09c58a35b429d6a82dc261014df2875e7c15f920
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
51 #include "xattr.h"
52 #include "tree-log.h"
53 #include "volumes.h"
54 #include "compression.h"
55 #include "locking.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
58 #include "backref.h"
59
60 struct btrfs_iget_args {
61 u64 ino;
62 struct btrfs_root *root;
63 };
64
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct address_space_operations btrfs_symlink_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static struct extent_io_ops btrfs_extent_io_ops;
74
75 static struct kmem_cache *btrfs_inode_cachep;
76 static struct kmem_cache *btrfs_delalloc_work_cachep;
77 struct kmem_cache *btrfs_trans_handle_cachep;
78 struct kmem_cache *btrfs_transaction_cachep;
79 struct kmem_cache *btrfs_path_cachep;
80 struct kmem_cache *btrfs_free_space_cachep;
81
82 #define S_SHIFT 12
83 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
84 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
85 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
86 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
87 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
88 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
89 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
90 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
91 };
92
93 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
94 static int btrfs_truncate(struct inode *inode);
95 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
96 static noinline int cow_file_range(struct inode *inode,
97 struct page *locked_page,
98 u64 start, u64 end, int *page_started,
99 unsigned long *nr_written, int unlock);
100 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
101 u64 len, u64 orig_start,
102 u64 block_start, u64 block_len,
103 u64 orig_block_len, int type);
104
105 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
106 struct inode *inode, struct inode *dir,
107 const struct qstr *qstr)
108 {
109 int err;
110
111 err = btrfs_init_acl(trans, inode, dir);
112 if (!err)
113 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
114 return err;
115 }
116
117 /*
118 * this does all the hard work for inserting an inline extent into
119 * the btree. The caller should have done a btrfs_drop_extents so that
120 * no overlapping inline items exist in the btree
121 */
122 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
123 struct btrfs_root *root, struct inode *inode,
124 u64 start, size_t size, size_t compressed_size,
125 int compress_type,
126 struct page **compressed_pages)
127 {
128 struct btrfs_key key;
129 struct btrfs_path *path;
130 struct extent_buffer *leaf;
131 struct page *page = NULL;
132 char *kaddr;
133 unsigned long ptr;
134 struct btrfs_file_extent_item *ei;
135 int err = 0;
136 int ret;
137 size_t cur_size = size;
138 size_t datasize;
139 unsigned long offset;
140
141 if (compressed_size && compressed_pages)
142 cur_size = compressed_size;
143
144 path = btrfs_alloc_path();
145 if (!path)
146 return -ENOMEM;
147
148 path->leave_spinning = 1;
149
150 key.objectid = btrfs_ino(inode);
151 key.offset = start;
152 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
153 datasize = btrfs_file_extent_calc_inline_size(cur_size);
154
155 inode_add_bytes(inode, size);
156 ret = btrfs_insert_empty_item(trans, root, path, &key,
157 datasize);
158 if (ret) {
159 err = ret;
160 goto fail;
161 }
162 leaf = path->nodes[0];
163 ei = btrfs_item_ptr(leaf, path->slots[0],
164 struct btrfs_file_extent_item);
165 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
166 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
167 btrfs_set_file_extent_encryption(leaf, ei, 0);
168 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
169 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
170 ptr = btrfs_file_extent_inline_start(ei);
171
172 if (compress_type != BTRFS_COMPRESS_NONE) {
173 struct page *cpage;
174 int i = 0;
175 while (compressed_size > 0) {
176 cpage = compressed_pages[i];
177 cur_size = min_t(unsigned long, compressed_size,
178 PAGE_CACHE_SIZE);
179
180 kaddr = kmap_atomic(cpage);
181 write_extent_buffer(leaf, kaddr, ptr, cur_size);
182 kunmap_atomic(kaddr);
183
184 i++;
185 ptr += cur_size;
186 compressed_size -= cur_size;
187 }
188 btrfs_set_file_extent_compression(leaf, ei,
189 compress_type);
190 } else {
191 page = find_get_page(inode->i_mapping,
192 start >> PAGE_CACHE_SHIFT);
193 btrfs_set_file_extent_compression(leaf, ei, 0);
194 kaddr = kmap_atomic(page);
195 offset = start & (PAGE_CACHE_SIZE - 1);
196 write_extent_buffer(leaf, kaddr + offset, ptr, size);
197 kunmap_atomic(kaddr);
198 page_cache_release(page);
199 }
200 btrfs_mark_buffer_dirty(leaf);
201 btrfs_free_path(path);
202
203 /*
204 * we're an inline extent, so nobody can
205 * extend the file past i_size without locking
206 * a page we already have locked.
207 *
208 * We must do any isize and inode updates
209 * before we unlock the pages. Otherwise we
210 * could end up racing with unlink.
211 */
212 BTRFS_I(inode)->disk_i_size = inode->i_size;
213 ret = btrfs_update_inode(trans, root, inode);
214
215 return ret;
216 fail:
217 btrfs_free_path(path);
218 return err;
219 }
220
221
222 /*
223 * conditionally insert an inline extent into the file. This
224 * does the checks required to make sure the data is small enough
225 * to fit as an inline extent.
226 */
227 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
228 struct btrfs_root *root,
229 struct inode *inode, u64 start, u64 end,
230 size_t compressed_size, int compress_type,
231 struct page **compressed_pages)
232 {
233 u64 isize = i_size_read(inode);
234 u64 actual_end = min(end + 1, isize);
235 u64 inline_len = actual_end - start;
236 u64 aligned_end = ALIGN(end, root->sectorsize);
237 u64 data_len = inline_len;
238 int ret;
239
240 if (compressed_size)
241 data_len = compressed_size;
242
243 if (start > 0 ||
244 actual_end >= PAGE_CACHE_SIZE ||
245 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
246 (!compressed_size &&
247 (actual_end & (root->sectorsize - 1)) == 0) ||
248 end + 1 < isize ||
249 data_len > root->fs_info->max_inline) {
250 return 1;
251 }
252
253 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
254 if (ret)
255 return ret;
256
257 if (isize > actual_end)
258 inline_len = min_t(u64, isize, actual_end);
259 ret = insert_inline_extent(trans, root, inode, start,
260 inline_len, compressed_size,
261 compress_type, compressed_pages);
262 if (ret && ret != -ENOSPC) {
263 btrfs_abort_transaction(trans, root, ret);
264 return ret;
265 } else if (ret == -ENOSPC) {
266 return 1;
267 }
268
269 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
270 btrfs_delalloc_release_metadata(inode, end + 1 - start);
271 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
272 return 0;
273 }
274
275 struct async_extent {
276 u64 start;
277 u64 ram_size;
278 u64 compressed_size;
279 struct page **pages;
280 unsigned long nr_pages;
281 int compress_type;
282 struct list_head list;
283 };
284
285 struct async_cow {
286 struct inode *inode;
287 struct btrfs_root *root;
288 struct page *locked_page;
289 u64 start;
290 u64 end;
291 struct list_head extents;
292 struct btrfs_work work;
293 };
294
295 static noinline int add_async_extent(struct async_cow *cow,
296 u64 start, u64 ram_size,
297 u64 compressed_size,
298 struct page **pages,
299 unsigned long nr_pages,
300 int compress_type)
301 {
302 struct async_extent *async_extent;
303
304 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
305 BUG_ON(!async_extent); /* -ENOMEM */
306 async_extent->start = start;
307 async_extent->ram_size = ram_size;
308 async_extent->compressed_size = compressed_size;
309 async_extent->pages = pages;
310 async_extent->nr_pages = nr_pages;
311 async_extent->compress_type = compress_type;
312 list_add_tail(&async_extent->list, &cow->extents);
313 return 0;
314 }
315
316 /*
317 * we create compressed extents in two phases. The first
318 * phase compresses a range of pages that have already been
319 * locked (both pages and state bits are locked).
320 *
321 * This is done inside an ordered work queue, and the compression
322 * is spread across many cpus. The actual IO submission is step
323 * two, and the ordered work queue takes care of making sure that
324 * happens in the same order things were put onto the queue by
325 * writepages and friends.
326 *
327 * If this code finds it can't get good compression, it puts an
328 * entry onto the work queue to write the uncompressed bytes. This
329 * makes sure that both compressed inodes and uncompressed inodes
330 * are written in the same order that the flusher thread sent them
331 * down.
332 */
333 static noinline int compress_file_range(struct inode *inode,
334 struct page *locked_page,
335 u64 start, u64 end,
336 struct async_cow *async_cow,
337 int *num_added)
338 {
339 struct btrfs_root *root = BTRFS_I(inode)->root;
340 struct btrfs_trans_handle *trans;
341 u64 num_bytes;
342 u64 blocksize = root->sectorsize;
343 u64 actual_end;
344 u64 isize = i_size_read(inode);
345 int ret = 0;
346 struct page **pages = NULL;
347 unsigned long nr_pages;
348 unsigned long nr_pages_ret = 0;
349 unsigned long total_compressed = 0;
350 unsigned long total_in = 0;
351 unsigned long max_compressed = 128 * 1024;
352 unsigned long max_uncompressed = 128 * 1024;
353 int i;
354 int will_compress;
355 int compress_type = root->fs_info->compress_type;
356 int redirty = 0;
357
358 /* if this is a small write inside eof, kick off a defrag */
359 if ((end - start + 1) < 16 * 1024 &&
360 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
361 btrfs_add_inode_defrag(NULL, inode);
362
363 actual_end = min_t(u64, isize, end + 1);
364 again:
365 will_compress = 0;
366 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
367 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
368
369 /*
370 * we don't want to send crud past the end of i_size through
371 * compression, that's just a waste of CPU time. So, if the
372 * end of the file is before the start of our current
373 * requested range of bytes, we bail out to the uncompressed
374 * cleanup code that can deal with all of this.
375 *
376 * It isn't really the fastest way to fix things, but this is a
377 * very uncommon corner.
378 */
379 if (actual_end <= start)
380 goto cleanup_and_bail_uncompressed;
381
382 total_compressed = actual_end - start;
383
384 /* we want to make sure that amount of ram required to uncompress
385 * an extent is reasonable, so we limit the total size in ram
386 * of a compressed extent to 128k. This is a crucial number
387 * because it also controls how easily we can spread reads across
388 * cpus for decompression.
389 *
390 * We also want to make sure the amount of IO required to do
391 * a random read is reasonably small, so we limit the size of
392 * a compressed extent to 128k.
393 */
394 total_compressed = min(total_compressed, max_uncompressed);
395 num_bytes = ALIGN(end - start + 1, blocksize);
396 num_bytes = max(blocksize, num_bytes);
397 total_in = 0;
398 ret = 0;
399
400 /*
401 * we do compression for mount -o compress and when the
402 * inode has not been flagged as nocompress. This flag can
403 * change at any time if we discover bad compression ratios.
404 */
405 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
406 (btrfs_test_opt(root, COMPRESS) ||
407 (BTRFS_I(inode)->force_compress) ||
408 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
409 WARN_ON(pages);
410 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
411 if (!pages) {
412 /* just bail out to the uncompressed code */
413 goto cont;
414 }
415
416 if (BTRFS_I(inode)->force_compress)
417 compress_type = BTRFS_I(inode)->force_compress;
418
419 /*
420 * we need to call clear_page_dirty_for_io on each
421 * page in the range. Otherwise applications with the file
422 * mmap'd can wander in and change the page contents while
423 * we are compressing them.
424 *
425 * If the compression fails for any reason, we set the pages
426 * dirty again later on.
427 */
428 extent_range_clear_dirty_for_io(inode, start, end);
429 redirty = 1;
430 ret = btrfs_compress_pages(compress_type,
431 inode->i_mapping, start,
432 total_compressed, pages,
433 nr_pages, &nr_pages_ret,
434 &total_in,
435 &total_compressed,
436 max_compressed);
437
438 if (!ret) {
439 unsigned long offset = total_compressed &
440 (PAGE_CACHE_SIZE - 1);
441 struct page *page = pages[nr_pages_ret - 1];
442 char *kaddr;
443
444 /* zero the tail end of the last page, we might be
445 * sending it down to disk
446 */
447 if (offset) {
448 kaddr = kmap_atomic(page);
449 memset(kaddr + offset, 0,
450 PAGE_CACHE_SIZE - offset);
451 kunmap_atomic(kaddr);
452 }
453 will_compress = 1;
454 }
455 }
456 cont:
457 if (start == 0) {
458 trans = btrfs_join_transaction(root);
459 if (IS_ERR(trans)) {
460 ret = PTR_ERR(trans);
461 trans = NULL;
462 goto cleanup_and_out;
463 }
464 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
465
466 /* lets try to make an inline extent */
467 if (ret || total_in < (actual_end - start)) {
468 /* we didn't compress the entire range, try
469 * to make an uncompressed inline extent.
470 */
471 ret = cow_file_range_inline(trans, root, inode,
472 start, end, 0, 0, NULL);
473 } else {
474 /* try making a compressed inline extent */
475 ret = cow_file_range_inline(trans, root, inode,
476 start, end,
477 total_compressed,
478 compress_type, pages);
479 }
480 if (ret <= 0) {
481 /*
482 * inline extent creation worked or returned error,
483 * we don't need to create any more async work items.
484 * Unlock and free up our temp pages.
485 */
486 extent_clear_unlock_delalloc(inode,
487 &BTRFS_I(inode)->io_tree,
488 start, end, NULL,
489 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
490 EXTENT_CLEAR_DELALLOC |
491 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
492
493 btrfs_end_transaction(trans, root);
494 goto free_pages_out;
495 }
496 btrfs_end_transaction(trans, root);
497 }
498
499 if (will_compress) {
500 /*
501 * we aren't doing an inline extent round the compressed size
502 * up to a block size boundary so the allocator does sane
503 * things
504 */
505 total_compressed = ALIGN(total_compressed, blocksize);
506
507 /*
508 * one last check to make sure the compression is really a
509 * win, compare the page count read with the blocks on disk
510 */
511 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
512 if (total_compressed >= total_in) {
513 will_compress = 0;
514 } else {
515 num_bytes = total_in;
516 }
517 }
518 if (!will_compress && pages) {
519 /*
520 * the compression code ran but failed to make things smaller,
521 * free any pages it allocated and our page pointer array
522 */
523 for (i = 0; i < nr_pages_ret; i++) {
524 WARN_ON(pages[i]->mapping);
525 page_cache_release(pages[i]);
526 }
527 kfree(pages);
528 pages = NULL;
529 total_compressed = 0;
530 nr_pages_ret = 0;
531
532 /* flag the file so we don't compress in the future */
533 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
534 !(BTRFS_I(inode)->force_compress)) {
535 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
536 }
537 }
538 if (will_compress) {
539 *num_added += 1;
540
541 /* the async work queues will take care of doing actual
542 * allocation on disk for these compressed pages,
543 * and will submit them to the elevator.
544 */
545 add_async_extent(async_cow, start, num_bytes,
546 total_compressed, pages, nr_pages_ret,
547 compress_type);
548
549 if (start + num_bytes < end) {
550 start += num_bytes;
551 pages = NULL;
552 cond_resched();
553 goto again;
554 }
555 } else {
556 cleanup_and_bail_uncompressed:
557 /*
558 * No compression, but we still need to write the pages in
559 * the file we've been given so far. redirty the locked
560 * page if it corresponds to our extent and set things up
561 * for the async work queue to run cow_file_range to do
562 * the normal delalloc dance
563 */
564 if (page_offset(locked_page) >= start &&
565 page_offset(locked_page) <= end) {
566 __set_page_dirty_nobuffers(locked_page);
567 /* unlocked later on in the async handlers */
568 }
569 if (redirty)
570 extent_range_redirty_for_io(inode, start, end);
571 add_async_extent(async_cow, start, end - start + 1,
572 0, NULL, 0, BTRFS_COMPRESS_NONE);
573 *num_added += 1;
574 }
575
576 out:
577 return ret;
578
579 free_pages_out:
580 for (i = 0; i < nr_pages_ret; i++) {
581 WARN_ON(pages[i]->mapping);
582 page_cache_release(pages[i]);
583 }
584 kfree(pages);
585
586 goto out;
587
588 cleanup_and_out:
589 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
590 start, end, NULL,
591 EXTENT_CLEAR_UNLOCK_PAGE |
592 EXTENT_CLEAR_DIRTY |
593 EXTENT_CLEAR_DELALLOC |
594 EXTENT_SET_WRITEBACK |
595 EXTENT_END_WRITEBACK);
596 if (!trans || IS_ERR(trans))
597 btrfs_error(root->fs_info, ret, "Failed to join transaction");
598 else
599 btrfs_abort_transaction(trans, root, ret);
600 goto free_pages_out;
601 }
602
603 /*
604 * phase two of compressed writeback. This is the ordered portion
605 * of the code, which only gets called in the order the work was
606 * queued. We walk all the async extents created by compress_file_range
607 * and send them down to the disk.
608 */
609 static noinline int submit_compressed_extents(struct inode *inode,
610 struct async_cow *async_cow)
611 {
612 struct async_extent *async_extent;
613 u64 alloc_hint = 0;
614 struct btrfs_trans_handle *trans;
615 struct btrfs_key ins;
616 struct extent_map *em;
617 struct btrfs_root *root = BTRFS_I(inode)->root;
618 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
619 struct extent_io_tree *io_tree;
620 int ret = 0;
621
622 if (list_empty(&async_cow->extents))
623 return 0;
624
625 again:
626 while (!list_empty(&async_cow->extents)) {
627 async_extent = list_entry(async_cow->extents.next,
628 struct async_extent, list);
629 list_del(&async_extent->list);
630
631 io_tree = &BTRFS_I(inode)->io_tree;
632
633 retry:
634 /* did the compression code fall back to uncompressed IO? */
635 if (!async_extent->pages) {
636 int page_started = 0;
637 unsigned long nr_written = 0;
638
639 lock_extent(io_tree, async_extent->start,
640 async_extent->start +
641 async_extent->ram_size - 1);
642
643 /* allocate blocks */
644 ret = cow_file_range(inode, async_cow->locked_page,
645 async_extent->start,
646 async_extent->start +
647 async_extent->ram_size - 1,
648 &page_started, &nr_written, 0);
649
650 /* JDM XXX */
651
652 /*
653 * if page_started, cow_file_range inserted an
654 * inline extent and took care of all the unlocking
655 * and IO for us. Otherwise, we need to submit
656 * all those pages down to the drive.
657 */
658 if (!page_started && !ret)
659 extent_write_locked_range(io_tree,
660 inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1,
663 btrfs_get_extent,
664 WB_SYNC_ALL);
665 else if (ret)
666 unlock_page(async_cow->locked_page);
667 kfree(async_extent);
668 cond_resched();
669 continue;
670 }
671
672 lock_extent(io_tree, async_extent->start,
673 async_extent->start + async_extent->ram_size - 1);
674
675 trans = btrfs_join_transaction(root);
676 if (IS_ERR(trans)) {
677 ret = PTR_ERR(trans);
678 } else {
679 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
680 ret = btrfs_reserve_extent(trans, root,
681 async_extent->compressed_size,
682 async_extent->compressed_size,
683 0, alloc_hint, &ins, 1);
684 if (ret && ret != -ENOSPC)
685 btrfs_abort_transaction(trans, root, ret);
686 btrfs_end_transaction(trans, root);
687 }
688
689 if (ret) {
690 int i;
691
692 for (i = 0; i < async_extent->nr_pages; i++) {
693 WARN_ON(async_extent->pages[i]->mapping);
694 page_cache_release(async_extent->pages[i]);
695 }
696 kfree(async_extent->pages);
697 async_extent->nr_pages = 0;
698 async_extent->pages = NULL;
699
700 if (ret == -ENOSPC)
701 goto retry;
702 goto out_free;
703 }
704
705 /*
706 * here we're doing allocation and writeback of the
707 * compressed pages
708 */
709 btrfs_drop_extent_cache(inode, async_extent->start,
710 async_extent->start +
711 async_extent->ram_size - 1, 0);
712
713 em = alloc_extent_map();
714 if (!em)
715 goto out_free_reserve;
716 em->start = async_extent->start;
717 em->len = async_extent->ram_size;
718 em->orig_start = em->start;
719 em->mod_start = em->start;
720 em->mod_len = em->len;
721
722 em->block_start = ins.objectid;
723 em->block_len = ins.offset;
724 em->orig_block_len = ins.offset;
725 em->bdev = root->fs_info->fs_devices->latest_bdev;
726 em->compress_type = async_extent->compress_type;
727 set_bit(EXTENT_FLAG_PINNED, &em->flags);
728 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
729 em->generation = -1;
730
731 while (1) {
732 write_lock(&em_tree->lock);
733 ret = add_extent_mapping(em_tree, em);
734 if (!ret)
735 list_move(&em->list,
736 &em_tree->modified_extents);
737 write_unlock(&em_tree->lock);
738 if (ret != -EEXIST) {
739 free_extent_map(em);
740 break;
741 }
742 btrfs_drop_extent_cache(inode, async_extent->start,
743 async_extent->start +
744 async_extent->ram_size - 1, 0);
745 }
746
747 if (ret)
748 goto out_free_reserve;
749
750 ret = btrfs_add_ordered_extent_compress(inode,
751 async_extent->start,
752 ins.objectid,
753 async_extent->ram_size,
754 ins.offset,
755 BTRFS_ORDERED_COMPRESSED,
756 async_extent->compress_type);
757 if (ret)
758 goto out_free_reserve;
759
760 /*
761 * clear dirty, set writeback and unlock the pages.
762 */
763 extent_clear_unlock_delalloc(inode,
764 &BTRFS_I(inode)->io_tree,
765 async_extent->start,
766 async_extent->start +
767 async_extent->ram_size - 1,
768 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
769 EXTENT_CLEAR_UNLOCK |
770 EXTENT_CLEAR_DELALLOC |
771 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
772
773 ret = btrfs_submit_compressed_write(inode,
774 async_extent->start,
775 async_extent->ram_size,
776 ins.objectid,
777 ins.offset, async_extent->pages,
778 async_extent->nr_pages);
779 alloc_hint = ins.objectid + ins.offset;
780 kfree(async_extent);
781 if (ret)
782 goto out;
783 cond_resched();
784 }
785 ret = 0;
786 out:
787 return ret;
788 out_free_reserve:
789 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
790 out_free:
791 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
792 async_extent->start,
793 async_extent->start +
794 async_extent->ram_size - 1,
795 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
796 EXTENT_CLEAR_UNLOCK |
797 EXTENT_CLEAR_DELALLOC |
798 EXTENT_CLEAR_DIRTY |
799 EXTENT_SET_WRITEBACK |
800 EXTENT_END_WRITEBACK);
801 kfree(async_extent);
802 goto again;
803 }
804
805 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
806 u64 num_bytes)
807 {
808 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
809 struct extent_map *em;
810 u64 alloc_hint = 0;
811
812 read_lock(&em_tree->lock);
813 em = search_extent_mapping(em_tree, start, num_bytes);
814 if (em) {
815 /*
816 * if block start isn't an actual block number then find the
817 * first block in this inode and use that as a hint. If that
818 * block is also bogus then just don't worry about it.
819 */
820 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
821 free_extent_map(em);
822 em = search_extent_mapping(em_tree, 0, 0);
823 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
824 alloc_hint = em->block_start;
825 if (em)
826 free_extent_map(em);
827 } else {
828 alloc_hint = em->block_start;
829 free_extent_map(em);
830 }
831 }
832 read_unlock(&em_tree->lock);
833
834 return alloc_hint;
835 }
836
837 /*
838 * when extent_io.c finds a delayed allocation range in the file,
839 * the call backs end up in this code. The basic idea is to
840 * allocate extents on disk for the range, and create ordered data structs
841 * in ram to track those extents.
842 *
843 * locked_page is the page that writepage had locked already. We use
844 * it to make sure we don't do extra locks or unlocks.
845 *
846 * *page_started is set to one if we unlock locked_page and do everything
847 * required to start IO on it. It may be clean and already done with
848 * IO when we return.
849 */
850 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
851 struct inode *inode,
852 struct btrfs_root *root,
853 struct page *locked_page,
854 u64 start, u64 end, int *page_started,
855 unsigned long *nr_written,
856 int unlock)
857 {
858 u64 alloc_hint = 0;
859 u64 num_bytes;
860 unsigned long ram_size;
861 u64 disk_num_bytes;
862 u64 cur_alloc_size;
863 u64 blocksize = root->sectorsize;
864 struct btrfs_key ins;
865 struct extent_map *em;
866 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
867 int ret = 0;
868
869 BUG_ON(btrfs_is_free_space_inode(inode));
870
871 num_bytes = ALIGN(end - start + 1, blocksize);
872 num_bytes = max(blocksize, num_bytes);
873 disk_num_bytes = num_bytes;
874
875 /* if this is a small write inside eof, kick off defrag */
876 if (num_bytes < 64 * 1024 &&
877 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
878 btrfs_add_inode_defrag(trans, inode);
879
880 if (start == 0) {
881 /* lets try to make an inline extent */
882 ret = cow_file_range_inline(trans, root, inode,
883 start, end, 0, 0, NULL);
884 if (ret == 0) {
885 extent_clear_unlock_delalloc(inode,
886 &BTRFS_I(inode)->io_tree,
887 start, end, NULL,
888 EXTENT_CLEAR_UNLOCK_PAGE |
889 EXTENT_CLEAR_UNLOCK |
890 EXTENT_CLEAR_DELALLOC |
891 EXTENT_CLEAR_DIRTY |
892 EXTENT_SET_WRITEBACK |
893 EXTENT_END_WRITEBACK);
894
895 *nr_written = *nr_written +
896 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
897 *page_started = 1;
898 goto out;
899 } else if (ret < 0) {
900 btrfs_abort_transaction(trans, root, ret);
901 goto out_unlock;
902 }
903 }
904
905 BUG_ON(disk_num_bytes >
906 btrfs_super_total_bytes(root->fs_info->super_copy));
907
908 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
909 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
910
911 while (disk_num_bytes > 0) {
912 unsigned long op;
913
914 cur_alloc_size = disk_num_bytes;
915 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
916 root->sectorsize, 0, alloc_hint,
917 &ins, 1);
918 if (ret < 0) {
919 btrfs_abort_transaction(trans, root, ret);
920 goto out_unlock;
921 }
922
923 em = alloc_extent_map();
924 BUG_ON(!em); /* -ENOMEM */
925 em->start = start;
926 em->orig_start = em->start;
927 ram_size = ins.offset;
928 em->len = ins.offset;
929 em->mod_start = em->start;
930 em->mod_len = em->len;
931
932 em->block_start = ins.objectid;
933 em->block_len = ins.offset;
934 em->orig_block_len = ins.offset;
935 em->bdev = root->fs_info->fs_devices->latest_bdev;
936 set_bit(EXTENT_FLAG_PINNED, &em->flags);
937 em->generation = -1;
938
939 while (1) {
940 write_lock(&em_tree->lock);
941 ret = add_extent_mapping(em_tree, em);
942 if (!ret)
943 list_move(&em->list,
944 &em_tree->modified_extents);
945 write_unlock(&em_tree->lock);
946 if (ret != -EEXIST) {
947 free_extent_map(em);
948 break;
949 }
950 btrfs_drop_extent_cache(inode, start,
951 start + ram_size - 1, 0);
952 }
953
954 cur_alloc_size = ins.offset;
955 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
956 ram_size, cur_alloc_size, 0);
957 BUG_ON(ret); /* -ENOMEM */
958
959 if (root->root_key.objectid ==
960 BTRFS_DATA_RELOC_TREE_OBJECTID) {
961 ret = btrfs_reloc_clone_csums(inode, start,
962 cur_alloc_size);
963 if (ret) {
964 btrfs_abort_transaction(trans, root, ret);
965 goto out_unlock;
966 }
967 }
968
969 if (disk_num_bytes < cur_alloc_size)
970 break;
971
972 /* we're not doing compressed IO, don't unlock the first
973 * page (which the caller expects to stay locked), don't
974 * clear any dirty bits and don't set any writeback bits
975 *
976 * Do set the Private2 bit so we know this page was properly
977 * setup for writepage
978 */
979 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
980 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
981 EXTENT_SET_PRIVATE2;
982
983 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
984 start, start + ram_size - 1,
985 locked_page, op);
986 disk_num_bytes -= cur_alloc_size;
987 num_bytes -= cur_alloc_size;
988 alloc_hint = ins.objectid + ins.offset;
989 start += cur_alloc_size;
990 }
991 out:
992 return ret;
993
994 out_unlock:
995 extent_clear_unlock_delalloc(inode,
996 &BTRFS_I(inode)->io_tree,
997 start, end, locked_page,
998 EXTENT_CLEAR_UNLOCK_PAGE |
999 EXTENT_CLEAR_UNLOCK |
1000 EXTENT_CLEAR_DELALLOC |
1001 EXTENT_CLEAR_DIRTY |
1002 EXTENT_SET_WRITEBACK |
1003 EXTENT_END_WRITEBACK);
1004
1005 goto out;
1006 }
1007
1008 static noinline int cow_file_range(struct inode *inode,
1009 struct page *locked_page,
1010 u64 start, u64 end, int *page_started,
1011 unsigned long *nr_written,
1012 int unlock)
1013 {
1014 struct btrfs_trans_handle *trans;
1015 struct btrfs_root *root = BTRFS_I(inode)->root;
1016 int ret;
1017
1018 trans = btrfs_join_transaction(root);
1019 if (IS_ERR(trans)) {
1020 extent_clear_unlock_delalloc(inode,
1021 &BTRFS_I(inode)->io_tree,
1022 start, end, locked_page,
1023 EXTENT_CLEAR_UNLOCK_PAGE |
1024 EXTENT_CLEAR_UNLOCK |
1025 EXTENT_CLEAR_DELALLOC |
1026 EXTENT_CLEAR_DIRTY |
1027 EXTENT_SET_WRITEBACK |
1028 EXTENT_END_WRITEBACK);
1029 return PTR_ERR(trans);
1030 }
1031 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1032
1033 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1034 page_started, nr_written, unlock);
1035
1036 btrfs_end_transaction(trans, root);
1037
1038 return ret;
1039 }
1040
1041 /*
1042 * work queue call back to started compression on a file and pages
1043 */
1044 static noinline void async_cow_start(struct btrfs_work *work)
1045 {
1046 struct async_cow *async_cow;
1047 int num_added = 0;
1048 async_cow = container_of(work, struct async_cow, work);
1049
1050 compress_file_range(async_cow->inode, async_cow->locked_page,
1051 async_cow->start, async_cow->end, async_cow,
1052 &num_added);
1053 if (num_added == 0) {
1054 btrfs_add_delayed_iput(async_cow->inode);
1055 async_cow->inode = NULL;
1056 }
1057 }
1058
1059 /*
1060 * work queue call back to submit previously compressed pages
1061 */
1062 static noinline void async_cow_submit(struct btrfs_work *work)
1063 {
1064 struct async_cow *async_cow;
1065 struct btrfs_root *root;
1066 unsigned long nr_pages;
1067
1068 async_cow = container_of(work, struct async_cow, work);
1069
1070 root = async_cow->root;
1071 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1072 PAGE_CACHE_SHIFT;
1073
1074 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1075 5 * 1024 * 1024 &&
1076 waitqueue_active(&root->fs_info->async_submit_wait))
1077 wake_up(&root->fs_info->async_submit_wait);
1078
1079 if (async_cow->inode)
1080 submit_compressed_extents(async_cow->inode, async_cow);
1081 }
1082
1083 static noinline void async_cow_free(struct btrfs_work *work)
1084 {
1085 struct async_cow *async_cow;
1086 async_cow = container_of(work, struct async_cow, work);
1087 if (async_cow->inode)
1088 btrfs_add_delayed_iput(async_cow->inode);
1089 kfree(async_cow);
1090 }
1091
1092 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1093 u64 start, u64 end, int *page_started,
1094 unsigned long *nr_written)
1095 {
1096 struct async_cow *async_cow;
1097 struct btrfs_root *root = BTRFS_I(inode)->root;
1098 unsigned long nr_pages;
1099 u64 cur_end;
1100 int limit = 10 * 1024 * 1024;
1101
1102 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1103 1, 0, NULL, GFP_NOFS);
1104 while (start < end) {
1105 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1106 BUG_ON(!async_cow); /* -ENOMEM */
1107 async_cow->inode = igrab(inode);
1108 async_cow->root = root;
1109 async_cow->locked_page = locked_page;
1110 async_cow->start = start;
1111
1112 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1113 cur_end = end;
1114 else
1115 cur_end = min(end, start + 512 * 1024 - 1);
1116
1117 async_cow->end = cur_end;
1118 INIT_LIST_HEAD(&async_cow->extents);
1119
1120 async_cow->work.func = async_cow_start;
1121 async_cow->work.ordered_func = async_cow_submit;
1122 async_cow->work.ordered_free = async_cow_free;
1123 async_cow->work.flags = 0;
1124
1125 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1126 PAGE_CACHE_SHIFT;
1127 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1128
1129 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1130 &async_cow->work);
1131
1132 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1133 wait_event(root->fs_info->async_submit_wait,
1134 (atomic_read(&root->fs_info->async_delalloc_pages) <
1135 limit));
1136 }
1137
1138 while (atomic_read(&root->fs_info->async_submit_draining) &&
1139 atomic_read(&root->fs_info->async_delalloc_pages)) {
1140 wait_event(root->fs_info->async_submit_wait,
1141 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1142 0));
1143 }
1144
1145 *nr_written += nr_pages;
1146 start = cur_end + 1;
1147 }
1148 *page_started = 1;
1149 return 0;
1150 }
1151
1152 static noinline int csum_exist_in_range(struct btrfs_root *root,
1153 u64 bytenr, u64 num_bytes)
1154 {
1155 int ret;
1156 struct btrfs_ordered_sum *sums;
1157 LIST_HEAD(list);
1158
1159 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1160 bytenr + num_bytes - 1, &list, 0);
1161 if (ret == 0 && list_empty(&list))
1162 return 0;
1163
1164 while (!list_empty(&list)) {
1165 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1166 list_del(&sums->list);
1167 kfree(sums);
1168 }
1169 return 1;
1170 }
1171
1172 /*
1173 * when nowcow writeback call back. This checks for snapshots or COW copies
1174 * of the extents that exist in the file, and COWs the file as required.
