Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/josef/btrfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / file.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46 * when auto defrag is enabled we
47 * queue up these defrag structs to remember which
48 * inodes need defragging passes
49 */
50 struct inode_defrag {
51 struct rb_node rb_node;
52 /* objectid */
53 u64 ino;
54 /*
55 * transid where the defrag was added, we search for
56 * extents newer than this
57 */
58 u64 transid;
59
60 /* root objectid */
61 u64 root;
62
63 /* last offset we were able to defrag */
64 u64 last_offset;
65
66 /* if we've wrapped around back to zero once already */
67 int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71 struct inode_defrag *defrag2)
72 {
73 if (defrag1->root > defrag2->root)
74 return 1;
75 else if (defrag1->root < defrag2->root)
76 return -1;
77 else if (defrag1->ino > defrag2->ino)
78 return 1;
79 else if (defrag1->ino < defrag2->ino)
80 return -1;
81 else
82 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree. The lock
86 * must be held already
87 *
88 * If you're inserting a record for an older transid than an
89 * existing record, the transid already in the tree is lowered
90 *
91 * If an existing record is found the defrag item you
92 * pass in is freed
93 */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95 struct inode_defrag *defrag)
96 {
97 struct btrfs_root *root = BTRFS_I(inode)->root;
98 struct inode_defrag *entry;
99 struct rb_node **p;
100 struct rb_node *parent = NULL;
101 int ret;
102
103 p = &root->fs_info->defrag_inodes.rb_node;
104 while (*p) {
105 parent = *p;
106 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108 ret = __compare_inode_defrag(defrag, entry);
109 if (ret < 0)
110 p = &parent->rb_left;
111 else if (ret > 0)
112 p = &parent->rb_right;
113 else {
114 /* if we're reinserting an entry for
115 * an old defrag run, make sure to
116 * lower the transid of our existing record
117 */
118 if (defrag->transid < entry->transid)
119 entry->transid = defrag->transid;
120 if (defrag->last_offset > entry->last_offset)
121 entry->last_offset = defrag->last_offset;
122 return -EEXIST;
123 }
124 }
125 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126 rb_link_node(&defrag->rb_node, parent, p);
127 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128 return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133 if (!btrfs_test_opt(root, AUTO_DEFRAG))
134 return 0;
135
136 if (btrfs_fs_closing(root->fs_info))
137 return 0;
138
139 return 1;
140 }
141
142 /*
143 * insert a defrag record for this inode if auto defrag is
144 * enabled
145 */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147 struct inode *inode)
148 {
149 struct btrfs_root *root = BTRFS_I(inode)->root;
150 struct inode_defrag *defrag;
151 u64 transid;
152 int ret;
153
154 if (!__need_auto_defrag(root))
155 return 0;
156
157 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158 return 0;
159
160 if (trans)
161 transid = trans->transid;
162 else
163 transid = BTRFS_I(inode)->root->last_trans;
164
165 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166 if (!defrag)
167 return -ENOMEM;
168
169 defrag->ino = btrfs_ino(inode);
170 defrag->transid = transid;
171 defrag->root = root->root_key.objectid;
172
173 spin_lock(&root->fs_info->defrag_inodes_lock);
174 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175 /*
176 * If we set IN_DEFRAG flag and evict the inode from memory,
177 * and then re-read this inode, this new inode doesn't have
178 * IN_DEFRAG flag. At the case, we may find the existed defrag.
179 */
180 ret = __btrfs_add_inode_defrag(inode, defrag);
181 if (ret)
182 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183 } else {
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 }
186 spin_unlock(&root->fs_info->defrag_inodes_lock);
187 return 0;
188 }
189
190 /*
191 * Requeue the defrag object. If there is a defrag object that points to
192 * the same inode in the tree, we will merge them together (by
193 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194 */
195 void btrfs_requeue_inode_defrag(struct inode *inode,
196 struct inode_defrag *defrag)
197 {
198 struct btrfs_root *root = BTRFS_I(inode)->root;
199 int ret;
200
201 if (!__need_auto_defrag(root))
202 goto out;
203
204 /*
205 * Here we don't check the IN_DEFRAG flag, because we need merge
206 * them together.
207 */
208 spin_lock(&root->fs_info->defrag_inodes_lock);
209 ret = __btrfs_add_inode_defrag(inode, defrag);
210 spin_unlock(&root->fs_info->defrag_inodes_lock);
211 if (ret)
212 goto out;
213 return;
214 out:
215 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219 * pick the defragable inode that we want, if it doesn't exist, we will get
220 * the next one.
221 */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225 struct inode_defrag *entry = NULL;
226 struct inode_defrag tmp;
227 struct rb_node *p;
228 struct rb_node *parent = NULL;
229 int ret;
230
231 tmp.ino = ino;
232 tmp.root = root;
233
234 spin_lock(&fs_info->defrag_inodes_lock);
235 p = fs_info->defrag_inodes.rb_node;
236 while (p) {
237 parent = p;
238 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240 ret = __compare_inode_defrag(&tmp, entry);
241 if (ret < 0)
242 p = parent->rb_left;
243 else if (ret > 0)
244 p = parent->rb_right;
245 else
246 goto out;
247 }
248
249 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250 parent = rb_next(parent);
251 if (parent)
252 entry = rb_entry(parent, struct inode_defrag, rb_node);
253 else
254 entry = NULL;
255 }
256 out:
257 if (entry)
258 rb_erase(parent, &fs_info->defrag_inodes);
259 spin_unlock(&fs_info->defrag_inodes_lock);
260 return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265 struct inode_defrag *defrag;
266 struct rb_node *node;
267
268 spin_lock(&fs_info->defrag_inodes_lock);
269 node = rb_first(&fs_info->defrag_inodes);
270 while (node) {
271 rb_erase(node, &fs_info->defrag_inodes);
272 defrag = rb_entry(node, struct inode_defrag, rb_node);
273 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275 if (need_resched()) {
276 spin_unlock(&fs_info->defrag_inodes_lock);
277 cond_resched();
278 spin_lock(&fs_info->defrag_inodes_lock);
279 }
280
281 node = rb_first(&fs_info->defrag_inodes);
282 }
283 spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH 1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289 struct inode_defrag *defrag)
290 {
291 struct btrfs_root *inode_root;
292 struct inode *inode;
293 struct btrfs_key key;
294 struct btrfs_ioctl_defrag_range_args range;
295 int num_defrag;
296 int index;
297 int ret;
298
299 /* get the inode */
300 key.objectid = defrag->root;
301 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302 key.offset = (u64)-1;
303
304 index = srcu_read_lock(&fs_info->subvol_srcu);
305
306 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307 if (IS_ERR(inode_root)) {
308 ret = PTR_ERR(inode_root);
309 goto cleanup;
310 }
311 if (btrfs_root_refs(&inode_root->root_item) == 0) {
312 ret = -ENOENT;
313 goto cleanup;
314 }
315
316 key.objectid = defrag->ino;
317 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
318 key.offset = 0;
319 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
320 if (IS_ERR(inode)) {
321 ret = PTR_ERR(inode);
322 goto cleanup;
323 }
324 srcu_read_unlock(&fs_info->subvol_srcu, index);
325
326 /* do a chunk of defrag */
327 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
328 memset(&range, 0, sizeof(range));
329 range.len = (u64)-1;
330 range.start = defrag->last_offset;
331
332 sb_start_write(fs_info->sb);
333 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
334 BTRFS_DEFRAG_BATCH);
335 sb_end_write(fs_info->sb);
336 /*
337 * if we filled the whole defrag batch, there
338 * must be more work to do. Queue this defrag
339 * again
340 */
341 if (num_defrag == BTRFS_DEFRAG_BATCH) {
342 defrag->last_offset = range.start;
343 btrfs_requeue_inode_defrag(inode, defrag);
344 } else if (defrag->last_offset && !defrag->cycled) {
345 /*
346 * we didn't fill our defrag batch, but
347 * we didn't start at zero. Make sure we loop
348 * around to the start of the file.
349 */
350 defrag->last_offset = 0;
351 defrag->cycled = 1;
352 btrfs_requeue_inode_defrag(inode, defrag);
353 } else {
354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 }
356
357 iput(inode);
358 return 0;
359 cleanup:
360 srcu_read_unlock(&fs_info->subvol_srcu, index);
361 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
362 return ret;
363 }
364
365 /*
366 * run through the list of inodes in the FS that need
367 * defragging
368 */
369 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
370 {
371 struct inode_defrag *defrag;
372 u64 first_ino = 0;
373 u64 root_objectid = 0;
374
375 atomic_inc(&fs_info->defrag_running);
376 while(1) {
377 if (!__need_auto_defrag(fs_info->tree_root))
378 break;
379
380 /* find an inode to defrag */
381 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
382 first_ino);
383 if (!defrag) {
384 if (root_objectid || first_ino) {
385 root_objectid = 0;
386 first_ino = 0;
387 continue;
388 } else {
389 break;
390 }
391 }
392
393 first_ino = defrag->ino + 1;
394 root_objectid = defrag->root;
395
396 __btrfs_run_defrag_inode(fs_info, defrag);
397 }
398 atomic_dec(&fs_info->defrag_running);
399
400 /*
401 * during unmount, we use the transaction_wait queue to
402 * wait for the defragger to stop
403 */
404 wake_up(&fs_info->transaction_wait);
405 return 0;
406 }
407
408 /* simple helper to fault in pages and copy. This should go away
409 * and be replaced with calls into generic code.
