Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35
36 static int update_block_group(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 u64 bytenr, u64 num_bytes, int alloc);
39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
40 u64 num_bytes, int reserve, int sinfo);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 u64 bytenr, u64 num_bytes, u64 parent,
44 u64 root_objectid, u64 owner_objectid,
45 u64 owner_offset, int refs_to_drop,
46 struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 struct extent_buffer *leaf,
49 struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 parent, u64 root_objectid,
58 u64 flags, struct btrfs_disk_key *key,
59 int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 struct btrfs_root *extent_root, u64 alloc_bytes,
62 u64 flags, int force);
63 static int find_next_key(struct btrfs_path *path, int level,
64 struct btrfs_key *key);
65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
66 int dump_block_groups);
67
68 static noinline int
69 block_group_cache_done(struct btrfs_block_group_cache *cache)
70 {
71 smp_mb();
72 return cache->cached == BTRFS_CACHE_FINISHED;
73 }
74
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
76 {
77 return (cache->flags & bits) == bits;
78 }
79
80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
81 {
82 atomic_inc(&cache->count);
83 }
84
85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
86 {
87 if (atomic_dec_and_test(&cache->count)) {
88 WARN_ON(cache->pinned > 0);
89 WARN_ON(cache->reserved > 0);
90 WARN_ON(cache->reserved_pinned > 0);
91 kfree(cache);
92 }
93 }
94
95 /*
96 * this adds the block group to the fs_info rb tree for the block group
97 * cache
98 */
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
100 struct btrfs_block_group_cache *block_group)
101 {
102 struct rb_node **p;
103 struct rb_node *parent = NULL;
104 struct btrfs_block_group_cache *cache;
105
106 spin_lock(&info->block_group_cache_lock);
107 p = &info->block_group_cache_tree.rb_node;
108
109 while (*p) {
110 parent = *p;
111 cache = rb_entry(parent, struct btrfs_block_group_cache,
112 cache_node);
113 if (block_group->key.objectid < cache->key.objectid) {
114 p = &(*p)->rb_left;
115 } else if (block_group->key.objectid > cache->key.objectid) {
116 p = &(*p)->rb_right;
117 } else {
118 spin_unlock(&info->block_group_cache_lock);
119 return -EEXIST;
120 }
121 }
122
123 rb_link_node(&block_group->cache_node, parent, p);
124 rb_insert_color(&block_group->cache_node,
125 &info->block_group_cache_tree);
126 spin_unlock(&info->block_group_cache_lock);
127
128 return 0;
129 }
130
131 /*
132 * This will return the block group at or after bytenr if contains is 0, else
133 * it will return the block group that contains the bytenr
134 */
135 static struct btrfs_block_group_cache *
136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
137 int contains)
138 {
139 struct btrfs_block_group_cache *cache, *ret = NULL;
140 struct rb_node *n;
141 u64 end, start;
142
143 spin_lock(&info->block_group_cache_lock);
144 n = info->block_group_cache_tree.rb_node;
145
146 while (n) {
147 cache = rb_entry(n, struct btrfs_block_group_cache,
148 cache_node);
149 end = cache->key.objectid + cache->key.offset - 1;
150 start = cache->key.objectid;
151
152 if (bytenr < start) {
153 if (!contains && (!ret || start < ret->key.objectid))
154 ret = cache;
155 n = n->rb_left;
156 } else if (bytenr > start) {
157 if (contains && bytenr <= end) {
158 ret = cache;
159 break;
160 }
161 n = n->rb_right;
162 } else {
163 ret = cache;
164 break;
165 }
166 }
167 if (ret)
168 btrfs_get_block_group(ret);
169 spin_unlock(&info->block_group_cache_lock);
170
171 return ret;
172 }
173
174 static int add_excluded_extent(struct btrfs_root *root,
175 u64 start, u64 num_bytes)
176 {
177 u64 end = start + num_bytes - 1;
178 set_extent_bits(&root->fs_info->freed_extents[0],
179 start, end, EXTENT_UPTODATE, GFP_NOFS);
180 set_extent_bits(&root->fs_info->freed_extents[1],
181 start, end, EXTENT_UPTODATE, GFP_NOFS);
182 return 0;
183 }
184
185 static void free_excluded_extents(struct btrfs_root *root,
186 struct btrfs_block_group_cache *cache)
187 {
188 u64 start, end;
189
190 start = cache->key.objectid;
191 end = start + cache->key.offset - 1;
192
193 clear_extent_bits(&root->fs_info->freed_extents[0],
194 start, end, EXTENT_UPTODATE, GFP_NOFS);
195 clear_extent_bits(&root->fs_info->freed_extents[1],
196 start, end, EXTENT_UPTODATE, GFP_NOFS);
197 }
198
199 static int exclude_super_stripes(struct btrfs_root *root,
200 struct btrfs_block_group_cache *cache)
201 {
202 u64 bytenr;
203 u64 *logical;
204 int stripe_len;
205 int i, nr, ret;
206
207 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
208 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
209 cache->bytes_super += stripe_len;
210 ret = add_excluded_extent(root, cache->key.objectid,
211 stripe_len);
212 BUG_ON(ret);
213 }
214
215 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
216 bytenr = btrfs_sb_offset(i);
217 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
218 cache->key.objectid, bytenr,
219 0, &logical, &nr, &stripe_len);
220 BUG_ON(ret);
221
222 while (nr--) {
223 cache->bytes_super += stripe_len;
224 ret = add_excluded_extent(root, logical[nr],
225 stripe_len);
226 BUG_ON(ret);
227 }
228
229 kfree(logical);
230 }
231 return 0;
232 }
233
234 static struct btrfs_caching_control *
235 get_caching_control(struct btrfs_block_group_cache *cache)
236 {
237 struct btrfs_caching_control *ctl;
238
239 spin_lock(&cache->lock);
240 if (cache->cached != BTRFS_CACHE_STARTED) {
241 spin_unlock(&cache->lock);
242 return NULL;
243 }
244
245 ctl = cache->caching_ctl;
246 atomic_inc(&ctl->count);
247 spin_unlock(&cache->lock);
248 return ctl;
249 }
250
251 static void put_caching_control(struct btrfs_caching_control *ctl)
252 {
253 if (atomic_dec_and_test(&ctl->count))
254 kfree(ctl);
255 }
256
257 /*
258 * this is only called by cache_block_group, since we could have freed extents
259 * we need to check the pinned_extents for any extents that can't be used yet
260 * since their free space will be released as soon as the transaction commits.
261 */
262 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
263 struct btrfs_fs_info *info, u64 start, u64 end)
264 {
265 u64 extent_start, extent_end, size, total_added = 0;
266 int ret;
267
268 while (start < end) {
269 ret = find_first_extent_bit(info->pinned_extents, start,
270 &extent_start, &extent_end,
271 EXTENT_DIRTY | EXTENT_UPTODATE);
272 if (ret)
273 break;
274
275 if (extent_start <= start) {
276 start = extent_end + 1;
277 } else if (extent_start > start && extent_start < end) {
278 size = extent_start - start;
279 total_added += size;
280 ret = btrfs_add_free_space(block_group, start,
281 size);
282 BUG_ON(ret);
283 start = extent_end + 1;
284 } else {
285 break;
286 }
287 }
288
289 if (start < end) {
290 size = end - start;
291 total_added += size;
292 ret = btrfs_add_free_space(block_group, start, size);
293 BUG_ON(ret);
294 }
295
296 return total_added;
297 }
298
299 static int caching_kthread(void *data)
300 {
301 struct btrfs_block_group_cache *block_group = data;
302 struct btrfs_fs_info *fs_info = block_group->fs_info;
303 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
304 struct btrfs_root *extent_root = fs_info->extent_root;
305 struct btrfs_path *path;
306 struct extent_buffer *leaf;
307 struct btrfs_key key;
308 u64 total_found = 0;
309 u64 last = 0;
310 u32 nritems;
311 int ret = 0;
312
313 path = btrfs_alloc_path();
314 if (!path)
315 return -ENOMEM;
316
317 exclude_super_stripes(extent_root, block_group);
318 spin_lock(&block_group->space_info->lock);
319 block_group->space_info->bytes_readonly += block_group->bytes_super;
320 spin_unlock(&block_group->space_info->lock);
321
322 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
323
324 /*
325 * We don't want to deadlock with somebody trying to allocate a new
326 * extent for the extent root while also trying to search the extent
327 * root to add free space. So we skip locking and search the commit
328 * root, since its read-only
329 */
330 path->skip_locking = 1;
331 path->search_commit_root = 1;
332 path->reada = 2;
333
334 key.objectid = last;
335 key.offset = 0;
336 key.type = BTRFS_EXTENT_ITEM_KEY;
337 again:
338 mutex_lock(&caching_ctl->mutex);
339 /* need to make sure the commit_root doesn't disappear */
340 down_read(&fs_info->extent_commit_sem);
341
342 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
343 if (ret < 0)
344 goto err;
345
346 leaf = path->nodes[0];
347 nritems = btrfs_header_nritems(leaf);
348
349 while (1) {
350 smp_mb();
351 if (fs_info->closing > 1) {
352 last = (u64)-1;
353 break;
354 }
355
356 if (path->slots[0] < nritems) {
357 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
358 } else {
359 ret = find_next_key(path, 0, &key);
360 if (ret)
361 break;
362
363 caching_ctl->progress = last;
364 btrfs_release_path(extent_root, path);
365 up_read(&fs_info->extent_commit_sem);
366 mutex_unlock(&caching_ctl->mutex);
367 if (btrfs_transaction_in_commit(fs_info))
368 schedule_timeout(1);
369 else
370 cond_resched();
371 goto again;
372 }
373
374 if (key.objectid < block_group->key.objectid) {
375 path->slots[0]++;
376 continue;
377 }
378
379 if (key.objectid >= block_group->key.objectid +
380 block_group->key.offset)
381 break;
382
383 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
384 total_found += add_new_free_space(block_group,
385 fs_info, last,
386 key.objectid);
387 last = key.objectid + key.offset;
388
389 if (total_found > (1024 * 1024 * 2)) {
390 total_found = 0;
391 wake_up(&caching_ctl->wait);
392 }
393 }
394 path->slots[0]++;
395 }
396 ret = 0;
397
398 total_found += add_new_free_space(block_group, fs_info, last,
399 block_group->key.objectid +
400 block_group->key.offset);
401 caching_ctl->progress = (u64)-1;
402
403 spin_lock(&block_group->lock);
404 block_group->caching_ctl = NULL;
405 block_group->cached = BTRFS_CACHE_FINISHED;
406 spin_unlock(&block_group->lock);
407
408 err:
409 btrfs_free_path(path);
410 up_read(&fs_info->extent_commit_sem);
411
412 free_excluded_extents(extent_root, block_group);
413
414 mutex_unlock(&caching_ctl->mutex);
415 wake_up(&caching_ctl->wait);
416
417 put_caching_control(caching_ctl);
418 atomic_dec(&block_group->space_info->caching_threads);
419 btrfs_put_block_group(block_group);
420
421 return 0;
422 }
423
424 static int cache_block_group(struct btrfs_block_group_cache *cache)
425 {
426 struct btrfs_fs_info *fs_info = cache->fs_info;
427 struct btrfs_caching_control *caching_ctl;
428 struct task_struct *tsk;
429 int ret = 0;
430
431 smp_mb();
432 if (cache->cached != BTRFS_CACHE_NO)
433 return 0;
434
435 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
436 BUG_ON(!caching_ctl);
437
438 INIT_LIST_HEAD(&caching_ctl->list);
439 mutex_init(&caching_ctl->mutex);
440 init_waitqueue_head(&caching_ctl->wait);
441 caching_ctl->block_group = cache;
442 caching_ctl->progress = cache->key.objectid;
443 /* one for caching kthread, one for caching block group list */
444 atomic_set(&caching_ctl->count, 2);
445
446 spin_lock(&cache->lock);
447 if (cache->cached != BTRFS_CACHE_NO) {
448 spin_unlock(&cache->lock);
449 kfree(caching_ctl);
450 return 0;
451 }
452 cache->caching_ctl = caching_ctl;
453 cache->cached = BTRFS_CACHE_STARTED;
454 spin_unlock(&cache->lock);
455
456 down_write(&fs_info->extent_commit_sem);
457 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
458 up_write(&fs_info->extent_commit_sem);
459
460 atomic_inc(&cache->space_info->caching_threads);
461 btrfs_get_block_group(cache);
462
463 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
464 cache->key.objectid);
465 if (IS_ERR(tsk)) {
466 ret = PTR_ERR(tsk);
467 printk(KERN_ERR "error running thread %d\n", ret);
468 BUG();
469 }
470
471 return ret;
472 }
473
474 /*
475 * return the block group that starts at or after bytenr
476 */
477 static struct btrfs_block_group_cache *
478 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
479 {
480 struct btrfs_block_group_cache *cache;
481
482 cache = block_group_cache_tree_search(info, bytenr, 0);
483
484 return cache;
485 }
486
487 /*
488 * return the block group that contains the given bytenr
489 */
490 struct btrfs_block_group_cache *btrfs_lookup_block_group(
491 struct btrfs_fs_info *info,
492 u64 bytenr)
493 {
494 struct btrfs_block_group_cache *cache;
495
496 cache = block_group_cache_tree_search(info, bytenr, 1);
497
498 return cache;
499 }
500
501 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
502 u64 flags)
503 {
504 struct list_head *head = &info->space_info;
505 struct btrfs_space_info *found;
506
507 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
508 BTRFS_BLOCK_GROUP_METADATA;
509
510 rcu_read_lock();
511 list_for_each_entry_rcu(found, head, list) {
512 if (found->flags == flags) {
513 rcu_read_unlock();
514 return found;
515 }
516 }
517 rcu_read_unlock();
518 return NULL;
519 }
520
521 /*
522 * after adding space to the filesystem, we need to clear the full flags
523 * on all the space infos.
524 */
525 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
526 {
527 struct list_head *head = &info->space_info;
528 struct btrfs_space_info *found;
529
530 rcu_read_lock();
531 list_for_each_entry_rcu(found, head, list)
532 found->full = 0;
533 rcu_read_unlock();
534 }
535
536 static u64 div_factor(u64 num, int factor)
537 {
538 if (factor == 10)
539 return num;
540 num *= factor;
541 do_div(num, 10);
542 return num;
543 }
544
545 u64 btrfs_find_block_group(struct btrfs_root *root,
546 u64 search_start, u64 search_hint, int owner)
547 {
548 struct btrfs_block_group_cache *cache;
549 u64 used;
550 u64 last = max(search_hint, search_start);
551 u64 group_start = 0;
552 int full_search = 0;
553 int factor = 9;
554 int wrapped = 0;
555 again:
556 while (1) {
557 cache = btrfs_lookup_first_block_group(root->fs_info, last);
558 if (!cache)
559 break;
560
561 spin_lock(&cache->lock);
562 last = cache->key.objectid + cache->key.offset;
563 used = btrfs_block_group_used(&cache->item);
564
565 if ((full_search || !cache->ro) &&
566 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
567 if (used + cache->pinned + cache->reserved <
568 div_factor(cache->key.offset, factor)) {
569 group_start = cache->key.objectid;
570 spin_unlock(&cache->lock);
571 btrfs_put_block_group(cache);
572 goto found;
573 }
574 }
575 spin_unlock(&cache->lock);
576 btrfs_put_block_group(cache);
577 cond_resched();
578 }
579 if (!wrapped) {
580 last = search_start;
581 wrapped = 1;
582 goto again;
583 }
584 if (!full_search && factor < 10) {
585 last = search_start;
586 full_search = 1;
587 factor = 10;
588 goto again;
589 }
590 found:
591 return group_start;
592 }
593
594 /* simple helper to search for an existing extent at a given offset */
595 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
596 {
597 int ret;
598 struct btrfs_key key;
599 struct btrfs_path *path;
600
601 path = btrfs_alloc_path();
602 BUG_ON(!path);
603 key.objectid = start;
604 key.offset = len;
605 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
606 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
607 0, 0);
608 btrfs_free_path(path);
609 return ret;
610 }
611
612 /*
613 * helper function to lookup reference count and flags of extent.
614 *
615 * the head node for delayed ref is used to store the sum of all the
616 * reference count modifications queued up in the rbtree. the head
617 * node may also store the extent flags to set. This way you can check
618 * to see what the reference count and extent flags would be if all of
619 * the delayed refs are not processed.
620 */
621 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root, u64 bytenr,
623 u64 num_bytes, u64 *refs, u64 *flags)
624 {
625 struct btrfs_delayed_ref_head *head;
626 struct btrfs_delayed_ref_root *delayed_refs;
627 struct btrfs_path *path;
628 struct btrfs_extent_item *ei;
629 struct extent_buffer *leaf;
630 struct btrfs_key key;
631 u32 item_size;
632 u64 num_refs;
633 u64 extent_flags;
634 int ret;
635
636 path = btrfs_alloc_path();
637 if (!path)
638 return -ENOMEM;
639
640 key.objectid = bytenr;
641 key.type = BTRFS_EXTENT_ITEM_KEY;
642 key.offset = num_bytes;
643 if (!trans) {
644 path->skip_locking = 1;
645 path->search_commit_root = 1;
646 }
647 again:
648 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
649 &key, path, 0, 0);
650 if (ret < 0)
651 goto out_free;
652
653 if (ret == 0) {
654 leaf = path->nodes[0];
655 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
656 if (item_size >= sizeof(*ei)) {
657 ei = btrfs_item_ptr(leaf, path->slots[0],
658 struct btrfs_extent_item);
659 num_refs = btrfs_extent_refs(leaf, ei);
660 extent_flags = btrfs_extent_flags(leaf, ei);
661 } else {
662 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
663 struct btrfs_extent_item_v0 *ei0;
664 BUG_ON(item_size != sizeof(*ei0));
665 ei0 = btrfs_item_ptr(leaf, path->slots[0],
666 struct btrfs_extent_item_v0);
667 num_refs = btrfs_extent_refs_v0(leaf, ei0);
668 /* FIXME: this isn't correct for data */
669 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
670 #else
671 BUG();
672 #endif
673 }
674 BUG_ON(num_refs == 0);
675 } else {
676 num_refs = 0;
677 extent_flags = 0;
678 ret = 0;
679 }
680
681 if (!trans)
682 goto out;
683
684 delayed_refs = &trans->transaction->delayed_refs;
685 spin_lock(&delayed_refs->lock);
686 head = btrfs_find_delayed_ref_head(trans, bytenr);
687 if (head) {
688 if (!mutex_trylock(&head->mutex)) {
689 atomic_inc(&head->node.refs);
690 spin_unlock(&delayed_refs->lock);
691
692 btrfs_release_path(root->fs_info->extent_root, path);
693
694 mutex_lock(&head->mutex);
695 mutex_unlock(&head->mutex);
696 btrfs_put_delayed_ref(&head->node);
697 goto again;
698 }
699 if (head->extent_op && head->extent_op->update_flags)
700 extent_flags |= head->extent_op->flags_to_set;
701 else
702 BUG_ON(num_refs == 0);
703
704 num_refs += head->node.ref_mod;
705 mutex_unlock(&head->mutex);
706 }
707 spin_unlock(&delayed_refs->lock);
708 out:
709 WARN_ON(num_refs == 0);
710 if (refs)
711 *refs = num_refs;
712 if (flags)
713 *flags = extent_flags;
714 out_free:
715 btrfs_free_path(path);
716 return ret;
717 }
718
719 /*
720 * Back reference rules. Back refs have three main goals:
721 *
722 * 1) differentiate between all holders of references to an extent so that
723 * when a reference is dropped we can make sure it was a valid reference
724 * before freeing the extent.
725 *
726 * 2) Provide enough information to quickly find the holders of an extent
727 * if we notice a given block is corrupted or bad.
728 *
729 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
730 * maintenance. This is actually the same as #2, but with a slightly
731 * different use case.
732 *
733 * There are two kinds of back refs. The implicit back refs is optimized
734 * for pointers in non-shared tree blocks. For a given pointer in a block,
735 * back refs of this kind provide information about the block's owner tree
736 * and the pointer's key. These information allow us to find the block by
737 * b-tree searching. The full back refs is for pointers in tree blocks not
738 * referenced by their owner trees. The location of tree block is recorded
739 * in the back refs. Actually the full back refs is generic, and can be
740 * used in all cases the implicit back refs is used. The major shortcoming
741 * of the full back refs is its overhead. Every time a tree block gets
742 * COWed, we have to update back refs entry for all pointers in it.
743 *
744 * For a newly allocated tree block, we use implicit back refs for
745 * pointers in it. This means most tree related operations only involve
746 * implicit back refs. For a tree block created in old transaction, the
747 * only way to drop a reference to it is COW it. So we can detect the
748 * event that tree block loses its owner tree's reference and do the
749 * back refs conversion.
750 *
751 * When a tree block is COW'd through a tree, there are four cases:
752 *
753 * The reference count of the block is one and the tree is the block's
754 * owner tree. Nothing to do in this case.
755 *
756 * The reference count of the block is one and the tree is not the
757 * block's owner tree. In this case, full back refs is used for pointers
758 * in the block. Remove these full back refs, add implicit back refs for
759 * every pointers in the new block.
760 *
761 * The reference count of the block is greater than one and the tree is
762 * the block's owner tree. In this case, implicit back refs is used for
763 * pointers in the block. Add full back refs for every pointers in the
764 * block, increase lower level extents' reference counts. The original
765 * implicit back refs are entailed to the new block.
766 *
767 * The reference count of the block is greater than one and the tree is
768 * not the block's owner tree. Add implicit back refs for every pointer in
769 * the new block, increase lower level extents' reference count.
770 *
771 * Back Reference Key composing:
772 *
773 * The key objectid corresponds to the first byte in the extent,
774 * The key type is used to differentiate between types of back refs.
775 * There are different meanings of the key offset for different types
776 * of back refs.
777 *
778 * File extents can be referenced by:
779 *
780 * - multiple snapshots, subvolumes, or different generations in one subvol
781 * - different files inside a single subvolume
782 * - different offsets inside a file (bookend extents in file.c)
783 *
784 * The extent ref structure for the implicit back refs has fields for:
785 *
786 * - Objectid of the subvolume root
787 * - objectid of the file holding the reference
788 * - original offset in the file
789 * - how many bookend extents
790 *
791 * The key offset for the implicit back refs is hash of the first
792 * three fields.
793 *
794 * The extent ref structure for the full back refs has field for:
795 *
796 * - number of pointers in the tree leaf
797 *
798 * The key offset for the implicit back refs is the first byte of
799 * the tree leaf
800 *
801 * When a file extent is allocated, The implicit back refs is used.
802 * the fields are filled in:
803 *
804 * (root_key.objectid, inode objectid, offset in file, 1)
805 *
806 * When a file extent is removed file truncation, we find the
807 * corresponding implicit back refs and check the following fields:
808 *
809 * (btrfs_header_owner(leaf), inode objectid, offset in file)
810 *
811 * Btree extents can be referenced by:
812 *
813 * - Different subvolumes
814 *
815 * Both the implicit back refs and the full back refs for tree blocks
816 * only consist of key. The key offset for the implicit back refs is
817 * objectid of block's owner tree. The key offset for the full back refs
818 * is the first byte of parent block.
819 *
820 * When implicit back refs is used, information about the lowest key and
821 * level of the tree block are required. These information are stored in
822 * tree block info structure.
823 */
824
825 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
826 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
827 struct btrfs_root *root,
828 struct btrfs_path *path,
829 u64 owner, u32 extra_size)
830 {
831 struct btrfs_extent_item *item;
832 struct btrfs_extent_item_v0 *ei0;
833 struct btrfs_extent_ref_v0 *ref0;
834 struct btrfs_tree_block_info *bi;
835 struct extent_buffer *leaf;
836 struct btrfs_key key;
837 struct btrfs_key found_key;
838 u32 new_size = sizeof(*item);
839 u64 refs;
840 int ret;
841
842 leaf = path->nodes[0];
843 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
844
845 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
846 ei0 = btrfs_item_ptr(leaf, path->slots[0],
847 struct btrfs_extent_item_v0);
848 refs = btrfs_extent_refs_v0(leaf, ei0);
849
850 if (owner == (u64)-1) {
851 while (1) {
852 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
853 ret = btrfs_next_leaf(root, path);
854 if (ret < 0)
855 return ret;
856 BUG_ON(ret > 0);
857 leaf = path->nodes[0];
858 }
859 btrfs_item_key_to_cpu(leaf, &found_key,
860 path->slots[0]);
861 BUG_ON(key.objectid != found_key.objectid);
862 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
863 path->slots[0]++;
864 continue;
865 }
866 ref0 = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_ref_v0);
868 owner = btrfs_ref_objectid_v0(leaf, ref0);
869 break;
870 }
871 }
872 btrfs_release_path(root, path);
873
874 if (owner < BTRFS_FIRST_FREE_OBJECTID)
875 new_size += sizeof(*bi);
876
877 new_size -= sizeof(*ei0);
878 ret = btrfs_search_slot(trans, root, &key, path,
879 new_size + extra_size, 1);
880 if (ret < 0)
881 return ret;
882 BUG_ON(ret);
883
884 ret = btrfs_extend_item(trans, root, path, new_size);
885 BUG_ON(ret);
886
887 leaf = path->nodes[0];
888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
889 btrfs_set_extent_refs(leaf, item, refs);
890 /* FIXME: get real generation */
891 btrfs_set_extent_generation(leaf, item, 0);
892 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
893 btrfs_set_extent_flags(leaf, item,
894 BTRFS_EXTENT_FLAG_TREE_BLOCK |
895 BTRFS_BLOCK_FLAG_FULL_BACKREF);
896 bi = (struct btrfs_tree_block_info *)(item + 1);
897 /* FIXME: get first key of the block */
898 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
899 btrfs_set_tree_block_level(leaf, bi, (int)owner);
900 } else {
901 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
902 }
903 btrfs_mark_buffer_dirty(leaf);
904 return 0;
905 }
906 #endif
907
908 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
909 {
910 u32 high_crc = ~(u32)0;
911 u32 low_crc = ~(u32)0;
912 __le64 lenum;
913
914 lenum = cpu_to_le64(root_objectid);
915 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
916 lenum = cpu_to_le64(owner);
917 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
918 lenum = cpu_to_le64(offset);
919 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
920
921 return ((u64)high_crc << 31) ^ (u64)low_crc;
922 }
923
924 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
925 struct btrfs_extent_data_ref *ref)
926 {
927 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
928 btrfs_extent_data_ref_objectid(leaf, ref),
929 btrfs_extent_data_ref_offset(leaf, ref));
930 }
931
932 static int match_extent_data_ref(struct extent_buffer *leaf,
933 struct btrfs_extent_data_ref *ref,
934 u64 root_objectid, u64 owner, u64 offset)
935 {
936 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
937 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
938 btrfs_extent_data_ref_offset(leaf, ref) != offset)
939 return 0;
940 return 1;
941 }
942
943 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
944 struct btrfs_root *root,
945 struct btrfs_path *path,
946 u64 bytenr, u64 parent,
947 u64 root_objectid,
948 u64 owner, u64 offset)
949 {
950 struct btrfs_key key;
951 struct btrfs_extent_data_ref *ref;
952 struct extent_buffer *leaf;
953 u32 nritems;
954 int ret;
955 int recow;
956 int err = -ENOENT;
957
958 key.objectid = bytenr;
959 if (parent) {
960 key.type = BTRFS_SHARED_DATA_REF_KEY;
961 key.offset = parent;
962 } else {
963 key.type = BTRFS_EXTENT_DATA_REF_KEY;
964 key.offset = hash_extent_data_ref(root_objectid,
965 owner, offset);
966 }
967 again:
968 recow = 0;
969 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
970 if (ret < 0) {
971 err = ret;
972 goto fail;
973 }
974
975 if (parent) {
976 if (!ret)
977 return 0;
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 key.type = BTRFS_EXTENT_REF_V0_KEY;
980 btrfs_release_path(root, path);
981 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
982 if (ret < 0) {
983 err = ret;
984 goto fail;
985 }
986 if (!ret)
987 return 0;
988 #endif
989 goto fail;
990 }
991
992 leaf = path->nodes[0];
993 nritems = btrfs_header_nritems(leaf);
994 while (1) {
995 if (path->slots[0] >= nritems) {
996 ret = btrfs_next_leaf(root, path);
997 if (ret < 0)
998 err = ret;
999 if (ret)
1000 goto fail;
1001
1002 leaf = path->nodes[0];
1003 nritems = btrfs_header_nritems(leaf);
1004 recow = 1;
1005 }
1006
1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 if (key.objectid != bytenr ||
1009 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1010 goto fail;
1011
1012 ref = btrfs_item_ptr(leaf, path->slots[0],
1013 struct btrfs_extent_data_ref);
1014
1015 if (match_extent_data_ref(leaf, ref, root_objectid,
1016 owner, offset)) {
1017 if (recow) {
1018 btrfs_release_path(root, path);
1019 goto again;
1020 }
1021 err = 0;
1022 break;
1023 }
1024 path->slots[0]++;
1025 }
1026 fail:
1027 return err;
1028 }
1029
1030 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path,
1033 u64 bytenr, u64 parent,
1034 u64 root_objectid, u64 owner,
1035 u64 offset, int refs_to_add)
1036 {
1037 struct btrfs_key key;
1038 struct extent_buffer *leaf;
1039 u32 size;
1040 u32 num_refs;
1041 int ret;
1042
1043 key.objectid = bytenr;
1044 if (parent) {
1045 key.type = BTRFS_SHARED_DATA_REF_KEY;
1046 key.offset = parent;
1047 size = sizeof(struct btrfs_shared_data_ref);
1048 } else {
1049 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1050 key.offset = hash_extent_data_ref(root_objectid,
1051 owner, offset);
1052 size = sizeof(struct btrfs_extent_data_ref);
1053 }
1054
1055 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1056 if (ret && ret != -EEXIST)
1057 goto fail;
1058
1059 leaf = path->nodes[0];
1060 if (parent) {
1061 struct btrfs_shared_data_ref *ref;
1062 ref = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_shared_data_ref);
1064 if (ret == 0) {
1065 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1066 } else {
1067 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1068 num_refs += refs_to_add;
1069 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1070 }
1071 } else {
1072 struct btrfs_extent_data_ref *ref;
1073 while (ret == -EEXIST) {
1074 ref = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_extent_data_ref);
1076 if (match_extent_data_ref(leaf, ref, root_objectid,
1077 owner, offset))
1078 break;
1079 btrfs_release_path(root, path);
1080 key.offset++;
1081 ret = btrfs_insert_empty_item(trans, root, path, &key,
1082 size);
1083 if (ret && ret != -EEXIST)
1084 goto fail;
1085
1086 leaf = path->nodes[0];
1087 }
1088 ref = btrfs_item_ptr(leaf, path->slots[0],
1089 struct btrfs_extent_data_ref);
1090 if (ret == 0) {
1091 btrfs_set_extent_data_ref_root(leaf, ref,
1092 root_objectid);
1093 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1094 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1095 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1096 } else {
1097 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1098 num_refs += refs_to_add;
1099 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1100 }
1101 }
1102 btrfs_mark_buffer_dirty(leaf);
1103 ret = 0;
1104 fail:
1105 btrfs_release_path(root, path);
1106 return ret;
1107 }
1108
1109 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1110 struct btrfs_root *root,
1111 struct btrfs_path *path,
1112 int refs_to_drop)
1113 {
1114 struct btrfs_key key;
1115 struct btrfs_extent_data_ref *ref1 = NULL;
1116 struct btrfs_shared_data_ref *ref2 = NULL;
1117 struct extent_buffer *leaf;
1118 u32 num_refs = 0;
1119 int ret = 0;
1120
1121 leaf = path->nodes[0];
1122 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1123
1124 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1125 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1126 struct btrfs_extent_data_ref);
1127 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1128 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1129 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1130 struct btrfs_shared_data_ref);
1131 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1132 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1133 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1134 struct btrfs_extent_ref_v0 *ref0;
1135 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1136 struct btrfs_extent_ref_v0);
1137 num_refs = btrfs_ref_count_v0(leaf, ref0);
1138 #endif
1139 } else {
1140 BUG();
1141 }
1142
1143 BUG_ON(num_refs < refs_to_drop);
1144 num_refs -= refs_to_drop;
1145
1146 if (num_refs == 0) {
1147 ret = btrfs_del_item(trans, root, path);
1148 } else {
1149 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1150 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1151 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1152 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1154 else {
1155 struct btrfs_extent_ref_v0 *ref0;
1156 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1157 struct btrfs_extent_ref_v0);
1158 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1159 }
1160 #endif
1161 btrfs_mark_buffer_dirty(leaf);
1162 }
1163 return ret;
1164 }
1165
1166 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1167 struct btrfs_path *path,
1168 struct btrfs_extent_inline_ref *iref)
1169 {
1170 struct btrfs_key key;
1171 struct extent_buffer *leaf;
1172 struct btrfs_extent_data_ref *ref1;
1173 struct btrfs_shared_data_ref *ref2;
1174 u32 num_refs = 0;
1175
1176 leaf = path->nodes[0];
1177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1178 if (iref) {
1179 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1180 BTRFS_EXTENT_DATA_REF_KEY) {
1181 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1182 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1183 } else {
1184 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1185 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1186 }
1187 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1188 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_extent_data_ref);
1190 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1191 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1192 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_shared_data_ref);
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1196 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1197 struct btrfs_extent_ref_v0 *ref0;
1198 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1199 struct btrfs_extent_ref_v0);
1200 num_refs = btrfs_ref_count_v0(leaf, ref0);
1201 #endif
1202 } else {
1203 WARN_ON(1);
1204 }
1205 return num_refs;
1206 }
1207
1208 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1209 struct btrfs_root *root,
1210 struct btrfs_path *path,
1211 u64 bytenr, u64 parent,
1212 u64 root_objectid)
1213 {
1214 struct btrfs_key key;
1215 int ret;
1216
1217 key.objectid = bytenr;
1218 if (parent) {
1219 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1220 key.offset = parent;
1221 } else {
1222 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1223 key.offset = root_objectid;
1224 }
1225
1226 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1227 if (ret > 0)
1228 ret = -ENOENT;
1229 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1230 if (ret == -ENOENT && parent) {
1231 btrfs_release_path(root, path);
1232 key.type = BTRFS_EXTENT_REF_V0_KEY;
1233 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1234 if (ret > 0)
1235 ret = -ENOENT;
1236 }
1237 #endif
1238 return ret;
1239 }
1240
1241 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1242 struct btrfs_root *root,
1243 struct btrfs_path *path,
1244 u64 bytenr, u64 parent,
1245 u64 root_objectid)
1246 {
1247 struct btrfs_key key;
1248 int ret;
1249
1250 key.objectid = bytenr;
1251 if (parent) {
1252 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1256 key.offset = root_objectid;
1257 }
1258
1259 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1260 btrfs_release_path(root, path);
1261 return ret;
1262 }
1263
1264 static inline int extent_ref_type(u64 parent, u64 owner)
1265 {
1266 int type;
1267 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1268 if (parent > 0)
1269 type = BTRFS_SHARED_BLOCK_REF_KEY;
1270 else
1271 type = BTRFS_TREE_BLOCK_REF_KEY;
1272 } else {
1273 if (parent > 0)
1274 type = BTRFS_SHARED_DATA_REF_KEY;
1275 else
1276 type = BTRFS_EXTENT_DATA_REF_KEY;
1277 }
1278 return type;
1279 }
1280
1281 static int find_next_key(struct btrfs_path *path, int level,
1282 struct btrfs_key *key)
1283
1284 {
1285 for (; level < BTRFS_MAX_LEVEL; level++) {
1286 if (!path->nodes[level])
1287 break;
1288 if (path->slots[level] + 1 >=
1289 btrfs_header_nritems(path->nodes[level]))
1290 continue;
1291 if (level == 0)
1292 btrfs_item_key_to_cpu(path->nodes[level], key,
1293 path->slots[level] + 1);
1294 else
1295 btrfs_node_key_to_cpu(path->nodes[level], key,
1296 path->slots[level] + 1);
1297 return 0;
1298 }
1299 return 1;
1300 }
1301
1302 /*
1303 * look for inline back ref. if back ref is found, *ref_ret is set
1304 * to the address of inline back ref, and 0 is returned.
