(BTRFS_I(inode)->reserved_extents);
6334
6335 /*
6336 * This can happen where we create an inode, but somebody else also
6337 * created the same inode and we need to destroy the one we already
6338 * created.
6339 */
6340 if (!root)
6341 goto free;
6342
6343 /*
6344 * Make sure we're properly removed from the ordered operation
6345 * lists.
6346 */
6347 smp_mb();
6348 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6349 spin_lock(&root->fs_info->ordered_extent_lock);
6350 list_del_init(&BTRFS_I(inode)->ordered_operations);
6351 spin_unlock(&root->fs_info->ordered_extent_lock);
6352 }
6353
6354 if (root == root->fs_info->tree_root) {
6355 struct btrfs_block_group_cache *block_group;
6356
6357 block_group = btrfs_lookup_block_group(root->fs_info,
6358 BTRFS_I(inode)->block_group);
6359 if (block_group && block_group->inode == inode) {
6360 spin_lock(&block_group->lock);
6361 block_group->inode = NULL;
6362 spin_unlock(&block_group->lock);
6363 btrfs_put_block_group(block_group);
6364 } else if (block_group) {
6365 btrfs_put_block_group(block_group);
6366 }
6367 }
6368
6369 spin_lock(&root->orphan_lock);
6370 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6371 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6372 inode->i_ino);
6373 list_del_init(&BTRFS_I(inode)->i_orphan);
6374 }
6375 spin_unlock(&root->orphan_lock);
6376
6377 while (1) {
6378 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6379 if (!ordered)
6380 break;
6381 else {
6382 printk(KERN_ERR "btrfs found ordered "
6383 "extent %llu %llu on inode cleanup\n",
6384 (unsigned long long)ordered->file_offset,
6385 (unsigned long long)ordered->len);
6386 btrfs_remove_ordered_extent(inode, ordered);
6387 btrfs_put_ordered_extent(ordered);
6388 btrfs_put_ordered_extent(ordered);
6389 }
6390 }
6391 inode_tree_del(inode);
6392 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6393 free:
6394 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6395 }
6396
6397 int btrfs_drop_inode(struct inode *inode)
6398 {
6399 struct btrfs_root *root = BTRFS_I(inode)->root;
6400
6401 if (btrfs_root_refs(&root->root_item) == 0 &&
6402 root != root->fs_info->tree_root)
6403 return 1;
6404 else
6405 return generic_drop_inode(inode);
6406 }
6407
6408 static void init_once(void *foo)
6409 {
6410 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6411
6412 inode_init_once(&ei->vfs_inode);
6413 }
6414
6415 void btrfs_destroy_cachep(void)
6416 {
6417 if (btrfs_inode_cachep)
6418 kmem_cache_destroy(btrfs_inode_cachep);
6419 if (btrfs_trans_handle_cachep)
6420 kmem_cache_destroy(btrfs_trans_handle_cachep);
6421 if (btrfs_transaction_cachep)
6422 kmem_cache_destroy(btrfs_transaction_cachep);
6423 if (btrfs_path_cachep)
6424 kmem_cache_destroy(btrfs_path_cachep);
6425 }
6426
6427 int btrfs_init_cachep(void)
6428 {
6429 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6430 sizeof(struct btrfs_inode), 0,
6431 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6432 if (!btrfs_inode_cachep)
6433 goto fail;
6434
6435 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6436 sizeof(struct btrfs_trans_handle), 0,
6437 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6438 if (!btrfs_trans_handle_cachep)
6439 goto fail;
6440
6441 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6442 sizeof(struct btrfs_transaction), 0,
6443 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6444 if (!btrfs_transaction_cachep)
6445 goto fail;
6446
6447 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6448 sizeof(struct btrfs_path), 0,
6449 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6450 if (!btrfs_path_cachep)
6451 goto fail;
6452
6453 return 0;
6454 fail:
6455 btrfs_destroy_cachep();
6456 return -ENOMEM;
6457 }
6458
6459 static int btrfs_getattr(struct vfsmount *mnt,
6460 struct dentry *dentry, struct kstat *stat)
6461 {
6462 struct inode *inode = dentry->d_inode;
6463 generic_fillattr(inode, stat);
6464 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6465 stat->blksize = PAGE_CACHE_SIZE;
6466 stat->blocks = (inode_get_bytes(inode) +
6467 BTRFS_I(inode)->delalloc_bytes) >> 9;
6468 return 0;
6469 }
6470
6471 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6472 struct inode *new_dir, struct dentry *new_dentry)
6473 {
6474 struct btrfs_trans_handle *trans;
6475 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6476 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6477 struct inode *new_inode = new_dentry->d_inode;
6478 struct inode *old_inode = old_dentry->d_inode;
6479 struct timespec ctime = CURRENT_TIME;
6480 u64 index = 0;
6481 u64 root_objectid;
6482 int ret;
6483
6484 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6485 return -EPERM;
6486
6487 /* we only allow rename subvolume link between subvolumes */
6488 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6489 return -EXDEV;
6490
6491 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6492 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6493 return -ENOTEMPTY;
6494
6495 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6496 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6497 return -ENOTEMPTY;
6498 /*
6499 * we're using rename to replace one file with another.
