Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include "extent_io.h"
14 #include "extent_map.h"
15 #include "compat.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18
19 static struct kmem_cache *extent_state_cache;
20 static struct kmem_cache *extent_buffer_cache;
21
22 static LIST_HEAD(buffers);
23 static LIST_HEAD(states);
24
25 #define LEAK_DEBUG 0
26 #if LEAK_DEBUG
27 static DEFINE_SPINLOCK(leak_lock);
28 #endif
29
30 #define BUFFER_LRU_MAX 64
31
32 struct tree_entry {
33 u64 start;
34 u64 end;
35 struct rb_node rb_node;
36 };
37
38 struct extent_page_data {
39 struct bio *bio;
40 struct extent_io_tree *tree;
41 get_extent_t *get_extent;
42
43 /* tells writepage not to lock the state bits for this range
44 * it still does the unlocking
45 */
46 unsigned int extent_locked:1;
47
48 /* tells the submit_bio code to use a WRITE_SYNC */
49 unsigned int sync_io:1;
50 };
51
52 int __init extent_io_init(void)
53 {
54 extent_state_cache = kmem_cache_create("extent_state",
55 sizeof(struct extent_state), 0,
56 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
57 if (!extent_state_cache)
58 return -ENOMEM;
59
60 extent_buffer_cache = kmem_cache_create("extent_buffers",
61 sizeof(struct extent_buffer), 0,
62 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
63 if (!extent_buffer_cache)
64 goto free_state_cache;
65 return 0;
66
67 free_state_cache:
68 kmem_cache_destroy(extent_state_cache);
69 return -ENOMEM;
70 }
71
72 void extent_io_exit(void)
73 {
74 struct extent_state *state;
75 struct extent_buffer *eb;
76
77 while (!list_empty(&states)) {
78 state = list_entry(states.next, struct extent_state, leak_list);
79 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
80 "state %lu in tree %p refs %d\n",
81 (unsigned long long)state->start,
82 (unsigned long long)state->end,
83 state->state, state->tree, atomic_read(&state->refs));
84 list_del(&state->leak_list);
85 kmem_cache_free(extent_state_cache, state);
86
87 }
88
89 while (!list_empty(&buffers)) {
90 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
91 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
92 "refs %d\n", (unsigned long long)eb->start,
93 eb->len, atomic_read(&eb->refs));
94 list_del(&eb->leak_list);
95 kmem_cache_free(extent_buffer_cache, eb);
96 }
97 if (extent_state_cache)
98 kmem_cache_destroy(extent_state_cache);
99 if (extent_buffer_cache)
100 kmem_cache_destroy(extent_buffer_cache);
101 }
102
103 void extent_io_tree_init(struct extent_io_tree *tree,
104 struct address_space *mapping, gfp_t mask)
105 {
106 tree->state = RB_ROOT;
107 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
108 tree->ops = NULL;
109 tree->dirty_bytes = 0;
110 spin_lock_init(&tree->lock);
111 spin_lock_init(&tree->buffer_lock);
112 tree->mapping = mapping;
113 }
114
115 static struct extent_state *alloc_extent_state(gfp_t mask)
116 {
117 struct extent_state *state;
118 #if LEAK_DEBUG
119 unsigned long flags;
120 #endif
121
122 state = kmem_cache_alloc(extent_state_cache, mask);
123 if (!state)
124 return state;
125 state->state = 0;
126 state->private = 0;
127 state->tree = NULL;
128 #if LEAK_DEBUG
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
132 #endif
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
135 return state;
136 }
137
138 void free_extent_state(struct extent_state *state)
139 {
140 if (!state)
141 return;
142 if (atomic_dec_and_test(&state->refs)) {
143 #if LEAK_DEBUG
144 unsigned long flags;
145 #endif
146 WARN_ON(state->tree);
147 #if LEAK_DEBUG
148 spin_lock_irqsave(&leak_lock, flags);
149 list_del(&state->leak_list);
150 spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152 kmem_cache_free(extent_state_cache, state);
153 }
154 }
155
156 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
157 struct rb_node *node)
158 {
159 struct rb_node **p = &root->rb_node;
160 struct rb_node *parent = NULL;
161 struct tree_entry *entry;
162
163 while (*p) {
164 parent = *p;
165 entry = rb_entry(parent, struct tree_entry, rb_node);
166
167 if (offset < entry->start)
168 p = &(*p)->rb_left;
169 else if (offset > entry->end)
170 p = &(*p)->rb_right;
171 else
172 return parent;
173 }
174
175 entry = rb_entry(node, struct tree_entry, rb_node);
176 rb_link_node(node, parent, p);
177 rb_insert_color(node, root);
178 return NULL;
179 }
180
181 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
182 struct rb_node **prev_ret,
183 struct rb_node **next_ret)
184 {
185 struct rb_root *root = &tree->state;
186 struct rb_node *n = root->rb_node;
187 struct rb_node *prev = NULL;
188 struct rb_node *orig_prev = NULL;
189 struct tree_entry *entry;
190 struct tree_entry *prev_entry = NULL;
191
192 while (n) {
193 entry = rb_entry(n, struct tree_entry, rb_node);
194 prev = n;
195 prev_entry = entry;
196
197 if (offset < entry->start)
198 n = n->rb_left;
199 else if (offset > entry->end)
200 n = n->rb_right;
201 else
202 return n;
203 }
204
205 if (prev_ret) {
206 orig_prev = prev;
207 while (prev && offset > prev_entry->end) {
208 prev = rb_next(prev);
209 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
210 }
211 *prev_ret = prev;
212 prev = orig_prev;
213 }
214
215 if (next_ret) {
216 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 while (prev && offset < prev_entry->start) {
218 prev = rb_prev(prev);
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 }
221 *next_ret = prev;
222 }
223 return NULL;
224 }
225
226 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
227 u64 offset)
228 {
229 struct rb_node *prev = NULL;
230 struct rb_node *ret;
231
232 ret = __etree_search(tree, offset, &prev, NULL);
233 if (!ret)
234 return prev;
235 return ret;
236 }
237
238 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
239 struct extent_state *other)
240 {
241 if (tree->ops && tree->ops->merge_extent_hook)
242 tree->ops->merge_extent_hook(tree->mapping->host, new,
243 other);
244 }
245
246 /*
247 * utility function to look for merge candidates inside a given range.
248 * Any extents with matching state are merged together into a single
249 * extent in the tree. Extents with EXTENT_IO in their state field
250 * are not merged because the end_io handlers need to be able to do
251 * operations on them without sleeping (or doing allocations/splits).
252 *
253 * This should be called with the tree lock held.
254 */
255 static int merge_state(struct extent_io_tree *tree,
256 struct extent_state *state)
257 {
258 struct extent_state *other;
259 struct rb_node *other_node;
260
261 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
262 return 0;
263
264 other_node = rb_prev(&state->rb_node);
265 if (other_node) {
266 other = rb_entry(other_node, struct extent_state, rb_node);
267 if (other->end == state->start - 1 &&
268 other->state == state->state) {
269 merge_cb(tree, state, other);
270 state->start = other->start;
271 other->tree = NULL;
272 rb_erase(&other->rb_node, &tree->state);
273 free_extent_state(other);
274 }
275 }
276 other_node = rb_next(&state->rb_node);
277 if (other_node) {
278 other = rb_entry(other_node, struct extent_state, rb_node);
279 if (other->start == state->end + 1 &&
280 other->state == state->state) {
281 merge_cb(tree, state, other);
282 other->start = state->start;
283 state->tree = NULL;
284 rb_erase(&state->rb_node, &tree->state);
285 free_extent_state(state);
286 state = NULL;
287 }
288 }
289
290 return 0;
291 }
292
293 static int set_state_cb(struct extent_io_tree *tree,
294 struct extent_state *state, int *bits)
295 {
296 if (tree->ops && tree->ops->set_bit_hook) {
297 return tree->ops->set_bit_hook(tree->mapping->host,
298 state, bits);
299 }
300
301 return 0;
302 }
303
304 static void clear_state_cb(struct extent_io_tree *tree,
305 struct extent_state *state, int *bits)
306 {
307 if (tree->ops && tree->ops->clear_bit_hook)
308 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
309 }
310
311 /*
312 * insert an extent_state struct into the tree. 'bits' are set on the
313 * struct before it is inserted.
314 *
315 * This may return -EEXIST if the extent is already there, in which case the
316 * state struct is freed.
317 *
318 * The tree lock is not taken internally. This is a utility function and
319 * probably isn't what you want to call (see set/clear_extent_bit).
320 */
321 static int insert_state(struct extent_io_tree *tree,
322 struct extent_state *state, u64 start, u64 end,
323 int *bits)
324 {
325 struct rb_node *node;
326 int bits_to_set = *bits & ~EXTENT_CTLBITS;
327 int ret;
328
329 if (end < start) {
330 printk(KERN_ERR "btrfs end < start %llu %llu\n",
331 (unsigned long long)end,
332 (unsigned long long)start);
333 WARN_ON(1);
334 }
335 state->start = start;
336 state->end = end;
337 ret = set_state_cb(tree, state, bits);
338 if (ret)
339 return ret;
340
341 if (bits_to_set & EXTENT_DIRTY)
342 tree->dirty_bytes += end - start + 1;
343 state->state |= bits_to_set;
344 node = tree_insert(&tree->state, end, &state->rb_node);
345 if (node) {
346 struct extent_state *found;
347 found = rb_entry(node, struct extent_state, rb_node);
348 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
349 "%llu %llu\n", (unsigned long long)found->start,
350 (unsigned long long)found->end,
351 (unsigned long long)start, (unsigned long long)end);
352 free_extent_state(state);
353 return -EEXIST;
354 }
355 state->tree = tree;
356 merge_state(tree, state);
357 return 0;
358 }
359
360 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
361 u64 split)
362 {
363 if (tree->ops && tree->ops->split_extent_hook)
364 return tree->ops->split_extent_hook(tree->mapping->host,
365 orig, split);
366 return 0;
367 }
368
369 /*
370 * split a given extent state struct in two, inserting the preallocated
371 * struct 'prealloc' as the newly created second half. 'split' indicates an
372 * offset inside 'orig' where it should be split.
373 *
374 * Before calling,
375 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
376 * are two extent state structs in the tree:
377 * prealloc: [orig->start, split - 1]
378 * orig: [ split, orig->end ]
379 *
380 * The tree locks are not taken by this function. They need to be held
381 * by the caller.
382 */
383 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
384 struct extent_state *prealloc, u64 split)
385 {
386 struct rb_node *node;
387
388 split_cb(tree, orig, split);
389
390 prealloc->start = orig->start;
391 prealloc->end = split - 1;
392 prealloc->state = orig->state;
393 orig->start = split;
394
395 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
396 if (node) {
397 free_extent_state(prealloc);
398 return -EEXIST;
399 }
400 prealloc->tree = tree;
401 return 0;
402 }
403
404 /*
405 * utility function to clear some bits in an extent state struct.
406 * it will optionally wake up any one waiting on this state (wake == 1), or
407 * forcibly remove the state from the tree (delete == 1).
408 *
409 * If no bits are set on the state struct after clearing things, the
410 * struct is freed and removed from the tree
411 */
412 static int clear_state_bit(struct extent_io_tree *tree,
413 struct extent_state *state,
414 int *bits, int wake)
415 {
416 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
417 int ret = state->state & bits_to_clear;
418
419 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
420 u64 range = state->end - state->start + 1;
421 WARN_ON(range > tree->dirty_bytes);
422 tree->dirty_bytes -= range;
423 }
424 clear_state_cb(tree, state, bits);
425 state->state &= ~bits_to_clear;
426 if (wake)
427 wake_up(&state->wq);
428 if (state->state == 0) {
429 if (state->tree) {
430 rb_erase(&state->rb_node, &tree->state);
431 state->tree = NULL;
432 free_extent_state(state);
433 } else {
434 WARN_ON(1);
435 }
436 } else {
437 merge_state(tree, state);
438 }
439 return ret;
440 }
441
442 /*
443 * clear some bits on a range in the tree. This may require splitting
444 * or inserting elements in the tree, so the gfp mask is used to
445 * indicate which allocations or sleeping are allowed.
446 *
447 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448 * the given range from the tree regardless of state (ie for truncate).
449 *
450 * the range [start, end] is inclusive.
451 *
452 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453 * bits were already set, or zero if none of the bits were already set.
454 */
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456 int bits, int wake, int delete,
457 struct extent_state **cached_state,
458 gfp_t mask)
459 {
460 struct extent_state *state;
461 struct extent_state *cached;
462 struct extent_state *prealloc = NULL;
463 struct rb_node *next_node;
464 struct rb_node *node;
465 u64 last_end;
466 int err;
467 int set = 0;
468 int clear = 0;
469
470 if (delete)
471 bits |= ~EXTENT_CTLBITS;
472 bits |= EXTENT_FIRST_DELALLOC;
473
474 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475 clear = 1;
476 again:
477 if (!prealloc && (mask & __GFP_WAIT)) {
478 prealloc = alloc_extent_state(mask);
479 if (!prealloc)
480 return -ENOMEM;
481 }
482
483 spin_lock(&tree->lock);
484 if (cached_state) {
485 cached = *cached_state;
486
487 if (clear) {
488 *cached_state = NULL;
489 cached_state = NULL;
490 }
491
492 if (cached && cached->tree && cached->start == start) {
493 if (clear)
494 atomic_dec(&cached->refs);
495 state = cached;
496 goto hit_next;
497 }
498 if (clear)
499 free_extent_state(cached);
500 }
501 /*
502 * this search will find the extents that end after
503 * our range starts
504 */
505 node = tree_search(tree, start);
506 if (!node)
507 goto out;
508 state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510 if (state->start > end)
511 goto out;
512 WARN_ON(state->end < start);
513 last_end = state->end;
514
515 /*
516 * | ---- desired range ---- |
517 * | state | or
518 * | ------------- state -------------- |
519 *
520 * We need to split the extent we found, and may flip
521 * bits on second half.