1305 *
1306 * if back ref isn't found, *ref_ret is set to the address where it
1307 * should be inserted, and -ENOENT is returned.
1308 *
1309 * if insert is true and there are too many inline back refs, the path
1310 * points to the extent item, and -EAGAIN is returned.
1311 *
1312 * NOTE: inline back refs are ordered in the same way that back ref
1313 * items in the tree are ordered.
1314 */
1315 static noinline_for_stack
1316 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1317 struct btrfs_root *root,
1318 struct btrfs_path *path,
1319 struct btrfs_extent_inline_ref **ref_ret,
1320 u64 bytenr, u64 num_bytes,
1321 u64 parent, u64 root_objectid,
1322 u64 owner, u64 offset, int insert)
1323 {
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_item *ei;
1327 struct btrfs_extent_inline_ref *iref;
1328 u64 flags;
1329 u64 item_size;
1330 unsigned long ptr;
1331 unsigned long end;
1332 int extra_size;
1333 int type;
1334 int want;
1335 int ret;
1336 int err = 0;
1337
1338 key.objectid = bytenr;
1339 key.type = BTRFS_EXTENT_ITEM_KEY;
1340 key.offset = num_bytes;
1341
1342 want = extent_ref_type(parent, owner);
1343 if (insert) {
1344 extra_size = btrfs_extent_inline_ref_size(want);
1345 path->keep_locks = 1;
1346 } else
1347 extra_size = -1;
1348 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1349 if (ret < 0) {
1350 err = ret;
1351 goto out;
1352 }
1353 BUG_ON(ret);
1354
1355 leaf = path->nodes[0];
1356 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (item_size < sizeof(*ei)) {
1359 if (!insert) {
1360 err = -ENOENT;
1361 goto out;
1362 }
1363 ret = convert_extent_item_v0(trans, root, path, owner,
1364 extra_size);
1365 if (ret < 0) {
1366 err = ret;
1367 goto out;
1368 }
1369 leaf = path->nodes[0];
1370 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1371 }
1372 #endif
1373 BUG_ON(item_size < sizeof(*ei));
1374
1375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1376 flags = btrfs_extent_flags(leaf, ei);
1377
1378 ptr = (unsigned long)(ei + 1);
1379 end = (unsigned long)ei + item_size;
1380
1381 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1382 ptr += sizeof(struct btrfs_tree_block_info);
1383 BUG_ON(ptr > end);
1384 } else {
1385 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1386 }
1387
1388 err = -ENOENT;
1389 while (1) {
1390 if (ptr >= end) {
1391 WARN_ON(ptr > end);
1392 break;
1393 }
1394 iref = (struct btrfs_extent_inline_ref *)ptr;
1395 type = btrfs_extent_inline_ref_type(leaf, iref);
1396 if (want < type)
1397 break;
1398 if (want > type) {
1399 ptr += btrfs_extent_inline_ref_size(type);
1400 continue;
1401 }
1402
1403 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 struct btrfs_extent_data_ref *dref;
1405 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1406 if (match_extent_data_ref(leaf, dref, root_objectid,
1407 owner, offset)) {
1408 err = 0;
1409 break;
1410 }
1411 if (hash_extent_data_ref_item(leaf, dref) <
1412 hash_extent_data_ref(root_objectid, owner, offset))
1413 break;
1414 } else {
1415 u64 ref_offset;
1416 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1417 if (parent > 0) {
1418 if (parent == ref_offset) {
1419 err = 0;
1420 break;
1421 }
1422 if (ref_offset < parent)
1423 break;
1424 } else {
1425 if (root_objectid == ref_offset) {
1426 err = 0;
1427 break;
1428 }
1429 if (ref_offset < root_objectid)
1430 break;
1431 }
1432 }
1433 ptr += btrfs_extent_inline_ref_size(type);
1434 }
1435 if (err == -ENOENT && insert) {
1436 if (item_size + extra_size >=
1437 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1438 err = -EAGAIN;
1439 goto out;
1440 }
1441 /*
1442 * To add new inline back ref, we have to make sure
1443 * there is no corresponding back ref item.
1444 * For simplicity, we just do not add new inline back
1445 * ref if there is any kind of item for this block
1446 */
1447 if (find_next_key(path, 0, &key) == 0 &&
1448 key.objectid == bytenr &&
1449 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1450 err = -EAGAIN;
1451 goto out;
1452 }
1453 }
1454 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1455 out:
1456 if (insert) {
1457 path->keep_locks = 0;
1458 btrfs_unlock_up_safe(path, 1);
1459 }
1460 return err;
1461 }
1462
1463 /*
1464 * helper to add new inline back ref
1465 */
1466 static noinline_for_stack
1467 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1468 struct btrfs_root *root,
1469 struct btrfs_path *path,
1470 struct btrfs_extent_inline_ref *iref,
1471 u64 parent, u64 root_objectid,
1472 u64 owner, u64 offset, int refs_to_add,
1473 struct btrfs_delayed_extent_op *extent_op)
1474 {
1475 struct extent_buffer *leaf;
1476 struct btrfs_extent_item *ei;
1477 unsigned long ptr;
1478 unsigned long end;
1479 unsigned long item_offset;
1480 u64 refs;
1481 int size;
1482 int type;
1483 int ret;
1484
1485 leaf = path->nodes[0];
1486 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1487 item_offset = (unsigned long)iref - (unsigned long)ei;
1488
1489 type = extent_ref_type(parent, owner);
1490 size = btrfs_extent_inline_ref_size(type);
1491
1492 ret = btrfs_extend_item(trans, root, path, size);
1493 BUG_ON(ret);
1494
1495 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1496 refs = btrfs_extent_refs(leaf, ei);
1497 refs += refs_to_add;
1498 btrfs_set_extent_refs(leaf, ei, refs);
1499 if (extent_op)
1500 __run_delayed_extent_op(extent_op, leaf, ei);
1501
1502 ptr = (unsigned long)ei + item_offset;
1503 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1504 if (ptr < end - size)
1505 memmove_extent_buffer(leaf, ptr + size, ptr,
1506 end - size - ptr);
1507
1508 iref = (struct btrfs_extent_inline_ref *)ptr;
1509 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1510 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1511 struct btrfs_extent_data_ref *dref;
1512 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1513 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1514 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1515 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1516 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1517 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1518 struct btrfs_shared_data_ref *sref;
1519 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1520 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1521 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1522 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1523 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1524 } else {
1525 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1526 }
1527 btrfs_mark_buffer_dirty(leaf);
1528 return 0;
1529 }
1530
1531 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root,
1533 struct btrfs_path *path,
1534 struct btrfs_extent_inline_ref **ref_ret,
1535 u64 bytenr, u64 num_bytes, u64 parent,
1536 u64 root_objectid, u64 owner, u64 offset)
1537 {
1538 int ret;
1539
1540 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1541 bytenr, num_bytes, parent,
1542 root_objectid, owner, offset, 0);
1543 if (ret != -ENOENT)
1544 return ret;
1545
1546 btrfs_release_path(root, path);
1547 *ref_ret = NULL;
1548
1549 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1550 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1551 root_objectid);
1552 } else {
1553 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1554 root_objectid, owner, offset);
1555 }
1556 return ret;
1557 }
1558
1559 /*
1560 * helper to update/remove inline back ref
1561 */
1562 static noinline_for_stack
1563 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1564 struct btrfs_root *root,
1565 struct btrfs_path *path,
1566 struct btrfs_extent_inline_ref *iref,
1567 int refs_to_mod,
1568 struct btrfs_delayed_extent_op *extent_op)
1569 {
1570 struct extent_buffer *leaf;
1571 struct btrfs_extent_item *ei;
1572 struct btrfs_extent_data_ref *dref = NULL;
1573 struct btrfs_shared_data_ref *sref = NULL;
1574 unsigned long ptr;
1575 unsigned long end;
1576 u32 item_size;
1577 int size;
1578 int type;
1579 int ret;
1580 u64 refs;
1581
1582 leaf = path->nodes[0];
1583 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1584 refs = btrfs_extent_refs(leaf, ei);
1585 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1586 refs += refs_to_mod;
1587 btrfs_set_extent_refs(leaf, ei, refs);
1588 if (extent_op)
1589 __run_delayed_extent_op(extent_op, leaf, ei);
1590
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592
1593 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1594 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1595 refs = btrfs_extent_data_ref_count(leaf, dref);
1596 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1597 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1598 refs = btrfs_shared_data_ref_count(leaf, sref);
1599 } else {
1600 refs = 1;
1601 BUG_ON(refs_to_mod != -1);
1602 }
1603
1604 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1605 refs += refs_to_mod;
1606
1607 if (refs > 0) {
1608 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1609 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1610 else
1611 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1612 } else {
1613 size = btrfs_extent_inline_ref_size(type);
1614 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1615 ptr = (unsigned long)iref;
1616 end = (unsigned long)ei + item_size;
1617 if (ptr + size < end)
1618 memmove_extent_buffer(leaf, ptr, ptr + size,
1619 end - ptr - size);
1620 item_size -= size;
1621 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1622 BUG_ON(ret);
1623 }
1624 btrfs_mark_buffer_dirty(leaf);
1625 return 0;
1626 }
1627
1628 static noinline_for_stack
1629 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1630 struct btrfs_root *root,
1631 struct btrfs_path *path,
1632 u64 bytenr, u64 num_bytes, u64 parent,
1633 u64 root_objectid, u64 owner,
1634 u64 offset, int refs_to_add,
1635 struct btrfs_delayed_extent_op *extent_op)
1636 {
1637 struct btrfs_extent_inline_ref *iref;
1638 int ret;
1639
1640 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1641 bytenr, num_bytes, parent,
1642 root_objectid, owner, offset, 1);
1643 if (ret == 0) {
1644 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1645 ret = update_inline_extent_backref(trans, root, path, iref,
1646 refs_to_add, extent_op);
1647 } else if (ret == -ENOENT) {
1648 ret = setup_inline_extent_backref(trans, root, path, iref,
1649 parent, root_objectid,
1650 owner, offset, refs_to_add,
1651 extent_op);
1652 }
1653 return ret;
1654 }
1655
1656 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1657 struct btrfs_root *root,
1658 struct btrfs_path *path,
1659 u64 bytenr, u64 parent, u64 root_objectid,
1660 u64 owner, u64 offset, int refs_to_add)
1661 {
1662 int ret;
1663 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1664 BUG_ON(refs_to_add != 1);
1665 ret = insert_tree_block_ref(trans, root, path, bytenr,
1666 parent, root_objectid);
1667 } else {
1668 ret = insert_extent_data_ref(trans, root, path, bytenr,
1669 parent, root_objectid,
1670 owner, offset, refs_to_add);
1671 }
1672 return ret;
1673 }
1674
1675 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1676 struct btrfs_root *root,
1677 struct btrfs_path *path,
1678 struct btrfs_extent_inline_ref *iref,
1679 int refs_to_drop, int is_data)
1680 {
1681 int ret;
1682
1683 BUG_ON(!is_data && refs_to_drop != 1);
1684 if (iref) {
1685 ret = update_inline_extent_backref(trans, root, path, iref,
1686 -refs_to_drop, NULL);
1687 } else if (is_data) {
1688 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1689 } else {
1690 ret = btrfs_del_item(trans, root, path);
1691 }
1692 return ret;
1693 }
1694
1695 static void btrfs_issue_discard(struct block_device *bdev,
1696 u64 start, u64 len)
1697 {
1698 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0);
1699 }
1700
1701 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1702 u64 num_bytes)
1703 {
1704 int ret;
1705 u64 map_length = num_bytes;
1706 struct btrfs_multi_bio *multi = NULL;
1707
1708 if (!btrfs_test_opt(root, DISCARD))
1709 return 0;
1710
1711 /* Tell the block device(s) that the sectors can be discarded */
1712 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1713 bytenr, &map_length, &multi, 0);
1714 if (!ret) {
1715 struct btrfs_bio_stripe *stripe = multi->stripes;
1716 int i;
1717
1718 if (map_length > num_bytes)
1719 map_length = num_bytes;
1720
1721 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1722 btrfs_issue_discard(stripe->dev->bdev,
1723 stripe->physical,
1724 map_length);
1725 }
1726 kfree(multi);
1727 }
1728
1729 return ret;
1730 }
1731
1732 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1733 struct btrfs_root *root,
1734 u64 bytenr, u64 num_bytes, u64 parent,
1735 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 int ret;
1738 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1739 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1743 parent, root_objectid, (int)owner,
1744 BTRFS_ADD_DELAYED_REF, NULL);
1745 } else {
1746 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1747 parent, root_objectid, owner, offset,
1748 BTRFS_ADD_DELAYED_REF, NULL);
1749 }
1750 return ret;
1751 }
1752
1753 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1754 struct btrfs_root *root,
1755 u64 bytenr, u64 num_bytes,
1756 u64 parent, u64 root_objectid,
1757 u64 owner, u64 offset, int refs_to_add,
1758 struct btrfs_delayed_extent_op *extent_op)
1759 {
1760 struct btrfs_path *path;
1761 struct extent_buffer *leaf;
1762 struct btrfs_extent_item *item;
1763 u64 refs;
1764 int ret;
1765 int err = 0;
1766
1767 path = btrfs_alloc_path();
1768 if (!path)
1769 return -ENOMEM;
1770
1771 path->reada = 1;
1772 path->leave_spinning = 1;
1773 /* this will setup the path even if it fails to insert the back ref */
1774 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1775 path, bytenr, num_bytes, parent,
1776 root_objectid, owner, offset,
1777 refs_to_add, extent_op);
1778 if (ret == 0)
1779 goto out;
1780
1781 if (ret != -EAGAIN) {
1782 err = ret;
1783 goto out;
1784 }
1785
1786 leaf = path->nodes[0];
1787 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1788 refs = btrfs_extent_refs(leaf, item);
1789 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1790 if (extent_op)
1791 __run_delayed_extent_op(extent_op, leaf, item);
1792
1793 btrfs_mark_buffer_dirty(leaf);
1794 btrfs_release_path(root->fs_info->extent_root, path);
1795
1796 path->reada = 1;
1797 path->leave_spinning = 1;
1798
1799 /* now insert the actual backref */
1800 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1801 path, bytenr, parent, root_objectid,
1802 owner, offset, refs_to_add);
1803 BUG_ON(ret);
1804 out:
1805 btrfs_free_path(path);
1806 return err;
1807 }
1808
1809 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1810 struct btrfs_root *root,
1811 struct btrfs_delayed_ref_node *node,
1812 struct btrfs_delayed_extent_op *extent_op,
1813 int insert_reserved)
1814 {
1815 int ret = 0;
1816 struct btrfs_delayed_data_ref *ref;
1817 struct btrfs_key ins;
1818 u64 parent = 0;
1819 u64 ref_root = 0;
1820 u64 flags = 0;
1821
1822 ins.objectid = node->bytenr;
1823 ins.offset = node->num_bytes;
1824 ins.type = BTRFS_EXTENT_ITEM_KEY;
1825
1826 ref = btrfs_delayed_node_to_data_ref(node);
1827 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1828 parent = ref->parent;
1829 else
1830 ref_root = ref->root;
1831
1832 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1833 if (extent_op) {
1834 BUG_ON(extent_op->update_key);
1835 flags |= extent_op->flags_to_set;
1836 }
1837 ret = alloc_reserved_file_extent(trans, root,
1838 parent, ref_root, flags,
1839 ref->objectid, ref->offset,
1840 &ins, node->ref_mod);
1841 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1842 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1843 node->num_bytes, parent,
1844 ref_root, ref->objectid,
1845 ref->offset, node->ref_mod,
1846 extent_op);
1847 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1848 ret = __btrfs_free_extent(trans, root, node->bytenr,
1849 node->num_bytes, parent,
1850 ref_root, ref->objectid,
1851 ref->offset, node->ref_mod,
1852 extent_op);
1853 } else {
1854 BUG();
1855 }
1856 return ret;
1857 }
1858
1859 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1860 struct extent_buffer *leaf,
1861 struct btrfs_extent_item *ei)
1862 {
1863 u64 flags = btrfs_extent_flags(leaf, ei);
1864 if (extent_op->update_flags) {
1865 flags |= extent_op->flags_to_set;
1866 btrfs_set_extent_flags(leaf, ei, flags);
1867 }
1868
1869 if (extent_op->update_key) {
1870 struct btrfs_tree_block_info *bi;
1871 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1872 bi = (struct btrfs_tree_block_info *)(ei + 1);
1873 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1874 }
1875 }
1876
1877 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1878 struct btrfs_root *root,
1879 struct btrfs_delayed_ref_node *node,
1880 struct btrfs_delayed_extent_op *extent_op)
1881 {
1882 struct btrfs_key key;
1883 struct btrfs_path *path;
1884 struct btrfs_extent_item *ei;
1885 struct extent_buffer *leaf;
1886 u32 item_size;
1887 int ret;
1888 int err = 0;
1889
1890 path = btrfs_alloc_path();
1891 if (!path)
1892 return -ENOMEM;
1893
1894 key.objectid = node->bytenr;
1895 key.type = BTRFS_EXTENT_ITEM_KEY;
1896 key.offset = node->num_bytes;
1897
1898 path->reada = 1;
1899 path->leave_spinning = 1;
1900 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1901 path, 0, 1);
1902 if (ret < 0) {
1903 err = ret;
1904 goto out;
1905 }
1906 if (ret > 0) {
1907 err = -EIO;
1908 goto out;
1909 }
1910
1911 leaf = path->nodes[0];
1912 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1913 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1914 if (item_size < sizeof(*ei)) {
1915 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1916 path, (u64)-1, 0);
1917 if (ret < 0) {
1918 err = ret;
1919 goto out;
1920 }
1921 leaf = path->nodes[0];
1922 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1923 }
1924 #endif
1925 BUG_ON(item_size < sizeof(*ei));
1926 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1927 __run_delayed_extent_op(extent_op, leaf, ei);
1928
1929 btrfs_mark_buffer_dirty(leaf);
1930 out:
1931 btrfs_free_path(path);
1932 return err;
1933 }
1934
1935 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1936 struct btrfs_root *root,
1937 struct btrfs_delayed_ref_node *node,
1938 struct btrfs_delayed_extent_op *extent_op,
1939 int insert_reserved)
1940 {
1941 int ret = 0;
1942 struct btrfs_delayed_tree_ref *ref;
1943 struct btrfs_key ins;
1944 u64 parent = 0;
1945 u64 ref_root = 0;
1946
1947 ins.objectid = node->bytenr;
1948 ins.offset = node->num_bytes;
1949 ins.type = BTRFS_EXTENT_ITEM_KEY;
1950
1951 ref = btrfs_delayed_node_to_tree_ref(node);
1952 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1953 parent = ref->parent;
1954 else
1955 ref_root = ref->root;
1956
1957 BUG_ON(node->ref_mod != 1);
1958 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1959 BUG_ON(!extent_op || !extent_op->update_flags ||
1960 !extent_op->update_key);
1961 ret = alloc_reserved_tree_block(trans, root,
1962 parent, ref_root,
1963 extent_op->flags_to_set,
1964 &extent_op->key,
1965 ref->level, &ins);
1966 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1967 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1968 node->num_bytes, parent, ref_root,
1969 ref->level, 0, 1, extent_op);
1970 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1971 ret = __btrfs_free_extent(trans, root, node->bytenr,
1972 node->num_bytes, parent, ref_root,
1973 ref->level, 0, 1, extent_op);
1974 } else {
1975 BUG();
1976 }
1977 return ret;
1978 }
1979
1980 /* helper function to actually process a single delayed ref entry */
1981 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1982 struct btrfs_root *root,
1983 struct btrfs_delayed_ref_node *node,
1984 struct btrfs_delayed_extent_op *extent_op,
1985 int insert_reserved)
1986 {
1987 int ret;
1988 if (btrfs_delayed_ref_is_head(node)) {
1989 struct btrfs_delayed_ref_head *head;
1990 /*
1991 * we've hit the end of the chain and we were supposed
1992 * to insert this extent into the tree. But, it got
1993 * deleted before we ever needed to insert it, so all
1994 * we have to do is clean up the accounting
1995 */
1996 BUG_ON(extent_op);
1997 head = btrfs_delayed_node_to_head(node);
1998 if (insert_reserved) {
1999 btrfs_pin_extent(root, node->bytenr,
2000 node->num_bytes, 1);
2001 if (head->is_data) {
2002 ret = btrfs_del_csums(trans, root,
2003 node->bytenr,
2004 node->num_bytes);
2005 BUG_ON(ret);
2006 }
2007 }
2008 mutex_unlock(&head->mutex);
2009 return 0;
2010 }
2011
2012 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2013 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2014 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2015 insert_reserved);
2016 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2017 node->type == BTRFS_SHARED_DATA_REF_KEY)
2018 ret = run_delayed_data_ref(trans, root, node, extent_op,
2019 insert_reserved);
2020 else
2021 BUG();
2022 return ret;
2023 }
2024
2025 static noinline struct btrfs_delayed_ref_node *
2026 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2027 {
2028 struct rb_node *node;
2029 struct btrfs_delayed_ref_node *ref;
2030 int action = BTRFS_ADD_DELAYED_REF;
2031 again:
2032 /*
2033 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2034 * this prevents ref count from going down to zero when
2035 * there still are pending delayed ref.
2036 */
2037 node = rb_prev(&head->node.rb_node);
2038 while (1) {
2039 if (!node)
2040 break;
2041 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2042 rb_node);
2043 if (ref->bytenr != head->node.bytenr)
2044 break;
2045 if (ref->action == action)
2046 return ref;
2047 node = rb_prev(node);
2048 }
2049 if (action == BTRFS_ADD_DELAYED_REF) {
2050 action = BTRFS_DROP_DELAYED_REF;
2051 goto again;
2052 }
2053 return NULL;
2054 }
2055
2056 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2057 struct btrfs_root *root,
2058 struct list_head *cluster)
2059 {
2060 struct btrfs_delayed_ref_root *delayed_refs;
2061 struct btrfs_delayed_ref_node *ref;
2062 struct btrfs_delayed_ref_head *locked_ref = NULL;
2063 struct btrfs_delayed_extent_op *extent_op;
2064 int ret;
2065 int count = 0;
2066 int must_insert_reserved = 0;
2067
2068 delayed_refs = &trans->transaction->delayed_refs;
2069 while (1) {
2070 if (!locked_ref) {
2071 /* pick a new head ref from the cluster list */
2072 if (list_empty(cluster))
2073 break;
2074
2075 locked_ref = list_entry(cluster->next,
2076 struct btrfs_delayed_ref_head, cluster);
2077
2078 /* grab the lock that says we are going to process
2079 * all the refs for this head */
2080 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2081
2082 /*
2083 * we may have dropped the spin lock to get the head
2084 * mutex lock, and that might have given someone else
2085 * time to free the head. If that's true, it has been
2086 * removed from our list and we can move on.
2087 */
2088 if (ret == -EAGAIN) {
2089 locked_ref = NULL;
2090 count++;
2091 continue;
2092 }
2093 }
2094
2095 /*
2096 * record the must insert reserved flag before we
2097 * drop the spin lock.
2098 */
2099 must_insert_reserved = locked_ref->must_insert_reserved;
2100 locked_ref->must_insert_reserved = 0;
2101
2102 extent_op = locked_ref->extent_op;
2103 locked_ref->extent_op = NULL;
2104
2105 /*
2106 * locked_ref is the head node, so we have to go one
2107 * node back for any delayed ref updates
2108 */
2109 ref = select_delayed_ref(locked_ref);
2110 if (!ref) {
2111 /* All delayed refs have been processed, Go ahead
2112 * and send the head node to run_one_delayed_ref,
2113 * so that any accounting fixes can happen
2114 */
2115 ref = &locked_ref->node;
2116
2117 if (extent_op && must_insert_reserved) {
2118 kfree(extent_op);
2119 extent_op = NULL;
2120 }
2121
2122 if (extent_op) {
2123 spin_unlock(&delayed_refs->lock);
2124
2125 ret = run_delayed_extent_op(trans, root,
2126 ref, extent_op);
2127 BUG_ON(ret);
2128 kfree(extent_op);
2129
2130 cond_resched();
2131 spin_lock(&delayed_refs->lock);
2132 continue;
2133 }
2134
2135 list_del_init(&locked_ref->cluster);
2136 locked_ref = NULL;
2137 }
2138
2139 ref->in_tree = 0;
2140 rb_erase(&ref->rb_node, &delayed_refs->root);
2141 delayed_refs->num_entries--;
2142
2143 spin_unlock(&delayed_refs->lock);
2144
2145 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2146 must_insert_reserved);
2147 BUG_ON(ret);
2148
2149 btrfs_put_delayed_ref(ref);
2150 kfree(extent_op);
2151 count++;
2152
2153 cond_resched();
2154 spin_lock(&delayed_refs->lock);
2155 }
2156 return count;
2157 }
2158
2159 /*
2160 * this starts processing the delayed reference count updates and
2161 * extent insertions we have queued up so far. count can be
2162 * 0, which means to process everything in the tree at the start
2163 * of the run (but not newly added entries), or it can be some target
2164 * number you'd like to process.