6500 * and the replacement file is large. Start IO on it now so
6501 * we don't add too much work to the end of the transaction
6502 */
6503 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6504 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6505 filemap_flush(old_inode->i_mapping);
6506
6507 /* close the racy window with snapshot create/destroy ioctl */
6508 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6509 down_read(&root->fs_info->subvol_sem);
6510 /*
6511 * We want to reserve the absolute worst case amount of items. So if
6512 * both inodes are subvols and we need to unlink them then that would
6513 * require 4 item modifications, but if they are both normal inodes it
6514 * would require 5 item modifications, so we'll assume their normal
6515 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6516 * should cover the worst case number of items we'll modify.
6517 */
6518 trans = btrfs_start_transaction(root, 20);
6519 if (IS_ERR(trans))
6520 return PTR_ERR(trans);
6521
6522 btrfs_set_trans_block_group(trans, new_dir);
6523
6524 if (dest != root)
6525 btrfs_record_root_in_trans(trans, dest);
6526
6527 ret = btrfs_set_inode_index(new_dir, &index);
6528 if (ret)
6529 goto out_fail;
6530
6531 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6532 /* force full log commit if subvolume involved. */
6533 root->fs_info->last_trans_log_full_commit = trans->transid;
6534 } else {
6535 ret = btrfs_insert_inode_ref(trans, dest,
6536 new_dentry->d_name.name,
6537 new_dentry->d_name.len,
6538 old_inode->i_ino,
6539 new_dir->i_ino, index);
6540 if (ret)
6541 goto out_fail;
6542 /*
6543 * this is an ugly little race, but the rename is required
6544 * to make sure that if we crash, the inode is either at the
6545 * old name or the new one. pinning the log transaction lets
6546 * us make sure we don't allow a log commit to come in after
6547 * we unlink the name but before we add the new name back in.
6548 */
6549 btrfs_pin_log_trans(root);
6550 }
6551 /*
6552 * make sure the inode gets flushed if it is replacing
6553 * something.
