Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50 struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72 {
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
96 {
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
101 int ret;
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
110 p = &parent->rb_left;
111 else if (ret > 0)
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
122 return -EEXIST;
123 }
124 }
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
138
139 return 1;
140 }
141
142 /*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148 {
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
151 u64 transid;
152 int ret;
153
154 if (!__need_auto_defrag(root))
155 return 0;
156
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 if (!defrag)
167 return -ENOMEM;
168
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 }
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
187 return 0;
188 }
189
190 /*
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194 */
195 void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
197 {
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214 out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
221 */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
233
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
242 p = parent->rb_left;
243 else if (ret > 0)
244 p = parent->rb_right;
245 else
246 goto out;
247 }
248
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
253 else
254 entry = NULL;
255 }
256 out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265 struct inode_defrag *defrag;
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH 1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290 {
291 struct btrfs_root *inode_root;
292 struct inode *inode;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
295 int num_defrag;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
300 key.offset = (u64)-1;
301 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
302 if (IS_ERR(inode_root)) {
303 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
304 return PTR_ERR(inode_root);
305 }
306
307 key.objectid = defrag->ino;
308 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
309 key.offset = 0;
310 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
311 if (IS_ERR(inode)) {
312 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
313 return PTR_ERR(inode);
314 }
315
316 /* do a chunk of defrag */
317 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
318 memset(&range, 0, sizeof(range));
319 range.len = (u64)-1;
320 range.start = defrag->last_offset;
321
322 sb_start_write(fs_info->sb);
323 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
324 BTRFS_DEFRAG_BATCH);
325 sb_end_write(fs_info->sb);
326 /*
327 * if we filled the whole defrag batch, there
328 * must be more work to do. Queue this defrag
329 * again
330 */
331 if (num_defrag == BTRFS_DEFRAG_BATCH) {
332 defrag->last_offset = range.start;
333 btrfs_requeue_inode_defrag(inode, defrag);
334 } else if (defrag->last_offset && !defrag->cycled) {
335 /*
336 * we didn't fill our defrag batch, but
337 * we didn't start at zero. Make sure we loop
338 * around to the start of the file.
339 */
340 defrag->last_offset = 0;
341 defrag->cycled = 1;
342 btrfs_requeue_inode_defrag(inode, defrag);
343 } else {
344 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
345 }
346
347 iput(inode);
348 return 0;
349 }
350
351 /*
352 * run through the list of inodes in the FS that need
353 * defragging
354 */
355 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
356 {
357 struct inode_defrag *defrag;
358 u64 first_ino = 0;
359 u64 root_objectid = 0;
360
361 atomic_inc(&fs_info->defrag_running);
362 while(1) {
363 if (!__need_auto_defrag(fs_info->tree_root))
364 break;
365
366 /* find an inode to defrag */
367 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
368 first_ino);
369 if (!defrag) {
370 if (root_objectid || first_ino) {
371 root_objectid = 0;
372 first_ino = 0;
373 continue;
374 } else {
375 break;
376 }
377 }
378
379 first_ino = defrag->ino + 1;
380 root_objectid = defrag->root;
381
382 __btrfs_run_defrag_inode(fs_info, defrag);
383 }
384 atomic_dec(&fs_info->defrag_running);
385
386 /*
387 * during unmount, we use the transaction_wait queue to
388 * wait for the defragger to stop
389 */
390 wake_up(&fs_info->transaction_wait);
391 return 0;
392 }
393
394 /* simple helper to fault in pages and copy. This should go away
395 * and be replaced with calls into generic code.
396 */
397 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
398 size_t write_bytes,
399 struct page **prepared_pages,
400 struct iov_iter *i)
401 {
402 size_t copied = 0;
403 size_t total_copied = 0;
404 int pg = 0;
405 int offset = pos & (PAGE_CACHE_SIZE - 1);
406
407 while (write_bytes > 0) {
408 size_t count = min_t(size_t,
409 PAGE_CACHE_SIZE - offset, write_bytes);
410 struct page *page = prepared_pages[pg];
411 /*
412 * Copy data from userspace to the current page
413 *
414 * Disable pagefault to avoid recursive lock since
415 * the pages are already locked
416 */
417 pagefault_disable();
418 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
419 pagefault_enable();
420
421 /* Flush processor's dcache for this page */
422 flush_dcache_page(page);
423
424 /*
425 * if we get a partial write, we can end up with
426 * partially up to date pages. These add
427 * a lot of complexity, so make sure they don't
428 * happen by forcing this copy to be retried.
429 *
430 * The rest of the btrfs_file_write code will fall
431 * back to page at a time copies after we return 0.
432 */
433 if (!PageUptodate(page) && copied < count)
434 copied = 0;
435
436 iov_iter_advance(i, copied);
437 write_bytes -= copied;
438 total_copied += copied;
439
440 /* Return to btrfs_file_aio_write to fault page */
441 if (unlikely(copied == 0))
442 break;
443
444 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
445 offset += copied;
446 } else {
447 pg++;
448 offset = 0;
449 }
450 }
451 return total_copied;
452 }
453
454 /*
455 * unlocks pages after btrfs_file_write is done with them
456 */
457 void btrfs_drop_pages(struct page **pages, size_t num_pages)
458 {
459 size_t i;
460 for (i = 0; i < num_pages; i++) {
461 /* page checked is some magic around finding pages that
462 * have been modified without going through btrfs_set_page_dirty
463 * clear it here
464 */
465 ClearPageChecked(pages[i]);
466 unlock_page(pages[i]);
467 mark_page_accessed(pages[i]);
468 page_cache_release(pages[i]);
469 }
470 }
471
472 /*
473 * after copy_from_user, pages need to be dirtied and we need to make
474 * sure holes are created between the current EOF and the start of
475 * any next extents (if required).
476 *
477 * this also makes the decision about creating an inline extent vs
478 * doing real data extents, marking pages dirty and delalloc as required.
479 */
480 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
481 struct page **pages, size_t num_pages,
482 loff_t pos, size_t write_bytes,
483 struct extent_state **cached)
484 {
485 int err = 0;
486 int i;
487 u64 num_bytes;
488 u64 start_pos;
489 u64 end_of_last_block;
490 u64 end_pos = pos + write_bytes;
491 loff_t isize = i_size_read(inode);
492
493 start_pos = pos & ~((u64)root->sectorsize - 1);
494 num_bytes = (write_bytes + pos - start_pos +
495 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
496
497 end_of_last_block = start_pos + num_bytes - 1;
498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
499 cached);
500 if (err)
501 return err;
502
503 for (i = 0; i < num_pages; i++) {
504 struct page *p = pages[i];
505 SetPageUptodate(p);
506 ClearPageChecked(p);
507 set_page_dirty(p);
508 }
509
510 /*
511 * we've only changed i_size in ram, and we haven't updated
512 * the disk i_size. There is no need to log the inode
513 * at this time.
514 */
515 if (end_pos > isize)
516 i_size_write(inode, end_pos);
517 return 0;
518 }
519
520 /*
521 * this drops all the extents in the cache that intersect the range
522 * [start, end]. Existing extents are split as required.
