Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
35
36 static int update_block_group(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 u64 bytenr, u64 num_bytes, int alloc);
39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
40 u64 num_bytes, int reserve, int sinfo);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 u64 bytenr, u64 num_bytes, u64 parent,
44 u64 root_objectid, u64 owner_objectid,
45 u64 owner_offset, int refs_to_drop,
46 struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 struct extent_buffer *leaf,
49 struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 parent, u64 root_objectid,
58 u64 flags, struct btrfs_disk_key *key,
59 int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 struct btrfs_root *extent_root, u64 alloc_bytes,
62 u64 flags, int force);
63 static int find_next_key(struct btrfs_path *path, int level,
64 struct btrfs_key *key);
65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
66 int dump_block_groups);
67
68 static noinline int
69 block_group_cache_done(struct btrfs_block_group_cache *cache)
70 {
71 smp_mb();
72 return cache->cached == BTRFS_CACHE_FINISHED;
73 }
74
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
76 {
77 return (cache->flags & bits) == bits;
78 }
79
80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
81 {
82 atomic_inc(&cache->count);
83 }
84
85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
86 {
87 if (atomic_dec_and_test(&cache->count)) {
88 WARN_ON(cache->pinned > 0);
89 WARN_ON(cache->reserved > 0);
90 WARN_ON(cache->reserved_pinned > 0);
91 kfree(cache);
92 }
93 }
94
95 /*
96 * this adds the block group to the fs_info rb tree for the block group
97 * cache
98 */
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
100 struct btrfs_block_group_cache *block_group)
101 {
102 struct rb_node **p;
103 struct rb_node *parent = NULL;
104 struct btrfs_block_group_cache *cache;
105
106 spin_lock(&info->block_group_cache_lock);
107 p = &info->block_group_cache_tree.rb_node;
108
109 while (*p) {
110 parent = *p;
111 cache = rb_entry(parent, struct btrfs_block_group_cache,
112 cache_node);
113 if (block_group->key.objectid < cache->key.objectid) {
114 p = &(*p)->rb_left;
115 } else if (block_group->key.objectid > cache->key.objectid) {
116 p = &(*p)->rb_right;
117 } else {
118 spin_unlock(&info->block_group_cache_lock);
119 return -EEXIST;
120 }
121 }
122
123 rb_link_node(&block_group->cache_node, parent, p);
124 rb_insert_color(&block_group->cache_node,
125 &info->block_group_cache_tree);
126 spin_unlock(&info->block_group_cache_lock);
127
128 return 0;
129 }
130
131 /*
132 * This will return the block group at or after bytenr if contains is 0, else
133 * it will return the block group that contains the bytenr
134 */
135 static struct btrfs_block_group_cache *
136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
137 int contains)
138 {
139 struct btrfs_block_group_cache *cache, *ret = NULL;
140 struct rb_node *n;
141 u64 end, start;
142
143 spin_lock(&info->block_group_cache_lock);
144 n = info->block_group_cache_tree.rb_node;
145
146 while (n) {
147 cache = rb_entry(n, struct btrfs_block_group_cache,
148 cache_node);
149 end = cache->key.objectid + cache->key.offset - 1;
150 start = cache->key.objectid;
151
152 if (bytenr < start) {
153 if (!contains && (!ret || start < ret->key.objectid))
154 ret = cache;
155 n = n->rb_left;
156 } else if (bytenr > start) {
157 if (contains && bytenr <= end) {
158 ret = cache;
159 break;
160 }
161 n = n->rb_right;
162 } else {
163 ret = cache;
164 break;
165 }
166 }
167 if (ret)
168 btrfs_get_block_group(ret);
169 spin_unlock(&info->block_group_cache_lock);
170
171 return ret;
172 }
173
174 static int add_excluded_extent(struct btrfs_root *root,
175 u64 start, u64 num_bytes)
176 {
177 u64 end = start + num_bytes - 1;
178 set_extent_bits(&root->fs_info->freed_extents[0],
179 start, end, EXTENT_UPTODATE, GFP_NOFS);
180 set_extent_bits(&root->fs_info->freed_extents[1],
181 start, end, EXTENT_UPTODATE, GFP_NOFS);
182 return 0;
183 }
184
185 static void free_excluded_extents(struct btrfs_root *root,
186 struct btrfs_block_group_cache *cache)
187 {
188 u64 start, end;
189
190 start = cache->key.objectid;
191 end = start + cache->key.offset - 1;
192
193 clear_extent_bits(&root->fs_info->freed_extents[0],
194 start, end, EXTENT_UPTODATE, GFP_NOFS);
195 clear_extent_bits(&root->fs_info->freed_extents[1],
196 start, end, EXTENT_UPTODATE, GFP_NOFS);
197 }
198
199 static int exclude_super_stripes(struct btrfs_root *root,
200 struct btrfs_block_group_cache *cache)
201 {
202 u64 bytenr;
203 u64 *logical;
204 int stripe_len;
205 int i, nr, ret;
206
207 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
208 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