6554 */
6555 if (new_inode && new_inode->i_size &&
6556 old_inode && S_ISREG(old_inode->i_mode)) {
6557 btrfs_add_ordered_operation(trans, root, old_inode);
6558 }
6559
6560 old_dir->i_ctime = old_dir->i_mtime = ctime;
6561 new_dir->i_ctime = new_dir->i_mtime = ctime;
6562 old_inode->i_ctime = ctime;
6563
6564 if (old_dentry->d_parent != new_dentry->d_parent)
6565 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6566
6567 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6568 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6569 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6570 old_dentry->d_name.name,
6571 old_dentry->d_name.len);
6572 } else {
6573 btrfs_inc_nlink(old_dentry->d_inode);
6574 ret = btrfs_unlink_inode(trans, root, old_dir,
6575 old_dentry->d_inode,
6576 old_dentry->d_name.name,
6577 old_dentry->d_name.len);
6578 }
6579 BUG_ON(ret);
6580
6581 if (new_inode) {
6582 new_inode->i_ctime = CURRENT_TIME;
6583 if (unlikely(new_inode->i_ino ==
6584 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6585 root_objectid = BTRFS_I(new_inode)->location.objectid;
6586 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6587 root_objectid,
6588 new_dentry->d_name.name,
6589 new_dentry->d_name.len);
6590 BUG_ON(new_inode->i_nlink == 0);
6591 } else {
6592 ret = btrfs_unlink_inode(trans, dest, new_dir,
6593 new_dentry->d_inode,
6594 new_dentry->d_name.name,
6595 new_dentry->d_name.len);
6596 }
6597 BUG_ON(ret);
6598 if (new_inode->i_nlink == 0) {
6599 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6600 BUG_ON(ret);
6601 }
6602 }
6603
6604 ret = btrfs_add_link(trans, new_dir, old_inode,
6605 new_dentry->d_name.name,
6606 new_dentry->d_name.len, 0, index);
6607 BUG_ON(ret);
6608
6609 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6610 btrfs_log_new_name(trans, old_inode, old_dir,
6611 new_dentry->d_parent);
6612 btrfs_end_log_trans(root);
6613 }
6614 out_fail:
6615 btrfs_end_transaction_throttle(trans, root);
6616
6617 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6618 up_read(&root->fs_info->subvol_sem);
6619
6620 return ret;
6621 }
6622
6623 /*
6624 * some fairly slow code that needs optimization. This walks the list
6625 * of all the inodes with pending delalloc and forces them to disk.
6626 */
6627 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6628 {
6629 struct list_head *head = &root->fs_info->delalloc_inodes;
6630 struct btrfs_inode *binode;
6631 struct inode *inode;
6632
6633 if (root->fs_info->sb->s_flags & MS_RDONLY)
6634 return -EROFS;
6635
6636 spin_lock(&root->fs_info->delalloc_lock);
6637 while (!list_empty(head)) {
6638 binode = list_entry(head->next, struct btrfs_inode,
6639 delalloc_inodes);
6640 inode = igrab(&binode->vfs_inode);
6641 if (!inode)
6642 list_del_init(&binode->delalloc_inodes);
6643 spin_unlock(&root->fs_info->delalloc_lock);
6644 if (inode) {
6645 filemap_flush(inode->i_mapping);
6646 if (delay_iput)
6647 btrfs_add_delayed_iput(inode);
6648 else
6649 iput(inode);
6650 }
6651 cond_resched();
6652 spin_lock(&root->fs_info->delalloc_lock);
6653 }
6654 spin_unlock(&root->fs_info->delalloc_lock);
6655
6656 /* the filemap_flush will queue IO into the worker threads, but
6657 * we have to make sure the IO is actually started and that
6658 * ordered extents get created before we return
6659 */
6660 atomic_inc(&root->fs_info->async_submit_draining);
6661 while (atomic_read(&root->fs_info->nr_async_submits) ||
6662 atomic_read(&root->fs_info->async_delalloc_pages)) {
6663 wait_event(root->fs_info->async_submit_wait,
6664 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6665 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6666 }
6667 atomic_dec(&root->fs_info->async_submit_draining);
6668 return 0;
6669 }
6670
6671 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6672 int sync)
6673 {
6674 struct btrfs_inode *binode;
6675 struct inode *inode = NULL;
6676
6677 spin_lock(&root->fs_info->delalloc_lock);
6678 while (!list_empty(&root->fs_info->delalloc_inodes)) {
6679 binode = list_entry(root->fs_info->delalloc_inodes.next,
6680 struct btrfs_inode, delalloc_inodes);
6681 inode = igrab(&binode->vfs_inode);
6682 if (inode) {
6683 list_move_tail(&binode->delalloc_inodes,
6684 &root->fs_info->delalloc_inodes);
6685 break;
6686 }
6687
6688 list_del_init(&binode->delalloc_inodes);
6689 cond_resched_lock(&root->fs_info->delalloc_lock);
6690 }
6691 spin_unlock(&root->fs_info->delalloc_lock);
6692
6693 if (inode) {
6694 if (sync) {
6695 filemap_write_and_wait(inode->i_mapping);
6696 /*
6697 * We have to do this because compression doesn't
6698 * actually set PG_writeback until it submits the pages
6699 * for IO, which happens in an async thread, so we could
6700 * race and not actually wait for any writeback pages
6701 * because they've not been submitted yet. Technically
6702 * this could still be the case for the ordered stuff
6703 * since the async thread may not have started to do its
6704 * work yet. If this becomes the case then we need to
6705 * figure out a way to make sure that in writepage we
6706 * wait for any async pages to be submitted before
6707 * returning so that fdatawait does what its supposed to
6708 * do.