522 *
523 * If the extent we found extends past our range, we
524 * just split and search again. It'll get split again
525 * the next time though.
526 *
527 * If the extent we found is inside our range, we clear
528 * the desired bit on it.
529 */
530
531 if (state->start < start) {
532 if (!prealloc)
533 prealloc = alloc_extent_state(GFP_ATOMIC);
534 err = split_state(tree, state, prealloc, start);
535 BUG_ON(err == -EEXIST);
536 prealloc = NULL;
537 if (err)
538 goto out;
539 if (state->end <= end) {
540 set |= clear_state_bit(tree, state, &bits, wake);
541 if (last_end == (u64)-1)
542 goto out;
543 start = last_end + 1;
544 }
545 goto search_again;
546 }
547 /*
548 * | ---- desired range ---- |
549 * | state |
550 * We need to split the extent, and clear the bit
551 * on the first half
552 */
553 if (state->start <= end && state->end > end) {
554 if (!prealloc)
555 prealloc = alloc_extent_state(GFP_ATOMIC);
556 err = split_state(tree, state, prealloc, end + 1);
557 BUG_ON(err == -EEXIST);
558 if (wake)
559 wake_up(&state->wq);
560
561 set |= clear_state_bit(tree, prealloc, &bits, wake);
562
563 prealloc = NULL;
564 goto out;
565 }
566
567 if (state->end < end && prealloc && !need_resched())
568 next_node = rb_next(&state->rb_node);
569 else
570 next_node = NULL;
571
572 set |= clear_state_bit(tree, state, &bits, wake);
573 if (last_end == (u64)-1)
574 goto out;
575 start = last_end + 1;
576 if (start <= end && next_node) {
577 state = rb_entry(next_node, struct extent_state,
578 rb_node);
579 if (state->start == start)
580 goto hit_next;
581 }
582 goto search_again;
583
584 out:
585 spin_unlock(&tree->lock);
586 if (prealloc)
587 free_extent_state(prealloc);
588
589 return set;
590
591 search_again:
592 if (start > end)
593 goto out;
594 spin_unlock(&tree->lock);
595 if (mask & __GFP_WAIT)
596 cond_resched();
597 goto again;
598 }
599
600 static int wait_on_state(struct extent_io_tree *tree,
601 struct extent_state *state)
602 __releases(tree->lock)
603 __acquires(tree->lock)
604 {
605 DEFINE_WAIT(wait);
606 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&tree->lock);
608 schedule();
609 spin_lock(&tree->lock);
610 finish_wait(&state->wq, &wait);
611 return 0;
612 }
613
614 /*
615 * waits for one or more bits to clear on a range in the state tree.
616 * The range [start, end] is inclusive.
617 * The tree lock is taken by this function
618 */
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
620 {
621 struct extent_state *state;
622 struct rb_node *node;
623
624 spin_lock(&tree->lock);
625 again:
626 while (1) {
627 /*
628 * this search will find all the extents that end after
629 * our range starts
630 */
631 node = tree_search(tree, start);
632 if (!node)
633 break;
634
635 state = rb_entry(node, struct extent_state, rb_node);
636
637 if (state->start > end)
638 goto out;
639
640 if (state->state & bits) {
641 start = state->start;
642 atomic_inc(&state->refs);
643 wait_on_state(tree, state);
644 free_extent_state(state);
645 goto again;
646 }
647 start = state->end + 1;
648
649 if (start > end)
650 break;
651
652 if (need_resched()) {
653 spin_unlock(&tree->lock);
654 cond_resched();
655 spin_lock(&tree->lock);
656 }
657 }
658 out:
659 spin_unlock(&tree->lock);
660 return 0;
661 }
662
663 static int set_state_bits(struct extent_io_tree *tree,
664 struct extent_state *state,
665 int *bits)
666 {
667 int ret;
668 int bits_to_set = *bits & ~EXTENT_CTLBITS;
669
670 ret = set_state_cb(tree, state, bits);
671 if (ret)
672 return ret;
673 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
674 u64 range = state->end - state->start + 1;
675 tree->dirty_bytes += range;
676 }
677 state->state |= bits_to_set;
678
679 return 0;
680 }
681
682 static void cache_state(struct extent_state *state,
683 struct extent_state **cached_ptr)
684 {
685 if (cached_ptr && !(*cached_ptr)) {
686 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
687 *cached_ptr = state;
688 atomic_inc(&state->refs);
689 }
690 }
691 }
692
693 /*
694 * set some bits on a range in the tree. This may require allocations or
695 * sleeping, so the gfp mask is used to indicate what is allowed.
696 *
697 * If any of the exclusive bits are set, this will fail with -EEXIST if some
698 * part of the range already has the desired bits set. The start of the
699 * existing range is returned in failed_start in this case.
700 *
701 * [start, end] is inclusive This takes the tree lock.
702 */
703
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 int bits, int exclusive_bits, u64 *failed_start,
706 struct extent_state **cached_state, gfp_t mask)
707 {
708 struct extent_state *state;
709 struct extent_state *prealloc = NULL;
710 struct rb_node *node;
711 int err = 0;
712 u64 last_start;
713 u64 last_end;
714
715 bits |= EXTENT_FIRST_DELALLOC;
716 again:
717 if (!prealloc && (mask & __GFP_WAIT)) {
718 prealloc = alloc_extent_state(mask);
719 if (!prealloc)
720 return -ENOMEM;
721 }
722
723 spin_lock(&tree->lock);
724 if (cached_state && *cached_state) {
725 state = *cached_state;
726 if (state->start == start && state->tree) {
727 node = &state->rb_node;
728 goto hit_next;
729 }
730 }
731 /*
732 * this search will find all the extents that end after
733 * our range starts.
734 */
735 node = tree_search(tree, start);
736 if (!node) {
737 err = insert_state(tree, prealloc, start, end, &bits);
738 prealloc = NULL;
739 BUG_ON(err == -EEXIST);
740 goto out;
741 }
742 state = rb_entry(node, struct extent_state, rb_node);
743 hit_next:
744 last_start = state->start;
745 last_end = state->end;
746
747 /*
748 * | ---- desired range ---- |
749 * | state |
750 *
751 * Just lock what we found and keep going
752 */
753 if (state->start == start && state->end <= end) {
754 struct rb_node *next_node;
755 if (state->state & exclusive_bits) {
756 *failed_start = state->start;
757 err = -EEXIST;
758 goto out;
759 }
760
761 err = set_state_bits(tree, state, &bits);
762 if (err)
763 goto out;
764
765 cache_state(state, cached_state);
766 merge_state(tree, state);
767 if (last_end == (u64)-1)
768 goto out;
769
770 start = last_end + 1;
771 if (start < end && prealloc && !need_resched()) {
772 next_node = rb_next(node);
773 if (next_node) {
774 state = rb_entry(next_node, struct extent_state,
775 rb_node);
776 if (state->start == start)
777 goto hit_next;
778 }
779 }
780 goto search_again;
781 }
782
783 /*
784 * | ---- desired range ---- |
785 * | state |
786 * or
787 * | ------------- state -------------- |
788 *
789 * We need to split the extent we found, and may flip bits on
790 * second half.
791 *
792 * If the extent we found extends past our
793 * range, we just split and search again. It'll get split
794 * again the next time though.
795 *
796 * If the extent we found is inside our range, we set the
797 * desired bit on it.
798 */
799 if (state->start < start) {
800 if (state->state & exclusive_bits) {
801 *failed_start = start;
802 err = -EEXIST;
803 goto out;
804 }
805 err = split_state(tree, state, prealloc, start);
806 BUG_ON(err == -EEXIST);
807 prealloc = NULL;
808 if (err)
809 goto out;
810 if (state->end <= end) {
811 err = set_state_bits(tree, state, &bits);
812 if (err)
813 goto out;
814 cache_state(state, cached_state);
815 merge_state(tree, state);
816 if (last_end == (u64)-1)
817 goto out;
818 start = last_end + 1;
819 }
820 goto search_again;
821 }
822 /*
823 * | ---- desired range ---- |
824 * | state | or | state |
825 *
826 * There's a hole, we need to insert something in it and
827 * ignore the extent we found.
828 */
829 if (state->start > start) {
830 u64 this_end;
831 if (end < last_start)
832 this_end = end;
833 else
834 this_end = last_start - 1;
835 err = insert_state(tree, prealloc, start, this_end,
836 &bits);
837 BUG_ON(err == -EEXIST);
838 if (err) {
839 prealloc = NULL;
840 goto out;
841 }
842 cache_state(prealloc, cached_state);
843 prealloc = NULL;
844 start = this_end + 1;
845 goto search_again;
846 }
847 /*
848 * | ---- desired range ---- |
849 * | state |
850 * We need to split the extent, and set the bit
851 * on the first half
852 */
853 if (state->start <= end && state->end > end) {
854 if (state->state & exclusive_bits) {
855 *failed_start = start;
856 err = -EEXIST;
857 goto out;
858 }
859 err = split_state(tree, state, prealloc, end + 1);
860 BUG_ON(err == -EEXIST);
861
862 err = set_state_bits(tree, prealloc, &bits);
863 if (err) {
864 prealloc = NULL;
865 goto out;
866 }
867 cache_state(prealloc, cached_state);
868 merge_state(tree, prealloc);
869 prealloc = NULL;
870 goto out;
871 }
872
873 goto search_again;
874
875 out:
876 spin_unlock(&tree->lock);
877 if (prealloc)
878 free_extent_state(prealloc);
879
880 return err;
881
882 search_again:
883 if (start > end)
884 goto out;
885 spin_unlock(&tree->lock);
886 if (mask & __GFP_WAIT)
887 cond_resched();
888 goto again;
889 }
890
891 /* wrappers around set/clear extent bit */
892 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
893 gfp_t mask)
894 {
895 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
896 NULL, mask);
897 }
898
899 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
900 int bits, gfp_t mask)
901 {
902 return set_extent_bit(tree, start, end, bits, 0, NULL,
903 NULL, mask);
904 }
905
906 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
907 int bits, gfp_t mask)
908 {
909 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
910 }
911
912 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
913 struct extent_state **cached_state, gfp_t mask)
914 {
915 return set_extent_bit(tree, start, end,
916 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
917 0, NULL, cached_state, mask);
918 }
919
920 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
921 gfp_t mask)
922 {
923 return clear_extent_bit(tree, start, end,
924 EXTENT_DIRTY | EXTENT_DELALLOC |
925 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
926 }
927
928 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
929 gfp_t mask)
930 {
931 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
932 NULL, mask);
933 }
934
935 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
936 gfp_t mask)
937 {
938 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
939 NULL, mask);
940 }
941
942 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
943 gfp_t mask)
944 {
945 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
946 NULL, mask);
947 }
948
949 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
950 u64 end, struct extent_state **cached_state,
951 gfp_t mask)
952 {
953 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
954 cached_state, mask);
955 }
956
957 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
958 {
959 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
960 }
961
962 /*
963 * either insert or lock state struct between start and end use mask to tell
964 * us if waiting is desired.
965 */
966 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
967 int bits, struct extent_state **cached_state, gfp_t mask)
968 {
969 int err;
970 u64 failed_start;
971 while (1) {
972 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
973 EXTENT_LOCKED, &failed_start,
974 cached_state, mask);
975 if (err == -EEXIST && (mask & __GFP_WAIT)) {
976 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
977 start = failed_start;
978 } else {
979 break;
980 }
981 WARN_ON(start > end);
982 }
983 return err;
984 }
985
986 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
987 {
988 return lock_extent_bits(tree, start, end, 0, NULL, mask);
989 }
990
991 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
992 gfp_t mask)
993 {
994 int err;
995 u64 failed_start;
996
997 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
998 &failed_start, NULL, mask);
999 if (err == -EEXIST) {
1000 if (failed_start > start)
1001 clear_extent_bit(tree, start, failed_start - 1,
1002 EXTENT_LOCKED, 1, 0, NULL, mask);
1003 return 0;
1004 }
1005 return 1;
1006 }
1007
1008 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1009 struct extent_state **cached, gfp_t mask)
1010 {
1011 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1012 mask);
1013 }
1014
1015 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1016 gfp_t mask)
1017 {
1018 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1019 mask);
1020 }
1021
1022 /*
1023 * helper function to set pages and extents in the tree dirty
1024 */
1025 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1026 {
1027 unsigned long index = start >> PAGE_CACHE_SHIFT;
1028 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1029 struct page *page;
1030
1031 while (index <= end_index) {
1032 page = find_get_page(tree->mapping, index);
1033 BUG_ON(!page);
1034 __set_page_dirty_nobuffers(page);
1035 page_cache_release(page);
1036 index++;
1037 }
1038 return 0;
1039 }
1040
1041 /*
1042 * helper function to set both pages and extents in the tree writeback
1043 */
1044 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1045 {
1046 unsigned long index = start >> PAGE_CACHE_SHIFT;
1047 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1048 struct page *page;
1049
1050 while (index <= end_index) {
1051 page = find_get_page(tree->mapping, index);
1052 BUG_ON(!page);
1053 set_page_writeback(page);
1054 page_cache_release(page);
1055 index++;
1056 }
1057 return 0;
1058 }
1059
1060 /*
1061 * find the first offset in the io tree with 'bits' set. zero is
1062 * returned if we find something, and *start_ret and *end_ret are
1063 * set to reflect the state struct that was found.
1064 *
1065 * If nothing was found, 1 is returned, < 0 on error
1066 */
1067 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1068 u64 *start_ret, u64 *end_ret, int bits)
1069 {
1070 struct rb_node *node;
1071 struct extent_state *state;
1072 int ret = 1;
1073
1074 spin_lock(&tree->lock);
1075 /*
1076 * this search will find all the extents that end after
1077 * our range starts.