1175 *
1176 * If no cow copies or snapshots exist, we write directly to the existing
1177 * blocks on disk
1178 */
1179 static noinline int run_delalloc_nocow(struct inode *inode,
1180 struct page *locked_page,
1181 u64 start, u64 end, int *page_started, int force,
1182 unsigned long *nr_written)
1183 {
1184 struct btrfs_root *root = BTRFS_I(inode)->root;
1185 struct btrfs_trans_handle *trans;
1186 struct extent_buffer *leaf;
1187 struct btrfs_path *path;
1188 struct btrfs_file_extent_item *fi;
1189 struct btrfs_key found_key;
1190 u64 cow_start;
1191 u64 cur_offset;
1192 u64 extent_end;
1193 u64 extent_offset;
1194 u64 disk_bytenr;
1195 u64 num_bytes;
1196 u64 disk_num_bytes;
1197 int extent_type;
1198 int ret, err;
1199 int type;
1200 int nocow;
1201 int check_prev = 1;
1202 bool nolock;
1203 u64 ino = btrfs_ino(inode);
1204
1205 path = btrfs_alloc_path();
1206 if (!path) {
1207 extent_clear_unlock_delalloc(inode,
1208 &BTRFS_I(inode)->io_tree,
1209 start, end, locked_page,
1210 EXTENT_CLEAR_UNLOCK_PAGE |
1211 EXTENT_CLEAR_UNLOCK |
1212 EXTENT_CLEAR_DELALLOC |
1213 EXTENT_CLEAR_DIRTY |
1214 EXTENT_SET_WRITEBACK |
1215 EXTENT_END_WRITEBACK);
1216 return -ENOMEM;
1217 }
1218
1219 nolock = btrfs_is_free_space_inode(inode);
1220
1221 if (nolock)
1222 trans = btrfs_join_transaction_nolock(root);
1223 else
1224 trans = btrfs_join_transaction(root);
1225
1226 if (IS_ERR(trans)) {
1227 extent_clear_unlock_delalloc(inode,
1228 &BTRFS_I(inode)->io_tree,
1229 start, end, locked_page,
1230 EXTENT_CLEAR_UNLOCK_PAGE |
1231 EXTENT_CLEAR_UNLOCK |
1232 EXTENT_CLEAR_DELALLOC |
1233 EXTENT_CLEAR_DIRTY |
1234 EXTENT_SET_WRITEBACK |
1235 EXTENT_END_WRITEBACK);
1236 btrfs_free_path(path);
1237 return PTR_ERR(trans);
1238 }
1239
1240 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1241
1242 cow_start = (u64)-1;
1243 cur_offset = start;
1244 while (1) {
1245 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1246 cur_offset, 0);
1247 if (ret < 0) {
1248 btrfs_abort_transaction(trans, root, ret);
1249 goto error;
1250 }
1251 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1252 leaf = path->nodes[0];
1253 btrfs_item_key_to_cpu(leaf, &found_key,
1254 path->slots[0] - 1);
1255 if (found_key.objectid == ino &&
1256 found_key.type == BTRFS_EXTENT_DATA_KEY)
1257 path->slots[0]--;
1258 }
1259 check_prev = 0;
1260 next_slot:
1261 leaf = path->nodes[0];
1262 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1263 ret = btrfs_next_leaf(root, path);
1264 if (ret < 0) {
1265 btrfs_abort_transaction(trans, root, ret);
1266 goto error;
1267 }
1268 if (ret > 0)
1269 break;
1270 leaf = path->nodes[0];
1271 }
1272
1273 nocow = 0;
1274 disk_bytenr = 0;
1275 num_bytes = 0;
1276 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1277
1278 if (found_key.objectid > ino ||
1279 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1280 found_key.offset > end)
1281 break;
1282
1283 if (found_key.offset > cur_offset) {
1284 extent_end = found_key.offset;
1285 extent_type = 0;
1286 goto out_check;
1287 }
1288
1289 fi = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_file_extent_item);
1291 extent_type = btrfs_file_extent_type(leaf, fi);
1292
1293 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1294 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1295 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1296 extent_offset = btrfs_file_extent_offset(leaf, fi);
1297 extent_end = found_key.offset +
1298 btrfs_file_extent_num_bytes(leaf, fi);
1299 disk_num_bytes =
1300 btrfs_file_extent_disk_num_bytes(leaf, fi);
1301 if (extent_end <= start) {
1302 path->slots[0]++;
1303 goto next_slot;
1304 }
1305 if (disk_bytenr == 0)
1306 goto out_check;
1307 if (btrfs_file_extent_compression(leaf, fi) ||
1308 btrfs_file_extent_encryption(leaf, fi) ||
1309 btrfs_file_extent_other_encoding(leaf, fi))
1310 goto out_check;
1311 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1312 goto out_check;
1313 if (btrfs_extent_readonly(root, disk_bytenr))
1314 goto out_check;
1315 if (btrfs_cross_ref_exist(trans, root, ino,
1316 found_key.offset -
1317 extent_offset, disk_bytenr))
1318 goto out_check;
1319 disk_bytenr += extent_offset;
1320 disk_bytenr += cur_offset - found_key.offset;
1321 num_bytes = min(end + 1, extent_end) - cur_offset;
1322 /*
1323 * force cow if csum exists in the range.
1324 * this ensure that csum for a given extent are
1325 * either valid or do not exist.
1326 */
1327 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1328 goto out_check;
1329 nocow = 1;
1330 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1331 extent_end = found_key.offset +
1332 btrfs_file_extent_inline_len(leaf, fi);
1333 extent_end = ALIGN(extent_end, root->sectorsize);
1334 } else {
1335 BUG_ON(1);
1336 }
1337 out_check:
1338 if (extent_end <= start) {
1339 path->slots[0]++;
1340 goto next_slot;
1341 }
1342 if (!nocow) {
1343 if (cow_start == (u64)-1)
1344 cow_start = cur_offset;
1345 cur_offset = extent_end;
1346 if (cur_offset > end)
1347 break;
1348 path->slots[0]++;
1349 goto next_slot;
1350 }
1351
1352 btrfs_release_path(path);
1353 if (cow_start != (u64)-1) {
1354 ret = __cow_file_range(trans, inode, root, locked_page,
1355 cow_start, found_key.offset - 1,
1356 page_started, nr_written, 1);
1357 if (ret) {
1358 btrfs_abort_transaction(trans, root, ret);
1359 goto error;
1360 }
1361 cow_start = (u64)-1;
1362 }
1363
1364 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1365 struct extent_map *em;
1366 struct extent_map_tree *em_tree;
1367 em_tree = &BTRFS_I(inode)->extent_tree;
1368 em = alloc_extent_map();
1369 BUG_ON(!em); /* -ENOMEM */
1370 em->start = cur_offset;
1371 em->orig_start = found_key.offset - extent_offset;
1372 em->len = num_bytes;
1373 em->block_len = num_bytes;
1374 em->block_start = disk_bytenr;
1375 em->orig_block_len = disk_num_bytes;
1376 em->bdev = root->fs_info->fs_devices->latest_bdev;
1377 em->mod_start = em->start;
1378 em->mod_len = em->len;
1379 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1380 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1381 em->generation = -1;
1382 while (1) {
1383 write_lock(&em_tree->lock);
1384 ret = add_extent_mapping(em_tree, em);
1385 if (!ret)
1386 list_move(&em->list,
1387 &em_tree->modified_extents);
1388 write_unlock(&em_tree->lock);
1389 if (ret != -EEXIST) {
1390 free_extent_map(em);
1391 break;
1392 }
1393 btrfs_drop_extent_cache(inode, em->start,
1394 em->start + em->len - 1, 0);
1395 }
1396 type = BTRFS_ORDERED_PREALLOC;
1397 } else {
1398 type = BTRFS_ORDERED_NOCOW;
1399 }
1400
1401 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1402 num_bytes, num_bytes, type);
1403 BUG_ON(ret); /* -ENOMEM */
1404
1405 if (root->root_key.objectid ==
1406 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1407 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1408 num_bytes);
1409 if (ret) {
1410 btrfs_abort_transaction(trans, root, ret);
1411 goto error;
1412 }
1413 }
1414
1415 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1416 cur_offset, cur_offset + num_bytes - 1,
1417 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1418 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1419 EXTENT_SET_PRIVATE2);
1420 cur_offset = extent_end;
1421 if (cur_offset > end)
1422 break;
1423 }
1424 btrfs_release_path(path);
1425
1426 if (cur_offset <= end && cow_start == (u64)-1) {
1427 cow_start = cur_offset;
1428 cur_offset = end;
1429 }
1430
1431 if (cow_start != (u64)-1) {
1432 ret = __cow_file_range(trans, inode, root, locked_page,
1433 cow_start, end,
1434 page_started, nr_written, 1);
1435 if (ret) {
1436 btrfs_abort_transaction(trans, root, ret);
1437 goto error;
1438 }
1439 }
1440
1441 error:
1442 err = btrfs_end_transaction(trans, root);
1443 if (!ret)
1444 ret = err;
1445
1446 if (ret && cur_offset < end)
1447 extent_clear_unlock_delalloc(inode,
1448 &BTRFS_I(inode)->io_tree,
1449 cur_offset, end, locked_page,
1450 EXTENT_CLEAR_UNLOCK_PAGE |
1451 EXTENT_CLEAR_UNLOCK |
1452 EXTENT_CLEAR_DELALLOC |
1453 EXTENT_CLEAR_DIRTY |
1454 EXTENT_SET_WRITEBACK |
1455 EXTENT_END_WRITEBACK);
1456
1457 btrfs_free_path(path);
1458 return ret;
1459 }
1460
1461 /*
1462 * extent_io.c call back to do delayed allocation processing
1463 */
1464 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1465 u64 start, u64 end, int *page_started,
1466 unsigned long *nr_written)
1467 {
1468 int ret;
1469 struct btrfs_root *root = BTRFS_I(inode)->root;
1470
1471 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1472 ret = run_delalloc_nocow(inode, locked_page, start, end,
1473 page_started, 1, nr_written);
1474 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1475 ret = run_delalloc_nocow(inode, locked_page, start, end,
1476 page_started, 0, nr_written);
1477 } else if (!btrfs_test_opt(root, COMPRESS) &&
1478 !(BTRFS_I(inode)->force_compress) &&
1479 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1480 ret = cow_file_range(inode, locked_page, start, end,
1481 page_started, nr_written, 1);
1482 } else {
1483 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1484 &BTRFS_I(inode)->runtime_flags);
1485 ret = cow_file_range_async(inode, locked_page, start, end,
1486 page_started, nr_written);
1487 }
1488 return ret;
1489 }
1490
1491 static void btrfs_split_extent_hook(struct inode *inode,
1492 struct extent_state *orig, u64 split)
1493 {
1494 /* not delalloc, ignore it */
1495 if (!(orig->state & EXTENT_DELALLOC))
1496 return;
1497
1498 spin_lock(&BTRFS_I(inode)->lock);
1499 BTRFS_I(inode)->outstanding_extents++;
1500 spin_unlock(&BTRFS_I(inode)->lock);
1501 }
1502
1503 /*
1504 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1505 * extents so we can keep track of new extents that are just merged onto old
1506 * extents, such as when we are doing sequential writes, so we can properly
1507 * account for the metadata space we'll need.
1508 */
1509 static void btrfs_merge_extent_hook(struct inode *inode,
1510 struct extent_state *new,
1511 struct extent_state *other)
1512 {
1513 /* not delalloc, ignore it */
1514 if (!(other->state & EXTENT_DELALLOC))
1515 return;
1516
1517 spin_lock(&BTRFS_I(inode)->lock);
1518 BTRFS_I(inode)->outstanding_extents--;
1519 spin_unlock(&BTRFS_I(inode)->lock);
1520 }
1521
1522 /*
1523 * extent_io.c set_bit_hook, used to track delayed allocation
1524 * bytes in this file, and to maintain the list of inodes that
1525 * have pending delalloc work to be done.
1526 */
1527 static void btrfs_set_bit_hook(struct inode *inode,
1528 struct extent_state *state, int *bits)
1529 {
1530
1531 /*
1532 * set_bit and clear bit hooks normally require _irqsave/restore
1533 * but in this case, we are only testing for the DELALLOC
1534 * bit, which is only set or cleared with irqs on
1535 */
1536 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1537 struct btrfs_root *root = BTRFS_I(inode)->root;
1538 u64 len = state->end + 1 - state->start;
1539 bool do_list = !btrfs_is_free_space_inode(inode);
1540
1541 if (*bits & EXTENT_FIRST_DELALLOC) {
1542 *bits &= ~EXTENT_FIRST_DELALLOC;
1543 } else {
1544 spin_lock(&BTRFS_I(inode)->lock);
1545 BTRFS_I(inode)->outstanding_extents++;
1546 spin_unlock(&BTRFS_I(inode)->lock);
1547 }
1548
1549 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1550 root->fs_info->delalloc_batch);
1551 spin_lock(&BTRFS_I(inode)->lock);
1552 BTRFS_I(inode)->delalloc_bytes += len;
1553 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1554 &BTRFS_I(inode)->runtime_flags)) {
1555 spin_lock(&root->fs_info->delalloc_lock);
1556 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1557 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1558 &root->fs_info->delalloc_inodes);
1559 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1560 &BTRFS_I(inode)->runtime_flags);
1561 }
1562 spin_unlock(&root->fs_info->delalloc_lock);
1563 }
1564 spin_unlock(&BTRFS_I(inode)->lock);
1565 }
1566 }
1567
1568 /*
1569 * extent_io.c clear_bit_hook, see set_bit_hook for why
1570 */
1571 static void btrfs_clear_bit_hook(struct inode *inode,
1572 struct extent_state *state, int *bits)
1573 {
1574 /*
1575 * set_bit and clear bit hooks normally require _irqsave/restore
1576 * but in this case, we are only testing for the DELALLOC
1577 * bit, which is only set or cleared with irqs on
1578 */
1579 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1580 struct btrfs_root *root = BTRFS_I(inode)->root;
1581 u64 len = state->end + 1 - state->start;
1582 bool do_list = !btrfs_is_free_space_inode(inode);
1583
1584 if (*bits & EXTENT_FIRST_DELALLOC) {
1585 *bits &= ~EXTENT_FIRST_DELALLOC;
1586 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1587 spin_lock(&BTRFS_I(inode)->lock);
1588 BTRFS_I(inode)->outstanding_extents--;
1589 spin_unlock(&BTRFS_I(inode)->lock);
1590 }
1591
1592 if (*bits & EXTENT_DO_ACCOUNTING)
1593 btrfs_delalloc_release_metadata(inode, len);
1594
1595 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1596 && do_list)
1597 btrfs_free_reserved_data_space(inode, len);
1598
1599 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1600 root->fs_info->delalloc_batch);
1601 spin_lock(&BTRFS_I(inode)->lock);
1602 BTRFS_I(inode)->delalloc_bytes -= len;
1603 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1604 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1605 &BTRFS_I(inode)->runtime_flags)) {
1606 spin_lock(&root->fs_info->delalloc_lock);
1607 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1608 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1609 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1610 &BTRFS_I(inode)->runtime_flags);
1611 }
1612 spin_unlock(&root->fs_info->delalloc_lock);
1613 }
1614 spin_unlock(&BTRFS_I(inode)->lock);
1615 }
1616 }
1617
1618 /*
1619 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1620 * we don't create bios that span stripes or chunks
1621 */
1622 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1623 size_t size, struct bio *bio,
1624 unsigned long bio_flags)
1625 {
1626 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1627 u64 logical = (u64)bio->bi_sector << 9;
1628 u64 length = 0;
1629 u64 map_length;
1630 int ret;
1631
1632 if (bio_flags & EXTENT_BIO_COMPRESSED)
1633 return 0;
1634
1635 length = bio->bi_size;
1636 map_length = length;
1637 ret = btrfs_map_block(root->fs_info, rw, logical,
1638 &map_length, NULL, 0);
1639 /* Will always return 0 with map_multi == NULL */
1640 BUG_ON(ret < 0);
1641 if (map_length < length + size)
1642 return 1;
1643 return 0;
1644 }
1645
1646 /*
1647 * in order to insert checksums into the metadata in large chunks,
1648 * we wait until bio submission time. All the pages in the bio are
1649 * checksummed and sums are attached onto the ordered extent record.
1650 *
1651 * At IO completion time the cums attached on the ordered extent record
1652 * are inserted into the btree
1653 */
1654 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1655 struct bio *bio, int mirror_num,
1656 unsigned long bio_flags,
1657 u64 bio_offset)
1658 {
1659 struct btrfs_root *root = BTRFS_I(inode)->root;
1660 int ret = 0;
1661
1662 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1663 BUG_ON(ret); /* -ENOMEM */
1664 return 0;
1665 }
1666
1667 /*
1668 * in order to insert checksums into the metadata in large chunks,
1669 * we wait until bio submission time. All the pages in the bio are
1670 * checksummed and sums are attached onto the ordered extent record.
1671 *
1672 * At IO completion time the cums attached on the ordered extent record
1673 * are inserted into the btree
1674 */
1675 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1676 int mirror_num, unsigned long bio_flags,
1677 u64 bio_offset)
1678 {
1679 struct btrfs_root *root = BTRFS_I(inode)->root;
1680 int ret;
1681
1682 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1683 if (ret)
1684 bio_endio(bio, ret);
1685 return ret;
1686 }
1687
1688 /*
1689 * extent_io.c submission hook. This does the right thing for csum calculation
1690 * on write, or reading the csums from the tree before a read
1691 */
1692 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1693 int mirror_num, unsigned long bio_flags,
1694 u64 bio_offset)
1695 {
1696 struct btrfs_root *root = BTRFS_I(inode)->root;
1697 int ret = 0;
1698 int skip_sum;
1699 int metadata = 0;
1700 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1701
1702 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1703
1704 if (btrfs_is_free_space_inode(inode))
1705 metadata = 2;
1706
1707 if (!(rw & REQ_WRITE)) {
1708 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1709 if (ret)
1710 goto out;
1711
1712 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1713 ret = btrfs_submit_compressed_read(inode, bio,
1714 mirror_num,
1715 bio_flags);
1716 goto out;
1717 } else if (!skip_sum) {
1718 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1719 if (ret)
1720 goto out;
1721 }
1722 goto mapit;
1723 } else if (async && !skip_sum) {
1724 /* csum items have already been cloned */
1725 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1726 goto mapit;
1727 /* we're doing a write, do the async checksumming */
1728 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1729 inode, rw, bio, mirror_num,
1730 bio_flags, bio_offset,
1731 __btrfs_submit_bio_start,
1732 __btrfs_submit_bio_done);
1733 goto out;
1734 } else if (!skip_sum) {
1735 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1736 if (ret)
1737 goto out;
1738 }
1739
1740 mapit:
1741 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1742
1743 out:
1744 if (ret < 0)
1745 bio_endio(bio, ret);
1746 return ret;
1747 }
1748
1749 /*
1750 * given a list of ordered sums record them in the inode. This happens
1751 * at IO completion time based on sums calculated at bio submission time.
1752 */
1753 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1754 struct inode *inode, u64 file_offset,
1755 struct list_head *list)
1756 {
1757 struct btrfs_ordered_sum *sum;
1758
1759 list_for_each_entry(sum, list, list) {
1760 trans->adding_csums = 1;
1761 btrfs_csum_file_blocks(trans,
1762 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1763 trans->adding_csums = 0;
1764 }
1765 return 0;
1766 }
1767
1768 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1769 struct extent_state **cached_state)
1770 {
1771 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1772 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1773 cached_state, GFP_NOFS);
1774 }
1775
1776 /* see btrfs_writepage_start_hook for details on why this is required */
1777 struct btrfs_writepage_fixup {
1778 struct page *page;
1779 struct btrfs_work work;
1780 };
1781
1782 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1783 {
1784 struct btrfs_writepage_fixup *fixup;
1785 struct btrfs_ordered_extent *ordered;
1786 struct extent_state *cached_state = NULL;
1787 struct page *page;
1788 struct inode *inode;
1789 u64 page_start;
1790 u64 page_end;
1791 int ret;
1792
1793 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1794 page = fixup->page;
1795 again:
1796 lock_page(page);
1797 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1798 ClearPageChecked(page);
1799 goto out_page;
1800 }
1801
1802 inode = page->mapping->host;
1803 page_start = page_offset(page);
1804 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1805
1806 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1807 &cached_state);
1808
1809 /* already ordered? We're done */
1810 if (PagePrivate2(page))
1811 goto out;
1812
1813 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1814 if (ordered) {
1815 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1816 page_end, &cached_state, GFP_NOFS);
1817 unlock_page(page);
1818 btrfs_start_ordered_extent(inode, ordered, 1);
1819 btrfs_put_ordered_extent(ordered);
1820 goto again;
1821 }
1822
1823 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1824 if (ret) {
1825 mapping_set_error(page->mapping, ret);
1826 end_extent_writepage(page, ret, page_start, page_end);
1827 ClearPageChecked(page);
1828 goto out;
1829 }
1830
1831 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1832 ClearPageChecked(page);
1833 set_page_dirty(page);
1834 out:
1835 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1836 &cached_state, GFP_NOFS);
1837 out_page:
1838 unlock_page(page);
1839 page_cache_release(page);
1840 kfree(fixup);
1841 }
1842
1843 /*
1844 * There are a few paths in the higher layers of the kernel that directly
1845 * set the page dirty bit without asking the filesystem if it is a
1846 * good idea. This causes problems because we want to make sure COW
1847 * properly happens and the data=ordered rules are followed.
1848 *
1849 * In our case any range that doesn't have the ORDERED bit set
1850 * hasn't been properly setup for IO. We kick off an async process
1851 * to fix it up. The async helper will wait for ordered extents, set
1852 * the delalloc bit and make it safe to write the page.
1853 */
1854 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1855 {
1856 struct inode *inode = page->mapping->host;
1857 struct btrfs_writepage_fixup *fixup;
1858 struct btrfs_root *root = BTRFS_I(inode)->root;
1859
1860 /* this page is properly in the ordered list */
1861 if (TestClearPagePrivate2(page))
1862 return 0;
1863
1864 if (PageChecked(page))
1865 return -EAGAIN;
1866
1867 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1868 if (!fixup)
1869 return -EAGAIN;
1870
1871 SetPageChecked(page);
1872 page_cache_get(page);
1873 fixup->work.func = btrfs_writepage_fixup_worker;
1874 fixup->page = page;
1875 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1876 return -EBUSY;
1877 }
1878
1879 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1880 struct inode *inode, u64 file_pos,
1881 u64 disk_bytenr, u64 disk_num_bytes,
1882 u64 num_bytes, u64 ram_bytes,
1883 u8 compression, u8 encryption,
1884 u16 other_encoding, int extent_type)
1885 {
1886 struct btrfs_root *root = BTRFS_I(inode)->root;
1887 struct btrfs_file_extent_item *fi;
1888 struct btrfs_path *path;
1889 struct extent_buffer *leaf;
1890 struct btrfs_key ins;
1891 int ret;
1892
1893 path = btrfs_alloc_path();
1894 if (!path)
1895 return -ENOMEM;
1896
1897 path->leave_spinning = 1;
1898
1899 /*
1900 * we may be replacing one extent in the tree with another.
1901 * The new extent is pinned in the extent map, and we don't want
1902 * to drop it from the cache until it is completely in the btree.
1903 *
1904 * So, tell btrfs_drop_extents to leave this extent in the cache.
1905 * the caller is expected to unpin it and allow it to be merged
1906 * with the others.
1907 */
1908 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1909 file_pos + num_bytes, 0);
1910 if (ret)
1911 goto out;
1912
1913 ins.objectid = btrfs_ino(inode);
1914 ins.offset = file_pos;
1915 ins.type = BTRFS_EXTENT_DATA_KEY;
1916 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1917 if (ret)
1918 goto out;
1919 leaf = path->nodes[0];
1920 fi = btrfs_item_ptr(leaf, path->slots[0],
1921 struct btrfs_file_extent_item);
1922 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1923 btrfs_set_file_extent_type(leaf, fi, extent_type);
1924 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1925 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1926 btrfs_set_file_extent_offset(leaf, fi, 0);
1927 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1928 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1929 btrfs_set_file_extent_compression(leaf, fi, compression);
1930 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1931 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1932
1933 btrfs_mark_buffer_dirty(leaf);
1934 btrfs_release_path(path);
1935
1936 inode_add_bytes(inode, num_bytes);
1937
1938 ins.objectid = disk_bytenr;
1939 ins.offset = disk_num_bytes;
1940 ins.type = BTRFS_EXTENT_ITEM_KEY;
1941 ret = btrfs_alloc_reserved_file_extent(trans, root,
1942 root->root_key.objectid,
1943 btrfs_ino(inode), file_pos, &ins);
1944 out:
1945 btrfs_free_path(path);
1946
1947 return ret;
1948 }
1949
1950 /* snapshot-aware defrag */
1951 struct sa_defrag_extent_backref {
1952 struct rb_node node;
1953 struct old_sa_defrag_extent *old;
1954 u64 root_id;
1955 u64 inum;
1956 u64 file_pos;
1957 u64 extent_offset;
1958 u64 num_bytes;
1959 u64 generation;
1960 };
1961
1962 struct old_sa_defrag_extent {
1963 struct list_head list;
1964 struct new_sa_defrag_extent *new;
1965
1966 u64 extent_offset;
1967 u64 bytenr;
1968 u64 offset;
1969 u64 len;
1970 int count;
1971 };
1972
1973 struct new_sa_defrag_extent {
1974 struct rb_root root;
1975 struct list_head head;
1976 struct btrfs_path *path;
1977 struct inode *inode;
1978 u64 file_pos;
1979 u64 len;
1980 u64 bytenr;
1981 u64 disk_len;
1982 u8 compress_type;
1983 };
1984
1985 static int backref_comp(struct sa_defrag_extent_backref *b1,
1986 struct sa_defrag_extent_backref *b2)
1987 {
1988 if (b1->root_id < b2->root_id)
1989 return -1;
1990 else if (b1->root_id > b2->root_id)
1991 return 1;
1992
1993 if (b1->inum < b2->inum)
1994 return -1;
1995 else if (b1->inum > b2->inum)
1996 return 1;
1997
1998 if (b1->file_pos < b2->file_pos)
1999 return -1;
2000 else if (b1->file_pos > b2->file_pos)
2001 return 1;
2002
2003 /*
2004 * [------------------------------] ===> (a range of space)
2005 * |<--->| |<---->| =============> (fs/file tree A)
2006 * |<---------------------------->| ===> (fs/file tree B)
2007 *
2008 * A range of space can refer to two file extents in one tree while
2009 * refer to only one file extent in another tree.
2010 *
2011 * So we may process a disk offset more than one time(two extents in A)
2012 * and locate at the same extent(one extent in B), then insert two same
2013 * backrefs(both refer to the extent in B).
2014 */
2015 return 0;
2016 }
2017
2018 static void backref_insert(struct rb_root *root,
2019 struct sa_defrag_extent_backref *backref)
2020 {
2021 struct rb_node **p = &root->rb_node;
2022 struct rb_node *parent = NULL;
2023 struct sa_defrag_extent_backref *entry;
2024 int ret;
2025
2026 while (*p) {
2027 parent = *p;
2028 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2029
2030 ret = backref_comp(backref, entry);
2031 if (ret < 0)
2032 p = &(*p)->rb_left;
2033 else
2034 p = &(*p)->rb_right;
2035 }
2036
2037 rb_link_node(&backref->node, parent, p);
2038 rb_insert_color(&backref->node, root);
2039 }
2040
2041 /*
2042 * Note the backref might has changed, and in this case we just return 0.
2043 */
2044 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2045 void *ctx)
2046 {
2047 struct btrfs_file_extent_item *extent;
2048 struct btrfs_fs_info *fs_info;
2049 struct old_sa_defrag_extent *old = ctx;
2050 struct new_sa_defrag_extent *new = old->new;
2051 struct btrfs_path *path = new->path;
2052 struct btrfs_key key;
2053 struct btrfs_root *root;
2054 struct sa_defrag_extent_backref *backref;
2055 struct extent_buffer *leaf;
2056 struct inode *inode = new->inode;
2057 int slot;
2058 int ret;
2059 u64 extent_offset;
2060 u64 num_bytes;
2061
2062 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2063 inum == btrfs_ino(inode))
2064 return 0;
2065
2066 key.objectid = root_id;
2067 key.type = BTRFS_ROOT_ITEM_KEY;
2068 key.offset = (u64)-1;
2069
2070 fs_info = BTRFS_I(inode)->root->fs_info;
2071 root = btrfs_read_fs_root_no_name(fs_info, &key);
2072 if (IS_ERR(root)) {
2073 if (PTR_ERR(root) == -ENOENT)
2074 return 0;
2075 WARN_ON(1);
2076 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2077 inum, offset, root_id);
2078 return PTR_ERR(root);
2079 }
2080
2081 key.objectid = inum;
2082 key.type = BTRFS_EXTENT_DATA_KEY;
2083 if (offset > (u64)-1 << 32)
2084 key.offset = 0;
2085 else
2086 key.offset = offset;
2087
2088 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2089 if (ret < 0) {
2090 WARN_ON(1);
2091 return ret;
2092 }
2093
2094 while (1) {
2095 cond_resched();
2096
2097 leaf = path->nodes[0];
2098 slot = path->slots[0];
2099
2100 if (slot >= btrfs_header_nritems(leaf)) {
2101 ret = btrfs_next_leaf(root, path);
2102 if (ret < 0) {
2103 goto out;
2104 } else if (ret > 0) {
2105 ret = 0;
2106 goto out;
2107 }
2108 continue;
2109 }
2110
2111 path->slots[0]++;
2112
2113 btrfs_item_key_to_cpu(leaf, &key, slot);
2114
2115 if (key.objectid > inum)
2116 goto out;
2117
2118 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2119 continue;
2120
2121 extent = btrfs_item_ptr(leaf, slot,
2122 struct btrfs_file_extent_item);
2123
2124 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2125 continue;
2126
2127 extent_offset = btrfs_file_extent_offset(leaf, extent);
2128 if (key.offset - extent_offset != offset)
2129 continue;
2130
2131 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2132 if (extent_offset >= old->extent_offset + old->offset +
2133 old->len || extent_offset + num_bytes <=
2134 old->extent_offset + old->offset)
2135 continue;
2136
2137 break;
2138 }
2139
2140 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2141 if (!backref) {
2142 ret = -ENOENT;
2143 goto out;
2144 }
2145
2146 backref->root_id = root_id;
2147 backref->inum = inum;
2148 backref->file_pos = offset + extent_offset;
2149 backref->num_bytes = num_bytes;
2150 backref->extent_offset = extent_offset;
2151 backref->generation = btrfs_file_extent_generation(leaf, extent);
2152 backref->old = old;
2153 backref_insert(&new->root, backref);
2154 old->count++;
2155 out:
2156 btrfs_release_path(path);
2157 WARN_ON(ret);
2158 return ret;
2159 }
2160
2161 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2162 struct new_sa_defrag_extent *new)
2163 {
2164 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2165 struct old_sa_defrag_extent *old, *tmp;
2166 int ret;
2167
2168 new->path = path;
2169
2170 list_for_each_entry_safe(old, tmp, &new->head, list) {
2171 ret = iterate_inodes_from_logical(old->bytenr, fs_info,
2172 path, record_one_backref,
2173 old);
2174 BUG_ON(ret < 0 && ret != -ENOENT);
2175
2176 /* no backref to be processed for this extent */
2177 if (!old->count) {
2178 list_del(&old->list);
2179 kfree(old);
2180 }
2181 }
2182
2183 if (list_empty(&new->head))
2184 return false;
2185
2186 return true;
2187 }
2188
2189 static int relink_is_mergable(struct extent_buffer *leaf,
2190 struct btrfs_file_extent_item *fi,
2191 u64 disk_bytenr)
2192 {
2193 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2194 return 0;
2195
2196 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2197 return 0;
2198
2199 if (btrfs_file_extent_compression(leaf, fi) ||
2200 btrfs_file_extent_encryption(leaf, fi) ||
2201 btrfs_file_extent_other_encoding(leaf, fi))
2202 return 0;
2203
2204 return 1;
2205 }
2206
2207 /*
2208 * Note the backref might has changed, and in this case we just return 0.