209 cache->bytes_super += stripe_len;
210 ret = add_excluded_extent(root, cache->key.objectid,
211 stripe_len);
212 BUG_ON(ret);
213 }
214
215 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
216 bytenr = btrfs_sb_offset(i);
217 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
218 cache->key.objectid, bytenr,
219 0, &logical, &nr, &stripe_len);
220 BUG_ON(ret);
221
222 while (nr--) {
223 cache->bytes_super += stripe_len;
224 ret = add_excluded_extent(root, logical[nr],
225 stripe_len);
226 BUG_ON(ret);
227 }
228
229 kfree(logical);
230 }
231 return 0;
232 }
233
234 static struct btrfs_caching_control *
235 get_caching_control(struct btrfs_block_group_cache *cache)
236 {
237 struct btrfs_caching_control *ctl;
238
239 spin_lock(&cache->lock);
240 if (cache->cached != BTRFS_CACHE_STARTED) {
241 spin_unlock(&cache->lock);
242 return NULL;
243 }
244
245 /* We're loading it the fast way, so we don't have a caching_ctl. */
246 if (!cache->caching_ctl) {
247 spin_unlock(&cache->lock);
248 return NULL;
249 }
250
251 ctl = cache->caching_ctl;
252 atomic_inc(&ctl->count);
253 spin_unlock(&cache->lock);
254 return ctl;
255 }
256
257 static void put_caching_control(struct btrfs_caching_control *ctl)
258 {
259 if (atomic_dec_and_test(&ctl->count))
260 kfree(ctl);
261 }
262
263 /*
264 * this is only called by cache_block_group, since we could have freed extents
265 * we need to check the pinned_extents for any extents that can't be used yet
266 * since their free space will be released as soon as the transaction commits.
267 */
268 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
269 struct btrfs_fs_info *info, u64 start, u64 end)
270 {
271 u64 extent_start, extent_end, size, total_added = 0;
272 int ret;
273
274 while (start < end) {
275 ret = find_first_extent_bit(info->pinned_extents, start,
276 &extent_start, &extent_end,
277 EXTENT_DIRTY | EXTENT_UPTODATE);
278 if (ret)
279 break;
280
281 if (extent_start <= start) {
282 start = extent_end + 1;
283 } else if (extent_start > start && extent_start < end) {
284 size = extent_start - start;
285 total_added += size;
286 ret = btrfs_add_free_space(block_group, start,
287 size);
288 BUG_ON(ret);
289 start = extent_end + 1;
290 } else {
291 break;
292 }
293 }
294
295 if (start < end) {
296 size = end - start;
297 total_added += size;
298 ret = btrfs_add_free_space(block_group, start, size);
299 BUG_ON(ret);
300 }
301
302 return total_added;
303 }
304
305 static int caching_kthread(void *data)
306 {
307 struct btrfs_block_group_cache *block_group = data;
308 struct btrfs_fs_info *fs_info = block_group->fs_info;
309 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
310 struct btrfs_root *extent_root = fs_info->extent_root;
311 struct btrfs_path *path;
312 struct extent_buffer *leaf;
313 struct btrfs_key key;
314 u64 total_found = 0;
315 u64 last = 0;
316 u32 nritems;
317 int ret = 0;
318
319 path = btrfs_alloc_path();
320 if (!path)
321 return -ENOMEM;
322
323 exclude_super_stripes(extent_root, block_group);
324 spin_lock(&block_group->space_info->lock);
325 block_group->space_info->bytes_readonly += block_group->bytes_super;
326 spin_unlock(&block_group->space_info->lock);
327
328 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
329
330 /*
331 * We don't want to deadlock with somebody trying to allocate a new
332 * extent for the extent root while also trying to search the extent
333 * root to add free space. So we skip locking and search the commit
334 * root, since its read-only
335 */
336 path->skip_locking = 1;
337 path->search_commit_root = 1;
338 path->reada = 2;
339
340 key.objectid = last;
341 key.offset = 0;
342 key.type = BTRFS_EXTENT_ITEM_KEY;
343 again:
344 mutex_lock(&caching_ctl->mutex);
345 /* need to make sure the commit_root doesn't disappear */
346 down_read(&fs_info->extent_commit_sem);
347
348 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
349 if (ret < 0)
350 goto err;
351
352 leaf = path->nodes[0];
353 nritems = btrfs_header_nritems(leaf);
354
355 while (1) {
356 smp_mb();
357 if (fs_info->closing > 1) {
358 last = (u64)-1;
359 break;
360 }
361
362 if (path->slots[0] < nritems) {
363 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
364 } else {
365 ret = find_next_key(path, 0, &key);
366 if (ret)
367 break;
368
369 caching_ctl->progress = last;
370 btrfs_release_path(extent_root, path);
371 up_read(&fs_info->extent_commit_sem);
372 mutex_unlock(&caching_ctl->mutex);
373 if (btrfs_transaction_in_commit(fs_info))
374 schedule_timeout(1);
375 else
376 cond_resched();
377 goto again;
378 }
379
380 if (key.objectid < block_group->key.objectid) {
381 path->slots[0]++;
382 continue;
383 }
384
385 if (key.objectid >= block_group->key.objectid +
386 block_group->key.offset)