1078 */
1079 node = tree_search(tree, start);
1080 if (!node)
1081 goto out;
1082
1083 while (1) {
1084 state = rb_entry(node, struct extent_state, rb_node);
1085 if (state->end >= start && (state->state & bits)) {
1086 *start_ret = state->start;
1087 *end_ret = state->end;
1088 ret = 0;
1089 break;
1090 }
1091 node = rb_next(node);
1092 if (!node)
1093 break;
1094 }
1095 out:
1096 spin_unlock(&tree->lock);
1097 return ret;
1098 }
1099
1100 /* find the first state struct with 'bits' set after 'start', and
1101 * return it. tree->lock must be held. NULL will returned if
1102 * nothing was found after 'start'
1103 */
1104 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1105 u64 start, int bits)
1106 {
1107 struct rb_node *node;
1108 struct extent_state *state;
1109
1110 /*
1111 * this search will find all the extents that end after
1112 * our range starts.
1113 */
1114 node = tree_search(tree, start);
1115 if (!node)
1116 goto out;
1117
1118 while (1) {
1119 state = rb_entry(node, struct extent_state, rb_node);
1120 if (state->end >= start && (state->state & bits))
1121 return state;
1122
1123 node = rb_next(node);
1124 if (!node)
1125 break;
1126 }
1127 out:
1128 return NULL;
1129 }
1130
1131 /*
1132 * find a contiguous range of bytes in the file marked as delalloc, not
1133 * more than 'max_bytes'. start and end are used to return the range,
1134 *
1135 * 1 is returned if we find something, 0 if nothing was in the tree
1136 */
1137 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1138 u64 *start, u64 *end, u64 max_bytes,
1139 struct extent_state **cached_state)
1140 {
1141 struct rb_node *node;
1142 struct extent_state *state;
1143 u64 cur_start = *start;
1144 u64 found = 0;
1145 u64 total_bytes = 0;
1146
1147 spin_lock(&tree->lock);
1148
1149 /*
1150 * this search will find all the extents that end after
1151 * our range starts.
1152 */
1153 node = tree_search(tree, cur_start);
1154 if (!node) {
1155 if (!found)
1156 *end = (u64)-1;
1157 goto out;
1158 }
1159
1160 while (1) {
1161 state = rb_entry(node, struct extent_state, rb_node);
1162 if (found && (state->start != cur_start ||
1163 (state->state & EXTENT_BOUNDARY))) {
1164 goto out;
1165 }
1166 if (!(state->state & EXTENT_DELALLOC)) {
1167 if (!found)
1168 *end = state->end;
1169 goto out;
1170 }
1171 if (!found) {
1172 *start = state->start;
1173 *cached_state = state;
1174 atomic_inc(&state->refs);
1175 }
1176 found++;
1177 *end = state->end;
1178 cur_start = state->end + 1;
1179 node = rb_next(node);
1180 if (!node)
1181 break;
1182 total_bytes += state->end - state->start + 1;
1183 if (total_bytes >= max_bytes)
1184 break;
1185 }
1186 out:
1187 spin_unlock(&tree->lock);
1188 return found;
1189 }
1190
1191 static noinline int __unlock_for_delalloc(struct inode *inode,
1192 struct page *locked_page,
1193 u64 start, u64 end)
1194 {
1195 int ret;
1196 struct page *pages[16];
1197 unsigned long index = start >> PAGE_CACHE_SHIFT;
1198 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1199 unsigned long nr_pages = end_index - index + 1;
1200 int i;
1201
1202 if (index == locked_page->index && end_index == index)
1203 return 0;
1204
1205 while (nr_pages > 0) {
1206 ret = find_get_pages_contig(inode->i_mapping, index,
1207 min_t(unsigned long, nr_pages,
1208 ARRAY_SIZE(pages)), pages);
1209 for (i = 0; i < ret; i++) {
1210 if (pages[i] != locked_page)
1211 unlock_page(pages[i]);
1212 page_cache_release(pages[i]);
1213 }
1214 nr_pages -= ret;
1215 index += ret;
1216 cond_resched();
1217 }
1218 return 0;
1219 }
1220
1221 static noinline int lock_delalloc_pages(struct inode *inode,
1222 struct page *locked_page,
1223 u64 delalloc_start,
1224 u64 delalloc_end)
1225 {
1226 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1227 unsigned long start_index = index;
1228 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1229 unsigned long pages_locked = 0;
1230 struct page *pages[16];
1231 unsigned long nrpages;
1232 int ret;
1233 int i;
1234
1235 /* the caller is responsible for locking the start index */
1236 if (index == locked_page->index && index == end_index)
1237 return 0;
1238
1239 /* skip the page at the start index */
1240 nrpages = end_index - index + 1;
1241 while (nrpages > 0) {
1242 ret = find_get_pages_contig(inode->i_mapping, index,
1243 min_t(unsigned long,
1244 nrpages, ARRAY_SIZE(pages)), pages);
1245 if (ret == 0) {
1246 ret = -EAGAIN;
1247 goto done;
1248 }
1249 /* now we have an array of pages, lock them all */
1250 for (i = 0; i < ret; i++) {
1251 /*
1252 * the caller is taking responsibility for
1253 * locked_page
1254 */
1255 if (pages[i] != locked_page) {
1256 lock_page(pages[i]);
1257 if (!PageDirty(pages[i]) ||
1258 pages[i]->mapping != inode->i_mapping) {
1259 ret = -EAGAIN;
1260 unlock_page(pages[i]);
1261 page_cache_release(pages[i]);
1262 goto done;
1263 }
1264 }
1265 page_cache_release(pages[i]);
1266 pages_locked++;
1267 }
1268 nrpages -= ret;
1269 index += ret;
1270 cond_resched();
1271 }
1272 ret = 0;
1273 done:
1274 if (ret && pages_locked) {
1275 __unlock_for_delalloc(inode, locked_page,
1276 delalloc_start,
1277 ((u64)(start_index + pages_locked - 1)) <<
1278 PAGE_CACHE_SHIFT);
1279 }
1280 return ret;
1281 }
1282
1283 /*
1284 * find a contiguous range of bytes in the file marked as delalloc, not
1285 * more than 'max_bytes'. start and end are used to return the range,
1286 *
1287 * 1 is returned if we find something, 0 if nothing was in the tree
1288 */
1289 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1290 struct extent_io_tree *tree,
1291 struct page *locked_page,
1292 u64 *start, u64 *end,
1293 u64 max_bytes)
1294 {
1295 u64 delalloc_start;
1296 u64 delalloc_end;
1297 u64 found;
1298 struct extent_state *cached_state = NULL;
1299 int ret;
1300 int loops = 0;
1301
1302 again:
1303 /* step one, find a bunch of delalloc bytes starting at start */
1304 delalloc_start = *start;
1305 delalloc_end = 0;
1306 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1307 max_bytes, &cached_state);
1308 if (!found || delalloc_end <= *start) {
1309 *start = delalloc_start;
1310 *end = delalloc_end;
1311 free_extent_state(cached_state);
1312 return found;
1313 }
1314
1315 /*
1316 * start comes from the offset of locked_page. We have to lock
1317 * pages in order, so we can't process delalloc bytes before
1318 * locked_page
1319 */
1320 if (delalloc_start < *start)
1321 delalloc_start = *start;
1322
1323 /*
1324 * make sure to limit the number of pages we try to lock down
1325 * if we're looping.
1326 */
1327 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1328 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1329
1330 /* step two, lock all the pages after the page that has start */
1331 ret = lock_delalloc_pages(inode, locked_page,
1332 delalloc_start, delalloc_end);
1333 if (ret == -EAGAIN) {
1334 /* some of the pages are gone, lets avoid looping by
1335 * shortening the size of the delalloc range we're searching
1336 */
1337 free_extent_state(cached_state);
1338 if (!loops) {
1339 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1340 max_bytes = PAGE_CACHE_SIZE - offset;
1341 loops = 1;
1342 goto again;
1343 } else {
1344 found = 0;
1345 goto out_failed;
1346 }
1347 }
1348 BUG_ON(ret);
1349
1350 /* step three, lock the state bits for the whole range */
1351 lock_extent_bits(tree, delalloc_start, delalloc_end,
1352 0, &cached_state, GFP_NOFS);
1353
1354 /* then test to make sure it is all still delalloc */
1355 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1356 EXTENT_DELALLOC, 1, cached_state);
1357 if (!ret) {
1358 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1359 &cached_state, GFP_NOFS);
1360 __unlock_for_delalloc(inode, locked_page,
1361 delalloc_start, delalloc_end);
1362 cond_resched();
1363 goto again;
1364 }
1365 free_extent_state(cached_state);
1366 *start = delalloc_start;
1367 *end = delalloc_end;
1368 out_failed:
1369 return found;
1370 }
1371
1372 int extent_clear_unlock_delalloc(struct inode *inode,
1373 struct extent_io_tree *tree,
1374 u64 start, u64 end, struct page *locked_page,
1375 unsigned long op)
1376 {
1377 int ret;
1378 struct page *pages[16];
1379 unsigned long index = start >> PAGE_CACHE_SHIFT;
1380 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381 unsigned long nr_pages = end_index - index + 1;
1382 int i;
1383 int clear_bits = 0;
1384
1385 if (op & EXTENT_CLEAR_UNLOCK)
1386 clear_bits |= EXTENT_LOCKED;
1387 if (op & EXTENT_CLEAR_DIRTY)
1388 clear_bits |= EXTENT_DIRTY;
1389
1390 if (op & EXTENT_CLEAR_DELALLOC)
1391 clear_bits |= EXTENT_DELALLOC;
1392
1393 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1394 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1395 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1396 EXTENT_SET_PRIVATE2)))
1397 return 0;
1398
1399 while (nr_pages > 0) {
1400 ret = find_get_pages_contig(inode->i_mapping, index,
1401 min_t(unsigned long,
1402 nr_pages, ARRAY_SIZE(pages)), pages);
1403 for (i = 0; i < ret; i++) {
1404
1405 if (op & EXTENT_SET_PRIVATE2)
1406 SetPagePrivate2(pages[i]);
1407
1408 if (pages[i] == locked_page) {
1409 page_cache_release(pages[i]);
1410 continue;
1411 }
1412 if (op & EXTENT_CLEAR_DIRTY)
1413 clear_page_dirty_for_io(pages[i]);
1414 if (op & EXTENT_SET_WRITEBACK)
1415 set_page_writeback(pages[i]);
1416 if (op & EXTENT_END_WRITEBACK)
1417 end_page_writeback(pages[i]);
1418 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1419 unlock_page(pages[i]);
1420 page_cache_release(pages[i]);
1421 }
1422 nr_pages -= ret;
1423 index += ret;
1424 cond_resched();
1425 }
1426 return 0;
1427 }
1428
1429 /*
1430 * count the number of bytes in the tree that have a given bit(s)
1431 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1432 * cached. The total number found is returned.
1433 */
1434 u64 count_range_bits(struct extent_io_tree *tree,
1435 u64 *start, u64 search_end, u64 max_bytes,
1436 unsigned long bits)
1437 {
1438 struct rb_node *node;
1439 struct extent_state *state;
1440 u64 cur_start = *start;
1441 u64 total_bytes = 0;
1442 int found = 0;
1443
1444 if (search_end <= cur_start) {
1445 WARN_ON(1);
1446 return 0;
1447 }
1448
1449 spin_lock(&tree->lock);
1450 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1451 total_bytes = tree->dirty_bytes;
1452 goto out;
1453 }
1454 /*
1455 * this search will find all the extents that end after
1456 * our range starts.
1457 */
1458 node = tree_search(tree, cur_start);
1459 if (!node)
1460 goto out;
1461
1462 while (1) {
1463 state = rb_entry(node, struct extent_state, rb_node);
1464 if (state->start > search_end)
1465 break;
1466 if (state->end >= cur_start && (state->state & bits)) {
1467 total_bytes += min(search_end, state->end) + 1 -
1468 max(cur_start, state->start);
1469 if (total_bytes >= max_bytes)
1470 break;
1471 if (!found) {
1472 *start = state->start;
1473 found = 1;
1474 }
1475 }
1476 node = rb_next(node);
1477 if (!node)
1478 break;
1479 }
1480 out:
1481 spin_unlock(&tree->lock);
1482 return total_bytes;
1483 }
1484
1485 /*
1486 * set the private field for a given byte offset in the tree. If there isn't
1487 * an extent_state there already, this does nothing.
1488 */
1489 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1490 {
1491 struct rb_node *node;
1492 struct extent_state *state;
1493 int ret = 0;
1494
1495 spin_lock(&tree->lock);
1496 /*
1497 * this search will find all the extents that end after
1498 * our range starts.
1499 */
1500 node = tree_search(tree, start);
1501 if (!node) {
1502 ret = -ENOENT;
1503 goto out;
1504 }
1505 state = rb_entry(node, struct extent_state, rb_node);
1506 if (state->start != start) {
1507 ret = -ENOENT;
1508 goto out;
1509 }
1510 state->private = private;
1511 out:
1512 spin_unlock(&tree->lock);
1513 return ret;
1514 }
1515
1516 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1517 {
1518 struct rb_node *node;
1519 struct extent_state *state;
1520 int ret = 0;
1521
1522 spin_lock(&tree->lock);
1523 /*
1524 * this search will find all the extents that end after
1525 * our range starts.
1526 */
1527 node = tree_search(tree, start);
1528 if (!node) {
1529 ret = -ENOENT;
1530 goto out;
1531 }
1532 state = rb_entry(node, struct extent_state, rb_node);
1533 if (state->start != start) {
1534 ret = -ENOENT;
1535 goto out;
1536 }
1537 *private = state->private;
1538 out:
1539 spin_unlock(&tree->lock);
1540 return ret;
1541 }
1542
1543 /*
1544 * searches a range in the state tree for a given mask.
1545 * If 'filled' == 1, this returns 1 only if every extent in the tree
1546 * has the bits set. Otherwise, 1 is returned if any bit in the
1547 * range is found set.