6709 */
6710 btrfs_wait_ordered_range(inode, 0, (u64)-1);
6711 } else {
6712 filemap_flush(inode->i_mapping);
6713 }
6714 if (delay_iput)
6715 btrfs_add_delayed_iput(inode);
6716 else
6717 iput(inode);
6718 return 1;
6719 }
6720 return 0;
6721 }
6722
6723 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6724 const char *symname)
6725 {
6726 struct btrfs_trans_handle *trans;
6727 struct btrfs_root *root = BTRFS_I(dir)->root;
6728 struct btrfs_path *path;
6729 struct btrfs_key key;
6730 struct inode *inode = NULL;
6731 int err;
6732 int drop_inode = 0;
6733 u64 objectid;
6734 u64 index = 0 ;
6735 int name_len;
6736 int datasize;
6737 unsigned long ptr;
6738 struct btrfs_file_extent_item *ei;
6739 struct extent_buffer *leaf;
6740 unsigned long nr = 0;
6741
6742 name_len = strlen(symname) + 1;
6743 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6744 return -ENAMETOOLONG;
6745
6746 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6747 if (err)
6748 return err;
6749 /*
6750 * 2 items for inode item and ref
6751 * 2 items for dir items
6752 * 1 item for xattr if selinux is on
6753 */
6754 trans = btrfs_start_transaction(root, 5);
6755 if (IS_ERR(trans))
6756 return PTR_ERR(trans);
6757
6758 btrfs_set_trans_block_group(trans, dir);
6759
6760 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6761 dentry->d_name.len,
6762 dentry->d_parent->d_inode->i_ino, objectid,
6763 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6764 &index);
6765 err = PTR_ERR(inode);
6766 if (IS_ERR(inode))
6767 goto out_unlock;
6768
6769 err = btrfs_init_inode_security(trans, inode, dir);
6770 if (err) {
6771 drop_inode = 1;
6772 goto out_unlock;
6773 }
6774
6775 btrfs_set_trans_block_group(trans, inode);
6776 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
6777 if (err)
6778 drop_inode = 1;
6779 else {
6780 inode->i_mapping->a_ops = &btrfs_aops;
6781 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6782 inode->i_fop = &btrfs_file_operations;
6783 inode->i_op = &btrfs_file_inode_operations;
6784 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6785 }
6786 btrfs_update_inode_block_group(trans, inode);
6787 btrfs_update_inode_block_group(trans, dir);
6788 if (drop_inode)
6789 goto out_unlock;
6790
6791 path = btrfs_alloc_path();
6792 BUG_ON(!path);
6793 key.objectid = inode->i_ino;
6794 key.offset = 0;
6795 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6796 datasize = btrfs_file_extent_calc_inline_size(name_len);
6797 err = btrfs_insert_empty_item(trans, root, path, &key,
6798 datasize);
6799 if (err) {
6800 drop_inode = 1;
6801 goto out_unlock;
6802 }
6803 leaf = path->nodes[0];
6804 ei = btrfs_item_ptr(leaf, path->slots[0],
6805 struct btrfs_file_extent_item);
6806 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6807 btrfs_set_file_extent_type(leaf, ei,
6808 BTRFS_FILE_EXTENT_INLINE);
6809 btrfs_set_file_extent_encryption(leaf, ei, 0);
6810 btrfs_set_file_extent_compression(leaf, ei, 0);
6811 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6812 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6813
6814 ptr = btrfs_file_extent_inline_start(ei);
6815 write_extent_buffer(leaf, symname, ptr, name_len);
6816 btrfs_mark_buffer_dirty(leaf);
6817 btrfs_free_path(path);
6818
6819 inode->i_op = &btrfs_symlink_inode_operations;
6820 inode->i_mapping->a_ops = &btrfs_symlink_aops;
6821 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6822 inode_set_bytes(inode, name_len);