410 */
411 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
412 size_t write_bytes,
413 struct page **prepared_pages,
414 struct iov_iter *i)
415 {
416 size_t copied = 0;
417 size_t total_copied = 0;
418 int pg = 0;
419 int offset = pos & (PAGE_CACHE_SIZE - 1);
420
421 while (write_bytes > 0) {
422 size_t count = min_t(size_t,
423 PAGE_CACHE_SIZE - offset, write_bytes);
424 struct page *page = prepared_pages[pg];
425 /*
426 * Copy data from userspace to the current page
427 *
428 * Disable pagefault to avoid recursive lock since
429 * the pages are already locked
430 */
431 pagefault_disable();
432 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
433 pagefault_enable();
434
435 /* Flush processor's dcache for this page */
436 flush_dcache_page(page);
437
438 /*
439 * if we get a partial write, we can end up with
440 * partially up to date pages. These add
441 * a lot of complexity, so make sure they don't
442 * happen by forcing this copy to be retried.
443 *
444 * The rest of the btrfs_file_write code will fall
445 * back to page at a time copies after we return 0.
446 */
447 if (!PageUptodate(page) && copied < count)
448 copied = 0;
449
450 iov_iter_advance(i, copied);
451 write_bytes -= copied;
452 total_copied += copied;
453
454 /* Return to btrfs_file_aio_write to fault page */
455 if (unlikely(copied == 0))
456 break;
457
458 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
459 offset += copied;
460 } else {
461 pg++;
462 offset = 0;
463 }
464 }
465 return total_copied;
466 }
467
468 /*
469 * unlocks pages after btrfs_file_write is done with them
470 */
471 void btrfs_drop_pages(struct page **pages, size_t num_pages)
472 {
473 size_t i;
474 for (i = 0; i < num_pages; i++) {
475 /* page checked is some magic around finding pages that
476 * have been modified without going through btrfs_set_page_dirty
477 * clear it here
478 */
479 ClearPageChecked(pages[i]);
480 unlock_page(pages[i]);
481 mark_page_accessed(pages[i]);
482 page_cache_release(pages[i]);
483 }
484 }
485
486 /*
487 * after copy_from_user, pages need to be dirtied and we need to make
488 * sure holes are created between the current EOF and the start of
489 * any next extents (if required).
490 *
491 * this also makes the decision about creating an inline extent vs
492 * doing real data extents, marking pages dirty and delalloc as required.
493 */
494 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
495 struct page **pages, size_t num_pages,
496 loff_t pos, size_t write_bytes,
497 struct extent_state **cached)
498 {
499 int err = 0;
500 int i;
501 u64 num_bytes;
502 u64 start_pos;
503 u64 end_of_last_block;
504 u64 end_pos = pos + write_bytes;
505 loff_t isize = i_size_read(inode);
506
507 start_pos = pos & ~((u64)root->sectorsize - 1);
508 num_bytes = (write_bytes + pos - start_pos +
509 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
510
511 end_of_last_block = start_pos + num_bytes - 1;
512 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
513 cached);
514 if (err)
515 return err;
516
517 for (i = 0; i < num_pages; i++) {
518 struct page *p = pages[i];
519 SetPageUptodate(p);
520 ClearPageChecked(p);
521 set_page_dirty(p);
522 }
523
524 /*
525 * we've only changed i_size in ram, and we haven't updated
526 * the disk i_size. There is no need to log the inode
527 * at this time.
528 */
529 if (end_pos > isize)
530 i_size_write(inode, end_pos);
531 return 0;
532 }
533
534 /*
535 * this drops all the extents in the cache that intersect the range
536 * [start, end]. Existing extents are split as required.
537 */
538 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
539 int skip_pinned)
540 {
541 struct extent_map *em;
542 struct extent_map *split = NULL;
543 struct extent_map *split2 = NULL;
544 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
545 u64 len = end - start + 1;
546 u64 gen;
547 int ret;
548 int testend = 1;
549 unsigned long flags;
550 int compressed = 0;
551
552 WARN_ON(end < start);
553 if (end == (u64)-1) {
554 len = (u64)-1;
555 testend = 0;
556 }
557 while (1) {
558 int no_splits = 0;
559
560 if (!split)
561 split = alloc_extent_map();
562 if (!split2)
563 split2 = alloc_extent_map();
564 if (!split || !split2)
565 no_splits = 1;
566
567 write_lock(&em_tree->lock);
568 em = lookup_extent_mapping(em_tree, start, len);
569 if (!em) {
570 write_unlock(&em_tree->lock);
571 break;
572 }
573 flags = em->flags;
574 gen = em->generation;
575 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
576 if (testend && em->start + em->len >= start + len) {
577 free_extent_map(em);
578 write_unlock(&em_tree->lock);
579 break;
580 }
581 start = em->start + em->len;
582 if (testend)
583 len = start + len - (em->start + em->len);
584 free_extent_map(em);
585 write_unlock(&em_tree->lock);
586 continue;
587 }
588 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
589 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
590 remove_extent_mapping(em_tree, em);
591 if (no_splits)
592 goto next;
593
594 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
595 em->start < start) {
596 split->start = em->start;
597 split->len = start - em->start;
598 split->orig_start = em->orig_start;
599 split->block_start = em->block_start;
600
601 if (compressed)
602 split->block_len = em->block_len;
603 else
604 split->block_len = split->len;
605 split->orig_block_len = max(split->block_len,
606 em->orig_block_len);
607 split->generation = gen;
608 split->bdev = em->bdev;
609 split->flags = flags;
610 split->compress_type = em->compress_type;
611 ret = add_extent_mapping(em_tree, split);
612 BUG_ON(ret); /* Logic error */
613 list_move(&split->list, &em_tree->modified_extents);
614 free_extent_map(split);
615 split = split2;
616 split2 = NULL;
617 }
618 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
619 testend && em->start + em->len > start + len) {
620 u64 diff = start + len - em->start;
621
622 split->start = start + len;
623 split->len = em->start + em->len - (start + len);
624 split->bdev = em->bdev;
625 split->flags = flags;
626 split->compress_type = em->compress_type;
627 split->generation = gen;
628 split->orig_block_len = max(em->block_len,
629 em->orig_block_len);
630
631 if (compressed) {
632 split->block_len = em->block_len;
633 split->block_start = em->block_start;
634 split->orig_start = em->orig_start;
635 } else {
636 split->block_len = split->len;
637 split->block_start = em->block_start + diff;
638 split->orig_start = em->orig_start;
639 }
640
641 ret = add_extent_mapping(em_tree, split);
642 BUG_ON(ret); /* Logic error */
643 list_move(&split->list, &em_tree->modified_extents);
644 free_extent_map(split);
645 split = NULL;
646 }
647 next:
648 write_unlock(&em_tree->lock);
649
650 /* once for us */
651 free_extent_map(em);
652 /* once for the tree*/
653 free_extent_map(em);
654 }
655 if (split)
656 free_extent_map(split);
657 if (split2)
658 free_extent_map(split2);
659 }
660
661 /*
662 * this is very complex, but the basic idea is to drop all extents
663 * in the range start - end. hint_block is filled in with a block number
664 * that would be a good hint to the block allocator for this file.
665 *
666 * If an extent intersects the range but is not entirely inside the range
667 * it is either truncated or split. Anything entirely inside the range
668 * is deleted from the tree.