1548 */
1549 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1550 int bits, int filled, struct extent_state *cached)
1551 {
1552 struct extent_state *state = NULL;
1553 struct rb_node *node;
1554 int bitset = 0;
1555
1556 spin_lock(&tree->lock);
1557 if (cached && cached->tree && cached->start == start)
1558 node = &cached->rb_node;
1559 else
1560 node = tree_search(tree, start);
1561 while (node && start <= end) {
1562 state = rb_entry(node, struct extent_state, rb_node);
1563
1564 if (filled && state->start > start) {
1565 bitset = 0;
1566 break;
1567 }
1568
1569 if (state->start > end)
1570 break;
1571
1572 if (state->state & bits) {
1573 bitset = 1;
1574 if (!filled)
1575 break;
1576 } else if (filled) {
1577 bitset = 0;
1578 break;
1579 }
1580
1581 if (state->end == (u64)-1)
1582 break;
1583
1584 start = state->end + 1;
1585 if (start > end)
1586 break;
1587 node = rb_next(node);
1588 if (!node) {
1589 if (filled)
1590 bitset = 0;
1591 break;
1592 }
1593 }
1594 spin_unlock(&tree->lock);
1595 return bitset;
1596 }
1597
1598 /*
1599 * helper function to set a given page up to date if all the
1600 * extents in the tree for that page are up to date
1601 */
1602 static int check_page_uptodate(struct extent_io_tree *tree,
1603 struct page *page)
1604 {
1605 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1606 u64 end = start + PAGE_CACHE_SIZE - 1;
1607 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1608 SetPageUptodate(page);
1609 return 0;
1610 }
1611
1612 /*
1613 * helper function to unlock a page if all the extents in the tree
1614 * for that page are unlocked
1615 */
1616 static int check_page_locked(struct extent_io_tree *tree,
1617 struct page *page)
1618 {
1619 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1620 u64 end = start + PAGE_CACHE_SIZE - 1;
1621 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1622 unlock_page(page);
1623 return 0;
1624 }
1625
1626 /*
1627 * helper function to end page writeback if all the extents
1628 * in the tree for that page are done with writeback
1629 */
1630 static int check_page_writeback(struct extent_io_tree *tree,
1631 struct page *page)
1632 {
1633 end_page_writeback(page);
1634 return 0;
1635 }
1636
1637 /* lots and lots of room for performance fixes in the end_bio funcs */
1638
1639 /*
1640 * after a writepage IO is done, we need to:
1641 * clear the uptodate bits on error
1642 * clear the writeback bits in the extent tree for this IO
1643 * end_page_writeback if the page has no more pending IO
1644 *
1645 * Scheduling is not allowed, so the extent state tree is expected
1646 * to have one and only one object corresponding to this IO.
1647 */
1648 static void end_bio_extent_writepage(struct bio *bio, int err)
1649 {
1650 int uptodate = err == 0;
1651 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1652 struct extent_io_tree *tree;
1653 u64 start;
1654 u64 end;
1655 int whole_page;
1656 int ret;
1657
1658 do {
1659 struct page *page = bvec->bv_page;
1660 tree = &BTRFS_I(page->mapping->host)->io_tree;
1661
1662 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1663 bvec->bv_offset;
1664 end = start + bvec->bv_len - 1;
1665
1666 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1667 whole_page = 1;
1668 else
1669 whole_page = 0;
1670
1671 if (--bvec >= bio->bi_io_vec)
1672 prefetchw(&bvec->bv_page->flags);
1673 if (tree->ops && tree->ops->writepage_end_io_hook) {
1674 ret = tree->ops->writepage_end_io_hook(page, start,
1675 end, NULL, uptodate);
1676 if (ret)
1677 uptodate = 0;
1678 }
1679
1680 if (!uptodate && tree->ops &&
1681 tree->ops->writepage_io_failed_hook) {
1682 ret = tree->ops->writepage_io_failed_hook(bio, page,
1683 start, end, NULL);
1684 if (ret == 0) {
1685 uptodate = (err == 0);
1686 continue;
1687 }
1688 }
1689
1690 if (!uptodate) {
1691 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1692 ClearPageUptodate(page);
1693 SetPageError(page);
1694 }
1695
1696 if (whole_page)
1697 end_page_writeback(page);
1698 else
1699 check_page_writeback(tree, page);
1700 } while (bvec >= bio->bi_io_vec);
1701
1702 bio_put(bio);
1703 }
1704
1705 /*
1706 * after a readpage IO is done, we need to:
1707 * clear the uptodate bits on error
1708 * set the uptodate bits if things worked
1709 * set the page up to date if all extents in the tree are uptodate
1710 * clear the lock bit in the extent tree
1711 * unlock the page if there are no other extents locked for it
1712 *
1713 * Scheduling is not allowed, so the extent state tree is expected
1714 * to have one and only one object corresponding to this IO.
1715 */
1716 static void end_bio_extent_readpage(struct bio *bio, int err)
1717 {
1718 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1719 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1720 struct bio_vec *bvec = bio->bi_io_vec;
1721 struct extent_io_tree *tree;
1722 u64 start;
1723 u64 end;
1724 int whole_page;
1725 int ret;
1726
1727 if (err)
1728 uptodate = 0;
1729
1730 do {
1731 struct page *page = bvec->bv_page;
1732 tree = &BTRFS_I(page->mapping->host)->io_tree;
1733
1734 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1735 bvec->bv_offset;
1736 end = start + bvec->bv_len - 1;
1737
1738 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1739 whole_page = 1;
1740 else
1741 whole_page = 0;
1742
1743 if (++bvec <= bvec_end)
1744 prefetchw(&bvec->bv_page->flags);
1745
1746 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1747 ret = tree->ops->readpage_end_io_hook(page, start, end,
1748 NULL);
1749 if (ret)
1750 uptodate = 0;
1751 }
1752 if (!uptodate && tree->ops &&
1753 tree->ops->readpage_io_failed_hook) {
1754 ret = tree->ops->readpage_io_failed_hook(bio, page,
1755 start, end, NULL);
1756 if (ret == 0) {
1757 uptodate =
1758 test_bit(BIO_UPTODATE, &bio->bi_flags);
1759 if (err)
1760 uptodate = 0;
1761 continue;
1762 }
1763 }
1764
1765 if (uptodate) {
1766 set_extent_uptodate(tree, start, end,
1767 GFP_ATOMIC);
1768 }
1769 unlock_extent(tree, start, end, GFP_ATOMIC);
1770
1771 if (whole_page) {
1772 if (uptodate) {
1773 SetPageUptodate(page);
1774 } else {
1775 ClearPageUptodate(page);
1776 SetPageError(page);
1777 }
1778 unlock_page(page);
1779 } else {
1780 if (uptodate) {
1781 check_page_uptodate(tree, page);
1782 } else {
1783 ClearPageUptodate(page);
1784 SetPageError(page);
1785 }
1786 check_page_locked(tree, page);
1787 }
1788 } while (bvec <= bvec_end);
1789
1790 bio_put(bio);
1791 }
1792
1793 /*
1794 * IO done from prepare_write is pretty simple, we just unlock
1795 * the structs in the extent tree when done, and set the uptodate bits
1796 * as appropriate.
1797 */
1798 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1799 {
1800 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1801 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1802 struct extent_io_tree *tree;
1803 u64 start;
1804 u64 end;
1805
1806 do {
1807 struct page *page = bvec->bv_page;
1808 tree = &BTRFS_I(page->mapping->host)->io_tree;
1809
1810 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1811 bvec->bv_offset;
1812 end = start + bvec->bv_len - 1;
1813
1814 if (--bvec >= bio->bi_io_vec)
1815 prefetchw(&bvec->bv_page->flags);
1816
1817 if (uptodate) {
1818 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1819 } else {
1820 ClearPageUptodate(page);
1821 SetPageError(page);
1822 }
1823
1824 unlock_extent(tree, start, end, GFP_ATOMIC);
1825
1826 } while (bvec >= bio->bi_io_vec);
1827
1828 bio_put(bio);
1829 }
1830
1831 struct bio *
1832 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1833 gfp_t gfp_flags)
1834 {
1835 struct bio *bio;
1836
1837 bio = bio_alloc(gfp_flags, nr_vecs);
1838
1839 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1840 while (!bio && (nr_vecs /= 2))
1841 bio = bio_alloc(gfp_flags, nr_vecs);
1842 }
1843
1844 if (bio) {
1845 bio->bi_size = 0;
1846 bio->bi_bdev = bdev;
1847 bio->bi_sector = first_sector;
1848 }
1849 return bio;
1850 }
1851
1852 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1853 unsigned long bio_flags)
1854 {
1855 int ret = 0;
1856 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1857 struct page *page = bvec->bv_page;
1858 struct extent_io_tree *tree = bio->bi_private;
1859 u64 start;
1860
1861 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1862
1863 bio->bi_private = NULL;
1864
1865 bio_get(bio);
1866
1867 if (tree->ops && tree->ops->submit_bio_hook)
1868 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1869 mirror_num, bio_flags, start);
1870 else
1871 submit_bio(rw, bio);
1872 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1873 ret = -EOPNOTSUPP;
1874 bio_put(bio);
1875 return ret;
1876 }
1877
1878 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1879 struct page *page, sector_t sector,
1880 size_t size, unsigned long offset,
1881 struct block_device *bdev,
1882 struct bio **bio_ret,
1883 unsigned long max_pages,
1884 bio_end_io_t end_io_func,
1885 int mirror_num,
1886 unsigned long prev_bio_flags,
1887 unsigned long bio_flags)
1888 {
1889 int ret = 0;
1890 struct bio *bio;
1891 int nr;
1892 int contig = 0;
1893 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1894 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1895 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1896
1897 if (bio_ret && *bio_ret) {
1898 bio = *bio_ret;
1899 if (old_compressed)
1900 contig = bio->bi_sector == sector;
1901 else
1902 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1903 sector;
1904
1905 if (prev_bio_flags != bio_flags || !contig ||
1906 (tree->ops && tree->ops->merge_bio_hook &&
1907 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1908 bio_flags)) ||
1909 bio_add_page(bio, page, page_size, offset) < page_size) {
1910 ret = submit_one_bio(rw, bio, mirror_num,
1911 prev_bio_flags);
1912 bio = NULL;
1913 } else {
1914 return 0;
1915 }
1916 }
1917 if (this_compressed)
1918 nr = BIO_MAX_PAGES;
1919 else
1920 nr = bio_get_nr_vecs(bdev);
1921
1922 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1923
1924 bio_add_page(bio, page, page_size, offset);
1925 bio->bi_end_io = end_io_func;
1926 bio->bi_private = tree;
1927
1928 if (bio_ret)
1929 *bio_ret = bio;
1930 else
1931 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1932
1933 return ret;
1934 }
1935
1936 void set_page_extent_mapped(struct page *page)
1937 {
1938 if (!PagePrivate(page)) {
1939 SetPagePrivate(page);
1940 page_cache_get(page);
1941 set_page_private(page, EXTENT_PAGE_PRIVATE);
1942 }
1943 }
1944
1945 static void set_page_extent_head(struct page *page, unsigned long len)
1946 {
1947 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1948 }
1949
1950 /*
1951 * basic readpage implementation. Locked extent state structs are inserted
1952 * into the tree that are removed when the IO is done (by the end_io
1953 * handlers)
1954 */
1955 static int __extent_read_full_page(struct extent_io_tree *tree,
1956 struct page *page,
1957 get_extent_t *get_extent,
1958 struct bio **bio, int mirror_num,
1959 unsigned long *bio_flags)
1960 {
1961 struct inode *inode = page->mapping->host;
1962 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1963 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1964 u64 end;
1965 u64 cur = start;
1966 u64 extent_offset;
1967 u64 last_byte = i_size_read(inode);
1968 u64 block_start;
1969 u64 cur_end;
1970 sector_t sector;
1971 struct extent_map *em;
1972 struct block_device *bdev;
1973 struct btrfs_ordered_extent *ordered;
1974 int ret;
1975 int nr = 0;
1976 size_t page_offset = 0;
1977 size_t iosize;
1978 size_t disk_io_size;
1979 size_t blocksize = inode->i_sb->s_blocksize;
1980 unsigned long this_bio_flag = 0;
1981
1982 set_page_extent_mapped(page);
1983
1984 end = page_end;
1985 while (1) {
1986 lock_extent(tree, start, end, GFP_NOFS);
1987 ordered = btrfs_lookup_ordered_extent(inode, start);
1988 if (!ordered)
1989 break;
1990 unlock_extent(tree, start, end, GFP_NOFS);
1991 btrfs_start_ordered_extent(inode, ordered, 1);
1992 btrfs_put_ordered_extent(ordered);
1993 }
1994
1995 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1996 char *userpage;
1997 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1998
1999 if (zero_offset) {
2000 iosize = PAGE_CACHE_SIZE - zero_offset;
2001 userpage = kmap_atomic(page, KM_USER0);
2002 memset(userpage + zero_offset, 0, iosize);
2003 flush_dcache_page(page);
2004 kunmap_atomic(userpage, KM_USER0);
2005 }
2006 }
2007 while (cur <= end) {
2008 if (cur >= last_byte) {
2009 char *userpage;
2010 iosize = PAGE_CACHE_SIZE - page_offset;
2011 userpage = kmap_atomic(page, KM_USER0);
2012 memset(userpage + page_offset, 0, iosize);
2013 flush_dcache_page(page);
2014 kunmap_atomic(userpage, KM_USER0);
2015 set_extent_uptodate(tree, cur, cur + iosize - 1,
2016 GFP_NOFS);
2017 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2018 break;
2019 }
2020 em = get_extent(inode, page, page_offset, cur,
2021 end - cur + 1, 0);
2022 if (IS_ERR(em) || !em) {
2023 SetPageError(page);
2024 unlock_extent(tree, cur, end, GFP_NOFS);
2025 break;
2026 }
2027 extent_offset = cur - em->start;
2028 BUG_ON(extent_map_end(em) <= cur);
2029 BUG_ON(end < cur);
2030
2031 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2032 this_bio_flag = EXTENT_BIO_COMPRESSED;
2033 extent_set_compress_type(&this_bio_flag,