523 */
524 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
525 int skip_pinned)
526 {
527 struct extent_map *em;
528 struct extent_map *split = NULL;
529 struct extent_map *split2 = NULL;
530 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
531 u64 len = end - start + 1;
532 u64 gen;
533 int ret;
534 int testend = 1;
535 unsigned long flags;
536 int compressed = 0;
537
538 WARN_ON(end < start);
539 if (end == (u64)-1) {
540 len = (u64)-1;
541 testend = 0;
542 }
543 while (1) {
544 int no_splits = 0;
545
546 if (!split)
547 split = alloc_extent_map();
548 if (!split2)
549 split2 = alloc_extent_map();
550 if (!split || !split2)
551 no_splits = 1;
552
553 write_lock(&em_tree->lock);
554 em = lookup_extent_mapping(em_tree, start, len);
555 if (!em) {
556 write_unlock(&em_tree->lock);
557 break;
558 }
559 flags = em->flags;
560 gen = em->generation;
561 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
562 if (testend && em->start + em->len >= start + len) {
563 free_extent_map(em);
564 write_unlock(&em_tree->lock);
565 break;
566 }
567 start = em->start + em->len;
568 if (testend)
569 len = start + len - (em->start + em->len);
570 free_extent_map(em);
571 write_unlock(&em_tree->lock);
572 continue;
573 }
574 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
575 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
576 remove_extent_mapping(em_tree, em);
577 if (no_splits)
578 goto next;
579
580 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
581 em->start < start) {
582 split->start = em->start;
583 split->len = start - em->start;
584 split->orig_start = em->orig_start;
585 split->block_start = em->block_start;
586
587 if (compressed)
588 split->block_len = em->block_len;
589 else
590 split->block_len = split->len;
591 split->orig_block_len = max(split->block_len,
592 em->orig_block_len);
593 split->generation = gen;
594 split->bdev = em->bdev;
595 split->flags = flags;
596 split->compress_type = em->compress_type;
597 ret = add_extent_mapping(em_tree, split);
598 BUG_ON(ret); /* Logic error */
599 list_move(&split->list, &em_tree->modified_extents);
600 free_extent_map(split);
601 split = split2;
602 split2 = NULL;
603 }
604 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
605 testend && em->start + em->len > start + len) {
606 u64 diff = start + len - em->start;
607
608 split->start = start + len;
609 split->len = em->start + em->len - (start + len);
610 split->bdev = em->bdev;
611 split->flags = flags;
612 split->compress_type = em->compress_type;
613 split->generation = gen;
614 split->orig_block_len = max(em->block_len,
615 em->orig_block_len);
616
617 if (compressed) {
618 split->block_len = em->block_len;
619 split->block_start = em->block_start;
620 split->orig_start = em->orig_start;
621 } else {
622 split->block_len = split->len;
623 split->block_start = em->block_start + diff;
624 split->orig_start = em->orig_start;
625 }
626
627 ret = add_extent_mapping(em_tree, split);
628 BUG_ON(ret); /* Logic error */
629 list_move(&split->list, &em_tree->modified_extents);
630 free_extent_map(split);
631 split = NULL;
632 }
633 next:
634 write_unlock(&em_tree->lock);
635
636 /* once for us */
637 free_extent_map(em);
638 /* once for the tree*/
639 free_extent_map(em);
640 }
641 if (split)
642 free_extent_map(split);
643 if (split2)
644 free_extent_map(split2);
645 }
646
647 /*
648 * this is very complex, but the basic idea is to drop all extents
649 * in the range start - end. hint_block is filled in with a block number
650 * that would be a good hint to the block allocator for this file.
651 *
652 * If an extent intersects the range but is not entirely inside the range
653 * it is either truncated or split. Anything entirely inside the range
654 * is deleted from the tree.
655 */
656 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root, struct inode *inode,
658 struct btrfs_path *path, u64 start, u64 end,
659 u64 *drop_end, int drop_cache)
660 {
661 struct extent_buffer *leaf;
662 struct btrfs_file_extent_item *fi;
663 struct btrfs_key key;
664 struct btrfs_key new_key;
665 u64 ino = btrfs_ino(inode);
666 u64 search_start = start;
667 u64 disk_bytenr = 0;
668 u64 num_bytes = 0;
669 u64 extent_offset = 0;
670 u64 extent_end = 0;
671 int del_nr = 0;
672 int del_slot = 0;
673 int extent_type;
674 int recow;
675 int ret;
676 int modify_tree = -1;
677 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
678 int found = 0;
679
680 if (drop_cache)
681 btrfs_drop_extent_cache(inode, start, end - 1, 0);
682
683 if (start >= BTRFS_I(inode)->disk_i_size)
684 modify_tree = 0;
685
686 while (1) {
687 recow = 0;
688 ret = btrfs_lookup_file_extent(trans, root, path, ino,
689 search_start, modify_tree);
690 if (ret < 0)
691 break;
692 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
693 leaf = path->nodes[0];
694 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
695 if (key.objectid == ino &&
696 key.type == BTRFS_EXTENT_DATA_KEY)
697 path->slots[0]--;
698 }
699 ret = 0;
700 next_slot:
701 leaf = path->nodes[0];
702 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
703 BUG_ON(del_nr > 0);
704 ret = btrfs_next_leaf(root, path);
705 if (ret < 0)
706 break;
707 if (ret > 0) {
708 ret = 0;
709 break;
710 }
711 leaf = path->nodes[0];
712 recow = 1;
713 }
714
715 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
716 if (key.objectid > ino ||
717 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
718 break;
719
720 fi = btrfs_item_ptr(leaf, path->slots[0],
721 struct btrfs_file_extent_item);
722 extent_type = btrfs_file_extent_type(leaf, fi);
723
724 if (extent_type == BTRFS_FILE_EXTENT_REG ||
725 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
726 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
727 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
728 extent_offset = btrfs_file_extent_offset(leaf, fi);
729 extent_end = key.offset +
730 btrfs_file_extent_num_bytes(leaf, fi);
731 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
732 extent_end = key.offset +
733 btrfs_file_extent_inline_len(leaf, fi);
734 } else {
735 WARN_ON(1);
736 extent_end = search_start;
737 }
738
739 if (extent_end <= search_start) {
740 path->slots[0]++;
741 goto next_slot;
742 }
743
744 found = 1;
745 search_start = max(key.offset, start);
746 if (recow || !modify_tree) {
747 modify_tree = -1;
748 btrfs_release_path(path);
749 continue;
750 }
751
752 /*
753 * | - range to drop - |
754 * | -------- extent -------- |
755 */
756 if (start > key.offset && end < extent_end) {
757 BUG_ON(del_nr > 0);
758 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
759
760 memcpy(&new_key, &key, sizeof(new_key));
761 new_key.offset = start;
762 ret = btrfs_duplicate_item(trans, root, path,
763 &new_key);
764 if (ret == -EAGAIN) {
765 btrfs_release_path(path);
766 continue;
767 }
768 if (ret < 0)
769 break;
770
771 leaf = path->nodes[0];
772 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
773 struct btrfs_file_extent_item);
774 btrfs_set_file_extent_num_bytes(leaf, fi,
775 start - key.offset);
776
777 fi = btrfs_item_ptr(leaf, path->slots[0],
778 struct btrfs_file_extent_item);
779
780 extent_offset += start - key.offset;
781 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
782 btrfs_set_file_extent_num_bytes(leaf, fi,
783 extent_end - start);
784 btrfs_mark_buffer_dirty(leaf);
785
786 if (update_refs && disk_bytenr > 0) {
787 ret = btrfs_inc_extent_ref(trans, root,
788 disk_bytenr, num_bytes, 0,
789 root->root_key.objectid,
790 new_key.objectid,
791 start - extent_offset, 0);
792 BUG_ON(ret); /* -ENOMEM */
793 }
794 key.offset = start;
795 }
796 /*
797 * | ---- range to drop ----- |
798 * | -------- extent -------- |
799 */
800 if (start <= key.offset && end < extent_end) {
801 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
802
803 memcpy(&new_key, &key, sizeof(new_key));
804 new_key.offset = end;
805 btrfs_set_item_key_safe(trans, root, path, &new_key);
806
807 extent_offset += end - key.offset;
808 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
809 btrfs_set_file_extent_num_bytes(leaf, fi,
810 extent_end - end);
811 btrfs_mark_buffer_dirty(leaf);
812 if (update_refs && disk_bytenr > 0)