2165 */
2166 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2167 struct btrfs_root *root, unsigned long count)
2168 {
2169 struct rb_node *node;
2170 struct btrfs_delayed_ref_root *delayed_refs;
2171 struct btrfs_delayed_ref_node *ref;
2172 struct list_head cluster;
2173 int ret;
2174 int run_all = count == (unsigned long)-1;
2175 int run_most = 0;
2176
2177 if (root == root->fs_info->extent_root)
2178 root = root->fs_info->tree_root;
2179
2180 delayed_refs = &trans->transaction->delayed_refs;
2181 INIT_LIST_HEAD(&cluster);
2182 again:
2183 spin_lock(&delayed_refs->lock);
2184 if (count == 0) {
2185 count = delayed_refs->num_entries * 2;
2186 run_most = 1;
2187 }
2188 while (1) {
2189 if (!(run_all || run_most) &&
2190 delayed_refs->num_heads_ready < 64)
2191 break;
2192
2193 /*
2194 * go find something we can process in the rbtree. We start at
2195 * the beginning of the tree, and then build a cluster
2196 * of refs to process starting at the first one we are able to
2197 * lock
2198 */
2199 ret = btrfs_find_ref_cluster(trans, &cluster,
2200 delayed_refs->run_delayed_start);
2201 if (ret)
2202 break;
2203
2204 ret = run_clustered_refs(trans, root, &cluster);
2205 BUG_ON(ret < 0);
2206
2207 count -= min_t(unsigned long, ret, count);
2208
2209 if (count == 0)
2210 break;
2211 }
2212
2213 if (run_all) {
2214 node = rb_first(&delayed_refs->root);
2215 if (!node)
2216 goto out;
2217 count = (unsigned long)-1;
2218
2219 while (node) {
2220 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2221 rb_node);
2222 if (btrfs_delayed_ref_is_head(ref)) {
2223 struct btrfs_delayed_ref_head *head;
2224
2225 head = btrfs_delayed_node_to_head(ref);
2226 atomic_inc(&ref->refs);
2227
2228 spin_unlock(&delayed_refs->lock);
2229 mutex_lock(&head->mutex);
2230 mutex_unlock(&head->mutex);
2231
2232 btrfs_put_delayed_ref(ref);
2233 cond_resched();
2234 goto again;
2235 }
2236 node = rb_next(node);
2237 }
2238 spin_unlock(&delayed_refs->lock);
2239 schedule_timeout(1);
2240 goto again;
2241 }
2242 out:
2243 spin_unlock(&delayed_refs->lock);
2244 return 0;
2245 }
2246
2247 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2248 struct btrfs_root *root,
2249 u64 bytenr, u64 num_bytes, u64 flags,
2250 int is_data)
2251 {
2252 struct btrfs_delayed_extent_op *extent_op;
2253 int ret;
2254
2255 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2256 if (!extent_op)
2257 return -ENOMEM;
2258
2259 extent_op->flags_to_set = flags;
2260 extent_op->update_flags = 1;
2261 extent_op->update_key = 0;
2262 extent_op->is_data = is_data ? 1 : 0;
2263
2264 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2265 if (ret)
2266 kfree(extent_op);
2267 return ret;
2268 }
2269
2270 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2271 struct btrfs_root *root,
2272 struct btrfs_path *path,
2273 u64 objectid, u64 offset, u64 bytenr)
2274 {
2275 struct btrfs_delayed_ref_head *head;
2276 struct btrfs_delayed_ref_node *ref;
2277 struct btrfs_delayed_data_ref *data_ref;
2278 struct btrfs_delayed_ref_root *delayed_refs;
2279 struct rb_node *node;
2280 int ret = 0;
2281
2282 ret = -ENOENT;
2283 delayed_refs = &trans->transaction->delayed_refs;
2284 spin_lock(&delayed_refs->lock);
2285 head = btrfs_find_delayed_ref_head(trans, bytenr);
2286 if (!head)
2287 goto out;
2288
2289 if (!mutex_trylock(&head->mutex)) {
2290 atomic_inc(&head->node.refs);
2291 spin_unlock(&delayed_refs->lock);
2292
2293 btrfs_release_path(root->fs_info->extent_root, path);
2294
2295 mutex_lock(&head->mutex);
2296 mutex_unlock(&head->mutex);
2297 btrfs_put_delayed_ref(&head->node);
2298 return -EAGAIN;
2299 }
2300
2301 node = rb_prev(&head->node.rb_node);
2302 if (!node)
2303 goto out_unlock;
2304
2305 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2306
2307 if (ref->bytenr != bytenr)
2308 goto out_unlock;
2309
2310 ret = 1;
2311 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2312 goto out_unlock;
2313
2314 data_ref = btrfs_delayed_node_to_data_ref(ref);
2315
2316 node = rb_prev(node);
2317 if (node) {
2318 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2319 if (ref->bytenr == bytenr)
2320 goto out_unlock;
2321 }
2322
2323 if (data_ref->root != root->root_key.objectid ||
2324 data_ref->objectid != objectid || data_ref->offset != offset)
2325 goto out_unlock;
2326
2327 ret = 0;
2328 out_unlock:
2329 mutex_unlock(&head->mutex);
2330 out:
2331 spin_unlock(&delayed_refs->lock);
2332 return ret;
2333 }
2334
2335 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2336 struct btrfs_root *root,
2337 struct btrfs_path *path,
2338 u64 objectid, u64 offset, u64 bytenr)
2339 {
2340 struct btrfs_root *extent_root = root->fs_info->extent_root;
2341 struct extent_buffer *leaf;
2342 struct btrfs_extent_data_ref *ref;
2343 struct btrfs_extent_inline_ref *iref;
2344 struct btrfs_extent_item *ei;
2345 struct btrfs_key key;
2346 u32 item_size;
2347 int ret;
2348
2349 key.objectid = bytenr;
2350 key.offset = (u64)-1;
2351 key.type = BTRFS_EXTENT_ITEM_KEY;
2352
2353 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2354 if (ret < 0)
2355 goto out;
2356 BUG_ON(ret == 0);
2357
2358 ret = -ENOENT;
2359 if (path->slots[0] == 0)
2360 goto out;
2361
2362 path->slots[0]--;
2363 leaf = path->nodes[0];
2364 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2365
2366 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2367 goto out;
2368
2369 ret = 1;
2370 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2371 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2372 if (item_size < sizeof(*ei)) {
2373 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2374 goto out;
2375 }
2376 #endif
2377 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2378
2379 if (item_size != sizeof(*ei) +
2380 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2381 goto out;
2382
2383 if (btrfs_extent_generation(leaf, ei) <=
2384 btrfs_root_last_snapshot(&root->root_item))
2385 goto out;
2386
2387 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2388 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2389 BTRFS_EXTENT_DATA_REF_KEY)
2390 goto out;
2391
2392 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2393 if (btrfs_extent_refs(leaf, ei) !=
2394 btrfs_extent_data_ref_count(leaf, ref) ||
2395 btrfs_extent_data_ref_root(leaf, ref) !=
2396 root->root_key.objectid ||
2397 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2398 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2399 goto out;
2400
2401 ret = 0;
2402 out:
2403 return ret;
2404 }
2405
2406 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2407 struct btrfs_root *root,
2408 u64 objectid, u64 offset, u64 bytenr)
2409 {
2410 struct btrfs_path *path;
2411 int ret;
2412 int ret2;
2413
2414 path = btrfs_alloc_path();
2415 if (!path)
2416 return -ENOENT;
2417
2418 do {
2419 ret = check_committed_ref(trans, root, path, objectid,
2420 offset, bytenr);
2421 if (ret && ret != -ENOENT)
2422 goto out;
2423
2424 ret2 = check_delayed_ref(trans, root, path, objectid,
2425 offset, bytenr);
2426 } while (ret2 == -EAGAIN);
2427
2428 if (ret2 && ret2 != -ENOENT) {
2429 ret = ret2;
2430 goto out;
2431 }
2432
2433 if (ret != -ENOENT || ret2 != -ENOENT)
2434 ret = 0;
2435 out:
2436 btrfs_free_path(path);
2437 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2438 WARN_ON(ret > 0);
2439 return ret;
2440 }
2441
2442 #if 0
2443 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2444 struct extent_buffer *buf, u32 nr_extents)
2445 {
2446 struct btrfs_key key;
2447 struct btrfs_file_extent_item *fi;
2448 u64 root_gen;
2449 u32 nritems;
2450 int i;
2451 int level;
2452 int ret = 0;
2453 int shared = 0;
2454
2455 if (!root->ref_cows)
2456 return 0;
2457
2458 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2459 shared = 0;
2460 root_gen = root->root_key.offset;
2461 } else {
2462 shared = 1;
2463 root_gen = trans->transid - 1;
2464 }
2465
2466 level = btrfs_header_level(buf);
2467 nritems = btrfs_header_nritems(buf);
2468
2469 if (level == 0) {
2470 struct btrfs_leaf_ref *ref;
2471 struct btrfs_extent_info *info;
2472
2473 ref = btrfs_alloc_leaf_ref(root, nr_extents);
2474 if (!ref) {
2475 ret = -ENOMEM;
2476 goto out;
2477 }
2478
2479 ref->root_gen = root_gen;
2480 ref->bytenr = buf->start;
2481 ref->owner = btrfs_header_owner(buf);
2482 ref->generation = btrfs_header_generation(buf);
2483 ref->nritems = nr_extents;
2484 info = ref->extents;
2485
2486 for (i = 0; nr_extents > 0 && i < nritems; i++) {
2487 u64 disk_bytenr;
2488 btrfs_item_key_to_cpu(buf, &key, i);
2489 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2490 continue;
2491 fi = btrfs_item_ptr(buf, i,
2492 struct btrfs_file_extent_item);
2493 if (btrfs_file_extent_type(buf, fi) ==
2494 BTRFS_FILE_EXTENT_INLINE)
2495 continue;
2496 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2497 if (disk_bytenr == 0)
2498 continue;
2499
2500 info->bytenr = disk_bytenr;
2501 info->num_bytes =
2502 btrfs_file_extent_disk_num_bytes(buf, fi);
2503 info->objectid = key.objectid;
2504 info->offset = key.offset;
2505 info++;
2506 }
2507
2508 ret = btrfs_add_leaf_ref(root, ref, shared);
2509 if (ret == -EEXIST && shared) {
2510 struct btrfs_leaf_ref *old;
2511 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2512 BUG_ON(!old);
2513 btrfs_remove_leaf_ref(root, old);
2514 btrfs_free_leaf_ref(root, old);
2515 ret = btrfs_add_leaf_ref(root, ref, shared);
2516 }
2517 WARN_ON(ret);
2518 btrfs_free_leaf_ref(root, ref);
2519 }
2520 out:
2521 return ret;
2522 }
2523
2524 /* when a block goes through cow, we update the reference counts of
2525 * everything that block points to. The internal pointers of the block
2526 * can be in just about any order, and it is likely to have clusters of
2527 * things that are close together and clusters of things that are not.
2528 *
2529 * To help reduce the seeks that come with updating all of these reference
2530 * counts, sort them by byte number before actual updates are done.
2531 *
2532 * struct refsort is used to match byte number to slot in the btree block.
2533 * we sort based on the byte number and then use the slot to actually
2534 * find the item.
2535 *
2536 * struct refsort is smaller than strcut btrfs_item and smaller than
2537 * struct btrfs_key_ptr. Since we're currently limited to the page size
2538 * for a btree block, there's no way for a kmalloc of refsorts for a
2539 * single node to be bigger than a page.
2540 */
2541 struct refsort {
2542 u64 bytenr;
2543 u32 slot;
2544 };
2545
2546 /*
2547 * for passing into sort()
2548 */
2549 static int refsort_cmp(const void *a_void, const void *b_void)
2550 {
2551 const struct refsort *a = a_void;
2552 const struct refsort *b = b_void;
2553
2554 if (a->bytenr < b->bytenr)
2555 return -1;
2556 if (a->bytenr > b->bytenr)
2557 return 1;
2558 return 0;
2559 }
2560 #endif
2561
2562 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2563 struct btrfs_root *root,
2564 struct extent_buffer *buf,
2565 int full_backref, int inc)
2566 {
2567 u64 bytenr;
2568 u64 num_bytes;
2569 u64 parent;
2570 u64 ref_root;
2571 u32 nritems;
2572 struct btrfs_key key;
2573 struct btrfs_file_extent_item *fi;
2574 int i;
2575 int level;
2576 int ret = 0;
2577 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2578 u64, u64, u64, u64, u64, u64);
2579
2580 ref_root = btrfs_header_owner(buf);
2581 nritems = btrfs_header_nritems(buf);
2582 level = btrfs_header_level(buf);
2583
2584 if (!root->ref_cows && level == 0)
2585 return 0;
2586
2587 if (inc)
2588 process_func = btrfs_inc_extent_ref;
2589 else
2590 process_func = btrfs_free_extent;
2591
2592 if (full_backref)
2593 parent = buf->start;
2594 else
2595 parent = 0;
2596
2597 for (i = 0; i < nritems; i++) {
2598 if (level == 0) {
2599 btrfs_item_key_to_cpu(buf, &key, i);
2600 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2601 continue;
2602 fi = btrfs_item_ptr(buf, i,
2603 struct btrfs_file_extent_item);
2604 if (btrfs_file_extent_type(buf, fi) ==
2605 BTRFS_FILE_EXTENT_INLINE)
2606 continue;
2607 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2608 if (bytenr == 0)
2609 continue;
2610
2611 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2612 key.offset -= btrfs_file_extent_offset(buf, fi);
2613 ret = process_func(trans, root, bytenr, num_bytes,
2614 parent, ref_root, key.objectid,
2615 key.offset);
2616 if (ret)
2617 goto fail;
2618 } else {
2619 bytenr = btrfs_node_blockptr(buf, i);
2620 num_bytes = btrfs_level_size(root, level - 1);
2621 ret = process_func(trans, root, bytenr, num_bytes,
2622 parent, ref_root, level - 1, 0);
2623 if (ret)
2624 goto fail;
2625 }
2626 }
2627 return 0;
2628 fail:
2629 BUG();
2630 return ret;
2631 }
2632
2633 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2634 struct extent_buffer *buf, int full_backref)
2635 {
2636 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2637 }
2638
2639 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2640 struct extent_buffer *buf, int full_backref)
2641 {
2642 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2643 }
2644
2645 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2646 struct btrfs_root *root,
2647 struct btrfs_path *path,
2648 struct btrfs_block_group_cache *cache)
2649 {
2650 int ret;
2651 struct btrfs_root *extent_root = root->fs_info->extent_root;
2652 unsigned long bi;
2653 struct extent_buffer *leaf;
2654
2655 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2656 if (ret < 0)
2657 goto fail;
2658 BUG_ON(ret);
2659
2660 leaf = path->nodes[0];
2661 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2662 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2663 btrfs_mark_buffer_dirty(leaf);
2664 btrfs_release_path(extent_root, path);
2665 fail:
2666 if (ret)
2667 return ret;
2668 return 0;
2669
2670 }
2671
2672 static struct btrfs_block_group_cache *
2673 next_block_group(struct btrfs_root *root,
2674 struct btrfs_block_group_cache *cache)
2675 {
2676 struct rb_node *node;
2677 spin_lock(&root->fs_info->block_group_cache_lock);
2678 node = rb_next(&cache->cache_node);
2679 btrfs_put_block_group(cache);
2680 if (node) {
2681 cache = rb_entry(node, struct btrfs_block_group_cache,
2682 cache_node);
2683 btrfs_get_block_group(cache);
2684 } else
2685 cache = NULL;
2686 spin_unlock(&root->fs_info->block_group_cache_lock);
2687 return cache;
2688 }
2689
2690 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2692 {
2693 struct btrfs_block_group_cache *cache;
2694 int err = 0;
2695 struct btrfs_path *path;
2696 u64 last = 0;
2697
2698 path = btrfs_alloc_path();
2699 if (!path)
2700 return -ENOMEM;
2701
2702 while (1) {
2703 if (last == 0) {
2704 err = btrfs_run_delayed_refs(trans, root,
2705 (unsigned long)-1);
2706 BUG_ON(err);
2707 }
2708
2709 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2710 while (cache) {
2711 if (cache->dirty)
2712 break;
2713 cache = next_block_group(root, cache);
2714 }
2715 if (!cache) {
2716 if (last == 0)
2717 break;
2718 last = 0;
2719 continue;
2720 }
2721
2722 cache->dirty = 0;
2723 last = cache->key.objectid + cache->key.offset;
2724
2725 err = write_one_cache_group(trans, root, path, cache);
2726 BUG_ON(err);
2727 btrfs_put_block_group(cache);
2728 }
2729
2730 btrfs_free_path(path);
2731 return 0;
2732 }
2733
2734 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2735 {
2736 struct btrfs_block_group_cache *block_group;
2737 int readonly = 0;
2738
2739 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2740 if (!block_group || block_group->ro)
2741 readonly = 1;
2742 if (block_group)
2743 btrfs_put_block_group(block_group);
2744 return readonly;
2745 }
2746
2747 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2748 u64 total_bytes, u64 bytes_used,
2749 struct btrfs_space_info **space_info)
2750 {
2751 struct btrfs_space_info *found;
2752 int i;
2753 int factor;
2754
2755 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2756 BTRFS_BLOCK_GROUP_RAID10))
2757 factor = 2;
2758 else
2759 factor = 1;
2760
2761 found = __find_space_info(info, flags);
2762 if (found) {
2763 spin_lock(&found->lock);
2764 found->total_bytes += total_bytes;
2765 found->bytes_used += bytes_used;
2766 found->disk_used += bytes_used * factor;
2767 found->full = 0;
2768 spin_unlock(&found->lock);
2769 *space_info = found;
2770 return 0;
2771 }
2772 found = kzalloc(sizeof(*found), GFP_NOFS);
2773 if (!found)
2774 return -ENOMEM;
2775
2776 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2777 INIT_LIST_HEAD(&found->block_groups[i]);
2778 init_rwsem(&found->groups_sem);
2779 spin_lock_init(&found->lock);
2780 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2781 BTRFS_BLOCK_GROUP_SYSTEM |
2782 BTRFS_BLOCK_GROUP_METADATA);
2783 found->total_bytes = total_bytes;
2784 found->bytes_used = bytes_used;
2785 found->disk_used = bytes_used * factor;
2786 found->bytes_pinned = 0;
2787 found->bytes_reserved = 0;
2788 found->bytes_readonly = 0;
2789 found->bytes_may_use = 0;
2790 found->full = 0;
2791 found->force_alloc = 0;
2792 *space_info = found;
2793 list_add_rcu(&found->list, &info->space_info);
2794 atomic_set(&found->caching_threads, 0);
2795 return 0;
2796 }
2797
2798 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2799 {
2800 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2801 BTRFS_BLOCK_GROUP_RAID1 |
2802 BTRFS_BLOCK_GROUP_RAID10 |
2803 BTRFS_BLOCK_GROUP_DUP);
2804 if (extra_flags) {
2805 if (flags & BTRFS_BLOCK_GROUP_DATA)
2806 fs_info->avail_data_alloc_bits |= extra_flags;
2807 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2808 fs_info->avail_metadata_alloc_bits |= extra_flags;
2809 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2810 fs_info->avail_system_alloc_bits |= extra_flags;
2811 }
2812 }
2813
2814 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2815 {
2816 u64 num_devices = root->fs_info->fs_devices->rw_devices;
2817
2818 if (num_devices == 1)
2819 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2820 if (num_devices < 4)
2821 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2822
2823 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2824 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2825 BTRFS_BLOCK_GROUP_RAID10))) {
2826 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2827 }
2828
2829 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2830 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2831 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2832 }
2833
2834 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2835 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2836 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2837 (flags & BTRFS_BLOCK_GROUP_DUP)))
2838 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2839 return flags;
2840 }
2841
2842 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2843 {
2844 if (flags & BTRFS_BLOCK_GROUP_DATA)
2845 flags |= root->fs_info->avail_data_alloc_bits &
2846 root->fs_info->data_alloc_profile;
2847 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2848 flags |= root->fs_info->avail_system_alloc_bits &
2849 root->fs_info->system_alloc_profile;
2850 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
2851 flags |= root->fs_info->avail_metadata_alloc_bits &
2852 root->fs_info->metadata_alloc_profile;
2853 return btrfs_reduce_alloc_profile(root, flags);
2854 }
2855
2856 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
2857 {
2858 u64 flags;
2859
2860 if (data)
2861 flags = BTRFS_BLOCK_GROUP_DATA;
2862 else if (root == root->fs_info->chunk_root)
2863 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2864 else
2865 flags = BTRFS_BLOCK_GROUP_METADATA;
2866
2867 return get_alloc_profile(root, flags);
2868 }
2869
2870 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
2871 {
2872 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
2873 BTRFS_BLOCK_GROUP_DATA);
2874 }
2875
2876 /*
2877 * This will check the space that the inode allocates from to make sure we have
2878 * enough space for bytes.
2879 */
2880 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
2881 {
2882 struct btrfs_space_info *data_sinfo;
2883 struct btrfs_root *root = BTRFS_I(inode)->root;
2884 u64 used;
2885 int ret = 0, committed = 0;
2886
2887 /* make sure bytes are sectorsize aligned */
2888 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2889
2890 data_sinfo = BTRFS_I(inode)->space_info;
2891 if (!data_sinfo)
2892 goto alloc;
2893
2894 again:
2895 /* make sure we have enough space to handle the data first */
2896 spin_lock(&data_sinfo->lock);
2897 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
2898 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
2899 data_sinfo->bytes_may_use;
2900
2901 if (used + bytes > data_sinfo->total_bytes) {
2902 struct btrfs_trans_handle *trans;
2903
2904 /*
2905 * if we don't have enough free bytes in this space then we need
2906 * to alloc a new chunk.
2907 */
2908 if (!data_sinfo->full) {
2909 u64 alloc_target;
2910
2911 data_sinfo->force_alloc = 1;
2912 spin_unlock(&data_sinfo->lock);
2913 alloc:
2914 alloc_target = btrfs_get_alloc_profile(root, 1);
2915 trans = btrfs_join_transaction(root, 1);
2916 if (IS_ERR(trans))
2917 return PTR_ERR(trans);
2918
2919 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2920 bytes + 2 * 1024 * 1024,
2921 alloc_target, 0);
2922 btrfs_end_transaction(trans, root);
2923 if (ret < 0)
2924 return ret;
2925
2926 if (!data_sinfo) {
2927 btrfs_set_inode_space_info(root, inode);
2928 data_sinfo = BTRFS_I(inode)->space_info;
2929 }
2930 goto again;
2931 }
2932 spin_unlock(&data_sinfo->lock);
2933
2934 /* commit the current transaction and try again */
2935 if (!committed && !root->fs_info->open_ioctl_trans) {
2936 committed = 1;
2937 trans = btrfs_join_transaction(root, 1);
2938 if (IS_ERR(trans))
2939 return PTR_ERR(trans);
2940 ret = btrfs_commit_transaction(trans, root);
2941 if (ret)
2942 return ret;
2943 goto again;
2944 }
2945
2946 #if 0 /* I hope we never need this code again, just in case */
2947 printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
2948 "%llu bytes_reserved, " "%llu bytes_pinned, "
2949 "%llu bytes_readonly, %llu may use %llu total\n",
2950 (unsigned long long)bytes,
2951 (unsigned long long)data_sinfo->bytes_used,
2952 (unsigned long long)data_sinfo->bytes_reserved,
2953 (unsigned long long)data_sinfo->bytes_pinned,
2954 (unsigned long long)data_sinfo->bytes_readonly,
2955 (unsigned long long)data_sinfo->bytes_may_use,
2956 (unsigned long long)data_sinfo->total_bytes);
2957 #endif
2958 return -ENOSPC;
2959 }
2960 data_sinfo->bytes_may_use += bytes;
2961 BTRFS_I(inode)->reserved_bytes += bytes;
2962 spin_unlock(&data_sinfo->lock);
2963
2964 return 0;
2965 }
2966
2967 /*
2968 * called when we are clearing an delalloc extent from the
2969 * inode's io_tree or there was an error for whatever reason
2970 * after calling btrfs_check_data_free_space
2971 */
2972 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
2973 {
2974 struct btrfs_root *root = BTRFS_I(inode)->root;
2975 struct btrfs_space_info *data_sinfo;
2976
2977 /* make sure bytes are sectorsize aligned */
2978 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2979
2980 data_sinfo = BTRFS_I(inode)->space_info;
2981 spin_lock(&data_sinfo->lock);
2982 data_sinfo->bytes_may_use -= bytes;
2983 BTRFS_I(inode)->reserved_bytes -= bytes;
2984 spin_unlock(&data_sinfo->lock);
2985 }
2986
2987 static void force_metadata_allocation(struct btrfs_fs_info *info)
2988 {
2989 struct list_head *head = &info->space_info;
2990 struct btrfs_space_info *found;
2991
2992 rcu_read_lock();
2993 list_for_each_entry_rcu(found, head, list) {
2994 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2995 found->force_alloc = 1;
2996 }
2997 rcu_read_unlock();
2998 }
2999
3000 static int should_alloc_chunk(struct btrfs_space_info *sinfo,
3001 u64 alloc_bytes)
3002 {
3003 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3004
3005 if (sinfo->bytes_used + sinfo->bytes_reserved +
3006 alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3007 return 0;
3008
3009 if (sinfo->bytes_used + sinfo->bytes_reserved +
3010 alloc_bytes < div_factor(num_bytes, 8))
3011 return 0;
3012
3013 return 1;
3014 }
3015
3016 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3017 struct btrfs_root *extent_root, u64 alloc_bytes,
3018 u64 flags, int force)
3019 {
3020 struct btrfs_space_info *space_info;
3021 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3022 int ret = 0;
3023
3024 mutex_lock(&fs_info->chunk_mutex);
3025
3026 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3027
3028 space_info = __find_space_info(extent_root->fs_info, flags);
3029 if (!space_info) {
3030 ret = update_space_info(extent_root->fs_info, flags,
3031 0, 0, &space_info);
3032 BUG_ON(ret);
3033 }
3034 BUG_ON(!space_info);
3035
3036 spin_lock(&space_info->lock);
3037 if (space_info->force_alloc)
3038 force = 1;
3039 if (space_info->full) {
3040 spin_unlock(&space_info->lock);
3041 goto out;
3042 }
3043
3044 if (!force && !should_alloc_chunk(space_info, alloc_bytes)) {
3045 spin_unlock(&space_info->lock);
3046 goto out;
3047 }
3048 spin_unlock(&space_info->lock);
3049
3050 /*
3051 * if we're doing a data chunk, go ahead and make sure that
3052 * we keep a reasonable number of metadata chunks allocated in the
3053 * FS as well.
3054 */
3055 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3056 fs_info->data_chunk_allocations++;
3057 if (!(fs_info->data_chunk_allocations %
3058 fs_info->metadata_ratio))
3059 force_metadata_allocation(fs_info);
3060 }
3061
3062 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3063 spin_lock(&space_info->lock);
3064 if (ret)
3065 space_info->full = 1;
3066 else
3067 ret = 1;
3068 space_info->force_alloc = 0;
3069 spin_unlock(&space_info->lock);
3070 out:
3071 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3072 return ret;
3073 }
3074
3075 static int maybe_allocate_chunk(struct btrfs_trans_handle *trans,
3076 struct btrfs_root *root,
3077 struct btrfs_space_info *sinfo, u64 num_bytes)
3078 {
3079 int ret;
3080 int end_trans = 0;
3081
3082 if (sinfo->full)
3083 return 0;
3084
3085 spin_lock(&sinfo->lock);
3086 ret = should_alloc_chunk(sinfo, num_bytes + 2 * 1024 * 1024);
3087 spin_unlock(&sinfo->lock);
3088 if (!ret)
3089 return 0;
3090
3091 if (!trans) {
3092 trans = btrfs_join_transaction(root, 1);
3093 BUG_ON(IS_ERR(trans));
3094 end_trans = 1;
3095 }
3096
3097 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3098 num_bytes + 2 * 1024 * 1024,
3099 get_alloc_profile(root, sinfo->flags), 0);
3100
3101 if (end_trans)
3102 btrfs_end_transaction(trans, root);
3103
3104 return ret == 1 ? 1 : 0;
3105 }
3106
3107 /*
3108 * shrink metadata reservation for delalloc
3109 */
3110 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3111 struct btrfs_root *root, u64 to_reclaim)
3112 {
3113 struct btrfs_block_rsv *block_rsv;
3114 u64 reserved;
3115 u64 max_reclaim;
3116 u64 reclaimed = 0;
3117 int pause = 1;
3118 int ret;
3119
3120 block_rsv = &root->fs_info->delalloc_block_rsv;
3121 spin_lock(&block_rsv->lock);
3122 reserved = block_rsv->reserved;
3123 spin_unlock(&block_rsv->lock);
3124
3125 if (reserved == 0)
3126 return 0;
3127
3128 max_reclaim = min(reserved, to_reclaim);
3129
3130 while (1) {
3131 ret = btrfs_start_one_delalloc_inode(root, trans ? 1 : 0);
3132 if (!ret) {
3133 __set_current_state(TASK_INTERRUPTIBLE);
3134 schedule_timeout(pause);
3135 pause <<= 1;
3136 if (pause > HZ / 10)
3137 pause = HZ / 10;
3138 } else {
3139 pause = 1;
3140 }
3141
3142 spin_lock(&block_rsv->lock);
3143 if (reserved > block_rsv->reserved)
3144 reclaimed = reserved - block_rsv->reserved;
3145 reserved = block_rsv->reserved;
3146 spin_unlock(&block_rsv->lock);
3147
3148 if (reserved == 0 || reclaimed >= max_reclaim)
3149 break;
3150
3151 if (trans && trans->transaction->blocked)
3152 return -EAGAIN;
3153 }
3154 return reclaimed >= to_reclaim;
3155 }
3156
3157 static int should_retry_reserve(struct btrfs_trans_handle *trans,
3158 struct btrfs_root *root,
3159 struct btrfs_block_rsv *block_rsv,
3160 u64 num_bytes, int *retries)
3161 {
3162 struct btrfs_space_info *space_info = block_rsv->space_info;
3163 int ret;
3164
3165 if ((*retries) > 2)
3166 return -ENOSPC;
3167
3168 ret = maybe_allocate_chunk(trans, root, space_info, num_bytes);
3169 if (ret)
3170 return 1;
3171
3172 if (trans && trans->transaction->in_commit)
3173 return -ENOSPC;
3174
3175 ret = shrink_delalloc(trans, root, num_bytes);
3176 if (ret)
3177 return ret;
3178
3179 spin_lock(&space_info->lock);
3180 if (space_info->bytes_pinned < num_bytes)
3181 ret = 1;
3182 spin_unlock(&space_info->lock);
3183 if (ret)
3184 return -ENOSPC;
3185
3186 (*retries)++;
3187
3188 if (trans)
3189 return -EAGAIN;
3190
3191 trans = btrfs_join_transaction(root, 1);
3192 BUG_ON(IS_ERR(trans));
3193 ret = btrfs_commit_transaction(trans, root);
3194 BUG_ON(ret);
3195
3196 return 1;
3197 }
3198
3199 static int reserve_metadata_bytes(struct btrfs_block_rsv *block_rsv,
3200 u64 num_bytes)
3201 {
3202 struct btrfs_space_info *space_info = block_rsv->space_info;
3203 u64 unused;
3204 int ret = -ENOSPC;
3205
3206 spin_lock(&space_info->lock);
3207 unused = space_info->bytes_used + space_info->bytes_reserved +
3208 space_info->bytes_pinned + space_info->bytes_readonly;
3209
3210 if (unused < space_info->total_bytes)
3211 unused = space_info->total_bytes - unused;
3212 else
3213 unused = 0;
3214
3215 if (unused >= num_bytes) {
3216 if (block_rsv->priority >= 10) {
3217 space_info->bytes_reserved += num_bytes;
3218 ret = 0;
3219 } else {
3220 if ((unused + block_rsv->reserved) *
3221 block_rsv->priority >=
3222 (num_bytes + block_rsv->reserved) * 10) {
3223 space_info->bytes_reserved += num_bytes;
3224 ret = 0;
3225 }
3226 }
3227 }
3228 spin_unlock(&space_info->lock);
3229
3230 return ret;
3231 }
3232
3233 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3234 struct btrfs_root *root)
3235 {
3236 struct btrfs_block_rsv *block_rsv;
3237 if (root->ref_cows)
3238 block_rsv = trans->block_rsv;
3239 else
3240 block_rsv = root->block_rsv;
3241
3242 if (!block_rsv)
3243 block_rsv = &root->fs_info->empty_block_rsv;
3244
3245 return block_rsv;
3246 }
3247
3248 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3249 u64 num_bytes)
3250 {
3251 int ret = -ENOSPC;
3252 spin_lock(&block_rsv->lock);
3253 if (block_rsv->reserved >= num_bytes) {
3254 block_rsv->reserved -= num_bytes;
3255 if (block_rsv->reserved < block_rsv->size)
3256 block_rsv->full = 0;
3257 ret = 0;
3258 }
3259 spin_unlock(&block_rsv->lock);
3260 return ret;
3261 }
3262
3263 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3264 u64 num_bytes, int update_size)
3265 {
3266 spin_lock(&block_rsv->lock);
3267 block_rsv->reserved += num_bytes;
3268 if (update_size)
3269 block_rsv->size += num_bytes;
3270 else if (block_rsv->reserved >= block_rsv->size)
3271 block_rsv->full = 1;
3272 spin_unlock(&block_rsv->lock);
3273 }
3274
3275 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3276 struct btrfs_block_rsv *dest, u64 num_bytes)
3277 {
3278 struct btrfs_space_info *space_info = block_rsv->space_info;
3279
3280 spin_lock(&block_rsv->lock);
3281 if (num_bytes == (u64)-1)
3282 num_bytes = block_rsv->size;
3283 block_rsv->size -= num_bytes;
3284 if (block_rsv->reserved >= block_rsv->size) {
3285 num_bytes = block_rsv->reserved - block_rsv->size;
3286 block_rsv->reserved = block_rsv->size;
3287 block_rsv->full = 1;
3288 } else {
3289 num_bytes = 0;
3290 }
3291 spin_unlock(&block_rsv->lock);
3292
3293 if (num_bytes > 0) {
3294 if (dest) {
3295 block_rsv_add_bytes(dest, num_bytes, 0);
3296 } else {
3297 spin_lock(&space_info->lock);
3298 space_info->bytes_reserved -= num_bytes;
3299 spin_unlock(&space_info->lock);
3300 }
3301 }
3302 }
3303
3304 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3305 struct btrfs_block_rsv *dst, u64 num_bytes)
3306 {
3307 int ret;
3308
3309 ret = block_rsv_use_bytes(src, num_bytes);
3310 if (ret)
3311 return ret;
3312
3313 block_rsv_add_bytes(dst, num_bytes, 1);
3314 return 0;
3315 }
3316
3317 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3318 {
3319 memset(rsv, 0, sizeof(*rsv));
3320 spin_lock_init(&rsv->lock);
3321 atomic_set(&rsv->usage, 1);
3322 rsv->priority = 6;
3323 INIT_LIST_HEAD(&rsv->list);
3324 }
3325
3326 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3327 {
3328 struct btrfs_block_rsv *block_rsv;
3329 struct btrfs_fs_info *fs_info = root->fs_info;
3330 u64 alloc_target;
3331
3332 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3333 if (!block_rsv)
3334 return NULL;
3335
3336 btrfs_init_block_rsv(block_rsv);
3337
3338 alloc_target = btrfs_get_alloc_profile(root, 0);
3339 block_rsv->space_info = __find_space_info(fs_info,
3340 BTRFS_BLOCK_GROUP_METADATA);
3341
3342 return block_rsv;
3343 }
3344
3345 void btrfs_free_block_rsv(struct btrfs_root *root,
3346 struct btrfs_block_rsv *rsv)
3347 {
3348 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3349 btrfs_block_rsv_release(root, rsv, (u64)-1);
3350 if (!rsv->durable)
3351 kfree(rsv);
3352 }
3353 }
3354
3355 /*
3356 * make the block_rsv struct be able to capture freed space.