2034 em->compress_type);
2035 }
2036
2037 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2038 cur_end = min(extent_map_end(em) - 1, end);
2039 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2040 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2041 disk_io_size = em->block_len;
2042 sector = em->block_start >> 9;
2043 } else {
2044 sector = (em->block_start + extent_offset) >> 9;
2045 disk_io_size = iosize;
2046 }
2047 bdev = em->bdev;
2048 block_start = em->block_start;
2049 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2050 block_start = EXTENT_MAP_HOLE;
2051 free_extent_map(em);
2052 em = NULL;
2053
2054 /* we've found a hole, just zero and go on */
2055 if (block_start == EXTENT_MAP_HOLE) {
2056 char *userpage;
2057 userpage = kmap_atomic(page, KM_USER0);
2058 memset(userpage + page_offset, 0, iosize);
2059 flush_dcache_page(page);
2060 kunmap_atomic(userpage, KM_USER0);
2061
2062 set_extent_uptodate(tree, cur, cur + iosize - 1,
2063 GFP_NOFS);
2064 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2065 cur = cur + iosize;
2066 page_offset += iosize;
2067 continue;
2068 }
2069 /* the get_extent function already copied into the page */
2070 if (test_range_bit(tree, cur, cur_end,
2071 EXTENT_UPTODATE, 1, NULL)) {
2072 check_page_uptodate(tree, page);
2073 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2074 cur = cur + iosize;
2075 page_offset += iosize;
2076 continue;
2077 }
2078 /* we have an inline extent but it didn't get marked up
2079 * to date. Error out
2080 */
2081 if (block_start == EXTENT_MAP_INLINE) {
2082 SetPageError(page);
2083 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2084 cur = cur + iosize;
2085 page_offset += iosize;
2086 continue;
2087 }
2088
2089 ret = 0;
2090 if (tree->ops && tree->ops->readpage_io_hook) {
2091 ret = tree->ops->readpage_io_hook(page, cur,
2092 cur + iosize - 1);
2093 }
2094 if (!ret) {
2095 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2096 pnr -= page->index;
2097 ret = submit_extent_page(READ, tree, page,
2098 sector, disk_io_size, page_offset,
2099 bdev, bio, pnr,
2100 end_bio_extent_readpage, mirror_num,
2101 *bio_flags,
2102 this_bio_flag);
2103 nr++;
2104 *bio_flags = this_bio_flag;
2105 }
2106 if (ret)
2107 SetPageError(page);
2108 cur = cur + iosize;
2109 page_offset += iosize;
2110 }
2111 if (!nr) {
2112 if (!PageError(page))
2113 SetPageUptodate(page);
2114 unlock_page(page);
2115 }
2116 return 0;
2117 }
2118
2119 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2120 get_extent_t *get_extent)
2121 {
2122 struct bio *bio = NULL;
2123 unsigned long bio_flags = 0;
2124 int ret;
2125
2126 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2127 &bio_flags);
2128 if (bio)
2129 submit_one_bio(READ, bio, 0, bio_flags);
2130 return ret;
2131 }
2132
2133 static noinline void update_nr_written(struct page *page,
2134 struct writeback_control *wbc,
2135 unsigned long nr_written)
2136 {
2137 wbc->nr_to_write -= nr_written;
2138 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2139 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2140 page->mapping->writeback_index = page->index + nr_written;
2141 }
2142
2143 /*
2144 * the writepage semantics are similar to regular writepage. extent
2145 * records are inserted to lock ranges in the tree, and as dirty areas
2146 * are found, they are marked writeback. Then the lock bits are removed
2147 * and the end_io handler clears the writeback ranges
2148 */
2149 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2150 void *data)
2151 {
2152 struct inode *inode = page->mapping->host;
2153 struct extent_page_data *epd = data;
2154 struct extent_io_tree *tree = epd->tree;
2155 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2156 u64 delalloc_start;
2157 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2158 u64 end;
2159 u64 cur = start;
2160 u64 extent_offset;
2161 u64 last_byte = i_size_read(inode);
2162 u64 block_start;
2163 u64 iosize;
2164 sector_t sector;
2165 struct extent_state *cached_state = NULL;
2166 struct extent_map *em;
2167 struct block_device *bdev;
2168 int ret;
2169 int nr = 0;
2170 size_t pg_offset = 0;
2171 size_t blocksize;
2172 loff_t i_size = i_size_read(inode);
2173 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2174 u64 nr_delalloc;
2175 u64 delalloc_end;
2176 int page_started;
2177 int compressed;
2178 int write_flags;
2179 unsigned long nr_written = 0;
2180
2181 if (wbc->sync_mode == WB_SYNC_ALL)
2182 write_flags = WRITE_SYNC_PLUG;
2183 else
2184 write_flags = WRITE;
2185
2186 WARN_ON(!PageLocked(page));
2187 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2188 if (page->index > end_index ||
2189 (page->index == end_index && !pg_offset)) {
2190 page->mapping->a_ops->invalidatepage(page, 0);
2191 unlock_page(page);
2192 return 0;
2193 }
2194
2195 if (page->index == end_index) {
2196 char *userpage;
2197
2198 userpage = kmap_atomic(page, KM_USER0);
2199 memset(userpage + pg_offset, 0,
2200 PAGE_CACHE_SIZE - pg_offset);
2201 kunmap_atomic(userpage, KM_USER0);
2202 flush_dcache_page(page);
2203 }
2204 pg_offset = 0;
2205
2206 set_page_extent_mapped(page);
2207
2208 delalloc_start = start;
2209 delalloc_end = 0;
2210 page_started = 0;
2211 if (!epd->extent_locked) {
2212 u64 delalloc_to_write = 0;
2213 /*
2214 * make sure the wbc mapping index is at least updated
2215 * to this page.
2216 */
2217 update_nr_written(page, wbc, 0);
2218
2219 while (delalloc_end < page_end) {
2220 nr_delalloc = find_lock_delalloc_range(inode, tree,
2221 page,
2222 &delalloc_start,
2223 &delalloc_end,
2224 128 * 1024 * 1024);
2225 if (nr_delalloc == 0) {
2226 delalloc_start = delalloc_end + 1;
2227 continue;
2228 }
2229 tree->ops->fill_delalloc(inode, page, delalloc_start,
2230 delalloc_end, &page_started,
2231 &nr_written);
2232 /*
2233 * delalloc_end is already one less than the total
2234 * length, so we don't subtract one from
2235 * PAGE_CACHE_SIZE
2236 */
2237 delalloc_to_write += (delalloc_end - delalloc_start +
2238 PAGE_CACHE_SIZE) >>
2239 PAGE_CACHE_SHIFT;
2240 delalloc_start = delalloc_end + 1;
2241 }
2242 if (wbc->nr_to_write < delalloc_to_write) {
2243 int thresh = 8192;
2244
2245 if (delalloc_to_write < thresh * 2)
2246 thresh = delalloc_to_write;
2247 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2248 thresh);
2249 }
2250
2251 /* did the fill delalloc function already unlock and start
2252 * the IO?
2253 */
2254 if (page_started) {
2255 ret = 0;
2256 /*
2257 * we've unlocked the page, so we can't update
2258 * the mapping's writeback index, just update
2259 * nr_to_write.
2260 */
2261 wbc->nr_to_write -= nr_written;
2262 goto done_unlocked;
2263 }
2264 }
2265 if (tree->ops && tree->ops->writepage_start_hook) {
2266 ret = tree->ops->writepage_start_hook(page, start,
2267 page_end);
2268 if (ret == -EAGAIN) {
2269 redirty_page_for_writepage(wbc, page);
2270 update_nr_written(page, wbc, nr_written);
2271 unlock_page(page);
2272 ret = 0;
2273 goto done_unlocked;
2274 }
2275 }
2276
2277 /*
2278 * we don't want to touch the inode after unlocking the page,
2279 * so we update the mapping writeback index now
2280 */
2281 update_nr_written(page, wbc, nr_written + 1);
2282
2283 end = page_end;
2284 if (last_byte <= start) {
2285 if (tree->ops && tree->ops->writepage_end_io_hook)
2286 tree->ops->writepage_end_io_hook(page, start,
2287 page_end, NULL, 1);
2288 goto done;
2289 }
2290
2291 blocksize = inode->i_sb->s_blocksize;
2292
2293 while (cur <= end) {
2294 if (cur >= last_byte) {
2295 if (tree->ops && tree->ops->writepage_end_io_hook)
2296 tree->ops->writepage_end_io_hook(page, cur,
2297 page_end, NULL, 1);
2298 break;
2299 }
2300 em = epd->get_extent(inode, page, pg_offset, cur,
2301 end - cur + 1, 1);
2302 if (IS_ERR(em) || !em) {
2303 SetPageError(page);
2304 break;
2305 }
2306
2307 extent_offset = cur - em->start;
2308 BUG_ON(extent_map_end(em) <= cur);
2309 BUG_ON(end < cur);
2310 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2311 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2312 sector = (em->block_start + extent_offset) >> 9;
2313 bdev = em->bdev;
2314 block_start = em->block_start;
2315 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2316 free_extent_map(em);
2317 em = NULL;
2318
2319 /*
2320 * compressed and inline extents are written through other
2321 * paths in the FS
2322 */
2323 if (compressed || block_start == EXTENT_MAP_HOLE ||
2324 block_start == EXTENT_MAP_INLINE) {
2325 /*
2326 * end_io notification does not happen here for
2327 * compressed extents
2328 */
2329 if (!compressed && tree->ops &&
2330 tree->ops->writepage_end_io_hook)
2331 tree->ops->writepage_end_io_hook(page, cur,
2332 cur + iosize - 1,
2333 NULL, 1);
2334 else if (compressed) {
2335 /* we don't want to end_page_writeback on
2336 * a compressed extent. this happens
2337 * elsewhere
2338 */
2339 nr++;
2340 }
2341
2342 cur += iosize;
2343 pg_offset += iosize;
2344 continue;
2345 }
2346 /* leave this out until we have a page_mkwrite call */
2347 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2348 EXTENT_DIRTY, 0, NULL)) {
2349 cur = cur + iosize;
2350 pg_offset += iosize;
2351 continue;
2352 }
2353
2354 if (tree->ops && tree->ops->writepage_io_hook) {
2355 ret = tree->ops->writepage_io_hook(page, cur,
2356 cur + iosize - 1);
2357 } else {
2358 ret = 0;
2359 }
2360 if (ret) {
2361 SetPageError(page);
2362 } else {
2363 unsigned long max_nr = end_index + 1;
2364
2365 set_range_writeback(tree, cur, cur + iosize - 1);
2366 if (!PageWriteback(page)) {
2367 printk(KERN_ERR "btrfs warning page %lu not "
2368 "writeback, cur %llu end %llu\n",
2369 page->index, (unsigned long long)cur,
2370 (unsigned long long)end);
2371 }
2372
2373 ret = submit_extent_page(write_flags, tree, page,
2374 sector, iosize, pg_offset,
2375 bdev, &epd->bio, max_nr,
2376 end_bio_extent_writepage,
2377 0, 0, 0);
2378 if (ret)
2379 SetPageError(page);
2380 }
2381 cur = cur + iosize;
2382 pg_offset += iosize;
2383 nr++;
2384 }
2385 done:
2386 if (nr == 0) {
2387 /* make sure the mapping tag for page dirty gets cleared */
2388 set_page_writeback(page);
2389 end_page_writeback(page);
2390 }
2391 unlock_page(page);
2392
2393 done_unlocked:
2394
2395 /* drop our reference on any cached states */
2396 free_extent_state(cached_state);
2397 return 0;
2398 }
2399
2400 /**
2401 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2402 * @mapping: address space structure to write
2403 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2404 * @writepage: function called for each page
2405 * @data: data passed to writepage function
2406 *
2407 * If a page is already under I/O, write_cache_pages() skips it, even
2408 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2409 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2410 * and msync() need to guarantee that all the data which was dirty at the time
2411 * the call was made get new I/O started against them. If wbc->sync_mode is
2412 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2413 * existing IO to complete.
2414 */
2415 static int extent_write_cache_pages(struct extent_io_tree *tree,
2416 struct address_space *mapping,
2417 struct writeback_control *wbc,
2418 writepage_t writepage, void *data,
2419 void (*flush_fn)(void *))
2420 {
2421 int ret = 0;
2422 int done = 0;
2423 int nr_to_write_done = 0;
2424 struct pagevec pvec;
2425 int nr_pages;
2426 pgoff_t index;
2427 pgoff_t end; /* Inclusive */
2428 int scanned = 0;
2429
2430 pagevec_init(&pvec, 0);
2431 if (wbc->range_cyclic) {
2432 index = mapping->writeback_index; /* Start from prev offset */
2433 end = -1;
2434 } else {
2435 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2436 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2437 scanned = 1;
2438 }
2439 retry:
2440 while (!done && !nr_to_write_done && (index <= end) &&
2441 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2442 PAGECACHE_TAG_DIRTY, min(end - index,
2443 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2444 unsigned i;
2445
2446 scanned = 1;
2447 for (i = 0; i < nr_pages; i++) {
2448 struct page *page = pvec.pages[i];
2449
2450 /*
2451 * At this point we hold neither mapping->tree_lock nor
2452 * lock on the page itself: the page may be truncated or
2453 * invalidated (changing page->mapping to NULL), or even
2454 * swizzled back from swapper_space to tmpfs file
2455 * mapping
2456 */
2457 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2458 tree->ops->write_cache_pages_lock_hook(page);
2459 else
2460 lock_page(page);
2461
2462 if (unlikely(page->mapping != mapping)) {
2463 unlock_page(page);
2464 continue;
2465 }
2466
2467 if (!wbc->range_cyclic && page->index > end) {
2468 done = 1;
2469 unlock_page(page);
2470 continue;
2471 }
2472
2473 if (wbc->sync_mode != WB_SYNC_NONE) {
2474 if (PageWriteback(page))
2475 flush_fn(data);
2476 wait_on_page_writeback(page);
2477 }
2478
2479 if (PageWriteback(page) ||
2480 !clear_page_dirty_for_io(page)) {
2481 unlock_page(page);
2482 continue;
2483 }
2484
2485 ret = (*writepage)(page, wbc, data);
2486
2487 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2488 unlock_page(page);
2489 ret = 0;
2490 }
2491 if (ret)
2492 done = 1;
2493
2494 /*
2495 * the filesystem may choose to bump up nr_to_write.