813 inode_sub_bytes(inode, end - key.offset);
814 break;
815 }
816
817 search_start = extent_end;
818 /*
819 * | ---- range to drop ----- |
820 * | -------- extent -------- |
821 */
822 if (start > key.offset && end >= extent_end) {
823 BUG_ON(del_nr > 0);
824 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
825
826 btrfs_set_file_extent_num_bytes(leaf, fi,
827 start - key.offset);
828 btrfs_mark_buffer_dirty(leaf);
829 if (update_refs && disk_bytenr > 0)
830 inode_sub_bytes(inode, extent_end - start);
831 if (end == extent_end)
832 break;
833
834 path->slots[0]++;
835 goto next_slot;
836 }
837
838 /*
839 * | ---- range to drop ----- |
840 * | ------ extent ------ |
841 */
842 if (start <= key.offset && end >= extent_end) {
843 if (del_nr == 0) {
844 del_slot = path->slots[0];
845 del_nr = 1;
846 } else {
847 BUG_ON(del_slot + del_nr != path->slots[0]);
848 del_nr++;
849 }
850
851 if (update_refs &&
852 extent_type == BTRFS_FILE_EXTENT_INLINE) {
853 inode_sub_bytes(inode,
854 extent_end - key.offset);
855 extent_end = ALIGN(extent_end,
856 root->sectorsize);
857 } else if (update_refs && disk_bytenr > 0) {
858 ret = btrfs_free_extent(trans, root,
859 disk_bytenr, num_bytes, 0,
860 root->root_key.objectid,
861 key.objectid, key.offset -
862 extent_offset, 0);
863 BUG_ON(ret); /* -ENOMEM */
864 inode_sub_bytes(inode,
865 extent_end - key.offset);
866 }
867
868 if (end == extent_end)
869 break;
870
871 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
872 path->slots[0]++;
873 goto next_slot;
874 }
875
876 ret = btrfs_del_items(trans, root, path, del_slot,
877 del_nr);
878 if (ret) {
879 btrfs_abort_transaction(trans, root, ret);
880 break;
881 }
882
883 del_nr = 0;
884 del_slot = 0;
885
886 btrfs_release_path(path);
887 continue;
888 }
889
890 BUG_ON(1);
891 }
892
893 if (!ret && del_nr > 0) {
894 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
895 if (ret)
896 btrfs_abort_transaction(trans, root, ret);
897 }
898
899 if (drop_end)
900 *drop_end = found ? min(end, extent_end) : end;
901 btrfs_release_path(path);
902 return ret;
903 }
904
905 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
906 struct btrfs_root *root, struct inode *inode, u64 start,
907 u64 end, int drop_cache)
908 {
909 struct btrfs_path *path;
910 int ret;
911
912 path = btrfs_alloc_path();
913 if (!path)
914 return -ENOMEM;
915 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
916 drop_cache);
917 btrfs_free_path(path);
918 return ret;
919 }
920
921 static int extent_mergeable(struct extent_buffer *leaf, int slot,
922 u64 objectid, u64 bytenr, u64 orig_offset,
923 u64 *start, u64 *end)
924 {
925 struct btrfs_file_extent_item *fi;
926 struct btrfs_key key;
927 u64 extent_end;
928
929 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
930 return 0;
931
932 btrfs_item_key_to_cpu(leaf, &key, slot);
933 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
934 return 0;
935
936 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
937 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
938 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
939 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
940 btrfs_file_extent_compression(leaf, fi) ||
941 btrfs_file_extent_encryption(leaf, fi) ||
942 btrfs_file_extent_other_encoding(leaf, fi))
943 return 0;
944
945 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
946 if ((*start && *start != key.offset) || (*end && *end != extent_end))
947 return 0;
948
949 *start = key.offset;
950 *end = extent_end;
951 return 1;
952 }
953
954 /*
955 * Mark extent in the range start - end as written.
956 *
957 * This changes extent type from 'pre-allocated' to 'regular'. If only
958 * part of extent is marked as written, the extent will be split into
959 * two or three.
960 */
961 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
962 struct inode *inode, u64 start, u64 end)
963 {
964 struct btrfs_root *root = BTRFS_I(inode)->root;
965 struct extent_buffer *leaf;
966 struct btrfs_path *path;
967 struct btrfs_file_extent_item *fi;
968 struct btrfs_key key;
969 struct btrfs_key new_key;
970 u64 bytenr;
971 u64 num_bytes;
972 u64 extent_end;
973 u64 orig_offset;
974 u64 other_start;
975 u64 other_end;
976 u64 split;
977 int del_nr = 0;
978 int del_slot = 0;
979 int recow;
980 int ret;
981 u64 ino = btrfs_ino(inode);
982
983 path = btrfs_alloc_path();
984 if (!path)
985 return -ENOMEM;
986 again:
987 recow = 0;
988 split = start;
989 key.objectid = ino;
990 key.type = BTRFS_EXTENT_DATA_KEY;
991 key.offset = split;
992
993 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
994 if (ret < 0)
995 goto out;
996 if (ret > 0 && path->slots[0] > 0)
997 path->slots[0]--;
998
999 leaf = path->nodes[0];
1000 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1001 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1002 fi = btrfs_item_ptr(leaf, path->slots[0],
1003 struct btrfs_file_extent_item);
1004 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1005 BTRFS_FILE_EXTENT_PREALLOC);
1006 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1007 BUG_ON(key.offset > start || extent_end < end);
1008
1009 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1010 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1011 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1012 memcpy(&new_key, &key, sizeof(new_key));
1013
1014 if (start == key.offset && end < extent_end) {
1015 other_start = 0;
1016 other_end = start;
1017 if (extent_mergeable(leaf, path->slots[0] - 1,
1018 ino, bytenr, orig_offset,
1019 &other_start, &other_end)) {
1020 new_key.offset = end;
1021 btrfs_set_item_key_safe(trans, root, path, &new_key);
1022 fi = btrfs_item_ptr(leaf, path->slots[0],
1023 struct btrfs_file_extent_item);
1024 btrfs_set_file_extent_generation(leaf, fi,
1025 trans->transid);
1026 btrfs_set_file_extent_num_bytes(leaf, fi,
1027 extent_end - end);
1028 btrfs_set_file_extent_offset(leaf, fi,
1029 end - orig_offset);
1030 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1031 struct btrfs_file_extent_item);
1032 btrfs_set_file_extent_generation(leaf, fi,
1033 trans->transid);
1034 btrfs_set_file_extent_num_bytes(leaf, fi,
1035 end - other_start);
1036 btrfs_mark_buffer_dirty(leaf);
1037 goto out;
1038 }
1039 }
1040
1041 if (start > key.offset && end == extent_end) {
1042 other_start = end;
1043 other_end = 0;
1044 if (extent_mergeable(leaf, path->slots[0] + 1,
1045 ino, bytenr, orig_offset,
1046 &other_start, &other_end)) {
1047 fi = btrfs_item_ptr(leaf, path->slots[0],
1048 struct btrfs_file_extent_item);
1049 btrfs_set_file_extent_num_bytes(leaf, fi,
1050 start - key.offset);
1051 btrfs_set_file_extent_generation(leaf, fi,
1052 trans->transid);
1053 path->slots[0]++;
1054 new_key.offset = start;
1055 btrfs_set_item_key_safe(trans, root, path, &new_key);
1056
1057 fi = btrfs_item_ptr(leaf, path->slots[0],
1058 struct btrfs_file_extent_item);
1059 btrfs_set_file_extent_generation(leaf, fi,
1060 trans->transid);
1061 btrfs_set_file_extent_num_bytes(leaf, fi,
1062 other_end - start);
1063 btrfs_set_file_extent_offset(leaf, fi,
1064 start - orig_offset);
1065 btrfs_mark_buffer_dirty(leaf);
1066 goto out;
1067 }
1068 }
1069
1070 while (start > key.offset || end < extent_end) {
1071 if (key.offset == start)
1072 split = end;
1073
1074 new_key.offset = split;
1075 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1076 if (ret == -EAGAIN) {
1077 btrfs_release_path(path);
1078 goto again;
1079 }
1080 if (ret < 0) {
1081 btrfs_abort_transaction(trans, root, ret);
1082 goto out;
1083 }
1084
1085 leaf = path->nodes[0];
1086 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1087 struct btrfs_file_extent_item);
1088 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1089 btrfs_set_file_extent_num_bytes(leaf, fi,
1090 split - key.offset);
1091
1092 fi = btrfs_item_ptr(leaf, path->slots[0],
1093 struct btrfs_file_extent_item);
1094
1095 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1096 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1097 btrfs_set_file_extent_num_bytes(leaf, fi,
1098 extent_end - split);
1099 btrfs_mark_buffer_dirty(leaf);
1100
1101 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1102 root->root_key.objectid,