3357 * the captured space will re-add to the the block_rsv struct
3358 * after transaction commit
3359 */
3360 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3361 struct btrfs_block_rsv *block_rsv)
3362 {
3363 block_rsv->durable = 1;
3364 mutex_lock(&fs_info->durable_block_rsv_mutex);
3365 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3366 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3367 }
3368
3369 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3370 struct btrfs_root *root,
3371 struct btrfs_block_rsv *block_rsv,
3372 u64 num_bytes, int *retries)
3373 {
3374 int ret;
3375
3376 if (num_bytes == 0)
3377 return 0;
3378 again:
3379 ret = reserve_metadata_bytes(block_rsv, num_bytes);
3380 if (!ret) {
3381 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3382 return 0;
3383 }
3384
3385 ret = should_retry_reserve(trans, root, block_rsv, num_bytes, retries);
3386 if (ret > 0)
3387 goto again;
3388
3389 return ret;
3390 }
3391
3392 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3393 struct btrfs_root *root,
3394 struct btrfs_block_rsv *block_rsv,
3395 u64 min_reserved, int min_factor)
3396 {
3397 u64 num_bytes = 0;
3398 int commit_trans = 0;
3399 int ret = -ENOSPC;
3400
3401 if (!block_rsv)
3402 return 0;
3403
3404 spin_lock(&block_rsv->lock);
3405 if (min_factor > 0)
3406 num_bytes = div_factor(block_rsv->size, min_factor);
3407 if (min_reserved > num_bytes)
3408 num_bytes = min_reserved;
3409
3410 if (block_rsv->reserved >= num_bytes) {
3411 ret = 0;
3412 } else {
3413 num_bytes -= block_rsv->reserved;
3414 if (block_rsv->durable &&
3415 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3416 commit_trans = 1;
3417 }
3418 spin_unlock(&block_rsv->lock);
3419 if (!ret)
3420 return 0;
3421
3422 if (block_rsv->refill_used) {
3423 ret = reserve_metadata_bytes(block_rsv, num_bytes);
3424 if (!ret) {
3425 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3426 return 0;
3427 }
3428 }
3429
3430 if (commit_trans) {
3431 if (trans)
3432 return -EAGAIN;
3433
3434 trans = btrfs_join_transaction(root, 1);
3435 BUG_ON(IS_ERR(trans));
3436 ret = btrfs_commit_transaction(trans, root);
3437 return 0;
3438 }
3439
3440 WARN_ON(1);
3441 printk(KERN_INFO"block_rsv size %llu reserved %llu freed %llu %llu\n",
3442 block_rsv->size, block_rsv->reserved,
3443 block_rsv->freed[0], block_rsv->freed[1]);
3444
3445 return -ENOSPC;
3446 }
3447
3448 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3449 struct btrfs_block_rsv *dst_rsv,
3450 u64 num_bytes)
3451 {
3452 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3453 }
3454
3455 void btrfs_block_rsv_release(struct btrfs_root *root,
3456 struct btrfs_block_rsv *block_rsv,
3457 u64 num_bytes)
3458 {
3459 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3460 if (global_rsv->full || global_rsv == block_rsv ||
3461 block_rsv->space_info != global_rsv->space_info)
3462 global_rsv = NULL;
3463 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3464 }
3465
3466 /*
3467 * helper to calculate size of global block reservation.
3468 * the desired value is sum of space used by extent tree,
3469 * checksum tree and root tree
3470 */
3471 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3472 {
3473 struct btrfs_space_info *sinfo;
3474 u64 num_bytes;
3475 u64 meta_used;
3476 u64 data_used;
3477 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3478 #if 0
3479 /*
3480 * per tree used space accounting can be inaccuracy, so we
3481 * can't rely on it.
3482 */
3483 spin_lock(&fs_info->extent_root->accounting_lock);
3484 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
3485 spin_unlock(&fs_info->extent_root->accounting_lock);
3486
3487 spin_lock(&fs_info->csum_root->accounting_lock);
3488 num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
3489 spin_unlock(&fs_info->csum_root->accounting_lock);
3490
3491 spin_lock(&fs_info->tree_root->accounting_lock);
3492 num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
3493 spin_unlock(&fs_info->tree_root->accounting_lock);
3494 #endif
3495 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3496 spin_lock(&sinfo->lock);
3497 data_used = sinfo->bytes_used;
3498 spin_unlock(&sinfo->lock);
3499
3500 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3501 spin_lock(&sinfo->lock);
3502 meta_used = sinfo->bytes_used;
3503 spin_unlock(&sinfo->lock);
3504
3505 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3506 csum_size * 2;
3507 num_bytes += div64_u64(data_used + meta_used, 50);
3508
3509 if (num_bytes * 3 > meta_used)
3510 num_bytes = div64_u64(meta_used, 3);
3511
3512 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3513 }
3514
3515 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3516 {
3517 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3518 struct btrfs_space_info *sinfo = block_rsv->space_info;
3519 u64 num_bytes;
3520
3521 num_bytes = calc_global_metadata_size(fs_info);
3522
3523 spin_lock(&block_rsv->lock);
3524 spin_lock(&sinfo->lock);
3525
3526 block_rsv->size = num_bytes;
3527
3528 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3529 sinfo->bytes_reserved + sinfo->bytes_readonly;
3530
3531 if (sinfo->total_bytes > num_bytes) {
3532 num_bytes = sinfo->total_bytes - num_bytes;
3533 block_rsv->reserved += num_bytes;
3534 sinfo->bytes_reserved += num_bytes;
3535 }
3536
3537 if (block_rsv->reserved >= block_rsv->size) {
3538 num_bytes = block_rsv->reserved - block_rsv->size;
3539 sinfo->bytes_reserved -= num_bytes;
3540 block_rsv->reserved = block_rsv->size;
3541 block_rsv->full = 1;
3542 }
3543 #if 0
3544 printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
3545 block_rsv->size, block_rsv->reserved);
3546 #endif
3547 spin_unlock(&sinfo->lock);
3548 spin_unlock(&block_rsv->lock);
3549 }
3550
3551 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3552 {
3553 struct btrfs_space_info *space_info;
3554
3555 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3556 fs_info->chunk_block_rsv.space_info = space_info;
3557 fs_info->chunk_block_rsv.priority = 10;
3558
3559 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3560 fs_info->global_block_rsv.space_info = space_info;
3561 fs_info->global_block_rsv.priority = 10;
3562 fs_info->global_block_rsv.refill_used = 1;
3563 fs_info->delalloc_block_rsv.space_info = space_info;
3564 fs_info->trans_block_rsv.space_info = space_info;
3565 fs_info->empty_block_rsv.space_info = space_info;
3566 fs_info->empty_block_rsv.priority = 10;
3567
3568 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3569 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3570 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3571 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3572 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3573
3574 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3575
3576 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3577
3578 update_global_block_rsv(fs_info);
3579 }
3580
3581 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3582 {
3583 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3584 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3585 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3586 WARN_ON(fs_info->trans_block_rsv.size > 0);
3587 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3588 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3589 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3590 }
3591
3592 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
3593 {
3594 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3595 3 * num_items;
3596 }
3597
3598 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3599 struct btrfs_root *root,
3600 int num_items, int *retries)
3601 {
3602 u64 num_bytes;
3603 int ret;
3604
3605 if (num_items == 0 || root->fs_info->chunk_root == root)
3606 return 0;
3607
3608 num_bytes = calc_trans_metadata_size(root, num_items);
3609 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3610 num_bytes, retries);
3611 if (!ret) {
3612 trans->bytes_reserved += num_bytes;
3613 trans->block_rsv = &root->fs_info->trans_block_rsv;
3614 }
3615 return ret;
3616 }
3617
3618 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3619 struct btrfs_root *root)
3620 {
3621 if (!trans->bytes_reserved)
3622 return;
3623
3624 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3625 btrfs_block_rsv_release(root, trans->block_rsv,
3626 trans->bytes_reserved);
3627 trans->bytes_reserved = 0;
3628 }
3629
3630 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3631 struct inode *inode)
3632 {
3633 struct btrfs_root *root = BTRFS_I(inode)->root;
3634 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3635 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3636
3637 /*
3638 * one for deleting orphan item, one for updating inode and
3639 * two for calling btrfs_truncate_inode_items.
3640 *
3641 * btrfs_truncate_inode_items is a delete operation, it frees
3642 * more space than it uses in most cases. So two units of
3643 * metadata space should be enough for calling it many times.
3644 * If all of the metadata space is used, we can commit
3645 * transaction and use space it freed.
3646 */
3647 u64 num_bytes = calc_trans_metadata_size(root, 4);
3648 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3649 }
3650
3651 void btrfs_orphan_release_metadata(struct inode *inode)
3652 {
3653 struct btrfs_root *root = BTRFS_I(inode)->root;
3654 u64 num_bytes = calc_trans_metadata_size(root, 4);
3655 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3656 }
3657
3658 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3659 struct btrfs_pending_snapshot *pending)
3660 {
3661 struct btrfs_root *root = pending->root;
3662 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3663 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3664 /*
3665 * two for root back/forward refs, two for directory entries
3666 * and one for root of the snapshot.
3667 */
3668 u64 num_bytes = calc_trans_metadata_size(root, 5);
3669 dst_rsv->space_info = src_rsv->space_info;
3670 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3671 }
3672
3673 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3674 {
3675 return num_bytes >>= 3;
3676 }
3677
3678 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3679 {
3680 struct btrfs_root *root = BTRFS_I(inode)->root;
3681 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3682 u64 to_reserve;
3683 int nr_extents;
3684 int retries = 0;
3685 int ret;
3686
3687 if (btrfs_transaction_in_commit(root->fs_info))
3688 schedule_timeout(1);
3689
3690 num_bytes = ALIGN(num_bytes, root->sectorsize);
3691 again:
3692 spin_lock(&BTRFS_I(inode)->accounting_lock);
3693 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3694 if (nr_extents > BTRFS_I(inode)->reserved_extents) {
3695 nr_extents -= BTRFS_I(inode)->reserved_extents;
3696 to_reserve = calc_trans_metadata_size(root, nr_extents);
3697 } else {
3698 nr_extents = 0;
3699 to_reserve = 0;
3700 }
3701
3702 to_reserve += calc_csum_metadata_size(inode, num_bytes);
3703 ret = reserve_metadata_bytes(block_rsv, to_reserve);
3704 if (ret) {
3705 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3706 ret = should_retry_reserve(NULL, root, block_rsv, to_reserve,
3707 &retries);
3708 if (ret > 0)
3709 goto again;
3710 return ret;
3711 }
3712
3713 BTRFS_I(inode)->reserved_extents += nr_extents;
3714 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3715 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3716
3717 block_rsv_add_bytes(block_rsv, to_reserve, 1);
3718
3719 if (block_rsv->size > 512 * 1024 * 1024)
3720 shrink_delalloc(NULL, root, to_reserve);
3721
3722 return 0;
3723 }
3724
3725 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
3726 {
3727 struct btrfs_root *root = BTRFS_I(inode)->root;
3728 u64 to_free;
3729 int nr_extents;
3730
3731 num_bytes = ALIGN(num_bytes, root->sectorsize);
3732 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
3733
3734 spin_lock(&BTRFS_I(inode)->accounting_lock);
3735 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
3736 if (nr_extents < BTRFS_I(inode)->reserved_extents) {
3737 nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents;
3738 BTRFS_I(inode)->reserved_extents -= nr_extents;
3739 } else {
3740 nr_extents = 0;
3741 }
3742 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3743
3744 to_free = calc_csum_metadata_size(inode, num_bytes);
3745 if (nr_extents > 0)
3746 to_free += calc_trans_metadata_size(root, nr_extents);
3747
3748 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
3749 to_free);
3750 }
3751
3752 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
3753 {
3754 int ret;
3755
3756 ret = btrfs_check_data_free_space(inode, num_bytes);
3757 if (ret)
3758 return ret;
3759
3760 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
3761 if (ret) {
3762 btrfs_free_reserved_data_space(inode, num_bytes);
3763 return ret;
3764 }
3765
3766 return 0;
3767 }
3768
3769 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
3770 {
3771 btrfs_delalloc_release_metadata(inode, num_bytes);
3772 btrfs_free_reserved_data_space(inode, num_bytes);
3773 }
3774
3775 static int update_block_group(struct btrfs_trans_handle *trans,
3776 struct btrfs_root *root,
3777 u64 bytenr, u64 num_bytes, int alloc)
3778 {
3779 struct btrfs_block_group_cache *cache;
3780 struct btrfs_fs_info *info = root->fs_info;
3781 int factor;
3782 u64 total = num_bytes;
3783 u64 old_val;
3784 u64 byte_in_group;
3785
3786 /* block accounting for super block */
3787 spin_lock(&info->delalloc_lock);
3788 old_val = btrfs_super_bytes_used(&info->super_copy);
3789 if (alloc)
3790 old_val += num_bytes;
3791 else
3792 old_val -= num_bytes;
3793 btrfs_set_super_bytes_used(&info->super_copy, old_val);
3794 spin_unlock(&info->delalloc_lock);
3795
3796 while (total) {
3797 cache = btrfs_lookup_block_group(info, bytenr);
3798 if (!cache)
3799 return -1;
3800 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
3801 BTRFS_BLOCK_GROUP_RAID1 |
3802 BTRFS_BLOCK_GROUP_RAID10))
3803 factor = 2;
3804 else
3805 factor = 1;
3806 byte_in_group = bytenr - cache->key.objectid;
3807 WARN_ON(byte_in_group > cache->key.offset);
3808
3809 spin_lock(&cache->space_info->lock);
3810 spin_lock(&cache->lock);
3811 cache->dirty = 1;
3812 old_val = btrfs_block_group_used(&cache->item);
3813 num_bytes = min(total, cache->key.offset - byte_in_group);
3814 if (alloc) {
3815 old_val += num_bytes;
3816 btrfs_set_block_group_used(&cache->item, old_val);
3817 cache->reserved -= num_bytes;
3818 cache->space_info->bytes_reserved -= num_bytes;
3819 cache->space_info->bytes_used += num_bytes;
3820 cache->space_info->disk_used += num_bytes * factor;
3821 spin_unlock(&cache->lock);
3822 spin_unlock(&cache->space_info->lock);
3823 } else {
3824 old_val -= num_bytes;
3825 btrfs_set_block_group_used(&cache->item, old_val);
3826 cache->pinned += num_bytes;
3827 cache->space_info->bytes_pinned += num_bytes;
3828 cache->space_info->bytes_used -= num_bytes;
3829 cache->space_info->disk_used -= num_bytes * factor;
3830 spin_unlock(&cache->lock);
3831 spin_unlock(&cache->space_info->lock);
3832
3833 set_extent_dirty(info->pinned_extents,
3834 bytenr, bytenr + num_bytes - 1,
3835 GFP_NOFS | __GFP_NOFAIL);
3836 }
3837 btrfs_put_block_group(cache);
3838 total -= num_bytes;
3839 bytenr += num_bytes;
3840 }
3841 return 0;
3842 }
3843
3844 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
3845 {
3846 struct btrfs_block_group_cache *cache;
3847 u64 bytenr;
3848
3849 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
3850 if (!cache)
3851 return 0;
3852
3853 bytenr = cache->key.objectid;
3854 btrfs_put_block_group(cache);
3855
3856 return bytenr;
3857 }
3858
3859 static int pin_down_extent(struct btrfs_root *root,
3860 struct btrfs_block_group_cache *cache,
3861 u64 bytenr, u64 num_bytes, int reserved)
3862 {
3863 spin_lock(&cache->space_info->lock);
3864 spin_lock(&cache->lock);
3865 cache->pinned += num_bytes;
3866 cache->space_info->bytes_pinned += num_bytes;
3867 if (reserved) {
3868 cache->reserved -= num_bytes;
3869 cache->space_info->bytes_reserved -= num_bytes;
3870 }
3871 spin_unlock(&cache->lock);
3872 spin_unlock(&cache->space_info->lock);
3873
3874 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
3875 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
3876 return 0;
3877 }
3878
3879 /*
3880 * this function must be called within transaction
3881 */
3882 int btrfs_pin_extent(struct btrfs_root *root,
3883 u64 bytenr, u64 num_bytes, int reserved)
3884 {
3885 struct btrfs_block_group_cache *cache;
3886
3887 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
3888 BUG_ON(!cache);
3889
3890 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
3891
3892 btrfs_put_block_group(cache);
3893 return 0;
3894 }
3895
3896 /*
3897 * update size of reserved extents. this function may return -EAGAIN
3898 * if 'reserve' is true or 'sinfo' is false.
3899 */
3900 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
3901 u64 num_bytes, int reserve, int sinfo)
3902 {
3903 int ret = 0;
3904 if (sinfo) {
3905 struct btrfs_space_info *space_info = cache->space_info;
3906 spin_lock(&space_info->lock);
3907 spin_lock(&cache->lock);
3908 if (reserve) {
3909 if (cache->ro) {
3910 ret = -EAGAIN;
3911 } else {
3912 cache->reserved += num_bytes;
3913 space_info->bytes_reserved += num_bytes;
3914 }
3915 } else {
3916 if (cache->ro)
3917 space_info->bytes_readonly += num_bytes;
3918 cache->reserved -= num_bytes;
3919 space_info->bytes_reserved -= num_bytes;
3920 }
3921 spin_unlock(&cache->lock);
3922 spin_unlock(&space_info->lock);
3923 } else {
3924 spin_lock(&cache->lock);
3925 if (cache->ro) {
3926 ret = -EAGAIN;
3927 } else {
3928 if (reserve)
3929 cache->reserved += num_bytes;
3930 else
3931 cache->reserved -= num_bytes;
3932 }
3933 spin_unlock(&cache->lock);
3934 }
3935 return ret;
3936 }
3937
3938 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3939 struct btrfs_root *root)
3940 {
3941 struct btrfs_fs_info *fs_info = root->fs_info;
3942 struct btrfs_caching_control *next;
3943 struct btrfs_caching_control *caching_ctl;
3944 struct btrfs_block_group_cache *cache;
3945
3946 down_write(&fs_info->extent_commit_sem);
3947
3948 list_for_each_entry_safe(caching_ctl, next,
3949 &fs_info->caching_block_groups, list) {
3950 cache = caching_ctl->block_group;
3951 if (block_group_cache_done(cache)) {
3952 cache->last_byte_to_unpin = (u64)-1;
3953 list_del_init(&caching_ctl->list);
3954 put_caching_control(caching_ctl);
3955 } else {
3956 cache->last_byte_to_unpin = caching_ctl->progress;
3957 }
3958 }
3959
3960 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3961 fs_info->pinned_extents = &fs_info->freed_extents[1];
3962 else
3963 fs_info->pinned_extents = &fs_info->freed_extents[0];
3964
3965 up_write(&fs_info->extent_commit_sem);
3966
3967 update_global_block_rsv(fs_info);
3968 return 0;
3969 }
3970
3971 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
3972 {
3973 struct btrfs_fs_info *fs_info = root->fs_info;
3974 struct btrfs_block_group_cache *cache = NULL;
3975 u64 len;
3976
3977 while (start <= end) {
3978 if (!cache ||
3979 start >= cache->key.objectid + cache->key.offset) {
3980 if (cache)
3981 btrfs_put_block_group(cache);
3982 cache = btrfs_lookup_block_group(fs_info, start);
3983 BUG_ON(!cache);
3984 }
3985
3986 len = cache->key.objectid + cache->key.offset - start;
3987 len = min(len, end + 1 - start);
3988
3989 if (start < cache->last_byte_to_unpin) {
3990 len = min(len, cache->last_byte_to_unpin - start);
3991 btrfs_add_free_space(cache, start, len);
3992 }
3993
3994 start += len;
3995
3996 spin_lock(&cache->space_info->lock);
3997 spin_lock(&cache->lock);
3998 cache->pinned -= len;
3999 cache->space_info->bytes_pinned -= len;
4000 if (cache->ro) {
4001 cache->space_info->bytes_readonly += len;
4002 } else if (cache->reserved_pinned > 0) {
4003 len = min(len, cache->reserved_pinned);
4004 cache->reserved_pinned -= len;
4005 cache->space_info->bytes_reserved += len;
4006 }
4007 spin_unlock(&cache->lock);
4008 spin_unlock(&cache->space_info->lock);
4009 }
4010
4011 if (cache)
4012 btrfs_put_block_group(cache);
4013 return 0;
4014 }
4015
4016 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4017 struct btrfs_root *root)
4018 {
4019 struct btrfs_fs_info *fs_info = root->fs_info;
4020 struct extent_io_tree *unpin;
4021 struct btrfs_block_rsv *block_rsv;
4022 struct btrfs_block_rsv *next_rsv;
4023 u64 start;
4024 u64 end;
4025 int idx;
4026 int ret;
4027
4028 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4029 unpin = &fs_info->freed_extents[1];
4030 else
4031 unpin = &fs_info->freed_extents[0];
4032
4033 while (1) {
4034 ret = find_first_extent_bit(unpin, 0, &start, &end,
4035 EXTENT_DIRTY);
4036 if (ret)
4037 break;
4038
4039 ret = btrfs_discard_extent(root, start, end + 1 - start);
4040
4041 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4042 unpin_extent_range(root, start, end);
4043 cond_resched();
4044 }
4045
4046 mutex_lock(&fs_info->durable_block_rsv_mutex);
4047 list_for_each_entry_safe(block_rsv, next_rsv,
4048 &fs_info->durable_block_rsv_list, list) {
4049
4050 idx = trans->transid & 0x1;
4051 if (block_rsv->freed[idx] > 0) {
4052 block_rsv_add_bytes(block_rsv,
4053 block_rsv->freed[idx], 0);
4054 block_rsv->freed[idx] = 0;
4055 }
4056 if (atomic_read(&block_rsv->usage) == 0) {
4057 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4058
4059 if (block_rsv->freed[0] == 0 &&
4060 block_rsv->freed[1] == 0) {
4061 list_del_init(&block_rsv->list);
4062 kfree(block_rsv);
4063 }
4064 } else {
4065 btrfs_block_rsv_release(root, block_rsv, 0);
4066 }
4067 }
4068 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4069
4070 return 0;
4071 }
4072
4073 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4074 struct btrfs_root *root,
4075 u64 bytenr, u64 num_bytes, u64 parent,
4076 u64 root_objectid, u64 owner_objectid,
4077 u64 owner_offset, int refs_to_drop,
4078 struct btrfs_delayed_extent_op *extent_op)
4079 {
4080 struct btrfs_key key;
4081 struct btrfs_path *path;
4082 struct btrfs_fs_info *info = root->fs_info;
4083 struct btrfs_root *extent_root = info->extent_root;
4084 struct extent_buffer *leaf;
4085 struct btrfs_extent_item *ei;
4086 struct btrfs_extent_inline_ref *iref;
4087 int ret;
4088 int is_data;
4089 int extent_slot = 0;
4090 int found_extent = 0;
4091 int num_to_del = 1;
4092 u32 item_size;
4093 u64 refs;
4094
4095 path = btrfs_alloc_path();
4096 if (!path)
4097 return -ENOMEM;
4098
4099 path->reada = 1;
4100 path->leave_spinning = 1;
4101
4102 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4103 BUG_ON(!is_data && refs_to_drop != 1);
4104
4105 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4106 bytenr, num_bytes, parent,
4107 root_objectid, owner_objectid,
4108 owner_offset);
4109 if (ret == 0) {
4110 extent_slot = path->slots[0];
4111 while (extent_slot >= 0) {
4112 btrfs_item_key_to_cpu(path->nodes[0], &key,
4113 extent_slot);
4114 if (key.objectid != bytenr)
4115 break;
4116 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4117 key.offset == num_bytes) {
4118 found_extent = 1;
4119 break;
4120 }
4121 if (path->slots[0] - extent_slot > 5)
4122 break;
4123 extent_slot--;
4124 }
4125 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4126 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4127 if (found_extent && item_size < sizeof(*ei))
4128 found_extent = 0;
4129 #endif
4130 if (!found_extent) {
4131 BUG_ON(iref);
4132 ret = remove_extent_backref(trans, extent_root, path,
4133 NULL, refs_to_drop,
4134 is_data);
4135 BUG_ON(ret);
4136 btrfs_release_path(extent_root, path);
4137 path->leave_spinning = 1;
4138
4139 key.objectid = bytenr;
4140 key.type = BTRFS_EXTENT_ITEM_KEY;
4141 key.offset = num_bytes;
4142
4143 ret = btrfs_search_slot(trans, extent_root,
4144 &key, path, -1, 1);
4145 if (ret) {
4146 printk(KERN_ERR "umm, got %d back from search"
4147 ", was looking for %llu\n", ret,
4148 (unsigned long long)bytenr);
4149 btrfs_print_leaf(extent_root, path->nodes[0]);
4150 }
4151 BUG_ON(ret);
4152 extent_slot = path->slots[0];
4153 }
4154 } else {
4155 btrfs_print_leaf(extent_root, path->nodes[0]);
4156 WARN_ON(1);
4157 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4158 "parent %llu root %llu owner %llu offset %llu\n",
4159 (unsigned long long)bytenr,
4160 (unsigned long long)parent,
4161 (unsigned long long)root_objectid,
4162 (unsigned long long)owner_objectid,
4163 (unsigned long long)owner_offset);
4164 }
4165
4166 leaf = path->nodes[0];
4167 item_size = btrfs_item_size_nr(leaf, extent_slot);
4168 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4169 if (item_size < sizeof(*ei)) {
4170 BUG_ON(found_extent || extent_slot != path->slots[0]);
4171 ret = convert_extent_item_v0(trans, extent_root, path,
4172 owner_objectid, 0);
4173 BUG_ON(ret < 0);
4174
4175 btrfs_release_path(extent_root, path);
4176 path->leave_spinning = 1;
4177
4178 key.objectid = bytenr;
4179 key.type = BTRFS_EXTENT_ITEM_KEY;
4180 key.offset = num_bytes;
4181
4182 ret = btrfs_search_slot(trans, extent_root, &key, path,
4183 -1, 1);
4184 if (ret) {
4185 printk(KERN_ERR "umm, got %d back from search"
4186 ", was looking for %llu\n", ret,
4187 (unsigned long long)bytenr);
4188 btrfs_print_leaf(extent_root, path->nodes[0]);
4189 }
4190 BUG_ON(ret);
4191 extent_slot = path->slots[0];
4192 leaf = path->nodes[0];
4193 item_size = btrfs_item_size_nr(leaf, extent_slot);
4194 }
4195 #endif
4196 BUG_ON(item_size < sizeof(*ei));
4197 ei = btrfs_item_ptr(leaf, extent_slot,
4198 struct btrfs_extent_item);
4199 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4200 struct btrfs_tree_block_info *bi;
4201 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4202 bi = (struct btrfs_tree_block_info *)(ei + 1);
4203 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4204 }
4205
4206 refs = btrfs_extent_refs(leaf, ei);
4207 BUG_ON(refs < refs_to_drop);
4208 refs -= refs_to_drop;
4209
4210 if (refs > 0) {
4211 if (extent_op)
4212 __run_delayed_extent_op(extent_op, leaf, ei);
4213 /*
4214 * In the case of inline back ref, reference count will
4215 * be updated by remove_extent_backref
4216 */
4217 if (iref) {
4218 BUG_ON(!found_extent);
4219 } else {
4220 btrfs_set_extent_refs(leaf, ei, refs);
4221 btrfs_mark_buffer_dirty(leaf);
4222 }
4223 if (found_extent) {
4224 ret = remove_extent_backref(trans, extent_root, path,
4225 iref, refs_to_drop,
4226 is_data);
4227 BUG_ON(ret);
4228 }
4229 } else {
4230 if (found_extent) {
4231 BUG_ON(is_data && refs_to_drop !=
4232 extent_data_ref_count(root, path, iref));
4233 if (iref) {
4234 BUG_ON(path->slots[0] != extent_slot);
4235 } else {
4236 BUG_ON(path->slots[0] != extent_slot + 1);
4237 path->slots[0] = extent_slot;
4238 num_to_del = 2;
4239 }
4240 }
4241
4242 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4243 num_to_del);
4244 BUG_ON(ret);
4245 btrfs_release_path(extent_root, path);
4246
4247 if (is_data) {
4248 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4249 BUG_ON(ret);
4250 } else {
4251 invalidate_mapping_pages(info->btree_inode->i_mapping,
4252 bytenr >> PAGE_CACHE_SHIFT,
4253 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4254 }
4255
4256 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4257 BUG_ON(ret);
4258 }
4259 btrfs_free_path(path);
4260 return ret;
4261 }
4262
4263 /*
4264 * when we free an block, it is possible (and likely) that we free the last
4265 * delayed ref for that extent as well. This searches the delayed ref tree for
4266 * a given extent, and if there are no other delayed refs to be processed, it
4267 * removes it from the tree.