669 */
670 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
671 struct btrfs_root *root, struct inode *inode,
672 struct btrfs_path *path, u64 start, u64 end,
673 u64 *drop_end, int drop_cache)
674 {
675 struct extent_buffer *leaf;
676 struct btrfs_file_extent_item *fi;
677 struct btrfs_key key;
678 struct btrfs_key new_key;
679 u64 ino = btrfs_ino(inode);
680 u64 search_start = start;
681 u64 disk_bytenr = 0;
682 u64 num_bytes = 0;
683 u64 extent_offset = 0;
684 u64 extent_end = 0;
685 int del_nr = 0;
686 int del_slot = 0;
687 int extent_type;
688 int recow;
689 int ret;
690 int modify_tree = -1;
691 int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
692 int found = 0;
693
694 if (drop_cache)
695 btrfs_drop_extent_cache(inode, start, end - 1, 0);
696
697 if (start >= BTRFS_I(inode)->disk_i_size)
698 modify_tree = 0;
699
700 while (1) {
701 recow = 0;
702 ret = btrfs_lookup_file_extent(trans, root, path, ino,
703 search_start, modify_tree);
704 if (ret < 0)
705 break;
706 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
707 leaf = path->nodes[0];
708 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
709 if (key.objectid == ino &&
710 key.type == BTRFS_EXTENT_DATA_KEY)
711 path->slots[0]--;
712 }
713 ret = 0;
714 next_slot:
715 leaf = path->nodes[0];
716 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
717 BUG_ON(del_nr > 0);
718 ret = btrfs_next_leaf(root, path);
719 if (ret < 0)
720 break;
721 if (ret > 0) {
722 ret = 0;
723 break;
724 }
725 leaf = path->nodes[0];
726 recow = 1;
727 }
728
729 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
730 if (key.objectid > ino ||
731 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
732 break;
733
734 fi = btrfs_item_ptr(leaf, path->slots[0],
735 struct btrfs_file_extent_item);
736 extent_type = btrfs_file_extent_type(leaf, fi);
737
738 if (extent_type == BTRFS_FILE_EXTENT_REG ||
739 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
740 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
741 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
742 extent_offset = btrfs_file_extent_offset(leaf, fi);
743 extent_end = key.offset +
744 btrfs_file_extent_num_bytes(leaf, fi);
745 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
746 extent_end = key.offset +
747 btrfs_file_extent_inline_len(leaf, fi);
748 } else {
749 WARN_ON(1);
750 extent_end = search_start;
751 }
752
753 if (extent_end <= search_start) {
754 path->slots[0]++;
755 goto next_slot;
756 }
757
758 found = 1;
759 search_start = max(key.offset, start);
760 if (recow || !modify_tree) {
761 modify_tree = -1;
762 btrfs_release_path(path);
763 continue;
764 }
765
766 /*
767 * | - range to drop - |
768 * | -------- extent -------- |
769 */
770 if (start > key.offset && end < extent_end) {
771 BUG_ON(del_nr > 0);
772 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
773
774 memcpy(&new_key, &key, sizeof(new_key));
775 new_key.offset = start;
776 ret = btrfs_duplicate_item(trans, root, path,
777 &new_key);
778 if (ret == -EAGAIN) {
779 btrfs_release_path(path);
780 continue;
781 }
782 if (ret < 0)
783 break;
784
785 leaf = path->nodes[0];
786 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
787 struct btrfs_file_extent_item);
788 btrfs_set_file_extent_num_bytes(leaf, fi,
789 start - key.offset);
790
791 fi = btrfs_item_ptr(leaf, path->slots[0],
792 struct btrfs_file_extent_item);
793
794 extent_offset += start - key.offset;
795 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
796 btrfs_set_file_extent_num_bytes(leaf, fi,
797 extent_end - start);
798 btrfs_mark_buffer_dirty(leaf);
799
800 if (update_refs && disk_bytenr > 0) {
801 ret = btrfs_inc_extent_ref(trans, root,
802 disk_bytenr, num_bytes, 0,
803 root->root_key.objectid,
804 new_key.objectid,
805 start - extent_offset, 0);
806 BUG_ON(ret); /* -ENOMEM */
807 }
808 key.offset = start;
809 }
810 /*
811 * | ---- range to drop ----- |
812 * | -------- extent -------- |
813 */
814 if (start <= key.offset && end < extent_end) {
815 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
816
817 memcpy(&new_key, &key, sizeof(new_key));
818 new_key.offset = end;
819 btrfs_set_item_key_safe(trans, root, path, &new_key);
820
821 extent_offset += end - key.offset;
822 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
823 btrfs_set_file_extent_num_bytes(leaf, fi,
824 extent_end - end);
825 btrfs_mark_buffer_dirty(leaf);
826 if (update_refs && disk_bytenr > 0)
827 inode_sub_bytes(inode, end - key.offset);
828 break;
829 }
830
831 search_start = extent_end;
832 /*
833 * | ---- range to drop ----- |
834 * | -------- extent -------- |
835 */
836 if (start > key.offset && end >= extent_end) {
837 BUG_ON(del_nr > 0);
838 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
839
840 btrfs_set_file_extent_num_bytes(leaf, fi,
841 start - key.offset);
842 btrfs_mark_buffer_dirty(leaf);
843 if (update_refs && disk_bytenr > 0)
844 inode_sub_bytes(inode, extent_end - start);
845 if (end == extent_end)
846 break;
847
848 path->slots[0]++;
849 goto next_slot;
850 }
851
852 /*
853 * | ---- range to drop ----- |
854 * | ------ extent ------ |
855 */
856 if (start <= key.offset && end >= extent_end) {
857 if (del_nr == 0) {
858 del_slot = path->slots[0];
859 del_nr = 1;
860 } else {
861 BUG_ON(del_slot + del_nr != path->slots[0]);
862 del_nr++;
863 }
864
865 if (update_refs &&
866 extent_type == BTRFS_FILE_EXTENT_INLINE) {
867 inode_sub_bytes(inode,
868 extent_end - key.offset);
869 extent_end = ALIGN(extent_end,
870 root->sectorsize);
871 } else if (update_refs && disk_bytenr > 0) {
872 ret = btrfs_free_extent(trans, root,
873 disk_bytenr, num_bytes, 0,
874 root->root_key.objectid,
875 key.objectid, key.offset -
876 extent_offset, 0);
877 BUG_ON(ret); /* -ENOMEM */
878 inode_sub_bytes(inode,
879 extent_end - key.offset);
880 }
881
882 if (end == extent_end)
883 break;
884
885 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
886 path->slots[0]++;
887 goto next_slot;
888 }
889
890 ret = btrfs_del_items(trans, root, path, del_slot,
891 del_nr);
892 if (ret) {
893 btrfs_abort_transaction(trans, root, ret);
894 break;
895 }
896
897 del_nr = 0;
898 del_slot = 0;
899
900 btrfs_release_path(path);
901 continue;
902 }
903
904 BUG_ON(1);
905 }
906
907 if (!ret && del_nr > 0) {
908 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
909 if (ret)
910 btrfs_abort_transaction(trans, root, ret);
911 }
912
913 if (drop_end)
914 *drop_end = found ? min(end, extent_end) : end;
915 btrfs_release_path(path);
916 return ret;
917 }
918
919 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
920 struct btrfs_root *root, struct inode *inode, u64 start,
921 u64 end, int drop_cache)
922 {
923 struct btrfs_path *path;
924 int ret;
925
926 path = btrfs_alloc_path();
927 if (!path)
928 return -ENOMEM;
929 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
930 drop_cache);
931 btrfs_free_path(path);
932 return ret;
933 }
934
935 static int extent_mergeable(struct extent_buffer *leaf, int slot,
936 u64 objectid, u64 bytenr, u64 orig_offset,
937 u64 *start, u64 *end)
938 {
939 struct btrfs_file_extent_item *fi;
940 struct btrfs_key key;
941 u64 extent_end;
942
943 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
944 return 0;
945
946 btrfs_item_key_to_cpu(leaf, &key, slot);
947 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
948 return 0;
949
950 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
951 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
952 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
953 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
954 btrfs_file_extent_compression(leaf, fi) ||
955 btrfs_file_extent_encryption(leaf, fi) ||
956 btrfs_file_extent_other_encoding(leaf, fi))
957 return 0;
958
959 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
960 if ((*start && *start != key.offset) || (*end && *end != extent_end))
961 return 0;
962
963 *start = key.offset;
964 *end = extent_end;
965 return 1;
966 }
967
968 /*
969 * Mark extent in the range start - end as written.
970 *
971 * This changes extent type from 'pre-allocated' to 'regular'. If only
972 * part of extent is marked as written, the extent will be split into
973 * two or three.