1103 ino, orig_offset, 0);
1104 BUG_ON(ret); /* -ENOMEM */
1105
1106 if (split == start) {
1107 key.offset = start;
1108 } else {
1109 BUG_ON(start != key.offset);
1110 path->slots[0]--;
1111 extent_end = end;
1112 }
1113 recow = 1;
1114 }
1115
1116 other_start = end;
1117 other_end = 0;
1118 if (extent_mergeable(leaf, path->slots[0] + 1,
1119 ino, bytenr, orig_offset,
1120 &other_start, &other_end)) {
1121 if (recow) {
1122 btrfs_release_path(path);
1123 goto again;
1124 }
1125 extent_end = other_end;
1126 del_slot = path->slots[0] + 1;
1127 del_nr++;
1128 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1129 0, root->root_key.objectid,
1130 ino, orig_offset, 0);
1131 BUG_ON(ret); /* -ENOMEM */
1132 }
1133 other_start = 0;
1134 other_end = start;
1135 if (extent_mergeable(leaf, path->slots[0] - 1,
1136 ino, bytenr, orig_offset,
1137 &other_start, &other_end)) {
1138 if (recow) {
1139 btrfs_release_path(path);
1140 goto again;
1141 }
1142 key.offset = other_start;
1143 del_slot = path->slots[0];
1144 del_nr++;
1145 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1146 0, root->root_key.objectid,
1147 ino, orig_offset, 0);
1148 BUG_ON(ret); /* -ENOMEM */
1149 }
1150 if (del_nr == 0) {
1151 fi = btrfs_item_ptr(leaf, path->slots[0],
1152 struct btrfs_file_extent_item);
1153 btrfs_set_file_extent_type(leaf, fi,
1154 BTRFS_FILE_EXTENT_REG);
1155 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1156 btrfs_mark_buffer_dirty(leaf);
1157 } else {
1158 fi = btrfs_item_ptr(leaf, del_slot - 1,
1159 struct btrfs_file_extent_item);
1160 btrfs_set_file_extent_type(leaf, fi,
1161 BTRFS_FILE_EXTENT_REG);
1162 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1163 btrfs_set_file_extent_num_bytes(leaf, fi,
1164 extent_end - key.offset);
1165 btrfs_mark_buffer_dirty(leaf);
1166
1167 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1168 if (ret < 0) {
1169 btrfs_abort_transaction(trans, root, ret);
1170 goto out;
1171 }
1172 }
1173 out:
1174 btrfs_free_path(path);
1175 return 0;
1176 }
1177
1178 /*
1179 * on error we return an unlocked page and the error value
1180 * on success we return a locked page and 0
1181 */
1182 static int prepare_uptodate_page(struct page *page, u64 pos,
1183 bool force_uptodate)
1184 {
1185 int ret = 0;
1186
1187 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1188 !PageUptodate(page)) {
1189 ret = btrfs_readpage(NULL, page);
1190 if (ret)
1191 return ret;
1192 lock_page(page);
1193 if (!PageUptodate(page)) {
1194 unlock_page(page);
1195 return -EIO;
1196 }
1197 }
1198 return 0;
1199 }
1200
1201 /*
1202 * this gets pages into the page cache and locks them down, it also properly
1203 * waits for data=ordered extents to finish before allowing the pages to be
1204 * modified.
1205 */
1206 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1207 struct page **pages, size_t num_pages,
1208 loff_t pos, unsigned long first_index,
1209 size_t write_bytes, bool force_uptodate)
1210 {
1211 struct extent_state *cached_state = NULL;
1212 int i;
1213 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1214 struct inode *inode = fdentry(file)->d_inode;
1215 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1216 int err = 0;
1217 int faili = 0;
1218 u64 start_pos;
1219 u64 last_pos;
1220
1221 start_pos = pos & ~((u64)root->sectorsize - 1);
1222 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1223
1224 again:
1225 for (i = 0; i < num_pages; i++) {
1226 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1227 mask | __GFP_WRITE);
1228 if (!pages[i]) {
1229 faili = i - 1;
1230 err = -ENOMEM;
1231 goto fail;
1232 }
1233
1234 if (i == 0)
1235 err = prepare_uptodate_page(pages[i], pos,
1236 force_uptodate);
1237 if (i == num_pages - 1)
1238 err = prepare_uptodate_page(pages[i],
1239 pos + write_bytes, false);
1240 if (err) {
1241 page_cache_release(pages[i]);
1242 faili = i - 1;
1243 goto fail;
1244 }
1245 wait_on_page_writeback(pages[i]);
1246 }
1247 err = 0;
1248 if (start_pos < inode->i_size) {
1249 struct btrfs_ordered_extent *ordered;
1250 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1251 start_pos, last_pos - 1, 0, &cached_state);
1252 ordered = btrfs_lookup_first_ordered_extent(inode,
1253 last_pos - 1);
1254 if (ordered &&
1255 ordered->file_offset + ordered->len > start_pos &&
1256 ordered->file_offset < last_pos) {
1257 btrfs_put_ordered_extent(ordered);
1258 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1259 start_pos, last_pos - 1,
1260 &cached_state, GFP_NOFS);
1261 for (i = 0; i < num_pages; i++) {
1262 unlock_page(pages[i]);
1263 page_cache_release(pages[i]);
1264 }
1265 btrfs_wait_ordered_range(inode, start_pos,
1266 last_pos - start_pos);
1267 goto again;
1268 }
1269 if (ordered)
1270 btrfs_put_ordered_extent(ordered);
1271
1272 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1273 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1274 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1275 0, 0, &cached_state, GFP_NOFS);
1276 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1277 start_pos, last_pos - 1, &cached_state,
1278 GFP_NOFS);
1279 }
1280 for (i = 0; i < num_pages; i++) {
1281 if (clear_page_dirty_for_io(pages[i]))
1282 account_page_redirty(pages[i]);
1283 set_page_extent_mapped(pages[i]);
1284 WARN_ON(!PageLocked(pages[i]));
1285 }
1286 return 0;
1287 fail:
1288 while (faili >= 0) {
1289 unlock_page(pages[faili]);
1290 page_cache_release(pages[faili]);
1291 faili--;
1292 }
1293 return err;
1294
1295 }
1296
1297 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1298 struct iov_iter *i,
1299 loff_t pos)
1300 {
1301 struct inode *inode = fdentry(file)->d_inode;
1302 struct btrfs_root *root = BTRFS_I(inode)->root;
1303 struct page **pages = NULL;
1304 unsigned long first_index;
1305 size_t num_written = 0;
1306 int nrptrs;
1307 int ret = 0;
1308 bool force_page_uptodate = false;
1309
1310 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1311 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1312 (sizeof(struct page *)));
1313 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1314 nrptrs = max(nrptrs, 8);
1315 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1316 if (!pages)
1317 return -ENOMEM;
1318
1319 first_index = pos >> PAGE_CACHE_SHIFT;
1320
1321 while (iov_iter_count(i) > 0) {
1322 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1323 size_t write_bytes = min(iov_iter_count(i),
1324 nrptrs * (size_t)PAGE_CACHE_SIZE -
1325 offset);
1326 size_t num_pages = (write_bytes + offset +
1327 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1328 size_t dirty_pages;
1329 size_t copied;
1330
1331 WARN_ON(num_pages > nrptrs);
1332
1333 /*
1334 * Fault pages before locking them in prepare_pages
1335 * to avoid recursive lock
1336 */
1337 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1338 ret = -EFAULT;
1339 break;
1340 }
1341
1342 ret = btrfs_delalloc_reserve_space(inode,
1343 num_pages << PAGE_CACHE_SHIFT);
1344 if (ret)
1345 break;
1346
1347 /*
1348 * This is going to setup the pages array with the number of
1349 * pages we want, so we don't really need to worry about the
1350 * contents of pages from loop to loop
1351 */
1352 ret = prepare_pages(root, file, pages, num_pages,
1353 pos, first_index, write_bytes,
1354 force_page_uptodate);
1355 if (ret) {
1356 btrfs_delalloc_release_space(inode,
1357 num_pages << PAGE_CACHE_SHIFT);
1358 break;
1359 }
1360
1361 copied = btrfs_copy_from_user(pos, num_pages,
1362 write_bytes, pages, i);
1363
1364 /*
1365 * if we have trouble faulting in the pages, fall
1366 * back to one page at a time
1367 */
1368 if (copied < write_bytes)
1369 nrptrs = 1;
1370
1371 if (copied == 0) {
1372 force_page_uptodate = true;
1373 dirty_pages = 0;
1374 } else {
1375 force_page_uptodate = false;
1376 dirty_pages = (copied + offset +
1377 PAGE_CACHE_SIZE - 1) >>
1378 PAGE_CACHE_SHIFT;
1379 }
1380
1381 /*
1382 * If we had a short copy we need to release the excess delaloc
1383 * bytes we reserved. We need to increment outstanding_extents
1384 * because btrfs_delalloc_release_space will decrement it, but
1385 * we still have an outstanding extent for the chunk we actually
1386 * managed to copy.