4268 */
4269 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4270 struct btrfs_root *root, u64 bytenr)
4271 {
4272 struct btrfs_delayed_ref_head *head;
4273 struct btrfs_delayed_ref_root *delayed_refs;
4274 struct btrfs_delayed_ref_node *ref;
4275 struct rb_node *node;
4276 int ret = 0;
4277
4278 delayed_refs = &trans->transaction->delayed_refs;
4279 spin_lock(&delayed_refs->lock);
4280 head = btrfs_find_delayed_ref_head(trans, bytenr);
4281 if (!head)
4282 goto out;
4283
4284 node = rb_prev(&head->node.rb_node);
4285 if (!node)
4286 goto out;
4287
4288 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4289
4290 /* there are still entries for this ref, we can't drop it */
4291 if (ref->bytenr == bytenr)
4292 goto out;
4293
4294 if (head->extent_op) {
4295 if (!head->must_insert_reserved)
4296 goto out;
4297 kfree(head->extent_op);
4298 head->extent_op = NULL;
4299 }
4300
4301 /*
4302 * waiting for the lock here would deadlock. If someone else has it
4303 * locked they are already in the process of dropping it anyway
4304 */
4305 if (!mutex_trylock(&head->mutex))
4306 goto out;
4307
4308 /*
4309 * at this point we have a head with no other entries. Go
4310 * ahead and process it.
4311 */
4312 head->node.in_tree = 0;
4313 rb_erase(&head->node.rb_node, &delayed_refs->root);
4314
4315 delayed_refs->num_entries--;
4316
4317 /*
4318 * we don't take a ref on the node because we're removing it from the
4319 * tree, so we just steal the ref the tree was holding.
4320 */
4321 delayed_refs->num_heads--;
4322 if (list_empty(&head->cluster))
4323 delayed_refs->num_heads_ready--;
4324
4325 list_del_init(&head->cluster);
4326 spin_unlock(&delayed_refs->lock);
4327
4328 BUG_ON(head->extent_op);
4329 if (head->must_insert_reserved)
4330 ret = 1;
4331
4332 mutex_unlock(&head->mutex);
4333 btrfs_put_delayed_ref(&head->node);
4334 return ret;
4335 out:
4336 spin_unlock(&delayed_refs->lock);
4337 return 0;
4338 }
4339
4340 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4341 struct btrfs_root *root,
4342 struct extent_buffer *buf,
4343 u64 parent, int last_ref)
4344 {
4345 struct btrfs_block_rsv *block_rsv;
4346 struct btrfs_block_group_cache *cache = NULL;
4347 int ret;
4348
4349 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4350 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4351 parent, root->root_key.objectid,
4352 btrfs_header_level(buf),
4353 BTRFS_DROP_DELAYED_REF, NULL);
4354 BUG_ON(ret);
4355 }
4356
4357 if (!last_ref)
4358 return;
4359
4360 block_rsv = get_block_rsv(trans, root);
4361 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4362 if (block_rsv->space_info != cache->space_info)
4363 goto out;
4364
4365 if (btrfs_header_generation(buf) == trans->transid) {
4366 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4367 ret = check_ref_cleanup(trans, root, buf->start);
4368 if (!ret)
4369 goto pin;
4370 }
4371
4372 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4373 pin_down_extent(root, cache, buf->start, buf->len, 1);
4374 goto pin;
4375 }
4376
4377 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4378
4379 btrfs_add_free_space(cache, buf->start, buf->len);
4380 ret = update_reserved_bytes(cache, buf->len, 0, 0);
4381 if (ret == -EAGAIN) {
4382 /* block group became read-only */
4383 update_reserved_bytes(cache, buf->len, 0, 1);
4384 goto out;
4385 }
4386
4387 ret = 1;
4388 spin_lock(&block_rsv->lock);
4389 if (block_rsv->reserved < block_rsv->size) {
4390 block_rsv->reserved += buf->len;
4391 ret = 0;
4392 }
4393 spin_unlock(&block_rsv->lock);
4394
4395 if (ret) {
4396 spin_lock(&cache->space_info->lock);
4397 cache->space_info->bytes_reserved -= buf->len;
4398 spin_unlock(&cache->space_info->lock);
4399 }
4400 goto out;
4401 }
4402 pin:
4403 if (block_rsv->durable && !cache->ro) {
4404 ret = 0;
4405 spin_lock(&cache->lock);
4406 if (!cache->ro) {
4407 cache->reserved_pinned += buf->len;
4408 ret = 1;
4409 }
4410 spin_unlock(&cache->lock);
4411
4412 if (ret) {
4413 spin_lock(&block_rsv->lock);
4414 block_rsv->freed[trans->transid & 0x1] += buf->len;
4415 spin_unlock(&block_rsv->lock);
4416 }
4417 }
4418 out:
4419 btrfs_put_block_group(cache);
4420 }
4421
4422 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4423 struct btrfs_root *root,
4424 u64 bytenr, u64 num_bytes, u64 parent,
4425 u64 root_objectid, u64 owner, u64 offset)
4426 {
4427 int ret;
4428
4429 /*
4430 * tree log blocks never actually go into the extent allocation
4431 * tree, just update pinning info and exit early.
4432 */
4433 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4434 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4435 /* unlocks the pinned mutex */
4436 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4437 ret = 0;
4438 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4439 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4440 parent, root_objectid, (int)owner,
4441 BTRFS_DROP_DELAYED_REF, NULL);
4442 BUG_ON(ret);
4443 } else {
4444 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4445 parent, root_objectid, owner,
4446 offset, BTRFS_DROP_DELAYED_REF, NULL);
4447 BUG_ON(ret);
4448 }
4449 return ret;
4450 }
4451
4452 static u64 stripe_align(struct btrfs_root *root, u64 val)
4453 {
4454 u64 mask = ((u64)root->stripesize - 1);
4455 u64 ret = (val + mask) & ~mask;
4456 return ret;
4457 }
4458
4459 /*
4460 * when we wait for progress in the block group caching, its because
4461 * our allocation attempt failed at least once. So, we must sleep
4462 * and let some progress happen before we try again.
4463 *
4464 * This function will sleep at least once waiting for new free space to
4465 * show up, and then it will check the block group free space numbers
4466 * for our min num_bytes. Another option is to have it go ahead
4467 * and look in the rbtree for a free extent of a given size, but this
4468 * is a good start.
4469 */
4470 static noinline int
4471 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4472 u64 num_bytes)
4473 {
4474 struct btrfs_caching_control *caching_ctl;
4475 DEFINE_WAIT(wait);
4476
4477 caching_ctl = get_caching_control(cache);
4478 if (!caching_ctl)
4479 return 0;
4480
4481 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4482 (cache->free_space >= num_bytes));
4483
4484 put_caching_control(caching_ctl);
4485 return 0;
4486 }
4487
4488 static noinline int
4489 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4490 {
4491 struct btrfs_caching_control *caching_ctl;
4492 DEFINE_WAIT(wait);
4493
4494 caching_ctl = get_caching_control(cache);
4495 if (!caching_ctl)
4496 return 0;
4497
4498 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4499
4500 put_caching_control(caching_ctl);
4501 return 0;
4502 }
4503
4504 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4505 {
4506 int index;
4507 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4508 index = 0;
4509 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4510 index = 1;
4511 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4512 index = 2;
4513 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4514 index = 3;
4515 else
4516 index = 4;
4517 return index;
4518 }
4519
4520 enum btrfs_loop_type {
4521 LOOP_FIND_IDEAL = 0,
4522 LOOP_CACHING_NOWAIT = 1,
4523 LOOP_CACHING_WAIT = 2,
4524 LOOP_ALLOC_CHUNK = 3,
4525 LOOP_NO_EMPTY_SIZE = 4,
4526 };
4527
4528 /*
4529 * walks the btree of allocated extents and find a hole of a given size.
4530 * The key ins is changed to record the hole:
4531 * ins->objectid == block start
4532 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4533 * ins->offset == number of blocks
4534 * Any available blocks before search_start are skipped.
4535 */
4536 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4537 struct btrfs_root *orig_root,
4538 u64 num_bytes, u64 empty_size,
4539 u64 search_start, u64 search_end,
4540 u64 hint_byte, struct btrfs_key *ins,
4541 int data)
4542 {
4543 int ret = 0;
4544 struct btrfs_root *root = orig_root->fs_info->extent_root;
4545 struct btrfs_free_cluster *last_ptr = NULL;
4546 struct btrfs_block_group_cache *block_group = NULL;
4547 int empty_cluster = 2 * 1024 * 1024;
4548 int allowed_chunk_alloc = 0;
4549 int done_chunk_alloc = 0;
4550 struct btrfs_space_info *space_info;
4551 int last_ptr_loop = 0;
4552 int loop = 0;
4553 int index = 0;
4554 bool found_uncached_bg = false;
4555 bool failed_cluster_refill = false;
4556 bool failed_alloc = false;
4557 u64 ideal_cache_percent = 0;
4558 u64 ideal_cache_offset = 0;
4559
4560 WARN_ON(num_bytes < root->sectorsize);
4561 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4562 ins->objectid = 0;
4563 ins->offset = 0;
4564
4565 space_info = __find_space_info(root->fs_info, data);
4566 if (!space_info) {
4567 printk(KERN_ERR "No space info for %d\n", data);
4568 return -ENOSPC;
4569 }
4570
4571 if (orig_root->ref_cows || empty_size)
4572 allowed_chunk_alloc = 1;
4573
4574 if (data & BTRFS_BLOCK_GROUP_METADATA) {
4575 last_ptr = &root->fs_info->meta_alloc_cluster;
4576 if (!btrfs_test_opt(root, SSD))
4577 empty_cluster = 64 * 1024;
4578 }
4579
4580 if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
4581 last_ptr = &root->fs_info->data_alloc_cluster;
4582 }
4583
4584 if (last_ptr) {
4585 spin_lock(&last_ptr->lock);
4586 if (last_ptr->block_group)
4587 hint_byte = last_ptr->window_start;
4588 spin_unlock(&last_ptr->lock);
4589 }
4590
4591 search_start = max(search_start, first_logical_byte(root, 0));
4592 search_start = max(search_start, hint_byte);
4593
4594 if (!last_ptr)
4595 empty_cluster = 0;
4596
4597 if (search_start == hint_byte) {
4598 ideal_cache:
4599 block_group = btrfs_lookup_block_group(root->fs_info,
4600 search_start);
4601 /*
4602 * we don't want to use the block group if it doesn't match our
4603 * allocation bits, or if its not cached.
4604 *
4605 * However if we are re-searching with an ideal block group
4606 * picked out then we don't care that the block group is cached.
4607 */
4608 if (block_group && block_group_bits(block_group, data) &&
4609 (block_group->cached != BTRFS_CACHE_NO ||
4610 search_start == ideal_cache_offset)) {
4611 down_read(&space_info->groups_sem);
4612 if (list_empty(&block_group->list) ||
4613 block_group->ro) {
4614 /*
4615 * someone is removing this block group,
4616 * we can't jump into the have_block_group
4617 * target because our list pointers are not
4618 * valid
4619 */
4620 btrfs_put_block_group(block_group);
4621 up_read(&space_info->groups_sem);
4622 } else {
4623 index = get_block_group_index(block_group);
4624 goto have_block_group;
4625 }
4626 } else if (block_group) {
4627 btrfs_put_block_group(block_group);
4628 }
4629 }
4630 search:
4631 down_read(&space_info->groups_sem);
4632 list_for_each_entry(block_group, &space_info->block_groups[index],
4633 list) {
4634 u64 offset;
4635 int cached;
4636
4637 btrfs_get_block_group(block_group);
4638 search_start = block_group->key.objectid;
4639
4640 have_block_group:
4641 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4642 u64 free_percent;
4643
4644 free_percent = btrfs_block_group_used(&block_group->item);
4645 free_percent *= 100;
4646 free_percent = div64_u64(free_percent,
4647 block_group->key.offset);
4648 free_percent = 100 - free_percent;
4649 if (free_percent > ideal_cache_percent &&
4650 likely(!block_group->ro)) {
4651 ideal_cache_offset = block_group->key.objectid;
4652 ideal_cache_percent = free_percent;
4653 }
4654
4655 /*
4656 * We only want to start kthread caching if we are at
4657 * the point where we will wait for caching to make
4658 * progress, or if our ideal search is over and we've
4659 * found somebody to start caching.
4660 */
4661 if (loop > LOOP_CACHING_NOWAIT ||
4662 (loop > LOOP_FIND_IDEAL &&
4663 atomic_read(&space_info->caching_threads) < 2)) {
4664 ret = cache_block_group(block_group);
4665 BUG_ON(ret);
4666 }
4667 found_uncached_bg = true;
4668
4669 /*
4670 * If loop is set for cached only, try the next block
4671 * group.
4672 */
4673 if (loop == LOOP_FIND_IDEAL)
4674 goto loop;
4675 }
4676
4677 cached = block_group_cache_done(block_group);
4678 if (unlikely(!cached))
4679 found_uncached_bg = true;
4680
4681 if (unlikely(block_group->ro))
4682 goto loop;
4683
4684 /*
4685 * Ok we want to try and use the cluster allocator, so lets look
4686 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4687 * have tried the cluster allocator plenty of times at this
4688 * point and not have found anything, so we are likely way too
4689 * fragmented for the clustering stuff to find anything, so lets
4690 * just skip it and let the allocator find whatever block it can
4691 * find
4692 */
4693 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
4694 /*
4695 * the refill lock keeps out other
4696 * people trying to start a new cluster
4697 */
4698 spin_lock(&last_ptr->refill_lock);
4699 if (last_ptr->block_group &&
4700 (last_ptr->block_group->ro ||
4701 !block_group_bits(last_ptr->block_group, data))) {
4702 offset = 0;
4703 goto refill_cluster;
4704 }
4705
4706 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
4707 num_bytes, search_start);
4708 if (offset) {
4709 /* we have a block, we're done */
4710 spin_unlock(&last_ptr->refill_lock);
4711 goto checks;
4712 }
4713
4714 spin_lock(&last_ptr->lock);
4715 /*
4716 * whoops, this cluster doesn't actually point to
4717 * this block group. Get a ref on the block
4718 * group is does point to and try again
4719 */
4720 if (!last_ptr_loop && last_ptr->block_group &&
4721 last_ptr->block_group != block_group) {
4722
4723 btrfs_put_block_group(block_group);
4724 block_group = last_ptr->block_group;
4725 btrfs_get_block_group(block_group);
4726 spin_unlock(&last_ptr->lock);
4727 spin_unlock(&last_ptr->refill_lock);
4728
4729 last_ptr_loop = 1;
4730 search_start = block_group->key.objectid;
4731 /*
4732 * we know this block group is properly
4733 * in the list because
4734 * btrfs_remove_block_group, drops the
4735 * cluster before it removes the block
4736 * group from the list
4737 */
4738 goto have_block_group;
4739 }
4740 spin_unlock(&last_ptr->lock);
4741 refill_cluster:
4742 /*
4743 * this cluster didn't work out, free it and
4744 * start over
4745 */
4746 btrfs_return_cluster_to_free_space(NULL, last_ptr);
4747
4748 last_ptr_loop = 0;
4749
4750 /* allocate a cluster in this block group */
4751 ret = btrfs_find_space_cluster(trans, root,
4752 block_group, last_ptr,
4753 offset, num_bytes,
4754 empty_cluster + empty_size);
4755 if (ret == 0) {
4756 /*
4757 * now pull our allocation out of this
4758 * cluster
4759 */
4760 offset = btrfs_alloc_from_cluster(block_group,
4761 last_ptr, num_bytes,
4762 search_start);
4763 if (offset) {
4764 /* we found one, proceed */
4765 spin_unlock(&last_ptr->refill_lock);
4766 goto checks;
4767 }
4768 } else if (!cached && loop > LOOP_CACHING_NOWAIT
4769 && !failed_cluster_refill) {
4770 spin_unlock(&last_ptr->refill_lock);
4771
4772 failed_cluster_refill = true;
4773 wait_block_group_cache_progress(block_group,
4774 num_bytes + empty_cluster + empty_size);
4775 goto have_block_group;
4776 }
4777
4778 /*
4779 * at this point we either didn't find a cluster
4780 * or we weren't able to allocate a block from our
4781 * cluster. Free the cluster we've been trying
4782 * to use, and go to the next block group
4783 */
4784 btrfs_return_cluster_to_free_space(NULL, last_ptr);
4785 spin_unlock(&last_ptr->refill_lock);
4786 goto loop;
4787 }
4788
4789 offset = btrfs_find_space_for_alloc(block_group, search_start,
4790 num_bytes, empty_size);
4791 /*
4792 * If we didn't find a chunk, and we haven't failed on this
4793 * block group before, and this block group is in the middle of
4794 * caching and we are ok with waiting, then go ahead and wait
4795 * for progress to be made, and set failed_alloc to true.
4796 *
4797 * If failed_alloc is true then we've already waited on this
4798 * block group once and should move on to the next block group.
4799 */
4800 if (!offset && !failed_alloc && !cached &&
4801 loop > LOOP_CACHING_NOWAIT) {
4802 wait_block_group_cache_progress(block_group,
4803 num_bytes + empty_size);
4804 failed_alloc = true;
4805 goto have_block_group;
4806 } else if (!offset) {
4807 goto loop;
4808 }
4809 checks:
4810 search_start = stripe_align(root, offset);
4811 /* move on to the next group */
4812 if (search_start + num_bytes >= search_end) {
4813 btrfs_add_free_space(block_group, offset, num_bytes);
4814 goto loop;
4815 }
4816
4817 /* move on to the next group */
4818 if (search_start + num_bytes >
4819 block_group->key.objectid + block_group->key.offset) {
4820 btrfs_add_free_space(block_group, offset, num_bytes);
4821 goto loop;
4822 }
4823
4824 ins->objectid = search_start;
4825 ins->offset = num_bytes;
4826
4827 if (offset < search_start)
4828 btrfs_add_free_space(block_group, offset,
4829 search_start - offset);
4830 BUG_ON(offset > search_start);
4831
4832 ret = update_reserved_bytes(block_group, num_bytes, 1,
4833 (data & BTRFS_BLOCK_GROUP_DATA));
4834 if (ret == -EAGAIN) {
4835 btrfs_add_free_space(block_group, offset, num_bytes);
4836 goto loop;
4837 }
4838
4839 /* we are all good, lets return */
4840 ins->objectid = search_start;
4841 ins->offset = num_bytes;
4842
4843 if (offset < search_start)
4844 btrfs_add_free_space(block_group, offset,
4845 search_start - offset);
4846 BUG_ON(offset > search_start);
4847 break;
4848 loop:
4849 failed_cluster_refill = false;
4850 failed_alloc = false;
4851 BUG_ON(index != get_block_group_index(block_group));
4852 btrfs_put_block_group(block_group);
4853 }
4854 up_read(&space_info->groups_sem);
4855
4856 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
4857 goto search;
4858
4859 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
4860 * for them to make caching progress. Also
4861 * determine the best possible bg to cache
4862 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4863 * caching kthreads as we move along
4864 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4865 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4866 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4867 * again
4868 */
4869 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
4870 (found_uncached_bg || empty_size || empty_cluster ||
4871 allowed_chunk_alloc)) {
4872 index = 0;
4873 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
4874 found_uncached_bg = false;
4875 loop++;
4876 if (!ideal_cache_percent &&
4877 atomic_read(&space_info->caching_threads))
4878 goto search;
4879
4880 /*
4881 * 1 of the following 2 things have happened so far
4882 *
4883 * 1) We found an ideal block group for caching that
4884 * is mostly full and will cache quickly, so we might
4885 * as well wait for it.
4886 *
4887 * 2) We searched for cached only and we didn't find
4888 * anything, and we didn't start any caching kthreads
4889 * either, so chances are we will loop through and
4890 * start a couple caching kthreads, and then come back
4891 * around and just wait for them. This will be slower
4892 * because we will have 2 caching kthreads reading at
4893 * the same time when we could have just started one
4894 * and waited for it to get far enough to give us an
4895 * allocation, so go ahead and go to the wait caching
4896 * loop.
4897 */
4898 loop = LOOP_CACHING_WAIT;
4899 search_start = ideal_cache_offset;
4900 ideal_cache_percent = 0;
4901 goto ideal_cache;
4902 } else if (loop == LOOP_FIND_IDEAL) {
4903 /*
4904 * Didn't find a uncached bg, wait on anything we find
4905 * next.
4906 */
4907 loop = LOOP_CACHING_WAIT;
4908 goto search;
4909 }
4910
4911 if (loop < LOOP_CACHING_WAIT) {
4912 loop++;
4913 goto search;
4914 }
4915
4916 if (loop == LOOP_ALLOC_CHUNK) {
4917 empty_size = 0;
4918 empty_cluster = 0;
4919 }
4920
4921 if (allowed_chunk_alloc) {
4922 ret = do_chunk_alloc(trans, root, num_bytes +
4923 2 * 1024 * 1024, data, 1);
4924 allowed_chunk_alloc = 0;
4925 done_chunk_alloc = 1;
4926 } else if (!done_chunk_alloc) {
4927 space_info->force_alloc = 1;
4928 }
4929
4930 if (loop < LOOP_NO_EMPTY_SIZE) {
4931 loop++;
4932 goto search;
4933 }
4934 ret = -ENOSPC;
4935 } else if (!ins->objectid) {
4936 ret = -ENOSPC;
4937 }
4938
4939 /* we found what we needed */
4940 if (ins->objectid) {
4941 if (!(data & BTRFS_BLOCK_GROUP_DATA))
4942 trans->block_group = block_group->key.objectid;
4943
4944 btrfs_put_block_group(block_group);
4945 ret = 0;
4946 }
4947
4948 return ret;
4949 }
4950
4951 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
4952 int dump_block_groups)
4953 {
4954 struct btrfs_block_group_cache *cache;
4955 int index = 0;
4956
4957 spin_lock(&info->lock);
4958 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
4959 (unsigned long long)(info->total_bytes - info->bytes_used -
4960 info->bytes_pinned - info->bytes_reserved -
4961 info->bytes_readonly),
4962 (info->full) ? "" : "not ");
4963 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
4964 "reserved=%llu, may_use=%llu, readonly=%llu\n",
4965 (unsigned long long)info->total_bytes,
4966 (unsigned long long)info->bytes_used,
4967 (unsigned long long)info->bytes_pinned,
4968 (unsigned long long)info->bytes_reserved,
4969 (unsigned long long)info->bytes_may_use,
4970 (unsigned long long)info->bytes_readonly);
4971 spin_unlock(&info->lock);
4972
4973 if (!dump_block_groups)
4974 return;
4975
4976 down_read(&info->groups_sem);
4977 again:
4978 list_for_each_entry(cache, &info->block_groups[index], list) {
4979 spin_lock(&cache->lock);
4980 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
4981 "%llu pinned %llu reserved\n",
4982 (unsigned long long)cache->key.objectid,
4983 (unsigned long long)cache->key.offset,
4984 (unsigned long long)btrfs_block_group_used(&cache->item),
4985 (unsigned long long)cache->pinned,
4986 (unsigned long long)cache->reserved);
4987 btrfs_dump_free_space(cache, bytes);
4988 spin_unlock(&cache->lock);
4989 }
4990 if (++index < BTRFS_NR_RAID_TYPES)
4991 goto again;
4992 up_read(&info->groups_sem);
4993 }
4994
4995 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
4996 struct btrfs_root *root,
4997 u64 num_bytes, u64 min_alloc_size,
4998 u64 empty_size, u64 hint_byte,
4999 u64 search_end, struct btrfs_key *ins,
5000 u64 data)
5001 {
5002 int ret;
5003 u64 search_start = 0;
5004
5005 data = btrfs_get_alloc_profile(root, data);
5006 again:
5007 /*
5008 * the only place that sets empty_size is btrfs_realloc_node, which
5009 * is not called recursively on allocations
5010 */
5011 if (empty_size || root->ref_cows)
5012 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5013 num_bytes + 2 * 1024 * 1024, data, 0);
5014
5015 WARN_ON(num_bytes < root->sectorsize);
5016 ret = find_free_extent(trans, root, num_bytes, empty_size,
5017 search_start, search_end, hint_byte,
5018 ins, data);
5019
5020 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5021 num_bytes = num_bytes >> 1;
5022 num_bytes = num_bytes & ~(root->sectorsize - 1);
5023 num_bytes = max(num_bytes, min_alloc_size);
5024 do_chunk_alloc(trans, root->fs_info->extent_root,
5025 num_bytes, data, 1);
5026 goto again;
5027 }
5028 if (ret == -ENOSPC) {
5029 struct btrfs_space_info *sinfo;
5030
5031 sinfo = __find_space_info(root->fs_info, data);
5032 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5033 "wanted %llu\n", (unsigned long long)data,
5034 (unsigned long long)num_bytes);
5035 dump_space_info(sinfo, num_bytes, 1);
5036 }
5037
5038 return ret;
5039 }
5040
5041 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5042 {
5043 struct btrfs_block_group_cache *cache;
5044 int ret = 0;
5045
5046 cache = btrfs_lookup_block_group(root->fs_info, start);
5047 if (!cache) {
5048 printk(KERN_ERR "Unable to find block group for %llu\n",
5049 (unsigned long long)start);
5050 return -ENOSPC;
5051 }
5052
5053 ret = btrfs_discard_extent(root, start, len);
5054
5055 btrfs_add_free_space(cache, start, len);
5056 update_reserved_bytes(cache, len, 0, 1);
5057 btrfs_put_block_group(cache);
5058
5059 return ret;
5060 }
5061
5062 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5063 struct btrfs_root *root,
5064 u64 parent, u64 root_objectid,
5065 u64 flags, u64 owner, u64 offset,
5066 struct btrfs_key *ins, int ref_mod)
5067 {
5068 int ret;
5069 struct btrfs_fs_info *fs_info = root->fs_info;
5070 struct btrfs_extent_item *extent_item;
5071 struct btrfs_extent_inline_ref *iref;
5072 struct btrfs_path *path;
5073 struct extent_buffer *leaf;
5074 int type;
5075 u32 size;
5076
5077 if (parent > 0)
5078 type = BTRFS_SHARED_DATA_REF_KEY;
5079 else
5080 type = BTRFS_EXTENT_DATA_REF_KEY;
5081
5082 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5083
5084 path = btrfs_alloc_path();
5085 BUG_ON(!path);
5086
5087 path->leave_spinning = 1;
5088 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5089 ins, size);
5090 BUG_ON(ret);
5091
5092 leaf = path->nodes[0];
5093 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5094 struct btrfs_extent_item);
5095 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5096 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5097 btrfs_set_extent_flags(leaf, extent_item,
5098 flags | BTRFS_EXTENT_FLAG_DATA);
5099
5100 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5101 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5102 if (parent > 0) {
5103 struct btrfs_shared_data_ref *ref;
5104 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5105 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5106 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5107 } else {
5108 struct btrfs_extent_data_ref *ref;
5109 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5110 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5111 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5112 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5113 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5114 }
5115
5116 btrfs_mark_buffer_dirty(path->nodes[0]);
5117 btrfs_free_path(path);
5118
5119 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5120 if (ret) {
5121 printk(KERN_ERR "btrfs update block group failed for %llu "
5122 "%llu\n", (unsigned long long)ins->objectid,
5123 (unsigned long long)ins->offset);
5124 BUG();
5125 }
5126 return ret;
5127 }
5128
5129 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5130 struct btrfs_root *root,
5131 u64 parent, u64 root_objectid,
5132 u64 flags, struct btrfs_disk_key *key,
5133 int level, struct btrfs_key *ins)
5134 {
5135 int ret;
5136 struct btrfs_fs_info *fs_info = root->fs_info;
5137 struct btrfs_extent_item *extent_item;
5138 struct btrfs_tree_block_info *block_info;
5139 struct btrfs_extent_inline_ref *iref;
5140 struct btrfs_path *path;
5141 struct extent_buffer *leaf;
5142 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5143
5144 path = btrfs_alloc_path();
5145 BUG_ON(!path);
5146
5147 path->leave_spinning = 1;
5148 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5149 ins, size);
5150 BUG_ON(ret);
5151
5152 leaf = path->nodes[0];
5153 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5154 struct btrfs_extent_item);
5155 btrfs_set_extent_refs(leaf, extent_item, 1);
5156 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5157 btrfs_set_extent_flags(leaf, extent_item,
5158 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5159 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5160
5161 btrfs_set_tree_block_key(leaf, block_info, key);
5162 btrfs_set_tree_block_level(leaf, block_info, level);
5163
5164 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5165 if (parent > 0) {
5166 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5167 btrfs_set_extent_inline_ref_type(leaf, iref,
5168 BTRFS_SHARED_BLOCK_REF_KEY);
5169 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5170 } else {
5171 btrfs_set_extent_inline_ref_type(leaf, iref,
5172 BTRFS_TREE_BLOCK_REF_KEY);
5173 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5174 }
5175
5176 btrfs_mark_buffer_dirty(leaf);
5177 btrfs_free_path(path);
5178
5179 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5180 if (ret) {
5181 printk(KERN_ERR "btrfs update block group failed for %llu "
5182 "%llu\n", (unsigned long long)ins->objectid,
5183 (unsigned long long)ins->offset);
5184 BUG();
5185 }
5186 return ret;
5187 }
5188
5189 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5190 struct btrfs_root *root,
5191 u64 root_objectid, u64 owner,
5192 u64 offset, struct btrfs_key *ins)
5193 {
5194 int ret;
5195
5196 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5197
5198 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5199 0, root_objectid, owner, offset,
5200 BTRFS_ADD_DELAYED_EXTENT, NULL);
5201 return ret;
5202 }
5203
5204 /*
5205 * this is used by the tree logging recovery code. It records that
5206 * an extent has been allocated and makes sure to clear the free
5207 * space cache bits as well
5208 */
5209 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5210 struct btrfs_root *root,
5211 u64 root_objectid, u64 owner, u64 offset,
5212 struct btrfs_key *ins)
5213 {
5214 int ret;
5215 struct btrfs_block_group_cache *block_group;
5216 struct btrfs_caching_control *caching_ctl;
5217 u64 start = ins->objectid;
5218 u64 num_bytes = ins->offset;
5219
5220 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5221 cache_block_group(block_group);
5222 caching_ctl = get_caching_control(block_group);
5223
5224 if (!caching_ctl) {
5225 BUG_ON(!block_group_cache_done(block_group));
5226 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5227 BUG_ON(ret);
5228 } else {
5229 mutex_lock(&caching_ctl->mutex);
5230
5231 if (start >= caching_ctl->progress) {
5232 ret = add_excluded_extent(root, start, num_bytes);
5233 BUG_ON(ret);
5234 } else if (start + num_bytes <= caching_ctl->progress) {
5235 ret = btrfs_remove_free_space(block_group,
5236 start, num_bytes);
5237 BUG_ON(ret);
5238 } else {
5239 num_bytes = caching_ctl->progress - start;
5240 ret = btrfs_remove_free_space(block_group,
5241 start, num_bytes);
5242 BUG_ON(ret);
5243
5244 start = caching_ctl->progress;
5245 num_bytes = ins->objectid + ins->offset -
5246 caching_ctl->progress;
5247 ret = add_excluded_extent(root, start, num_bytes);
5248 BUG_ON(ret);
5249 }
5250
5251 mutex_unlock(&caching_ctl->mutex);
5252 put_caching_control(caching_ctl);
5253 }
5254
5255 ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
5256 BUG_ON(ret);
5257 btrfs_put_block_group(block_group);
5258 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5259 0, owner, offset, ins, 1);
5260 return ret;
5261 }
5262
5263 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5264 struct btrfs_root *root,
5265 u64 bytenr, u32 blocksize,
5266 int level)
5267 {
5268 struct extent_buffer *buf;
5269
5270 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5271 if (!buf)
5272 return ERR_PTR(-ENOMEM);
5273 btrfs_set_header_generation(buf, trans->transid);
5274 btrfs_set_buffer_lockdep_class(buf, level);
5275 btrfs_tree_lock(buf);
5276 clean_tree_block(trans, root, buf);
5277
5278 btrfs_set_lock_blocking(buf);
5279 btrfs_set_buffer_uptodate(buf);
5280
5281 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5282 /*
5283 * we allow two log transactions at a time, use different
5284 * EXENT bit to differentiate dirty pages.