387 break;
388
389 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
390 total_found += add_new_free_space(block_group,
391 fs_info, last,
392 key.objectid);
393 last = key.objectid + key.offset;
394
395 if (total_found > (1024 * 1024 * 2)) {
396 total_found = 0;
397 wake_up(&caching_ctl->wait);
398 }
399 }
400 path->slots[0]++;
401 }
402 ret = 0;
403
404 total_found += add_new_free_space(block_group, fs_info, last,
405 block_group->key.objectid +
406 block_group->key.offset);
407 caching_ctl->progress = (u64)-1;
408
409 spin_lock(&block_group->lock);
410 block_group->caching_ctl = NULL;
411 block_group->cached = BTRFS_CACHE_FINISHED;
412 spin_unlock(&block_group->lock);
413
414 err:
415 btrfs_free_path(path);
416 up_read(&fs_info->extent_commit_sem);
417
418 free_excluded_extents(extent_root, block_group);
419
420 mutex_unlock(&caching_ctl->mutex);
421 wake_up(&caching_ctl->wait);
422
423 put_caching_control(caching_ctl);
424 atomic_dec(&block_group->space_info->caching_threads);
425 btrfs_put_block_group(block_group);
426
427 return 0;
428 }
429
430 static int cache_block_group(struct btrfs_block_group_cache *cache,
431 struct btrfs_trans_handle *trans,
432 struct btrfs_root *root,
433 int load_cache_only)
434 {
435 struct btrfs_fs_info *fs_info = cache->fs_info;
436 struct btrfs_caching_control *caching_ctl;
437 struct task_struct *tsk;
438 int ret = 0;
439
440 smp_mb();
441 if (cache->cached != BTRFS_CACHE_NO)
442 return 0;
443
444 /*
445 * We can't do the read from on-disk cache during a commit since we need
446 * to have the normal tree locking. Also if we are currently trying to
447 * allocate blocks for the tree root we can't do the fast caching since
448 * we likely hold important locks.
449 */
450 if (!trans->transaction->in_commit &&
451 (root && root != root->fs_info->tree_root)) {
452 spin_lock(&cache->lock);
453 if (cache->cached != BTRFS_CACHE_NO) {
454 spin_unlock(&cache->lock);
455 return 0;
456 }
457 cache->cached = BTRFS_CACHE_STARTED;
458 spin_unlock(&cache->lock);
459
460 ret = load_free_space_cache(fs_info, cache);
461
462 spin_lock(&cache->lock);
463 if (ret == 1) {
464 cache->cached = BTRFS_CACHE_FINISHED;
465 cache->last_byte_to_unpin = (u64)-1;
466 } else {
467 cache->cached = BTRFS_CACHE_NO;
468 }
469 spin_unlock(&cache->lock);
470 if (ret == 1)
471 return 0;
472 }
473
474 if (load_cache_only)
475 return 0;
476
477 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
478 BUG_ON(!caching_ctl);
479
480 INIT_LIST_HEAD(&caching_ctl->list);
481 mutex_init(&caching_ctl->mutex);
482 init_waitqueue_head(&caching_ctl->wait);
483 caching_ctl->block_group = cache;
484 caching_ctl->progress = cache->key.objectid;
485 /* one for caching kthread, one for caching block group list */
486 atomic_set(&caching_ctl->count, 2);
487
488 spin_lock(&cache->lock);
489 if (cache->cached != BTRFS_CACHE_NO) {
490 spin_unlock(&cache->lock);
491 kfree(caching_ctl);
492 return 0;
493 }
494 cache->caching_ctl = caching_ctl;
495 cache->cached = BTRFS_CACHE_STARTED;
496 spin_unlock(&cache->lock);
497
498 down_write(&fs_info->extent_commit_sem);
499 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
500 up_write(&fs_info->extent_commit_sem);
501
502 atomic_inc(&cache->space_info->caching_threads);
503 btrfs_get_block_group(cache);
504
505 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
506 cache->key.objectid);
507 if (IS_ERR(tsk)) {
508 ret = PTR_ERR(tsk);
509 printk(KERN_ERR "error running thread %d\n", ret);
510 BUG();
511 }
512
513 return ret;
514 }
515
516 /*
517 * return the block group that starts at or after bytenr
518 */
519 static struct btrfs_block_group_cache *
520 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
521 {
522 struct btrfs_block_group_cache *cache;
523
524 cache = block_group_cache_tree_search(info, bytenr, 0);
525
526 return cache;
527 }
528
529 /*
530 * return the block group that contains the given bytenr
531 */
532 struct btrfs_block_group_cache *btrfs_lookup_block_group(
533 struct btrfs_fs_info *info,
534 u64 bytenr)
535 {
536 struct btrfs_block_group_cache *cache;
537
538 cache = block_group_cache_tree_search(info, bytenr, 1);
539
540 return cache;
541 }
542
543 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
544 u64 flags)
545 {
546 struct list_head *head = &info->space_info;
547 struct btrfs_space_info *found;
548
549 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
550 BTRFS_BLOCK_GROUP_METADATA;
551
552 rcu_read_lock();
553 list_for_each_entry_rcu(found, head, list) {
554 if (found->flags & flags) {
555 rcu_read_unlock();
556 return found;
557 }
558 }
559 rcu_read_unlock();
560 return NULL;
561 }
562
563 /*
564 * after adding space to the filesystem, we need to clear the full flags
565 * on all the space infos.