2496 * We have to make sure to honor the new nr_to_write
2497 * at any time
2498 */
2499 nr_to_write_done = wbc->nr_to_write <= 0;
2500 }
2501 pagevec_release(&pvec);
2502 cond_resched();
2503 }
2504 if (!scanned && !done) {
2505 /*
2506 * We hit the last page and there is more work to be done: wrap
2507 * back to the start of the file
2508 */
2509 scanned = 1;
2510 index = 0;
2511 goto retry;
2512 }
2513 return ret;
2514 }
2515
2516 static void flush_epd_write_bio(struct extent_page_data *epd)
2517 {
2518 if (epd->bio) {
2519 if (epd->sync_io)
2520 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2521 else
2522 submit_one_bio(WRITE, epd->bio, 0, 0);
2523 epd->bio = NULL;
2524 }
2525 }
2526
2527 static noinline void flush_write_bio(void *data)
2528 {
2529 struct extent_page_data *epd = data;
2530 flush_epd_write_bio(epd);
2531 }
2532
2533 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2534 get_extent_t *get_extent,
2535 struct writeback_control *wbc)
2536 {
2537 int ret;
2538 struct address_space *mapping = page->mapping;
2539 struct extent_page_data epd = {
2540 .bio = NULL,
2541 .tree = tree,
2542 .get_extent = get_extent,
2543 .extent_locked = 0,
2544 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2545 };
2546 struct writeback_control wbc_writepages = {
2547 .sync_mode = wbc->sync_mode,
2548 .older_than_this = NULL,
2549 .nr_to_write = 64,
2550 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2551 .range_end = (loff_t)-1,
2552 };
2553
2554 ret = __extent_writepage(page, wbc, &epd);
2555
2556 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2557 __extent_writepage, &epd, flush_write_bio);
2558 flush_epd_write_bio(&epd);
2559 return ret;
2560 }
2561
2562 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2563 u64 start, u64 end, get_extent_t *get_extent,
2564 int mode)
2565 {
2566 int ret = 0;
2567 struct address_space *mapping = inode->i_mapping;
2568 struct page *page;
2569 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2570 PAGE_CACHE_SHIFT;
2571
2572 struct extent_page_data epd = {
2573 .bio = NULL,
2574 .tree = tree,
2575 .get_extent = get_extent,
2576 .extent_locked = 1,
2577 .sync_io = mode == WB_SYNC_ALL,
2578 };
2579 struct writeback_control wbc_writepages = {
2580 .sync_mode = mode,
2581 .older_than_this = NULL,
2582 .nr_to_write = nr_pages * 2,
2583 .range_start = start,
2584 .range_end = end + 1,
2585 };
2586
2587 while (start <= end) {
2588 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2589 if (clear_page_dirty_for_io(page))
2590 ret = __extent_writepage(page, &wbc_writepages, &epd);
2591 else {
2592 if (tree->ops && tree->ops->writepage_end_io_hook)
2593 tree->ops->writepage_end_io_hook(page, start,
2594 start + PAGE_CACHE_SIZE - 1,
2595 NULL, 1);
2596 unlock_page(page);
2597 }
2598 page_cache_release(page);
2599 start += PAGE_CACHE_SIZE;
2600 }
2601
2602 flush_epd_write_bio(&epd);
2603 return ret;
2604 }
2605
2606 int extent_writepages(struct extent_io_tree *tree,
2607 struct address_space *mapping,
2608 get_extent_t *get_extent,
2609 struct writeback_control *wbc)
2610 {
2611 int ret = 0;
2612 struct extent_page_data epd = {
2613 .bio = NULL,
2614 .tree = tree,
2615 .get_extent = get_extent,
2616 .extent_locked = 0,
2617 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2618 };
2619
2620 ret = extent_write_cache_pages(tree, mapping, wbc,
2621 __extent_writepage, &epd,
2622 flush_write_bio);
2623 flush_epd_write_bio(&epd);
2624 return ret;
2625 }
2626
2627 int extent_readpages(struct extent_io_tree *tree,
2628 struct address_space *mapping,
2629 struct list_head *pages, unsigned nr_pages,
2630 get_extent_t get_extent)
2631 {
2632 struct bio *bio = NULL;
2633 unsigned page_idx;
2634 unsigned long bio_flags = 0;
2635
2636 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2637 struct page *page = list_entry(pages->prev, struct page, lru);
2638
2639 prefetchw(&page->flags);
2640 list_del(&page->lru);
2641 if (!add_to_page_cache_lru(page, mapping,
2642 page->index, GFP_KERNEL)) {
2643 __extent_read_full_page(tree, page, get_extent,
2644 &bio, 0, &bio_flags);
2645 }
2646 page_cache_release(page);
2647 }
2648 BUG_ON(!list_empty(pages));
2649 if (bio)
2650 submit_one_bio(READ, bio, 0, bio_flags);
2651 return 0;
2652 }
2653
2654 /*
2655 * basic invalidatepage code, this waits on any locked or writeback
2656 * ranges corresponding to the page, and then deletes any extent state
2657 * records from the tree
2658 */
2659 int extent_invalidatepage(struct extent_io_tree *tree,
2660 struct page *page, unsigned long offset)
2661 {
2662 struct extent_state *cached_state = NULL;
2663 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2664 u64 end = start + PAGE_CACHE_SIZE - 1;
2665 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2666
2667 start += (offset + blocksize - 1) & ~(blocksize - 1);
2668 if (start > end)
2669 return 0;
2670
2671 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2672 wait_on_page_writeback(page);
2673 clear_extent_bit(tree, start, end,
2674 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2675 EXTENT_DO_ACCOUNTING,
2676 1, 1, &cached_state, GFP_NOFS);
2677 return 0;
2678 }
2679
2680 /*
2681 * simple commit_write call, set_range_dirty is used to mark both
2682 * the pages and the extent records as dirty
2683 */
2684 int extent_commit_write(struct extent_io_tree *tree,
2685 struct inode *inode, struct page *page,
2686 unsigned from, unsigned to)
2687 {
2688 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2689
2690 set_page_extent_mapped(page);
2691 set_page_dirty(page);
2692
2693 if (pos > inode->i_size) {
2694 i_size_write(inode, pos);
2695 mark_inode_dirty(inode);
2696 }
2697 return 0;
2698 }
2699
2700 int extent_prepare_write(struct extent_io_tree *tree,
2701 struct inode *inode, struct page *page,
2702 unsigned from, unsigned to, get_extent_t *get_extent)
2703 {
2704 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2705 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2706 u64 block_start;
2707 u64 orig_block_start;
2708 u64 block_end;
2709 u64 cur_end;
2710 struct extent_map *em;
2711 unsigned blocksize = 1 << inode->i_blkbits;
2712 size_t page_offset = 0;
2713 size_t block_off_start;
2714 size_t block_off_end;
2715 int err = 0;
2716 int iocount = 0;
2717 int ret = 0;
2718 int isnew;
2719
2720 set_page_extent_mapped(page);
2721
2722 block_start = (page_start + from) & ~((u64)blocksize - 1);
2723 block_end = (page_start + to - 1) | (blocksize - 1);
2724 orig_block_start = block_start;
2725
2726 lock_extent(tree, page_start, page_end, GFP_NOFS);
2727 while (block_start <= block_end) {
2728 em = get_extent(inode, page, page_offset, block_start,
2729 block_end - block_start + 1, 1);
2730 if (IS_ERR(em) || !em)
2731 goto err;
2732
2733 cur_end = min(block_end, extent_map_end(em) - 1);
2734 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2735 block_off_end = block_off_start + blocksize;
2736 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2737
2738 if (!PageUptodate(page) && isnew &&
2739 (block_off_end > to || block_off_start < from)) {
2740 void *kaddr;
2741
2742 kaddr = kmap_atomic(page, KM_USER0);
2743 if (block_off_end > to)
2744 memset(kaddr + to, 0, block_off_end - to);
2745 if (block_off_start < from)
2746 memset(kaddr + block_off_start, 0,
2747 from - block_off_start);
2748 flush_dcache_page(page);
2749 kunmap_atomic(kaddr, KM_USER0);
2750 }
2751 if ((em->block_start != EXTENT_MAP_HOLE &&
2752 em->block_start != EXTENT_MAP_INLINE) &&
2753 !isnew && !PageUptodate(page) &&
2754 (block_off_end > to || block_off_start < from) &&
2755 !test_range_bit(tree, block_start, cur_end,
2756 EXTENT_UPTODATE, 1, NULL)) {
2757 u64 sector;
2758 u64 extent_offset = block_start - em->start;
2759 size_t iosize;
2760 sector = (em->block_start + extent_offset) >> 9;
2761 iosize = (cur_end - block_start + blocksize) &
2762 ~((u64)blocksize - 1);
2763 /*
2764 * we've already got the extent locked, but we
2765 * need to split the state such that our end_bio
2766 * handler can clear the lock.
2767 */
2768 set_extent_bit(tree, block_start,
2769 block_start + iosize - 1,
2770 EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2771 ret = submit_extent_page(READ, tree, page,
2772 sector, iosize, page_offset, em->bdev,
2773 NULL, 1,
2774 end_bio_extent_preparewrite, 0,
2775 0, 0);
2776 if (ret && !err)
2777 err = ret;
2778 iocount++;
2779 block_start = block_start + iosize;
2780 } else {
2781 set_extent_uptodate(tree, block_start, cur_end,
2782 GFP_NOFS);
2783 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2784 block_start = cur_end + 1;
2785 }
2786 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2787 free_extent_map(em);
2788 }
2789 if (iocount) {
2790 wait_extent_bit(tree, orig_block_start,
2791 block_end, EXTENT_LOCKED);
2792 }
2793 check_page_uptodate(tree, page);
2794 err:
2795 /* FIXME, zero out newly allocated blocks on error */
2796 return err;
2797 }
2798
2799 /*
2800 * a helper for releasepage, this tests for areas of the page that
2801 * are locked or under IO and drops the related state bits if it is safe
2802 * to drop the page.
2803 */
2804 int try_release_extent_state(struct extent_map_tree *map,
2805 struct extent_io_tree *tree, struct page *page,
2806 gfp_t mask)
2807 {
2808 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2809 u64 end = start + PAGE_CACHE_SIZE - 1;
2810 int ret = 1;
2811
2812 if (test_range_bit(tree, start, end,
2813 EXTENT_IOBITS, 0, NULL))
2814 ret = 0;
2815 else {
2816 if ((mask & GFP_NOFS) == GFP_NOFS)
2817 mask = GFP_NOFS;
2818 /*
2819 * at this point we can safely clear everything except the
2820 * locked bit and the nodatasum bit
2821 */
2822 clear_extent_bit(tree, start, end,
2823 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2824 0, 0, NULL, mask);
2825 }
2826 return ret;
2827 }
2828
2829 /*
2830 * a helper for releasepage. As long as there are no locked extents
2831 * in the range corresponding to the page, both state records and extent
2832 * map records are removed
2833 */
2834 int try_release_extent_mapping(struct extent_map_tree *map,
2835 struct extent_io_tree *tree, struct page *page,
2836 gfp_t mask)
2837 {
2838 struct extent_map *em;
2839 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2840 u64 end = start + PAGE_CACHE_SIZE - 1;
2841
2842 if ((mask & __GFP_WAIT) &&
2843 page->mapping->host->i_size > 16 * 1024 * 1024) {
2844 u64 len;
2845 while (start <= end) {
2846 len = end - start + 1;
2847 write_lock(&map->lock);
2848 em = lookup_extent_mapping(map, start, len);
2849 if (!em || IS_ERR(em)) {
2850 write_unlock(&map->lock);
2851 break;
2852 }
2853 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2854 em->start != start) {
2855 write_unlock(&map->lock);
2856 free_extent_map(em);
2857 break;
2858 }
2859 if (!test_range_bit(tree, em->start,
2860 extent_map_end(em) - 1,
2861 EXTENT_LOCKED | EXTENT_WRITEBACK,
2862 0, NULL)) {
2863 remove_extent_mapping(map, em);
2864 /* once for the rb tree */
2865 free_extent_map(em);
2866 }
2867 start = extent_map_end(em);
2868 write_unlock(&map->lock);
2869
2870 /* once for us */
2871 free_extent_map(em);
2872 }
2873 }
2874 return try_release_extent_state(map, tree, page, mask);
2875 }
2876
2877 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2878 get_extent_t *get_extent)
2879 {
2880 struct inode *inode = mapping->host;
2881 struct extent_state *cached_state = NULL;
2882 u64 start = iblock << inode->i_blkbits;
2883 sector_t sector = 0;
2884 size_t blksize = (1 << inode->i_blkbits);
2885 struct extent_map *em;
2886
2887 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2888 0, &cached_state, GFP_NOFS);
2889 em = get_extent(inode, NULL, 0, start, blksize, 0);
2890 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2891 start + blksize - 1, &cached_state, GFP_NOFS);
2892 if (!em || IS_ERR(em))
2893 return 0;
2894
2895 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2896 goto out;
2897
2898 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2899 out:
2900 free_extent_map(em);
2901 return sector;
2902 }
2903
2904 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2905 __u64 start, __u64 len, get_extent_t *get_extent)
2906 {
2907 int ret = 0;
2908 u64 off = start;
2909 u64 max = start + len;
2910 u32 flags = 0;
2911 u32 found_type;
2912 u64 last;
2913 u64 disko = 0;
2914 struct btrfs_key found_key;
2915 struct extent_map *em = NULL;
2916 struct extent_state *cached_state = NULL;
2917 struct btrfs_path *path;
2918 struct btrfs_file_extent_item *item;
2919 int end = 0;
2920 u64 em_start = 0, em_len = 0;
2921 unsigned long emflags;
2922 int hole = 0;
2923
2924 if (len == 0)
2925 return -EINVAL;
2926
2927 path = btrfs_alloc_path();
2928 if (!path)
2929 return -ENOMEM;
2930 path->leave_spinning = 1;
2931
2932 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2933 path, inode->i_ino, -1, 0);
2934 if (ret < 0) {
2935 btrfs_free_path(path);
2936 return ret;
2937 }
2938 WARN_ON(!ret);
2939 path->slots[0]--;
2940 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2941 struct btrfs_file_extent_item);
2942 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
2943 found_type = btrfs_key_type(&found_key);
2944
2945 /* No extents, just return */
2946 if (found_key.objectid != inode->i_ino ||
2947 found_type != BTRFS_EXTENT_DATA_KEY) {
2948 btrfs_free_path(path);
2949 return 0;
2950 }
2951 last = found_key.offset;
2952 btrfs_free_path(path);
2953
2954 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
2955 &cached_state, GFP_NOFS);
2956 em = get_extent(inode, NULL, 0, off, max - off, 0);
2957 if (!em)
2958 goto out;
2959 if (IS_ERR(em)) {
2960 ret = PTR_ERR(em);
2961 goto out;
2962 }
2963
2964 while (!end) {
2965 hole = 0;
2966 off = em->start + em->len;
2967 if (off >= max)
2968 end = 1;
2969
2970 if (em->block_start == EXTENT_MAP_HOLE) {
2971 hole = 1;
2972 goto next;
2973 }
2974
2975 em_start = em->start;
2976 em_len = em->len;
2977
2978 disko = 0;
2979 flags = 0;
2980
2981 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2982 end = 1;
2983 flags |= FIEMAP_EXTENT_LAST;
2984 } else if (em->block_start == EXTENT_MAP_INLINE) {
2985 flags |= (FIEMAP_EXTENT_DATA_INLINE |
2986 FIEMAP_EXTENT_NOT_ALIGNED);
2987 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2988 flags |= (FIEMAP_EXTENT_DELALLOC |
2989 FIEMAP_EXTENT_UNKNOWN);
2990 } else {
2991 disko = em->block_start;
2992 }
2993 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2994 flags |= FIEMAP_EXTENT_ENCODED;
2995
2996 next:
2997 emflags = em->flags;
2998 free_extent_map(em);
2999 em = NULL;
3000 if (!end) {
3001 em = get_extent(inode, NULL, 0, off, max - off, 0);
3002 if (!em)
3003 goto out;
3004 if (IS_ERR(em)) {
3005 ret = PTR_ERR(em);
3006 goto out;
3007 }
3008 emflags = em->flags;
3009 }
3010
3011 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
3012 flags |= FIEMAP_EXTENT_LAST;
3013 end = 1;
3014 }
3015
3016 if (em_start == last) {
3017 flags |= FIEMAP_EXTENT_LAST;
3018 end = 1;
3019 }
3020
3021 if (!hole) {
3022 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3023 em_len, flags);
3024 if (ret)
3025 goto out_free;
3026 }
3027 }
3028 out_free:
3029 free_extent_map(em);
3030 out:
3031 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3032 &cached_state, GFP_NOFS);
3033 return ret;
3034 }
3035
3036 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3037 unsigned long i)
3038 {
3039 struct page *p;
3040 struct address_space *mapping;
3041
3042 if (i == 0)
3043 return eb->first_page;
3044 i += eb->start >> PAGE_CACHE_SHIFT;
3045 mapping = eb->first_page->mapping;
3046 if (!mapping)
3047 return NULL;
3048
3049 /*
3050 * extent_buffer_page is only called after pinning the page
3051 * by increasing the reference count. So we know the page must
3052 * be in the radix tree.