1387 */
1388 if (num_pages > dirty_pages) {
1389 if (copied > 0) {
1390 spin_lock(&BTRFS_I(inode)->lock);
1391 BTRFS_I(inode)->outstanding_extents++;
1392 spin_unlock(&BTRFS_I(inode)->lock);
1393 }
1394 btrfs_delalloc_release_space(inode,
1395 (num_pages - dirty_pages) <<
1396 PAGE_CACHE_SHIFT);
1397 }
1398
1399 if (copied > 0) {
1400 ret = btrfs_dirty_pages(root, inode, pages,
1401 dirty_pages, pos, copied,
1402 NULL);
1403 if (ret) {
1404 btrfs_delalloc_release_space(inode,
1405 dirty_pages << PAGE_CACHE_SHIFT);
1406 btrfs_drop_pages(pages, num_pages);
1407 break;
1408 }
1409 }
1410
1411 btrfs_drop_pages(pages, num_pages);
1412
1413 cond_resched();
1414
1415 balance_dirty_pages_ratelimited(inode->i_mapping);
1416 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1417 btrfs_btree_balance_dirty(root);
1418
1419 pos += copied;
1420 num_written += copied;
1421 }
1422
1423 kfree(pages);
1424
1425 return num_written ? num_written : ret;
1426 }
1427
1428 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1429 const struct iovec *iov,
1430 unsigned long nr_segs, loff_t pos,
1431 loff_t *ppos, size_t count, size_t ocount)
1432 {
1433 struct file *file = iocb->ki_filp;
1434 struct iov_iter i;
1435 ssize_t written;
1436 ssize_t written_buffered;
1437 loff_t endbyte;
1438 int err;
1439
1440 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1441 count, ocount);
1442
1443 if (written < 0 || written == count)
1444 return written;
1445
1446 pos += written;
1447 count -= written;
1448 iov_iter_init(&i, iov, nr_segs, count, written);
1449 written_buffered = __btrfs_buffered_write(file, &i, pos);
1450 if (written_buffered < 0) {
1451 err = written_buffered;
1452 goto out;
1453 }
1454 endbyte = pos + written_buffered - 1;
1455 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1456 if (err)
1457 goto out;
1458 written += written_buffered;
1459 *ppos = pos + written_buffered;
1460 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1461 endbyte >> PAGE_CACHE_SHIFT);
1462 out:
1463 return written ? written : err;
1464 }
1465
1466 static void update_time_for_write(struct inode *inode)
1467 {
1468 struct timespec now;
1469
1470 if (IS_NOCMTIME(inode))
1471 return;
1472
1473 now = current_fs_time(inode->i_sb);
1474 if (!timespec_equal(&inode->i_mtime, &now))
1475 inode->i_mtime = now;
1476
1477 if (!timespec_equal(&inode->i_ctime, &now))
1478 inode->i_ctime = now;
1479
1480 if (IS_I_VERSION(inode))
1481 inode_inc_iversion(inode);
1482 }
1483
1484 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1485 const struct iovec *iov,
1486 unsigned long nr_segs, loff_t pos)
1487 {
1488 struct file *file = iocb->ki_filp;
1489 struct inode *inode = fdentry(file)->d_inode;
1490 struct btrfs_root *root = BTRFS_I(inode)->root;
1491 loff_t *ppos = &iocb->ki_pos;
1492 u64 start_pos;
1493 ssize_t num_written = 0;
1494 ssize_t err = 0;
1495 size_t count, ocount;
1496 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1497
1498 sb_start_write(inode->i_sb);
1499
1500 mutex_lock(&inode->i_mutex);
1501
1502 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1503 if (err) {
1504 mutex_unlock(&inode->i_mutex);
1505 goto out;
1506 }
1507 count = ocount;
1508
1509 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1510 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1511 if (err) {
1512 mutex_unlock(&inode->i_mutex);
1513 goto out;
1514 }
1515
1516 if (count == 0) {
1517 mutex_unlock(&inode->i_mutex);
1518 goto out;
1519 }
1520
1521 err = file_remove_suid(file);
1522 if (err) {
1523 mutex_unlock(&inode->i_mutex);
1524 goto out;
1525 }
1526
1527 /*
1528 * If BTRFS flips readonly due to some impossible error
1529 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1530 * although we have opened a file as writable, we have
1531 * to stop this write operation to ensure FS consistency.
1532 */
1533 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1534 mutex_unlock(&inode->i_mutex);
1535 err = -EROFS;
1536 goto out;
1537 }
1538
1539 /*
1540 * We reserve space for updating the inode when we reserve space for the
1541 * extent we are going to write, so we will enospc out there. We don't
1542 * need to start yet another transaction to update the inode as we will
1543 * update the inode when we finish writing whatever data we write.
1544 */
1545 update_time_for_write(inode);
1546
1547 start_pos = round_down(pos, root->sectorsize);
1548 if (start_pos > i_size_read(inode)) {
1549 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1550 if (err) {
1551 mutex_unlock(&inode->i_mutex);
1552 goto out;
1553 }
1554 }
1555
1556 if (sync)
1557 atomic_inc(&BTRFS_I(inode)->sync_writers);
1558
1559 if (unlikely(file->f_flags & O_DIRECT)) {
1560 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1561 pos, ppos, count, ocount);
1562 } else {
1563 struct iov_iter i;
1564
1565 iov_iter_init(&i, iov, nr_segs, count, num_written);
1566
1567 num_written = __btrfs_buffered_write(file, &i, pos);
1568 if (num_written > 0)
1569 *ppos = pos + num_written;
1570 }
1571
1572 mutex_unlock(&inode->i_mutex);
1573
1574 /*
1575 * we want to make sure fsync finds this change
1576 * but we haven't joined a transaction running right now.
1577 *
1578 * Later on, someone is sure to update the inode and get the
1579 * real transid recorded.
1580 *
1581 * We set last_trans now to the fs_info generation + 1,
1582 * this will either be one more than the running transaction
1583 * or the generation used for the next transaction if there isn't
1584 * one running right now.
1585 *
1586 * We also have to set last_sub_trans to the current log transid,
1587 * otherwise subsequent syncs to a file that's been synced in this
1588 * transaction will appear to have already occured.
1589 */
1590 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1591 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1592 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1593 err = generic_write_sync(file, pos, num_written);
1594 if (err < 0 && num_written > 0)
1595 num_written = err;
1596 }
1597 out:
1598 if (sync)
1599 atomic_dec(&BTRFS_I(inode)->sync_writers);
1600 sb_end_write(inode->i_sb);
1601 current->backing_dev_info = NULL;
1602 return num_written ? num_written : err;
1603 }
1604
1605 int btrfs_release_file(struct inode *inode, struct file *filp)
1606 {
1607 /*
1608 * ordered_data_close is set by settattr when we are about to truncate
1609 * a file from a non-zero size to a zero size. This tries to
1610 * flush down new bytes that may have been written if the
1611 * application were using truncate to replace a file in place.
1612 */
1613 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1614 &BTRFS_I(inode)->runtime_flags)) {
1615 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1616 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1617 filemap_flush(inode->i_mapping);
1618 }
1619 if (filp->private_data)
1620 btrfs_ioctl_trans_end(filp);
1621 return 0;
1622 }
1623
1624 /*
1625 * fsync call for both files and directories. This logs the inode into
1626 * the tree log instead of forcing full commits whenever possible.