566 */
567 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
568 {
569 struct list_head *head = &info->space_info;
570 struct btrfs_space_info *found;
571
572 rcu_read_lock();
573 list_for_each_entry_rcu(found, head, list)
574 found->full = 0;
575 rcu_read_unlock();
576 }
577
578 static u64 div_factor(u64 num, int factor)
579 {
580 if (factor == 10)
581 return num;
582 num *= factor;
583 do_div(num, 10);
584 return num;
585 }
586
587 static u64 div_factor_fine(u64 num, int factor)
588 {
589 if (factor == 100)
590 return num;
591 num *= factor;
592 do_div(num, 100);
593 return num;
594 }
595
596 u64 btrfs_find_block_group(struct btrfs_root *root,
597 u64 search_start, u64 search_hint, int owner)
598 {
599 struct btrfs_block_group_cache *cache;
600 u64 used;
601 u64 last = max(search_hint, search_start);
602 u64 group_start = 0;
603 int full_search = 0;
604 int factor = 9;
605 int wrapped = 0;
606 again:
607 while (1) {
608 cache = btrfs_lookup_first_block_group(root->fs_info, last);
609 if (!cache)
610 break;
611
612 spin_lock(&cache->lock);
613 last = cache->key.objectid + cache->key.offset;
614 used = btrfs_block_group_used(&cache->item);
615
616 if ((full_search || !cache->ro) &&
617 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
618 if (used + cache->pinned + cache->reserved <
619 div_factor(cache->key.offset, factor)) {
620 group_start = cache->key.objectid;
621 spin_unlock(&cache->lock);
622 btrfs_put_block_group(cache);
623 goto found;
624 }
625 }
626 spin_unlock(&cache->lock);
627 btrfs_put_block_group(cache);
628 cond_resched();
629 }
630 if (!wrapped) {
631 last = search_start;
632 wrapped = 1;
633 goto again;
634 }
635 if (!full_search && factor < 10) {
636 last = search_start;
637 full_search = 1;
638 factor = 10;
639 goto again;
640 }
641 found:
642 return group_start;
643 }
644
645 /* simple helper to search for an existing extent at a given offset */
646 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
647 {
648 int ret;
649 struct btrfs_key key;
650 struct btrfs_path *path;
651
652 path = btrfs_alloc_path();
653 BUG_ON(!path);
654 key.objectid = start;
655 key.offset = len;
656 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
657 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
658 0, 0);
659 btrfs_free_path(path);
660 return ret;
661 }
662
663 /*
664 * helper function to lookup reference count and flags of extent.
665 *
666 * the head node for delayed ref is used to store the sum of all the
667 * reference count modifications queued up in the rbtree. the head
668 * node may also store the extent flags to set. This way you can check
669 * to see what the reference count and extent flags would be if all of
670 * the delayed refs are not processed.