5285 */
5286 if (root->log_transid % 2 == 0)
5287 set_extent_dirty(&root->dirty_log_pages, buf->start,
5288 buf->start + buf->len - 1, GFP_NOFS);
5289 else
5290 set_extent_new(&root->dirty_log_pages, buf->start,
5291 buf->start + buf->len - 1, GFP_NOFS);
5292 } else {
5293 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5294 buf->start + buf->len - 1, GFP_NOFS);
5295 }
5296 trans->blocks_used++;
5297 /* this returns a buffer locked for blocking */
5298 return buf;
5299 }
5300
5301 static struct btrfs_block_rsv *
5302 use_block_rsv(struct btrfs_trans_handle *trans,
5303 struct btrfs_root *root, u32 blocksize)
5304 {
5305 struct btrfs_block_rsv *block_rsv;
5306 int ret;
5307
5308 block_rsv = get_block_rsv(trans, root);
5309
5310 if (block_rsv->size == 0) {
5311 ret = reserve_metadata_bytes(block_rsv, blocksize);
5312 if (ret)
5313 return ERR_PTR(ret);
5314 return block_rsv;
5315 }
5316
5317 ret = block_rsv_use_bytes(block_rsv, blocksize);
5318 if (!ret)
5319 return block_rsv;
5320
5321 WARN_ON(1);
5322 printk(KERN_INFO"block_rsv size %llu reserved %llu freed %llu %llu\n",
5323 block_rsv->size, block_rsv->reserved,
5324 block_rsv->freed[0], block_rsv->freed[1]);
5325
5326 return ERR_PTR(-ENOSPC);
5327 }
5328
5329 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5330 {
5331 block_rsv_add_bytes(block_rsv, blocksize, 0);
5332 block_rsv_release_bytes(block_rsv, NULL, 0);
5333 }
5334
5335 /*
5336 * finds a free extent and does all the dirty work required for allocation
5337 * returns the key for the extent through ins, and a tree buffer for
5338 * the first block of the extent through buf.
5339 *
5340 * returns the tree buffer or NULL.
5341 */
5342 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5343 struct btrfs_root *root, u32 blocksize,
5344 u64 parent, u64 root_objectid,
5345 struct btrfs_disk_key *key, int level,
5346 u64 hint, u64 empty_size)
5347 {
5348 struct btrfs_key ins;
5349 struct btrfs_block_rsv *block_rsv;
5350 struct extent_buffer *buf;
5351 u64 flags = 0;
5352 int ret;
5353
5354
5355 block_rsv = use_block_rsv(trans, root, blocksize);
5356 if (IS_ERR(block_rsv))
5357 return ERR_CAST(block_rsv);
5358
5359 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5360 empty_size, hint, (u64)-1, &ins, 0);
5361 if (ret) {
5362 unuse_block_rsv(block_rsv, blocksize);
5363 return ERR_PTR(ret);
5364 }
5365
5366 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5367 blocksize, level);
5368 BUG_ON(IS_ERR(buf));
5369
5370 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5371 if (parent == 0)
5372 parent = ins.objectid;
5373 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5374 } else
5375 BUG_ON(parent > 0);
5376
5377 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5378 struct btrfs_delayed_extent_op *extent_op;
5379 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5380 BUG_ON(!extent_op);
5381 if (key)
5382 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5383 else
5384 memset(&extent_op->key, 0, sizeof(extent_op->key));
5385 extent_op->flags_to_set = flags;
5386 extent_op->update_key = 1;
5387 extent_op->update_flags = 1;
5388 extent_op->is_data = 0;
5389
5390 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5391 ins.offset, parent, root_objectid,
5392 level, BTRFS_ADD_DELAYED_EXTENT,
5393 extent_op);
5394 BUG_ON(ret);
5395 }
5396 return buf;
5397 }
5398
5399 struct walk_control {
5400 u64 refs[BTRFS_MAX_LEVEL];
5401 u64 flags[BTRFS_MAX_LEVEL];
5402 struct btrfs_key update_progress;
5403 int stage;
5404 int level;
5405 int shared_level;
5406 int update_ref;
5407 int keep_locks;
5408 int reada_slot;
5409 int reada_count;
5410 };
5411
5412 #define DROP_REFERENCE 1
5413 #define UPDATE_BACKREF 2
5414
5415 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5416 struct btrfs_root *root,
5417 struct walk_control *wc,
5418 struct btrfs_path *path)
5419 {
5420 u64 bytenr;
5421 u64 generation;
5422 u64 refs;
5423 u64 flags;
5424 u64 last = 0;
5425 u32 nritems;
5426 u32 blocksize;
5427 struct btrfs_key key;
5428 struct extent_buffer *eb;
5429 int ret;
5430 int slot;
5431 int nread = 0;
5432
5433 if (path->slots[wc->level] < wc->reada_slot) {
5434 wc->reada_count = wc->reada_count * 2 / 3;
5435 wc->reada_count = max(wc->reada_count, 2);
5436 } else {
5437 wc->reada_count = wc->reada_count * 3 / 2;
5438 wc->reada_count = min_t(int, wc->reada_count,
5439 BTRFS_NODEPTRS_PER_BLOCK(root));
5440 }
5441
5442 eb = path->nodes[wc->level];
5443 nritems = btrfs_header_nritems(eb);
5444 blocksize = btrfs_level_size(root, wc->level - 1);
5445
5446 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5447 if (nread >= wc->reada_count)
5448 break;
5449
5450 cond_resched();
5451 bytenr = btrfs_node_blockptr(eb, slot);
5452 generation = btrfs_node_ptr_generation(eb, slot);
5453
5454 if (slot == path->slots[wc->level])
5455 goto reada;
5456
5457 if (wc->stage == UPDATE_BACKREF &&
5458 generation <= root->root_key.offset)
5459 continue;
5460
5461 /* We don't lock the tree block, it's OK to be racy here */
5462 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5463 &refs, &flags);
5464 BUG_ON(ret);
5465 BUG_ON(refs == 0);
5466
5467 if (wc->stage == DROP_REFERENCE) {
5468 if (refs == 1)
5469 goto reada;
5470
5471 if (wc->level == 1 &&
5472 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5473 continue;
5474 if (!wc->update_ref ||
5475 generation <= root->root_key.offset)
5476 continue;
5477 btrfs_node_key_to_cpu(eb, &key, slot);
5478 ret = btrfs_comp_cpu_keys(&key,
5479 &wc->update_progress);
5480 if (ret < 0)
5481 continue;
5482 } else {
5483 if (wc->level == 1 &&
5484 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5485 continue;
5486 }
5487 reada:
5488 ret = readahead_tree_block(root, bytenr, blocksize,
5489 generation);
5490 if (ret)
5491 break;
5492 last = bytenr + blocksize;
5493 nread++;
5494 }
5495 wc->reada_slot = slot;
5496 }
5497
5498 /*
5499 * hepler to process tree block while walking down the tree.
5500 *
5501 * when wc->stage == UPDATE_BACKREF, this function updates
5502 * back refs for pointers in the block.
5503 *
5504 * NOTE: return value 1 means we should stop walking down.
5505 */
5506 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5507 struct btrfs_root *root,
5508 struct btrfs_path *path,
5509 struct walk_control *wc, int lookup_info)
5510 {
5511 int level = wc->level;
5512 struct extent_buffer *eb = path->nodes[level];
5513 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5514 int ret;
5515
5516 if (wc->stage == UPDATE_BACKREF &&
5517 btrfs_header_owner(eb) != root->root_key.objectid)
5518 return 1;
5519
5520 /*
5521 * when reference count of tree block is 1, it won't increase
5522 * again. once full backref flag is set, we never clear it.
5523 */
5524 if (lookup_info &&
5525 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5526 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5527 BUG_ON(!path->locks[level]);
5528 ret = btrfs_lookup_extent_info(trans, root,
5529 eb->start, eb->len,
5530 &wc->refs[level],
5531 &wc->flags[level]);
5532 BUG_ON(ret);
5533 BUG_ON(wc->refs[level] == 0);
5534 }
5535
5536 if (wc->stage == DROP_REFERENCE) {
5537 if (wc->refs[level] > 1)
5538 return 1;
5539
5540 if (path->locks[level] && !wc->keep_locks) {
5541 btrfs_tree_unlock(eb);
5542 path->locks[level] = 0;
5543 }
5544 return 0;
5545 }
5546
5547 /* wc->stage == UPDATE_BACKREF */
5548 if (!(wc->flags[level] & flag)) {
5549 BUG_ON(!path->locks[level]);
5550 ret = btrfs_inc_ref(trans, root, eb, 1);
5551 BUG_ON(ret);
5552 ret = btrfs_dec_ref(trans, root, eb, 0);
5553 BUG_ON(ret);
5554 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5555 eb->len, flag, 0);
5556 BUG_ON(ret);
5557 wc->flags[level] |= flag;
5558 }
5559
5560 /*
5561 * the block is shared by multiple trees, so it's not good to
5562 * keep the tree lock
5563 */
5564 if (path->locks[level] && level > 0) {
5565 btrfs_tree_unlock(eb);
5566 path->locks[level] = 0;
5567 }
5568 return 0;
5569 }
5570
5571 /*
5572 * hepler to process tree block pointer.
5573 *
5574 * when wc->stage == DROP_REFERENCE, this function checks
5575 * reference count of the block pointed to. if the block
5576 * is shared and we need update back refs for the subtree
5577 * rooted at the block, this function changes wc->stage to
5578 * UPDATE_BACKREF. if the block is shared and there is no
5579 * need to update back, this function drops the reference
5580 * to the block.
5581 *
5582 * NOTE: return value 1 means we should stop walking down.
5583 */
5584 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5585 struct btrfs_root *root,
5586 struct btrfs_path *path,
5587 struct walk_control *wc, int *lookup_info)
5588 {
5589 u64 bytenr;
5590 u64 generation;
5591 u64 parent;
5592 u32 blocksize;
5593 struct btrfs_key key;
5594 struct extent_buffer *next;
5595 int level = wc->level;
5596 int reada = 0;
5597 int ret = 0;
5598
5599 generation = btrfs_node_ptr_generation(path->nodes[level],
5600 path->slots[level]);
5601 /*
5602 * if the lower level block was created before the snapshot
5603 * was created, we know there is no need to update back refs
5604 * for the subtree
5605 */
5606 if (wc->stage == UPDATE_BACKREF &&
5607 generation <= root->root_key.offset) {
5608 *lookup_info = 1;
5609 return 1;
5610 }
5611
5612 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5613 blocksize = btrfs_level_size(root, level - 1);
5614
5615 next = btrfs_find_tree_block(root, bytenr, blocksize);
5616 if (!next) {
5617 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5618 if (!next)
5619 return -ENOMEM;
5620 reada = 1;
5621 }
5622 btrfs_tree_lock(next);
5623 btrfs_set_lock_blocking(next);
5624
5625 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5626 &wc->refs[level - 1],
5627 &wc->flags[level - 1]);
5628 BUG_ON(ret);
5629 BUG_ON(wc->refs[level - 1] == 0);
5630 *lookup_info = 0;
5631
5632 if (wc->stage == DROP_REFERENCE) {
5633 if (wc->refs[level - 1] > 1) {
5634 if (level == 1 &&
5635 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5636 goto skip;
5637
5638 if (!wc->update_ref ||
5639 generation <= root->root_key.offset)
5640 goto skip;
5641
5642 btrfs_node_key_to_cpu(path->nodes[level], &key,
5643 path->slots[level]);
5644 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5645 if (ret < 0)
5646 goto skip;
5647
5648 wc->stage = UPDATE_BACKREF;
5649 wc->shared_level = level - 1;
5650 }
5651 } else {
5652 if (level == 1 &&
5653 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5654 goto skip;
5655 }
5656
5657 if (!btrfs_buffer_uptodate(next, generation)) {
5658 btrfs_tree_unlock(next);
5659 free_extent_buffer(next);
5660 next = NULL;
5661 *lookup_info = 1;
5662 }
5663
5664 if (!next) {
5665 if (reada && level == 1)
5666 reada_walk_down(trans, root, wc, path);
5667 next = read_tree_block(root, bytenr, blocksize, generation);
5668 btrfs_tree_lock(next);
5669 btrfs_set_lock_blocking(next);
5670 }
5671
5672 level--;
5673 BUG_ON(level != btrfs_header_level(next));
5674 path->nodes[level] = next;
5675 path->slots[level] = 0;
5676 path->locks[level] = 1;
5677 wc->level = level;
5678 if (wc->level == 1)
5679 wc->reada_slot = 0;
5680 return 0;
5681 skip:
5682 wc->refs[level - 1] = 0;
5683 wc->flags[level - 1] = 0;
5684 if (wc->stage == DROP_REFERENCE) {
5685 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5686 parent = path->nodes[level]->start;
5687 } else {
5688 BUG_ON(root->root_key.objectid !=
5689 btrfs_header_owner(path->nodes[level]));
5690 parent = 0;
5691 }
5692
5693 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
5694 root->root_key.objectid, level - 1, 0);
5695 BUG_ON(ret);
5696 }
5697 btrfs_tree_unlock(next);
5698 free_extent_buffer(next);
5699 *lookup_info = 1;
5700 return 1;
5701 }
5702
5703 /*
5704 * hepler to process tree block while walking up the tree.
5705 *
5706 * when wc->stage == DROP_REFERENCE, this function drops
5707 * reference count on the block.
5708 *
5709 * when wc->stage == UPDATE_BACKREF, this function changes
5710 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5711 * to UPDATE_BACKREF previously while processing the block.
5712 *
5713 * NOTE: return value 1 means we should stop walking up.
5714 */
5715 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5716 struct btrfs_root *root,
5717 struct btrfs_path *path,
5718 struct walk_control *wc)
5719 {
5720 int ret;
5721 int level = wc->level;
5722 struct extent_buffer *eb = path->nodes[level];
5723 u64 parent = 0;
5724
5725 if (wc->stage == UPDATE_BACKREF) {
5726 BUG_ON(wc->shared_level < level);
5727 if (level < wc->shared_level)
5728 goto out;
5729
5730 ret = find_next_key(path, level + 1, &wc->update_progress);
5731 if (ret > 0)
5732 wc->update_ref = 0;
5733
5734 wc->stage = DROP_REFERENCE;
5735 wc->shared_level = -1;
5736 path->slots[level] = 0;
5737
5738 /*
5739 * check reference count again if the block isn't locked.
5740 * we should start walking down the tree again if reference
5741 * count is one.
5742 */
5743 if (!path->locks[level]) {
5744 BUG_ON(level == 0);
5745 btrfs_tree_lock(eb);
5746 btrfs_set_lock_blocking(eb);
5747 path->locks[level] = 1;
5748
5749 ret = btrfs_lookup_extent_info(trans, root,
5750 eb->start, eb->len,
5751 &wc->refs[level],
5752 &wc->flags[level]);
5753 BUG_ON(ret);
5754 BUG_ON(wc->refs[level] == 0);
5755 if (wc->refs[level] == 1) {
5756 btrfs_tree_unlock(eb);
5757 path->locks[level] = 0;
5758 return 1;
5759 }
5760 }
5761 }
5762
5763 /* wc->stage == DROP_REFERENCE */
5764 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5765
5766 if (wc->refs[level] == 1) {
5767 if (level == 0) {
5768 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5769 ret = btrfs_dec_ref(trans, root, eb, 1);
5770 else
5771 ret = btrfs_dec_ref(trans, root, eb, 0);
5772 BUG_ON(ret);
5773 }
5774 /* make block locked assertion in clean_tree_block happy */
5775 if (!path->locks[level] &&
5776 btrfs_header_generation(eb) == trans->transid) {
5777 btrfs_tree_lock(eb);
5778 btrfs_set_lock_blocking(eb);
5779 path->locks[level] = 1;
5780 }
5781 clean_tree_block(trans, root, eb);
5782 }
5783
5784 if (eb == root->node) {
5785 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5786 parent = eb->start;
5787 else
5788 BUG_ON(root->root_key.objectid !=
5789 btrfs_header_owner(eb));
5790 } else {
5791 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5792 parent = path->nodes[level + 1]->start;
5793 else
5794 BUG_ON(root->root_key.objectid !=
5795 btrfs_header_owner(path->nodes[level + 1]));
5796 }
5797
5798 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5799 out:
5800 wc->refs[level] = 0;
5801 wc->flags[level] = 0;
5802 return 0;
5803 }
5804
5805 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5806 struct btrfs_root *root,
5807 struct btrfs_path *path,
5808 struct walk_control *wc)
5809 {
5810 int level = wc->level;
5811 int lookup_info = 1;
5812 int ret;
5813
5814 while (level >= 0) {
5815 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5816 if (ret > 0)
5817 break;
5818
5819 if (level == 0)
5820 break;
5821
5822 if (path->slots[level] >=
5823 btrfs_header_nritems(path->nodes[level]))
5824 break;
5825
5826 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5827 if (ret > 0) {
5828 path->slots[level]++;
5829 continue;
5830 } else if (ret < 0)
5831 return ret;
5832 level = wc->level;
5833 }
5834 return 0;
5835 }
5836
5837 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5838 struct btrfs_root *root,
5839 struct btrfs_path *path,
5840 struct walk_control *wc, int max_level)
5841 {
5842 int level = wc->level;
5843 int ret;
5844
5845 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5846 while (level < max_level && path->nodes[level]) {
5847 wc->level = level;
5848 if (path->slots[level] + 1 <
5849 btrfs_header_nritems(path->nodes[level])) {
5850 path->slots[level]++;
5851 return 0;
5852 } else {
5853 ret = walk_up_proc(trans, root, path, wc);
5854 if (ret > 0)
5855 return 0;
5856
5857 if (path->locks[level]) {
5858 btrfs_tree_unlock(path->nodes[level]);
5859 path->locks[level] = 0;
5860 }
5861 free_extent_buffer(path->nodes[level]);
5862 path->nodes[level] = NULL;
5863 level++;
5864 }
5865 }
5866 return 1;
5867 }
5868
5869 /*
5870 * drop a subvolume tree.
5871 *
5872 * this function traverses the tree freeing any blocks that only
5873 * referenced by the tree.
5874 *
5875 * when a shared tree block is found. this function decreases its
5876 * reference count by one. if update_ref is true, this function
5877 * also make sure backrefs for the shared block and all lower level
5878 * blocks are properly updated.
5879 */
5880 int btrfs_drop_snapshot(struct btrfs_root *root,
5881 struct btrfs_block_rsv *block_rsv, int update_ref)
5882 {
5883 struct btrfs_path *path;
5884 struct btrfs_trans_handle *trans;
5885 struct btrfs_root *tree_root = root->fs_info->tree_root;
5886 struct btrfs_root_item *root_item = &root->root_item;
5887 struct walk_control *wc;
5888 struct btrfs_key key;
5889 int err = 0;
5890 int ret;
5891 int level;
5892
5893 path = btrfs_alloc_path();
5894 BUG_ON(!path);
5895
5896 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5897 BUG_ON(!wc);
5898
5899 trans = btrfs_start_transaction(tree_root, 0);
5900 if (block_rsv)
5901 trans->block_rsv = block_rsv;
5902
5903 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5904 level = btrfs_header_level(root->node);
5905 path->nodes[level] = btrfs_lock_root_node(root);
5906 btrfs_set_lock_blocking(path->nodes[level]);
5907 path->slots[level] = 0;
5908 path->locks[level] = 1;
5909 memset(&wc->update_progress, 0,
5910 sizeof(wc->update_progress));
5911 } else {
5912 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5913 memcpy(&wc->update_progress, &key,
5914 sizeof(wc->update_progress));
5915
5916 level = root_item->drop_level;
5917 BUG_ON(level == 0);
5918 path->lowest_level = level;
5919 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5920 path->lowest_level = 0;
5921 if (ret < 0) {
5922 err = ret;
5923 goto out;
5924 }
5925 WARN_ON(ret > 0);
5926
5927 /*
5928 * unlock our path, this is safe because only this
5929 * function is allowed to delete this snapshot
5930 */
5931 btrfs_unlock_up_safe(path, 0);
5932
5933 level = btrfs_header_level(root->node);
5934 while (1) {
5935 btrfs_tree_lock(path->nodes[level]);
5936 btrfs_set_lock_blocking(path->nodes[level]);
5937
5938 ret = btrfs_lookup_extent_info(trans, root,
5939 path->nodes[level]->start,
5940 path->nodes[level]->len,
5941 &wc->refs[level],
5942 &wc->flags[level]);
5943 BUG_ON(ret);
5944 BUG_ON(wc->refs[level] == 0);
5945
5946 if (level == root_item->drop_level)
5947 break;
5948
5949 btrfs_tree_unlock(path->nodes[level]);
5950 WARN_ON(wc->refs[level] != 1);
5951 level--;
5952 }
5953 }
5954
5955 wc->level = level;
5956 wc->shared_level = -1;
5957 wc->stage = DROP_REFERENCE;
5958 wc->update_ref = update_ref;
5959 wc->keep_locks = 0;
5960 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5961
5962 while (1) {
5963 ret = walk_down_tree(trans, root, path, wc);
5964 if (ret < 0) {
5965 err = ret;
5966 break;
5967 }
5968
5969 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5970 if (ret < 0) {
5971 err = ret;
5972 break;
5973 }
5974
5975 if (ret > 0) {
5976 BUG_ON(wc->stage != DROP_REFERENCE);
5977 break;
5978 }
5979
5980 if (wc->stage == DROP_REFERENCE) {
5981 level = wc->level;
5982 btrfs_node_key(path->nodes[level],
5983 &root_item->drop_progress,
5984 path->slots[level]);
5985 root_item->drop_level = level;
5986 }
5987
5988 BUG_ON(wc->level == 0);
5989 if (btrfs_should_end_transaction(trans, tree_root)) {
5990 ret = btrfs_update_root(trans, tree_root,
5991 &root->root_key,
5992 root_item);
5993 BUG_ON(ret);
5994
5995 btrfs_end_transaction_throttle(trans, tree_root);
5996 trans = btrfs_start_transaction(tree_root, 0);
5997 if (block_rsv)
5998 trans->block_rsv = block_rsv;
5999 }
6000 }
6001 btrfs_release_path(root, path);
6002 BUG_ON(err);
6003
6004 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6005 BUG_ON(ret);
6006
6007 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6008 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6009 NULL, NULL);
6010 BUG_ON(ret < 0);
6011 if (ret > 0) {
6012 ret = btrfs_del_orphan_item(trans, tree_root,
6013 root->root_key.objectid);
6014 BUG_ON(ret);
6015 }
6016 }
6017
6018 if (root->in_radix) {
6019 btrfs_free_fs_root(tree_root->fs_info, root);
6020 } else {
6021 free_extent_buffer(root->node);
6022 free_extent_buffer(root->commit_root);
6023 kfree(root);
6024 }
6025 out:
6026 btrfs_end_transaction_throttle(trans, tree_root);
6027 kfree(wc);
6028 btrfs_free_path(path);
6029 return err;
6030 }
6031
6032 /*
6033 * drop subtree rooted at tree block 'node'.