2209 */
2210 static noinline int relink_extent_backref(struct btrfs_path *path,
2211 struct sa_defrag_extent_backref *prev,
2212 struct sa_defrag_extent_backref *backref)
2213 {
2214 struct btrfs_file_extent_item *extent;
2215 struct btrfs_file_extent_item *item;
2216 struct btrfs_ordered_extent *ordered;
2217 struct btrfs_trans_handle *trans;
2218 struct btrfs_fs_info *fs_info;
2219 struct btrfs_root *root;
2220 struct btrfs_key key;
2221 struct extent_buffer *leaf;
2222 struct old_sa_defrag_extent *old = backref->old;
2223 struct new_sa_defrag_extent *new = old->new;
2224 struct inode *src_inode = new->inode;
2225 struct inode *inode;
2226 struct extent_state *cached = NULL;
2227 int ret = 0;
2228 u64 start;
2229 u64 len;
2230 u64 lock_start;
2231 u64 lock_end;
2232 bool merge = false;
2233 int index;
2234
2235 if (prev && prev->root_id == backref->root_id &&
2236 prev->inum == backref->inum &&
2237 prev->file_pos + prev->num_bytes == backref->file_pos)
2238 merge = true;
2239
2240 /* step 1: get root */
2241 key.objectid = backref->root_id;
2242 key.type = BTRFS_ROOT_ITEM_KEY;
2243 key.offset = (u64)-1;
2244
2245 fs_info = BTRFS_I(src_inode)->root->fs_info;
2246 index = srcu_read_lock(&fs_info->subvol_srcu);
2247
2248 root = btrfs_read_fs_root_no_name(fs_info, &key);
2249 if (IS_ERR(root)) {
2250 srcu_read_unlock(&fs_info->subvol_srcu, index);
2251 if (PTR_ERR(root) == -ENOENT)
2252 return 0;
2253 return PTR_ERR(root);
2254 }
2255 if (btrfs_root_refs(&root->root_item) == 0) {
2256 srcu_read_unlock(&fs_info->subvol_srcu, index);
2257 /* parse ENOENT to 0 */
2258 return 0;
2259 }
2260
2261 /* step 2: get inode */
2262 key.objectid = backref->inum;
2263 key.type = BTRFS_INODE_ITEM_KEY;
2264 key.offset = 0;
2265
2266 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2267 if (IS_ERR(inode)) {
2268 srcu_read_unlock(&fs_info->subvol_srcu, index);
2269 return 0;
2270 }
2271
2272 srcu_read_unlock(&fs_info->subvol_srcu, index);
2273
2274 /* step 3: relink backref */
2275 lock_start = backref->file_pos;
2276 lock_end = backref->file_pos + backref->num_bytes - 1;
2277 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2278 0, &cached);
2279
2280 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2281 if (ordered) {
2282 btrfs_put_ordered_extent(ordered);
2283 goto out_unlock;
2284 }
2285
2286 trans = btrfs_join_transaction(root);
2287 if (IS_ERR(trans)) {
2288 ret = PTR_ERR(trans);
2289 goto out_unlock;
2290 }
2291
2292 key.objectid = backref->inum;
2293 key.type = BTRFS_EXTENT_DATA_KEY;
2294 key.offset = backref->file_pos;
2295
2296 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2297 if (ret < 0) {
2298 goto out_free_path;
2299 } else if (ret > 0) {
2300 ret = 0;
2301 goto out_free_path;
2302 }
2303
2304 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2305 struct btrfs_file_extent_item);
2306
2307 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2308 backref->generation)
2309 goto out_free_path;
2310
2311 btrfs_release_path(path);
2312
2313 start = backref->file_pos;
2314 if (backref->extent_offset < old->extent_offset + old->offset)
2315 start += old->extent_offset + old->offset -
2316 backref->extent_offset;
2317
2318 len = min(backref->extent_offset + backref->num_bytes,
2319 old->extent_offset + old->offset + old->len);
2320 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2321
2322 ret = btrfs_drop_extents(trans, root, inode, start,
2323 start + len, 1);
2324 if (ret)
2325 goto out_free_path;
2326 again:
2327 key.objectid = btrfs_ino(inode);
2328 key.type = BTRFS_EXTENT_DATA_KEY;
2329 key.offset = start;
2330
2331 path->leave_spinning = 1;
2332 if (merge) {
2333 struct btrfs_file_extent_item *fi;
2334 u64 extent_len;
2335 struct btrfs_key found_key;
2336
2337 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2338 if (ret < 0)
2339 goto out_free_path;
2340
2341 path->slots[0]--;
2342 leaf = path->nodes[0];
2343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2344
2345 fi = btrfs_item_ptr(leaf, path->slots[0],
2346 struct btrfs_file_extent_item);
2347 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2348
2349 if (relink_is_mergable(leaf, fi, new->bytenr) &&
2350 extent_len + found_key.offset == start) {
2351 btrfs_set_file_extent_num_bytes(leaf, fi,
2352 extent_len + len);
2353 btrfs_mark_buffer_dirty(leaf);
2354 inode_add_bytes(inode, len);
2355
2356 ret = 1;
2357 goto out_free_path;
2358 } else {
2359 merge = false;
2360 btrfs_release_path(path);
2361 goto again;
2362 }
2363 }
2364
2365 ret = btrfs_insert_empty_item(trans, root, path, &key,
2366 sizeof(*extent));
2367 if (ret) {
2368 btrfs_abort_transaction(trans, root, ret);
2369 goto out_free_path;
2370 }
2371
2372 leaf = path->nodes[0];
2373 item = btrfs_item_ptr(leaf, path->slots[0],
2374 struct btrfs_file_extent_item);
2375 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2376 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2377 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2378 btrfs_set_file_extent_num_bytes(leaf, item, len);
2379 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2380 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2381 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2382 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2383 btrfs_set_file_extent_encryption(leaf, item, 0);
2384 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2385
2386 btrfs_mark_buffer_dirty(leaf);
2387 inode_add_bytes(inode, len);
2388 btrfs_release_path(path);
2389
2390 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2391 new->disk_len, 0,
2392 backref->root_id, backref->inum,
2393 new->file_pos, 0); /* start - extent_offset */
2394 if (ret) {
2395 btrfs_abort_transaction(trans, root, ret);
2396 goto out_free_path;
2397 }
2398
2399 ret = 1;
2400 out_free_path:
2401 btrfs_release_path(path);
2402 path->leave_spinning = 0;
2403 btrfs_end_transaction(trans, root);
2404 out_unlock:
2405 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2406 &cached, GFP_NOFS);
2407 iput(inode);
2408 return ret;
2409 }
2410
2411 static void relink_file_extents(struct new_sa_defrag_extent *new)
2412 {
2413 struct btrfs_path *path;
2414 struct old_sa_defrag_extent *old, *tmp;
2415 struct sa_defrag_extent_backref *backref;
2416 struct sa_defrag_extent_backref *prev = NULL;
2417 struct inode *inode;
2418 struct btrfs_root *root;
2419 struct rb_node *node;
2420 int ret;
2421
2422 inode = new->inode;
2423 root = BTRFS_I(inode)->root;
2424
2425 path = btrfs_alloc_path();
2426 if (!path)
2427 return;
2428
2429 if (!record_extent_backrefs(path, new)) {
2430 btrfs_free_path(path);
2431 goto out;
2432 }
2433 btrfs_release_path(path);
2434
2435 while (1) {
2436 node = rb_first(&new->root);
2437 if (!node)
2438 break;
2439 rb_erase(node, &new->root);
2440
2441 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2442
2443 ret = relink_extent_backref(path, prev, backref);
2444 WARN_ON(ret < 0);
2445
2446 kfree(prev);
2447
2448 if (ret == 1)
2449 prev = backref;
2450 else
2451 prev = NULL;
2452 cond_resched();
2453 }
2454 kfree(prev);
2455
2456 btrfs_free_path(path);
2457
2458 list_for_each_entry_safe(old, tmp, &new->head, list) {
2459 list_del(&old->list);
2460 kfree(old);
2461 }
2462 out:
2463 atomic_dec(&root->fs_info->defrag_running);
2464 wake_up(&root->fs_info->transaction_wait);
2465
2466 kfree(new);
2467 }
2468
2469 static struct new_sa_defrag_extent *
2470 record_old_file_extents(struct inode *inode,
2471 struct btrfs_ordered_extent *ordered)
2472 {
2473 struct btrfs_root *root = BTRFS_I(inode)->root;
2474 struct btrfs_path *path;
2475 struct btrfs_key key;
2476 struct old_sa_defrag_extent *old, *tmp;
2477 struct new_sa_defrag_extent *new;
2478 int ret;
2479
2480 new = kmalloc(sizeof(*new), GFP_NOFS);
2481 if (!new)
2482 return NULL;
2483
2484 new->inode = inode;
2485 new->file_pos = ordered->file_offset;
2486 new->len = ordered->len;
2487 new->bytenr = ordered->start;
2488 new->disk_len = ordered->disk_len;
2489 new->compress_type = ordered->compress_type;
2490 new->root = RB_ROOT;
2491 INIT_LIST_HEAD(&new->head);
2492
2493 path = btrfs_alloc_path();
2494 if (!path)
2495 goto out_kfree;
2496
2497 key.objectid = btrfs_ino(inode);
2498 key.type = BTRFS_EXTENT_DATA_KEY;
2499 key.offset = new->file_pos;
2500
2501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502 if (ret < 0)
2503 goto out_free_path;
2504 if (ret > 0 && path->slots[0] > 0)
2505 path->slots[0]--;
2506
2507 /* find out all the old extents for the file range */
2508 while (1) {
2509 struct btrfs_file_extent_item *extent;
2510 struct extent_buffer *l;
2511 int slot;
2512 u64 num_bytes;
2513 u64 offset;
2514 u64 end;
2515 u64 disk_bytenr;
2516 u64 extent_offset;
2517
2518 l = path->nodes[0];
2519 slot = path->slots[0];
2520
2521 if (slot >= btrfs_header_nritems(l)) {
2522 ret = btrfs_next_leaf(root, path);
2523 if (ret < 0)
2524 goto out_free_list;
2525 else if (ret > 0)
2526 break;
2527 continue;
2528 }
2529
2530 btrfs_item_key_to_cpu(l, &key, slot);
2531
2532 if (key.objectid != btrfs_ino(inode))
2533 break;
2534 if (key.type != BTRFS_EXTENT_DATA_KEY)
2535 break;
2536 if (key.offset >= new->file_pos + new->len)
2537 break;
2538
2539 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2540
2541 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2542 if (key.offset + num_bytes < new->file_pos)
2543 goto next;
2544
2545 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2546 if (!disk_bytenr)
2547 goto next;
2548
2549 extent_offset = btrfs_file_extent_offset(l, extent);
2550
2551 old = kmalloc(sizeof(*old), GFP_NOFS);
2552 if (!old)
2553 goto out_free_list;
2554
2555 offset = max(new->file_pos, key.offset);
2556 end = min(new->file_pos + new->len, key.offset + num_bytes);
2557
2558 old->bytenr = disk_bytenr;
2559 old->extent_offset = extent_offset;
2560 old->offset = offset - key.offset;
2561 old->len = end - offset;
2562 old->new = new;
2563 old->count = 0;
2564 list_add_tail(&old->list, &new->head);
2565 next:
2566 path->slots[0]++;
2567 cond_resched();
2568 }
2569
2570 btrfs_free_path(path);
2571 atomic_inc(&root->fs_info->defrag_running);
2572
2573 return new;
2574
2575 out_free_list:
2576 list_for_each_entry_safe(old, tmp, &new->head, list) {
2577 list_del(&old->list);
2578 kfree(old);
2579 }
2580 out_free_path:
2581 btrfs_free_path(path);
2582 out_kfree:
2583 kfree(new);
2584 return NULL;
2585 }
2586
2587 /*
2588 * helper function for btrfs_finish_ordered_io, this
2589 * just reads in some of the csum leaves to prime them into ram
2590 * before we start the transaction. It limits the amount of btree
2591 * reads required while inside the transaction.
2592 */
2593 /* as ordered data IO finishes, this gets called so we can finish
2594 * an ordered extent if the range of bytes in the file it covers are
2595 * fully written.
2596 */
2597 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2598 {
2599 struct inode *inode = ordered_extent->inode;
2600 struct btrfs_root *root = BTRFS_I(inode)->root;
2601 struct btrfs_trans_handle *trans = NULL;
2602 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2603 struct extent_state *cached_state = NULL;
2604 struct new_sa_defrag_extent *new = NULL;
2605 int compress_type = 0;
2606 int ret;
2607 bool nolock;
2608
2609 nolock = btrfs_is_free_space_inode(inode);
2610
2611 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2612 ret = -EIO;
2613 goto out;
2614 }
2615
2616 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2617 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2618 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2619 if (nolock)
2620 trans = btrfs_join_transaction_nolock(root);
2621 else
2622 trans = btrfs_join_transaction(root);
2623 if (IS_ERR(trans)) {
2624 ret = PTR_ERR(trans);
2625 trans = NULL;
2626 goto out;
2627 }
2628 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2629 ret = btrfs_update_inode_fallback(trans, root, inode);
2630 if (ret) /* -ENOMEM or corruption */
2631 btrfs_abort_transaction(trans, root, ret);
2632 goto out;
2633 }
2634
2635 lock_extent_bits(io_tree, ordered_extent->file_offset,
2636 ordered_extent->file_offset + ordered_extent->len - 1,
2637 0, &cached_state);
2638
2639 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2640 ordered_extent->file_offset + ordered_extent->len - 1,
2641 EXTENT_DEFRAG, 1, cached_state);
2642 if (ret) {
2643 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2644 if (last_snapshot >= BTRFS_I(inode)->generation)
2645 /* the inode is shared */
2646 new = record_old_file_extents(inode, ordered_extent);
2647
2648 clear_extent_bit(io_tree, ordered_extent->file_offset,
2649 ordered_extent->file_offset + ordered_extent->len - 1,
2650 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2651 }
2652
2653 if (nolock)
2654 trans = btrfs_join_transaction_nolock(root);
2655 else
2656 trans = btrfs_join_transaction(root);
2657 if (IS_ERR(trans)) {
2658 ret = PTR_ERR(trans);
2659 trans = NULL;
2660 goto out_unlock;
2661 }
2662 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2663
2664 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2665 compress_type = ordered_extent->compress_type;
2666 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2667 BUG_ON(compress_type);
2668 ret = btrfs_mark_extent_written(trans, inode,
2669 ordered_extent->file_offset,
2670 ordered_extent->file_offset +
2671 ordered_extent->len);
2672 } else {
2673 BUG_ON(root == root->fs_info->tree_root);
2674 ret = insert_reserved_file_extent(trans, inode,
2675 ordered_extent->file_offset,
2676 ordered_extent->start,
2677 ordered_extent->disk_len,
2678 ordered_extent->len,
2679 ordered_extent->len,
2680 compress_type, 0, 0,
2681 BTRFS_FILE_EXTENT_REG);
2682 }
2683 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2684 ordered_extent->file_offset, ordered_extent->len,
2685 trans->transid);
2686 if (ret < 0) {
2687 btrfs_abort_transaction(trans, root, ret);
2688 goto out_unlock;
2689 }
2690
2691 add_pending_csums(trans, inode, ordered_extent->file_offset,
2692 &ordered_extent->list);
2693
2694 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2695 ret = btrfs_update_inode_fallback(trans, root, inode);
2696 if (ret) { /* -ENOMEM or corruption */
2697 btrfs_abort_transaction(trans, root, ret);
2698 goto out_unlock;
2699 }
2700 ret = 0;
2701 out_unlock:
2702 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2703 ordered_extent->file_offset +
2704 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2705 out:
2706 if (root != root->fs_info->tree_root)
2707 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2708 if (trans)
2709 btrfs_end_transaction(trans, root);
2710
2711 if (ret) {
2712 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2713 ordered_extent->file_offset +
2714 ordered_extent->len - 1, NULL, GFP_NOFS);
2715
2716 /*
2717 * If the ordered extent had an IOERR or something else went
2718 * wrong we need to return the space for this ordered extent
2719 * back to the allocator.
2720 */
2721 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2722 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2723 btrfs_free_reserved_extent(root, ordered_extent->start,
2724 ordered_extent->disk_len);
2725 }
2726
2727
2728 /*
2729 * This needs to be done to make sure anybody waiting knows we are done
2730 * updating everything for this ordered extent.
2731 */
2732 btrfs_remove_ordered_extent(inode, ordered_extent);
2733
2734 /* for snapshot-aware defrag */
2735 if (new)
2736 relink_file_extents(new);
2737
2738 /* once for us */
2739 btrfs_put_ordered_extent(ordered_extent);
2740 /* once for the tree */
2741 btrfs_put_ordered_extent(ordered_extent);
2742
2743 return ret;
2744 }
2745
2746 static void finish_ordered_fn(struct btrfs_work *work)
2747 {
2748 struct btrfs_ordered_extent *ordered_extent;
2749 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2750 btrfs_finish_ordered_io(ordered_extent);
2751 }
2752
2753 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2754 struct extent_state *state, int uptodate)
2755 {
2756 struct inode *inode = page->mapping->host;
2757 struct btrfs_root *root = BTRFS_I(inode)->root;
2758 struct btrfs_ordered_extent *ordered_extent = NULL;
2759 struct btrfs_workers *workers;
2760
2761 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2762
2763 ClearPagePrivate2(page);
2764 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2765 end - start + 1, uptodate))
2766 return 0;
2767
2768 ordered_extent->work.func = finish_ordered_fn;
2769 ordered_extent->work.flags = 0;
2770
2771 if (btrfs_is_free_space_inode(inode))
2772 workers = &root->fs_info->endio_freespace_worker;
2773 else
2774 workers = &root->fs_info->endio_write_workers;
2775 btrfs_queue_worker(workers, &ordered_extent->work);
2776
2777 return 0;
2778 }
2779
2780 /*
2781 * when reads are done, we need to check csums to verify the data is correct
2782 * if there's a match, we allow the bio to finish. If not, the code in
2783 * extent_io.c will try to find good copies for us.
2784 */
2785 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2786 struct extent_state *state, int mirror)
2787 {
2788 size_t offset = start - page_offset(page);
2789 struct inode *inode = page->mapping->host;
2790 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2791 char *kaddr;
2792 u64 private = ~(u32)0;
2793 int ret;
2794 struct btrfs_root *root = BTRFS_I(inode)->root;
2795 u32 csum = ~(u32)0;
2796
2797 if (PageChecked(page)) {
2798 ClearPageChecked(page);
2799 goto good;
2800 }
2801
2802 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2803 goto good;
2804
2805 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2806 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2807 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2808 GFP_NOFS);
2809 return 0;
2810 }
2811
2812 if (state && state->start == start) {
2813 private = state->private;
2814 ret = 0;
2815 } else {
2816 ret = get_state_private(io_tree, start, &private);
2817 }
2818 kaddr = kmap_atomic(page);
2819 if (ret)
2820 goto zeroit;
2821
2822 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2823 btrfs_csum_final(csum, (char *)&csum);
2824 if (csum != private)
2825 goto zeroit;
2826
2827 kunmap_atomic(kaddr);
2828 good:
2829 return 0;
2830
2831 zeroit:
2832 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2833 "private %llu\n",
2834 (unsigned long long)btrfs_ino(page->mapping->host),
2835 (unsigned long long)start, csum,
2836 (unsigned long long)private);
2837 memset(kaddr + offset, 1, end - start + 1);
2838 flush_dcache_page(page);
2839 kunmap_atomic(kaddr);
2840 if (private == 0)
2841 return 0;
2842 return -EIO;
2843 }
2844
2845 struct delayed_iput {
2846 struct list_head list;
2847 struct inode *inode;
2848 };
2849
2850 /* JDM: If this is fs-wide, why can't we add a pointer to
2851 * btrfs_inode instead and avoid the allocation? */
2852 void btrfs_add_delayed_iput(struct inode *inode)
2853 {
2854 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2855 struct delayed_iput *delayed;
2856
2857 if (atomic_add_unless(&inode->i_count, -1, 1))
2858 return;
2859
2860 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2861 delayed->inode = inode;
2862
2863 spin_lock(&fs_info->delayed_iput_lock);
2864 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2865 spin_unlock(&fs_info->delayed_iput_lock);
2866 }
2867
2868 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2869 {
2870 LIST_HEAD(list);
2871 struct btrfs_fs_info *fs_info = root->fs_info;
2872 struct delayed_iput *delayed;
2873 int empty;
2874
2875 spin_lock(&fs_info->delayed_iput_lock);
2876 empty = list_empty(&fs_info->delayed_iputs);
2877 spin_unlock(&fs_info->delayed_iput_lock);
2878 if (empty)
2879 return;
2880
2881 spin_lock(&fs_info->delayed_iput_lock);
2882 list_splice_init(&fs_info->delayed_iputs, &list);
2883 spin_unlock(&fs_info->delayed_iput_lock);
2884
2885 while (!list_empty(&list)) {
2886 delayed = list_entry(list.next, struct delayed_iput, list);
2887 list_del(&delayed->list);
2888 iput(delayed->inode);
2889 kfree(delayed);
2890 }
2891 }
2892
2893 /*
2894 * This is called in transaction commit time. If there are no orphan
2895 * files in the subvolume, it removes orphan item and frees block_rsv
2896 * structure.
2897 */
2898 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2899 struct btrfs_root *root)
2900 {
2901 struct btrfs_block_rsv *block_rsv;
2902 int ret;
2903
2904 if (atomic_read(&root->orphan_inodes) ||
2905 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2906 return;
2907
2908 spin_lock(&root->orphan_lock);
2909 if (atomic_read(&root->orphan_inodes)) {
2910 spin_unlock(&root->orphan_lock);
2911 return;
2912 }
2913
2914 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2915 spin_unlock(&root->orphan_lock);
2916 return;
2917 }
2918
2919 block_rsv = root->orphan_block_rsv;
2920 root->orphan_block_rsv = NULL;
2921 spin_unlock(&root->orphan_lock);
2922
2923 if (root->orphan_item_inserted &&
2924 btrfs_root_refs(&root->root_item) > 0) {
2925 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2926 root->root_key.objectid);
2927 BUG_ON(ret);
2928 root->orphan_item_inserted = 0;
2929 }
2930
2931 if (block_rsv) {
2932 WARN_ON(block_rsv->size > 0);
2933 btrfs_free_block_rsv(root, block_rsv);
2934 }
2935 }
2936
2937 /*
2938 * This creates an orphan entry for the given inode in case something goes
2939 * wrong in the middle of an unlink/truncate.
2940 *
2941 * NOTE: caller of this function should reserve 5 units of metadata for
2942 * this function.
2943 */
2944 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2945 {
2946 struct btrfs_root *root = BTRFS_I(inode)->root;
2947 struct btrfs_block_rsv *block_rsv = NULL;
2948 int reserve = 0;
2949 int insert = 0;
2950 int ret;
2951
2952 if (!root->orphan_block_rsv) {
2953 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2954 if (!block_rsv)
2955 return -ENOMEM;
2956 }
2957
2958 spin_lock(&root->orphan_lock);
2959 if (!root->orphan_block_rsv) {
2960 root->orphan_block_rsv = block_rsv;
2961 } else if (block_rsv) {
2962 btrfs_free_block_rsv(root, block_rsv);
2963 block_rsv = NULL;
2964 }
2965
2966 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2967 &BTRFS_I(inode)->runtime_flags)) {
2968 #if 0
2969 /*
2970 * For proper ENOSPC handling, we should do orphan
2971 * cleanup when mounting. But this introduces backward
2972 * compatibility issue.
2973 */
2974 if (!xchg(&root->orphan_item_inserted, 1))
2975 insert = 2;
2976 else
2977 insert = 1;
2978 #endif
2979 insert = 1;
2980 atomic_inc(&root->orphan_inodes);
2981 }
2982
2983 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2984 &BTRFS_I(inode)->runtime_flags))
2985 reserve = 1;
2986 spin_unlock(&root->orphan_lock);
2987
2988 /* grab metadata reservation from transaction handle */
2989 if (reserve) {
2990 ret = btrfs_orphan_reserve_metadata(trans, inode);
2991 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2992 }
2993
2994 /* insert an orphan item to track this unlinked/truncated file */
2995 if (insert >= 1) {
2996 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2997 if (ret && ret != -EEXIST) {
2998 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2999 &BTRFS_I(inode)->runtime_flags);
3000 btrfs_abort_transaction(trans, root, ret);
3001 return ret;
3002 }
3003 ret = 0;
3004 }
3005
3006 /* insert an orphan item to track subvolume contains orphan files */
3007 if (insert >= 2) {
3008 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3009 root->root_key.objectid);
3010 if (ret && ret != -EEXIST) {
3011 btrfs_abort_transaction(trans, root, ret);
3012 return ret;
3013 }
3014 }
3015 return 0;
3016 }
3017
3018 /*
3019 * We have done the truncate/delete so we can go ahead and remove the orphan
3020 * item for this particular inode.
3021 */
3022 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
3023 {
3024 struct btrfs_root *root = BTRFS_I(inode)->root;
3025 int delete_item = 0;
3026 int release_rsv = 0;
3027 int ret = 0;
3028
3029 spin_lock(&root->orphan_lock);
3030 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3031 &BTRFS_I(inode)->runtime_flags))
3032 delete_item = 1;
3033
3034 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3035 &BTRFS_I(inode)->runtime_flags))
3036 release_rsv = 1;
3037 spin_unlock(&root->orphan_lock);
3038
3039 if (trans && delete_item) {
3040 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3041 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3042 }
3043
3044 if (release_rsv) {
3045 btrfs_orphan_release_metadata(inode);
3046 atomic_dec(&root->orphan_inodes);
3047 }
3048
3049 return 0;
3050 }
3051
3052 /*
3053 * this cleans up any orphans that may be left on the list from the last use
3054 * of this root.
3055 */
3056 int btrfs_orphan_cleanup(struct btrfs_root *root)
3057 {
3058 struct btrfs_path *path;
3059 struct extent_buffer *leaf;
3060 struct btrfs_key key, found_key;
3061 struct btrfs_trans_handle *trans;
3062 struct inode *inode;
3063 u64 last_objectid = 0;
3064 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3065
3066 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3067 return 0;
3068
3069 path = btrfs_alloc_path();
3070 if (!path) {
3071 ret = -ENOMEM;
3072 goto out;
3073 }
3074 path->reada = -1;
3075
3076 key.objectid = BTRFS_ORPHAN_OBJECTID;
3077 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3078 key.offset = (u64)-1;
3079
3080 while (1) {
3081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3082 if (ret < 0)
3083 goto out;
3084
3085 /*
3086 * if ret == 0 means we found what we were searching for, which
3087 * is weird, but possible, so only screw with path if we didn't
3088 * find the key and see if we have stuff that matches
3089 */
3090 if (ret > 0) {
3091 ret = 0;
3092 if (path->slots[0] == 0)
3093 break;
3094 path->slots[0]--;
3095 }
3096
3097 /* pull out the item */
3098 leaf = path->nodes[0];
3099 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3100
3101 /* make sure the item matches what we want */
3102 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3103 break;
3104 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3105 break;
3106
3107 /* release the path since we're done with it */
3108 btrfs_release_path(path);
3109
3110 /*
3111 * this is where we are basically btrfs_lookup, without the
3112 * crossing root thing. we store the inode number in the
3113 * offset of the orphan item.
3114 */
3115
3116 if (found_key.offset == last_objectid) {
3117 printk(KERN_ERR "btrfs: Error removing orphan entry, "
3118 "stopping orphan cleanup\n");
3119 ret = -EINVAL;
3120 goto out;
3121 }
3122
3123 last_objectid = found_key.offset;
3124
3125 found_key.objectid = found_key.offset;
3126 found_key.type = BTRFS_INODE_ITEM_KEY;
3127 found_key.offset = 0;
3128 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3129 ret = PTR_RET(inode);
3130 if (ret && ret != -ESTALE)
3131 goto out;
3132
3133 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3134 struct btrfs_root *dead_root;
3135 struct btrfs_fs_info *fs_info = root->fs_info;
3136 int is_dead_root = 0;
3137
3138 /*
3139 * this is an orphan in the tree root. Currently these
3140 * could come from 2 sources:
3141 * a) a snapshot deletion in progress
3142 * b) a free space cache inode
3143 * We need to distinguish those two, as the snapshot
3144 * orphan must not get deleted.
3145 * find_dead_roots already ran before us, so if this
3146 * is a snapshot deletion, we should find the root
3147 * in the dead_roots list
3148 */
3149 spin_lock(&fs_info->trans_lock);
3150 list_for_each_entry(dead_root, &fs_info->dead_roots,
3151 root_list) {
3152 if (dead_root->root_key.objectid ==
3153 found_key.objectid) {
3154 is_dead_root = 1;
3155 break;
3156 }
3157 }
3158 spin_unlock(&fs_info->trans_lock);
3159 if (is_dead_root) {
3160 /* prevent this orphan from being found again */
3161 key.offset = found_key.objectid - 1;
3162 continue;
3163 }
3164 }
3165 /*
3166 * Inode is already gone but the orphan item is still there,
3167 * kill the orphan item.
3168 */
3169 if (ret == -ESTALE) {
3170 trans = btrfs_start_transaction(root, 1);
3171 if (IS_ERR(trans)) {
3172 ret = PTR_ERR(trans);
3173 goto out;
3174 }
3175 printk(KERN_ERR "auto deleting %Lu\n",
3176 found_key.objectid);
3177 ret = btrfs_del_orphan_item(trans, root,
3178 found_key.objectid);
3179 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3180 btrfs_end_transaction(trans, root);
3181 continue;
3182 }
3183
3184 /*
3185 * add this inode to the orphan list so btrfs_orphan_del does
3186 * the proper thing when we hit it
3187 */
3188 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3189 &BTRFS_I(inode)->runtime_flags);
3190 atomic_inc(&root->orphan_inodes);
3191
3192 /* if we have links, this was a truncate, lets do that */
3193 if (inode->i_nlink) {
3194 if (!S_ISREG(inode->i_mode)) {
3195 WARN_ON(1);
3196 iput(inode);
3197 continue;
3198 }
3199 nr_truncate++;
3200
3201 /* 1 for the orphan item deletion. */
3202 trans = btrfs_start_transaction(root, 1);
3203 if (IS_ERR(trans)) {
3204 ret = PTR_ERR(trans);
3205 goto out;
3206 }
3207 ret = btrfs_orphan_add(trans, inode);
3208 btrfs_end_transaction(trans, root);
3209 if (ret)
3210 goto out;
3211
3212 ret = btrfs_truncate(inode);
3213 if (ret)
3214 btrfs_orphan_del(NULL, inode);
3215 } else {
3216 nr_unlink++;
3217 }
3218
3219 /* this will do delete_inode and everything for us */
3220 iput(inode);
3221 if (ret)
3222 goto out;
3223 }
3224 /* release the path since we're done with it */
3225 btrfs_release_path(path);
3226
3227 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3228
3229 if (root->orphan_block_rsv)
3230 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3231 (u64)-1);
3232
3233 if (root->orphan_block_rsv || root->orphan_item_inserted) {
3234 trans = btrfs_join_transaction(root);
3235 if (!IS_ERR(trans))
3236 btrfs_end_transaction(trans, root);
3237 }
3238
3239 if (nr_unlink)
3240 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
3241 if (nr_truncate)
3242 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
3243
3244 out:
3245 if (ret)
3246 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
3247 btrfs_free_path(path);
3248 return ret;
3249 }
3250
3251 /*
3252 * very simple check to peek ahead in the leaf looking for xattrs. If we
3253 * don't find any xattrs, we know there can't be any acls.