671 */
672 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
673 struct btrfs_root *root, u64 bytenr,
674 u64 num_bytes, u64 *refs, u64 *flags)
675 {
676 struct btrfs_delayed_ref_head *head;
677 struct btrfs_delayed_ref_root *delayed_refs;
678 struct btrfs_path *path;
679 struct btrfs_extent_item *ei;
680 struct extent_buffer *leaf;
681 struct btrfs_key key;
682 u32 item_size;
683 u64 num_refs;
684 u64 extent_flags;
685 int ret;
686
687 path = btrfs_alloc_path();
688 if (!path)
689 return -ENOMEM;
690
691 key.objectid = bytenr;
692 key.type = BTRFS_EXTENT_ITEM_KEY;
693 key.offset = num_bytes;
694 if (!trans) {
695 path->skip_locking = 1;
696 path->search_commit_root = 1;
697 }
698 again:
699 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
700 &key, path, 0, 0);
701 if (ret < 0)
702 goto out_free;
703
704 if (ret == 0) {
705 leaf = path->nodes[0];
706 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
707 if (item_size >= sizeof(*ei)) {
708 ei = btrfs_item_ptr(leaf, path->slots[0],
709 struct btrfs_extent_item);
710 num_refs = btrfs_extent_refs(leaf, ei);
711 extent_flags = btrfs_extent_flags(leaf, ei);
712 } else {
713 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
714 struct btrfs_extent_item_v0 *ei0;
715 BUG_ON(item_size != sizeof(*ei0));
716 ei0 = btrfs_item_ptr(leaf, path->slots[0],
717 struct btrfs_extent_item_v0);
718 num_refs = btrfs_extent_refs_v0(leaf, ei0);
719 /* FIXME: this isn't correct for data */
720 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
721 #else
722 BUG();
723 #endif
724 }
725 BUG_ON(num_refs == 0);
726 } else {
727 num_refs = 0;
728 extent_flags = 0;
729 ret = 0;
730 }
731
732 if (!trans)
733 goto out;
734
735 delayed_refs = &trans->transaction->delayed_refs;
736 spin_lock(&delayed_refs->lock);
737 head = btrfs_find_delayed_ref_head(trans, bytenr);
738 if (head) {
739 if (!mutex_trylock(&head->mutex)) {
740 atomic_inc(&head->node.refs);
741 spin_unlock(&delayed_refs->lock);
742
743 btrfs_release_path(root->fs_info->extent_root, path);
744
745 mutex_lock(&head->mutex);
746 mutex_unlock(&head->mutex);
747 btrfs_put_delayed_ref(&head->node);
748 goto again;
749 }
750 if (head->extent_op && head->extent_op->update_flags)
751 extent_flags |= head->extent_op->flags_to_set;
752 else
753 BUG_ON(num_refs == 0);
754
755 num_refs += head->node.ref_mod;
756 mutex_unlock(&head->mutex);
757 }
758 spin_unlock(&delayed_refs->lock);
759 out:
760 WARN_ON(num_refs == 0);
761 if (refs)
762 *refs = num_refs;
763 if (flags)
764 *flags = extent_flags;
765 out_free:
766 btrfs_free_path(path);
767 return ret;
768 }
769
770 /*
771 * Back reference rules. Back refs have three main goals:
772 *
773 * 1) differentiate between all holders of references to an extent so that
774 * when a reference is dropped we can make sure it was a valid reference
775 * before freeing the extent.
776 *
777 * 2) Provide enough information to quickly find the holders of an extent
778 * if we notice a given block is corrupted or bad.
779 *
780 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
781 * maintenance. This is actually the same as #2, but with a slightly
782 * different use case.
783 *
784 * There are two kinds of back refs. The implicit back refs is optimized
785 * for pointers in non-shared tree blocks. For a given pointer in a block,
786 * back refs of this kind provide information about the block's owner tree
787 * and the pointer's key. These information allow us to find the block by
788 * b-tree searching. The full back refs is for pointers in tree blocks not
789 * referenced by their owner trees. The location of tree block is recorded
790 * in the back refs. Actually the full back refs is generic, and can be
791 * used in all cases the implicit back refs is used. The major shortcoming
792 * of the full back refs is its overhead. Every time a tree block gets
793 * COWed, we have to update back refs entry for all pointers in it.
794 *
795 * For a newly allocated tree block, we use implicit back refs for
796 * pointers in it. This means most tree related operations only involve
797 * implicit back refs. For a tree block created in old transaction, the
798 * only way to drop a reference to it is COW it. So we can detect the
799 * event that tree block loses its owner tree's reference and do the
800 * back refs conversion.
801 *
802 * When a tree block is COW'd through a tree, there are four cases:
803 *
804 * The reference count of the block is one and the tree is the block's
805 * owner tree. Nothing to do in this case.
806 *
807 * The reference count of the block is one and the tree is not the
808 * block's owner tree. In this case, full back refs is used for pointers
809 * in the block. Remove these full back refs, add implicit back refs for
810 * every pointers in the new block.
811 *
812 * The reference count of the block is greater than one and the tree is
813 * the block's owner tree. In this case, implicit back refs is used for
814 * pointers in the block. Add full back refs for every pointers in the
815 * block, increase lower level extents' reference counts. The original
816 * implicit back refs are entailed to the new block.
817 *
818 * The reference count of the block is greater than one and the tree is
819 * not the block's owner tree. Add implicit back refs for every pointer in
820 * the new block, increase lower level extents' reference count.
821 *
822 * Back Reference Key composing:
823 *
824 * The key objectid corresponds to the first byte in the extent,
825 * The key type is used to differentiate between types of back refs.
826 * There are different meanings of the key offset for different types
827 * of back refs.
828 *
829 * File extents can be referenced by:
830 *
831 * - multiple snapshots, subvolumes, or different generations in one subvol
832 * - different files inside a single subvolume
833 * - different offsets inside a file (bookend extents in file.c)
834 *
835 * The extent ref structure for the implicit back refs has fields for:
836 *
837 * - Objectid of the subvolume root
838 * - objectid of the file holding the reference
839 * - original offset in the file
840 * - how many bookend extents
841 *
842 * The key offset for the implicit back refs is hash of the first
843 * three fields.