974 */
975 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
976 struct inode *inode, u64 start, u64 end)
977 {
978 struct btrfs_root *root = BTRFS_I(inode)->root;
979 struct extent_buffer *leaf;
980 struct btrfs_path *path;
981 struct btrfs_file_extent_item *fi;
982 struct btrfs_key key;
983 struct btrfs_key new_key;
984 u64 bytenr;
985 u64 num_bytes;
986 u64 extent_end;
987 u64 orig_offset;
988 u64 other_start;
989 u64 other_end;
990 u64 split;
991 int del_nr = 0;
992 int del_slot = 0;
993 int recow;
994 int ret;
995 u64 ino = btrfs_ino(inode);
996
997 path = btrfs_alloc_path();
998 if (!path)
999 return -ENOMEM;
1000 again:
1001 recow = 0;
1002 split = start;
1003 key.objectid = ino;
1004 key.type = BTRFS_EXTENT_DATA_KEY;
1005 key.offset = split;
1006
1007 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1008 if (ret < 0)
1009 goto out;
1010 if (ret > 0 && path->slots[0] > 0)
1011 path->slots[0]--;
1012
1013 leaf = path->nodes[0];
1014 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1015 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1016 fi = btrfs_item_ptr(leaf, path->slots[0],
1017 struct btrfs_file_extent_item);
1018 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1019 BTRFS_FILE_EXTENT_PREALLOC);
1020 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1021 BUG_ON(key.offset > start || extent_end < end);
1022
1023 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1024 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1025 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1026 memcpy(&new_key, &key, sizeof(new_key));
1027
1028 if (start == key.offset && end < extent_end) {
1029 other_start = 0;
1030 other_end = start;
1031 if (extent_mergeable(leaf, path->slots[0] - 1,
1032 ino, bytenr, orig_offset,
1033 &other_start, &other_end)) {
1034 new_key.offset = end;
1035 btrfs_set_item_key_safe(trans, root, path, &new_key);
1036 fi = btrfs_item_ptr(leaf, path->slots[0],
1037 struct btrfs_file_extent_item);
1038 btrfs_set_file_extent_generation(leaf, fi,
1039 trans->transid);
1040 btrfs_set_file_extent_num_bytes(leaf, fi,
1041 extent_end - end);
1042 btrfs_set_file_extent_offset(leaf, fi,
1043 end - orig_offset);
1044 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1045 struct btrfs_file_extent_item);
1046 btrfs_set_file_extent_generation(leaf, fi,
1047 trans->transid);
1048 btrfs_set_file_extent_num_bytes(leaf, fi,
1049 end - other_start);
1050 btrfs_mark_buffer_dirty(leaf);
1051 goto out;
1052 }
1053 }
1054
1055 if (start > key.offset && end == extent_end) {
1056 other_start = end;
1057 other_end = 0;
1058 if (extent_mergeable(leaf, path->slots[0] + 1,
1059 ino, bytenr, orig_offset,
1060 &other_start, &other_end)) {
1061 fi = btrfs_item_ptr(leaf, path->slots[0],
1062 struct btrfs_file_extent_item);
1063 btrfs_set_file_extent_num_bytes(leaf, fi,
1064 start - key.offset);
1065 btrfs_set_file_extent_generation(leaf, fi,
1066 trans->transid);
1067 path->slots[0]++;
1068 new_key.offset = start;
1069 btrfs_set_item_key_safe(trans, root, path, &new_key);
1070
1071 fi = btrfs_item_ptr(leaf, path->slots[0],
1072 struct btrfs_file_extent_item);
1073 btrfs_set_file_extent_generation(leaf, fi,
1074 trans->transid);
1075 btrfs_set_file_extent_num_bytes(leaf, fi,
1076 other_end - start);
1077 btrfs_set_file_extent_offset(leaf, fi,
1078 start - orig_offset);
1079 btrfs_mark_buffer_dirty(leaf);
1080 goto out;
1081 }
1082 }
1083
1084 while (start > key.offset || end < extent_end) {
1085 if (key.offset == start)
1086 split = end;
1087
1088 new_key.offset = split;
1089 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1090 if (ret == -EAGAIN) {
1091 btrfs_release_path(path);
1092 goto again;
1093 }
1094 if (ret < 0) {
1095 btrfs_abort_transaction(trans, root, ret);
1096 goto out;
1097 }
1098
1099 leaf = path->nodes[0];
1100 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1101 struct btrfs_file_extent_item);
1102 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1103 btrfs_set_file_extent_num_bytes(leaf, fi,
1104 split - key.offset);
1105
1106 fi = btrfs_item_ptr(leaf, path->slots[0],
1107 struct btrfs_file_extent_item);
1108
1109 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1110 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1111 btrfs_set_file_extent_num_bytes(leaf, fi,
1112 extent_end - split);
1113 btrfs_mark_buffer_dirty(leaf);
1114
1115 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1116 root->root_key.objectid,
1117 ino, orig_offset, 0);
1118 BUG_ON(ret); /* -ENOMEM */
1119
1120 if (split == start) {
1121 key.offset = start;
1122 } else {
1123 BUG_ON(start != key.offset);
1124 path->slots[0]--;
1125 extent_end = end;
1126 }
1127 recow = 1;
1128 }
1129
1130 other_start = end;
1131 other_end = 0;
1132 if (extent_mergeable(leaf, path->slots[0] + 1,
1133 ino, bytenr, orig_offset,
1134 &other_start, &other_end)) {
1135 if (recow) {
1136 btrfs_release_path(path);
1137 goto again;
1138 }
1139 extent_end = other_end;
1140 del_slot = path->slots[0] + 1;
1141 del_nr++;
1142 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1143 0, root->root_key.objectid,
1144 ino, orig_offset, 0);
1145 BUG_ON(ret); /* -ENOMEM */
1146 }
1147 other_start = 0;
1148 other_end = start;
1149 if (extent_mergeable(leaf, path->slots[0] - 1,
1150 ino, bytenr, orig_offset,
1151 &other_start, &other_end)) {
1152 if (recow) {
1153 btrfs_release_path(path);
1154 goto again;
1155 }
1156 key.offset = other_start;
1157 del_slot = path->slots[0];
1158 del_nr++;
1159 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1160 0, root->root_key.objectid,
1161 ino, orig_offset, 0);
1162 BUG_ON(ret); /* -ENOMEM */
1163 }
1164 if (del_nr == 0) {
1165 fi = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_file_extent_item);
1167 btrfs_set_file_extent_type(leaf, fi,
1168 BTRFS_FILE_EXTENT_REG);
1169 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1170 btrfs_mark_buffer_dirty(leaf);
1171 } else {
1172 fi = btrfs_item_ptr(leaf, del_slot - 1,
1173 struct btrfs_file_extent_item);
1174 btrfs_set_file_extent_type(leaf, fi,
1175 BTRFS_FILE_EXTENT_REG);
1176 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1177 btrfs_set_file_extent_num_bytes(leaf, fi,
1178 extent_end - key.offset);
1179 btrfs_mark_buffer_dirty(leaf);
1180
1181 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1182 if (ret < 0) {
1183 btrfs_abort_transaction(trans, root, ret);
1184 goto out;
1185 }
1186 }
1187 out:
1188 btrfs_free_path(path);
1189 return 0;
1190 }
1191
1192 /*
1193 * on error we return an unlocked page and the error value
1194 * on success we return a locked page and 0
1195 */
1196 static int prepare_uptodate_page(struct page *page, u64 pos,
1197 bool force_uptodate)
1198 {
1199 int ret = 0;
1200
1201 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1202 !PageUptodate(page)) {
1203 ret = btrfs_readpage(NULL, page);
1204 if (ret)
1205 return ret;
1206 lock_page(page);
1207 if (!PageUptodate(page)) {
1208 unlock_page(page);
1209 return -EIO;
1210 }
1211 }
1212 return 0;
1213 }
1214
1215 /*
1216 * this gets pages into the page cache and locks them down, it also properly
1217 * waits for data=ordered extents to finish before allowing the pages to be
1218 * modified.