1627 *
1628 * It needs to call filemap_fdatawait so that all ordered extent updates are
1629 * in the metadata btree are up to date for copying to the log.
1630 *
1631 * It drops the inode mutex before doing the tree log commit. This is an
1632 * important optimization for directories because holding the mutex prevents
1633 * new operations on the dir while we write to disk.
1634 */
1635 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1636 {
1637 struct dentry *dentry = file->f_path.dentry;
1638 struct inode *inode = dentry->d_inode;
1639 struct btrfs_root *root = BTRFS_I(inode)->root;
1640 int ret = 0;
1641 struct btrfs_trans_handle *trans;
1642
1643 trace_btrfs_sync_file(file, datasync);
1644
1645 /*
1646 * We write the dirty pages in the range and wait until they complete
1647 * out of the ->i_mutex. If so, we can flush the dirty pages by
1648 * multi-task, and make the performance up.
1649 */
1650 atomic_inc(&BTRFS_I(inode)->sync_writers);
1651 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1652 atomic_dec(&BTRFS_I(inode)->sync_writers);
1653 if (ret)
1654 return ret;
1655
1656 mutex_lock(&inode->i_mutex);
1657
1658 /*
1659 * We flush the dirty pages again to avoid some dirty pages in the
1660 * range being left.
1661 */
1662 atomic_inc(&root->log_batch);
1663 btrfs_wait_ordered_range(inode, start, end - start + 1);
1664 atomic_inc(&root->log_batch);
1665
1666 /*
1667 * check the transaction that last modified this inode
1668 * and see if its already been committed
1669 */
1670 if (!BTRFS_I(inode)->last_trans) {
1671 mutex_unlock(&inode->i_mutex);
1672 goto out;
1673 }
1674
1675 /*
1676 * if the last transaction that changed this file was before
1677 * the current transaction, we can bail out now without any
1678 * syncing
1679 */
1680 smp_mb();
1681 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1682 BTRFS_I(inode)->last_trans <=
1683 root->fs_info->last_trans_committed) {
1684 BTRFS_I(inode)->last_trans = 0;
1685
1686 /*
1687 * We'v had everything committed since the last time we were
1688 * modified so clear this flag in case it was set for whatever
1689 * reason, it's no longer relevant.
1690 */
1691 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1692 &BTRFS_I(inode)->runtime_flags);
1693 mutex_unlock(&inode->i_mutex);
1694 goto out;
1695 }
1696
1697 /*
1698 * ok we haven't committed the transaction yet, lets do a commit
1699 */
1700 if (file->private_data)
1701 btrfs_ioctl_trans_end(file);
1702
1703 trans = btrfs_start_transaction(root, 0);
1704 if (IS_ERR(trans)) {
1705 ret = PTR_ERR(trans);
1706 mutex_unlock(&inode->i_mutex);
1707 goto out;
1708 }
1709
1710 ret = btrfs_log_dentry_safe(trans, root, dentry);
1711 if (ret < 0) {
1712 mutex_unlock(&inode->i_mutex);
1713 goto out;
1714 }
1715
1716 /* we've logged all the items and now have a consistent
1717 * version of the file in the log. It is possible that
1718 * someone will come in and modify the file, but that's
1719 * fine because the log is consistent on disk, and we
1720 * have references to all of the file's extents
1721 *
1722 * It is possible that someone will come in and log the
1723 * file again, but that will end up using the synchronization
1724 * inside btrfs_sync_log to keep things safe.
1725 */
1726 mutex_unlock(&inode->i_mutex);
1727
1728 if (ret != BTRFS_NO_LOG_SYNC) {
1729 if (ret > 0) {
1730 ret = btrfs_commit_transaction(trans, root);
1731 } else {
1732 ret = btrfs_sync_log(trans, root);
1733 if (ret == 0)
1734 ret = btrfs_end_transaction(trans, root);
1735 else
1736 ret = btrfs_commit_transaction(trans, root);
1737 }
1738 } else {
1739 ret = btrfs_end_transaction(trans, root);
1740 }
1741 out:
1742 return ret > 0 ? -EIO : ret;
1743 }
1744
1745 static const struct vm_operations_struct btrfs_file_vm_ops = {
1746 .fault = filemap_fault,
1747 .page_mkwrite = btrfs_page_mkwrite,
1748 .remap_pages = generic_file_remap_pages,
1749 };
1750
1751 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1752 {
1753 struct address_space *mapping = filp->f_mapping;
1754
1755 if (!mapping->a_ops->readpage)
1756 return -ENOEXEC;
1757
1758 file_accessed(filp);
1759 vma->vm_ops = &btrfs_file_vm_ops;
1760
1761 return 0;
1762 }
1763
1764 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1765 int slot, u64 start, u64 end)
1766 {
1767 struct btrfs_file_extent_item *fi;
1768 struct btrfs_key key;
1769
1770 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1771 return 0;
1772
1773 btrfs_item_key_to_cpu(leaf, &key, slot);
1774 if (key.objectid != btrfs_ino(inode) ||
1775 key.type != BTRFS_EXTENT_DATA_KEY)
1776 return 0;
1777
1778 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1779
1780 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1781 return 0;
1782
1783 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1784 return 0;
1785
1786 if (key.offset == end)
1787 return 1;
1788 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1789 return 1;
1790 return 0;
1791 }
1792
1793 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1794 struct btrfs_path *path, u64 offset, u64 end)
1795 {
1796 struct btrfs_root *root = BTRFS_I(inode)->root;
1797 struct extent_buffer *leaf;
1798 struct btrfs_file_extent_item *fi;
1799 struct extent_map *hole_em;
1800 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1801 struct btrfs_key key;
1802 int ret;
1803
1804 key.objectid = btrfs_ino(inode);
1805 key.type = BTRFS_EXTENT_DATA_KEY;
1806 key.offset = offset;
1807
1808
1809 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1810 if (ret < 0)
1811 return ret;
1812 BUG_ON(!ret);
1813
1814 leaf = path->nodes[0];
1815 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1816 u64 num_bytes;
1817
1818 path->slots[0]--;
1819 fi = btrfs_item_ptr(leaf, path->slots[0],
1820 struct btrfs_file_extent_item);
1821 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1822 end - offset;
1823 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1824 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1825 btrfs_set_file_extent_offset(leaf, fi, 0);
1826 btrfs_mark_buffer_dirty(leaf);
1827 goto out;
1828 }
1829
1830 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1831 u64 num_bytes;
1832
1833 path->slots[0]++;
1834 key.offset = offset;
1835 btrfs_set_item_key_safe(trans, root, path, &key);
1836 fi = btrfs_item_ptr(leaf, path->slots[0],
1837 struct btrfs_file_extent_item);
1838 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1839 offset;
1840 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1841 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1842 btrfs_set_file_extent_offset(leaf, fi, 0);
1843 btrfs_mark_buffer_dirty(leaf);
1844 goto out;
1845 }
1846 btrfs_release_path(path);
1847
1848 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1849 0, 0, end - offset, 0, end - offset,
1850 0, 0, 0);
1851 if (ret)
1852 return ret;
1853
1854 out:
1855 btrfs_release_path(path);
1856
1857 hole_em = alloc_extent_map();
1858 if (!hole_em) {
1859 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1860 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1861 &BTRFS_I(inode)->runtime_flags);
1862 } else {
1863 hole_em->start = offset;
1864 hole_em->len = end - offset;
1865 hole_em->orig_start = offset;
1866
1867 hole_em->block_start = EXTENT_MAP_HOLE;
1868 hole_em->block_len = 0;
1869 hole_em->orig_block_len = 0;
1870 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1871 hole_em->compress_type = BTRFS_COMPRESS_NONE;
1872 hole_em->generation = trans->transid;
1873
1874 do {
1875 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1876 write_lock(&em_tree->lock);
1877 ret = add_extent_mapping(em_tree, hole_em);
1878 if (!ret)
1879 list_move(&hole_em->list,
1880 &em_tree->modified_extents);
1881 write_unlock(&em_tree->lock);
1882 } while (ret == -EEXIST);
1883 free_extent_map(hole_em);
1884 if (ret)
1885 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1886 &BTRFS_I(inode)->runtime_flags);
1887 }
1888
1889 return 0;
1890 }
1891
1892 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1893 {
1894 struct btrfs_root *root = BTRFS_I(inode)->root;
1895 struct extent_state *cached_state = NULL;
1896 struct btrfs_path *path;
1897 struct btrfs_block_rsv *rsv;
1898 struct btrfs_trans_handle *trans;
1899 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
1900 u64 lockend = round_down(offset + len,
1901 BTRFS_I(inode)->root->sectorsize) - 1;
1902 u64 cur_offset = lockstart;
1903 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1904 u64 drop_end;
1905 int ret = 0;
1906 int err = 0;
1907 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
1908 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
1909
1910 btrfs_wait_ordered_range(inode, offset, len);
1911
1912 mutex_lock(&inode->i_mutex);
1913 /*
1914 * We needn't truncate any page which is beyond the end of the file
1915 * because we are sure there is no data there.