6823 btrfs_i_size_write(inode, name_len - 1);
6824 err = btrfs_update_inode(trans, root, inode);
6825 if (err)
6826 drop_inode = 1;
6827
6828 out_unlock:
6829 nr = trans->blocks_used;
6830 btrfs_end_transaction_throttle(trans, root);
6831 if (drop_inode) {
6832 inode_dec_link_count(inode);
6833 iput(inode);
6834 }
6835 btrfs_btree_balance_dirty(root, nr);
6836 return err;
6837 }
6838
6839 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
6840 u64 start, u64 num_bytes, u64 min_size,
6841 loff_t actual_len, u64 *alloc_hint,
6842 struct btrfs_trans_handle *trans)
6843 {
6844 struct btrfs_root *root = BTRFS_I(inode)->root;
6845 struct btrfs_key ins;
6846 u64 cur_offset = start;
6847 int ret = 0;
6848 bool own_trans = true;
6849
6850 if (trans)
6851 own_trans = false;
6852 while (num_bytes > 0) {
6853 if (own_trans) {
6854 trans = btrfs_start_transaction(root, 3);
6855 if (IS_ERR(trans)) {
6856 ret = PTR_ERR(trans);
6857 break;
6858 }
6859 }
6860
6861 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
6862 0, *alloc_hint, (u64)-1, &ins, 1);
6863 if (ret) {
6864 if (own_trans)
6865 btrfs_end_transaction(trans, root);
6866 break;
6867 }
6868
6869 ret = insert_reserved_file_extent(trans, inode,
6870 cur_offset, ins.objectid,
6871 ins.offset, ins.offset,
6872 ins.offset, 0, 0, 0,
6873 BTRFS_FILE_EXTENT_PREALLOC);
6874 BUG_ON(ret);
6875 btrfs_drop_extent_cache(inode, cur_offset,
6876 cur_offset + ins.offset -1, 0);
6877
6878 num_bytes -= ins.offset;
6879 cur_offset += ins.offset;
6880 *alloc_hint = ins.objectid + ins.offset;
6881
6882 inode->i_ctime = CURRENT_TIME;
6883 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
6884 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
6885 (actual_len > inode->i_size) &&
6886 (cur_offset > inode->i_size)) {
6887 if (cur_offset > actual_len)
6888 i_size_write(inode, actual_len);
6889 else
6890 i_size_write(inode, cur_offset);
6891 i_size_write(inode, cur_offset);
6892 btrfs_ordered_update_i_size(inode, cur_offset, NULL);
6893 }
6894
6895 ret = btrfs_update_inode(trans, root, inode);
6896 BUG_ON(ret);
6897
6898 if (own_trans)
6899 btrfs_end_transaction(trans, root);
6900 }
6901 return ret;
6902 }
6903
6904 int btrfs_prealloc_file_range(struct inode *inode, int mode,
6905 u64 start, u64 num_bytes, u64 min_size,
6906 loff_t actual_len, u64 *alloc_hint)
6907 {
6908 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
6909 min_size, actual_len, alloc_hint,
6910 NULL);
6911 }
6912
6913 int btrfs_prealloc_file_range_trans(struct inode *inode,
6914 struct btrfs_trans_handle *trans, int mode,
6915 u64 start, u64 num_bytes, u64 min_size,
6916 loff_t actual_len, u64 *alloc_hint)
6917 {
6918 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
6919 min_size, actual_len, alloc_hint, trans);
6920 }
6921
6922 static long btrfs_fallocate(struct inode *inode, int mode,
6923 loff_t offset, loff_t len)
6924 {
6925 struct extent_state *cached_state = NULL;
6926 u64 cur_offset;
6927 u64 last_byte;
6928 u64 alloc_start;
6929 u64 alloc_end;
6930 u64 alloc_hint = 0;
6931 u64 locked_end;
6932 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
6933 struct extent_map *em;
6934 int ret;
6935
6936 alloc_start = offset & ~mask;
6937 alloc_end = (offset + len + mask) & ~mask;
6938
6939 /*
6940 * wait for ordered IO before we have any locks. We'll loop again
6941 * below with the locks held.