3053 */
3054 rcu_read_lock();
3055 p = radix_tree_lookup(&mapping->page_tree, i);
3056 rcu_read_unlock();
3057
3058 return p;
3059 }
3060
3061 static inline unsigned long num_extent_pages(u64 start, u64 len)
3062 {
3063 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3064 (start >> PAGE_CACHE_SHIFT);
3065 }
3066
3067 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3068 u64 start,
3069 unsigned long len,
3070 gfp_t mask)
3071 {
3072 struct extent_buffer *eb = NULL;
3073 #if LEAK_DEBUG
3074 unsigned long flags;
3075 #endif
3076
3077 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3078 if (eb == NULL)
3079 return NULL;
3080 eb->start = start;
3081 eb->len = len;
3082 spin_lock_init(&eb->lock);
3083 init_waitqueue_head(&eb->lock_wq);
3084
3085 #if LEAK_DEBUG
3086 spin_lock_irqsave(&leak_lock, flags);
3087 list_add(&eb->leak_list, &buffers);
3088 spin_unlock_irqrestore(&leak_lock, flags);
3089 #endif
3090 atomic_set(&eb->refs, 1);
3091
3092 return eb;
3093 }
3094
3095 static void __free_extent_buffer(struct extent_buffer *eb)
3096 {
3097 #if LEAK_DEBUG
3098 unsigned long flags;
3099 spin_lock_irqsave(&leak_lock, flags);
3100 list_del(&eb->leak_list);
3101 spin_unlock_irqrestore(&leak_lock, flags);
3102 #endif
3103 kmem_cache_free(extent_buffer_cache, eb);
3104 }
3105
3106 /*
3107 * Helper for releasing extent buffer page.
3108 */
3109 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3110 unsigned long start_idx)
3111 {
3112 unsigned long index;
3113 struct page *page;
3114
3115 if (!eb->first_page)
3116 return;
3117
3118 index = num_extent_pages(eb->start, eb->len);
3119 if (start_idx >= index)
3120 return;
3121
3122 do {
3123 index--;
3124 page = extent_buffer_page(eb, index);
3125 if (page)
3126 page_cache_release(page);
3127 } while (index != start_idx);
3128 }
3129
3130 /*
3131 * Helper for releasing the extent buffer.
3132 */
3133 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3134 {
3135 btrfs_release_extent_buffer_page(eb, 0);
3136 __free_extent_buffer(eb);
3137 }
3138
3139 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3140 u64 start, unsigned long len,
3141 struct page *page0,
3142 gfp_t mask)
3143 {
3144 unsigned long num_pages = num_extent_pages(start, len);
3145 unsigned long i;
3146 unsigned long index = start >> PAGE_CACHE_SHIFT;
3147 struct extent_buffer *eb;
3148 struct extent_buffer *exists = NULL;
3149 struct page *p;
3150 struct address_space *mapping = tree->mapping;
3151 int uptodate = 1;
3152 int ret;
3153
3154 rcu_read_lock();
3155 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3156 if (eb && atomic_inc_not_zero(&eb->refs)) {
3157 rcu_read_unlock();
3158 mark_page_accessed(eb->first_page);
3159 return eb;
3160 }
3161 rcu_read_unlock();
3162
3163 eb = __alloc_extent_buffer(tree, start, len, mask);
3164 if (!eb)
3165 return NULL;
3166
3167 if (page0) {
3168 eb->first_page = page0;
3169 i = 1;
3170 index++;
3171 page_cache_get(page0);
3172 mark_page_accessed(page0);
3173 set_page_extent_mapped(page0);
3174 set_page_extent_head(page0, len);
3175 uptodate = PageUptodate(page0);
3176 } else {
3177 i = 0;
3178 }
3179 for (; i < num_pages; i++, index++) {
3180 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3181 if (!p) {
3182 WARN_ON(1);
3183 goto free_eb;
3184 }
3185 set_page_extent_mapped(p);
3186 mark_page_accessed(p);
3187 if (i == 0) {
3188 eb->first_page = p;
3189 set_page_extent_head(p, len);
3190 } else {
3191 set_page_private(p, EXTENT_PAGE_PRIVATE);
3192 }
3193 if (!PageUptodate(p))
3194 uptodate = 0;
3195 unlock_page(p);
3196 }
3197 if (uptodate)
3198 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3199
3200 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3201 if (ret)
3202 goto free_eb;
3203
3204 spin_lock(&tree->buffer_lock);
3205 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3206 if (ret == -EEXIST) {
3207 exists = radix_tree_lookup(&tree->buffer,
3208 start >> PAGE_CACHE_SHIFT);
3209 /* add one reference for the caller */
3210 atomic_inc(&exists->refs);
3211 spin_unlock(&tree->buffer_lock);
3212 radix_tree_preload_end();
3213 goto free_eb;
3214 }
3215 /* add one reference for the tree */
3216 atomic_inc(&eb->refs);
3217 spin_unlock(&tree->buffer_lock);
3218 radix_tree_preload_end();
3219 return eb;
3220
3221 free_eb:
3222 if (!atomic_dec_and_test(&eb->refs))
3223 return exists;
3224 btrfs_release_extent_buffer(eb);
3225 return exists;
3226 }
3227
3228 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3229 u64 start, unsigned long len,
3230 gfp_t mask)
3231 {
3232 struct extent_buffer *eb;
3233
3234 rcu_read_lock();
3235 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3236 if (eb && atomic_inc_not_zero(&eb->refs)) {
3237 rcu_read_unlock();
3238 mark_page_accessed(eb->first_page);
3239 return eb;
3240 }
3241 rcu_read_unlock();
3242
3243 return NULL;
3244 }
3245
3246 void free_extent_buffer(struct extent_buffer *eb)
3247 {
3248 if (!eb)
3249 return;
3250
3251 if (!atomic_dec_and_test(&eb->refs))
3252 return;
3253
3254 WARN_ON(1);
3255 }
3256
3257 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3258 struct extent_buffer *eb)
3259 {
3260 unsigned long i;
3261 unsigned long num_pages;
3262 struct page *page;
3263
3264 num_pages = num_extent_pages(eb->start, eb->len);
3265
3266 for (i = 0; i < num_pages; i++) {
3267 page = extent_buffer_page(eb, i);
3268 if (!PageDirty(page))
3269 continue;
3270
3271 lock_page(page);
3272 if (i == 0)
3273 set_page_extent_head(page, eb->len);
3274 else
3275 set_page_private(page, EXTENT_PAGE_PRIVATE);
3276
3277 clear_page_dirty_for_io(page);
3278 spin_lock_irq(&page->mapping->tree_lock);
3279 if (!PageDirty(page)) {
3280 radix_tree_tag_clear(&page->mapping->page_tree,
3281 page_index(page),
3282 PAGECACHE_TAG_DIRTY);
3283 }
3284 spin_unlock_irq(&page->mapping->tree_lock);
3285 unlock_page(page);
3286 }
3287 return 0;
3288 }
3289
3290 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3291 struct extent_buffer *eb)
3292 {
3293 return wait_on_extent_writeback(tree, eb->start,
3294 eb->start + eb->len - 1);
3295 }
3296
3297 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3298 struct extent_buffer *eb)
3299 {
3300 unsigned long i;
3301 unsigned long num_pages;
3302 int was_dirty = 0;
3303
3304 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3305 num_pages = num_extent_pages(eb->start, eb->len);
3306 for (i = 0; i < num_pages; i++)
3307 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3308 return was_dirty;
3309 }
3310
3311 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3312 struct extent_buffer *eb,
3313 struct extent_state **cached_state)
3314 {
3315 unsigned long i;
3316 struct page *page;
3317 unsigned long num_pages;
3318
3319 num_pages = num_extent_pages(eb->start, eb->len);
3320 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3321
3322 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3323 cached_state, GFP_NOFS);
3324 for (i = 0; i < num_pages; i++) {
3325 page = extent_buffer_page(eb, i);
3326 if (page)
3327 ClearPageUptodate(page);
3328 }
3329 return 0;
3330 }
3331
3332 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3333 struct extent_buffer *eb)
3334 {
3335 unsigned long i;
3336 struct page *page;
3337 unsigned long num_pages;
3338
3339 num_pages = num_extent_pages(eb->start, eb->len);
3340
3341 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3342 GFP_NOFS);
3343 for (i = 0; i < num_pages; i++) {
3344 page = extent_buffer_page(eb, i);
3345 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3346 ((i == num_pages - 1) &&
3347 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3348 check_page_uptodate(tree, page);
3349 continue;
3350 }
3351 SetPageUptodate(page);
3352 }
3353 return 0;
3354 }
3355
3356 int extent_range_uptodate(struct extent_io_tree *tree,
3357 u64 start, u64 end)
3358 {
3359 struct page *page;
3360 int ret;
3361 int pg_uptodate = 1;
3362 int uptodate;
3363 unsigned long index;
3364
3365 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3366 if (ret)
3367 return 1;
3368 while (start <= end) {
3369 index = start >> PAGE_CACHE_SHIFT;
3370 page = find_get_page(tree->mapping, index);
3371 uptodate = PageUptodate(page);
3372 page_cache_release(page);
3373 if (!uptodate) {
3374 pg_uptodate = 0;
3375 break;
3376 }
3377 start += PAGE_CACHE_SIZE;
3378 }
3379 return pg_uptodate;
3380 }
3381
3382 int extent_buffer_uptodate(struct extent_io_tree *tree,
3383 struct extent_buffer *eb,
3384 struct extent_state *cached_state)
3385 {
3386 int ret = 0;
3387 unsigned long num_pages;
3388 unsigned long i;
3389 struct page *page;
3390 int pg_uptodate = 1;
3391
3392 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3393 return 1;
3394
3395 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3396 EXTENT_UPTODATE, 1, cached_state);
3397 if (ret)
3398 return ret;
3399
3400 num_pages = num_extent_pages(eb->start, eb->len);
3401 for (i = 0; i < num_pages; i++) {
3402 page = extent_buffer_page(eb, i);
3403 if (!PageUptodate(page)) {
3404 pg_uptodate = 0;
3405 break;
3406 }
3407 }
3408 return pg_uptodate;
3409 }
3410
3411 int read_extent_buffer_pages(struct extent_io_tree *tree,
3412 struct extent_buffer *eb,
3413 u64 start, int wait,
3414 get_extent_t *get_extent, int mirror_num)
3415 {
3416 unsigned long i;
3417 unsigned long start_i;
3418 struct page *page;
3419 int err;
3420 int ret = 0;
3421 int locked_pages = 0;
3422 int all_uptodate = 1;
3423 int inc_all_pages = 0;
3424 unsigned long num_pages;
3425 struct bio *bio = NULL;
3426 unsigned long bio_flags = 0;
3427
3428 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3429 return 0;
3430
3431 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3432 EXTENT_UPTODATE, 1, NULL)) {
3433 return 0;
3434 }
3435
3436 if (start) {
3437 WARN_ON(start < eb->start);
3438 start_i = (start >> PAGE_CACHE_SHIFT) -
3439 (eb->start >> PAGE_CACHE_SHIFT);
3440 } else {
3441 start_i = 0;
3442 }
3443
3444 num_pages = num_extent_pages(eb->start, eb->len);
3445 for (i = start_i; i < num_pages; i++) {
3446 page = extent_buffer_page(eb, i);
3447 if (!wait) {
3448 if (!trylock_page(page))
3449 goto unlock_exit;
3450 } else {
3451 lock_page(page);
3452 }
3453 locked_pages++;
3454 if (!PageUptodate(page))
3455 all_uptodate = 0;
3456 }
3457 if (all_uptodate) {
3458 if (start_i == 0)
3459 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3460 goto unlock_exit;
3461 }
3462
3463 for (i = start_i; i < num_pages; i++) {
3464 page = extent_buffer_page(eb, i);
3465 if (inc_all_pages)
3466 page_cache_get(page);
3467 if (!PageUptodate(page)) {
3468 if (start_i == 0)
3469 inc_all_pages = 1;
3470 ClearPageError(page);
3471 err = __extent_read_full_page(tree, page,
3472 get_extent, &bio,
3473 mirror_num, &bio_flags);
3474 if (err)
3475 ret = err;
3476 } else {
3477 unlock_page(page);
3478 }
3479 }
3480
3481 if (bio)
3482 submit_one_bio(READ, bio, mirror_num, bio_flags);
3483
3484 if (ret || !wait)
3485 return ret;
3486
3487 for (i = start_i; i < num_pages; i++) {
3488 page = extent_buffer_page(eb, i);
3489 wait_on_page_locked(page);
3490 if (!PageUptodate(page))
3491 ret = -EIO;
3492 }
3493
3494 if (!ret)
3495 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3496 return ret;
3497
3498 unlock_exit:
3499 i = start_i;
3500 while (locked_pages > 0) {
3501 page = extent_buffer_page(eb, i);
3502 i++;
3503 unlock_page(page);
3504 locked_pages--;
3505 }