1916 */
1917 /*
1918 * Only do this if we are in the same page and we aren't doing the
1919 * entire page.
1920 */
1921 if (same_page && len < PAGE_CACHE_SIZE) {
1922 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
1923 ret = btrfs_truncate_page(inode, offset, len, 0);
1924 mutex_unlock(&inode->i_mutex);
1925 return ret;
1926 }
1927
1928 /* zero back part of the first page */
1929 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1930 ret = btrfs_truncate_page(inode, offset, 0, 0);
1931 if (ret) {
1932 mutex_unlock(&inode->i_mutex);
1933 return ret;
1934 }
1935 }
1936
1937 /* zero the front end of the last page */
1938 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1939 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1940 if (ret) {
1941 mutex_unlock(&inode->i_mutex);
1942 return ret;
1943 }
1944 }
1945
1946 if (lockend < lockstart) {
1947 mutex_unlock(&inode->i_mutex);
1948 return 0;
1949 }
1950
1951 while (1) {
1952 struct btrfs_ordered_extent *ordered;
1953
1954 truncate_pagecache_range(inode, lockstart, lockend);
1955
1956 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1957 0, &cached_state);
1958 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
1959
1960 /*
1961 * We need to make sure we have no ordered extents in this range
1962 * and nobody raced in and read a page in this range, if we did
1963 * we need to try again.
1964 */
1965 if ((!ordered ||
1966 (ordered->file_offset + ordered->len < lockstart ||
1967 ordered->file_offset > lockend)) &&
1968 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
1969 lockend, EXTENT_UPTODATE, 0,
1970 cached_state)) {
1971 if (ordered)
1972 btrfs_put_ordered_extent(ordered);
1973 break;
1974 }
1975 if (ordered)
1976 btrfs_put_ordered_extent(ordered);
1977 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
1978 lockend, &cached_state, GFP_NOFS);
1979 btrfs_wait_ordered_range(inode, lockstart,
1980 lockend - lockstart + 1);
1981 }
1982
1983 path = btrfs_alloc_path();
1984 if (!path) {
1985 ret = -ENOMEM;
1986 goto out;
1987 }
1988
1989 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
1990 if (!rsv) {
1991 ret = -ENOMEM;
1992 goto out_free;
1993 }
1994 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
1995 rsv->failfast = 1;
1996
1997 /*
1998 * 1 - update the inode
1999 * 1 - removing the extents in the range
2000 * 1 - adding the hole extent
2001 */
2002 trans = btrfs_start_transaction(root, 3);
2003 if (IS_ERR(trans)) {
2004 err = PTR_ERR(trans);
2005 goto out_free;
2006 }
2007
2008 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2009 min_size);
2010 BUG_ON(ret);
2011 trans->block_rsv = rsv;
2012
2013 while (cur_offset < lockend) {
2014 ret = __btrfs_drop_extents(trans, root, inode, path,
2015 cur_offset, lockend + 1,
2016 &drop_end, 1);
2017 if (ret != -ENOSPC)
2018 break;
2019
2020 trans->block_rsv = &root->fs_info->trans_block_rsv;
2021
2022 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2023 if (ret) {
2024 err = ret;
2025 break;
2026 }
2027
2028 cur_offset = drop_end;
2029
2030 ret = btrfs_update_inode(trans, root, inode);
2031 if (ret) {
2032 err = ret;
2033 break;
2034 }
2035
2036 btrfs_end_transaction(trans, root);
2037 btrfs_btree_balance_dirty(root);
2038
2039 trans = btrfs_start_transaction(root, 3);
2040 if (IS_ERR(trans)) {
2041 ret = PTR_ERR(trans);
2042 trans = NULL;
2043 break;
2044 }
2045
2046 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2047 rsv, min_size);
2048 BUG_ON(ret); /* shouldn't happen */
2049 trans->block_rsv = rsv;
2050 }
2051
2052 if (ret) {
2053 err = ret;
2054 goto out_trans;
2055 }
2056
2057 trans->block_rsv = &root->fs_info->trans_block_rsv;
2058 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2059 if (ret) {
2060 err = ret;
2061 goto out_trans;
2062 }
2063
2064 out_trans:
2065 if (!trans)
2066 goto out_free;
2067
2068 inode_inc_iversion(inode);
2069 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2070
2071 trans->block_rsv = &root->fs_info->trans_block_rsv;
2072 ret = btrfs_update_inode(trans, root, inode);
2073 btrfs_end_transaction(trans, root);
2074 btrfs_btree_balance_dirty(root);
2075 out_free:
2076 btrfs_free_path(path);
2077 btrfs_free_block_rsv(root, rsv);
2078 out:
2079 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2080 &cached_state, GFP_NOFS);
2081 mutex_unlock(&inode->i_mutex);
2082 if (ret && !err)
2083 err = ret;
2084 return err;
2085 }
2086
2087 static long btrfs_fallocate(struct file *file, int mode,
2088 loff_t offset, loff_t len)
2089 {
2090 struct inode *inode = file->f_path.dentry->d_inode;
2091 struct extent_state *cached_state = NULL;
2092 u64 cur_offset;
2093 u64 last_byte;
2094 u64 alloc_start;
2095 u64 alloc_end;
2096 u64 alloc_hint = 0;
2097 u64 locked_end;
2098 struct extent_map *em;
2099 int blocksize = BTRFS_I(inode)->root->sectorsize;
2100 int ret;
2101
2102 alloc_start = round_down(offset, blocksize);
2103 alloc_end = round_up(offset + len, blocksize);
2104
2105 /* Make sure we aren't being give some crap mode */
2106 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2107 return -EOPNOTSUPP;
2108
2109 if (mode & FALLOC_FL_PUNCH_HOLE)
2110 return btrfs_punch_hole(inode, offset, len);
2111
2112 /*
2113 * Make sure we have enough space before we do the
2114 * allocation.
2115 */
2116 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2117 if (ret)
2118 return ret;
2119
2120 /*
2121 * wait for ordered IO before we have any locks. We'll loop again
2122 * below with the locks held.