6942 */
6943 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
6944
6945 mutex_lock(&inode->i_mutex);
6946 if (alloc_start > inode->i_size) {
6947 ret = btrfs_cont_expand(inode, alloc_start);
6948 if (ret)
6949 goto out;
6950 }
6951
6952 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
6953 if (ret)
6954 goto out;
6955
6956 locked_end = alloc_end - 1;
6957 while (1) {
6958 struct btrfs_ordered_extent *ordered;
6959
6960 /* the extent lock is ordered inside the running
6961 * transaction
6962 */
6963 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
6964 locked_end, 0, &cached_state, GFP_NOFS);
6965 ordered = btrfs_lookup_first_ordered_extent(inode,
6966 alloc_end - 1);
6967 if (ordered &&
6968 ordered->file_offset + ordered->len > alloc_start &&
6969 ordered->file_offset < alloc_end) {
6970 btrfs_put_ordered_extent(ordered);
6971 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
6972 alloc_start, locked_end,
6973 &cached_state, GFP_NOFS);
6974 /*
6975 * we can't wait on the range with the transaction
6976 * running or with the extent lock held
6977 */
6978 btrfs_wait_ordered_range(inode, alloc_start,
6979 alloc_end - alloc_start);
6980 } else {
6981 if (ordered)
6982 btrfs_put_ordered_extent(ordered);
6983 break;
6984 }
6985 }
6986
6987 cur_offset = alloc_start;
6988 while (1) {
6989 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
6990 alloc_end - cur_offset, 0);
6991 BUG_ON(IS_ERR(em) || !em);
6992 last_byte = min(extent_map_end(em), alloc_end);
6993 last_byte = (last_byte + mask) & ~mask;
6994 if (em->block_start == EXTENT_MAP_HOLE ||
6995 (cur_offset >= inode->i_size &&
6996 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6997 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
6998 last_byte - cur_offset,
6999 1 << inode->i_blkbits,
7000 offset + len,
7001 &alloc_hint);
7002 if (ret < 0) {
7003 free_extent_map(em);
7004 break;
7005 }
7006 }
7007 free_extent_map(em);
7008
7009 cur_offset = last_byte;
7010 if (cur_offset >= alloc_end) {
7011 ret = 0;
7012 break;
7013 }
7014 }
7015 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
7016 &cached_state, GFP_NOFS);
7017
7018 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
7019 out:
7020 mutex_unlock(&inode->i_mutex);
7021 return ret;
7022 }
7023
7024 static int btrfs_set_page_dirty(struct page *page)
7025 {
7026 return __set_page_dirty_nobuffers(page);
7027 }
7028
7029 static int btrfs_permission(struct inode *inode, int mask)
7030 {
7031 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7032 return -EACCES;
7033 return generic_permission(inode, mask, btrfs_check_acl);
7034 }
7035
7036 static const struct inode_operations btrfs_dir_inode_operations = {
7037 .getattr = btrfs_getattr,
7038 .lookup = btrfs_lookup,
7039 .create = btrfs_create,
7040 .unlink = btrfs_unlink,
7041 .link = btrfs_link,
7042 .mkdir = btrfs_mkdir,
7043 .rmdir = btrfs_rmdir,
7044 .rename = btrfs_rename,
7045 .symlink = btrfs_symlink,
7046 .setattr = btrfs_setattr,
7047 .mknod = btrfs_mknod,
7048 .setxattr = btrfs_setxattr,
7049 .getxattr = btrfs_getxattr,
7050 .listxattr = btrfs_listxattr,
7051 .removexattr = btrfs_removexattr,
7052 .permission = btrfs_permission,
7053 };
7054 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7055 .lookup = btrfs_lookup,
7056 .permission = btrfs_permission,
7057 };
7058
7059 static const struct file_operations btrfs_dir_file_operations = {