3254 *
3255 * slot is the slot the inode is in, objectid is the objectid of the inode
3256 */
3257 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3258 int slot, u64 objectid)
3259 {
3260 u32 nritems = btrfs_header_nritems(leaf);
3261 struct btrfs_key found_key;
3262 int scanned = 0;
3263
3264 slot++;
3265 while (slot < nritems) {
3266 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3267
3268 /* we found a different objectid, there must not be acls */
3269 if (found_key.objectid != objectid)
3270 return 0;
3271
3272 /* we found an xattr, assume we've got an acl */
3273 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
3274 return 1;
3275
3276 /*
3277 * we found a key greater than an xattr key, there can't
3278 * be any acls later on
3279 */
3280 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3281 return 0;
3282
3283 slot++;
3284 scanned++;
3285
3286 /*
3287 * it goes inode, inode backrefs, xattrs, extents,
3288 * so if there are a ton of hard links to an inode there can
3289 * be a lot of backrefs. Don't waste time searching too hard,
3290 * this is just an optimization
3291 */
3292 if (scanned >= 8)
3293 break;
3294 }
3295 /* we hit the end of the leaf before we found an xattr or
3296 * something larger than an xattr. We have to assume the inode
3297 * has acls
3298 */
3299 return 1;
3300 }
3301
3302 /*
3303 * read an inode from the btree into the in-memory inode
3304 */
3305 static void btrfs_read_locked_inode(struct inode *inode)
3306 {
3307 struct btrfs_path *path;
3308 struct extent_buffer *leaf;
3309 struct btrfs_inode_item *inode_item;
3310 struct btrfs_timespec *tspec;
3311 struct btrfs_root *root = BTRFS_I(inode)->root;
3312 struct btrfs_key location;
3313 int maybe_acls;
3314 u32 rdev;
3315 int ret;
3316 bool filled = false;
3317
3318 ret = btrfs_fill_inode(inode, &rdev);
3319 if (!ret)
3320 filled = true;
3321
3322 path = btrfs_alloc_path();
3323 if (!path)
3324 goto make_bad;
3325
3326 path->leave_spinning = 1;
3327 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3328
3329 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3330 if (ret)
3331 goto make_bad;
3332
3333 leaf = path->nodes[0];
3334
3335 if (filled)
3336 goto cache_acl;
3337
3338 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3339 struct btrfs_inode_item);
3340 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3341 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3342 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3343 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3344 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3345
3346 tspec = btrfs_inode_atime(inode_item);
3347 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3348 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3349
3350 tspec = btrfs_inode_mtime(inode_item);
3351 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3352 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3353
3354 tspec = btrfs_inode_ctime(inode_item);
3355 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3356 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3357
3358 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3359 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3360 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3361
3362 /*
3363 * If we were modified in the current generation and evicted from memory
3364 * and then re-read we need to do a full sync since we don't have any
3365 * idea about which extents were modified before we were evicted from
3366 * cache.
3367 */
3368 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3370 &BTRFS_I(inode)->runtime_flags);
3371
3372 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3373 inode->i_generation = BTRFS_I(inode)->generation;
3374 inode->i_rdev = 0;
3375 rdev = btrfs_inode_rdev(leaf, inode_item);
3376
3377 BTRFS_I(inode)->index_cnt = (u64)-1;
3378 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3379 cache_acl:
3380 /*
3381 * try to precache a NULL acl entry for files that don't have
3382 * any xattrs or acls
3383 */
3384 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3385 btrfs_ino(inode));
3386 if (!maybe_acls)
3387 cache_no_acl(inode);
3388
3389 btrfs_free_path(path);
3390
3391 switch (inode->i_mode & S_IFMT) {
3392 case S_IFREG:
3393 inode->i_mapping->a_ops = &btrfs_aops;
3394 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3395 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3396 inode->i_fop = &btrfs_file_operations;
3397 inode->i_op = &btrfs_file_inode_operations;
3398 break;
3399 case S_IFDIR:
3400 inode->i_fop = &btrfs_dir_file_operations;
3401 if (root == root->fs_info->tree_root)
3402 inode->i_op = &btrfs_dir_ro_inode_operations;
3403 else
3404 inode->i_op = &btrfs_dir_inode_operations;
3405 break;
3406 case S_IFLNK:
3407 inode->i_op = &btrfs_symlink_inode_operations;
3408 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3409 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3410 break;
3411 default:
3412 inode->i_op = &btrfs_special_inode_operations;
3413 init_special_inode(inode, inode->i_mode, rdev);
3414 break;
3415 }
3416
3417 btrfs_update_iflags(inode);
3418 return;
3419
3420 make_bad:
3421 btrfs_free_path(path);
3422 make_bad_inode(inode);
3423 }
3424
3425 /*
3426 * given a leaf and an inode, copy the inode fields into the leaf
3427 */
3428 static void fill_inode_item(struct btrfs_trans_handle *trans,
3429 struct extent_buffer *leaf,
3430 struct btrfs_inode_item *item,
3431 struct inode *inode)
3432 {
3433 struct btrfs_map_token token;
3434
3435 btrfs_init_map_token(&token);
3436
3437 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3438 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3439 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3440 &token);
3441 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3442 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3443
3444 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3445 inode->i_atime.tv_sec, &token);
3446 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3447 inode->i_atime.tv_nsec, &token);
3448
3449 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3450 inode->i_mtime.tv_sec, &token);
3451 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3452 inode->i_mtime.tv_nsec, &token);
3453
3454 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3455 inode->i_ctime.tv_sec, &token);
3456 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3457 inode->i_ctime.tv_nsec, &token);
3458
3459 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3460 &token);
3461 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3462 &token);
3463 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3464 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3465 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3466 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3467 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3468 }
3469
3470 /*
3471 * copy everything in the in-memory inode into the btree.
3472 */
3473 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3474 struct btrfs_root *root, struct inode *inode)
3475 {
3476 struct btrfs_inode_item *inode_item;
3477 struct btrfs_path *path;
3478 struct extent_buffer *leaf;
3479 int ret;
3480
3481 path = btrfs_alloc_path();
3482 if (!path)
3483 return -ENOMEM;
3484
3485 path->leave_spinning = 1;
3486 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3487 1);
3488 if (ret) {
3489 if (ret > 0)
3490 ret = -ENOENT;
3491 goto failed;
3492 }
3493
3494 btrfs_unlock_up_safe(path, 1);
3495 leaf = path->nodes[0];
3496 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3497 struct btrfs_inode_item);
3498
3499 fill_inode_item(trans, leaf, inode_item, inode);
3500 btrfs_mark_buffer_dirty(leaf);
3501 btrfs_set_inode_last_trans(trans, inode);
3502 ret = 0;
3503 failed:
3504 btrfs_free_path(path);
3505 return ret;
3506 }
3507
3508 /*
3509 * copy everything in the in-memory inode into the btree.
3510 */
3511 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3512 struct btrfs_root *root, struct inode *inode)
3513 {
3514 int ret;
3515
3516 /*
3517 * If the inode is a free space inode, we can deadlock during commit
3518 * if we put it into the delayed code.
3519 *
3520 * The data relocation inode should also be directly updated
3521 * without delay
3522 */
3523 if (!btrfs_is_free_space_inode(inode)
3524 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3525 btrfs_update_root_times(trans, root);
3526
3527 ret = btrfs_delayed_update_inode(trans, root, inode);
3528 if (!ret)
3529 btrfs_set_inode_last_trans(trans, inode);
3530 return ret;
3531 }
3532
3533 return btrfs_update_inode_item(trans, root, inode);
3534 }
3535
3536 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3537 struct btrfs_root *root,
3538 struct inode *inode)
3539 {
3540 int ret;
3541
3542 ret = btrfs_update_inode(trans, root, inode);
3543 if (ret == -ENOSPC)
3544 return btrfs_update_inode_item(trans, root, inode);
3545 return ret;
3546 }
3547
3548 /*
3549 * unlink helper that gets used here in inode.c and in the tree logging
3550 * recovery code. It remove a link in a directory with a given name, and
3551 * also drops the back refs in the inode to the directory
3552 */
3553 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3554 struct btrfs_root *root,
3555 struct inode *dir, struct inode *inode,
3556 const char *name, int name_len)
3557 {
3558 struct btrfs_path *path;
3559 int ret = 0;
3560 struct extent_buffer *leaf;
3561 struct btrfs_dir_item *di;
3562 struct btrfs_key key;
3563 u64 index;
3564 u64 ino = btrfs_ino(inode);
3565 u64 dir_ino = btrfs_ino(dir);
3566
3567 path = btrfs_alloc_path();
3568 if (!path) {
3569 ret = -ENOMEM;
3570 goto out;
3571 }
3572
3573 path->leave_spinning = 1;
3574 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3575 name, name_len, -1);
3576 if (IS_ERR(di)) {
3577 ret = PTR_ERR(di);
3578 goto err;
3579 }
3580 if (!di) {
3581 ret = -ENOENT;
3582 goto err;
3583 }
3584 leaf = path->nodes[0];
3585 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3586 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3587 if (ret)
3588 goto err;
3589 btrfs_release_path(path);
3590
3591 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3592 dir_ino, &index);
3593 if (ret) {
3594 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
3595 "inode %llu parent %llu\n", name_len, name,
3596 (unsigned long long)ino, (unsigned long long)dir_ino);
3597 btrfs_abort_transaction(trans, root, ret);
3598 goto err;
3599 }
3600
3601 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3602 if (ret) {
3603 btrfs_abort_transaction(trans, root, ret);
3604 goto err;
3605 }
3606
3607 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3608 inode, dir_ino);
3609 if (ret != 0 && ret != -ENOENT) {
3610 btrfs_abort_transaction(trans, root, ret);
3611 goto err;
3612 }
3613
3614 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3615 dir, index);
3616 if (ret == -ENOENT)
3617 ret = 0;
3618 err:
3619 btrfs_free_path(path);
3620 if (ret)
3621 goto out;
3622
3623 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3624 inode_inc_iversion(inode);
3625 inode_inc_iversion(dir);
3626 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3627 ret = btrfs_update_inode(trans, root, dir);
3628 out:
3629 return ret;
3630 }
3631
3632 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3633 struct btrfs_root *root,
3634 struct inode *dir, struct inode *inode,
3635 const char *name, int name_len)
3636 {
3637 int ret;
3638 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3639 if (!ret) {
3640 btrfs_drop_nlink(inode);
3641 ret = btrfs_update_inode(trans, root, inode);
3642 }
3643 return ret;
3644 }
3645
3646
3647 /* helper to check if there is any shared block in the path */
3648 static int check_path_shared(struct btrfs_root *root,
3649 struct btrfs_path *path)
3650 {
3651 struct extent_buffer *eb;
3652 int level;
3653 u64 refs = 1;
3654
3655 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
3656 int ret;
3657
3658 if (!path->nodes[level])
3659 break;
3660 eb = path->nodes[level];
3661 if (!btrfs_block_can_be_shared(root, eb))
3662 continue;
3663 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
3664 &refs, NULL);
3665 if (refs > 1)
3666 return 1;
3667 }
3668 return 0;
3669 }
3670
3671 /*
3672 * helper to start transaction for unlink and rmdir.
3673 *
3674 * unlink and rmdir are special in btrfs, they do not always free space.
3675 * so in enospc case, we should make sure they will free space before
3676 * allowing them to use the global metadata reservation.
3677 */
3678 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
3679 struct dentry *dentry)
3680 {
3681 struct btrfs_trans_handle *trans;
3682 struct btrfs_root *root = BTRFS_I(dir)->root;
3683 struct btrfs_path *path;
3684 struct btrfs_dir_item *di;
3685 struct inode *inode = dentry->d_inode;
3686 u64 index;
3687 int check_link = 1;
3688 int err = -ENOSPC;
3689 int ret;
3690 u64 ino = btrfs_ino(inode);
3691 u64 dir_ino = btrfs_ino(dir);
3692
3693 /*
3694 * 1 for the possible orphan item
3695 * 1 for the dir item
3696 * 1 for the dir index
3697 * 1 for the inode ref
3698 * 1 for the inode
3699 */
3700 trans = btrfs_start_transaction(root, 5);
3701 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3702 return trans;
3703
3704 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
3705 return ERR_PTR(-ENOSPC);
3706
3707 /* check if there is someone else holds reference */
3708 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
3709 return ERR_PTR(-ENOSPC);
3710
3711 if (atomic_read(&inode->i_count) > 2)
3712 return ERR_PTR(-ENOSPC);
3713
3714 if (xchg(&root->fs_info->enospc_unlink, 1))
3715 return ERR_PTR(-ENOSPC);
3716
3717 path = btrfs_alloc_path();
3718 if (!path) {
3719 root->fs_info->enospc_unlink = 0;
3720 return ERR_PTR(-ENOMEM);
3721 }
3722
3723 /* 1 for the orphan item */
3724 trans = btrfs_start_transaction(root, 1);
3725 if (IS_ERR(trans)) {
3726 btrfs_free_path(path);
3727 root->fs_info->enospc_unlink = 0;
3728 return trans;
3729 }
3730
3731 path->skip_locking = 1;
3732 path->search_commit_root = 1;
3733
3734 ret = btrfs_lookup_inode(trans, root, path,
3735 &BTRFS_I(dir)->location, 0);
3736 if (ret < 0) {
3737 err = ret;
3738 goto out;
3739 }
3740 if (ret == 0) {
3741 if (check_path_shared(root, path))
3742 goto out;
3743 } else {
3744 check_link = 0;
3745 }
3746 btrfs_release_path(path);
3747
3748 ret = btrfs_lookup_inode(trans, root, path,
3749 &BTRFS_I(inode)->location, 0);
3750 if (ret < 0) {
3751 err = ret;
3752 goto out;
3753 }
3754 if (ret == 0) {
3755 if (check_path_shared(root, path))
3756 goto out;
3757 } else {
3758 check_link = 0;
3759 }
3760 btrfs_release_path(path);
3761
3762 if (ret == 0 && S_ISREG(inode->i_mode)) {
3763 ret = btrfs_lookup_file_extent(trans, root, path,
3764 ino, (u64)-1, 0);
3765 if (ret < 0) {
3766 err = ret;
3767 goto out;
3768 }
3769 BUG_ON(ret == 0); /* Corruption */
3770 if (check_path_shared(root, path))
3771 goto out;
3772 btrfs_release_path(path);
3773 }
3774
3775 if (!check_link) {
3776 err = 0;
3777 goto out;
3778 }
3779
3780 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3781 dentry->d_name.name, dentry->d_name.len, 0);
3782 if (IS_ERR(di)) {
3783 err = PTR_ERR(di);
3784 goto out;
3785 }
3786 if (di) {
3787 if (check_path_shared(root, path))
3788 goto out;
3789 } else {
3790 err = 0;
3791 goto out;
3792 }
3793 btrfs_release_path(path);
3794
3795 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3796 dentry->d_name.len, ino, dir_ino, 0,
3797 &index);
3798 if (ret) {
3799 err = ret;
3800 goto out;
3801 }
3802
3803 if (check_path_shared(root, path))
3804 goto out;
3805
3806 btrfs_release_path(path);
3807
3808 /*
3809 * This is a commit root search, if we can lookup inode item and other
3810 * relative items in the commit root, it means the transaction of
3811 * dir/file creation has been committed, and the dir index item that we
3812 * delay to insert has also been inserted into the commit root. So
3813 * we needn't worry about the delayed insertion of the dir index item
3814 * here.
3815 */
3816 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3817 dentry->d_name.name, dentry->d_name.len, 0);
3818 if (IS_ERR(di)) {
3819 err = PTR_ERR(di);
3820 goto out;
3821 }
3822 BUG_ON(ret == -ENOENT);
3823 if (check_path_shared(root, path))
3824 goto out;
3825
3826 err = 0;
3827 out:
3828 btrfs_free_path(path);
3829 /* Migrate the orphan reservation over */
3830 if (!err)
3831 err = btrfs_block_rsv_migrate(trans->block_rsv,
3832 &root->fs_info->global_block_rsv,
3833 trans->bytes_reserved);
3834
3835 if (err) {
3836 btrfs_end_transaction(trans, root);
3837 root->fs_info->enospc_unlink = 0;
3838 return ERR_PTR(err);
3839 }
3840
3841 trans->block_rsv = &root->fs_info->global_block_rsv;
3842 return trans;
3843 }
3844
3845 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3846 struct btrfs_root *root)
3847 {
3848 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3849 btrfs_block_rsv_release(root, trans->block_rsv,
3850 trans->bytes_reserved);
3851 trans->block_rsv = &root->fs_info->trans_block_rsv;
3852 BUG_ON(!root->fs_info->enospc_unlink);
3853 root->fs_info->enospc_unlink = 0;
3854 }
3855 btrfs_end_transaction(trans, root);
3856 }
3857
3858 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3859 {
3860 struct btrfs_root *root = BTRFS_I(dir)->root;
3861 struct btrfs_trans_handle *trans;
3862 struct inode *inode = dentry->d_inode;
3863 int ret;
3864
3865 trans = __unlink_start_trans(dir, dentry);
3866 if (IS_ERR(trans))
3867 return PTR_ERR(trans);
3868
3869 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3870
3871 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3872 dentry->d_name.name, dentry->d_name.len);
3873 if (ret)
3874 goto out;
3875
3876 if (inode->i_nlink == 0) {
3877 ret = btrfs_orphan_add(trans, inode);
3878 if (ret)
3879 goto out;
3880 }
3881
3882 out:
3883 __unlink_end_trans(trans, root);
3884 btrfs_btree_balance_dirty(root);
3885 return ret;
3886 }
3887
3888 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3889 struct btrfs_root *root,
3890 struct inode *dir, u64 objectid,
3891 const char *name, int name_len)
3892 {
3893 struct btrfs_path *path;
3894 struct extent_buffer *leaf;
3895 struct btrfs_dir_item *di;
3896 struct btrfs_key key;
3897 u64 index;
3898 int ret;
3899 u64 dir_ino = btrfs_ino(dir);
3900
3901 path = btrfs_alloc_path();
3902 if (!path)
3903 return -ENOMEM;
3904
3905 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3906 name, name_len, -1);
3907 if (IS_ERR_OR_NULL(di)) {
3908 if (!di)
3909 ret = -ENOENT;
3910 else
3911 ret = PTR_ERR(di);
3912 goto out;
3913 }
3914
3915 leaf = path->nodes[0];
3916 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3917 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3918 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3919 if (ret) {
3920 btrfs_abort_transaction(trans, root, ret);
3921 goto out;
3922 }
3923 btrfs_release_path(path);
3924
3925 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3926 objectid, root->root_key.objectid,
3927 dir_ino, &index, name, name_len);
3928 if (ret < 0) {
3929 if (ret != -ENOENT) {
3930 btrfs_abort_transaction(trans, root, ret);
3931 goto out;
3932 }
3933 di = btrfs_search_dir_index_item(root, path, dir_ino,
3934 name, name_len);
3935 if (IS_ERR_OR_NULL(di)) {
3936 if (!di)
3937 ret = -ENOENT;
3938 else
3939 ret = PTR_ERR(di);
3940 btrfs_abort_transaction(trans, root, ret);
3941 goto out;
3942 }
3943
3944 leaf = path->nodes[0];
3945 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3946 btrfs_release_path(path);
3947 index = key.offset;
3948 }
3949 btrfs_release_path(path);
3950
3951 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3952 if (ret) {
3953 btrfs_abort_transaction(trans, root, ret);
3954 goto out;
3955 }
3956
3957 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3958 inode_inc_iversion(dir);
3959 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3960 ret = btrfs_update_inode_fallback(trans, root, dir);
3961 if (ret)
3962 btrfs_abort_transaction(trans, root, ret);
3963 out:
3964 btrfs_free_path(path);
3965 return ret;
3966 }
3967
3968 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3969 {
3970 struct inode *inode = dentry->d_inode;
3971 int err = 0;
3972 struct btrfs_root *root = BTRFS_I(dir)->root;
3973 struct btrfs_trans_handle *trans;
3974
3975 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3976 return -ENOTEMPTY;
3977 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3978 return -EPERM;
3979
3980 trans = __unlink_start_trans(dir, dentry);
3981 if (IS_ERR(trans))
3982 return PTR_ERR(trans);
3983
3984 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3985 err = btrfs_unlink_subvol(trans, root, dir,
3986 BTRFS_I(inode)->location.objectid,
3987 dentry->d_name.name,
3988 dentry->d_name.len);
3989 goto out;
3990 }
3991
3992 err = btrfs_orphan_add(trans, inode);
3993 if (err)
3994 goto out;
3995
3996 /* now the directory is empty */
3997 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3998 dentry->d_name.name, dentry->d_name.len);
3999 if (!err)
4000 btrfs_i_size_write(inode, 0);
4001 out:
4002 __unlink_end_trans(trans, root);
4003 btrfs_btree_balance_dirty(root);
4004
4005 return err;
4006 }
4007
4008 /*
4009 * this can truncate away extent items, csum items and directory items.
4010 * It starts at a high offset and removes keys until it can't find
4011 * any higher than new_size
4012 *
4013 * csum items that cross the new i_size are truncated to the new size
4014 * as well.
4015 *
4016 * min_type is the minimum key type to truncate down to. If set to 0, this
4017 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4018 */
4019 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4020 struct btrfs_root *root,
4021 struct inode *inode,
4022 u64 new_size, u32 min_type)
4023 {
4024 struct btrfs_path *path;
4025 struct extent_buffer *leaf;
4026 struct btrfs_file_extent_item *fi;
4027 struct btrfs_key key;
4028 struct btrfs_key found_key;
4029 u64 extent_start = 0;
4030 u64 extent_num_bytes = 0;
4031 u64 extent_offset = 0;
4032 u64 item_end = 0;
4033 u32 found_type = (u8)-1;
4034 int found_extent;
4035 int del_item;
4036 int pending_del_nr = 0;
4037 int pending_del_slot = 0;
4038 int extent_type = -1;
4039 int ret;
4040 int err = 0;
4041 u64 ino = btrfs_ino(inode);
4042
4043 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4044
4045 path = btrfs_alloc_path();
4046 if (!path)
4047 return -ENOMEM;
4048 path->reada = -1;
4049
4050 /*
4051 * We want to drop from the next block forward in case this new size is
4052 * not block aligned since we will be keeping the last block of the
4053 * extent just the way it is.
4054 */
4055 if (root->ref_cows || root == root->fs_info->tree_root)
4056 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4057 root->sectorsize), (u64)-1, 0);
4058
4059 /*
4060 * This function is also used to drop the items in the log tree before
4061 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4062 * it is used to drop the loged items. So we shouldn't kill the delayed
4063 * items.
4064 */
4065 if (min_type == 0 && root == BTRFS_I(inode)->root)
4066 btrfs_kill_delayed_inode_items(inode);
4067
4068 key.objectid = ino;
4069 key.offset = (u64)-1;
4070 key.type = (u8)-1;
4071
4072 search_again:
4073 path->leave_spinning = 1;
4074 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4075 if (ret < 0) {
4076 err = ret;
4077 goto out;
4078 }
4079
4080 if (ret > 0) {
4081 /* there are no items in the tree for us to truncate, we're
4082 * done
4083 */
4084 if (path->slots[0] == 0)
4085 goto out;
4086 path->slots[0]--;
4087 }
4088
4089 while (1) {
4090 fi = NULL;
4091 leaf = path->nodes[0];
4092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4093 found_type = btrfs_key_type(&found_key);
4094
4095 if (found_key.objectid != ino)
4096 break;
4097
4098 if (found_type < min_type)
4099 break;
4100
4101 item_end = found_key.offset;
4102 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4103 fi = btrfs_item_ptr(leaf, path->slots[0],
4104 struct btrfs_file_extent_item);
4105 extent_type = btrfs_file_extent_type(leaf, fi);
4106 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4107 item_end +=
4108 btrfs_file_extent_num_bytes(leaf, fi);
4109 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4110 item_end += btrfs_file_extent_inline_len(leaf,
4111 fi);
4112 }
4113 item_end--;
4114 }
4115 if (found_type > min_type) {
4116 del_item = 1;
4117 } else {
4118 if (item_end < new_size)
4119 break;
4120 if (found_key.offset >= new_size)
4121 del_item = 1;
4122 else
4123 del_item = 0;
4124 }
4125 found_extent = 0;
4126 /* FIXME, shrink the extent if the ref count is only 1 */
4127 if (found_type != BTRFS_EXTENT_DATA_KEY)
4128 goto delete;
4129
4130 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4131 u64 num_dec;
4132 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4133 if (!del_item) {
4134 u64 orig_num_bytes =
4135 btrfs_file_extent_num_bytes(leaf, fi);
4136 extent_num_bytes = ALIGN(new_size -
4137 found_key.offset,
4138 root->sectorsize);
4139 btrfs_set_file_extent_num_bytes(leaf, fi,
4140 extent_num_bytes);
4141 num_dec = (orig_num_bytes -
4142 extent_num_bytes);
4143 if (root->ref_cows && extent_start != 0)
4144 inode_sub_bytes(inode, num_dec);
4145 btrfs_mark_buffer_dirty(leaf);
4146 } else {
4147 extent_num_bytes =
4148 btrfs_file_extent_disk_num_bytes(leaf,
4149 fi);
4150 extent_offset = found_key.offset -
4151 btrfs_file_extent_offset(leaf, fi);
4152
4153 /* FIXME blocksize != 4096 */
4154 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4155 if (extent_start != 0) {
4156 found_extent = 1;
4157 if (root->ref_cows)
4158 inode_sub_bytes(inode, num_dec);
4159 }
4160 }
4161 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4162 /*
4163 * we can't truncate inline items that have had
4164 * special encodings
4165 */
4166 if (!del_item &&
4167 btrfs_file_extent_compression(leaf, fi) == 0 &&
4168 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4169 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4170 u32 size = new_size - found_key.offset;
4171
4172 if (root->ref_cows) {
4173 inode_sub_bytes(inode, item_end + 1 -
4174 new_size);
4175 }
4176 size =
4177 btrfs_file_extent_calc_inline_size(size);
4178 btrfs_truncate_item(trans, root, path,
4179 size, 1);
4180 } else if (root->ref_cows) {
4181 inode_sub_bytes(inode, item_end + 1 -
4182 found_key.offset);
4183 }
4184 }
4185 delete:
4186 if (del_item) {
4187 if (!pending_del_nr) {
4188 /* no pending yet, add ourselves */
4189 pending_del_slot = path->slots[0];
4190 pending_del_nr = 1;
4191 } else if (pending_del_nr &&
4192 path->slots[0] + 1 == pending_del_slot) {
4193 /* hop on the pending chunk */
4194 pending_del_nr++;
4195 pending_del_slot = path->slots[0];
4196 } else {
4197 BUG();
4198 }
4199 } else {
4200 break;
4201 }
4202 if (found_extent && (root->ref_cows ||
4203 root == root->fs_info->tree_root)) {
4204 btrfs_set_path_blocking(path);
4205 ret = btrfs_free_extent(trans, root, extent_start,
4206 extent_num_bytes, 0,
4207 btrfs_header_owner(leaf),
4208 ino, extent_offset, 0);
4209 BUG_ON(ret);
4210 }
4211
4212 if (found_type == BTRFS_INODE_ITEM_KEY)
4213 break;
4214
4215 if (path->slots[0] == 0 ||
4216 path->slots[0] != pending_del_slot) {
4217 if (pending_del_nr) {
4218 ret = btrfs_del_items(trans, root, path,
4219 pending_del_slot,
4220 pending_del_nr);
4221 if (ret) {
4222 btrfs_abort_transaction(trans,
4223 root, ret);
4224 goto error;
4225 }
4226 pending_del_nr = 0;
4227 }
4228 btrfs_release_path(path);
4229 goto search_again;
4230 } else {
4231 path->slots[0]--;
4232 }
4233 }
4234 out:
4235 if (pending_del_nr) {
4236 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4237 pending_del_nr);
4238 if (ret)
4239 btrfs_abort_transaction(trans, root, ret);
4240 }
4241 error:
4242 btrfs_free_path(path);
4243 return err;
4244 }
4245
4246 /*
4247 * btrfs_truncate_page - read, zero a chunk and write a page
4248 * @inode - inode that we're zeroing
4249 * @from - the offset to start zeroing
4250 * @len - the length to zero, 0 to zero the entire range respective to the
4251 * offset
4252 * @front - zero up to the offset instead of from the offset on
4253 *
4254 * This will find the page for the "from" offset and cow the page and zero the
4255 * part we want to zero. This is used with truncate and hole punching.
4256 */
4257 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4258 int front)
4259 {
4260 struct address_space *mapping = inode->i_mapping;
4261 struct btrfs_root *root = BTRFS_I(inode)->root;
4262 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4263 struct btrfs_ordered_extent *ordered;
4264 struct extent_state *cached_state = NULL;
4265 char *kaddr;
4266 u32 blocksize = root->sectorsize;
4267 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4268 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4269 struct page *page;
4270 gfp_t mask = btrfs_alloc_write_mask(mapping);
4271 int ret = 0;
4272 u64 page_start;
4273 u64 page_end;
4274
4275 if ((offset & (blocksize - 1)) == 0 &&
4276 (!len || ((len & (blocksize - 1)) == 0)))
4277 goto out;
4278 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4279 if (ret)
4280 goto out;
4281
4282 again:
4283 page = find_or_create_page(mapping, index, mask);
4284 if (!page) {
4285 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4286 ret = -ENOMEM;
4287 goto out;
4288 }
4289
4290 page_start = page_offset(page);
4291 page_end = page_start + PAGE_CACHE_SIZE - 1;
4292
4293 if (!PageUptodate(page)) {
4294 ret = btrfs_readpage(NULL, page);
4295 lock_page(page);
4296 if (page->mapping != mapping) {
4297 unlock_page(page);
4298 page_cache_release(page);
4299 goto again;
4300 }
4301 if (!PageUptodate(page)) {
4302 ret = -EIO;
4303 goto out_unlock;
4304 }
4305 }
4306 wait_on_page_writeback(page);
4307
4308 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4309 set_page_extent_mapped(page);
4310
4311 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4312 if (ordered) {
4313 unlock_extent_cached(io_tree, page_start, page_end,
4314 &cached_state, GFP_NOFS);
4315 unlock_page(page);
4316 page_cache_release(page);
4317 btrfs_start_ordered_extent(inode, ordered, 1);
4318 btrfs_put_ordered_extent(ordered);
4319 goto again;
4320 }
4321
4322 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4323 EXTENT_DIRTY | EXTENT_DELALLOC |
4324 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4325 0, 0, &cached_state, GFP_NOFS);
4326
4327 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4328 &cached_state);
4329 if (ret) {
4330 unlock_extent_cached(io_tree, page_start, page_end,
4331 &cached_state, GFP_NOFS);
4332 goto out_unlock;
4333 }
4334
4335 if (offset != PAGE_CACHE_SIZE) {
4336 if (!len)
4337 len = PAGE_CACHE_SIZE - offset;
4338 kaddr = kmap(page);
4339 if (front)
4340 memset(kaddr, 0, offset);
4341 else
4342 memset(kaddr + offset, 0, len);
4343 flush_dcache_page(page);
4344 kunmap(page);
4345 }
4346 ClearPageChecked(page);
4347 set_page_dirty(page);
4348 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4349 GFP_NOFS);
4350
4351 out_unlock:
4352 if (ret)
4353 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4354 unlock_page(page);
4355 page_cache_release(page);
4356 out:
4357 return ret;
4358 }
4359
4360 /*
4361 * This function puts in dummy file extents for the area we're creating a hole
4362 * for. So if we are truncating this file to a larger size we need to insert
4363 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4364 * the range between oldsize and size
4365 */
4366 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4367 {
4368 struct btrfs_trans_handle *trans;
4369 struct btrfs_root *root = BTRFS_I(inode)->root;
4370 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4371 struct extent_map *em = NULL;
4372 struct extent_state *cached_state = NULL;
4373 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4374 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4375 u64 block_end = ALIGN(size, root->sectorsize);
4376 u64 last_byte;
4377 u64 cur_offset;
4378 u64 hole_size;
4379 int err = 0;
4380
4381 if (size <= hole_start)
4382 return 0;
4383
4384 while (1) {
4385 struct btrfs_ordered_extent *ordered;
4386 btrfs_wait_ordered_range(inode, hole_start,
4387 block_end - hole_start);
4388 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4389 &cached_state);
4390 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4391 if (!ordered)
4392 break;
4393 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4394 &cached_state, GFP_NOFS);
4395 btrfs_put_ordered_extent(ordered);
4396 }
4397
4398 cur_offset = hole_start;
4399 while (1) {
4400 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4401 block_end - cur_offset, 0);
4402 if (IS_ERR(em)) {
4403 err = PTR_ERR(em);
4404 em = NULL;
4405 break;
4406 }
4407 last_byte = min(extent_map_end(em), block_end);
4408 last_byte = ALIGN(last_byte , root->sectorsize);
4409 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4410 struct extent_map *hole_em;
4411 hole_size = last_byte - cur_offset;
4412
4413 trans = btrfs_start_transaction(root, 3);
4414 if (IS_ERR(trans)) {
4415 err = PTR_ERR(trans);
4416 break;
4417 }
4418
4419 err = btrfs_drop_extents(trans, root, inode,
4420 cur_offset,
4421 cur_offset + hole_size, 1);
4422 if (err) {
4423 btrfs_abort_transaction(trans, root, err);
4424 btrfs_end_transaction(trans, root);
4425 break;
4426 }
4427
4428 err = btrfs_insert_file_extent(trans, root,
4429 btrfs_ino(inode), cur_offset, 0,
4430 0, hole_size, 0, hole_size,
4431 0, 0, 0);
4432 if (err) {
4433 btrfs_abort_transaction(trans, root, err);
4434 btrfs_end_transaction(trans, root);
4435 break;
4436 }
4437
4438 btrfs_drop_extent_cache(inode, cur_offset,
4439 cur_offset + hole_size - 1, 0);
4440 hole_em = alloc_extent_map();
4441 if (!hole_em) {
4442 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4443 &BTRFS_I(inode)->runtime_flags);
4444 goto next;
4445 }
4446 hole_em->start = cur_offset;
4447 hole_em->len = hole_size;
4448 hole_em->orig_start = cur_offset;
4449
4450 hole_em->block_start = EXTENT_MAP_HOLE;
4451 hole_em->block_len = 0;
4452 hole_em->orig_block_len = 0;
4453 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4454 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4455 hole_em->generation = trans->transid;
4456
4457 while (1) {
4458 write_lock(&em_tree->lock);
4459 err = add_extent_mapping(em_tree, hole_em);
4460 if (!err)
4461 list_move(&hole_em->list,
4462 &em_tree->modified_extents);
4463 write_unlock(&em_tree->lock);
4464 if (err != -EEXIST)
4465 break;
4466 btrfs_drop_extent_cache(inode, cur_offset,
4467 cur_offset +
4468 hole_size - 1, 0);
4469 }
4470 free_extent_map(hole_em);
4471 next:
4472 btrfs_update_inode(trans, root, inode);
4473 btrfs_end_transaction(trans, root);
4474 }
4475 free_extent_map(em);
4476 em = NULL;
4477 cur_offset = last_byte;
4478 if (cur_offset >= block_end)
4479 break;
4480 }
4481
4482 free_extent_map(em);
4483 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4484 GFP_NOFS);
4485 return err;
4486 }
4487
4488 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4489 {
4490 struct btrfs_root *root = BTRFS_I(inode)->root;
4491 struct btrfs_trans_handle *trans;
4492 loff_t oldsize = i_size_read(inode);
4493 loff_t newsize = attr->ia_size;
4494 int mask = attr->ia_valid;
4495 int ret;
4496
4497 if (newsize == oldsize)
4498 return 0;
4499
4500 /*
4501 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4502 * special case where we need to update the times despite not having
4503 * these flags set. For all other operations the VFS set these flags
4504 * explicitly if it wants a timestamp update.