2123 */
2124 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2125
2126 mutex_lock(&inode->i_mutex);
2127 ret = inode_newsize_ok(inode, alloc_end);
2128 if (ret)
2129 goto out;
2130
2131 if (alloc_start > inode->i_size) {
2132 ret = btrfs_cont_expand(inode, i_size_read(inode),
2133 alloc_start);
2134 if (ret)
2135 goto out;
2136 }
2137
2138 locked_end = alloc_end - 1;
2139 while (1) {
2140 struct btrfs_ordered_extent *ordered;
2141
2142 /* the extent lock is ordered inside the running
2143 * transaction
2144 */
2145 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2146 locked_end, 0, &cached_state);
2147 ordered = btrfs_lookup_first_ordered_extent(inode,
2148 alloc_end - 1);
2149 if (ordered &&
2150 ordered->file_offset + ordered->len > alloc_start &&
2151 ordered->file_offset < alloc_end) {
2152 btrfs_put_ordered_extent(ordered);
2153 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2154 alloc_start, locked_end,
2155 &cached_state, GFP_NOFS);
2156 /*
2157 * we can't wait on the range with the transaction
2158 * running or with the extent lock held
2159 */
2160 btrfs_wait_ordered_range(inode, alloc_start,
2161 alloc_end - alloc_start);
2162 } else {
2163 if (ordered)
2164 btrfs_put_ordered_extent(ordered);
2165 break;
2166 }
2167 }
2168
2169 cur_offset = alloc_start;
2170 while (1) {
2171 u64 actual_end;
2172
2173 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2174 alloc_end - cur_offset, 0);
2175 if (IS_ERR_OR_NULL(em)) {
2176 if (!em)
2177 ret = -ENOMEM;
2178 else
2179 ret = PTR_ERR(em);
2180 break;
2181 }
2182 last_byte = min(extent_map_end(em), alloc_end);
2183 actual_end = min_t(u64, extent_map_end(em), offset + len);
2184 last_byte = ALIGN(last_byte, blocksize);
2185
2186 if (em->block_start == EXTENT_MAP_HOLE ||
2187 (cur_offset >= inode->i_size &&
2188 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2189 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2190 last_byte - cur_offset,
2191 1 << inode->i_blkbits,
2192 offset + len,
2193 &alloc_hint);
2194
2195 if (ret < 0) {
2196 free_extent_map(em);
2197 break;
2198 }
2199 } else if (actual_end > inode->i_size &&
2200 !(mode & FALLOC_FL_KEEP_SIZE)) {
2201 /*
2202 * We didn't need to allocate any more space, but we
2203 * still extended the size of the file so we need to
2204 * update i_size.
2205 */
2206 inode->i_ctime = CURRENT_TIME;
2207 i_size_write(inode, actual_end);
2208 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2209 }
2210 free_extent_map(em);
2211
2212 cur_offset = last_byte;
2213 if (cur_offset >= alloc_end) {
2214 ret = 0;
2215 break;
2216 }
2217 }
2218 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2219 &cached_state, GFP_NOFS);
2220 out:
2221 mutex_unlock(&inode->i_mutex);
2222 /* Let go of our reservation. */
2223 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2224 return ret;
2225 }
2226
2227 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2228 {
2229 struct btrfs_root *root = BTRFS_I(inode)->root;
2230 struct extent_map *em;
2231 struct extent_state *cached_state = NULL;
2232 u64 lockstart = *offset;
2233 u64 lockend = i_size_read(inode);
2234 u64 start = *offset;
2235 u64 orig_start = *offset;
2236 u64 len = i_size_read(inode);
2237 u64 last_end = 0;
2238 int ret = 0;
2239
2240 lockend = max_t(u64, root->sectorsize, lockend);
2241 if (lockend <= lockstart)
2242 lockend = lockstart + root->sectorsize;
2243
2244 lockend--;
2245 len = lockend - lockstart + 1;
2246
2247 len = max_t(u64, len, root->sectorsize);
2248 if (inode->i_size == 0)
2249 return -ENXIO;
2250
2251 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2252 &cached_state);
2253
2254 /*
2255 * Delalloc is such a pain. If we have a hole and we have pending
2256 * delalloc for a portion of the hole we will get back a hole that
2257 * exists for the entire range since it hasn't been actually written
2258 * yet. So to take care of this case we need to look for an extent just
2259 * before the position we want in case there is outstanding delalloc
2260 * going on here.
2261 */
2262 if (whence == SEEK_HOLE && start != 0) {
2263 if (start <= root->sectorsize)
2264 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2265 root->sectorsize, 0);
2266 else
2267 em = btrfs_get_extent_fiemap(inode, NULL, 0,
2268 start - root->sectorsize,
2269 root->sectorsize, 0);
2270 if (IS_ERR(em)) {
2271 ret = PTR_ERR(em);
2272 goto out;
2273 }
2274 last_end = em->start + em->len;
2275 if (em->block_start == EXTENT_MAP_DELALLOC)
2276 last_end = min_t(u64, last_end, inode->i_size);
2277 free_extent_map(em);
2278 }
2279
2280 while (1) {
2281 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2282 if (IS_ERR(em)) {
2283 ret = PTR_ERR(em);
2284 break;
2285 }
2286
2287 if (em->block_start == EXTENT_MAP_HOLE) {
2288 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2289 if (last_end <= orig_start) {
2290 free_extent_map(em);
2291 ret = -ENXIO;
2292 break;
2293 }
2294 }
2295
2296 if (whence == SEEK_HOLE) {
2297 *offset = start;
2298 free_extent_map(em);
2299 break;
2300 }
2301 } else {
2302 if (whence == SEEK_DATA) {
2303 if (em->block_start == EXTENT_MAP_DELALLOC) {
2304 if (start >= inode->i_size) {
2305 free_extent_map(em);
2306 ret = -ENXIO;
2307 break;
2308 }
2309 }
2310
2311 if (!test_bit(EXTENT_FLAG_PREALLOC,
2312 &em->flags)) {
2313 *offset = start;
2314 free_extent_map(em);
2315 break;
2316 }
2317 }
2318 }
2319
2320 start = em->start + em->len;
2321 last_end = em->start + em->len;
2322
2323 if (em->block_start == EXTENT_MAP_DELALLOC)
2324 last_end = min_t(u64, last_end, inode->i_size);
2325
2326 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2327 free_extent_map(em);
2328 ret = -ENXIO;
2329 break;
2330 }
2331 free_extent_map(em);
2332 cond_resched();
2333 }
2334 if (!ret)
2335 *offset = min(*offset, inode->i_size);
2336 out:
2337 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2338 &cached_state, GFP_NOFS);
2339 return ret;
2340 }
2341
2342 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2343 {
2344 struct inode *inode = file->f_mapping->host;
2345 int ret;
2346
2347 mutex_lock(&inode->i_mutex);
2348 switch (whence) {
2349 case SEEK_END:
2350 case SEEK_CUR:
2351 offset = generic_file_llseek(file, offset, whence);
2352 goto out;
2353 case SEEK_DATA:
2354 case SEEK_HOLE:
2355 if (offset >= i_size_read(inode)) {
2356 mutex_unlock(&inode->i_mutex);
2357 return -ENXIO;
2358 }
2359
2360 ret = find_desired_extent(inode, &offset, whence);
2361 if (ret) {
2362 mutex_unlock(&inode->i_mutex);
2363 return ret;
2364 }
2365 }
2366
2367 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
2368 offset = -EINVAL;
2369 goto out;
2370 }
2371 if (offset > inode->i_sb->s_maxbytes) {
2372 offset = -EINVAL;
2373 goto out;
2374 }
2375
2376 /* Special lock needed here? */
2377 if (offset != file->f_pos) {
2378 file->f_pos = offset;
2379 file->f_version = 0;
2380 }
2381 out:
2382 mutex_unlock(&inode->i_mutex);
2383 return offset;
2384 }
2385
2386 const struct file_operations btrfs_file_operations = {
2387 .llseek = btrfs_file_llseek,
2388 .read = do_sync_read,
2389 .write = do_sync_write,
2390 .aio_read = generic_file_aio_read,
2391 .splice_read = generic_file_splice_read,
2392 .aio_write = btrfs_file_aio_write,
2393 .mmap = btrfs_file_mmap,
2394 .open = generic_file_open,
2395 .release = btrfs_release_file,
2396 .fsync = btrfs_sync_file,
2397 .fallocate = btrfs_fallocate,
2398 .unlocked_ioctl = btrfs_ioctl,
2399 #ifdef CONFIG_COMPAT
2400 .compat_ioctl = btrfs_ioctl,
2401 #endif
2402 };
2403
2404 void btrfs_auto_defrag_exit(void)
2405 {
2406 if (btrfs_inode_defrag_cachep)
2407 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2408 }
2409
2410 int btrfs_auto_defrag_init(void)
2411 {
2412 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2413 sizeof(struct inode_defrag), 0,
2414 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2415 NULL);
2416 if (!btrfs_inode_defrag_cachep)
2417 return -ENOMEM;
2418
2419 return 0;
2420 }