1219 */
1220 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1221 struct page **pages, size_t num_pages,
1222 loff_t pos, unsigned long first_index,
1223 size_t write_bytes, bool force_uptodate)
1224 {
1225 struct extent_state *cached_state = NULL;
1226 int i;
1227 unsigned long index = pos >> PAGE_CACHE_SHIFT;
1228 struct inode *inode = fdentry(file)->d_inode;
1229 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1230 int err = 0;
1231 int faili = 0;
1232 u64 start_pos;
1233 u64 last_pos;
1234
1235 start_pos = pos & ~((u64)root->sectorsize - 1);
1236 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1237
1238 again:
1239 for (i = 0; i < num_pages; i++) {
1240 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1241 mask | __GFP_WRITE);
1242 if (!pages[i]) {
1243 faili = i - 1;
1244 err = -ENOMEM;
1245 goto fail;
1246 }
1247
1248 if (i == 0)
1249 err = prepare_uptodate_page(pages[i], pos,
1250 force_uptodate);
1251 if (i == num_pages - 1)
1252 err = prepare_uptodate_page(pages[i],
1253 pos + write_bytes, false);
1254 if (err) {
1255 page_cache_release(pages[i]);
1256 faili = i - 1;
1257 goto fail;
1258 }
1259 wait_on_page_writeback(pages[i]);
1260 }
1261 err = 0;
1262 if (start_pos < inode->i_size) {
1263 struct btrfs_ordered_extent *ordered;
1264 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1265 start_pos, last_pos - 1, 0, &cached_state);
1266 ordered = btrfs_lookup_first_ordered_extent(inode,
1267 last_pos - 1);
1268 if (ordered &&
1269 ordered->file_offset + ordered->len > start_pos &&
1270 ordered->file_offset < last_pos) {
1271 btrfs_put_ordered_extent(ordered);
1272 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1273 start_pos, last_pos - 1,
1274 &cached_state, GFP_NOFS);
1275 for (i = 0; i < num_pages; i++) {
1276 unlock_page(pages[i]);
1277 page_cache_release(pages[i]);
1278 }
1279 btrfs_wait_ordered_range(inode, start_pos,
1280 last_pos - start_pos);
1281 goto again;
1282 }
1283 if (ordered)
1284 btrfs_put_ordered_extent(ordered);
1285
1286 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1287 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1288 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1289 0, 0, &cached_state, GFP_NOFS);
1290 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1291 start_pos, last_pos - 1, &cached_state,
1292 GFP_NOFS);
1293 }
1294 for (i = 0; i < num_pages; i++) {
1295 if (clear_page_dirty_for_io(pages[i]))
1296 account_page_redirty(pages[i]);
1297 set_page_extent_mapped(pages[i]);
1298 WARN_ON(!PageLocked(pages[i]));
1299 }
1300 return 0;
1301 fail:
1302 while (faili >= 0) {
1303 unlock_page(pages[faili]);
1304 page_cache_release(pages[faili]);
1305 faili--;
1306 }
1307 return err;
1308
1309 }
1310
1311 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1312 struct iov_iter *i,
1313 loff_t pos)
1314 {
1315 struct inode *inode = fdentry(file)->d_inode;
1316 struct btrfs_root *root = BTRFS_I(inode)->root;
1317 struct page **pages = NULL;
1318 unsigned long first_index;
1319 size_t num_written = 0;
1320 int nrptrs;
1321 int ret = 0;
1322 bool force_page_uptodate = false;
1323
1324 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1325 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1326 (sizeof(struct page *)));
1327 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1328 nrptrs = max(nrptrs, 8);
1329 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1330 if (!pages)
1331 return -ENOMEM;
1332
1333 first_index = pos >> PAGE_CACHE_SHIFT;
1334
1335 while (iov_iter_count(i) > 0) {
1336 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1337 size_t write_bytes = min(iov_iter_count(i),
1338 nrptrs * (size_t)PAGE_CACHE_SIZE -
1339 offset);
1340 size_t num_pages = (write_bytes + offset +
1341 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1342 size_t dirty_pages;
1343 size_t copied;
1344
1345 WARN_ON(num_pages > nrptrs);
1346
1347 /*
1348 * Fault pages before locking them in prepare_pages
1349 * to avoid recursive lock
1350 */
1351 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1352 ret = -EFAULT;
1353 break;
1354 }
1355
1356 ret = btrfs_delalloc_reserve_space(inode,
1357 num_pages << PAGE_CACHE_SHIFT);
1358 if (ret)
1359 break;
1360
1361 /*
1362 * This is going to setup the pages array with the number of
1363 * pages we want, so we don't really need to worry about the
1364 * contents of pages from loop to loop
1365 */
1366 ret = prepare_pages(root, file, pages, num_pages,
1367 pos, first_index, write_bytes,
1368 force_page_uptodate);
1369 if (ret) {
1370 btrfs_delalloc_release_space(inode,
1371 num_pages << PAGE_CACHE_SHIFT);
1372 break;
1373 }
1374
1375 copied = btrfs_copy_from_user(pos, num_pages,
1376 write_bytes, pages, i);
1377
1378 /*
1379 * if we have trouble faulting in the pages, fall
1380 * back to one page at a time
1381 */
1382 if (copied < write_bytes)
1383 nrptrs = 1;
1384
1385 if (copied == 0) {
1386 force_page_uptodate = true;
1387 dirty_pages = 0;
1388 } else {
1389 force_page_uptodate = false;
1390 dirty_pages = (copied + offset +
1391 PAGE_CACHE_SIZE - 1) >>
1392 PAGE_CACHE_SHIFT;
1393 }
1394
1395 /*
1396 * If we had a short copy we need to release the excess delaloc
1397 * bytes we reserved. We need to increment outstanding_extents
1398 * because btrfs_delalloc_release_space will decrement it, but
1399 * we still have an outstanding extent for the chunk we actually
1400 * managed to copy.
1401 */
1402 if (num_pages > dirty_pages) {
1403 if (copied > 0) {
1404 spin_lock(&BTRFS_I(inode)->lock);
1405 BTRFS_I(inode)->outstanding_extents++;
1406 spin_unlock(&BTRFS_I(inode)->lock);
1407 }
1408 btrfs_delalloc_release_space(inode,
1409 (num_pages - dirty_pages) <<
1410 PAGE_CACHE_SHIFT);
1411 }
1412
1413 if (copied > 0) {
1414 ret = btrfs_dirty_pages(root, inode, pages,
1415 dirty_pages, pos, copied,
1416 NULL);
1417 if (ret) {
1418 btrfs_delalloc_release_space(inode,
1419 dirty_pages << PAGE_CACHE_SHIFT);
1420 btrfs_drop_pages(pages, num_pages);
1421 break;
1422 }
1423 }
1424
1425 btrfs_drop_pages(pages, num_pages);
1426
1427 cond_resched();
1428
1429 balance_dirty_pages_ratelimited(inode->i_mapping);
1430 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1431 btrfs_btree_balance_dirty(root);
1432
1433 pos += copied;
1434 num_written += copied;
1435 }
1436
1437 kfree(pages);
1438
1439 return num_written ? num_written : ret;
1440 }
1441
1442 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1443 const struct iovec *iov,
1444 unsigned long nr_segs, loff_t pos,
1445 loff_t *ppos, size_t count, size_t ocount)
1446 {
1447 struct file *file = iocb->ki_filp;
1448 struct iov_iter i;
1449 ssize_t written;
1450 ssize_t written_buffered;
1451 loff_t endbyte;
1452 int err;
1453
1454 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1455 count, ocount);
1456
1457 if (written < 0 || written == count)
1458 return written;
1459
1460 pos += written;
1461 count -= written;
1462 iov_iter_init(&i, iov, nr_segs, count, written);
1463 written_buffered = __btrfs_buffered_write(file, &i, pos);
1464 if (written_buffered < 0) {
1465 err = written_buffered;
1466 goto out;
1467 }
1468 endbyte = pos + written_buffered - 1;
1469 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1470 if (err)
1471 goto out;
1472 written += written_buffered;
1473 *ppos = pos + written_buffered;
1474 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1475 endbyte >> PAGE_CACHE_SHIFT);
1476 out:
1477 return written ? written : err;
1478 }
1479
1480 static void update_time_for_write(struct inode *inode)
1481 {
1482 struct timespec now;
1483
1484 if (IS_NOCMTIME(inode))
1485 return;
1486
1487 now = current_fs_time(inode->i_sb);
1488 if (!timespec_equal(&inode->i_mtime, &now))
1489 inode->i_mtime = now;
1490
1491 if (!timespec_equal(&inode->i_ctime, &now))
1492 inode->i_ctime = now;
1493
1494 if (IS_I_VERSION(inode))
1495 inode_inc_iversion(inode);
1496 }
1497
1498 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1499 const struct iovec *iov,
1500 unsigned long nr_segs, loff_t pos)
1501 {
1502 struct file *file = iocb->ki_filp;
1503 struct inode *inode = fdentry(file)->d_inode;
1504 struct btrfs_root *root = BTRFS_I(inode)->root;
1505 loff_t *ppos = &iocb->ki_pos;
1506 u64 start_pos;
1507 ssize_t num_written = 0;
1508 ssize_t err = 0;
1509 size_t count, ocount;
1510 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1511
1512 sb_start_write(inode->i_sb);
1513
1514 mutex_lock(&inode->i_mutex);
1515
1516 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1517 if (err) {
1518 mutex_unlock(&inode->i_mutex);
1519 goto out;
1520 }
1521 count = ocount;
1522
1523 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1524 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1525 if (err) {
1526 mutex_unlock(&inode->i_mutex);
1527 goto out;
1528 }
1529
1530 if (count == 0) {
1531 mutex_unlock(&inode->i_mutex);
1532 goto out;
1533 }
1534
1535 err = file_remove_suid(file);
1536 if (err) {
1537 mutex_unlock(&inode->i_mutex);
1538 goto out;
1539 }
1540
1541 /*
1542 * If BTRFS flips readonly due to some impossible error
1543 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1544 * although we have opened a file as writable, we have
1545 * to stop this write operation to ensure FS consistency.
1546 */
1547 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1548 mutex_unlock(&inode->i_mutex);
1549 err = -EROFS;
1550 goto out;
1551 }
1552
1553 /*
1554 * We reserve space for updating the inode when we reserve space for the
1555 * extent we are going to write, so we will enospc out there. We don't
1556 * need to start yet another transaction to update the inode as we will
1557 * update the inode when we finish writing whatever data we write.
1558 */
1559 update_time_for_write(inode);
1560
1561 start_pos = round_down(pos, root->sectorsize);
1562 if (start_pos > i_size_read(inode)) {
1563 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1564 if (err) {
1565 mutex_unlock(&inode->i_mutex);
1566 goto out;
1567 }
1568 }
1569
1570 if (sync)
1571 atomic_inc(&BTRFS_I(inode)->sync_writers);
1572
1573 if (unlikely(file->f_flags & O_DIRECT)) {
1574 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1575 pos, ppos, count, ocount);
1576 } else {
1577 struct iov_iter i;
1578
1579 iov_iter_init(&i, iov, nr_segs, count, num_written);
1580
1581 num_written = __btrfs_buffered_write(file, &i, pos);
1582 if (num_written > 0)
1583 *ppos = pos + num_written;
1584 }
1585
1586 mutex_unlock(&inode->i_mutex);
1587
1588 /*
1589 * we want to make sure fsync finds this change
1590 * but we haven't joined a transaction running right now.