4505 */
4506 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4507 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4508
4509 if (newsize > oldsize) {
4510 truncate_pagecache(inode, oldsize, newsize);
4511 ret = btrfs_cont_expand(inode, oldsize, newsize);
4512 if (ret)
4513 return ret;
4514
4515 trans = btrfs_start_transaction(root, 1);
4516 if (IS_ERR(trans))
4517 return PTR_ERR(trans);
4518
4519 i_size_write(inode, newsize);
4520 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4521 ret = btrfs_update_inode(trans, root, inode);
4522 btrfs_end_transaction(trans, root);
4523 } else {
4524
4525 /*
4526 * We're truncating a file that used to have good data down to
4527 * zero. Make sure it gets into the ordered flush list so that
4528 * any new writes get down to disk quickly.
4529 */
4530 if (newsize == 0)
4531 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4532 &BTRFS_I(inode)->runtime_flags);
4533
4534 /*
4535 * 1 for the orphan item we're going to add
4536 * 1 for the orphan item deletion.
4537 */
4538 trans = btrfs_start_transaction(root, 2);
4539 if (IS_ERR(trans))
4540 return PTR_ERR(trans);
4541
4542 /*
4543 * We need to do this in case we fail at _any_ point during the
4544 * actual truncate. Once we do the truncate_setsize we could
4545 * invalidate pages which forces any outstanding ordered io to
4546 * be instantly completed which will give us extents that need
4547 * to be truncated. If we fail to get an orphan inode down we
4548 * could have left over extents that were never meant to live,
4549 * so we need to garuntee from this point on that everything
4550 * will be consistent.
4551 */
4552 ret = btrfs_orphan_add(trans, inode);
4553 btrfs_end_transaction(trans, root);
4554 if (ret)
4555 return ret;
4556
4557 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4558 truncate_setsize(inode, newsize);
4559
4560 /* Disable nonlocked read DIO to avoid the end less truncate */
4561 btrfs_inode_block_unlocked_dio(inode);
4562 inode_dio_wait(inode);
4563 btrfs_inode_resume_unlocked_dio(inode);
4564
4565 ret = btrfs_truncate(inode);
4566 if (ret && inode->i_nlink)
4567 btrfs_orphan_del(NULL, inode);
4568 }
4569
4570 return ret;
4571 }
4572
4573 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4574 {
4575 struct inode *inode = dentry->d_inode;
4576 struct btrfs_root *root = BTRFS_I(inode)->root;
4577 int err;
4578
4579 if (btrfs_root_readonly(root))
4580 return -EROFS;
4581
4582 err = inode_change_ok(inode, attr);
4583 if (err)
4584 return err;
4585
4586 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4587 err = btrfs_setsize(inode, attr);
4588 if (err)
4589 return err;
4590 }
4591
4592 if (attr->ia_valid) {
4593 setattr_copy(inode, attr);
4594 inode_inc_iversion(inode);
4595 err = btrfs_dirty_inode(inode);
4596
4597 if (!err && attr->ia_valid & ATTR_MODE)
4598 err = btrfs_acl_chmod(inode);
4599 }
4600
4601 return err;
4602 }
4603
4604 void btrfs_evict_inode(struct inode *inode)
4605 {
4606 struct btrfs_trans_handle *trans;
4607 struct btrfs_root *root = BTRFS_I(inode)->root;
4608 struct btrfs_block_rsv *rsv, *global_rsv;
4609 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4610 int ret;
4611
4612 trace_btrfs_inode_evict(inode);
4613
4614 truncate_inode_pages(&inode->i_data, 0);
4615 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
4616 btrfs_is_free_space_inode(inode)))
4617 goto no_delete;
4618
4619 if (is_bad_inode(inode)) {
4620 btrfs_orphan_del(NULL, inode);
4621 goto no_delete;
4622 }
4623 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4624 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4625
4626 if (root->fs_info->log_root_recovering) {
4627 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4628 &BTRFS_I(inode)->runtime_flags));
4629 goto no_delete;
4630 }
4631
4632 if (inode->i_nlink > 0) {
4633 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4634 goto no_delete;
4635 }
4636
4637 ret = btrfs_commit_inode_delayed_inode(inode);
4638 if (ret) {
4639 btrfs_orphan_del(NULL, inode);
4640 goto no_delete;
4641 }
4642
4643 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4644 if (!rsv) {
4645 btrfs_orphan_del(NULL, inode);
4646 goto no_delete;
4647 }
4648 rsv->size = min_size;
4649 rsv->failfast = 1;
4650 global_rsv = &root->fs_info->global_block_rsv;
4651
4652 btrfs_i_size_write(inode, 0);
4653
4654 /*
4655 * This is a bit simpler than btrfs_truncate since we've already
4656 * reserved our space for our orphan item in the unlink, so we just
4657 * need to reserve some slack space in case we add bytes and update
4658 * inode item when doing the truncate.
4659 */
4660 while (1) {
4661 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4662 BTRFS_RESERVE_FLUSH_LIMIT);
4663
4664 /*
4665 * Try and steal from the global reserve since we will
4666 * likely not use this space anyway, we want to try as
4667 * hard as possible to get this to work.
4668 */
4669 if (ret)
4670 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4671
4672 if (ret) {
4673 printk(KERN_WARNING "Could not get space for a "
4674 "delete, will truncate on mount %d\n", ret);
4675 btrfs_orphan_del(NULL, inode);
4676 btrfs_free_block_rsv(root, rsv);
4677 goto no_delete;
4678 }
4679
4680 trans = btrfs_join_transaction(root);
4681 if (IS_ERR(trans)) {
4682 btrfs_orphan_del(NULL, inode);
4683 btrfs_free_block_rsv(root, rsv);
4684 goto no_delete;
4685 }
4686
4687 trans->block_rsv = rsv;
4688
4689 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4690 if (ret != -ENOSPC)
4691 break;
4692
4693 trans->block_rsv = &root->fs_info->trans_block_rsv;
4694 btrfs_end_transaction(trans, root);
4695 trans = NULL;
4696 btrfs_btree_balance_dirty(root);
4697 }
4698
4699 btrfs_free_block_rsv(root, rsv);
4700
4701 if (ret == 0) {
4702 trans->block_rsv = root->orphan_block_rsv;
4703 ret = btrfs_orphan_del(trans, inode);
4704 BUG_ON(ret);
4705 }
4706
4707 trans->block_rsv = &root->fs_info->trans_block_rsv;
4708 if (!(root == root->fs_info->tree_root ||
4709 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4710 btrfs_return_ino(root, btrfs_ino(inode));
4711
4712 btrfs_end_transaction(trans, root);
4713 btrfs_btree_balance_dirty(root);
4714 no_delete:
4715 clear_inode(inode);
4716 return;
4717 }
4718
4719 /*
4720 * this returns the key found in the dir entry in the location pointer.
4721 * If no dir entries were found, location->objectid is 0.
4722 */
4723 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4724 struct btrfs_key *location)
4725 {
4726 const char *name = dentry->d_name.name;
4727 int namelen = dentry->d_name.len;
4728 struct btrfs_dir_item *di;
4729 struct btrfs_path *path;
4730 struct btrfs_root *root = BTRFS_I(dir)->root;
4731 int ret = 0;
4732
4733 path = btrfs_alloc_path();
4734 if (!path)
4735 return -ENOMEM;
4736
4737 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4738 namelen, 0);
4739 if (IS_ERR(di))
4740 ret = PTR_ERR(di);
4741
4742 if (IS_ERR_OR_NULL(di))
4743 goto out_err;
4744
4745 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4746 out:
4747 btrfs_free_path(path);
4748 return ret;
4749 out_err:
4750 location->objectid = 0;
4751 goto out;
4752 }
4753
4754 /*
4755 * when we hit a tree root in a directory, the btrfs part of the inode
4756 * needs to be changed to reflect the root directory of the tree root. This
4757 * is kind of like crossing a mount point.
4758 */
4759 static int fixup_tree_root_location(struct btrfs_root *root,
4760 struct inode *dir,
4761 struct dentry *dentry,
4762 struct btrfs_key *location,
4763 struct btrfs_root **sub_root)
4764 {
4765 struct btrfs_path *path;
4766 struct btrfs_root *new_root;
4767 struct btrfs_root_ref *ref;
4768 struct extent_buffer *leaf;
4769 int ret;
4770 int err = 0;
4771
4772 path = btrfs_alloc_path();
4773 if (!path) {
4774 err = -ENOMEM;
4775 goto out;
4776 }
4777
4778 err = -ENOENT;
4779 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4780 BTRFS_I(dir)->root->root_key.objectid,
4781 location->objectid);
4782 if (ret) {
4783 if (ret < 0)
4784 err = ret;
4785 goto out;
4786 }
4787
4788 leaf = path->nodes[0];
4789 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4790 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4791 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4792 goto out;
4793
4794 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4795 (unsigned long)(ref + 1),
4796 dentry->d_name.len);
4797 if (ret)
4798 goto out;
4799
4800 btrfs_release_path(path);
4801
4802 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4803 if (IS_ERR(new_root)) {
4804 err = PTR_ERR(new_root);
4805 goto out;
4806 }
4807
4808 if (btrfs_root_refs(&new_root->root_item) == 0) {
4809 err = -ENOENT;
4810 goto out;
4811 }
4812
4813 *sub_root = new_root;
4814 location->objectid = btrfs_root_dirid(&new_root->root_item);
4815 location->type = BTRFS_INODE_ITEM_KEY;
4816 location->offset = 0;
4817 err = 0;
4818 out:
4819 btrfs_free_path(path);
4820 return err;
4821 }
4822
4823 static void inode_tree_add(struct inode *inode)
4824 {
4825 struct btrfs_root *root = BTRFS_I(inode)->root;
4826 struct btrfs_inode *entry;
4827 struct rb_node **p;
4828 struct rb_node *parent;
4829 u64 ino = btrfs_ino(inode);
4830 again:
4831 p = &root->inode_tree.rb_node;
4832 parent = NULL;
4833
4834 if (inode_unhashed(inode))
4835 return;
4836
4837 spin_lock(&root->inode_lock);
4838 while (*p) {
4839 parent = *p;
4840 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4841
4842 if (ino < btrfs_ino(&entry->vfs_inode))
4843 p = &parent->rb_left;
4844 else if (ino > btrfs_ino(&entry->vfs_inode))
4845 p = &parent->rb_right;
4846 else {
4847 WARN_ON(!(entry->vfs_inode.i_state &
4848 (I_WILL_FREE | I_FREEING)));
4849 rb_erase(parent, &root->inode_tree);
4850 RB_CLEAR_NODE(parent);
4851 spin_unlock(&root->inode_lock);
4852 goto again;
4853 }
4854 }
4855 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4856 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4857 spin_unlock(&root->inode_lock);
4858 }
4859
4860 static void inode_tree_del(struct inode *inode)
4861 {
4862 struct btrfs_root *root = BTRFS_I(inode)->root;
4863 int empty = 0;
4864
4865 spin_lock(&root->inode_lock);
4866 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4867 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4868 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4869 empty = RB_EMPTY_ROOT(&root->inode_tree);
4870 }
4871 spin_unlock(&root->inode_lock);
4872
4873 /*
4874 * Free space cache has inodes in the tree root, but the tree root has a
4875 * root_refs of 0, so this could end up dropping the tree root as a
4876 * snapshot, so we need the extra !root->fs_info->tree_root check to
4877 * make sure we don't drop it.
4878 */
4879 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4880 root != root->fs_info->tree_root) {
4881 synchronize_srcu(&root->fs_info->subvol_srcu);
4882 spin_lock(&root->inode_lock);
4883 empty = RB_EMPTY_ROOT(&root->inode_tree);
4884 spin_unlock(&root->inode_lock);
4885 if (empty)
4886 btrfs_add_dead_root(root);
4887 }
4888 }
4889
4890 void btrfs_invalidate_inodes(struct btrfs_root *root)
4891 {
4892 struct rb_node *node;
4893 struct rb_node *prev;
4894 struct btrfs_inode *entry;
4895 struct inode *inode;
4896 u64 objectid = 0;
4897
4898 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4899
4900 spin_lock(&root->inode_lock);
4901 again:
4902 node = root->inode_tree.rb_node;
4903 prev = NULL;
4904 while (node) {
4905 prev = node;
4906 entry = rb_entry(node, struct btrfs_inode, rb_node);
4907
4908 if (objectid < btrfs_ino(&entry->vfs_inode))
4909 node = node->rb_left;
4910 else if (objectid > btrfs_ino(&entry->vfs_inode))
4911 node = node->rb_right;
4912 else
4913 break;
4914 }
4915 if (!node) {
4916 while (prev) {
4917 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4918 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4919 node = prev;
4920 break;
4921 }
4922 prev = rb_next(prev);
4923 }
4924 }
4925 while (node) {
4926 entry = rb_entry(node, struct btrfs_inode, rb_node);
4927 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4928 inode = igrab(&entry->vfs_inode);
4929 if (inode) {
4930 spin_unlock(&root->inode_lock);
4931 if (atomic_read(&inode->i_count) > 1)
4932 d_prune_aliases(inode);
4933 /*
4934 * btrfs_drop_inode will have it removed from
4935 * the inode cache when its usage count
4936 * hits zero.
4937 */
4938 iput(inode);
4939 cond_resched();
4940 spin_lock(&root->inode_lock);
4941 goto again;
4942 }
4943
4944 if (cond_resched_lock(&root->inode_lock))
4945 goto again;
4946
4947 node = rb_next(node);
4948 }
4949 spin_unlock(&root->inode_lock);
4950 }
4951
4952 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4953 {
4954 struct btrfs_iget_args *args = p;
4955 inode->i_ino = args->ino;
4956 BTRFS_I(inode)->root = args->root;
4957 return 0;
4958 }
4959
4960 static int btrfs_find_actor(struct inode *inode, void *opaque)
4961 {
4962 struct btrfs_iget_args *args = opaque;
4963 return args->ino == btrfs_ino(inode) &&
4964 args->root == BTRFS_I(inode)->root;
4965 }
4966
4967 static struct inode *btrfs_iget_locked(struct super_block *s,
4968 u64 objectid,
4969 struct btrfs_root *root)
4970 {
4971 struct inode *inode;
4972 struct btrfs_iget_args args;
4973 args.ino = objectid;
4974 args.root = root;
4975
4976 inode = iget5_locked(s, objectid, btrfs_find_actor,
4977 btrfs_init_locked_inode,
4978 (void *)&args);
4979 return inode;
4980 }
4981
4982 /* Get an inode object given its location and corresponding root.
4983 * Returns in *is_new if the inode was read from disk
4984 */
4985 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4986 struct btrfs_root *root, int *new)
4987 {
4988 struct inode *inode;
4989
4990 inode = btrfs_iget_locked(s, location->objectid, root);
4991 if (!inode)
4992 return ERR_PTR(-ENOMEM);
4993
4994 if (inode->i_state & I_NEW) {
4995 BTRFS_I(inode)->root = root;
4996 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4997 btrfs_read_locked_inode(inode);
4998 if (!is_bad_inode(inode)) {
4999 inode_tree_add(inode);
5000 unlock_new_inode(inode);
5001 if (new)
5002 *new = 1;
5003 } else {
5004 unlock_new_inode(inode);
5005 iput(inode);
5006 inode = ERR_PTR(-ESTALE);
5007 }
5008 }
5009
5010 return inode;
5011 }
5012
5013 static struct inode *new_simple_dir(struct super_block *s,
5014 struct btrfs_key *key,
5015 struct btrfs_root *root)
5016 {
5017 struct inode *inode = new_inode(s);
5018
5019 if (!inode)
5020 return ERR_PTR(-ENOMEM);
5021
5022 BTRFS_I(inode)->root = root;
5023 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5024 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5025
5026 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5027 inode->i_op = &btrfs_dir_ro_inode_operations;
5028 inode->i_fop = &simple_dir_operations;
5029 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5030 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5031
5032 return inode;
5033 }
5034
5035 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5036 {
5037 struct inode *inode;
5038 struct btrfs_root *root = BTRFS_I(dir)->root;
5039 struct btrfs_root *sub_root = root;
5040 struct btrfs_key location;
5041 int index;
5042 int ret = 0;
5043
5044 if (dentry->d_name.len > BTRFS_NAME_LEN)
5045 return ERR_PTR(-ENAMETOOLONG);
5046
5047 ret = btrfs_inode_by_name(dir, dentry, &location);
5048 if (ret < 0)
5049 return ERR_PTR(ret);
5050
5051 if (location.objectid == 0)
5052 return NULL;
5053
5054 if (location.type == BTRFS_INODE_ITEM_KEY) {
5055 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5056 return inode;
5057 }
5058
5059 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5060
5061 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5062 ret = fixup_tree_root_location(root, dir, dentry,
5063 &location, &sub_root);
5064 if (ret < 0) {
5065 if (ret != -ENOENT)
5066 inode = ERR_PTR(ret);
5067 else
5068 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5069 } else {
5070 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5071 }
5072 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5073
5074 if (!IS_ERR(inode) && root != sub_root) {
5075 down_read(&root->fs_info->cleanup_work_sem);
5076 if (!(inode->i_sb->s_flags & MS_RDONLY))
5077 ret = btrfs_orphan_cleanup(sub_root);
5078 up_read(&root->fs_info->cleanup_work_sem);
5079 if (ret)
5080 inode = ERR_PTR(ret);
5081 }
5082
5083 return inode;
5084 }
5085
5086 static int btrfs_dentry_delete(const struct dentry *dentry)
5087 {
5088 struct btrfs_root *root;
5089 struct inode *inode = dentry->d_inode;
5090
5091 if (!inode && !IS_ROOT(dentry))
5092 inode = dentry->d_parent->d_inode;
5093
5094 if (inode) {
5095 root = BTRFS_I(inode)->root;
5096 if (btrfs_root_refs(&root->root_item) == 0)
5097 return 1;
5098
5099 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5100 return 1;
5101 }
5102 return 0;
5103 }
5104
5105 static void btrfs_dentry_release(struct dentry *dentry)
5106 {
5107 if (dentry->d_fsdata)
5108 kfree(dentry->d_fsdata);
5109 }
5110
5111 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5112 unsigned int flags)
5113 {
5114 struct dentry *ret;
5115
5116 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
5117 return ret;
5118 }
5119
5120 unsigned char btrfs_filetype_table[] = {
5121 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5122 };
5123
5124 static int btrfs_real_readdir(struct file *filp, void *dirent,
5125 filldir_t filldir)
5126 {
5127 struct inode *inode = file_inode(filp);
5128 struct btrfs_root *root = BTRFS_I(inode)->root;
5129 struct btrfs_item *item;
5130 struct btrfs_dir_item *di;
5131 struct btrfs_key key;
5132 struct btrfs_key found_key;
5133 struct btrfs_path *path;
5134 struct list_head ins_list;
5135 struct list_head del_list;
5136 int ret;
5137 struct extent_buffer *leaf;
5138 int slot;
5139 unsigned char d_type;
5140 int over = 0;
5141 u32 di_cur;
5142 u32 di_total;
5143 u32 di_len;
5144 int key_type = BTRFS_DIR_INDEX_KEY;
5145 char tmp_name[32];
5146 char *name_ptr;
5147 int name_len;
5148 int is_curr = 0; /* filp->f_pos points to the current index? */
5149
5150 /* FIXME, use a real flag for deciding about the key type */
5151 if (root->fs_info->tree_root == root)
5152 key_type = BTRFS_DIR_ITEM_KEY;
5153
5154 /* special case for "." */
5155 if (filp->f_pos == 0) {
5156 over = filldir(dirent, ".", 1,
5157 filp->f_pos, btrfs_ino(inode), DT_DIR);
5158 if (over)
5159 return 0;
5160 filp->f_pos = 1;
5161 }
5162 /* special case for .., just use the back ref */
5163 if (filp->f_pos == 1) {
5164 u64 pino = parent_ino(filp->f_path.dentry);
5165 over = filldir(dirent, "..", 2,
5166 filp->f_pos, pino, DT_DIR);
5167 if (over)
5168 return 0;
5169 filp->f_pos = 2;
5170 }
5171 path = btrfs_alloc_path();
5172 if (!path)
5173 return -ENOMEM;
5174
5175 path->reada = 1;
5176
5177 if (key_type == BTRFS_DIR_INDEX_KEY) {
5178 INIT_LIST_HEAD(&ins_list);
5179 INIT_LIST_HEAD(&del_list);
5180 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5181 }
5182
5183 btrfs_set_key_type(&key, key_type);
5184 key.offset = filp->f_pos;
5185 key.objectid = btrfs_ino(inode);
5186
5187 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5188 if (ret < 0)
5189 goto err;
5190
5191 while (1) {
5192 leaf = path->nodes[0];
5193 slot = path->slots[0];
5194 if (slot >= btrfs_header_nritems(leaf)) {
5195 ret = btrfs_next_leaf(root, path);
5196 if (ret < 0)
5197 goto err;
5198 else if (ret > 0)
5199 break;
5200 continue;
5201 }
5202
5203 item = btrfs_item_nr(leaf, slot);
5204 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5205
5206 if (found_key.objectid != key.objectid)
5207 break;
5208 if (btrfs_key_type(&found_key) != key_type)
5209 break;
5210 if (found_key.offset < filp->f_pos)
5211 goto next;
5212 if (key_type == BTRFS_DIR_INDEX_KEY &&
5213 btrfs_should_delete_dir_index(&del_list,
5214 found_key.offset))
5215 goto next;
5216
5217 filp->f_pos = found_key.offset;
5218 is_curr = 1;
5219
5220 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5221 di_cur = 0;
5222 di_total = btrfs_item_size(leaf, item);
5223
5224 while (di_cur < di_total) {
5225 struct btrfs_key location;
5226
5227 if (verify_dir_item(root, leaf, di))
5228 break;
5229
5230 name_len = btrfs_dir_name_len(leaf, di);
5231 if (name_len <= sizeof(tmp_name)) {
5232 name_ptr = tmp_name;
5233 } else {
5234 name_ptr = kmalloc(name_len, GFP_NOFS);
5235 if (!name_ptr) {
5236 ret = -ENOMEM;
5237 goto err;
5238 }
5239 }
5240 read_extent_buffer(leaf, name_ptr,
5241 (unsigned long)(di + 1), name_len);
5242
5243 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5244 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5245
5246
5247 /* is this a reference to our own snapshot? If so
5248 * skip it.
5249 *
5250 * In contrast to old kernels, we insert the snapshot's
5251 * dir item and dir index after it has been created, so
5252 * we won't find a reference to our own snapshot. We
5253 * still keep the following code for backward
5254 * compatibility.
5255 */
5256 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5257 location.objectid == root->root_key.objectid) {
5258 over = 0;
5259 goto skip;
5260 }
5261 over = filldir(dirent, name_ptr, name_len,
5262 found_key.offset, location.objectid,
5263 d_type);
5264
5265 skip:
5266 if (name_ptr != tmp_name)
5267 kfree(name_ptr);
5268
5269 if (over)
5270 goto nopos;
5271 di_len = btrfs_dir_name_len(leaf, di) +
5272 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5273 di_cur += di_len;
5274 di = (struct btrfs_dir_item *)((char *)di + di_len);
5275 }
5276 next:
5277 path->slots[0]++;
5278 }
5279
5280 if (key_type == BTRFS_DIR_INDEX_KEY) {
5281 if (is_curr)
5282 filp->f_pos++;
5283 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
5284 &ins_list);
5285 if (ret)
5286 goto nopos;
5287 }
5288
5289 /* Reached end of directory/root. Bump pos past the last item. */
5290 if (key_type == BTRFS_DIR_INDEX_KEY)
5291 /*
5292 * 32-bit glibc will use getdents64, but then strtol -
5293 * so the last number we can serve is this.
5294 */
5295 filp->f_pos = 0x7fffffff;
5296 else
5297 filp->f_pos++;
5298 nopos:
5299 ret = 0;
5300 err:
5301 if (key_type == BTRFS_DIR_INDEX_KEY)
5302 btrfs_put_delayed_items(&ins_list, &del_list);
5303 btrfs_free_path(path);
5304 return ret;
5305 }
5306
5307 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5308 {
5309 struct btrfs_root *root = BTRFS_I(inode)->root;
5310 struct btrfs_trans_handle *trans;
5311 int ret = 0;
5312 bool nolock = false;
5313
5314 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5315 return 0;
5316
5317 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5318 nolock = true;
5319
5320 if (wbc->sync_mode == WB_SYNC_ALL) {
5321 if (nolock)
5322 trans = btrfs_join_transaction_nolock(root);
5323 else
5324 trans = btrfs_join_transaction(root);
5325 if (IS_ERR(trans))
5326 return PTR_ERR(trans);
5327 ret = btrfs_commit_transaction(trans, root);
5328 }
5329 return ret;
5330 }
5331
5332 /*
5333 * This is somewhat expensive, updating the tree every time the
5334 * inode changes. But, it is most likely to find the inode in cache.
5335 * FIXME, needs more benchmarking...there are no reasons other than performance
5336 * to keep or drop this code.
5337 */
5338 int btrfs_dirty_inode(struct inode *inode)
5339 {
5340 struct btrfs_root *root = BTRFS_I(inode)->root;
5341 struct btrfs_trans_handle *trans;
5342 int ret;
5343
5344 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5345 return 0;
5346
5347 trans = btrfs_join_transaction(root);
5348 if (IS_ERR(trans))
5349 return PTR_ERR(trans);
5350
5351 ret = btrfs_update_inode(trans, root, inode);
5352 if (ret && ret == -ENOSPC) {
5353 /* whoops, lets try again with the full transaction */
5354 btrfs_end_transaction(trans, root);
5355 trans = btrfs_start_transaction(root, 1);
5356 if (IS_ERR(trans))
5357 return PTR_ERR(trans);
5358
5359 ret = btrfs_update_inode(trans, root, inode);
5360 }
5361 btrfs_end_transaction(trans, root);
5362 if (BTRFS_I(inode)->delayed_node)
5363 btrfs_balance_delayed_items(root);
5364
5365 return ret;
5366 }
5367
5368 /*
5369 * This is a copy of file_update_time. We need this so we can return error on
5370 * ENOSPC for updating the inode in the case of file write and mmap writes.
5371 */
5372 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5373 int flags)
5374 {
5375 struct btrfs_root *root = BTRFS_I(inode)->root;
5376
5377 if (btrfs_root_readonly(root))
5378 return -EROFS;
5379
5380 if (flags & S_VERSION)
5381 inode_inc_iversion(inode);
5382 if (flags & S_CTIME)
5383 inode->i_ctime = *now;
5384 if (flags & S_MTIME)
5385 inode->i_mtime = *now;
5386 if (flags & S_ATIME)
5387 inode->i_atime = *now;
5388 return btrfs_dirty_inode(inode);
5389 }
5390
5391 /*
5392 * find the highest existing sequence number in a directory
5393 * and then set the in-memory index_cnt variable to reflect
5394 * free sequence numbers
5395 */
5396 static int btrfs_set_inode_index_count(struct inode *inode)
5397 {
5398 struct btrfs_root *root = BTRFS_I(inode)->root;
5399 struct btrfs_key key, found_key;
5400 struct btrfs_path *path;
5401 struct extent_buffer *leaf;
5402 int ret;
5403
5404 key.objectid = btrfs_ino(inode);
5405 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5406 key.offset = (u64)-1;
5407
5408 path = btrfs_alloc_path();
5409 if (!path)
5410 return -ENOMEM;
5411
5412 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5413 if (ret < 0)
5414 goto out;
5415 /* FIXME: we should be able to handle this */
5416 if (ret == 0)
5417 goto out;
5418 ret = 0;
5419
5420 /*
5421 * MAGIC NUMBER EXPLANATION:
5422 * since we search a directory based on f_pos we have to start at 2
5423 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5424 * else has to start at 2
5425 */
5426 if (path->slots[0] == 0) {
5427 BTRFS_I(inode)->index_cnt = 2;
5428 goto out;
5429 }
5430
5431 path->slots[0]--;
5432
5433 leaf = path->nodes[0];
5434 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5435
5436 if (found_key.objectid != btrfs_ino(inode) ||
5437 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5438 BTRFS_I(inode)->index_cnt = 2;
5439 goto out;
5440 }
5441
5442 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5443 out:
5444 btrfs_free_path(path);
5445 return ret;
5446 }
5447
5448 /*
5449 * helper to find a free sequence number in a given directory. This current
5450 * code is very simple, later versions will do smarter things in the btree
5451 */
5452 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5453 {
5454 int ret = 0;
5455
5456 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5457 ret = btrfs_inode_delayed_dir_index_count(dir);
5458 if (ret) {
5459 ret = btrfs_set_inode_index_count(dir);
5460 if (ret)
5461 return ret;
5462 }
5463 }
5464
5465 *index = BTRFS_I(dir)->index_cnt;
5466 BTRFS_I(dir)->index_cnt++;
5467
5468 return ret;
5469 }
5470
5471 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5472 struct btrfs_root *root,
5473 struct inode *dir,
5474 const char *name, int name_len,
5475 u64 ref_objectid, u64 objectid,
5476 umode_t mode, u64 *index)
5477 {
5478 struct inode *inode;
5479 struct btrfs_inode_item *inode_item;
5480 struct btrfs_key *location;
5481 struct btrfs_path *path;
5482 struct btrfs_inode_ref *ref;
5483 struct btrfs_key key[2];
5484 u32 sizes[2];
5485 unsigned long ptr;
5486 int ret;
5487 int owner;
5488
5489 path = btrfs_alloc_path();
5490 if (!path)
5491 return ERR_PTR(-ENOMEM);
5492
5493 inode = new_inode(root->fs_info->sb);
5494 if (!inode) {
5495 btrfs_free_path(path);
5496 return ERR_PTR(-ENOMEM);
5497 }
5498
5499 /*
5500 * we have to initialize this early, so we can reclaim the inode
5501 * number if we fail afterwards in this function.
5502 */
5503 inode->i_ino = objectid;
5504
5505 if (dir) {
5506 trace_btrfs_inode_request(dir);
5507
5508 ret = btrfs_set_inode_index(dir, index);
5509 if (ret) {
5510 btrfs_free_path(path);
5511 iput(inode);
5512 return ERR_PTR(ret);
5513 }
5514 }
5515 /*
5516 * index_cnt is ignored for everything but a dir,
5517 * btrfs_get_inode_index_count has an explanation for the magic
5518 * number
5519 */
5520 BTRFS_I(inode)->index_cnt = 2;
5521 BTRFS_I(inode)->root = root;
5522 BTRFS_I(inode)->generation = trans->transid;
5523 inode->i_generation = BTRFS_I(inode)->generation;
5524
5525 /*
5526 * We could have gotten an inode number from somebody who was fsynced
5527 * and then removed in this same transaction, so let's just set full
5528 * sync since it will be a full sync anyway and this will blow away the
5529 * old info in the log.
5530 */
5531 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5532
5533 if (S_ISDIR(mode))
5534 owner = 0;
5535 else
5536 owner = 1;
5537
5538 key[0].objectid = objectid;
5539 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5540 key[0].offset = 0;
5541
5542 /*
5543 * Start new inodes with an inode_ref. This is slightly more
5544 * efficient for small numbers of hard links since they will
5545 * be packed into one item. Extended refs will kick in if we
5546 * add more hard links than can fit in the ref item.