844 *
845 * The extent ref structure for the full back refs has field for:
846 *
847 * - number of pointers in the tree leaf
848 *
849 * The key offset for the implicit back refs is the first byte of
850 * the tree leaf
851 *
852 * When a file extent is allocated, The implicit back refs is used.
853 * the fields are filled in:
854 *
855 * (root_key.objectid, inode objectid, offset in file, 1)
856 *
857 * When a file extent is removed file truncation, we find the
858 * corresponding implicit back refs and check the following fields:
859 *
860 * (btrfs_header_owner(leaf), inode objectid, offset in file)
861 *
862 * Btree extents can be referenced by:
863 *
864 * - Different subvolumes
865 *
866 * Both the implicit back refs and the full back refs for tree blocks
867 * only consist of key. The key offset for the implicit back refs is
868 * objectid of block's owner tree. The key offset for the full back refs
869 * is the first byte of parent block.
870 *
871 * When implicit back refs is used, information about the lowest key and
872 * level of the tree block are required. These information are stored in
873 * tree block info structure.
874 */
875
876 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
877 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
878 struct btrfs_root *root,
879 struct btrfs_path *path,
880 u64 owner, u32 extra_size)
881 {
882 struct btrfs_extent_item *item;
883 struct btrfs_extent_item_v0 *ei0;
884 struct btrfs_extent_ref_v0 *ref0;
885 struct btrfs_tree_block_info *bi;
886 struct extent_buffer *leaf;
887 struct btrfs_key key;
888 struct btrfs_key found_key;
889 u32 new_size = sizeof(*item);
890 u64 refs;
891 int ret;
892
893 leaf = path->nodes[0];
894 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
895
896 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
897 ei0 = btrfs_item_ptr(leaf, path->slots[0],
898 struct btrfs_extent_item_v0);
899 refs = btrfs_extent_refs_v0(leaf, ei0);
900
901 if (owner == (u64)-1) {
902 while (1) {
903 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
904 ret = btrfs_next_leaf(root, path);
905 if (ret < 0)
906 return ret;
907 BUG_ON(ret > 0);
908 leaf = path->nodes[0];
909 }
910 btrfs_item_key_to_cpu(leaf, &found_key,
911 path->slots[0]);
912 BUG_ON(key.objectid != found_key.objectid);
913 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
914 path->slots[0]++;
915 continue;
916 }
917 ref0 = btrfs_item_ptr(leaf, path->slots[0],
918 struct btrfs_extent_ref_v0);
919 owner = btrfs_ref_objectid_v0(leaf, ref0);
920 break;
921 }
922 }
923 btrfs_release_path(root, path);
924
925 if (owner < BTRFS_FIRST_FREE_OBJECTID)
926 new_size += sizeof(*bi);
927
928 new_size -= sizeof(*ei0);
929 ret = btrfs_search_slot(trans, root, &key, path,
930 new_size + extra_size, 1);
931 if (ret < 0)
932 return ret;
933 BUG_ON(ret);
934
935 ret = btrfs_extend_item(trans, root, path, new_size);
936 BUG_ON(ret);
937
938 leaf = path->nodes[0];
939 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
940 btrfs_set_extent_refs(leaf, item, refs);
941 /* FIXME: get real generation */
942 btrfs_set_extent_generation(leaf, item, 0);
943 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
944 btrfs_set_extent_flags(leaf, item,
945 BTRFS_EXTENT_FLAG_TREE_BLOCK |
946 BTRFS_BLOCK_FLAG_FULL_BACKREF);
947 bi = (struct btrfs_tree_block_info *)(item + 1);
948 /* FIXME: get first key of the block */
949 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
950 btrfs_set_tree_block_level(leaf, bi, (int)owner);
951 } else {
952 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
953 }
954 btrfs_mark_buffer_dirty(leaf);
955 return 0;
956 }
957 #endif
958
959 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
960 {
961 u32 high_crc = ~(u32)0;
962 u32 low_crc = ~(u32)0;
963 __le64 lenum;
964
965 lenum = cpu_to_le64(root_objectid);
966 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
967 lenum = cpu_to_le64(owner);
968 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
969 lenum = cpu_to_le64(offset);
970 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
971
972 return ((u64)high_crc << 31) ^ (u64)low_crc;
973 }
974
975 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
976 struct btrfs_extent_data_ref *ref)
977 {
978 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
979 btrfs_extent_data_ref_objectid(leaf, ref),
980 btrfs_extent_data_ref_offset(leaf, ref));
981 }
982
983 static int match_extent_data_ref(struct extent_buffer *leaf,
984 struct btrfs_extent_data_ref *ref,
985 u64 root_objectid, u64 owner, u64 offset)
986 {
987 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
988 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
989 btrfs_extent_data_ref_offset(leaf, ref) != offset)
990 return 0;
991 return 1;
992 }
993
994 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
995 struct btrfs_root *root,
996 struct btrfs_path *path,
997 u64 bytenr, u64 parent,
998 u64 root_objectid,
999 u64 owner, u64 offset)
1000 {
1001 struct btrfs_key key;