1591 *
1592 * Later on, someone is sure to update the inode and get the
1593 * real transid recorded.
1594 *
1595 * We set last_trans now to the fs_info generation + 1,
1596 * this will either be one more than the running transaction
1597 * or the generation used for the next transaction if there isn't
1598 * one running right now.
1599 *
1600 * We also have to set last_sub_trans to the current log transid,
1601 * otherwise subsequent syncs to a file that's been synced in this
1602 * transaction will appear to have already occured.
1603 */
1604 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1605 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1606 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1607 err = generic_write_sync(file, pos, num_written);
1608 if (err < 0 && num_written > 0)
1609 num_written = err;
1610 }
1611
1612 if (sync)
1613 atomic_dec(&BTRFS_I(inode)->sync_writers);
1614 out:
1615 sb_end_write(inode->i_sb);
1616 current->backing_dev_info = NULL;
1617 return num_written ? num_written : err;
1618 }
1619
1620 int btrfs_release_file(struct inode *inode, struct file *filp)
1621 {
1622 /*
1623 * ordered_data_close is set by settattr when we are about to truncate
1624 * a file from a non-zero size to a zero size. This tries to
1625 * flush down new bytes that may have been written if the
1626 * application were using truncate to replace a file in place.
1627 */
1628 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1629 &BTRFS_I(inode)->runtime_flags)) {
1630 struct btrfs_trans_handle *trans;
1631 struct btrfs_root *root = BTRFS_I(inode)->root;
1632
1633 /*
1634 * We need to block on a committing transaction to keep us from
1635 * throwing a ordered operation on to the list and causing
1636 * something like sync to deadlock trying to flush out this
1637 * inode.
1638 */
1639 trans = btrfs_start_transaction(root, 0);
1640 if (IS_ERR(trans))
1641 return PTR_ERR(trans);
1642 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1643 btrfs_end_transaction(trans, root);
1644 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1645 filemap_flush(inode->i_mapping);
1646 }
1647 if (filp->private_data)
1648 btrfs_ioctl_trans_end(filp);
1649 return 0;
1650 }
1651
1652 /*
1653 * fsync call for both files and directories. This logs the inode into
1654 * the tree log instead of forcing full commits whenever possible.
1655 *
1656 * It needs to call filemap_fdatawait so that all ordered extent updates are
1657 * in the metadata btree are up to date for copying to the log.
1658 *
1659 * It drops the inode mutex before doing the tree log commit. This is an
1660 * important optimization for directories because holding the mutex prevents
1661 * new operations on the dir while we write to disk.
1662 */
1663 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1664 {
1665 struct dentry *dentry = file->f_path.dentry;
1666 struct inode *inode = dentry->d_inode;
1667 struct btrfs_root *root = BTRFS_I(inode)->root;
1668 int ret = 0;
1669 struct btrfs_trans_handle *trans;
1670 bool full_sync = 0;
1671
1672 trace_btrfs_sync_file(file, datasync);
1673
1674 /*
1675 * We write the dirty pages in the range and wait until they complete
1676 * out of the ->i_mutex. If so, we can flush the dirty pages by
1677 * multi-task, and make the performance up. See
1678 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1679 */
1680 atomic_inc(&BTRFS_I(inode)->sync_writers);
1681 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1682 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1683 &BTRFS_I(inode)->runtime_flags))
1684 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1685 atomic_dec(&BTRFS_I(inode)->sync_writers);
1686 if (ret)
1687 return ret;
1688
1689 mutex_lock(&inode->i_mutex);
1690
1691 /*
1692 * We flush the dirty pages again to avoid some dirty pages in the
1693 * range being left.
1694 */
1695 atomic_inc(&root->log_batch);
1696 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1697 &BTRFS_I(inode)->runtime_flags);
1698 if (full_sync)
1699 btrfs_wait_ordered_range(inode, start, end - start + 1);
1700 atomic_inc(&root->log_batch);
1701
1702 /*
1703 * check the transaction that last modified this inode
1704 * and see if its already been committed
1705 */
1706 if (!BTRFS_I(inode)->last_trans) {
1707 mutex_unlock(&inode->i_mutex);
1708 goto out;
1709 }
1710
1711 /*
1712 * if the last transaction that changed this file was before
1713 * the current transaction, we can bail out now without any
1714 * syncing
1715 */
1716 smp_mb();
1717 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1718 BTRFS_I(inode)->last_trans <=
1719 root->fs_info->last_trans_committed) {
1720 BTRFS_I(inode)->last_trans = 0;
1721
1722 /*
1723 * We'v had everything committed since the last time we were
1724 * modified so clear this flag in case it was set for whatever
1725 * reason, it's no longer relevant.
1726 */
1727 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1728 &BTRFS_I(inode)->runtime_flags);
1729 mutex_unlock(&inode->i_mutex);
1730 goto out;
1731 }
1732
1733 /*
1734 * ok we haven't committed the transaction yet, lets do a commit
1735 */
1736 if (file->private_data)
1737 btrfs_ioctl_trans_end(file);
1738
1739 trans = btrfs_start_transaction(root, 0);
1740 if (IS_ERR(trans)) {
1741 ret = PTR_ERR(trans);
1742 mutex_unlock(&inode->i_mutex);
1743 goto out;
1744 }
1745
1746 ret = btrfs_log_dentry_safe(trans, root, dentry);
1747 if (ret < 0) {
1748 mutex_unlock(&inode->i_mutex);
1749 goto out;
1750 }
1751
1752 /* we've logged all the items and now have a consistent
1753 * version of the file in the log. It is possible that
1754 * someone will come in and modify the file, but that's
1755 * fine because the log is consistent on disk, and we
1756 * have references to all of the file's extents
1757 *
1758 * It is possible that someone will come in and log the
1759 * file again, but that will end up using the synchronization
1760 * inside btrfs_sync_log to keep things safe.
1761 */
1762 mutex_unlock(&inode->i_mutex);
1763
1764 if (ret != BTRFS_NO_LOG_SYNC) {
1765 if (ret > 0) {
1766 /*
1767 * If we didn't already wait for ordered extents we need
1768 * to do that now.
1769 */
1770 if (!full_sync)
1771 btrfs_wait_ordered_range(inode, start,
1772 end - start + 1);
1773 ret = btrfs_commit_transaction(trans, root);
1774 } else {
1775 ret = btrfs_sync_log(trans, root);
1776 if (ret == 0) {
1777 ret = btrfs_end_transaction(trans, root);
1778 } else {
1779 if (!full_sync)
1780 btrfs_wait_ordered_range(inode, start,
1781 end -
1782 start + 1);
1783 ret = btrfs_commit_transaction(trans, root);
1784 }
1785 }
1786 } else {
1787 ret = btrfs_end_transaction(trans, root);
1788 }
1789 out:
1790 return ret > 0 ? -EIO : ret;
1791 }
1792
1793 static const struct vm_operations_struct btrfs_file_vm_ops = {
1794 .fault = filemap_fault,
1795 .page_mkwrite = btrfs_page_mkwrite,
1796 .remap_pages = generic_file_remap_pages,
1797 };
1798
1799 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1800 {
1801 struct address_space *mapping = filp->f_mapping;
1802
1803 if (!mapping->a_ops->readpage)
1804 return -ENOEXEC;
1805
1806 file_accessed(filp);
1807 vma->vm_ops = &btrfs_file_vm_ops;
1808
1809 return 0;
1810 }
1811
1812 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
1813 int slot, u64 start, u64 end)
1814 {
1815 struct btrfs_file_extent_item *fi;
1816 struct btrfs_key key;
1817
1818 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1819 return 0;
1820
1821 btrfs_item_key_to_cpu(leaf, &key, slot);
1822 if (key.objectid != btrfs_ino(inode) ||
1823 key.type != BTRFS_EXTENT_DATA_KEY)
1824 return 0;
1825
1826 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1827
1828 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1829 return 0;
1830
1831 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1832 return 0;
1833
1834 if (key.offset == end)
1835 return 1;
1836 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1837 return 1;
1838 return 0;
1839 }
1840
1841 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
1842 struct btrfs_path *path, u64 offset, u64 end)
1843 {
1844 struct btrfs_root *root = BTRFS_I(inode)->root;
1845 struct extent_buffer *leaf;
1846 struct btrfs_file_extent_item *fi;
1847 struct extent_map *hole_em;
1848 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1849 struct btrfs_key key;
1850 int ret;
1851
1852 key.objectid = btrfs_ino(inode);
1853 key.type = BTRFS_EXTENT_DATA_KEY;
1854 key.offset = offset;
1855
1856
1857 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1858 if (ret < 0)
1859 return ret;
1860 BUG_ON(!ret);
1861
1862 leaf = path->nodes[0];
1863 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