5547 */
5548 key[1].objectid = objectid;
5549 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5550 key[1].offset = ref_objectid;
5551
5552 sizes[0] = sizeof(struct btrfs_inode_item);
5553 sizes[1] = name_len + sizeof(*ref);
5554
5555 path->leave_spinning = 1;
5556 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5557 if (ret != 0)
5558 goto fail;
5559
5560 inode_init_owner(inode, dir, mode);
5561 inode_set_bytes(inode, 0);
5562 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5563 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5564 struct btrfs_inode_item);
5565 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5566 sizeof(*inode_item));
5567 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5568
5569 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5570 struct btrfs_inode_ref);
5571 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5572 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5573 ptr = (unsigned long)(ref + 1);
5574 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5575
5576 btrfs_mark_buffer_dirty(path->nodes[0]);
5577 btrfs_free_path(path);
5578
5579 location = &BTRFS_I(inode)->location;
5580 location->objectid = objectid;
5581 location->offset = 0;
5582 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5583
5584 btrfs_inherit_iflags(inode, dir);
5585
5586 if (S_ISREG(mode)) {
5587 if (btrfs_test_opt(root, NODATASUM))
5588 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5589 if (btrfs_test_opt(root, NODATACOW))
5590 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5591 BTRFS_INODE_NODATASUM;
5592 }
5593
5594 insert_inode_hash(inode);
5595 inode_tree_add(inode);
5596
5597 trace_btrfs_inode_new(inode);
5598 btrfs_set_inode_last_trans(trans, inode);
5599
5600 btrfs_update_root_times(trans, root);
5601
5602 return inode;
5603 fail:
5604 if (dir)
5605 BTRFS_I(dir)->index_cnt--;
5606 btrfs_free_path(path);
5607 iput(inode);
5608 return ERR_PTR(ret);
5609 }
5610
5611 static inline u8 btrfs_inode_type(struct inode *inode)
5612 {
5613 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5614 }
5615
5616 /*
5617 * utility function to add 'inode' into 'parent_inode' with
5618 * a give name and a given sequence number.
5619 * if 'add_backref' is true, also insert a backref from the
5620 * inode to the parent directory.
5621 */
5622 int btrfs_add_link(struct btrfs_trans_handle *trans,
5623 struct inode *parent_inode, struct inode *inode,
5624 const char *name, int name_len, int add_backref, u64 index)
5625 {
5626 int ret = 0;
5627 struct btrfs_key key;
5628 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5629 u64 ino = btrfs_ino(inode);
5630 u64 parent_ino = btrfs_ino(parent_inode);
5631
5632 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5633 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5634 } else {
5635 key.objectid = ino;
5636 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5637 key.offset = 0;
5638 }
5639
5640 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5641 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5642 key.objectid, root->root_key.objectid,
5643 parent_ino, index, name, name_len);
5644 } else if (add_backref) {
5645 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5646 parent_ino, index);
5647 }
5648
5649 /* Nothing to clean up yet */
5650 if (ret)
5651 return ret;
5652
5653 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5654 parent_inode, &key,
5655 btrfs_inode_type(inode), index);
5656 if (ret == -EEXIST || ret == -EOVERFLOW)
5657 goto fail_dir_item;
5658 else if (ret) {
5659 btrfs_abort_transaction(trans, root, ret);
5660 return ret;
5661 }
5662
5663 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5664 name_len * 2);
5665 inode_inc_iversion(parent_inode);
5666 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5667 ret = btrfs_update_inode(trans, root, parent_inode);
5668 if (ret)
5669 btrfs_abort_transaction(trans, root, ret);
5670 return ret;
5671
5672 fail_dir_item:
5673 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5674 u64 local_index;
5675 int err;
5676 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5677 key.objectid, root->root_key.objectid,
5678 parent_ino, &local_index, name, name_len);
5679
5680 } else if (add_backref) {
5681 u64 local_index;
5682 int err;
5683
5684 err = btrfs_del_inode_ref(trans, root, name, name_len,
5685 ino, parent_ino, &local_index);
5686 }
5687 return ret;
5688 }
5689
5690 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5691 struct inode *dir, struct dentry *dentry,
5692 struct inode *inode, int backref, u64 index)
5693 {
5694 int err = btrfs_add_link(trans, dir, inode,
5695 dentry->d_name.name, dentry->d_name.len,
5696 backref, index);
5697 if (err > 0)
5698 err = -EEXIST;
5699 return err;
5700 }
5701
5702 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5703 umode_t mode, dev_t rdev)
5704 {
5705 struct btrfs_trans_handle *trans;
5706 struct btrfs_root *root = BTRFS_I(dir)->root;
5707 struct inode *inode = NULL;
5708 int err;
5709 int drop_inode = 0;
5710 u64 objectid;
5711 u64 index = 0;
5712
5713 if (!new_valid_dev(rdev))
5714 return -EINVAL;
5715
5716 /*
5717 * 2 for inode item and ref
5718 * 2 for dir items
5719 * 1 for xattr if selinux is on
5720 */
5721 trans = btrfs_start_transaction(root, 5);
5722 if (IS_ERR(trans))
5723 return PTR_ERR(trans);
5724
5725 err = btrfs_find_free_ino(root, &objectid);
5726 if (err)
5727 goto out_unlock;
5728
5729 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5730 dentry->d_name.len, btrfs_ino(dir), objectid,
5731 mode, &index);
5732 if (IS_ERR(inode)) {
5733 err = PTR_ERR(inode);
5734 goto out_unlock;
5735 }
5736
5737 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5738 if (err) {
5739 drop_inode = 1;
5740 goto out_unlock;
5741 }
5742
5743 /*
5744 * If the active LSM wants to access the inode during
5745 * d_instantiate it needs these. Smack checks to see
5746 * if the filesystem supports xattrs by looking at the
5747 * ops vector.
5748 */
5749
5750 inode->i_op = &btrfs_special_inode_operations;
5751 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5752 if (err)
5753 drop_inode = 1;
5754 else {
5755 init_special_inode(inode, inode->i_mode, rdev);
5756 btrfs_update_inode(trans, root, inode);
5757 d_instantiate(dentry, inode);
5758 }
5759 out_unlock:
5760 btrfs_end_transaction(trans, root);
5761 btrfs_btree_balance_dirty(root);
5762 if (drop_inode) {
5763 inode_dec_link_count(inode);
5764 iput(inode);
5765 }
5766 return err;
5767 }
5768
5769 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5770 umode_t mode, bool excl)
5771 {
5772 struct btrfs_trans_handle *trans;
5773 struct btrfs_root *root = BTRFS_I(dir)->root;
5774 struct inode *inode = NULL;
5775 int drop_inode_on_err = 0;
5776 int err;
5777 u64 objectid;
5778 u64 index = 0;
5779
5780 /*
5781 * 2 for inode item and ref
5782 * 2 for dir items
5783 * 1 for xattr if selinux is on
5784 */
5785 trans = btrfs_start_transaction(root, 5);
5786 if (IS_ERR(trans))
5787 return PTR_ERR(trans);
5788
5789 err = btrfs_find_free_ino(root, &objectid);
5790 if (err)
5791 goto out_unlock;
5792
5793 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5794 dentry->d_name.len, btrfs_ino(dir), objectid,
5795 mode, &index);
5796 if (IS_ERR(inode)) {
5797 err = PTR_ERR(inode);
5798 goto out_unlock;
5799 }
5800 drop_inode_on_err = 1;
5801
5802 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5803 if (err)
5804 goto out_unlock;
5805
5806 err = btrfs_update_inode(trans, root, inode);
5807 if (err)
5808 goto out_unlock;
5809
5810 /*
5811 * If the active LSM wants to access the inode during
5812 * d_instantiate it needs these. Smack checks to see
5813 * if the filesystem supports xattrs by looking at the
5814 * ops vector.
5815 */
5816 inode->i_fop = &btrfs_file_operations;
5817 inode->i_op = &btrfs_file_inode_operations;
5818
5819 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5820 if (err)
5821 goto out_unlock;
5822
5823 inode->i_mapping->a_ops = &btrfs_aops;
5824 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5825 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5826 d_instantiate(dentry, inode);
5827
5828 out_unlock:
5829 btrfs_end_transaction(trans, root);
5830 if (err && drop_inode_on_err) {
5831 inode_dec_link_count(inode);
5832 iput(inode);
5833 }
5834 btrfs_btree_balance_dirty(root);
5835 return err;
5836 }
5837
5838 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5839 struct dentry *dentry)
5840 {
5841 struct btrfs_trans_handle *trans;
5842 struct btrfs_root *root = BTRFS_I(dir)->root;
5843 struct inode *inode = old_dentry->d_inode;
5844 u64 index;
5845 int err;
5846 int drop_inode = 0;
5847
5848 /* do not allow sys_link's with other subvols of the same device */
5849 if (root->objectid != BTRFS_I(inode)->root->objectid)
5850 return -EXDEV;
5851
5852 if (inode->i_nlink >= BTRFS_LINK_MAX)
5853 return -EMLINK;
5854
5855 err = btrfs_set_inode_index(dir, &index);
5856 if (err)
5857 goto fail;
5858
5859 /*
5860 * 2 items for inode and inode ref
5861 * 2 items for dir items
5862 * 1 item for parent inode
5863 */
5864 trans = btrfs_start_transaction(root, 5);
5865 if (IS_ERR(trans)) {
5866 err = PTR_ERR(trans);
5867 goto fail;
5868 }
5869
5870 btrfs_inc_nlink(inode);
5871 inode_inc_iversion(inode);
5872 inode->i_ctime = CURRENT_TIME;
5873 ihold(inode);
5874 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5875
5876 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5877
5878 if (err) {
5879 drop_inode = 1;
5880 } else {
5881 struct dentry *parent = dentry->d_parent;
5882 err = btrfs_update_inode(trans, root, inode);
5883 if (err)
5884 goto fail;
5885 d_instantiate(dentry, inode);
5886 btrfs_log_new_name(trans, inode, NULL, parent);
5887 }
5888
5889 btrfs_end_transaction(trans, root);
5890 fail:
5891 if (drop_inode) {
5892 inode_dec_link_count(inode);
5893 iput(inode);
5894 }
5895 btrfs_btree_balance_dirty(root);
5896 return err;
5897 }
5898
5899 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5900 {
5901 struct inode *inode = NULL;
5902 struct btrfs_trans_handle *trans;
5903 struct btrfs_root *root = BTRFS_I(dir)->root;
5904 int err = 0;
5905 int drop_on_err = 0;
5906 u64 objectid = 0;
5907 u64 index = 0;
5908
5909 /*
5910 * 2 items for inode and ref
5911 * 2 items for dir items
5912 * 1 for xattr if selinux is on
5913 */
5914 trans = btrfs_start_transaction(root, 5);
5915 if (IS_ERR(trans))
5916 return PTR_ERR(trans);
5917
5918 err = btrfs_find_free_ino(root, &objectid);
5919 if (err)
5920 goto out_fail;
5921
5922 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5923 dentry->d_name.len, btrfs_ino(dir), objectid,
5924 S_IFDIR | mode, &index);
5925 if (IS_ERR(inode)) {
5926 err = PTR_ERR(inode);
5927 goto out_fail;
5928 }
5929
5930 drop_on_err = 1;
5931
5932 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5933 if (err)
5934 goto out_fail;
5935
5936 inode->i_op = &btrfs_dir_inode_operations;
5937 inode->i_fop = &btrfs_dir_file_operations;
5938
5939 btrfs_i_size_write(inode, 0);
5940 err = btrfs_update_inode(trans, root, inode);
5941 if (err)
5942 goto out_fail;
5943
5944 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5945 dentry->d_name.len, 0, index);
5946 if (err)
5947 goto out_fail;
5948
5949 d_instantiate(dentry, inode);
5950 drop_on_err = 0;
5951
5952 out_fail:
5953 btrfs_end_transaction(trans, root);
5954 if (drop_on_err)
5955 iput(inode);
5956 btrfs_btree_balance_dirty(root);
5957 return err;
5958 }
5959
5960 /* helper for btfs_get_extent. Given an existing extent in the tree,
5961 * and an extent that you want to insert, deal with overlap and insert
5962 * the new extent into the tree.
5963 */
5964 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5965 struct extent_map *existing,
5966 struct extent_map *em,
5967 u64 map_start, u64 map_len)
5968 {
5969 u64 start_diff;
5970
5971 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5972 start_diff = map_start - em->start;
5973 em->start = map_start;
5974 em->len = map_len;
5975 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5976 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5977 em->block_start += start_diff;
5978 em->block_len -= start_diff;
5979 }
5980 return add_extent_mapping(em_tree, em);
5981 }
5982
5983 static noinline int uncompress_inline(struct btrfs_path *path,
5984 struct inode *inode, struct page *page,
5985 size_t pg_offset, u64 extent_offset,
5986 struct btrfs_file_extent_item *item)
5987 {
5988 int ret;
5989 struct extent_buffer *leaf = path->nodes[0];
5990 char *tmp;
5991 size_t max_size;
5992 unsigned long inline_size;
5993 unsigned long ptr;
5994 int compress_type;
5995
5996 WARN_ON(pg_offset != 0);
5997 compress_type = btrfs_file_extent_compression(leaf, item);
5998 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5999 inline_size = btrfs_file_extent_inline_item_len(leaf,
6000 btrfs_item_nr(leaf, path->slots[0]));
6001 tmp = kmalloc(inline_size, GFP_NOFS);
6002 if (!tmp)
6003 return -ENOMEM;
6004 ptr = btrfs_file_extent_inline_start(item);
6005
6006 read_extent_buffer(leaf, tmp, ptr, inline_size);
6007
6008 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6009 ret = btrfs_decompress(compress_type, tmp, page,
6010 extent_offset, inline_size, max_size);
6011 if (ret) {
6012 char *kaddr = kmap_atomic(page);
6013 unsigned long copy_size = min_t(u64,
6014 PAGE_CACHE_SIZE - pg_offset,
6015 max_size - extent_offset);
6016 memset(kaddr + pg_offset, 0, copy_size);
6017 kunmap_atomic(kaddr);
6018 }
6019 kfree(tmp);
6020 return 0;
6021 }
6022
6023 /*
6024 * a bit scary, this does extent mapping from logical file offset to the disk.
6025 * the ugly parts come from merging extents from the disk with the in-ram
6026 * representation. This gets more complex because of the data=ordered code,
6027 * where the in-ram extents might be locked pending data=ordered completion.
6028 *
6029 * This also copies inline extents directly into the page.
6030 */
6031
6032 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6033 size_t pg_offset, u64 start, u64 len,
6034 int create)
6035 {
6036 int ret;
6037 int err = 0;
6038 u64 bytenr;
6039 u64 extent_start = 0;
6040 u64 extent_end = 0;
6041 u64 objectid = btrfs_ino(inode);
6042 u32 found_type;
6043 struct btrfs_path *path = NULL;
6044 struct btrfs_root *root = BTRFS_I(inode)->root;
6045 struct btrfs_file_extent_item *item;
6046 struct extent_buffer *leaf;
6047 struct btrfs_key found_key;
6048 struct extent_map *em = NULL;
6049 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6050 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6051 struct btrfs_trans_handle *trans = NULL;
6052 int compress_type;
6053
6054 again:
6055 read_lock(&em_tree->lock);
6056 em = lookup_extent_mapping(em_tree, start, len);
6057 if (em)
6058 em->bdev = root->fs_info->fs_devices->latest_bdev;
6059 read_unlock(&em_tree->lock);
6060
6061 if (em) {
6062 if (em->start > start || em->start + em->len <= start)
6063 free_extent_map(em);
6064 else if (em->block_start == EXTENT_MAP_INLINE && page)
6065 free_extent_map(em);
6066 else
6067 goto out;
6068 }
6069 em = alloc_extent_map();
6070 if (!em) {
6071 err = -ENOMEM;
6072 goto out;
6073 }
6074 em->bdev = root->fs_info->fs_devices->latest_bdev;
6075 em->start = EXTENT_MAP_HOLE;
6076 em->orig_start = EXTENT_MAP_HOLE;
6077 em->len = (u64)-1;
6078 em->block_len = (u64)-1;
6079
6080 if (!path) {
6081 path = btrfs_alloc_path();
6082 if (!path) {
6083 err = -ENOMEM;
6084 goto out;
6085 }
6086 /*
6087 * Chances are we'll be called again, so go ahead and do
6088 * readahead
6089 */
6090 path->reada = 1;
6091 }
6092
6093 ret = btrfs_lookup_file_extent(trans, root, path,
6094 objectid, start, trans != NULL);
6095 if (ret < 0) {
6096 err = ret;
6097 goto out;
6098 }
6099
6100 if (ret != 0) {
6101 if (path->slots[0] == 0)
6102 goto not_found;
6103 path->slots[0]--;
6104 }
6105
6106 leaf = path->nodes[0];
6107 item = btrfs_item_ptr(leaf, path->slots[0],
6108 struct btrfs_file_extent_item);
6109 /* are we inside the extent that was found? */
6110 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6111 found_type = btrfs_key_type(&found_key);
6112 if (found_key.objectid != objectid ||
6113 found_type != BTRFS_EXTENT_DATA_KEY) {
6114 goto not_found;
6115 }
6116
6117 found_type = btrfs_file_extent_type(leaf, item);
6118 extent_start = found_key.offset;
6119 compress_type = btrfs_file_extent_compression(leaf, item);
6120 if (found_type == BTRFS_FILE_EXTENT_REG ||
6121 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6122 extent_end = extent_start +
6123 btrfs_file_extent_num_bytes(leaf, item);
6124 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6125 size_t size;
6126 size = btrfs_file_extent_inline_len(leaf, item);
6127 extent_end = ALIGN(extent_start + size, root->sectorsize);
6128 }
6129
6130 if (start >= extent_end) {
6131 path->slots[0]++;
6132 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6133 ret = btrfs_next_leaf(root, path);
6134 if (ret < 0) {
6135 err = ret;
6136 goto out;
6137 }
6138 if (ret > 0)
6139 goto not_found;
6140 leaf = path->nodes[0];
6141 }
6142 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6143 if (found_key.objectid != objectid ||
6144 found_key.type != BTRFS_EXTENT_DATA_KEY)
6145 goto not_found;
6146 if (start + len <= found_key.offset)
6147 goto not_found;
6148 em->start = start;
6149 em->orig_start = start;
6150 em->len = found_key.offset - start;
6151 goto not_found_em;
6152 }
6153
6154 if (found_type == BTRFS_FILE_EXTENT_REG ||
6155 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6156 em->start = extent_start;
6157 em->len = extent_end - extent_start;
6158 em->orig_start = extent_start -
6159 btrfs_file_extent_offset(leaf, item);
6160 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6161 item);
6162 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6163 if (bytenr == 0) {
6164 em->block_start = EXTENT_MAP_HOLE;
6165 goto insert;
6166 }
6167 if (compress_type != BTRFS_COMPRESS_NONE) {
6168 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6169 em->compress_type = compress_type;
6170 em->block_start = bytenr;
6171 em->block_len = em->orig_block_len;
6172 } else {
6173 bytenr += btrfs_file_extent_offset(leaf, item);
6174 em->block_start = bytenr;
6175 em->block_len = em->len;
6176 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6177 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6178 }
6179 goto insert;
6180 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6181 unsigned long ptr;
6182 char *map;
6183 size_t size;
6184 size_t extent_offset;
6185 size_t copy_size;
6186
6187 em->block_start = EXTENT_MAP_INLINE;
6188 if (!page || create) {
6189 em->start = extent_start;
6190 em->len = extent_end - extent_start;
6191 goto out;
6192 }
6193
6194 size = btrfs_file_extent_inline_len(leaf, item);
6195 extent_offset = page_offset(page) + pg_offset - extent_start;
6196 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6197 size - extent_offset);
6198 em->start = extent_start + extent_offset;
6199 em->len = ALIGN(copy_size, root->sectorsize);
6200 em->orig_block_len = em->len;
6201 em->orig_start = em->start;
6202 if (compress_type) {
6203 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6204 em->compress_type = compress_type;
6205 }
6206 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6207 if (create == 0 && !PageUptodate(page)) {
6208 if (btrfs_file_extent_compression(leaf, item) !=
6209 BTRFS_COMPRESS_NONE) {
6210 ret = uncompress_inline(path, inode, page,
6211 pg_offset,
6212 extent_offset, item);
6213 BUG_ON(ret); /* -ENOMEM */
6214 } else {
6215 map = kmap(page);
6216 read_extent_buffer(leaf, map + pg_offset, ptr,
6217 copy_size);
6218 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6219 memset(map + pg_offset + copy_size, 0,
6220 PAGE_CACHE_SIZE - pg_offset -
6221 copy_size);
6222 }
6223 kunmap(page);
6224 }
6225 flush_dcache_page(page);
6226 } else if (create && PageUptodate(page)) {
6227 BUG();
6228 if (!trans) {
6229 kunmap(page);
6230 free_extent_map(em);
6231 em = NULL;
6232
6233 btrfs_release_path(path);
6234 trans = btrfs_join_transaction(root);
6235
6236 if (IS_ERR(trans))
6237 return ERR_CAST(trans);
6238 goto again;
6239 }
6240 map = kmap(page);
6241 write_extent_buffer(leaf, map + pg_offset, ptr,
6242 copy_size);
6243 kunmap(page);
6244 btrfs_mark_buffer_dirty(leaf);
6245 }
6246 set_extent_uptodate(io_tree, em->start,
6247 extent_map_end(em) - 1, NULL, GFP_NOFS);
6248 goto insert;
6249 } else {
6250 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6251 }
6252 not_found:
6253 em->start = start;
6254 em->orig_start = start;
6255 em->len = len;
6256 not_found_em:
6257 em->block_start = EXTENT_MAP_HOLE;
6258 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6259 insert:
6260 btrfs_release_path(path);
6261 if (em->start > start || extent_map_end(em) <= start) {
6262 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
6263 "[%llu %llu]\n", (unsigned long long)em->start,
6264 (unsigned long long)em->len,
6265 (unsigned long long)start,
6266 (unsigned long long)len);
6267 err = -EIO;
6268 goto out;
6269 }
6270
6271 err = 0;
6272 write_lock(&em_tree->lock);
6273 ret = add_extent_mapping(em_tree, em);
6274 /* it is possible that someone inserted the extent into the tree
6275 * while we had the lock dropped. It is also possible that
6276 * an overlapping map exists in the tree
6277 */
6278 if (ret == -EEXIST) {
6279 struct extent_map *existing;
6280
6281 ret = 0;
6282
6283 existing = lookup_extent_mapping(em_tree, start, len);
6284 if (existing && (existing->start > start ||
6285 existing->start + existing->len <= start)) {
6286 free_extent_map(existing);
6287 existing = NULL;
6288 }
6289 if (!existing) {
6290 existing = lookup_extent_mapping(em_tree, em->start,
6291 em->len);
6292 if (existing) {
6293 err = merge_extent_mapping(em_tree, existing,
6294 em, start,
6295 root->sectorsize);
6296 free_extent_map(existing);
6297 if (err) {
6298 free_extent_map(em);
6299 em = NULL;
6300 }
6301 } else {
6302 err = -EIO;
6303 free_extent_map(em);
6304 em = NULL;
6305 }
6306 } else {
6307 free_extent_map(em);
6308 em = existing;
6309 err = 0;
6310 }
6311 }
6312 write_unlock(&em_tree->lock);
6313 out:
6314
6315 if (em)
6316 trace_btrfs_get_extent(root, em);
6317
6318 if (path)
6319 btrfs_free_path(path);
6320 if (trans) {
6321 ret = btrfs_end_transaction(trans, root);
6322 if (!err)
6323 err = ret;
6324 }
6325 if (err) {
6326 free_extent_map(em);
6327 return ERR_PTR(err);
6328 }
6329 BUG_ON(!em); /* Error is always set */
6330 return em;
6331 }
6332
6333 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6334 size_t pg_offset, u64 start, u64 len,
6335 int create)
6336 {
6337 struct extent_map *em;
6338 struct extent_map *hole_em = NULL;
6339 u64 range_start = start;
6340 u64 end;
6341 u64 found;
6342 u64 found_end;
6343 int err = 0;
6344
6345 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6346 if (IS_ERR(em))
6347 return em;
6348 if (em) {
6349 /*
6350 * if our em maps to
6351 * - a hole or
6352 * - a pre-alloc extent,
6353 * there might actually be delalloc bytes behind it.
6354 */
6355 if (em->block_start != EXTENT_MAP_HOLE &&
6356 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6357 return em;
6358 else
6359 hole_em = em;
6360 }
6361
6362 /* check to see if we've wrapped (len == -1 or similar) */
6363 end = start + len;
6364 if (end < start)
6365 end = (u64)-1;
6366 else
6367 end -= 1;
6368
6369 em = NULL;
6370
6371 /* ok, we didn't find anything, lets look for delalloc */
6372 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6373 end, len, EXTENT_DELALLOC, 1);
6374 found_end = range_start + found;
6375 if (found_end < range_start)
6376 found_end = (u64)-1;
6377
6378 /*
6379 * we didn't find anything useful, return
6380 * the original results from get_extent()
6381 */
6382 if (range_start > end || found_end <= start) {
6383 em = hole_em;
6384 hole_em = NULL;
6385 goto out;
6386 }
6387
6388 /* adjust the range_start to make sure it doesn't
6389 * go backwards from the start they passed in
6390 */
6391 range_start = max(start,range_start);
6392 found = found_end - range_start;
6393
6394 if (found > 0) {
6395 u64 hole_start = start;
6396 u64 hole_len = len;
6397
6398 em = alloc_extent_map();
6399 if (!em) {
6400 err = -ENOMEM;
6401 goto out;
6402 }
6403 /*
6404 * when btrfs_get_extent can't find anything it
6405 * returns one huge hole
6406 *
6407 * make sure what it found really fits our range, and
6408 * adjust to make sure it is based on the start from
6409 * the caller
6410 */
6411 if (hole_em) {
6412 u64 calc_end = extent_map_end(hole_em);
6413
6414 if (calc_end <= start || (hole_em->start > end)) {
6415 free_extent_map(hole_em);
6416 hole_em = NULL;
6417 } else {
6418 hole_start = max(hole_em->start, start);
6419 hole_len = calc_end - hole_start;
6420 }
6421 }
6422 em->bdev = NULL;
6423 if (hole_em && range_start > hole_start) {
6424 /* our hole starts before our delalloc, so we
6425 * have to return just the parts of the hole
6426 * that go until the delalloc starts
6427 */
6428 em->len = min(hole_len,
6429 range_start - hole_start);
6430 em->start = hole_start;
6431 em->orig_start = hole_start;
6432 /*
6433 * don't adjust block start at all,
6434 * it is fixed at EXTENT_MAP_HOLE
6435 */
6436 em->block_start = hole_em->block_start;
6437 em->block_len = hole_len;
6438 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6439 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6440 } else {
6441 em->start = range_start;
6442 em->len = found;
6443 em->orig_start = range_start;
6444 em->block_start = EXTENT_MAP_DELALLOC;
6445 em->block_len = found;
6446 }
6447 } else if (hole_em) {
6448 return hole_em;
6449 }
6450 out:
6451
6452 free_extent_map(hole_em);
6453 if (err) {
6454 free_extent_map(em);
6455 return ERR_PTR(err);
6456 }
6457 return em;
6458 }
6459
6460 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6461 u64 start, u64 len)
6462 {
6463 struct btrfs_root *root = BTRFS_I(inode)->root;
6464 struct btrfs_trans_handle *trans;
6465 struct extent_map *em;
6466 struct btrfs_key ins;
6467 u64 alloc_hint;
6468 int ret;
6469
6470 trans = btrfs_join_transaction(root);
6471 if (IS_ERR(trans))
6472 return ERR_CAST(trans);
6473
6474 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6475
6476 alloc_hint = get_extent_allocation_hint(inode, start, len);
6477 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
6478 alloc_hint, &ins, 1);
6479 if (ret) {
6480 em = ERR_PTR(ret);
6481 goto out;
6482 }
6483
6484 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6485 ins.offset, ins.offset, 0);
6486 if (IS_ERR(em))
6487 goto out;
6488
6489 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6490 ins.offset, ins.offset, 0);
6491 if (ret) {
6492 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6493 em = ERR_PTR(ret);
6494 }
6495 out:
6496 btrfs_end_transaction(trans, root);
6497 return em;
6498 }
6499
6500 /*
6501 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6502 * block must be cow'd
6503 */
6504 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
6505 struct inode *inode, u64 offset, u64 len)
6506 {
6507 struct btrfs_path *path;
6508 int ret;
6509 struct extent_buffer *leaf;
6510 struct btrfs_root *root = BTRFS_I(inode)->root;
6511 struct btrfs_file_extent_item *fi;
6512 struct btrfs_key key;
6513 u64 disk_bytenr;
6514 u64 backref_offset;
6515 u64 extent_end;
6516 u64 num_bytes;
6517 int slot;
6518 int found_type;
6519
6520 path = btrfs_alloc_path();
6521 if (!path)
6522 return -ENOMEM;
6523
6524 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
6525 offset, 0);
6526 if (ret < 0)
6527 goto out;
6528
6529 slot = path->slots[0];
6530 if (ret == 1) {
6531 if (slot == 0) {
6532 /* can't find the item, must cow */
6533 ret = 0;
6534 goto out;
6535 }
6536 slot--;
6537 }
6538 ret = 0;
6539 leaf = path->nodes[0];
6540 btrfs_item_key_to_cpu(leaf, &key, slot);
6541 if (key.objectid != btrfs_ino(inode) ||
6542 key.type != BTRFS_EXTENT_DATA_KEY) {
6543 /* not our file or wrong item type, must cow */
6544 goto out;
6545 }
6546
6547 if (key.offset > offset) {
6548 /* Wrong offset, must cow */
6549 goto out;
6550 }
6551
6552 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6553 found_type = btrfs_file_extent_type(leaf, fi);
6554 if (found_type != BTRFS_FILE_EXTENT_REG &&
6555 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6556 /* not a regular extent, must cow */
6557 goto out;
6558 }
6559 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6560 backref_offset = btrfs_file_extent_offset(leaf, fi);
6561
6562 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6563 if (extent_end < offset + len) {
6564 /* extent doesn't include our full range, must cow */
6565 goto out;
6566 }
6567
6568 if (btrfs_extent_readonly(root, disk_bytenr))
6569 goto out;
6570
6571 /*
6572 * look for other files referencing this extent, if we
6573 * find any we must cow
6574 */
6575 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6576 key.offset - backref_offset, disk_bytenr))
6577 goto out;
6578
6579 /*
6580 * adjust disk_bytenr and num_bytes to cover just the bytes
6581 * in this extent we are about to write. If there
6582 * are any csums in that range we have to cow in order
6583 * to keep the csums correct
6584 */
6585 disk_bytenr += backref_offset;
6586 disk_bytenr += offset - key.offset;
6587 num_bytes = min(offset + len, extent_end) - offset;
6588 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6589 goto out;
6590 /*
6591 * all of the above have passed, it is safe to overwrite this extent
6592 * without cow
6593 */
6594 ret = 1;
6595 out:
6596 btrfs_free_path(path);
6597 return ret;
6598 }
6599
6600 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6601 struct extent_state **cached_state, int writing)
6602 {
6603 struct btrfs_ordered_extent *ordered;
6604 int ret = 0;
6605
6606 while (1) {
6607 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6608 0, cached_state);
6609 /*
6610 * We're concerned with the entire range that we're going to be
6611 * doing DIO to, so we need to make sure theres no ordered
6612 * extents in this range.
6613 */
6614 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6615 lockend - lockstart + 1);
6616
6617 /*
6618 * We need to make sure there are no buffered pages in this
6619 * range either, we could have raced between the invalidate in
6620 * generic_file_direct_write and locking the extent. The
6621 * invalidate needs to happen so that reads after a write do not
6622 * get stale data.
6623 */
6624 if (!ordered && (!writing ||
6625 !test_range_bit(&BTRFS_I(inode)->io_tree,
6626 lockstart, lockend, EXTENT_UPTODATE, 0,
6627 *cached_state)))
6628 break;
6629
6630 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6631 cached_state, GFP_NOFS);
6632
6633 if (ordered) {
6634 btrfs_start_ordered_extent(inode, ordered, 1);
6635 btrfs_put_ordered_extent(ordered);
6636 } else {
6637 /* Screw you mmap */
6638 ret = filemap_write_and_wait_range(inode->i_mapping,
6639 lockstart,
6640 lockend);
6641 if (ret)
6642 break;
6643
6644 /*
6645 * If we found a page that couldn't be invalidated just
6646 * fall back to buffered.