6034 *
6035 * NOTE: this function will unlock and release tree block 'node'
6036 */
6037 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6038 struct btrfs_root *root,
6039 struct extent_buffer *node,
6040 struct extent_buffer *parent)
6041 {
6042 struct btrfs_path *path;
6043 struct walk_control *wc;
6044 int level;
6045 int parent_level;
6046 int ret = 0;
6047 int wret;
6048
6049 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6050
6051 path = btrfs_alloc_path();
6052 BUG_ON(!path);
6053
6054 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6055 BUG_ON(!wc);
6056
6057 btrfs_assert_tree_locked(parent);
6058 parent_level = btrfs_header_level(parent);
6059 extent_buffer_get(parent);
6060 path->nodes[parent_level] = parent;
6061 path->slots[parent_level] = btrfs_header_nritems(parent);
6062
6063 btrfs_assert_tree_locked(node);
6064 level = btrfs_header_level(node);
6065 path->nodes[level] = node;
6066 path->slots[level] = 0;
6067 path->locks[level] = 1;
6068
6069 wc->refs[parent_level] = 1;
6070 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6071 wc->level = level;
6072 wc->shared_level = -1;
6073 wc->stage = DROP_REFERENCE;
6074 wc->update_ref = 0;
6075 wc->keep_locks = 1;
6076 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6077
6078 while (1) {
6079 wret = walk_down_tree(trans, root, path, wc);
6080 if (wret < 0) {
6081 ret = wret;
6082 break;
6083 }
6084
6085 wret = walk_up_tree(trans, root, path, wc, parent_level);
6086 if (wret < 0)
6087 ret = wret;
6088 if (wret != 0)
6089 break;
6090 }
6091
6092 kfree(wc);
6093 btrfs_free_path(path);
6094 return ret;
6095 }
6096
6097 #if 0
6098 static unsigned long calc_ra(unsigned long start, unsigned long last,
6099 unsigned long nr)
6100 {
6101 return min(last, start + nr - 1);
6102 }
6103
6104 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
6105 u64 len)
6106 {
6107 u64 page_start;
6108 u64 page_end;
6109 unsigned long first_index;
6110 unsigned long last_index;
6111 unsigned long i;
6112 struct page *page;
6113 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6114 struct file_ra_state *ra;
6115 struct btrfs_ordered_extent *ordered;
6116 unsigned int total_read = 0;
6117 unsigned int total_dirty = 0;
6118 int ret = 0;
6119
6120 ra = kzalloc(sizeof(*ra), GFP_NOFS);
6121
6122 mutex_lock(&inode->i_mutex);
6123 first_index = start >> PAGE_CACHE_SHIFT;
6124 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
6125
6126 /* make sure the dirty trick played by the caller work */
6127 ret = invalidate_inode_pages2_range(inode->i_mapping,
6128 first_index, last_index);
6129 if (ret)
6130 goto out_unlock;
6131
6132 file_ra_state_init(ra, inode->i_mapping);
6133
6134 for (i = first_index ; i <= last_index; i++) {
6135 if (total_read % ra->ra_pages == 0) {
6136 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
6137 calc_ra(i, last_index, ra->ra_pages));
6138 }
6139 total_read++;
6140 again:
6141 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
6142 BUG_ON(1);
6143 page = grab_cache_page(inode->i_mapping, i);
6144 if (!page) {
6145 ret = -ENOMEM;
6146 goto out_unlock;
6147 }
6148 if (!PageUptodate(page)) {
6149 btrfs_readpage(NULL, page);
6150 lock_page(page);
6151 if (!PageUptodate(page)) {
6152 unlock_page(page);
6153 page_cache_release(page);
6154 ret = -EIO;
6155 goto out_unlock;
6156 }
6157 }
6158 wait_on_page_writeback(page);
6159
6160 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
6161 page_end = page_start + PAGE_CACHE_SIZE - 1;
6162 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
6163
6164 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6165 if (ordered) {
6166 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6167 unlock_page(page);
6168 page_cache_release(page);
6169 btrfs_start_ordered_extent(inode, ordered, 1);
6170 btrfs_put_ordered_extent(ordered);
6171 goto again;
6172 }
6173 set_page_extent_mapped(page);
6174
6175 if (i == first_index)
6176 set_extent_bits(io_tree, page_start, page_end,
6177 EXTENT_BOUNDARY, GFP_NOFS);
6178 btrfs_set_extent_delalloc(inode, page_start, page_end);
6179
6180 set_page_dirty(page);
6181 total_dirty++;
6182
6183 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6184 unlock_page(page);
6185 page_cache_release(page);
6186 }
6187
6188 out_unlock:
6189 kfree(ra);
6190 mutex_unlock(&inode->i_mutex);
6191 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
6192 return ret;
6193 }
6194
6195 static noinline int relocate_data_extent(struct inode *reloc_inode,
6196 struct btrfs_key *extent_key,
6197 u64 offset)
6198 {
6199 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6200 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
6201 struct extent_map *em;
6202 u64 start = extent_key->objectid - offset;
6203 u64 end = start + extent_key->offset - 1;
6204
6205 em = alloc_extent_map(GFP_NOFS);
6206 BUG_ON(!em || IS_ERR(em));
6207
6208 em->start = start;
6209 em->len = extent_key->offset;
6210 em->block_len = extent_key->offset;
6211 em->block_start = extent_key->objectid;
6212 em->bdev = root->fs_info->fs_devices->latest_bdev;
6213 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6214
6215 /* setup extent map to cheat btrfs_readpage */
6216 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6217 while (1) {
6218 int ret;
6219 write_lock(&em_tree->lock);
6220 ret = add_extent_mapping(em_tree, em);
6221 write_unlock(&em_tree->lock);
6222 if (ret != -EEXIST) {
6223 free_extent_map(em);
6224 break;
6225 }
6226 btrfs_drop_extent_cache(reloc_inode, start, end, 0);
6227 }
6228 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6229
6230 return relocate_inode_pages(reloc_inode, start, extent_key->offset);
6231 }
6232
6233 struct btrfs_ref_path {
6234 u64 extent_start;
6235 u64 nodes[BTRFS_MAX_LEVEL];
6236 u64 root_objectid;
6237 u64 root_generation;
6238 u64 owner_objectid;
6239 u32 num_refs;
6240 int lowest_level;
6241 int current_level;
6242 int shared_level;
6243
6244 struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
6245 u64 new_nodes[BTRFS_MAX_LEVEL];
6246 };
6247
6248 struct disk_extent {
6249 u64 ram_bytes;
6250 u64 disk_bytenr;
6251 u64 disk_num_bytes;
6252 u64 offset;
6253 u64 num_bytes;
6254 u8 compression;
6255 u8 encryption;
6256 u16 other_encoding;
6257 };
6258
6259 static int is_cowonly_root(u64 root_objectid)
6260 {
6261 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
6262 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
6263 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
6264 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
6265 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6266 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
6267 return 1;
6268 return 0;
6269 }
6270
6271 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
6272 struct btrfs_root *extent_root,
6273 struct btrfs_ref_path *ref_path,
6274 int first_time)
6275 {
6276 struct extent_buffer *leaf;
6277 struct btrfs_path *path;
6278 struct btrfs_extent_ref *ref;
6279 struct btrfs_key key;
6280 struct btrfs_key found_key;
6281 u64 bytenr;
6282 u32 nritems;
6283 int level;
6284 int ret = 1;
6285
6286 path = btrfs_alloc_path();
6287 if (!path)
6288 return -ENOMEM;
6289
6290 if (first_time) {
6291 ref_path->lowest_level = -1;
6292 ref_path->current_level = -1;
6293 ref_path->shared_level = -1;
6294 goto walk_up;
6295 }
6296 walk_down:
6297 level = ref_path->current_level - 1;
6298 while (level >= -1) {
6299 u64 parent;
6300 if (level < ref_path->lowest_level)
6301 break;
6302
6303 if (level >= 0)
6304 bytenr = ref_path->nodes[level];
6305 else
6306 bytenr = ref_path->extent_start;
6307 BUG_ON(bytenr == 0);
6308
6309 parent = ref_path->nodes[level + 1];
6310 ref_path->nodes[level + 1] = 0;
6311 ref_path->current_level = level;
6312 BUG_ON(parent == 0);
6313
6314 key.objectid = bytenr;
6315 key.offset = parent + 1;
6316 key.type = BTRFS_EXTENT_REF_KEY;
6317
6318 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6319 if (ret < 0)
6320 goto out;
6321 BUG_ON(ret == 0);
6322
6323 leaf = path->nodes[0];
6324 nritems = btrfs_header_nritems(leaf);
6325 if (path->slots[0] >= nritems) {
6326 ret = btrfs_next_leaf(extent_root, path);
6327 if (ret < 0)
6328 goto out;
6329 if (ret > 0)
6330 goto next;
6331 leaf = path->nodes[0];
6332 }
6333
6334 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6335 if (found_key.objectid == bytenr &&
6336 found_key.type == BTRFS_EXTENT_REF_KEY) {
6337 if (level < ref_path->shared_level)
6338 ref_path->shared_level = level;
6339 goto found;
6340 }
6341 next:
6342 level--;
6343 btrfs_release_path(extent_root, path);
6344 cond_resched();
6345 }
6346 /* reached lowest level */
6347 ret = 1;
6348 goto out;
6349 walk_up:
6350 level = ref_path->current_level;
6351 while (level < BTRFS_MAX_LEVEL - 1) {
6352 u64 ref_objectid;
6353
6354 if (level >= 0)
6355 bytenr = ref_path->nodes[level];
6356 else
6357 bytenr = ref_path->extent_start;
6358
6359 BUG_ON(bytenr == 0);
6360
6361 key.objectid = bytenr;
6362 key.offset = 0;
6363 key.type = BTRFS_EXTENT_REF_KEY;
6364
6365 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6366 if (ret < 0)
6367 goto out;
6368
6369 leaf = path->nodes[0];
6370 nritems = btrfs_header_nritems(leaf);
6371 if (path->slots[0] >= nritems) {
6372 ret = btrfs_next_leaf(extent_root, path);
6373 if (ret < 0)
6374 goto out;
6375 if (ret > 0) {
6376 /* the extent was freed by someone */
6377 if (ref_path->lowest_level == level)
6378 goto out;
6379 btrfs_release_path(extent_root, path);
6380 goto walk_down;
6381 }
6382 leaf = path->nodes[0];
6383 }
6384
6385 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6386 if (found_key.objectid != bytenr ||
6387 found_key.type != BTRFS_EXTENT_REF_KEY) {
6388 /* the extent was freed by someone */
6389 if (ref_path->lowest_level == level) {
6390 ret = 1;
6391 goto out;
6392 }
6393 btrfs_release_path(extent_root, path);
6394 goto walk_down;
6395 }
6396 found:
6397 ref = btrfs_item_ptr(leaf, path->slots[0],
6398 struct btrfs_extent_ref);
6399 ref_objectid = btrfs_ref_objectid(leaf, ref);
6400 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
6401 if (first_time) {
6402 level = (int)ref_objectid;
6403 BUG_ON(level >= BTRFS_MAX_LEVEL);
6404 ref_path->lowest_level = level;
6405 ref_path->current_level = level;
6406 ref_path->nodes[level] = bytenr;
6407 } else {
6408 WARN_ON(ref_objectid != level);
6409 }
6410 } else {
6411 WARN_ON(level != -1);
6412 }
6413 first_time = 0;
6414
6415 if (ref_path->lowest_level == level) {
6416 ref_path->owner_objectid = ref_objectid;
6417 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6418 }
6419
6420 /*
6421 * the block is tree root or the block isn't in reference
6422 * counted tree.
6423 */
6424 if (found_key.objectid == found_key.offset ||
6425 is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6426 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6427 ref_path->root_generation =
6428 btrfs_ref_generation(leaf, ref);
6429 if (level < 0) {
6430 /* special reference from the tree log */
6431 ref_path->nodes[0] = found_key.offset;
6432 ref_path->current_level = 0;
6433 }
6434 ret = 0;
6435 goto out;
6436 }
6437
6438 level++;
6439 BUG_ON(ref_path->nodes[level] != 0);
6440 ref_path->nodes[level] = found_key.offset;
6441 ref_path->current_level = level;
6442
6443 /*
6444 * the reference was created in the running transaction,
6445 * no need to continue walking up.
6446 */
6447 if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6448 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6449 ref_path->root_generation =
6450 btrfs_ref_generation(leaf, ref);
6451 ret = 0;
6452 goto out;
6453 }
6454
6455 btrfs_release_path(extent_root, path);
6456 cond_resched();
6457 }
6458 /* reached max tree level, but no tree root found. */
6459 BUG();
6460 out:
6461 btrfs_free_path(path);
6462 return ret;
6463 }
6464
6465 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6466 struct btrfs_root *extent_root,
6467 struct btrfs_ref_path *ref_path,
6468 u64 extent_start)
6469 {
6470 memset(ref_path, 0, sizeof(*ref_path));
6471 ref_path->extent_start = extent_start;
6472
6473 return __next_ref_path(trans, extent_root, ref_path, 1);
6474 }
6475
6476 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6477 struct btrfs_root *extent_root,
6478 struct btrfs_ref_path *ref_path)
6479 {
6480 return __next_ref_path(trans, extent_root, ref_path, 0);
6481 }
6482
6483 static noinline int get_new_locations(struct inode *reloc_inode,
6484 struct btrfs_key *extent_key,
6485 u64 offset, int no_fragment,
6486 struct disk_extent **extents,
6487 int *nr_extents)
6488 {
6489 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6490 struct btrfs_path *path;
6491 struct btrfs_file_extent_item *fi;
6492 struct extent_buffer *leaf;
6493 struct disk_extent *exts = *extents;
6494 struct btrfs_key found_key;
6495 u64 cur_pos;
6496 u64 last_byte;
6497 u32 nritems;
6498 int nr = 0;
6499 int max = *nr_extents;
6500 int ret;
6501
6502 WARN_ON(!no_fragment && *extents);
6503 if (!exts) {
6504 max = 1;
6505 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6506 if (!exts)
6507 return -ENOMEM;
6508 }
6509
6510 path = btrfs_alloc_path();
6511 BUG_ON(!path);
6512
6513 cur_pos = extent_key->objectid - offset;
6514 last_byte = extent_key->objectid + extent_key->offset;
6515 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6516 cur_pos, 0);
6517 if (ret < 0)
6518 goto out;
6519 if (ret > 0) {
6520 ret = -ENOENT;
6521 goto out;
6522 }
6523
6524 while (1) {
6525 leaf = path->nodes[0];
6526 nritems = btrfs_header_nritems(leaf);
6527 if (path->slots[0] >= nritems) {
6528 ret = btrfs_next_leaf(root, path);
6529 if (ret < 0)
6530 goto out;
6531 if (ret > 0)
6532 break;
6533 leaf = path->nodes[0];
6534 }
6535
6536 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6537 if (found_key.offset != cur_pos ||
6538 found_key.type != BTRFS_EXTENT_DATA_KEY ||
6539 found_key.objectid != reloc_inode->i_ino)
6540 break;
6541
6542 fi = btrfs_item_ptr(leaf, path->slots[0],
6543 struct btrfs_file_extent_item);
6544 if (btrfs_file_extent_type(leaf, fi) !=
6545 BTRFS_FILE_EXTENT_REG ||
6546 btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6547 break;
6548
6549 if (nr == max) {
6550 struct disk_extent *old = exts;
6551 max *= 2;
6552 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6553 memcpy(exts, old, sizeof(*exts) * nr);
6554 if (old != *extents)
6555 kfree(old);
6556 }
6557
6558 exts[nr].disk_bytenr =
6559 btrfs_file_extent_disk_bytenr(leaf, fi);
6560 exts[nr].disk_num_bytes =
6561 btrfs_file_extent_disk_num_bytes(leaf, fi);
6562 exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6563 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6564 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6565 exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6566 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6567 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6568 fi);
6569 BUG_ON(exts[nr].offset > 0);
6570 BUG_ON(exts[nr].compression || exts[nr].encryption);
6571 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6572
6573 cur_pos += exts[nr].num_bytes;
6574 nr++;
6575
6576 if (cur_pos + offset >= last_byte)
6577 break;
6578
6579 if (no_fragment) {
6580 ret = 1;
6581 goto out;
6582 }
6583 path->slots[0]++;
6584 }
6585
6586 BUG_ON(cur_pos + offset > last_byte);
6587 if (cur_pos + offset < last_byte) {
6588 ret = -ENOENT;
6589 goto out;
6590 }
6591 ret = 0;
6592 out:
6593 btrfs_free_path(path);
6594 if (ret) {
6595 if (exts != *extents)
6596 kfree(exts);
6597 } else {
6598 *extents = exts;
6599 *nr_extents = nr;
6600 }
6601 return ret;
6602 }
6603
6604 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6605 struct btrfs_root *root,
6606 struct btrfs_path *path,
6607 struct btrfs_key *extent_key,
6608 struct btrfs_key *leaf_key,
6609 struct btrfs_ref_path *ref_path,
6610 struct disk_extent *new_extents,
6611 int nr_extents)
6612 {
6613 struct extent_buffer *leaf;
6614 struct btrfs_file_extent_item *fi;
6615 struct inode *inode = NULL;
6616 struct btrfs_key key;
6617 u64 lock_start = 0;
6618 u64 lock_end = 0;
6619 u64 num_bytes;
6620 u64 ext_offset;
6621 u64 search_end = (u64)-1;
6622 u32 nritems;
6623 int nr_scaned = 0;
6624 int extent_locked = 0;
6625 int extent_type;
6626 int ret;
6627
6628 memcpy(&key, leaf_key, sizeof(key));
6629 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6630 if (key.objectid < ref_path->owner_objectid ||
6631 (key.objectid == ref_path->owner_objectid &&
6632 key.type < BTRFS_EXTENT_DATA_KEY)) {
6633 key.objectid = ref_path->owner_objectid;
6634 key.type = BTRFS_EXTENT_DATA_KEY;
6635 key.offset = 0;
6636 }
6637 }
6638
6639 while (1) {
6640 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
6641 if (ret < 0)
6642 goto out;
6643
6644 leaf = path->nodes[0];
6645 nritems = btrfs_header_nritems(leaf);
6646 next:
6647 if (extent_locked && ret > 0) {
6648 /*
6649 * the file extent item was modified by someone
6650 * before the extent got locked.
6651 */
6652 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6653 lock_end, GFP_NOFS);
6654 extent_locked = 0;
6655 }
6656
6657 if (path->slots[0] >= nritems) {
6658 if (++nr_scaned > 2)
6659 break;
6660
6661 BUG_ON(extent_locked);
6662 ret = btrfs_next_leaf(root, path);
6663 if (ret < 0)
6664 goto out;
6665 if (ret > 0)
6666 break;
6667 leaf = path->nodes[0];
6668 nritems = btrfs_header_nritems(leaf);
6669 }
6670
6671 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
6672
6673 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6674 if ((key.objectid > ref_path->owner_objectid) ||
6675 (key.objectid == ref_path->owner_objectid &&
6676 key.type > BTRFS_EXTENT_DATA_KEY) ||
6677 key.offset >= search_end)
6678 break;
6679 }
6680
6681 if (inode && key.objectid != inode->i_ino) {
6682 BUG_ON(extent_locked);
6683 btrfs_release_path(root, path);
6684 mutex_unlock(&inode->i_mutex);
6685 iput(inode);
6686 inode = NULL;
6687 continue;
6688 }
6689
6690 if (key.type != BTRFS_EXTENT_DATA_KEY) {
6691 path->slots[0]++;
6692 ret = 1;
6693 goto next;
6694 }
6695 fi = btrfs_item_ptr(leaf, path->slots[0],
6696 struct btrfs_file_extent_item);
6697 extent_type = btrfs_file_extent_type(leaf, fi);
6698 if ((extent_type != BTRFS_FILE_EXTENT_REG &&
6699 extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
6700 (btrfs_file_extent_disk_bytenr(leaf, fi) !=
6701 extent_key->objectid)) {
6702 path->slots[0]++;
6703 ret = 1;
6704 goto next;
6705 }
6706
6707 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6708 ext_offset = btrfs_file_extent_offset(leaf, fi);
6709
6710 if (search_end == (u64)-1) {
6711 search_end = key.offset - ext_offset +
6712 btrfs_file_extent_ram_bytes(leaf, fi);
6713 }
6714
6715 if (!extent_locked) {
6716 lock_start = key.offset;
6717 lock_end = lock_start + num_bytes - 1;
6718 } else {
6719 if (lock_start > key.offset ||
6720 lock_end + 1 < key.offset + num_bytes) {
6721 unlock_extent(&BTRFS_I(inode)->io_tree,
6722 lock_start, lock_end, GFP_NOFS);
6723 extent_locked = 0;
6724 }
6725 }
6726
6727 if (!inode) {
6728 btrfs_release_path(root, path);
6729
6730 inode = btrfs_iget_locked(root->fs_info->sb,
6731 key.objectid, root);
6732 if (inode->i_state & I_NEW) {
6733 BTRFS_I(inode)->root = root;
6734 BTRFS_I(inode)->location.objectid =
6735 key.objectid;
6736 BTRFS_I(inode)->location.type =
6737 BTRFS_INODE_ITEM_KEY;
6738 BTRFS_I(inode)->location.offset = 0;
6739 btrfs_read_locked_inode(inode);
6740 unlock_new_inode(inode);
6741 }
6742 /*
6743 * some code call btrfs_commit_transaction while
6744 * holding the i_mutex, so we can't use mutex_lock
6745 * here.
6746 */
6747 if (is_bad_inode(inode) ||
6748 !mutex_trylock(&inode->i_mutex)) {
6749 iput(inode);
6750 inode = NULL;
6751 key.offset = (u64)-1;
6752 goto skip;
6753 }
6754 }
6755
6756 if (!extent_locked) {
6757 struct btrfs_ordered_extent *ordered;
6758
6759 btrfs_release_path(root, path);
6760
6761 lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6762 lock_end, GFP_NOFS);
6763 ordered = btrfs_lookup_first_ordered_extent(inode,
6764 lock_end);
6765 if (ordered &&
6766 ordered->file_offset <= lock_end &&
6767 ordered->file_offset + ordered->len > lock_start) {
6768 unlock_extent(&BTRFS_I(inode)->io_tree,
6769 lock_start, lock_end, GFP_NOFS);
6770 btrfs_start_ordered_extent(inode, ordered, 1);
6771 btrfs_put_ordered_extent(ordered);
6772 key.offset += num_bytes;
6773 goto skip;
6774 }
6775 if (ordered)
6776 btrfs_put_ordered_extent(ordered);
6777
6778 extent_locked = 1;
6779 continue;
6780 }
6781
6782 if (nr_extents == 1) {
6783 /* update extent pointer in place */
6784 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6785 new_extents[0].disk_bytenr);
6786 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6787 new_extents[0].disk_num_bytes);
6788 btrfs_mark_buffer_dirty(leaf);
6789
6790 btrfs_drop_extent_cache(inode, key.offset,
6791 key.offset + num_bytes - 1, 0);
6792
6793 ret = btrfs_inc_extent_ref(trans, root,
6794 new_extents[0].disk_bytenr,
6795 new_extents[0].disk_num_bytes,
6796 leaf->start,
6797 root->root_key.objectid,
6798 trans->transid,
6799 key.objectid);
6800 BUG_ON(ret);
6801
6802 ret = btrfs_free_extent(trans, root,
6803 extent_key->objectid,
6804 extent_key->offset,
6805 leaf->start,
6806 btrfs_header_owner(leaf),
6807 btrfs_header_generation(leaf),
6808 key.objectid, 0);
6809 BUG_ON(ret);
6810
6811 btrfs_release_path(root, path);
6812 key.offset += num_bytes;
6813 } else {
6814 BUG_ON(1);
6815 #if 0
6816 u64 alloc_hint;
6817 u64 extent_len;
6818 int i;
6819 /*
6820 * drop old extent pointer at first, then insert the
6821 * new pointers one bye one
6822 */
6823 btrfs_release_path(root, path);
6824 ret = btrfs_drop_extents(trans, root, inode, key.offset,
6825 key.offset + num_bytes,
6826 key.offset, &alloc_hint);
6827 BUG_ON(ret);
6828
6829 for (i = 0; i < nr_extents; i++) {
6830 if (ext_offset >= new_extents[i].num_bytes) {
6831 ext_offset -= new_extents[i].num_bytes;
6832 continue;
6833 }
6834 extent_len = min(new_extents[i].num_bytes -
6835 ext_offset, num_bytes);
6836
6837 ret = btrfs_insert_empty_item(trans, root,
6838 path, &key,
6839 sizeof(*fi));
6840 BUG_ON(ret);
6841
6842 leaf = path->nodes[0];
6843 fi = btrfs_item_ptr(leaf, path->slots[0],
6844 struct btrfs_file_extent_item);
6845 btrfs_set_file_extent_generation(leaf, fi,
6846 trans->transid);
6847 btrfs_set_file_extent_type(leaf, fi,
6848 BTRFS_FILE_EXTENT_REG);
6849 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6850 new_extents[i].disk_bytenr);
6851 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6852 new_extents[i].disk_num_bytes);
6853 btrfs_set_file_extent_ram_bytes(leaf, fi,
6854 new_extents[i].ram_bytes);
6855
6856 btrfs_set_file_extent_compression(leaf, fi,
6857 new_extents[i].compression);
6858 btrfs_set_file_extent_encryption(leaf, fi,
6859 new_extents[i].encryption);
6860 btrfs_set_file_extent_other_encoding(leaf, fi,
6861 new_extents[i].other_encoding);
6862
6863 btrfs_set_file_extent_num_bytes(leaf, fi,
6864 extent_len);
6865 ext_offset += new_extents[i].offset;
6866 btrfs_set_file_extent_offset(leaf, fi,
6867 ext_offset);
6868 btrfs_mark_buffer_dirty(leaf);
6869
6870 btrfs_drop_extent_cache(inode, key.offset,
6871 key.offset + extent_len - 1, 0);
6872
6873 ret = btrfs_inc_extent_ref(trans, root,
6874 new_extents[i].disk_bytenr,
6875 new_extents[i].disk_num_bytes,
6876 leaf->start,
6877 root->root_key.objectid,
6878 trans->transid, key.objectid);
6879 BUG_ON(ret);
6880 btrfs_release_path(root, path);
6881
6882 inode_add_bytes(inode, extent_len);
6883
6884 ext_offset = 0;
6885 num_bytes -= extent_len;
6886 key.offset += extent_len;
6887
6888 if (num_bytes == 0)
6889 break;
6890 }
6891 BUG_ON(i >= nr_extents);
6892 #endif
6893 }
6894
6895 if (extent_locked) {
6896 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6897 lock_end, GFP_NOFS);
6898 extent_locked = 0;
6899 }
6900 skip:
6901 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
6902 key.offset >= search_end)
6903 break;
6904
6905 cond_resched();
6906 }
6907 ret = 0;
6908 out:
6909 btrfs_release_path(root, path);
6910 if (inode) {
6911 mutex_unlock(&inode->i_mutex);
6912 if (extent_locked) {
6913 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6914 lock_end, GFP_NOFS);
6915 }
6916 iput(inode);
6917 }
6918 return ret;
6919 }
6920
6921 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
6922 struct btrfs_root *root,
6923 struct extent_buffer *buf, u64 orig_start)
6924 {
6925 int level;
6926 int ret;
6927
6928 BUG_ON(btrfs_header_generation(buf) != trans->transid);
6929 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6930
6931 level = btrfs_header_level(buf);
6932 if (level == 0) {
6933 struct btrfs_leaf_ref *ref;
6934 struct btrfs_leaf_ref *orig_ref;
6935
6936 orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
6937 if (!orig_ref)
6938 return -ENOENT;
6939
6940 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
6941 if (!ref) {
6942 btrfs_free_leaf_ref(root, orig_ref);
6943 return -ENOMEM;
6944 }
6945
6946 ref->nritems = orig_ref->nritems;
6947 memcpy(ref->extents, orig_ref->extents,
6948 sizeof(ref->extents[0]) * ref->nritems);
6949
6950 btrfs_free_leaf_ref(root, orig_ref);
6951
6952 ref->root_gen = trans->transid;
6953 ref->bytenr = buf->start;
6954 ref->owner = btrfs_header_owner(buf);
6955 ref->generation = btrfs_header_generation(buf);
6956
6957 ret = btrfs_add_leaf_ref(root, ref, 0);
6958 WARN_ON(ret);
6959 btrfs_free_leaf_ref(root, ref);
6960 }
6961 return 0;
6962 }
6963
6964 static noinline int invalidate_extent_cache(struct btrfs_root *root,
6965 struct extent_buffer *leaf,
6966 struct btrfs_block_group_cache *group,
6967 struct btrfs_root *target_root)
6968 {
6969 struct btrfs_key key;
6970 struct inode *inode = NULL;
6971 struct btrfs_file_extent_item *fi;
6972 struct extent_state *cached_state = NULL;
6973 u64 num_bytes;
6974 u64 skip_objectid = 0;
6975 u32 nritems;
6976 u32 i;
6977
6978 nritems = btrfs_header_nritems(leaf);
6979 for (i = 0; i < nritems; i++) {
6980 btrfs_item_key_to_cpu(leaf, &key, i);
6981 if (key.objectid == skip_objectid ||
6982 key.type != BTRFS_EXTENT_DATA_KEY)
6983 continue;
6984 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6985 if (btrfs_file_extent_type(leaf, fi) ==
6986 BTRFS_FILE_EXTENT_INLINE)
6987 continue;
6988 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6989 continue;
6990 if (!inode || inode->i_ino != key.objectid) {
6991 iput(inode);
6992 inode = btrfs_ilookup(target_root->fs_info->sb,
6993 key.objectid, target_root, 1);
6994 }
6995 if (!inode) {
6996 skip_objectid = key.objectid;
6997 continue;
6998 }
6999 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7000
7001 lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
7002 key.offset + num_bytes - 1, 0, &cached_state,
7003 GFP_NOFS);
7004 btrfs_drop_extent_cache(inode, key.offset,
7005 key.offset + num_bytes - 1, 1);
7006 unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
7007 key.offset + num_bytes - 1, &cached_state,
7008 GFP_NOFS);
7009 cond_resched();
7010 }
7011 iput(inode);
7012 return 0;
7013 }
7014
7015 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
7016 struct btrfs_root *root,
7017 struct extent_buffer *leaf,
7018 struct btrfs_block_group_cache *group,
7019 struct inode *reloc_inode)
7020 {
7021 struct btrfs_key key;
7022 struct btrfs_key extent_key;
7023 struct btrfs_file_extent_item *fi;
7024 struct btrfs_leaf_ref *ref;
7025 struct disk_extent *new_extent;
7026 u64 bytenr;
7027 u64 num_bytes;
7028 u32 nritems;
7029 u32 i;
7030 int ext_index;
7031 int nr_extent;
7032 int ret;
7033
7034 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
7035 BUG_ON(!new_extent);
7036
7037 ref = btrfs_lookup_leaf_ref(root, leaf->start);
7038 BUG_ON(!ref);
7039
7040 ext_index = -1;
7041 nritems = btrfs_header_nritems(leaf);
7042 for (i = 0; i < nritems; i++) {
7043 btrfs_item_key_to_cpu(leaf, &key, i);
7044 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
7045 continue;
7046 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7047 if (btrfs_file_extent_type(leaf, fi) ==
7048 BTRFS_FILE_EXTENT_INLINE)
7049 continue;
7050 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7051 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
7052 if (bytenr == 0)
7053 continue;
7054
7055 ext_index++;
7056 if (bytenr >= group->key.objectid + group->key.offset ||
7057 bytenr + num_bytes <= group->key.objectid)
7058 continue;
7059
7060 extent_key.objectid = bytenr;
7061 extent_key.offset = num_bytes;
7062 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7063 nr_extent = 1;
7064 ret = get_new_locations(reloc_inode, &extent_key,
7065 group->key.objectid, 1,
7066 &new_extent, &nr_extent);
7067 if (ret > 0)
7068 continue;
7069 BUG_ON(ret < 0);
7070
7071 BUG_ON(ref->extents[ext_index].bytenr != bytenr);
7072 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
7073 ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
7074 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
7075
7076 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7077 new_extent->disk_bytenr);
7078 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7079 new_extent->disk_num_bytes);
7080 btrfs_mark_buffer_dirty(leaf);
7081
7082 ret = btrfs_inc_extent_ref(trans, root,
7083 new_extent->disk_bytenr,
7084 new_extent->disk_num_bytes,
7085 leaf->start,
7086 root->root_key.objectid,
7087 trans->transid, key.objectid);
7088 BUG_ON(ret);
7089
7090 ret = btrfs_free_extent(trans, root,
7091 bytenr, num_bytes, leaf->start,
7092 btrfs_header_owner(leaf),
7093 btrfs_header_generation(leaf),
7094 key.objectid, 0);
7095 BUG_ON(ret);
7096 cond_resched();
7097 }
7098 kfree(new_extent);
7099 BUG_ON(ext_index + 1 != ref->nritems);
7100 btrfs_free_leaf_ref(root, ref);
7101 return 0;
7102 }
7103
7104 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
7105 struct btrfs_root *root)
7106 {
7107 struct btrfs_root *reloc_root;
7108 int ret;
7109
7110 if (root->reloc_root) {
7111 reloc_root = root->reloc_root;
7112 root->reloc_root = NULL;
7113 list_add(&reloc_root->dead_list,
7114 &root->fs_info->dead_reloc_roots);
7115
7116 btrfs_set_root_bytenr(&reloc_root->root_item,
7117 reloc_root->node->start);
7118 btrfs_set_root_level(&root->root_item,
7119 btrfs_header_level(reloc_root->node));
7120 memset(&reloc_root->root_item.drop_progress, 0,
7121 sizeof(struct btrfs_disk_key));
7122 reloc_root->root_item.drop_level = 0;
7123
7124 ret = btrfs_update_root(trans, root->fs_info->tree_root,
7125 &reloc_root->root_key,
7126 &reloc_root->root_item);
7127 BUG_ON(ret);
7128 }
7129 return 0;
7130 }
7131
7132 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
7133 {
7134 struct btrfs_trans_handle *trans;
7135 struct btrfs_root *reloc_root;
7136 struct btrfs_root *prev_root = NULL;
7137 struct list_head dead_roots;
7138 int ret;
7139 unsigned long nr;
7140
7141 INIT_LIST_HEAD(&dead_roots);
7142 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
7143
7144 while (!list_empty(&dead_roots)) {
7145 reloc_root = list_entry(dead_roots.prev,
7146 struct btrfs_root, dead_list);
7147 list_del_init(&reloc_root->dead_list);
7148
7149 BUG_ON(reloc_root->commit_root != NULL);
7150 while (1) {
7151 trans = btrfs_join_transaction(root, 1);
7152 BUG_ON(!trans);
7153
7154 mutex_lock(&root->fs_info->drop_mutex);
7155 ret = btrfs_drop_snapshot(trans, reloc_root);
7156 if (ret != -EAGAIN)
7157 break;
7158 mutex_unlock(&root->fs_info->drop_mutex);
7159
7160 nr = trans->blocks_used;
7161 ret = btrfs_end_transaction(trans, root);
7162 BUG_ON(ret);
7163 btrfs_btree_balance_dirty(root, nr);
7164 }
7165
7166 free_extent_buffer(reloc_root->node);
7167
7168 ret = btrfs_del_root(trans, root->fs_info->tree_root,
7169 &reloc_root->root_key);
7170 BUG_ON(ret);
7171 mutex_unlock(&root->fs_info->drop_mutex);
7172
7173 nr = trans->blocks_used;
7174 ret = btrfs_end_transaction(trans, root);
7175 BUG_ON(ret);
7176 btrfs_btree_balance_dirty(root, nr);
7177
7178 kfree(prev_root);
7179 prev_root = reloc_root;
7180 }
7181 if (prev_root) {
7182 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
7183 kfree(prev_root);
7184 }
7185 return 0;
7186 }
7187
7188 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
7189 {
7190 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
7191 return 0;
7192 }
7193
7194 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
7195 {
7196 struct btrfs_root *reloc_root;
7197 struct btrfs_trans_handle *trans;
7198 struct btrfs_key location;
7199 int found;
7200 int ret;
7201
7202 mutex_lock(&root->fs_info->tree_reloc_mutex);
7203 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
7204 BUG_ON(ret);
7205 found = !list_empty(&root->fs_info->dead_reloc_roots);
7206 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7207
7208 if (found) {
7209 trans = btrfs_start_transaction(root, 1);
7210 BUG_ON(!trans);
7211 ret = btrfs_commit_transaction(trans, root);
7212 BUG_ON(ret);
7213 }
7214
7215 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
7216 location.offset = (u64)-1;
7217 location.type = BTRFS_ROOT_ITEM_KEY;
7218
7219 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
7220 BUG_ON(!reloc_root);
7221 btrfs_orphan_cleanup(reloc_root);
7222 return 0;
7223 }
7224
7225 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
7226 struct btrfs_root *root)
7227 {
7228 struct btrfs_root *reloc_root;
7229 struct extent_buffer *eb;
7230 struct btrfs_root_item *root_item;
7231 struct btrfs_key root_key;
7232 int ret;
7233
7234 BUG_ON(!root->ref_cows);
7235 if (root->reloc_root)
7236 return 0;
7237
7238 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
7239 BUG_ON(!root_item);
7240
7241 ret = btrfs_copy_root(trans, root, root->commit_root,
7242 &eb, BTRFS_TREE_RELOC_OBJECTID);
7243 BUG_ON(ret);
7244
7245 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
7246 root_key.offset = root->root_key.objectid;
7247 root_key.type = BTRFS_ROOT_ITEM_KEY;
7248
7249 memcpy(root_item, &root->root_item, sizeof(root_item));
7250 btrfs_set_root_refs(root_item, 0);
7251 btrfs_set_root_bytenr(root_item, eb->start);
7252 btrfs_set_root_level(root_item, btrfs_header_level(eb));
7253 btrfs_set_root_generation(root_item, trans->transid);
7254
7255 btrfs_tree_unlock(eb);
7256 free_extent_buffer(eb);
7257
7258 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
7259 &root_key, root_item);
7260 BUG_ON(ret);
7261 kfree(root_item);
7262
7263 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
7264 &root_key);
7265 BUG_ON(!reloc_root);
7266 reloc_root->last_trans = trans->transid;
7267 reloc_root->commit_root = NULL;
7268 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
7269
7270 root->reloc_root = reloc_root;
7271 return 0;
7272 }
7273
7274 /*
7275 * Core function of space balance.