1864 u64 num_bytes;
1865
1866 path->slots[0]--;
1867 fi = btrfs_item_ptr(leaf, path->slots[0],
1868 struct btrfs_file_extent_item);
1869 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
1870 end - offset;
1871 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1872 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1873 btrfs_set_file_extent_offset(leaf, fi, 0);
1874 btrfs_mark_buffer_dirty(leaf);
1875 goto out;
1876 }
1877
1878 if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
1879 u64 num_bytes;
1880
1881 path->slots[0]++;
1882 key.offset = offset;
1883 btrfs_set_item_key_safe(trans, root, path, &key);
1884 fi = btrfs_item_ptr(leaf, path->slots[0],
1885 struct btrfs_file_extent_item);
1886 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
1887 offset;
1888 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1889 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
1890 btrfs_set_file_extent_offset(leaf, fi, 0);
1891 btrfs_mark_buffer_dirty(leaf);
1892 goto out;
1893 }
1894 btrfs_release_path(path);
1895
1896 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
1897 0, 0, end - offset, 0, end - offset,
1898 0, 0, 0);
1899 if (ret)
1900 return ret;
1901
1902 out:
1903 btrfs_release_path(path);
1904
1905 hole_em = alloc_extent_map();
1906 if (!hole_em) {
1907 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1908 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1909 &BTRFS_I(inode)->runtime_flags);
1910 } else {
1911 hole_em->start = offset;
1912 hole_em->len = end - offset;
1913 hole_em->orig_start = offset;
1914
1915 hole_em->block_start = EXTENT_MAP_HOLE;
1916 hole_em->block_len = 0;
1917 hole_em->orig_block_len = 0;
1918 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
1919 hole_em->compress_type = BTRFS_COMPRESS_NONE;
1920 hole_em->generation = trans->transid;
1921
1922 do {
1923 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
1924 write_lock(&em_tree->lock);
1925 ret = add_extent_mapping(em_tree, hole_em);
1926 if (!ret)
1927 list_move(&hole_em->list,
1928 &em_tree->modified_extents);
1929 write_unlock(&em_tree->lock);
1930 } while (ret == -EEXIST);
1931 free_extent_map(hole_em);
1932 if (ret)
1933 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1934 &BTRFS_I(inode)->runtime_flags);
1935 }
1936
1937 return 0;
1938 }
1939
1940 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1941 {
1942 struct btrfs_root *root = BTRFS_I(inode)->root;
1943 struct extent_state *cached_state = NULL;
1944 struct btrfs_path *path;
1945 struct btrfs_block_rsv *rsv;
1946 struct btrfs_trans_handle *trans;
1947 u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
1948 u64 lockend = round_down(offset + len,
1949 BTRFS_I(inode)->root->sectorsize) - 1;
1950 u64 cur_offset = lockstart;
1951 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
1952 u64 drop_end;
1953 int ret = 0;
1954 int err = 0;
1955 bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
1956 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
1957
1958 btrfs_wait_ordered_range(inode, offset, len);
1959
1960 mutex_lock(&inode->i_mutex);
1961 /*
1962 * We needn't truncate any page which is beyond the end of the file
1963 * because we are sure there is no data there.
1964 */
1965 /*
1966 * Only do this if we are in the same page and we aren't doing the
1967 * entire page.
1968 */
1969 if (same_page && len < PAGE_CACHE_SIZE) {
1970 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
1971 ret = btrfs_truncate_page(inode, offset, len, 0);
1972 mutex_unlock(&inode->i_mutex);
1973 return ret;
1974 }
1975
1976 /* zero back part of the first page */
1977 if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1978 ret = btrfs_truncate_page(inode, offset, 0, 0);
1979 if (ret) {
1980 mutex_unlock(&inode->i_mutex);
1981 return ret;
1982 }
1983 }
1984
1985 /* zero the front end of the last page */
1986 if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
1987 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
1988 if (ret) {
1989 mutex_unlock(&inode->i_mutex);
1990 return ret;
1991 }
1992 }
1993
1994 if (lockend < lockstart) {
1995 mutex_unlock(&inode->i_mutex);
1996 return 0;
1997 }
1998
1999 while (1) {
2000 struct btrfs_ordered_extent *ordered;
2001
2002 truncate_pagecache_range(inode, lockstart, lockend);
2003
2004 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2005 0, &cached_state);
2006 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2007
2008 /*
2009 * We need to make sure we have no ordered extents in this range
2010 * and nobody raced in and read a page in this range, if we did
2011 * we need to try again.
2012 */
2013 if ((!ordered ||
2014 (ordered->file_offset + ordered->len < lockstart ||
2015 ordered->file_offset > lockend)) &&
2016 !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2017 lockend, EXTENT_UPTODATE, 0,
2018 cached_state)) {
2019 if (ordered)
2020 btrfs_put_ordered_extent(ordered);
2021 break;
2022 }
2023 if (ordered)
2024 btrfs_put_ordered_extent(ordered);
2025 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2026 lockend, &cached_state, GFP_NOFS);
2027 btrfs_wait_ordered_range(inode, lockstart,
2028 lockend - lockstart + 1);
2029 }
2030
2031 path = btrfs_alloc_path();
2032 if (!path) {
2033 ret = -ENOMEM;
2034 goto out;
2035 }
2036
2037 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2038 if (!rsv) {
2039 ret = -ENOMEM;
2040 goto out_free;
2041 }
2042 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2043 rsv->failfast = 1;
2044
2045 /*
2046 * 1 - update the inode
2047 * 1 - removing the extents in the range
2048 * 1 - adding the hole extent
2049 */
2050 trans = btrfs_start_transaction(root, 3);
2051 if (IS_ERR(trans)) {
2052 err = PTR_ERR(trans);
2053 goto out_free;
2054 }
2055
2056 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2057 min_size);
2058 BUG_ON(ret);
2059 trans->block_rsv = rsv;
2060
2061 while (cur_offset < lockend) {
2062 ret = __btrfs_drop_extents(trans, root, inode, path,
2063 cur_offset, lockend + 1,
2064 &drop_end, 1);
2065 if (ret != -ENOSPC)
2066 break;
2067
2068 trans->block_rsv = &root->fs_info->trans_block_rsv;
2069
2070 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2071 if (ret) {
2072 err = ret;
2073 break;
2074 }
2075
2076 cur_offset = drop_end;
2077
2078 ret = btrfs_update_inode(trans, root, inode);
2079 if (ret) {
2080 err = ret;
2081 break;
2082 }
2083
2084 btrfs_end_transaction(trans, root);
2085 btrfs_btree_balance_dirty(root);
2086
2087 trans = btrfs_start_transaction(root, 3);
2088 if (IS_ERR(trans)) {
2089 ret = PTR_ERR(trans);
2090 trans = NULL;
2091 break;
2092 }
2093
2094 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2095 rsv, min_size);
2096 BUG_ON(ret); /* shouldn't happen */
2097 trans->block_rsv = rsv;
2098 }
2099
2100 if (ret) {
2101 err = ret;
2102 goto out_trans;
2103 }
2104
2105 trans->block_rsv = &root->fs_info->trans_block_rsv;
2106 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2107 if (ret) {
2108 err = ret;
2109 goto out_trans;
2110 }
2111
2112 out_trans:
2113 if (!trans)
2114 goto out_free;
2115
2116 inode_inc_iversion(inode);
2117 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2118
2119 trans->block_rsv = &root->fs_info->trans_block_rsv;
2120 ret = btrfs_update_inode(trans, root, inode);
2121 btrfs_end_transaction(trans, root);
2122 btrfs_btree_balance_dirty(root);
2123 out_free:
2124 btrfs_free_path(path);
2125 btrfs_free_block_rsv(root, rsv);
2126 out:
2127 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2128 &cached_state, GFP_NOFS);
2129 mutex_unlock(&inode->i_mutex);
2130 if (ret && !err)
2131 err = ret;
2132 return err;
2133 }
2134
2135 static long btrfs_fallocate(struct file *file, int mode,
2136 loff_t offset, loff_t len)
2137 {
2138 struct inode *inode = file->f_path.dentry->d_inode;
2139 struct extent_state *cached_state = NULL;
2140 u64 cur_offset;
2141 u64 last_byte;
2142 u64 alloc_start;
2143 u64 alloc_end;
2144 u64 alloc_hint = 0;
2145 u64 locked_end;
2146 struct extent_map *em;
2147 int blocksize = BTRFS_I(inode)->root->sectorsize;
2148 int ret;
2149
2150 alloc_start = round_down(offset, blocksize);
2151 alloc_end = round_up(offset + len, blocksize);
2152
2153 /* Make sure we aren't being give some crap mode */
2154 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2155 return -EOPNOTSUPP;
2156
2157 if (mode & FALLOC_FL_PUNCH_HOLE)
2158 return btrfs_punch_hole(inode, offset, len);
2159
2160 /*
2161 * Make sure we have enough space before we do the
2162 * allocation.
2163 */
2164 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2165 if (ret)
2166 return ret;
2167
2168 /*
2169 * wait for ordered IO before we have any locks. We'll loop again
2170 * below with the locks held.