6647 */
6648 ret = invalidate_inode_pages2_range(inode->i_mapping,
6649 lockstart >> PAGE_CACHE_SHIFT,
6650 lockend >> PAGE_CACHE_SHIFT);
6651 if (ret)
6652 break;
6653 }
6654
6655 cond_resched();
6656 }
6657
6658 return ret;
6659 }
6660
6661 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6662 u64 len, u64 orig_start,
6663 u64 block_start, u64 block_len,
6664 u64 orig_block_len, int type)
6665 {
6666 struct extent_map_tree *em_tree;
6667 struct extent_map *em;
6668 struct btrfs_root *root = BTRFS_I(inode)->root;
6669 int ret;
6670
6671 em_tree = &BTRFS_I(inode)->extent_tree;
6672 em = alloc_extent_map();
6673 if (!em)
6674 return ERR_PTR(-ENOMEM);
6675
6676 em->start = start;
6677 em->orig_start = orig_start;
6678 em->mod_start = start;
6679 em->mod_len = len;
6680 em->len = len;
6681 em->block_len = block_len;
6682 em->block_start = block_start;
6683 em->bdev = root->fs_info->fs_devices->latest_bdev;
6684 em->orig_block_len = orig_block_len;
6685 em->generation = -1;
6686 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6687 if (type == BTRFS_ORDERED_PREALLOC)
6688 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6689
6690 do {
6691 btrfs_drop_extent_cache(inode, em->start,
6692 em->start + em->len - 1, 0);
6693 write_lock(&em_tree->lock);
6694 ret = add_extent_mapping(em_tree, em);
6695 if (!ret)
6696 list_move(&em->list,
6697 &em_tree->modified_extents);
6698 write_unlock(&em_tree->lock);
6699 } while (ret == -EEXIST);
6700
6701 if (ret) {
6702 free_extent_map(em);
6703 return ERR_PTR(ret);
6704 }
6705
6706 return em;
6707 }
6708
6709
6710 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6711 struct buffer_head *bh_result, int create)
6712 {
6713 struct extent_map *em;
6714 struct btrfs_root *root = BTRFS_I(inode)->root;
6715 struct extent_state *cached_state = NULL;
6716 u64 start = iblock << inode->i_blkbits;
6717 u64 lockstart, lockend;
6718 u64 len = bh_result->b_size;
6719 struct btrfs_trans_handle *trans;
6720 int unlock_bits = EXTENT_LOCKED;
6721 int ret = 0;
6722
6723 if (create)
6724 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6725 else
6726 len = min_t(u64, len, root->sectorsize);
6727
6728 lockstart = start;
6729 lockend = start + len - 1;
6730
6731 /*
6732 * If this errors out it's because we couldn't invalidate pagecache for
6733 * this range and we need to fallback to buffered.
6734 */
6735 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6736 return -ENOTBLK;
6737
6738 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6739 if (IS_ERR(em)) {
6740 ret = PTR_ERR(em);
6741 goto unlock_err;
6742 }
6743
6744 /*
6745 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6746 * io. INLINE is special, and we could probably kludge it in here, but
6747 * it's still buffered so for safety lets just fall back to the generic
6748 * buffered path.
6749 *
6750 * For COMPRESSED we _have_ to read the entire extent in so we can
6751 * decompress it, so there will be buffering required no matter what we
6752 * do, so go ahead and fallback to buffered.
6753 *
6754 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6755 * to buffered IO. Don't blame me, this is the price we pay for using
6756 * the generic code.
6757 */
6758 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6759 em->block_start == EXTENT_MAP_INLINE) {
6760 free_extent_map(em);
6761 ret = -ENOTBLK;
6762 goto unlock_err;
6763 }
6764
6765 /* Just a good old fashioned hole, return */
6766 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6767 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6768 free_extent_map(em);
6769 goto unlock_err;
6770 }
6771
6772 /*
6773 * We don't allocate a new extent in the following cases
6774 *
6775 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6776 * existing extent.
6777 * 2) The extent is marked as PREALLOC. We're good to go here and can
6778 * just use the extent.
6779 *
6780 */
6781 if (!create) {
6782 len = min(len, em->len - (start - em->start));
6783 lockstart = start + len;
6784 goto unlock;
6785 }
6786
6787 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6788 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6789 em->block_start != EXTENT_MAP_HOLE)) {
6790 int type;
6791 int ret;
6792 u64 block_start;
6793
6794 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6795 type = BTRFS_ORDERED_PREALLOC;
6796 else
6797 type = BTRFS_ORDERED_NOCOW;
6798 len = min(len, em->len - (start - em->start));
6799 block_start = em->block_start + (start - em->start);
6800
6801 /*
6802 * we're not going to log anything, but we do need
6803 * to make sure the current transaction stays open
6804 * while we look for nocow cross refs
6805 */
6806 trans = btrfs_join_transaction(root);
6807 if (IS_ERR(trans))
6808 goto must_cow;
6809
6810 if (can_nocow_odirect(trans, inode, start, len) == 1) {
6811 u64 orig_start = em->orig_start;
6812 u64 orig_block_len = em->orig_block_len;
6813
6814 if (type == BTRFS_ORDERED_PREALLOC) {
6815 free_extent_map(em);
6816 em = create_pinned_em(inode, start, len,
6817 orig_start,
6818 block_start, len,
6819 orig_block_len, type);
6820 if (IS_ERR(em)) {
6821 btrfs_end_transaction(trans, root);
6822 goto unlock_err;
6823 }
6824 }
6825
6826 ret = btrfs_add_ordered_extent_dio(inode, start,
6827 block_start, len, len, type);
6828 btrfs_end_transaction(trans, root);
6829 if (ret) {
6830 free_extent_map(em);
6831 goto unlock_err;
6832 }
6833 goto unlock;
6834 }
6835 btrfs_end_transaction(trans, root);
6836 }
6837 must_cow:
6838 /*
6839 * this will cow the extent, reset the len in case we changed
6840 * it above
6841 */
6842 len = bh_result->b_size;
6843 free_extent_map(em);
6844 em = btrfs_new_extent_direct(inode, start, len);
6845 if (IS_ERR(em)) {
6846 ret = PTR_ERR(em);
6847 goto unlock_err;
6848 }
6849 len = min(len, em->len - (start - em->start));
6850 unlock:
6851 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6852 inode->i_blkbits;
6853 bh_result->b_size = len;
6854 bh_result->b_bdev = em->bdev;
6855 set_buffer_mapped(bh_result);
6856 if (create) {
6857 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6858 set_buffer_new(bh_result);
6859
6860 /*
6861 * Need to update the i_size under the extent lock so buffered
6862 * readers will get the updated i_size when we unlock.
6863 */
6864 if (start + len > i_size_read(inode))
6865 i_size_write(inode, start + len);
6866
6867 spin_lock(&BTRFS_I(inode)->lock);
6868 BTRFS_I(inode)->outstanding_extents++;
6869 spin_unlock(&BTRFS_I(inode)->lock);
6870
6871 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6872 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6873 &cached_state, GFP_NOFS);
6874 BUG_ON(ret);
6875 }
6876
6877 /*
6878 * In the case of write we need to clear and unlock the entire range,
6879 * in the case of read we need to unlock only the end area that we
6880 * aren't using if there is any left over space.
6881 */
6882 if (lockstart < lockend) {
6883 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6884 lockend, unlock_bits, 1, 0,
6885 &cached_state, GFP_NOFS);
6886 } else {
6887 free_extent_state(cached_state);
6888 }
6889
6890 free_extent_map(em);
6891
6892 return 0;
6893
6894 unlock_err:
6895 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6896 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6897 return ret;
6898 }
6899
6900 struct btrfs_dio_private {
6901 struct inode *inode;
6902 u64 logical_offset;
6903 u64 disk_bytenr;
6904 u64 bytes;
6905 void *private;
6906
6907 /* number of bios pending for this dio */
6908 atomic_t pending_bios;
6909
6910 /* IO errors */
6911 int errors;
6912
6913 struct bio *orig_bio;
6914 };
6915
6916 static void btrfs_endio_direct_read(struct bio *bio, int err)
6917 {
6918 struct btrfs_dio_private *dip = bio->bi_private;
6919 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6920 struct bio_vec *bvec = bio->bi_io_vec;
6921 struct inode *inode = dip->inode;
6922 struct btrfs_root *root = BTRFS_I(inode)->root;
6923 u64 start;
6924
6925 start = dip->logical_offset;
6926 do {
6927 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6928 struct page *page = bvec->bv_page;
6929 char *kaddr;
6930 u32 csum = ~(u32)0;
6931 u64 private = ~(u32)0;
6932 unsigned long flags;
6933
6934 if (get_state_private(&BTRFS_I(inode)->io_tree,
6935 start, &private))
6936 goto failed;
6937 local_irq_save(flags);
6938 kaddr = kmap_atomic(page);
6939 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6940 csum, bvec->bv_len);
6941 btrfs_csum_final(csum, (char *)&csum);
6942 kunmap_atomic(kaddr);
6943 local_irq_restore(flags);
6944
6945 flush_dcache_page(bvec->bv_page);
6946 if (csum != private) {
6947 failed:
6948 printk(KERN_ERR "btrfs csum failed ino %llu off"
6949 " %llu csum %u private %u\n",
6950 (unsigned long long)btrfs_ino(inode),
6951 (unsigned long long)start,
6952 csum, (unsigned)private);
6953 err = -EIO;
6954 }
6955 }
6956
6957 start += bvec->bv_len;
6958 bvec++;
6959 } while (bvec <= bvec_end);
6960
6961 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6962 dip->logical_offset + dip->bytes - 1);
6963 bio->bi_private = dip->private;
6964
6965 kfree(dip);
6966
6967 /* If we had a csum failure make sure to clear the uptodate flag */
6968 if (err)
6969 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6970 dio_end_io(bio, err);
6971 }
6972
6973 static void btrfs_endio_direct_write(struct bio *bio, int err)
6974 {
6975 struct btrfs_dio_private *dip = bio->bi_private;
6976 struct inode *inode = dip->inode;
6977 struct btrfs_root *root = BTRFS_I(inode)->root;
6978 struct btrfs_ordered_extent *ordered = NULL;
6979 u64 ordered_offset = dip->logical_offset;
6980 u64 ordered_bytes = dip->bytes;
6981 int ret;
6982
6983 if (err)
6984 goto out_done;
6985 again:
6986 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6987 &ordered_offset,
6988 ordered_bytes, !err);
6989 if (!ret)
6990 goto out_test;
6991
6992 ordered->work.func = finish_ordered_fn;
6993 ordered->work.flags = 0;
6994 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6995 &ordered->work);
6996 out_test:
6997 /*
6998 * our bio might span multiple ordered extents. If we haven't
6999 * completed the accounting for the whole dio, go back and try again
7000 */
7001 if (ordered_offset < dip->logical_offset + dip->bytes) {
7002 ordered_bytes = dip->logical_offset + dip->bytes -
7003 ordered_offset;
7004 ordered = NULL;
7005 goto again;
7006 }
7007 out_done:
7008 bio->bi_private = dip->private;
7009
7010 kfree(dip);
7011
7012 /* If we had an error make sure to clear the uptodate flag */
7013 if (err)
7014 clear_bit(BIO_UPTODATE, &bio->bi_flags);
7015 dio_end_io(bio, err);
7016 }
7017
7018 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7019 struct bio *bio, int mirror_num,
7020 unsigned long bio_flags, u64 offset)
7021 {
7022 int ret;
7023 struct btrfs_root *root = BTRFS_I(inode)->root;
7024 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7025 BUG_ON(ret); /* -ENOMEM */
7026 return 0;
7027 }
7028
7029 static void btrfs_end_dio_bio(struct bio *bio, int err)
7030 {
7031 struct btrfs_dio_private *dip = bio->bi_private;
7032
7033 if (err) {
7034 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
7035 "sector %#Lx len %u err no %d\n",
7036 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
7037 (unsigned long long)bio->bi_sector, bio->bi_size, err);
7038 dip->errors = 1;
7039
7040 /*
7041 * before atomic variable goto zero, we must make sure
7042 * dip->errors is perceived to be set.
7043 */
7044 smp_mb__before_atomic_dec();
7045 }
7046
7047 /* if there are more bios still pending for this dio, just exit */
7048 if (!atomic_dec_and_test(&dip->pending_bios))
7049 goto out;
7050
7051 if (dip->errors)
7052 bio_io_error(dip->orig_bio);
7053 else {
7054 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
7055 bio_endio(dip->orig_bio, 0);
7056 }
7057 out:
7058 bio_put(bio);
7059 }
7060
7061 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7062 u64 first_sector, gfp_t gfp_flags)
7063 {
7064 int nr_vecs = bio_get_nr_vecs(bdev);
7065 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7066 }
7067
7068 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7069 int rw, u64 file_offset, int skip_sum,
7070 int async_submit)
7071 {
7072 int write = rw & REQ_WRITE;
7073 struct btrfs_root *root = BTRFS_I(inode)->root;
7074 int ret;
7075
7076 if (async_submit)
7077 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7078
7079 bio_get(bio);
7080
7081 if (!write) {
7082 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7083 if (ret)
7084 goto err;
7085 }
7086
7087 if (skip_sum)
7088 goto map;
7089
7090 if (write && async_submit) {
7091 ret = btrfs_wq_submit_bio(root->fs_info,
7092 inode, rw, bio, 0, 0,
7093 file_offset,
7094 __btrfs_submit_bio_start_direct_io,
7095 __btrfs_submit_bio_done);
7096 goto err;
7097 } else if (write) {
7098 /*
7099 * If we aren't doing async submit, calculate the csum of the
7100 * bio now.
7101 */
7102 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7103 if (ret)
7104 goto err;
7105 } else if (!skip_sum) {
7106 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
7107 if (ret)
7108 goto err;
7109 }
7110
7111 map:
7112 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7113 err:
7114 bio_put(bio);
7115 return ret;
7116 }
7117
7118 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7119 int skip_sum)
7120 {
7121 struct inode *inode = dip->inode;
7122 struct btrfs_root *root = BTRFS_I(inode)->root;
7123 struct bio *bio;
7124 struct bio *orig_bio = dip->orig_bio;
7125 struct bio_vec *bvec = orig_bio->bi_io_vec;
7126 u64 start_sector = orig_bio->bi_sector;
7127 u64 file_offset = dip->logical_offset;
7128 u64 submit_len = 0;
7129 u64 map_length;
7130 int nr_pages = 0;
7131 int ret = 0;
7132 int async_submit = 0;
7133
7134 map_length = orig_bio->bi_size;
7135 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7136 &map_length, NULL, 0);
7137 if (ret) {
7138 bio_put(orig_bio);
7139 return -EIO;
7140 }
7141 if (map_length >= orig_bio->bi_size) {
7142 bio = orig_bio;
7143 goto submit;
7144 }
7145
7146 /* async crcs make it difficult to collect full stripe writes. */
7147 if (btrfs_get_alloc_profile(root, 1) &
7148 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7149 async_submit = 0;
7150 else
7151 async_submit = 1;
7152
7153 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7154 if (!bio)
7155 return -ENOMEM;
7156 bio->bi_private = dip;
7157 bio->bi_end_io = btrfs_end_dio_bio;
7158 atomic_inc(&dip->pending_bios);
7159
7160 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7161 if (unlikely(map_length < submit_len + bvec->bv_len ||
7162 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7163 bvec->bv_offset) < bvec->bv_len)) {
7164 /*
7165 * inc the count before we submit the bio so
7166 * we know the end IO handler won't happen before
7167 * we inc the count. Otherwise, the dip might get freed
7168 * before we're done setting it up
7169 */
7170 atomic_inc(&dip->pending_bios);
7171 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7172 file_offset, skip_sum,
7173 async_submit);
7174 if (ret) {
7175 bio_put(bio);
7176 atomic_dec(&dip->pending_bios);
7177 goto out_err;
7178 }
7179
7180 start_sector += submit_len >> 9;
7181 file_offset += submit_len;
7182
7183 submit_len = 0;
7184 nr_pages = 0;
7185
7186 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7187 start_sector, GFP_NOFS);
7188 if (!bio)
7189 goto out_err;
7190 bio->bi_private = dip;
7191 bio->bi_end_io = btrfs_end_dio_bio;
7192
7193 map_length = orig_bio->bi_size;
7194 ret = btrfs_map_block(root->fs_info, rw,
7195 start_sector << 9,
7196 &map_length, NULL, 0);
7197 if (ret) {
7198 bio_put(bio);
7199 goto out_err;
7200 }
7201 } else {
7202 submit_len += bvec->bv_len;
7203 nr_pages ++;
7204 bvec++;
7205 }
7206 }
7207
7208 submit:
7209 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7210 async_submit);
7211 if (!ret)
7212 return 0;
7213
7214 bio_put(bio);
7215 out_err:
7216 dip->errors = 1;
7217 /*
7218 * before atomic variable goto zero, we must
7219 * make sure dip->errors is perceived to be set.
7220 */
7221 smp_mb__before_atomic_dec();
7222 if (atomic_dec_and_test(&dip->pending_bios))
7223 bio_io_error(dip->orig_bio);
7224
7225 /* bio_end_io() will handle error, so we needn't return it */
7226 return 0;
7227 }
7228
7229 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
7230 loff_t file_offset)
7231 {
7232 struct btrfs_root *root = BTRFS_I(inode)->root;
7233 struct btrfs_dio_private *dip;
7234 struct bio_vec *bvec = bio->bi_io_vec;
7235 int skip_sum;
7236 int write = rw & REQ_WRITE;
7237 int ret = 0;
7238
7239 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7240
7241 dip = kmalloc(sizeof(*dip), GFP_NOFS);
7242 if (!dip) {
7243 ret = -ENOMEM;
7244 goto free_ordered;
7245 }
7246
7247 dip->private = bio->bi_private;
7248 dip->inode = inode;
7249 dip->logical_offset = file_offset;
7250
7251 dip->bytes = 0;
7252 do {
7253 dip->bytes += bvec->bv_len;
7254 bvec++;
7255 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
7256
7257 dip->disk_bytenr = (u64)bio->bi_sector << 9;
7258 bio->bi_private = dip;
7259 dip->errors = 0;
7260 dip->orig_bio = bio;
7261 atomic_set(&dip->pending_bios, 0);
7262
7263 if (write)
7264 bio->bi_end_io = btrfs_endio_direct_write;
7265 else
7266 bio->bi_end_io = btrfs_endio_direct_read;
7267
7268 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7269 if (!ret)
7270 return;
7271 free_ordered:
7272 /*
7273 * If this is a write, we need to clean up the reserved space and kill
7274 * the ordered extent.
7275 */
7276 if (write) {
7277 struct btrfs_ordered_extent *ordered;
7278 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7279 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7280 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7281 btrfs_free_reserved_extent(root, ordered->start,
7282 ordered->disk_len);
7283 btrfs_put_ordered_extent(ordered);
7284 btrfs_put_ordered_extent(ordered);
7285 }
7286 bio_endio(bio, ret);
7287 }
7288
7289 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7290 const struct iovec *iov, loff_t offset,
7291 unsigned long nr_segs)
7292 {
7293 int seg;
7294 int i;
7295 size_t size;
7296 unsigned long addr;
7297 unsigned blocksize_mask = root->sectorsize - 1;
7298 ssize_t retval = -EINVAL;
7299 loff_t end = offset;
7300
7301 if (offset & blocksize_mask)
7302 goto out;
7303
7304 /* Check the memory alignment. Blocks cannot straddle pages */
7305 for (seg = 0; seg < nr_segs; seg++) {
7306 addr = (unsigned long)iov[seg].iov_base;
7307 size = iov[seg].iov_len;
7308 end += size;
7309 if ((addr & blocksize_mask) || (size & blocksize_mask))
7310 goto out;
7311
7312 /* If this is a write we don't need to check anymore */
7313 if (rw & WRITE)
7314 continue;
7315
7316 /*
7317 * Check to make sure we don't have duplicate iov_base's in this
7318 * iovec, if so return EINVAL, otherwise we'll get csum errors
7319 * when reading back.
7320 */
7321 for (i = seg + 1; i < nr_segs; i++) {
7322 if (iov[seg].iov_base == iov[i].iov_base)
7323 goto out;
7324 }
7325 }
7326 retval = 0;
7327 out:
7328 return retval;
7329 }
7330
7331 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7332 const struct iovec *iov, loff_t offset,
7333 unsigned long nr_segs)
7334 {
7335 struct file *file = iocb->ki_filp;
7336 struct inode *inode = file->f_mapping->host;
7337 size_t count = 0;
7338 int flags = 0;
7339 bool wakeup = true;
7340 bool relock = false;
7341 ssize_t ret;
7342
7343 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7344 offset, nr_segs))
7345 return 0;
7346
7347 atomic_inc(&inode->i_dio_count);
7348 smp_mb__after_atomic_inc();
7349
7350 if (rw & WRITE) {
7351 count = iov_length(iov, nr_segs);
7352 /*
7353 * If the write DIO is beyond the EOF, we need update
7354 * the isize, but it is protected by i_mutex. So we can
7355 * not unlock the i_mutex at this case.
7356 */
7357 if (offset + count <= inode->i_size) {
7358 mutex_unlock(&inode->i_mutex);
7359 relock = true;
7360 }
7361 ret = btrfs_delalloc_reserve_space(inode, count);
7362 if (ret)
7363 goto out;
7364 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7365 &BTRFS_I(inode)->runtime_flags))) {
7366 inode_dio_done(inode);
7367 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7368 wakeup = false;
7369 }
7370
7371 ret = __blockdev_direct_IO(rw, iocb, inode,
7372 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7373 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7374 btrfs_submit_direct, flags);
7375 if (rw & WRITE) {
7376 if (ret < 0 && ret != -EIOCBQUEUED)
7377 btrfs_delalloc_release_space(inode, count);
7378 else if (ret >= 0 && (size_t)ret < count)
7379 btrfs_delalloc_release_space(inode,
7380 count - (size_t)ret);
7381 else
7382 btrfs_delalloc_release_metadata(inode, 0);
7383 }
7384 out:
7385 if (wakeup)
7386 inode_dio_done(inode);
7387 if (relock)
7388 mutex_lock(&inode->i_mutex);
7389
7390 return ret;
7391 }
7392
7393 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7394
7395 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7396 __u64 start, __u64 len)
7397 {
7398 int ret;
7399
7400 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7401 if (ret)
7402 return ret;
7403
7404 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7405 }
7406
7407 int btrfs_readpage(struct file *file, struct page *page)
7408 {
7409 struct extent_io_tree *tree;
7410 tree = &BTRFS_I(page->mapping->host)->io_tree;
7411 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7412 }
7413
7414 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7415 {
7416 struct extent_io_tree *tree;
7417
7418
7419 if (current->flags & PF_MEMALLOC) {
7420 redirty_page_for_writepage(wbc, page);
7421 unlock_page(page);
7422 return 0;
7423 }
7424 tree = &BTRFS_I(page->mapping->host)->io_tree;
7425 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7426 }
7427
7428 int btrfs_writepages(struct address_space *mapping,
7429 struct writeback_control *wbc)
7430 {
7431 struct extent_io_tree *tree;
7432
7433 tree = &BTRFS_I(mapping->host)->io_tree;
7434 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7435 }
7436
7437 static int
7438 btrfs_readpages(struct file *file, struct address_space *mapping,
7439 struct list_head *pages, unsigned nr_pages)
7440 {
7441 struct extent_io_tree *tree;
7442 tree = &BTRFS_I(mapping->host)->io_tree;
7443 return extent_readpages(tree, mapping, pages, nr_pages,
7444 btrfs_get_extent);
7445 }
7446 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7447 {
7448 struct extent_io_tree *tree;
7449 struct extent_map_tree *map;
7450 int ret;
7451
7452 tree = &BTRFS_I(page->mapping->host)->io_tree;
7453 map = &BTRFS_I(page->mapping->host)->extent_tree;
7454 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7455 if (ret == 1) {
7456 ClearPagePrivate(page);
7457 set_page_private(page, 0);
7458 page_cache_release(page);
7459 }
7460 return ret;
7461 }
7462
7463 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7464 {
7465 if (PageWriteback(page) || PageDirty(page))
7466 return 0;
7467 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7468 }
7469
7470 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
7471 {
7472 struct inode *inode = page->mapping->host;
7473 struct extent_io_tree *tree;
7474 struct btrfs_ordered_extent *ordered;
7475 struct extent_state *cached_state = NULL;
7476 u64 page_start = page_offset(page);
7477 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7478
7479 /*
7480 * we have the page locked, so new writeback can't start,
7481 * and the dirty bit won't be cleared while we are here.
7482 *
7483 * Wait for IO on this page so that we can safely clear
7484 * the PagePrivate2 bit and do ordered accounting
7485 */
7486 wait_on_page_writeback(page);
7487
7488 tree = &BTRFS_I(inode)->io_tree;
7489 if (offset) {
7490 btrfs_releasepage(page, GFP_NOFS);
7491 return;
7492 }
7493 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7494 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7495 if (ordered) {
7496 /*
7497 * IO on this page will never be started, so we need
7498 * to account for any ordered extents now
7499 */
7500 clear_extent_bit(tree, page_start, page_end,
7501 EXTENT_DIRTY | EXTENT_DELALLOC |
7502 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7503 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7504 /*
7505 * whoever cleared the private bit is responsible
7506 * for the finish_ordered_io
7507 */
7508 if (TestClearPagePrivate2(page) &&
7509 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7510 PAGE_CACHE_SIZE, 1)) {
7511 btrfs_finish_ordered_io(ordered);
7512 }
7513 btrfs_put_ordered_extent(ordered);
7514 cached_state = NULL;
7515 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7516 }
7517 clear_extent_bit(tree, page_start, page_end,
7518 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7519 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7520 &cached_state, GFP_NOFS);
7521 __btrfs_releasepage(page, GFP_NOFS);
7522
7523 ClearPageChecked(page);
7524 if (PagePrivate(page)) {
7525 ClearPagePrivate(page);
7526 set_page_private(page, 0);
7527 page_cache_release(page);
7528 }
7529 }
7530
7531 /*
7532 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7533 * called from a page fault handler when a page is first dirtied. Hence we must
7534 * be careful to check for EOF conditions here. We set the page up correctly
7535 * for a written page which means we get ENOSPC checking when writing into
7536 * holes and correct delalloc and unwritten extent mapping on filesystems that
7537 * support these features.
7538 *
7539 * We are not allowed to take the i_mutex here so we have to play games to
7540 * protect against truncate races as the page could now be beyond EOF. Because
7541 * vmtruncate() writes the inode size before removing pages, once we have the
7542 * page lock we can determine safely if the page is beyond EOF. If it is not
7543 * beyond EOF, then the page is guaranteed safe against truncation until we
7544 * unlock the page.
7545 */
7546 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7547 {
7548 struct page *page = vmf->page;
7549 struct inode *inode = file_inode(vma->vm_file);
7550 struct btrfs_root *root = BTRFS_I(inode)->root;
7551 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7552 struct btrfs_ordered_extent *ordered;
7553 struct extent_state *cached_state = NULL;
7554 char *kaddr;
7555 unsigned long zero_start;
7556 loff_t size;
7557 int ret;
7558 int reserved = 0;
7559 u64 page_start;
7560 u64 page_end;
7561
7562 sb_start_pagefault(inode->i_sb);
7563 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7564 if (!ret) {
7565 ret = file_update_time(vma->vm_file);
7566 reserved = 1;
7567 }
7568 if (ret) {
7569 if (ret == -ENOMEM)
7570 ret = VM_FAULT_OOM;
7571 else /* -ENOSPC, -EIO, etc */
7572 ret = VM_FAULT_SIGBUS;
7573 if (reserved)
7574 goto out;
7575 goto out_noreserve;
7576 }
7577
7578 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7579 again:
7580 lock_page(page);
7581 size = i_size_read(inode);
7582 page_start = page_offset(page);
7583 page_end = page_start + PAGE_CACHE_SIZE - 1;
7584
7585 if ((page->mapping != inode->i_mapping) ||
7586 (page_start >= size)) {
7587 /* page got truncated out from underneath us */
7588 goto out_unlock;
7589 }
7590 wait_on_page_writeback(page);
7591
7592 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7593 set_page_extent_mapped(page);
7594
7595 /*
7596 * we can't set the delalloc bits if there are pending ordered
7597 * extents. Drop our locks and wait for them to finish
7598 */
7599 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7600 if (ordered) {
7601 unlock_extent_cached(io_tree, page_start, page_end,
7602 &cached_state, GFP_NOFS);
7603 unlock_page(page);
7604 btrfs_start_ordered_extent(inode, ordered, 1);
7605 btrfs_put_ordered_extent(ordered);
7606 goto again;
7607 }
7608
7609 /*
7610 * XXX - page_mkwrite gets called every time the page is dirtied, even
7611 * if it was already dirty, so for space accounting reasons we need to
7612 * clear any delalloc bits for the range we are fixing to save. There
7613 * is probably a better way to do this, but for now keep consistent with
7614 * prepare_pages in the normal write path.
7615 */
7616 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7617 EXTENT_DIRTY | EXTENT_DELALLOC |
7618 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7619 0, 0, &cached_state, GFP_NOFS);
7620
7621 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7622 &cached_state);
7623 if (ret) {
7624 unlock_extent_cached(io_tree, page_start, page_end,
7625 &cached_state, GFP_NOFS);
7626 ret = VM_FAULT_SIGBUS;
7627 goto out_unlock;
7628 }
7629 ret = 0;
7630
7631 /* page is wholly or partially inside EOF */
7632 if (page_start + PAGE_CACHE_SIZE > size)
7633 zero_start = size & ~PAGE_CACHE_MASK;
7634 else
7635 zero_start = PAGE_CACHE_SIZE;
7636
7637 if (zero_start != PAGE_CACHE_SIZE) {
7638 kaddr = kmap(page);
7639 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7640 flush_dcache_page(page);
7641 kunmap(page);
7642 }
7643 ClearPageChecked(page);
7644 set_page_dirty(page);
7645 SetPageUptodate(page);
7646
7647 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7648 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7649 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7650
7651 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7652
7653 out_unlock:
7654 if (!ret) {
7655 sb_end_pagefault(inode->i_sb);
7656 return VM_FAULT_LOCKED;
7657 }
7658 unlock_page(page);
7659 out:
7660 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7661 out_noreserve:
7662 sb_end_pagefault(inode->i_sb);
7663 return ret;
7664 }
7665
7666 static int btrfs_truncate(struct inode *inode)
7667 {
7668 struct btrfs_root *root = BTRFS_I(inode)->root;
7669 struct btrfs_block_rsv *rsv;
7670 int ret;
7671 int err = 0;
7672 struct btrfs_trans_handle *trans;
7673 u64 mask = root->sectorsize - 1;
7674 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7675
7676 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
7677 if (ret)
7678 return ret;
7679
7680 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
7681 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
7682
7683 /*
7684 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7685 * 3 things going on here
7686 *
7687 * 1) We need to reserve space for our orphan item and the space to
7688 * delete our orphan item. Lord knows we don't want to have a dangling
7689 * orphan item because we didn't reserve space to remove it.
7690 *
7691 * 2) We need to reserve space to update our inode.
7692 *
7693 * 3) We need to have something to cache all the space that is going to
7694 * be free'd up by the truncate operation, but also have some slack
7695 * space reserved in case it uses space during the truncate (thank you
7696 * very much snapshotting).
7697 *
7698 * And we need these to all be seperate. The fact is we can use alot of
7699 * space doing the truncate, and we have no earthly idea how much space
7700 * we will use, so we need the truncate reservation to be seperate so it
7701 * doesn't end up using space reserved for updating the inode or
7702 * removing the orphan item. We also need to be able to stop the
7703 * transaction and start a new one, which means we need to be able to
7704 * update the inode several times, and we have no idea of knowing how
7705 * many times that will be, so we can't just reserve 1 item for the
7706 * entirety of the opration, so that has to be done seperately as well.
7707 * Then there is the orphan item, which does indeed need to be held on
7708 * to for the whole operation, and we need nobody to touch this reserved
7709 * space except the orphan code.
7710 *
7711 * So that leaves us with
7712 *
7713 * 1) root->orphan_block_rsv - for the orphan deletion.
7714 * 2) rsv - for the truncate reservation, which we will steal from the
7715 * transaction reservation.
7716 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7717 * updating the inode.
7718 */
7719 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7720 if (!rsv)
7721 return -ENOMEM;
7722 rsv->size = min_size;
7723 rsv->failfast = 1;
7724
7725 /*
7726 * 1 for the truncate slack space
7727 * 1 for updating the inode.
7728 */
7729 trans = btrfs_start_transaction(root, 2);
7730 if (IS_ERR(trans)) {
7731 err = PTR_ERR(trans);
7732 goto out;
7733 }
7734
7735 /* Migrate the slack space for the truncate to our reserve */
7736 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7737 min_size);
7738 BUG_ON(ret);
7739
7740 /*
7741 * setattr is responsible for setting the ordered_data_close flag,
7742 * but that is only tested during the last file release. That
7743 * could happen well after the next commit, leaving a great big
7744 * window where new writes may get lost if someone chooses to write
7745 * to this file after truncating to zero
7746 *
7747 * The inode doesn't have any dirty data here, and so if we commit
7748 * this is a noop. If someone immediately starts writing to the inode
7749 * it is very likely we'll catch some of their writes in this
7750 * transaction, and the commit will find this file on the ordered
7751 * data list with good things to send down.
7752 *
7753 * This is a best effort solution, there is still a window where
7754 * using truncate to replace the contents of the file will
7755 * end up with a zero length file after a crash.
7756 */
7757 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7758 &BTRFS_I(inode)->runtime_flags))
7759 btrfs_add_ordered_operation(trans, root, inode);
7760
7761 /*
7762 * So if we truncate and then write and fsync we normally would just
7763 * write the extents that changed, which is a problem if we need to
7764 * first truncate that entire inode. So set this flag so we write out
7765 * all of the extents in the inode to the sync log so we're completely
7766 * safe.