7276 *
7277 * The idea is using reloc trees to relocate tree blocks in reference
7278 * counted roots. There is one reloc tree for each subvol, and all
7279 * reloc trees share same root key objectid. Reloc trees are snapshots
7280 * of the latest committed roots of subvols (root->commit_root).
7281 *
7282 * To relocate a tree block referenced by a subvol, there are two steps.
7283 * COW the block through subvol's reloc tree, then update block pointer
7284 * in the subvol to point to the new block. Since all reloc trees share
7285 * same root key objectid, doing special handing for tree blocks owned
7286 * by them is easy. Once a tree block has been COWed in one reloc tree,
7287 * we can use the resulting new block directly when the same block is
7288 * required to COW again through other reloc trees. By this way, relocated
7289 * tree blocks are shared between reloc trees, so they are also shared
7290 * between subvols.
7291 */
7292 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
7293 struct btrfs_root *root,
7294 struct btrfs_path *path,
7295 struct btrfs_key *first_key,
7296 struct btrfs_ref_path *ref_path,
7297 struct btrfs_block_group_cache *group,
7298 struct inode *reloc_inode)
7299 {
7300 struct btrfs_root *reloc_root;
7301 struct extent_buffer *eb = NULL;
7302 struct btrfs_key *keys;
7303 u64 *nodes;
7304 int level;
7305 int shared_level;
7306 int lowest_level = 0;
7307 int ret;
7308
7309 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
7310 lowest_level = ref_path->owner_objectid;
7311
7312 if (!root->ref_cows) {
7313 path->lowest_level = lowest_level;
7314 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
7315 BUG_ON(ret < 0);
7316 path->lowest_level = 0;
7317 btrfs_release_path(root, path);
7318 return 0;
7319 }
7320
7321 mutex_lock(&root->fs_info->tree_reloc_mutex);
7322 ret = init_reloc_tree(trans, root);
7323 BUG_ON(ret);
7324 reloc_root = root->reloc_root;
7325
7326 shared_level = ref_path->shared_level;
7327 ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
7328
7329 keys = ref_path->node_keys;
7330 nodes = ref_path->new_nodes;
7331 memset(&keys[shared_level + 1], 0,
7332 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
7333 memset(&nodes[shared_level + 1], 0,
7334 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
7335
7336 if (nodes[lowest_level] == 0) {
7337 path->lowest_level = lowest_level;
7338 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7339 0, 1);
7340 BUG_ON(ret);
7341 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
7342 eb = path->nodes[level];
7343 if (!eb || eb == reloc_root->node)
7344 break;
7345 nodes[level] = eb->start;
7346 if (level == 0)
7347 btrfs_item_key_to_cpu(eb, &keys[level], 0);
7348 else
7349 btrfs_node_key_to_cpu(eb, &keys[level], 0);
7350 }
7351 if (nodes[0] &&
7352 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7353 eb = path->nodes[0];
7354 ret = replace_extents_in_leaf(trans, reloc_root, eb,
7355 group, reloc_inode);
7356 BUG_ON(ret);
7357 }
7358 btrfs_release_path(reloc_root, path);
7359 } else {
7360 ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
7361 lowest_level);
7362 BUG_ON(ret);
7363 }
7364
7365 /*
7366 * replace tree blocks in the fs tree with tree blocks in
7367 * the reloc tree.
7368 */
7369 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
7370 BUG_ON(ret < 0);
7371
7372 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7373 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7374 0, 0);
7375 BUG_ON(ret);
7376 extent_buffer_get(path->nodes[0]);
7377 eb = path->nodes[0];
7378 btrfs_release_path(reloc_root, path);
7379 ret = invalidate_extent_cache(reloc_root, eb, group, root);
7380 BUG_ON(ret);
7381 free_extent_buffer(eb);
7382 }
7383
7384 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7385 path->lowest_level = 0;
7386 return 0;
7387 }
7388
7389 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
7390 struct btrfs_root *root,
7391 struct btrfs_path *path,
7392 struct btrfs_key *first_key,
7393 struct btrfs_ref_path *ref_path)
7394 {
7395 int ret;
7396
7397 ret = relocate_one_path(trans, root, path, first_key,
7398 ref_path, NULL, NULL);
7399 BUG_ON(ret);
7400
7401 return 0;
7402 }
7403
7404 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
7405 struct btrfs_root *extent_root,
7406 struct btrfs_path *path,
7407 struct btrfs_key *extent_key)
7408 {
7409 int ret;
7410
7411 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7412 if (ret)
7413 goto out;
7414 ret = btrfs_del_item(trans, extent_root, path);
7415 out:
7416 btrfs_release_path(extent_root, path);
7417 return ret;
7418 }
7419
7420 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7421 struct btrfs_ref_path *ref_path)
7422 {
7423 struct btrfs_key root_key;
7424
7425 root_key.objectid = ref_path->root_objectid;
7426 root_key.type = BTRFS_ROOT_ITEM_KEY;
7427 if (is_cowonly_root(ref_path->root_objectid))
7428 root_key.offset = 0;
7429 else
7430 root_key.offset = (u64)-1;
7431
7432 return btrfs_read_fs_root_no_name(fs_info, &root_key);
7433 }
7434
7435 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7436 struct btrfs_path *path,
7437 struct btrfs_key *extent_key,
7438 struct btrfs_block_group_cache *group,
7439 struct inode *reloc_inode, int pass)
7440 {
7441 struct btrfs_trans_handle *trans;
7442 struct btrfs_root *found_root;
7443 struct btrfs_ref_path *ref_path = NULL;
7444 struct disk_extent *new_extents = NULL;
7445 int nr_extents = 0;
7446 int loops;
7447 int ret;
7448 int level;
7449 struct btrfs_key first_key;
7450 u64 prev_block = 0;
7451
7452
7453 trans = btrfs_start_transaction(extent_root, 1);
7454 BUG_ON(!trans);
7455
7456 if (extent_key->objectid == 0) {
7457 ret = del_extent_zero(trans, extent_root, path, extent_key);
7458 goto out;
7459 }
7460
7461 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7462 if (!ref_path) {
7463 ret = -ENOMEM;
7464 goto out;
7465 }
7466
7467 for (loops = 0; ; loops++) {
7468 if (loops == 0) {
7469 ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7470 extent_key->objectid);
7471 } else {
7472 ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7473 }
7474 if (ret < 0)
7475 goto out;
7476 if (ret > 0)
7477 break;
7478
7479 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7480 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7481 continue;
7482
7483 found_root = read_ref_root(extent_root->fs_info, ref_path);
7484 BUG_ON(!found_root);
7485 /*
7486 * for reference counted tree, only process reference paths
7487 * rooted at the latest committed root.
7488 */
7489 if (found_root->ref_cows &&
7490 ref_path->root_generation != found_root->root_key.offset)
7491 continue;
7492
7493 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7494 if (pass == 0) {
7495 /*
7496 * copy data extents to new locations
7497 */
7498 u64 group_start = group->key.objectid;
7499 ret = relocate_data_extent(reloc_inode,
7500 extent_key,
7501 group_start);
7502 if (ret < 0)
7503 goto out;
7504 break;
7505 }
7506 level = 0;
7507 } else {
7508 level = ref_path->owner_objectid;
7509 }
7510
7511 if (prev_block != ref_path->nodes[level]) {
7512 struct extent_buffer *eb;
7513 u64 block_start = ref_path->nodes[level];
7514 u64 block_size = btrfs_level_size(found_root, level);
7515
7516 eb = read_tree_block(found_root, block_start,
7517 block_size, 0);
7518 btrfs_tree_lock(eb);
7519 BUG_ON(level != btrfs_header_level(eb));
7520
7521 if (level == 0)
7522 btrfs_item_key_to_cpu(eb, &first_key, 0);
7523 else
7524 btrfs_node_key_to_cpu(eb, &first_key, 0);
7525
7526 btrfs_tree_unlock(eb);
7527 free_extent_buffer(eb);
7528 prev_block = block_start;
7529 }
7530
7531 mutex_lock(&extent_root->fs_info->trans_mutex);
7532 btrfs_record_root_in_trans(found_root);
7533 mutex_unlock(&extent_root->fs_info->trans_mutex);
7534 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7535 /*
7536 * try to update data extent references while
7537 * keeping metadata shared between snapshots.
7538 */
7539 if (pass == 1) {
7540 ret = relocate_one_path(trans, found_root,
7541 path, &first_key, ref_path,
7542 group, reloc_inode);
7543 if (ret < 0)
7544 goto out;
7545 continue;
7546 }
7547 /*
7548 * use fallback method to process the remaining
7549 * references.
7550 */
7551 if (!new_extents) {
7552 u64 group_start = group->key.objectid;
7553 new_extents = kmalloc(sizeof(*new_extents),
7554 GFP_NOFS);
7555 nr_extents = 1;
7556 ret = get_new_locations(reloc_inode,
7557 extent_key,
7558 group_start, 1,
7559 &new_extents,
7560 &nr_extents);
7561 if (ret)
7562 goto out;
7563 }
7564 ret = replace_one_extent(trans, found_root,
7565 path, extent_key,
7566 &first_key, ref_path,
7567 new_extents, nr_extents);
7568 } else {
7569 ret = relocate_tree_block(trans, found_root, path,
7570 &first_key, ref_path);
7571 }
7572 if (ret < 0)
7573 goto out;
7574 }
7575 ret = 0;
7576 out:
7577 btrfs_end_transaction(trans, extent_root);
7578 kfree(new_extents);
7579 kfree(ref_path);
7580 return ret;
7581 }
7582 #endif
7583
7584 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7585 {
7586 u64 num_devices;
7587 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7588 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7589
7590 num_devices = root->fs_info->fs_devices->rw_devices;
7591 if (num_devices == 1) {
7592 stripped |= BTRFS_BLOCK_GROUP_DUP;
7593 stripped = flags & ~stripped;
7594
7595 /* turn raid0 into single device chunks */
7596 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7597 return stripped;
7598
7599 /* turn mirroring into duplication */
7600 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7601 BTRFS_BLOCK_GROUP_RAID10))
7602 return stripped | BTRFS_BLOCK_GROUP_DUP;
7603 return flags;
7604 } else {
7605 /* they already had raid on here, just return */
7606 if (flags & stripped)
7607 return flags;
7608
7609 stripped |= BTRFS_BLOCK_GROUP_DUP;
7610 stripped = flags & ~stripped;
7611
7612 /* switch duplicated blocks with raid1 */
7613 if (flags & BTRFS_BLOCK_GROUP_DUP)
7614 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7615
7616 /* turn single device chunks into raid0 */
7617 return stripped | BTRFS_BLOCK_GROUP_RAID0;
7618 }
7619 return flags;
7620 }
7621
7622 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
7623 {
7624 struct btrfs_space_info *sinfo = cache->space_info;
7625 u64 num_bytes;
7626 int ret = -ENOSPC;
7627
7628 if (cache->ro)
7629 return 0;
7630
7631 spin_lock(&sinfo->lock);
7632 spin_lock(&cache->lock);
7633 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7634 cache->bytes_super - btrfs_block_group_used(&cache->item);
7635
7636 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7637 sinfo->bytes_may_use + sinfo->bytes_readonly +
7638 cache->reserved_pinned + num_bytes < sinfo->total_bytes) {
7639 sinfo->bytes_readonly += num_bytes;
7640 sinfo->bytes_reserved += cache->reserved_pinned;
7641 cache->reserved_pinned = 0;
7642 cache->ro = 1;
7643 ret = 0;
7644 }
7645 spin_unlock(&cache->lock);
7646 spin_unlock(&sinfo->lock);
7647 return ret;
7648 }
7649
7650 int btrfs_set_block_group_ro(struct btrfs_root *root,
7651 struct btrfs_block_group_cache *cache)
7652
7653 {
7654 struct btrfs_trans_handle *trans;
7655 u64 alloc_flags;
7656 int ret;
7657
7658 BUG_ON(cache->ro);
7659
7660 trans = btrfs_join_transaction(root, 1);
7661 BUG_ON(IS_ERR(trans));
7662
7663 alloc_flags = update_block_group_flags(root, cache->flags);
7664 if (alloc_flags != cache->flags)
7665 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
7666
7667 ret = set_block_group_ro(cache);
7668 if (!ret)
7669 goto out;
7670 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7671 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
7672 if (ret < 0)
7673 goto out;
7674 ret = set_block_group_ro(cache);
7675 out:
7676 btrfs_end_transaction(trans, root);
7677 return ret;
7678 }
7679
7680 int btrfs_set_block_group_rw(struct btrfs_root *root,
7681 struct btrfs_block_group_cache *cache)
7682 {
7683 struct btrfs_space_info *sinfo = cache->space_info;
7684 u64 num_bytes;
7685
7686 BUG_ON(!cache->ro);
7687
7688 spin_lock(&sinfo->lock);
7689 spin_lock(&cache->lock);
7690 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7691 cache->bytes_super - btrfs_block_group_used(&cache->item);
7692 sinfo->bytes_readonly -= num_bytes;
7693 cache->ro = 0;
7694 spin_unlock(&cache->lock);
7695 spin_unlock(&sinfo->lock);
7696 return 0;
7697 }
7698
7699 /*
7700 * checks to see if its even possible to relocate this block group.
7701 *
7702 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7703 * ok to go ahead and try.
7704 */
7705 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7706 {
7707 struct btrfs_block_group_cache *block_group;
7708 struct btrfs_space_info *space_info;
7709 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7710 struct btrfs_device *device;
7711 int full = 0;
7712 int ret = 0;
7713
7714 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7715
7716 /* odd, couldn't find the block group, leave it alone */
7717 if (!block_group)
7718 return -1;
7719
7720 /* no bytes used, we're good */
7721 if (!btrfs_block_group_used(&block_group->item))
7722 goto out;
7723
7724 space_info = block_group->space_info;
7725 spin_lock(&space_info->lock);
7726
7727 full = space_info->full;
7728
7729 /*
7730 * if this is the last block group we have in this space, we can't
7731 * relocate it unless we're able to allocate a new chunk below.
7732 *
7733 * Otherwise, we need to make sure we have room in the space to handle
7734 * all of the extents from this block group. If we can, we're good
7735 */
7736 if ((space_info->total_bytes != block_group->key.offset) &&
7737 (space_info->bytes_used + space_info->bytes_reserved +
7738 space_info->bytes_pinned + space_info->bytes_readonly +
7739 btrfs_block_group_used(&block_group->item) <
7740 space_info->total_bytes)) {
7741 spin_unlock(&space_info->lock);
7742 goto out;
7743 }
7744 spin_unlock(&space_info->lock);
7745
7746 /*
7747 * ok we don't have enough space, but maybe we have free space on our
7748 * devices to allocate new chunks for relocation, so loop through our
7749 * alloc devices and guess if we have enough space. However, if we
7750 * were marked as full, then we know there aren't enough chunks, and we
7751 * can just return.
7752 */
7753 ret = -1;
7754 if (full)
7755 goto out;
7756
7757 mutex_lock(&root->fs_info->chunk_mutex);
7758 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7759 u64 min_free = btrfs_block_group_used(&block_group->item);
7760 u64 dev_offset, max_avail;
7761
7762 /*
7763 * check to make sure we can actually find a chunk with enough
7764 * space to fit our block group in.
7765 */
7766 if (device->total_bytes > device->bytes_used + min_free) {
7767 ret = find_free_dev_extent(NULL, device, min_free,
7768 &dev_offset, &max_avail);
7769 if (!ret)
7770 break;
7771 ret = -1;
7772 }
7773 }
7774 mutex_unlock(&root->fs_info->chunk_mutex);
7775 out:
7776 btrfs_put_block_group(block_group);
7777 return ret;
7778 }
7779
7780 static int find_first_block_group(struct btrfs_root *root,
7781 struct btrfs_path *path, struct btrfs_key *key)
7782 {
7783 int ret = 0;
7784 struct btrfs_key found_key;
7785 struct extent_buffer *leaf;
7786 int slot;
7787
7788 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7789 if (ret < 0)
7790 goto out;
7791
7792 while (1) {
7793 slot = path->slots[0];
7794 leaf = path->nodes[0];
7795 if (slot >= btrfs_header_nritems(leaf)) {
7796 ret = btrfs_next_leaf(root, path);
7797 if (ret == 0)
7798 continue;
7799 if (ret < 0)
7800 goto out;
7801 break;
7802 }
7803 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7804
7805 if (found_key.objectid >= key->objectid &&
7806 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7807 ret = 0;
7808 goto out;
7809 }
7810 path->slots[0]++;
7811 }
7812 out:
7813 return ret;
7814 }
7815
7816 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7817 {
7818 struct btrfs_block_group_cache *block_group;
7819 struct btrfs_space_info *space_info;
7820 struct btrfs_caching_control *caching_ctl;
7821 struct rb_node *n;
7822
7823 down_write(&info->extent_commit_sem);
7824 while (!list_empty(&info->caching_block_groups)) {
7825 caching_ctl = list_entry(info->caching_block_groups.next,
7826 struct btrfs_caching_control, list);
7827 list_del(&caching_ctl->list);
7828 put_caching_control(caching_ctl);
7829 }
7830 up_write(&info->extent_commit_sem);
7831
7832 spin_lock(&info->block_group_cache_lock);
7833 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7834 block_group = rb_entry(n, struct btrfs_block_group_cache,
7835 cache_node);
7836 rb_erase(&block_group->cache_node,
7837 &info->block_group_cache_tree);
7838 spin_unlock(&info->block_group_cache_lock);
7839
7840 down_write(&block_group->space_info->groups_sem);
7841 list_del(&block_group->list);
7842 up_write(&block_group->space_info->groups_sem);
7843
7844 if (block_group->cached == BTRFS_CACHE_STARTED)
7845 wait_block_group_cache_done(block_group);
7846
7847 btrfs_remove_free_space_cache(block_group);
7848 btrfs_put_block_group(block_group);
7849
7850 spin_lock(&info->block_group_cache_lock);
7851 }
7852 spin_unlock(&info->block_group_cache_lock);
7853
7854 /* now that all the block groups are freed, go through and
7855 * free all the space_info structs. This is only called during
7856 * the final stages of unmount, and so we know nobody is
7857 * using them. We call synchronize_rcu() once before we start,
7858 * just to be on the safe side.
7859 */
7860 synchronize_rcu();
7861
7862 release_global_block_rsv(info);
7863
7864 while(!list_empty(&info->space_info)) {
7865 space_info = list_entry(info->space_info.next,
7866 struct btrfs_space_info,
7867 list);
7868 if (space_info->bytes_pinned > 0 ||
7869 space_info->bytes_reserved > 0) {
7870 WARN_ON(1);
7871 dump_space_info(space_info, 0, 0);
7872 }
7873 list_del(&space_info->list);
7874 kfree(space_info);
7875 }
7876 return 0;
7877 }
7878
7879 static void __link_block_group(struct btrfs_space_info *space_info,
7880 struct btrfs_block_group_cache *cache)
7881 {
7882 int index = get_block_group_index(cache);
7883
7884 down_write(&space_info->groups_sem);
7885 list_add_tail(&cache->list, &space_info->block_groups[index]);
7886 up_write(&space_info->groups_sem);
7887 }
7888
7889 int btrfs_read_block_groups(struct btrfs_root *root)
7890 {
7891 struct btrfs_path *path;
7892 int ret;
7893 struct btrfs_block_group_cache *cache;
7894 struct btrfs_fs_info *info = root->fs_info;
7895 struct btrfs_space_info *space_info;
7896 struct btrfs_key key;
7897 struct btrfs_key found_key;
7898 struct extent_buffer *leaf;
7899
7900 root = info->extent_root;
7901 key.objectid = 0;
7902 key.offset = 0;
7903 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7904 path = btrfs_alloc_path();
7905 if (!path)
7906 return -ENOMEM;
7907
7908 while (1) {
7909 ret = find_first_block_group(root, path, &key);
7910 if (ret > 0)
7911 break;
7912 if (ret != 0)
7913 goto error;
7914
7915 leaf = path->nodes[0];
7916 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7917 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7918 if (!cache) {
7919 ret = -ENOMEM;
7920 goto error;
7921 }
7922
7923 atomic_set(&cache->count, 1);
7924 spin_lock_init(&cache->lock);
7925 spin_lock_init(&cache->tree_lock);
7926 cache->fs_info = info;
7927 INIT_LIST_HEAD(&cache->list);
7928 INIT_LIST_HEAD(&cache->cluster_list);
7929
7930 /*
7931 * we only want to have 32k of ram per block group for keeping
7932 * track of free space, and if we pass 1/2 of that we want to
7933 * start converting things over to using bitmaps
7934 */
7935 cache->extents_thresh = ((1024 * 32) / 2) /
7936 sizeof(struct btrfs_free_space);
7937
7938 read_extent_buffer(leaf, &cache->item,
7939 btrfs_item_ptr_offset(leaf, path->slots[0]),
7940 sizeof(cache->item));
7941 memcpy(&cache->key, &found_key, sizeof(found_key));
7942
7943 key.objectid = found_key.objectid + found_key.offset;
7944 btrfs_release_path(root, path);
7945 cache->flags = btrfs_block_group_flags(&cache->item);
7946 cache->sectorsize = root->sectorsize;
7947
7948 /*
7949 * check for two cases, either we are full, and therefore
7950 * don't need to bother with the caching work since we won't
7951 * find any space, or we are empty, and we can just add all
7952 * the space in and be done with it. This saves us _alot_ of
7953 * time, particularly in the full case.
7954 */
7955 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7956 exclude_super_stripes(root, cache);
7957 cache->last_byte_to_unpin = (u64)-1;
7958 cache->cached = BTRFS_CACHE_FINISHED;
7959 free_excluded_extents(root, cache);
7960 } else if (btrfs_block_group_used(&cache->item) == 0) {
7961 exclude_super_stripes(root, cache);
7962 cache->last_byte_to_unpin = (u64)-1;
7963 cache->cached = BTRFS_CACHE_FINISHED;
7964 add_new_free_space(cache, root->fs_info,
7965 found_key.objectid,
7966 found_key.objectid +
7967 found_key.offset);
7968 free_excluded_extents(root, cache);
7969 }
7970
7971 ret = update_space_info(info, cache->flags, found_key.offset,
7972 btrfs_block_group_used(&cache->item),
7973 &space_info);
7974 BUG_ON(ret);
7975 cache->space_info = space_info;
7976 spin_lock(&cache->space_info->lock);
7977 cache->space_info->bytes_readonly += cache->bytes_super;
7978 spin_unlock(&cache->space_info->lock);
7979
7980 __link_block_group(space_info, cache);
7981
7982 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7983 BUG_ON(ret);
7984
7985 set_avail_alloc_bits(root->fs_info, cache->flags);
7986 if (btrfs_chunk_readonly(root, cache->key.objectid))
7987 set_block_group_ro(cache);
7988 }
7989
7990 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7991 if (!(get_alloc_profile(root, space_info->flags) &
7992 (BTRFS_BLOCK_GROUP_RAID10 |
7993 BTRFS_BLOCK_GROUP_RAID1 |
7994 BTRFS_BLOCK_GROUP_DUP)))
7995 continue;
7996 /*
7997 * avoid allocating from un-mirrored block group if there are
7998 * mirrored block groups.
7999 */
8000 list_for_each_entry(cache, &space_info->block_groups[3], list)
8001 set_block_group_ro(cache);
8002 list_for_each_entry(cache, &space_info->block_groups[4], list)
8003 set_block_group_ro(cache);
8004 }
8005
8006 init_global_block_rsv(info);
8007 ret = 0;
8008 error:
8009 btrfs_free_path(path);
8010 return ret;
8011 }
8012
8013 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8014 struct btrfs_root *root, u64 bytes_used,
8015 u64 type, u64 chunk_objectid, u64 chunk_offset,
8016 u64 size)
8017 {
8018 int ret;
8019 struct btrfs_root *extent_root;
8020 struct btrfs_block_group_cache *cache;
8021
8022 extent_root = root->fs_info->extent_root;
8023
8024 root->fs_info->last_trans_log_full_commit = trans->transid;
8025
8026 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8027 if (!cache)
8028 return -ENOMEM;
8029
8030 cache->key.objectid = chunk_offset;
8031 cache->key.offset = size;
8032 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8033 cache->sectorsize = root->sectorsize;
8034
8035 /*
8036 * we only want to have 32k of ram per block group for keeping track
8037 * of free space, and if we pass 1/2 of that we want to start
8038 * converting things over to using bitmaps
8039 */
8040 cache->extents_thresh = ((1024 * 32) / 2) /
8041 sizeof(struct btrfs_free_space);
8042 atomic_set(&cache->count, 1);
8043 spin_lock_init(&cache->lock);
8044 spin_lock_init(&cache->tree_lock);
8045 INIT_LIST_HEAD(&cache->list);
8046 INIT_LIST_HEAD(&cache->cluster_list);
8047
8048 btrfs_set_block_group_used(&cache->item, bytes_used);
8049 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8050 cache->flags = type;
8051 btrfs_set_block_group_flags(&cache->item, type);
8052
8053 cache->last_byte_to_unpin = (u64)-1;
8054 cache->cached = BTRFS_CACHE_FINISHED;
8055 exclude_super_stripes(root, cache);
8056
8057 add_new_free_space(cache, root->fs_info, chunk_offset,
8058 chunk_offset + size);
8059
8060 free_excluded_extents(root, cache);
8061
8062 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8063 &cache->space_info);
8064 BUG_ON(ret);
8065
8066 spin_lock(&cache->space_info->lock);
8067 cache->space_info->bytes_readonly += cache->bytes_super;
8068 spin_unlock(&cache->space_info->lock);
8069
8070 __link_block_group(cache->space_info, cache);
8071
8072 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8073 BUG_ON(ret);
8074
8075 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
8076 sizeof(cache->item));
8077 BUG_ON(ret);
8078
8079 set_avail_alloc_bits(extent_root->fs_info, type);
8080
8081 return 0;
8082 }
8083
8084 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8085 struct btrfs_root *root, u64 group_start)
8086 {
8087 struct btrfs_path *path;
8088 struct btrfs_block_group_cache *block_group;
8089 struct btrfs_free_cluster *cluster;
8090 struct btrfs_key key;
8091 int ret;
8092
8093 root = root->fs_info->extent_root;
8094
8095 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8096 BUG_ON(!block_group);
8097 BUG_ON(!block_group->ro);
8098
8099 memcpy(&key, &block_group->key, sizeof(key));
8100
8101 /* make sure this block group isn't part of an allocation cluster */
8102 cluster = &root->fs_info->data_alloc_cluster;
8103 spin_lock(&cluster->refill_lock);
8104 btrfs_return_cluster_to_free_space(block_group, cluster);
8105 spin_unlock(&cluster->refill_lock);
8106
8107 /*
8108 * make sure this block group isn't part of a metadata
8109 * allocation cluster
8110 */
8111 cluster = &root->fs_info->meta_alloc_cluster;
8112 spin_lock(&cluster->refill_lock);
8113 btrfs_return_cluster_to_free_space(block_group, cluster);
8114 spin_unlock(&cluster->refill_lock);
8115
8116 path = btrfs_alloc_path();
8117 BUG_ON(!path);
8118
8119 spin_lock(&root->fs_info->block_group_cache_lock);
8120 rb_erase(&block_group->cache_node,
8121 &root->fs_info->block_group_cache_tree);
8122 spin_unlock(&root->fs_info->block_group_cache_lock);
8123
8124 down_write(&block_group->space_info->groups_sem);
8125 /*
8126 * we must use list_del_init so people can check to see if they
8127 * are still on the list after taking the semaphore
8128 */
8129 list_del_init(&block_group->list);
8130 up_write(&block_group->space_info->groups_sem);
8131
8132 if (block_group->cached == BTRFS_CACHE_STARTED)
8133 wait_block_group_cache_done(block_group);
8134
8135 btrfs_remove_free_space_cache(block_group);
8136
8137 spin_lock(&block_group->space_info->lock);
8138 block_group->space_info->total_bytes -= block_group->key.offset;
8139 block_group->space_info->bytes_readonly -= block_group->key.offset;
8140 spin_unlock(&block_group->space_info->lock);
8141
8142 btrfs_clear_space_info_full(root->fs_info);
8143
8144 btrfs_put_block_group(block_group);
8145 btrfs_put_block_group(block_group);
8146
8147 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8148 if (ret > 0)
8149 ret = -EIO;
8150 if (ret < 0)
8151 goto out;
8152
8153 ret = btrfs_del_item(trans, root, path);
8154 out:
8155 btrfs_free_path(path);
8156 return ret;
8157 }