1002 struct btrfs_extent_data_ref *ref;
1003 struct extent_buffer *leaf;
1004 u32 nritems;
1005 int ret;
1006 int recow;
1007 int err = -ENOENT;
1008
1009 key.objectid = bytenr;
1010 if (parent) {
1011 key.type = BTRFS_SHARED_DATA_REF_KEY;
1012 key.offset = parent;
1013 } else {
1014 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1015 key.offset = hash_extent_data_ref(root_objectid,
1016 owner, offset);
1017 }
1018 again:
1019 recow = 0;
1020 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1021 if (ret < 0) {
1022 err = ret;
1023 goto fail;
1024 }
1025
1026 if (parent) {
1027 if (!ret)
1028 return 0;
1029 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1030 key.type = BTRFS_EXTENT_REF_V0_KEY;
1031 btrfs_release_path(root, path);
1032 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1033 if (ret < 0) {
1034 err = ret;
1035 goto fail;
1036 }
1037 if (!ret)
1038 return 0;
1039 #endif
1040 goto fail;
1041 }
1042
1043 leaf = path->nodes[0];
1044 nritems = btrfs_header_nritems(leaf);
1045 while (1) {
1046 if (path->slots[0] >= nritems) {
1047 ret = btrfs_next_leaf(root, path);
1048 if (ret < 0)
1049 err = ret;
1050 if (ret)
1051 goto fail;
1052
1053 leaf = path->nodes[0];
1054 nritems = btrfs_header_nritems(leaf);
1055 recow = 1;
1056 }
1057
1058 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1059 if (key.objectid != bytenr ||
1060 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1061 goto fail;
1062
1063 ref = btrfs_item_ptr(leaf, path->slots[0],
1064 struct btrfs_extent_data_ref);
1065
1066 if (match_extent_data_ref(leaf, ref, root_objectid,
1067 owner, offset)) {
1068 if (recow) {
1069 btrfs_release_path(root, path);
1070 goto again;
1071 }
1072 err = 0;
1073 break;
1074 }
1075 path->slots[0]++;
1076 }
1077 fail:
1078 return err;
1079 }
1080
1081 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1082 struct btrfs_root *root,
1083 struct btrfs_path *path,
1084 u64 bytenr, u64 parent,
1085 u64 root_objectid, u64 owner,
1086 u64 offset, int refs_to_add)
1087 {
1088 struct btrfs_key key;
1089 struct extent_buffer *leaf;
1090 u32 size;
1091 u32 num_refs;
1092 int ret;
1093
1094 key.objectid = bytenr;
1095 if (parent) {
1096 key.type = BTRFS_SHARED_DATA_REF_KEY;
1097 key.offset = parent;
1098 size = sizeof(struct btrfs_shared_data_ref);
1099 } else {
1100 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1101 key.offset = hash_extent_data_ref(root_objectid,
1102 owner, offset);
1103 size = sizeof(struct btrfs_extent_data_ref);
1104 }
1105
1106 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1107 if (ret && ret != -EEXIST)
1108 goto fail;
1109
1110 leaf = path->nodes[0];
1111 if (parent) {
1112 struct btrfs_shared_data_ref *ref;
1113 ref = btrfs_item_ptr(leaf, path->slots[0],
1114 struct btrfs_shared_data_ref);
1115 if (ret == 0) {
1116 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1117 } else {
1118 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1119 num_refs += refs_to_add;
1120 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1121 }
1122 } else {
1123 struct btrfs_extent_data_ref *ref;
1124 while (ret == -EEXIST) {
1125 ref = btrfs_item_ptr(leaf, path->slots[0],
1126 struct btrfs_extent_data_ref);
1127 if (match_extent_data_ref(leaf, ref, root_objectid,
1128 owner, offset))
1129 break;
1130 btrfs_release_path(root, path);
1131 key.offset++;
1132 ret = btrfs_insert_empty_item(trans, root, path, &key,
1133 size);
1134 if (ret && ret != -EEXIST)
1135 goto fail;
1136
1137 leaf = path->nodes[0];
1138 }
1139 ref = btrfs_item_ptr(leaf, path->slots[0],
1140 struct btrfs_extent_data_ref);
1141 if (ret == 0) {
1142 btrfs_set_extent_data_ref_root(leaf, ref,
1143 root_objectid);
1144 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1145 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1146 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1147 } else {
1148 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1149 num_refs += refs_to_add;
1150 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1151 }
1152 }
1153 btrfs_mark_buffer_dirty(leaf);
1154 ret = 0;
1155 fail:
1156 btrfs_release_path(root, path);
1157 return ret;
1158 }
1159
1160 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1161 struct btrfs_root *root,
1162 struct btrfs_path *path,
1163 int refs_to_drop)
1164 {
1165 struct btrfs_key key;
1166 struct btrfs_extent_data_ref *ref1 = NULL;
1167 struct btrfs_shared_data_ref *ref2 = NULL;
1168 struct extent_buffer *leaf;
1169 u32 num_refs = 0;
1170 int ret = 0;
1171
1172 leaf = path->nodes[0];
1173 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1174
1175 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1176 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1177 struct btrfs_extent_data_ref);
1178 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1179 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1180 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1181 struct btrfs_shared_data_ref);