7767 */
7768 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7769 trans->block_rsv = rsv;
7770
7771 while (1) {
7772 ret = btrfs_truncate_inode_items(trans, root, inode,
7773 inode->i_size,
7774 BTRFS_EXTENT_DATA_KEY);
7775 if (ret != -ENOSPC) {
7776 err = ret;
7777 break;
7778 }
7779
7780 trans->block_rsv = &root->fs_info->trans_block_rsv;
7781 ret = btrfs_update_inode(trans, root, inode);
7782 if (ret) {
7783 err = ret;
7784 break;
7785 }
7786
7787 btrfs_end_transaction(trans, root);
7788 btrfs_btree_balance_dirty(root);
7789
7790 trans = btrfs_start_transaction(root, 2);
7791 if (IS_ERR(trans)) {
7792 ret = err = PTR_ERR(trans);
7793 trans = NULL;
7794 break;
7795 }
7796
7797 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7798 rsv, min_size);
7799 BUG_ON(ret); /* shouldn't happen */
7800 trans->block_rsv = rsv;
7801 }
7802
7803 if (ret == 0 && inode->i_nlink > 0) {
7804 trans->block_rsv = root->orphan_block_rsv;
7805 ret = btrfs_orphan_del(trans, inode);
7806 if (ret)
7807 err = ret;
7808 }
7809
7810 if (trans) {
7811 trans->block_rsv = &root->fs_info->trans_block_rsv;
7812 ret = btrfs_update_inode(trans, root, inode);
7813 if (ret && !err)
7814 err = ret;
7815
7816 ret = btrfs_end_transaction(trans, root);
7817 btrfs_btree_balance_dirty(root);
7818 }
7819
7820 out:
7821 btrfs_free_block_rsv(root, rsv);
7822
7823 if (ret && !err)
7824 err = ret;
7825
7826 return err;
7827 }
7828
7829 /*
7830 * create a new subvolume directory/inode (helper for the ioctl).
7831 */
7832 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7833 struct btrfs_root *new_root, u64 new_dirid)
7834 {
7835 struct inode *inode;
7836 int err;
7837 u64 index = 0;
7838
7839 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7840 new_dirid, new_dirid,
7841 S_IFDIR | (~current_umask() & S_IRWXUGO),
7842 &index);
7843 if (IS_ERR(inode))
7844 return PTR_ERR(inode);
7845 inode->i_op = &btrfs_dir_inode_operations;
7846 inode->i_fop = &btrfs_dir_file_operations;
7847
7848 set_nlink(inode, 1);
7849 btrfs_i_size_write(inode, 0);
7850
7851 err = btrfs_update_inode(trans, new_root, inode);
7852
7853 iput(inode);
7854 return err;
7855 }
7856
7857 struct inode *btrfs_alloc_inode(struct super_block *sb)
7858 {
7859 struct btrfs_inode *ei;
7860 struct inode *inode;
7861
7862 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7863 if (!ei)
7864 return NULL;
7865
7866 ei->root = NULL;
7867 ei->generation = 0;
7868 ei->last_trans = 0;
7869 ei->last_sub_trans = 0;
7870 ei->logged_trans = 0;
7871 ei->delalloc_bytes = 0;
7872 ei->disk_i_size = 0;
7873 ei->flags = 0;
7874 ei->csum_bytes = 0;
7875 ei->index_cnt = (u64)-1;
7876 ei->last_unlink_trans = 0;
7877 ei->last_log_commit = 0;
7878
7879 spin_lock_init(&ei->lock);
7880 ei->outstanding_extents = 0;
7881 ei->reserved_extents = 0;
7882
7883 ei->runtime_flags = 0;
7884 ei->force_compress = BTRFS_COMPRESS_NONE;
7885
7886 ei->delayed_node = NULL;
7887
7888 inode = &ei->vfs_inode;
7889 extent_map_tree_init(&ei->extent_tree);
7890 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7891 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7892 ei->io_tree.track_uptodate = 1;
7893 ei->io_failure_tree.track_uptodate = 1;
7894 atomic_set(&ei->sync_writers, 0);
7895 mutex_init(&ei->log_mutex);
7896 mutex_init(&ei->delalloc_mutex);
7897 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7898 INIT_LIST_HEAD(&ei->delalloc_inodes);
7899 INIT_LIST_HEAD(&ei->ordered_operations);
7900 RB_CLEAR_NODE(&ei->rb_node);
7901
7902 return inode;
7903 }
7904
7905 static void btrfs_i_callback(struct rcu_head *head)
7906 {
7907 struct inode *inode = container_of(head, struct inode, i_rcu);
7908 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7909 }
7910
7911 void btrfs_destroy_inode(struct inode *inode)
7912 {
7913 struct btrfs_ordered_extent *ordered;
7914 struct btrfs_root *root = BTRFS_I(inode)->root;
7915
7916 WARN_ON(!hlist_empty(&inode->i_dentry));
7917 WARN_ON(inode->i_data.nrpages);
7918 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7919 WARN_ON(BTRFS_I(inode)->reserved_extents);
7920 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7921 WARN_ON(BTRFS_I(inode)->csum_bytes);
7922
7923 /*
7924 * This can happen where we create an inode, but somebody else also
7925 * created the same inode and we need to destroy the one we already
7926 * created.
7927 */
7928 if (!root)
7929 goto free;
7930
7931 /*
7932 * Make sure we're properly removed from the ordered operation
7933 * lists.
7934 */
7935 smp_mb();
7936 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7937 spin_lock(&root->fs_info->ordered_extent_lock);
7938 list_del_init(&BTRFS_I(inode)->ordered_operations);
7939 spin_unlock(&root->fs_info->ordered_extent_lock);
7940 }
7941
7942 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7943 &BTRFS_I(inode)->runtime_flags)) {
7944 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7945 (unsigned long long)btrfs_ino(inode));
7946 atomic_dec(&root->orphan_inodes);
7947 }
7948
7949 while (1) {
7950 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7951 if (!ordered)
7952 break;
7953 else {
7954 printk(KERN_ERR "btrfs found ordered "
7955 "extent %llu %llu on inode cleanup\n",
7956 (unsigned long long)ordered->file_offset,
7957 (unsigned long long)ordered->len);
7958 btrfs_remove_ordered_extent(inode, ordered);
7959 btrfs_put_ordered_extent(ordered);
7960 btrfs_put_ordered_extent(ordered);
7961 }
7962 }
7963 inode_tree_del(inode);
7964 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7965 free:
7966 btrfs_remove_delayed_node(inode);
7967 call_rcu(&inode->i_rcu, btrfs_i_callback);
7968 }
7969
7970 int btrfs_drop_inode(struct inode *inode)
7971 {
7972 struct btrfs_root *root = BTRFS_I(inode)->root;
7973
7974 /* the snap/subvol tree is on deleting */
7975 if (btrfs_root_refs(&root->root_item) == 0 &&
7976 root != root->fs_info->tree_root)
7977 return 1;
7978 else
7979 return generic_drop_inode(inode);
7980 }
7981
7982 static void init_once(void *foo)
7983 {
7984 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7985
7986 inode_init_once(&ei->vfs_inode);
7987 }
7988
7989 void btrfs_destroy_cachep(void)
7990 {
7991 /*
7992 * Make sure all delayed rcu free inodes are flushed before we
7993 * destroy cache.
7994 */
7995 rcu_barrier();
7996 if (btrfs_inode_cachep)
7997 kmem_cache_destroy(btrfs_inode_cachep);
7998 if (btrfs_trans_handle_cachep)
7999 kmem_cache_destroy(btrfs_trans_handle_cachep);
8000 if (btrfs_transaction_cachep)
8001 kmem_cache_destroy(btrfs_transaction_cachep);
8002 if (btrfs_path_cachep)
8003 kmem_cache_destroy(btrfs_path_cachep);
8004 if (btrfs_free_space_cachep)
8005 kmem_cache_destroy(btrfs_free_space_cachep);
8006 if (btrfs_delalloc_work_cachep)
8007 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8008 }
8009
8010 int btrfs_init_cachep(void)
8011 {
8012 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8013 sizeof(struct btrfs_inode), 0,
8014 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8015 if (!btrfs_inode_cachep)
8016 goto fail;
8017
8018 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8019 sizeof(struct btrfs_trans_handle), 0,
8020 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8021 if (!btrfs_trans_handle_cachep)
8022 goto fail;
8023
8024 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8025 sizeof(struct btrfs_transaction), 0,
8026 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8027 if (!btrfs_transaction_cachep)
8028 goto fail;
8029
8030 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8031 sizeof(struct btrfs_path), 0,
8032 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8033 if (!btrfs_path_cachep)
8034 goto fail;
8035
8036 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8037 sizeof(struct btrfs_free_space), 0,
8038 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8039 if (!btrfs_free_space_cachep)
8040 goto fail;
8041
8042 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8043 sizeof(struct btrfs_delalloc_work), 0,
8044 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8045 NULL);
8046 if (!btrfs_delalloc_work_cachep)
8047 goto fail;
8048
8049 return 0;
8050 fail:
8051 btrfs_destroy_cachep();
8052 return -ENOMEM;
8053 }
8054
8055 static int btrfs_getattr(struct vfsmount *mnt,
8056 struct dentry *dentry, struct kstat *stat)
8057 {
8058 u64 delalloc_bytes;
8059 struct inode *inode = dentry->d_inode;
8060 u32 blocksize = inode->i_sb->s_blocksize;
8061
8062 generic_fillattr(inode, stat);
8063 stat->dev = BTRFS_I(inode)->root->anon_dev;
8064 stat->blksize = PAGE_CACHE_SIZE;
8065
8066 spin_lock(&BTRFS_I(inode)->lock);
8067 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8068 spin_unlock(&BTRFS_I(inode)->lock);
8069 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8070 ALIGN(delalloc_bytes, blocksize)) >> 9;
8071 return 0;
8072 }
8073
8074 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8075 struct inode *new_dir, struct dentry *new_dentry)
8076 {
8077 struct btrfs_trans_handle *trans;
8078 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8079 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8080 struct inode *new_inode = new_dentry->d_inode;
8081 struct inode *old_inode = old_dentry->d_inode;
8082 struct timespec ctime = CURRENT_TIME;
8083 u64 index = 0;
8084 u64 root_objectid;
8085 int ret;
8086 u64 old_ino = btrfs_ino(old_inode);
8087
8088 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8089 return -EPERM;
8090
8091 /* we only allow rename subvolume link between subvolumes */
8092 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8093 return -EXDEV;
8094
8095 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8096 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8097 return -ENOTEMPTY;
8098
8099 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8100 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8101 return -ENOTEMPTY;
8102
8103
8104 /* check for collisions, even if the name isn't there */
8105 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8106 new_dentry->d_name.name,
8107 new_dentry->d_name.len);
8108
8109 if (ret) {
8110 if (ret == -EEXIST) {
8111 /* we shouldn't get
8112 * eexist without a new_inode */
8113 if (!new_inode) {
8114 WARN_ON(1);
8115 return ret;
8116 }
8117 } else {
8118 /* maybe -EOVERFLOW */
8119 return ret;
8120 }
8121 }
8122 ret = 0;
8123
8124 /*
8125 * we're using rename to replace one file with another.
8126 * and the replacement file is large. Start IO on it now so
8127 * we don't add too much work to the end of the transaction
8128 */
8129 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8130 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8131 filemap_flush(old_inode->i_mapping);
8132
8133 /* close the racy window with snapshot create/destroy ioctl */
8134 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8135 down_read(&root->fs_info->subvol_sem);
8136 /*
8137 * We want to reserve the absolute worst case amount of items. So if
8138 * both inodes are subvols and we need to unlink them then that would
8139 * require 4 item modifications, but if they are both normal inodes it
8140 * would require 5 item modifications, so we'll assume their normal
8141 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8142 * should cover the worst case number of items we'll modify.
8143 */
8144 trans = btrfs_start_transaction(root, 11);
8145 if (IS_ERR(trans)) {
8146 ret = PTR_ERR(trans);
8147 goto out_notrans;
8148 }
8149
8150 if (dest != root)
8151 btrfs_record_root_in_trans(trans, dest);
8152
8153 ret = btrfs_set_inode_index(new_dir, &index);
8154 if (ret)
8155 goto out_fail;
8156
8157 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8158 /* force full log commit if subvolume involved. */
8159 root->fs_info->last_trans_log_full_commit = trans->transid;
8160 } else {
8161 ret = btrfs_insert_inode_ref(trans, dest,
8162 new_dentry->d_name.name,
8163 new_dentry->d_name.len,
8164 old_ino,
8165 btrfs_ino(new_dir), index);
8166 if (ret)
8167 goto out_fail;
8168 /*
8169 * this is an ugly little race, but the rename is required
8170 * to make sure that if we crash, the inode is either at the
8171 * old name or the new one. pinning the log transaction lets
8172 * us make sure we don't allow a log commit to come in after
8173 * we unlink the name but before we add the new name back in.
8174 */
8175 btrfs_pin_log_trans(root);
8176 }
8177 /*
8178 * make sure the inode gets flushed if it is replacing
8179 * something.
8180 */
8181 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8182 btrfs_add_ordered_operation(trans, root, old_inode);
8183
8184 inode_inc_iversion(old_dir);
8185 inode_inc_iversion(new_dir);
8186 inode_inc_iversion(old_inode);
8187 old_dir->i_ctime = old_dir->i_mtime = ctime;
8188 new_dir->i_ctime = new_dir->i_mtime = ctime;
8189 old_inode->i_ctime = ctime;
8190
8191 if (old_dentry->d_parent != new_dentry->d_parent)
8192 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8193
8194 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8195 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8196 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8197 old_dentry->d_name.name,
8198 old_dentry->d_name.len);
8199 } else {
8200 ret = __btrfs_unlink_inode(trans, root, old_dir,
8201 old_dentry->d_inode,
8202 old_dentry->d_name.name,
8203 old_dentry->d_name.len);
8204 if (!ret)
8205 ret = btrfs_update_inode(trans, root, old_inode);
8206 }
8207 if (ret) {
8208 btrfs_abort_transaction(trans, root, ret);
8209 goto out_fail;
8210 }
8211
8212 if (new_inode) {
8213 inode_inc_iversion(new_inode);
8214 new_inode->i_ctime = CURRENT_TIME;
8215 if (unlikely(btrfs_ino(new_inode) ==
8216 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8217 root_objectid = BTRFS_I(new_inode)->location.objectid;
8218 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8219 root_objectid,
8220 new_dentry->d_name.name,
8221 new_dentry->d_name.len);
8222 BUG_ON(new_inode->i_nlink == 0);
8223 } else {
8224 ret = btrfs_unlink_inode(trans, dest, new_dir,
8225 new_dentry->d_inode,
8226 new_dentry->d_name.name,
8227 new_dentry->d_name.len);
8228 }
8229 if (!ret && new_inode->i_nlink == 0) {
8230 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8231 BUG_ON(ret);
8232 }
8233 if (ret) {
8234 btrfs_abort_transaction(trans, root, ret);
8235 goto out_fail;
8236 }
8237 }
8238
8239 ret = btrfs_add_link(trans, new_dir, old_inode,
8240 new_dentry->d_name.name,
8241 new_dentry->d_name.len, 0, index);
8242 if (ret) {
8243 btrfs_abort_transaction(trans, root, ret);
8244 goto out_fail;
8245 }
8246
8247 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8248 struct dentry *parent = new_dentry->d_parent;
8249 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8250 btrfs_end_log_trans(root);
8251 }
8252 out_fail:
8253 btrfs_end_transaction(trans, root);
8254 out_notrans:
8255 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8256 up_read(&root->fs_info->subvol_sem);
8257
8258 return ret;
8259 }
8260
8261 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8262 {
8263 struct btrfs_delalloc_work *delalloc_work;
8264
8265 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8266 work);
8267 if (delalloc_work->wait)
8268 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8269 else
8270 filemap_flush(delalloc_work->inode->i_mapping);
8271
8272 if (delalloc_work->delay_iput)
8273 btrfs_add_delayed_iput(delalloc_work->inode);
8274 else
8275 iput(delalloc_work->inode);
8276 complete(&delalloc_work->completion);
8277 }
8278
8279 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8280 int wait, int delay_iput)
8281 {
8282 struct btrfs_delalloc_work *work;
8283
8284 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8285 if (!work)
8286 return NULL;
8287
8288 init_completion(&work->completion);
8289 INIT_LIST_HEAD(&work->list);
8290 work->inode = inode;
8291 work->wait = wait;
8292 work->delay_iput = delay_iput;
8293 work->work.func = btrfs_run_delalloc_work;
8294
8295 return work;
8296 }
8297
8298 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8299 {
8300 wait_for_completion(&work->completion);
8301 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8302 }
8303
8304 /*
8305 * some fairly slow code that needs optimization. This walks the list
8306 * of all the inodes with pending delalloc and forces them to disk.
8307 */
8308 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8309 {
8310 struct btrfs_inode *binode;
8311 struct inode *inode;
8312 struct btrfs_delalloc_work *work, *next;
8313 struct list_head works;
8314 struct list_head splice;
8315 int ret = 0;
8316
8317 if (root->fs_info->sb->s_flags & MS_RDONLY)
8318 return -EROFS;
8319
8320 INIT_LIST_HEAD(&works);
8321 INIT_LIST_HEAD(&splice);
8322
8323 spin_lock(&root->fs_info->delalloc_lock);
8324 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
8325 while (!list_empty(&splice)) {
8326 binode = list_entry(splice.next, struct btrfs_inode,
8327 delalloc_inodes);
8328
8329 list_del_init(&binode->delalloc_inodes);
8330
8331 inode = igrab(&binode->vfs_inode);
8332 if (!inode) {
8333 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
8334 &binode->runtime_flags);
8335 continue;
8336 }
8337
8338 list_add_tail(&binode->delalloc_inodes,
8339 &root->fs_info->delalloc_inodes);
8340 spin_unlock(&root->fs_info->delalloc_lock);
8341
8342 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8343 if (unlikely(!work)) {
8344 ret = -ENOMEM;
8345 goto out;
8346 }
8347 list_add_tail(&work->list, &works);
8348 btrfs_queue_worker(&root->fs_info->flush_workers,
8349 &work->work);
8350
8351 cond_resched();
8352 spin_lock(&root->fs_info->delalloc_lock);
8353 }
8354 spin_unlock(&root->fs_info->delalloc_lock);
8355
8356 list_for_each_entry_safe(work, next, &works, list) {
8357 list_del_init(&work->list);
8358 btrfs_wait_and_free_delalloc_work(work);
8359 }
8360
8361 /* the filemap_flush will queue IO into the worker threads, but
8362 * we have to make sure the IO is actually started and that
8363 * ordered extents get created before we return
8364 */
8365 atomic_inc(&root->fs_info->async_submit_draining);
8366 while (atomic_read(&root->fs_info->nr_async_submits) ||
8367 atomic_read(&root->fs_info->async_delalloc_pages)) {
8368 wait_event(root->fs_info->async_submit_wait,
8369 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8370 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8371 }
8372 atomic_dec(&root->fs_info->async_submit_draining);
8373 return 0;
8374 out:
8375 list_for_each_entry_safe(work, next, &works, list) {
8376 list_del_init(&work->list);
8377 btrfs_wait_and_free_delalloc_work(work);
8378 }
8379
8380 if (!list_empty_careful(&splice)) {
8381 spin_lock(&root->fs_info->delalloc_lock);
8382 list_splice_tail(&splice, &root->fs_info->delalloc_inodes);
8383 spin_unlock(&root->fs_info->delalloc_lock);
8384 }
8385 return ret;
8386 }
8387
8388 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8389 const char *symname)
8390 {
8391 struct btrfs_trans_handle *trans;
8392 struct btrfs_root *root = BTRFS_I(dir)->root;
8393 struct btrfs_path *path;
8394 struct btrfs_key key;
8395 struct inode *inode = NULL;
8396 int err;
8397 int drop_inode = 0;
8398 u64 objectid;
8399 u64 index = 0 ;
8400 int name_len;
8401 int datasize;
8402 unsigned long ptr;
8403 struct btrfs_file_extent_item *ei;
8404 struct extent_buffer *leaf;
8405
8406 name_len = strlen(symname) + 1;
8407 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8408 return -ENAMETOOLONG;
8409
8410 /*
8411 * 2 items for inode item and ref
8412 * 2 items for dir items
8413 * 1 item for xattr if selinux is on
8414 */
8415 trans = btrfs_start_transaction(root, 5);
8416 if (IS_ERR(trans))
8417 return PTR_ERR(trans);
8418
8419 err = btrfs_find_free_ino(root, &objectid);
8420 if (err)
8421 goto out_unlock;
8422
8423 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8424 dentry->d_name.len, btrfs_ino(dir), objectid,
8425 S_IFLNK|S_IRWXUGO, &index);
8426 if (IS_ERR(inode)) {
8427 err = PTR_ERR(inode);
8428 goto out_unlock;
8429 }
8430
8431 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8432 if (err) {
8433 drop_inode = 1;
8434 goto out_unlock;
8435 }
8436
8437 /*
8438 * If the active LSM wants to access the inode during
8439 * d_instantiate it needs these. Smack checks to see
8440 * if the filesystem supports xattrs by looking at the
8441 * ops vector.
8442 */
8443 inode->i_fop = &btrfs_file_operations;
8444 inode->i_op = &btrfs_file_inode_operations;
8445
8446 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8447 if (err)
8448 drop_inode = 1;
8449 else {
8450 inode->i_mapping->a_ops = &btrfs_aops;
8451 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8452 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8453 }
8454 if (drop_inode)
8455 goto out_unlock;
8456
8457 path = btrfs_alloc_path();
8458 if (!path) {
8459 err = -ENOMEM;
8460 drop_inode = 1;
8461 goto out_unlock;
8462 }
8463 key.objectid = btrfs_ino(inode);
8464 key.offset = 0;
8465 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8466 datasize = btrfs_file_extent_calc_inline_size(name_len);
8467 err = btrfs_insert_empty_item(trans, root, path, &key,
8468 datasize);
8469 if (err) {
8470 drop_inode = 1;
8471 btrfs_free_path(path);
8472 goto out_unlock;
8473 }
8474 leaf = path->nodes[0];
8475 ei = btrfs_item_ptr(leaf, path->slots[0],
8476 struct btrfs_file_extent_item);
8477 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8478 btrfs_set_file_extent_type(leaf, ei,
8479 BTRFS_FILE_EXTENT_INLINE);
8480 btrfs_set_file_extent_encryption(leaf, ei, 0);
8481 btrfs_set_file_extent_compression(leaf, ei, 0);
8482 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8483 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8484
8485 ptr = btrfs_file_extent_inline_start(ei);
8486 write_extent_buffer(leaf, symname, ptr, name_len);
8487 btrfs_mark_buffer_dirty(leaf);
8488 btrfs_free_path(path);
8489
8490 inode->i_op = &btrfs_symlink_inode_operations;
8491 inode->i_mapping->a_ops = &btrfs_symlink_aops;
8492 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8493 inode_set_bytes(inode, name_len);
8494 btrfs_i_size_write(inode, name_len - 1);
8495 err = btrfs_update_inode(trans, root, inode);
8496 if (err)
8497 drop_inode = 1;
8498
8499 out_unlock:
8500 if (!err)
8501 d_instantiate(dentry, inode);
8502 btrfs_end_transaction(trans, root);
8503 if (drop_inode) {
8504 inode_dec_link_count(inode);
8505 iput(inode);
8506 }
8507 btrfs_btree_balance_dirty(root);
8508 return err;
8509 }
8510
8511 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8512 u64 start, u64 num_bytes, u64 min_size,
8513 loff_t actual_len, u64 *alloc_hint,
8514 struct btrfs_trans_handle *trans)
8515 {
8516 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8517 struct extent_map *em;
8518 struct btrfs_root *root = BTRFS_I(inode)->root;
8519 struct btrfs_key ins;
8520 u64 cur_offset = start;
8521 u64 i_size;
8522 u64 cur_bytes;
8523 int ret = 0;
8524 bool own_trans = true;
8525
8526 if (trans)
8527 own_trans = false;
8528 while (num_bytes > 0) {
8529 if (own_trans) {
8530 trans = btrfs_start_transaction(root, 3);
8531 if (IS_ERR(trans)) {
8532 ret = PTR_ERR(trans);
8533 break;
8534 }
8535 }
8536
8537 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8538 cur_bytes = max(cur_bytes, min_size);
8539 ret = btrfs_reserve_extent(trans, root, cur_bytes,
8540 min_size, 0, *alloc_hint, &ins, 1);
8541 if (ret) {
8542 if (own_trans)
8543 btrfs_end_transaction(trans, root);
8544 break;
8545 }
8546
8547 ret = insert_reserved_file_extent(trans, inode,
8548 cur_offset, ins.objectid,
8549 ins.offset, ins.offset,
8550 ins.offset, 0, 0, 0,
8551 BTRFS_FILE_EXTENT_PREALLOC);
8552 if (ret) {
8553 btrfs_abort_transaction(trans, root, ret);
8554 if (own_trans)
8555 btrfs_end_transaction(trans, root);
8556 break;
8557 }
8558 btrfs_drop_extent_cache(inode, cur_offset,
8559 cur_offset + ins.offset -1, 0);
8560
8561 em = alloc_extent_map();
8562 if (!em) {
8563 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8564 &BTRFS_I(inode)->runtime_flags);
8565 goto next;
8566 }
8567
8568 em->start = cur_offset;
8569 em->orig_start = cur_offset;
8570 em->len = ins.offset;
8571 em->block_start = ins.objectid;
8572 em->block_len = ins.offset;
8573 em->orig_block_len = ins.offset;
8574 em->bdev = root->fs_info->fs_devices->latest_bdev;
8575 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8576 em->generation = trans->transid;
8577
8578 while (1) {
8579 write_lock(&em_tree->lock);
8580 ret = add_extent_mapping(em_tree, em);
8581 if (!ret)
8582 list_move(&em->list,
8583 &em_tree->modified_extents);
8584 write_unlock(&em_tree->lock);
8585 if (ret != -EEXIST)
8586 break;
8587 btrfs_drop_extent_cache(inode, cur_offset,
8588 cur_offset + ins.offset - 1,
8589 0);
8590 }
8591 free_extent_map(em);
8592 next:
8593 num_bytes -= ins.offset;
8594 cur_offset += ins.offset;
8595 *alloc_hint = ins.objectid + ins.offset;
8596
8597 inode_inc_iversion(inode);
8598 inode->i_ctime = CURRENT_TIME;
8599 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8600 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8601 (actual_len > inode->i_size) &&
8602 (cur_offset > inode->i_size)) {
8603 if (cur_offset > actual_len)
8604 i_size = actual_len;
8605 else
8606 i_size = cur_offset;
8607 i_size_write(inode, i_size);
8608 btrfs_ordered_update_i_size(inode, i_size, NULL);
8609 }
8610
8611 ret = btrfs_update_inode(trans, root, inode);
8612
8613 if (ret) {
8614 btrfs_abort_transaction(trans, root, ret);
8615 if (own_trans)
8616 btrfs_end_transaction(trans, root);
8617 break;
8618 }
8619
8620 if (own_trans)
8621 btrfs_end_transaction(trans, root);
8622 }
8623 return ret;
8624 }
8625
8626 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8627 u64 start, u64 num_bytes, u64 min_size,
8628 loff_t actual_len, u64 *alloc_hint)
8629 {
8630 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8631 min_size, actual_len, alloc_hint,
8632 NULL);
8633 }
8634
8635 int btrfs_prealloc_file_range_trans(struct inode *inode,
8636 struct btrfs_trans_handle *trans, int mode,
8637 u64 start, u64 num_bytes, u64 min_size,
8638 loff_t actual_len, u64 *alloc_hint)
8639 {
8640 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8641 min_size, actual_len, alloc_hint, trans);
8642 }
8643
8644 static int btrfs_set_page_dirty(struct page *page)
8645 {
8646 return __set_page_dirty_nobuffers(page);
8647 }
8648
8649 static int btrfs_permission(struct inode *inode, int mask)
8650 {
8651 struct btrfs_root *root = BTRFS_I(inode)->root;
8652 umode_t mode = inode->i_mode;
8653
8654 if (mask & MAY_WRITE &&
8655 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8656 if (btrfs_root_readonly(root))
8657 return -EROFS;
8658 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8659 return -EACCES;
8660 }
8661 return generic_permission(inode, mask);
8662 }
8663
8664 static const struct inode_operations btrfs_dir_inode_operations = {
8665 .getattr = btrfs_getattr,
8666 .lookup = btrfs_lookup,
8667 .create = btrfs_create,
8668 .unlink = btrfs_unlink,
8669 .link = btrfs_link,
8670 .mkdir = btrfs_mkdir,
8671 .rmdir = btrfs_rmdir,
8672 .rename = btrfs_rename,
8673 .symlink = btrfs_symlink,
8674 .setattr = btrfs_setattr,
8675 .mknod = btrfs_mknod,
8676 .setxattr = btrfs_setxattr,
8677 .getxattr = btrfs_getxattr,
8678 .listxattr = btrfs_listxattr,
8679 .removexattr = btrfs_removexattr,
8680 .permission = btrfs_permission,
8681 .get_acl = btrfs_get_acl,
8682 };
8683 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8684 .lookup = btrfs_lookup,
8685 .permission = btrfs_permission,
8686 .get_acl = btrfs_get_acl,
8687 };
8688
8689 static const struct file_operations btrfs_dir_file_operations = {
8690 .llseek = generic_file_llseek,
8691 .read = generic_read_dir,
8692 .readdir = btrfs_real_readdir,
8693 .unlocked_ioctl = btrfs_ioctl,
8694 #ifdef CONFIG_COMPAT
8695 .compat_ioctl = btrfs_ioctl,
8696 #endif
8697 .release = btrfs_release_file,
8698 .fsync = btrfs_sync_file,
8699 };
8700
8701 static struct extent_io_ops btrfs_extent_io_ops = {
8702 .fill_delalloc = run_delalloc_range,
8703 .submit_bio_hook = btrfs_submit_bio_hook,
8704 .merge_bio_hook = btrfs_merge_bio_hook,
8705 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8706 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8707 .writepage_start_hook = btrfs_writepage_start_hook,
8708 .set_bit_hook = btrfs_set_bit_hook,
8709 .clear_bit_hook = btrfs_clear_bit_hook,
8710 .merge_extent_hook = btrfs_merge_extent_hook,
8711 .split_extent_hook = btrfs_split_extent_hook,
8712 };
8713
8714 /*
8715 * btrfs doesn't support the bmap operation because swapfiles
8716 * use bmap to make a mapping of extents in the file. They assume
8717 * these extents won't change over the life of the file and they
8718 * use the bmap result to do IO directly to the drive.
8719 *
8720 * the btrfs bmap call would return logical addresses that aren't
8721 * suitable for IO and they also will change frequently as COW
8722 * operations happen. So, swapfile + btrfs == corruption.
8723 *
8724 * For now we're avoiding this by dropping bmap.
8725 */
8726 static const struct address_space_operations btrfs_aops = {
8727 .readpage = btrfs_readpage,
8728 .writepage = btrfs_writepage,
8729 .writepages = btrfs_writepages,
8730 .readpages = btrfs_readpages,
8731 .direct_IO = btrfs_direct_IO,
8732 .invalidatepage = btrfs_invalidatepage,
8733 .releasepage = btrfs_releasepage,
8734 .set_page_dirty = btrfs_set_page_dirty,
8735 .error_remove_page = generic_error_remove_page,
8736 };
8737
8738 static const struct address_space_operations btrfs_symlink_aops = {
8739 .readpage = btrfs_readpage,
8740 .writepage = btrfs_writepage,
8741 .invalidatepage = btrfs_invalidatepage,
8742 .releasepage = btrfs_releasepage,
8743 };
8744
8745 static const struct inode_operations btrfs_file_inode_operations = {
8746 .getattr = btrfs_getattr,
8747 .setattr = btrfs_setattr,
8748 .setxattr = btrfs_setxattr,
8749 .getxattr = btrfs_getxattr,
8750 .listxattr = btrfs_listxattr,
8751 .removexattr = btrfs_removexattr,
8752 .permission = btrfs_permission,
8753 .fiemap = btrfs_fiemap,
8754 .get_acl = btrfs_get_acl,
8755 .update_time = btrfs_update_time,
8756 };
8757 static const struct inode_operations btrfs_special_inode_operations = {
8758 .getattr = btrfs_getattr,
8759 .setattr = btrfs_setattr,
8760 .permission = btrfs_permission,
8761 .setxattr = btrfs_setxattr,
8762 .getxattr = btrfs_getxattr,
8763 .listxattr = btrfs_listxattr,
8764 .removexattr = btrfs_removexattr,
8765 .get_acl = btrfs_get_acl,
8766 .update_time = btrfs_update_time,
8767 };
8768 static const struct inode_operations btrfs_symlink_inode_operations = {
8769 .readlink = generic_readlink,
8770 .follow_link = page_follow_link_light,
8771 .put_link = page_put_link,
8772 .getattr = btrfs_getattr,
8773 .setattr = btrfs_setattr,
8774 .permission = btrfs_permission,
8775 .setxattr = btrfs_setxattr,
8776 .getxattr = btrfs_getxattr,
8777 .listxattr = btrfs_listxattr,
8778 .removexattr = btrfs_removexattr,
8779 .get_acl = btrfs_get_acl,
8780 .update_time = btrfs_update_time,
8781 };
8782
8783 const struct dentry_operations btrfs_dentry_operations = {
8784 .d_delete = btrfs_dentry_delete,
8785 .d_release = btrfs_dentry_release,
8786 };