3506 return ret;
3507 }
3508
3509 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3510 unsigned long start,
3511 unsigned long len)
3512 {
3513 size_t cur;
3514 size_t offset;
3515 struct page *page;
3516 char *kaddr;
3517 char *dst = (char *)dstv;
3518 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3519 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3520
3521 WARN_ON(start > eb->len);
3522 WARN_ON(start + len > eb->start + eb->len);
3523
3524 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3525
3526 while (len > 0) {
3527 page = extent_buffer_page(eb, i);
3528
3529 cur = min(len, (PAGE_CACHE_SIZE - offset));
3530 kaddr = kmap_atomic(page, KM_USER1);
3531 memcpy(dst, kaddr + offset, cur);
3532 kunmap_atomic(kaddr, KM_USER1);
3533
3534 dst += cur;
3535 len -= cur;
3536 offset = 0;
3537 i++;
3538 }
3539 }
3540
3541 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3542 unsigned long min_len, char **token, char **map,
3543 unsigned long *map_start,
3544 unsigned long *map_len, int km)
3545 {
3546 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3547 char *kaddr;
3548 struct page *p;
3549 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3550 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3551 unsigned long end_i = (start_offset + start + min_len - 1) >>
3552 PAGE_CACHE_SHIFT;
3553
3554 if (i != end_i)
3555 return -EINVAL;
3556
3557 if (i == 0) {
3558 offset = start_offset;
3559 *map_start = 0;
3560 } else {
3561 offset = 0;
3562 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3563 }
3564
3565 if (start + min_len > eb->len) {
3566 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3567 "wanted %lu %lu\n", (unsigned long long)eb->start,
3568 eb->len, start, min_len);
3569 WARN_ON(1);
3570 }
3571
3572 p = extent_buffer_page(eb, i);
3573 kaddr = kmap_atomic(p, km);
3574 *token = kaddr;
3575 *map = kaddr + offset;
3576 *map_len = PAGE_CACHE_SIZE - offset;
3577 return 0;
3578 }
3579
3580 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3581 unsigned long min_len,
3582 char **token, char **map,
3583 unsigned long *map_start,
3584 unsigned long *map_len, int km)
3585 {
3586 int err;
3587 int save = 0;
3588 if (eb->map_token) {
3589 unmap_extent_buffer(eb, eb->map_token, km);
3590 eb->map_token = NULL;
3591 save = 1;
3592 }
3593 err = map_private_extent_buffer(eb, start, min_len, token, map,
3594 map_start, map_len, km);
3595 if (!err && save) {
3596 eb->map_token = *token;
3597 eb->kaddr = *map;
3598 eb->map_start = *map_start;
3599 eb->map_len = *map_len;
3600 }
3601 return err;
3602 }
3603
3604 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3605 {
3606 kunmap_atomic(token, km);
3607 }
3608
3609 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3610 unsigned long start,
3611 unsigned long len)
3612 {
3613 size_t cur;
3614 size_t offset;
3615 struct page *page;
3616 char *kaddr;
3617 char *ptr = (char *)ptrv;
3618 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3619 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3620 int ret = 0;
3621
3622 WARN_ON(start > eb->len);
3623 WARN_ON(start + len > eb->start + eb->len);
3624
3625 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3626
3627 while (len > 0) {
3628 page = extent_buffer_page(eb, i);
3629
3630 cur = min(len, (PAGE_CACHE_SIZE - offset));
3631
3632 kaddr = kmap_atomic(page, KM_USER0);
3633 ret = memcmp(ptr, kaddr + offset, cur);
3634 kunmap_atomic(kaddr, KM_USER0);
3635 if (ret)
3636 break;
3637
3638 ptr += cur;
3639 len -= cur;
3640 offset = 0;
3641 i++;
3642 }
3643 return ret;
3644 }
3645
3646 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3647 unsigned long start, unsigned long len)
3648 {
3649 size_t cur;
3650 size_t offset;
3651 struct page *page;
3652 char *kaddr;
3653 char *src = (char *)srcv;
3654 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3655 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3656
3657 WARN_ON(start > eb->len);
3658 WARN_ON(start + len > eb->start + eb->len);
3659
3660 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3661
3662 while (len > 0) {
3663 page = extent_buffer_page(eb, i);
3664 WARN_ON(!PageUptodate(page));
3665
3666 cur = min(len, PAGE_CACHE_SIZE - offset);
3667 kaddr = kmap_atomic(page, KM_USER1);
3668 memcpy(kaddr + offset, src, cur);
3669 kunmap_atomic(kaddr, KM_USER1);
3670
3671 src += cur;
3672 len -= cur;
3673 offset = 0;
3674 i++;
3675 }
3676 }
3677
3678 void memset_extent_buffer(struct extent_buffer *eb, char c,
3679 unsigned long start, unsigned long len)
3680 {
3681 size_t cur;
3682 size_t offset;
3683 struct page *page;
3684 char *kaddr;
3685 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3686 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3687
3688 WARN_ON(start > eb->len);
3689 WARN_ON(start + len > eb->start + eb->len);
3690
3691 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3692
3693 while (len > 0) {
3694 page = extent_buffer_page(eb, i);
3695 WARN_ON(!PageUptodate(page));
3696
3697 cur = min(len, PAGE_CACHE_SIZE - offset);
3698 kaddr = kmap_atomic(page, KM_USER0);
3699 memset(kaddr + offset, c, cur);
3700 kunmap_atomic(kaddr, KM_USER0);
3701
3702 len -= cur;
3703 offset = 0;
3704 i++;
3705 }
3706 }
3707
3708 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3709 unsigned long dst_offset, unsigned long src_offset,
3710 unsigned long len)
3711 {
3712 u64 dst_len = dst->len;
3713 size_t cur;
3714 size_t offset;
3715 struct page *page;
3716 char *kaddr;
3717 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3718 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3719
3720 WARN_ON(src->len != dst_len);
3721
3722 offset = (start_offset + dst_offset) &
3723 ((unsigned long)PAGE_CACHE_SIZE - 1);
3724
3725 while (len > 0) {
3726 page = extent_buffer_page(dst, i);
3727 WARN_ON(!PageUptodate(page));
3728
3729 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3730
3731 kaddr = kmap_atomic(page, KM_USER0);
3732 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3733 kunmap_atomic(kaddr, KM_USER0);
3734
3735 src_offset += cur;
3736 len -= cur;
3737 offset = 0;
3738 i++;
3739 }
3740 }
3741
3742 static void move_pages(struct page *dst_page, struct page *src_page,
3743 unsigned long dst_off, unsigned long src_off,
3744 unsigned long len)
3745 {
3746 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3747 if (dst_page == src_page) {
3748 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3749 } else {
3750 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3751 char *p = dst_kaddr + dst_off + len;
3752 char *s = src_kaddr + src_off + len;
3753
3754 while (len--)
3755 *--p = *--s;
3756
3757 kunmap_atomic(src_kaddr, KM_USER1);
3758 }
3759 kunmap_atomic(dst_kaddr, KM_USER0);
3760 }
3761
3762 static void copy_pages(struct page *dst_page, struct page *src_page,
3763 unsigned long dst_off, unsigned long src_off,
3764 unsigned long len)
3765 {
3766 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3767 char *src_kaddr;
3768
3769 if (dst_page != src_page)
3770 src_kaddr = kmap_atomic(src_page, KM_USER1);
3771 else
3772 src_kaddr = dst_kaddr;
3773
3774 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3775 kunmap_atomic(dst_kaddr, KM_USER0);
3776 if (dst_page != src_page)
3777 kunmap_atomic(src_kaddr, KM_USER1);
3778 }
3779
3780 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3781 unsigned long src_offset, unsigned long len)
3782 {
3783 size_t cur;
3784 size_t dst_off_in_page;
3785 size_t src_off_in_page;
3786 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3787 unsigned long dst_i;
3788 unsigned long src_i;
3789
3790 if (src_offset + len > dst->len) {
3791 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3792 "len %lu dst len %lu\n", src_offset, len, dst->len);
3793 BUG_ON(1);
3794 }
3795 if (dst_offset + len > dst->len) {
3796 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3797 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3798 BUG_ON(1);
3799 }
3800
3801 while (len > 0) {
3802 dst_off_in_page = (start_offset + dst_offset) &
3803 ((unsigned long)PAGE_CACHE_SIZE - 1);
3804 src_off_in_page = (start_offset + src_offset) &
3805 ((unsigned long)PAGE_CACHE_SIZE - 1);
3806
3807 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3808 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3809
3810 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3811 src_off_in_page));
3812 cur = min_t(unsigned long, cur,
3813 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3814
3815 copy_pages(extent_buffer_page(dst, dst_i),
3816 extent_buffer_page(dst, src_i),
3817 dst_off_in_page, src_off_in_page, cur);
3818
3819 src_offset += cur;
3820 dst_offset += cur;
3821 len -= cur;
3822 }
3823 }
3824
3825 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3826 unsigned long src_offset, unsigned long len)
3827 {
3828 size_t cur;
3829 size_t dst_off_in_page;
3830 size_t src_off_in_page;
3831 unsigned long dst_end = dst_offset + len - 1;
3832 unsigned long src_end = src_offset + len - 1;
3833 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3834 unsigned long dst_i;
3835 unsigned long src_i;
3836
3837 if (src_offset + len > dst->len) {
3838 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3839 "len %lu len %lu\n", src_offset, len, dst->len);
3840 BUG_ON(1);
3841 }
3842 if (dst_offset + len > dst->len) {
3843 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3844 "len %lu len %lu\n", dst_offset, len, dst->len);
3845 BUG_ON(1);
3846 }
3847 if (dst_offset < src_offset) {
3848 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3849 return;
3850 }
3851 while (len > 0) {
3852 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3853 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3854
3855 dst_off_in_page = (start_offset + dst_end) &
3856 ((unsigned long)PAGE_CACHE_SIZE - 1);
3857 src_off_in_page = (start_offset + src_end) &
3858 ((unsigned long)PAGE_CACHE_SIZE - 1);
3859
3860 cur = min_t(unsigned long, len, src_off_in_page + 1);
3861 cur = min(cur, dst_off_in_page + 1);
3862 move_pages(extent_buffer_page(dst, dst_i),
3863 extent_buffer_page(dst, src_i),
3864 dst_off_in_page - cur + 1,
3865 src_off_in_page - cur + 1, cur);
3866
3867 dst_end -= cur;
3868 src_end -= cur;
3869 len -= cur;
3870 }
3871 }
3872
3873 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3874 {
3875 struct extent_buffer *eb =
3876 container_of(head, struct extent_buffer, rcu_head);
3877
3878 btrfs_release_extent_buffer(eb);
3879 }
3880
3881 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3882 {
3883 u64 start = page_offset(page);
3884 struct extent_buffer *eb;
3885 int ret = 1;
3886
3887 spin_lock(&tree->buffer_lock);
3888 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3889 if (!eb) {
3890 spin_unlock(&tree->buffer_lock);
3891 return ret;
3892 }
3893
3894 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3895 ret = 0;
3896 goto out;
3897 }
3898
3899 /*
3900 * set @eb->refs to 0 if it is already 1, and then release the @eb.
3901 * Or go back.
3902 */
3903 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
3904 ret = 0;
3905 goto out;
3906 }
3907
3908 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3909 out:
3910 spin_unlock(&tree->buffer_lock);
3911
3912 /* at this point we can safely release the extent buffer */
3913 if (atomic_read(&eb->refs) == 0)
3914 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3915 return ret;
3916 }