7060 .llseek = generic_file_llseek,
7061 .read = generic_read_dir,
7062 .readdir = btrfs_real_readdir,
7063 .unlocked_ioctl = btrfs_ioctl,
7064 #ifdef CONFIG_COMPAT
7065 .compat_ioctl = btrfs_ioctl,
7066 #endif
7067 .release = btrfs_release_file,
7068 .fsync = btrfs_sync_file,
7069 };
7070
7071 static struct extent_io_ops btrfs_extent_io_ops = {
7072 .fill_delalloc = run_delalloc_range,
7073 .submit_bio_hook = btrfs_submit_bio_hook,
7074 .merge_bio_hook = btrfs_merge_bio_hook,
7075 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7076 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7077 .writepage_start_hook = btrfs_writepage_start_hook,
7078 .readpage_io_failed_hook = btrfs_io_failed_hook,
7079 .set_bit_hook = btrfs_set_bit_hook,
7080 .clear_bit_hook = btrfs_clear_bit_hook,
7081 .merge_extent_hook = btrfs_merge_extent_hook,
7082 .split_extent_hook = btrfs_split_extent_hook,
7083 };
7084
7085 /*
7086 * btrfs doesn't support the bmap operation because swapfiles
7087 * use bmap to make a mapping of extents in the file. They assume
7088 * these extents won't change over the life of the file and they
7089 * use the bmap result to do IO directly to the drive.
7090 *
7091 * the btrfs bmap call would return logical addresses that aren't
7092 * suitable for IO and they also will change frequently as COW
7093 * operations happen. So, swapfile + btrfs == corruption.
7094 *
7095 * For now we're avoiding this by dropping bmap.
7096 */
7097 static const struct address_space_operations btrfs_aops = {
7098 .readpage = btrfs_readpage,
7099 .writepage = btrfs_writepage,
7100 .writepages = btrfs_writepages,
7101 .readpages = btrfs_readpages,
7102 .sync_page = block_sync_page,
7103 .direct_IO = btrfs_direct_IO,
7104 .invalidatepage = btrfs_invalidatepage,
7105 .releasepage = btrfs_releasepage,
7106 .set_page_dirty = btrfs_set_page_dirty,
7107 .error_remove_page = generic_error_remove_page,
7108 };
7109
7110 static const struct address_space_operations btrfs_symlink_aops = {
7111 .readpage = btrfs_readpage,
7112 .writepage = btrfs_writepage,
7113 .invalidatepage = btrfs_invalidatepage,
7114 .releasepage = btrfs_releasepage,
7115 };
7116
7117 static const struct inode_operations btrfs_file_inode_operations = {
7118 .truncate = btrfs_truncate,
7119 .getattr = btrfs_getattr,
7120 .setattr = btrfs_setattr,
7121 .setxattr = btrfs_setxattr,
7122 .getxattr = btrfs_getxattr,
7123 .listxattr = btrfs_listxattr,
7124 .removexattr = btrfs_removexattr,
7125 .permission = btrfs_permission,
7126 .fallocate = btrfs_fallocate,
7127 .fiemap = btrfs_fiemap,
7128 };
7129 static const struct inode_operations btrfs_special_inode_operations = {
7130 .getattr = btrfs_getattr,
7131 .setattr = btrfs_setattr,
7132 .permission = btrfs_permission,
7133 .setxattr = btrfs_setxattr,
7134 .getxattr = btrfs_getxattr,
7135 .listxattr = btrfs_listxattr,
7136 .removexattr = btrfs_removexattr,
7137 };
7138 static const struct inode_operations btrfs_symlink_inode_operations = {
7139 .readlink = generic_readlink,
7140 .follow_link = page_follow_link_light,
7141 .put_link = page_put_link,
7142 .permission = btrfs_permission,
7143 .setxattr = btrfs_setxattr,
7144 .getxattr = btrfs_getxattr,
7145 .listxattr = btrfs_listxattr,
7146 .removexattr = btrfs_removexattr,
7147 };
7148
7149 const struct dentry_operations btrfs_dentry_operations = {
7150 .d_delete = btrfs_dentry_delete,
7151 };