2171 */
2172 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
2173
2174 mutex_lock(&inode->i_mutex);
2175 ret = inode_newsize_ok(inode, alloc_end);
2176 if (ret)
2177 goto out;
2178
2179 if (alloc_start > inode->i_size) {
2180 ret = btrfs_cont_expand(inode, i_size_read(inode),
2181 alloc_start);
2182 if (ret)
2183 goto out;
2184 }
2185
2186 locked_end = alloc_end - 1;
2187 while (1) {
2188 struct btrfs_ordered_extent *ordered;
2189
2190 /* the extent lock is ordered inside the running
2191 * transaction
2192 */
2193 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2194 locked_end, 0, &cached_state);
2195 ordered = btrfs_lookup_first_ordered_extent(inode,
2196 alloc_end - 1);
2197 if (ordered &&
2198 ordered->file_offset + ordered->len > alloc_start &&
2199 ordered->file_offset < alloc_end) {
2200 btrfs_put_ordered_extent(ordered);
2201 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2202 alloc_start, locked_end,
2203 &cached_state, GFP_NOFS);
2204 /*
2205 * we can't wait on the range with the transaction
2206 * running or with the extent lock held
2207 */
2208 btrfs_wait_ordered_range(inode, alloc_start,
2209 alloc_end - alloc_start);
2210 } else {
2211 if (ordered)
2212 btrfs_put_ordered_extent(ordered);
2213 break;
2214 }
2215 }
2216
2217 cur_offset = alloc_start;
2218 while (1) {
2219 u64 actual_end;
2220
2221 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2222 alloc_end - cur_offset, 0);
2223 if (IS_ERR_OR_NULL(em)) {
2224 if (!em)
2225 ret = -ENOMEM;
2226 else
2227 ret = PTR_ERR(em);
2228 break;
2229 }
2230 last_byte = min(extent_map_end(em), alloc_end);
2231 actual_end = min_t(u64, extent_map_end(em), offset + len);
2232 last_byte = ALIGN(last_byte, blocksize);
2233
2234 if (em->block_start == EXTENT_MAP_HOLE ||
2235 (cur_offset >= inode->i_size &&
2236 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2237 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2238 last_byte - cur_offset,
2239 1 << inode->i_blkbits,
2240 offset + len,
2241 &alloc_hint);
2242
2243 if (ret < 0) {
2244 free_extent_map(em);
2245 break;
2246 }
2247 } else if (actual_end > inode->i_size &&
2248 !(mode & FALLOC_FL_KEEP_SIZE)) {
2249 /*
2250 * We didn't need to allocate any more space, but we
2251 * still extended the size of the file so we need to
2252 * update i_size.
2253 */
2254 inode->i_ctime = CURRENT_TIME;
2255 i_size_write(inode, actual_end);
2256 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2257 }
2258 free_extent_map(em);
2259
2260 cur_offset = last_byte;
2261 if (cur_offset >= alloc_end) {
2262 ret = 0;
2263 break;
2264 }
2265 }
2266 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2267 &cached_state, GFP_NOFS);
2268 out:
2269 mutex_unlock(&inode->i_mutex);
2270 /* Let go of our reservation. */
2271 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2272 return ret;
2273 }
2274
2275 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2276 {
2277 struct btrfs_root *root = BTRFS_I(inode)->root;
2278 struct extent_map *em;
2279 struct extent_state *cached_state = NULL;
2280 u64 lockstart = *offset;
2281 u64 lockend = i_size_read(inode);
2282 u64 start = *offset;
2283 u64 orig_start = *offset;
2284 u64 len = i_size_read(inode);
2285 u64 last_end = 0;
2286 int ret = 0;
2287
2288 lockend = max_t(u64, root->sectorsize, lockend);
2289 if (lockend <= lockstart)
2290 lockend = lockstart + root->sectorsize;
2291
2292 lockend--;
2293 len = lockend - lockstart + 1;
2294
2295 len = max_t(u64, len, root->sectorsize);
2296 if (inode->i_size == 0)
2297 return -ENXIO;
2298
2299 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2300 &cached_state);
2301
2302 /*
2303 * Delalloc is such a pain. If we have a hole and we have pending
2304 * delalloc for a portion of the hole we will get back a hole that
2305 * exists for the entire range since it hasn't been actually written
2306 * yet. So to take care of this case we need to look for an extent just
2307 * before the position we want in case there is outstanding delalloc
2308 * going on here.
2309 */
2310 if (whence == SEEK_HOLE && start != 0) {
2311 if (start <= root->sectorsize)
2312 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
2313 root->sectorsize, 0);
2314 else
2315 em = btrfs_get_extent_fiemap(inode, NULL, 0,
2316 start - root->sectorsize,
2317 root->sectorsize, 0);
2318 if (IS_ERR(em)) {
2319 ret = PTR_ERR(em);
2320 goto out;
2321 }
2322 last_end = em->start + em->len;
2323 if (em->block_start == EXTENT_MAP_DELALLOC)
2324 last_end = min_t(u64, last_end, inode->i_size);
2325 free_extent_map(em);
2326 }
2327
2328 while (1) {
2329 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2330 if (IS_ERR(em)) {
2331 ret = PTR_ERR(em);
2332 break;
2333 }
2334
2335 if (em->block_start == EXTENT_MAP_HOLE) {
2336 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2337 if (last_end <= orig_start) {
2338 free_extent_map(em);
2339 ret = -ENXIO;
2340 break;
2341 }
2342 }
2343
2344 if (whence == SEEK_HOLE) {
2345 *offset = start;
2346 free_extent_map(em);
2347 break;
2348 }
2349 } else {
2350 if (whence == SEEK_DATA) {
2351 if (em->block_start == EXTENT_MAP_DELALLOC) {
2352 if (start >= inode->i_size) {
2353 free_extent_map(em);
2354 ret = -ENXIO;
2355 break;
2356 }
2357 }
2358
2359 if (!test_bit(EXTENT_FLAG_PREALLOC,
2360 &em->flags)) {
2361 *offset = start;
2362 free_extent_map(em);
2363 break;
2364 }
2365 }
2366 }
2367
2368 start = em->start + em->len;
2369 last_end = em->start + em->len;
2370
2371 if (em->block_start == EXTENT_MAP_DELALLOC)
2372 last_end = min_t(u64, last_end, inode->i_size);
2373
2374 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2375 free_extent_map(em);
2376 ret = -ENXIO;
2377 break;
2378 }
2379 free_extent_map(em);
2380 cond_resched();
2381 }
2382 if (!ret)
2383 *offset = min(*offset, inode->i_size);
2384 out:
2385 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2386 &cached_state, GFP_NOFS);
2387 return ret;
2388 }
2389
2390 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2391 {
2392 struct inode *inode = file->f_mapping->host;
2393 int ret;
2394
2395 mutex_lock(&inode->i_mutex);
2396 switch (whence) {
2397 case SEEK_END:
2398 case SEEK_CUR:
2399 offset = generic_file_llseek(file, offset, whence);
2400 goto out;
2401 case SEEK_DATA:
2402 case SEEK_HOLE:
2403 if (offset >= i_size_read(inode)) {
2404 mutex_unlock(&inode->i_mutex);
2405 return -ENXIO;
2406 }
2407
2408 ret = find_desired_extent(inode, &offset, whence);
2409 if (ret) {
2410 mutex_unlock(&inode->i_mutex);
2411 return ret;
2412 }
2413 }
2414
2415 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
2416 offset = -EINVAL;
2417 goto out;
2418 }
2419 if (offset > inode->i_sb->s_maxbytes) {
2420 offset = -EINVAL;
2421 goto out;
2422 }
2423
2424 /* Special lock needed here? */
2425 if (offset != file->f_pos) {
2426 file->f_pos = offset;
2427 file->f_version = 0;
2428 }
2429 out:
2430 mutex_unlock(&inode->i_mutex);
2431 return offset;
2432 }
2433
2434 const struct file_operations btrfs_file_operations = {
2435 .llseek = btrfs_file_llseek,
2436 .read = do_sync_read,
2437 .write = do_sync_write,
2438 .aio_read = generic_file_aio_read,
2439 .splice_read = generic_file_splice_read,
2440 .aio_write = btrfs_file_aio_write,
2441 .mmap = btrfs_file_mmap,
2442 .open = generic_file_open,
2443 .release = btrfs_release_file,
2444 .fsync = btrfs_sync_file,
2445 .fallocate = btrfs_fallocate,
2446 .unlocked_ioctl = btrfs_ioctl,
2447 #ifdef CONFIG_COMPAT
2448 .compat_ioctl = btrfs_ioctl,
2449 #endif
2450 };
2451
2452 void btrfs_auto_defrag_exit(void)
2453 {
2454 if (btrfs_inode_defrag_cachep)
2455 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2456 }
2457
2458 int btrfs_auto_defrag_init(void)
2459 {
2460 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2461 sizeof(struct inode_defrag), 0,
2462 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2463 NULL);
2464 if (!btrfs_inode_defrag_cachep)
2465 return -ENOMEM;
2466
2467 return 0;
2468 }