1182 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1183 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1184 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1185 struct btrfs_extent_ref_v0 *ref0;
1186 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1187 struct btrfs_extent_ref_v0);
1188 num_refs = btrfs_ref_count_v0(leaf, ref0);
1189 #endif
1190 } else {
1191 BUG();
1192 }
1193
1194 BUG_ON(num_refs < refs_to_drop);
1195 num_refs -= refs_to_drop;
1196
1197 if (num_refs == 0) {
1198 ret = btrfs_del_item(trans, root, path);
1199 } else {
1200 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1201 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1202 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1203 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1204 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1205 else {
1206 struct btrfs_extent_ref_v0 *ref0;
1207 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_extent_ref_v0);
1209 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1210 }
1211 #endif
1212 btrfs_mark_buffer_dirty(leaf);
1213 }
1214 return ret;
1215 }
1216
1217 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1218 struct btrfs_path *path,
1219 struct btrfs_extent_inline_ref *iref)
1220 {
1221 struct btrfs_key key;
1222 struct extent_buffer *leaf;
1223 struct btrfs_extent_data_ref *ref1;
1224 struct btrfs_shared_data_ref *ref2;
1225 u32 num_refs = 0;
1226
1227 leaf = path->nodes[0];
1228 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1229 if (iref) {
1230 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1231 BTRFS_EXTENT_DATA_REF_KEY) {
1232 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1233 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1234 } else {
1235 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1236 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1237 }
1238 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1239 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_extent_data_ref);
1241 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1242 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1243 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1244 struct btrfs_shared_data_ref);
1245 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1246 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1247 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1248 struct btrfs_extent_ref_v0 *ref0;
1249 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_extent_ref_v0);
1251 num_refs = btrfs_ref_count_v0(leaf, ref0);
1252 #endif
1253 } else {
1254 WARN_ON(1);
1255 }
1256 return num_refs;
1257 }
1258
1259 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1260 struct btrfs_root *root,
1261 struct btrfs_path *path,
1262 u64 bytenr, u64 parent,
1263 u64 root_objectid)
1264 {
1265 struct btrfs_key key;
1266 int ret;
1267
1268 key.objectid = bytenr;
1269 if (parent) {
1270 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1271 key.offset = parent;
1272 } else {
1273 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1274 key.offset = root_objectid;
1275 }
1276
1277 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1278 if (ret > 0)
1279 ret = -ENOENT;
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 if (ret == -ENOENT && parent) {
1282 btrfs_release_path(root, path);
1283 key.type = BTRFS_EXTENT_REF_V0_KEY;
1284 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1285 if (ret > 0)
1286 ret = -ENOENT;
1287 }
1288 #endif
1289 return ret;
1290 }
1291
1292 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1293 struct btrfs_root *root,
1294 struct btrfs_path *path,
1295 u64 bytenr, u64 parent,
1296 u64 root_objectid)
1297 {
1298 struct btrfs_key key;
1299 int ret;
1300
1301 key.objectid = bytenr;
1302 if (parent) {
1303 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1304 key.offset = parent;
1305 } else {
1306 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1307 key.offset = root_objectid;
1308 }
1309
1310 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1311 btrfs_release_path(root, path);
1312 return ret;
1313 }
1314
1315 static inline int extent_ref_type(u64 parent, u64 owner)
1316 {
1317 int type;
1318 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1319 if (parent > 0)
1320 type = BTRFS_SHARED_BLOCK_REF_KEY;
1321 else
1322 type = BTRFS_TREE_BLOCK_REF_KEY;
1323 } else {
1324 if (parent > 0)
1325 type = BTRFS_SHARED_DATA_REF_KEY;
1326 else
1327 type = BTRFS_EXTENT_DATA_REF_KEY;
1328 }
1329 return type;
1330 }
1331
1332 static int find_next_key(struct btrfs_path *path, int level,
1333 struct btrfs_key *key)
1334
1335 {
1336 for (; level < BTRFS_MAX_LEVEL; level++) {
1337 if (!path->nodes[level])
1338 break;
1339 if (path->slots[level] + 1 >=
1340 btrfs_header_nritems(path->nodes[level]))
1341 continue;
1342 if (level == 0)
1343 btrfs_item_key_to_cpu(path->nodes[level], key,
1344 path->slots[level] + 1);
1345 else
1346 btrfs_node_key_to_cpu(path->nodes[level], key,
1347 path->slots[level] + 1);
1348 return 0;
1349 }
1350 return 1;
1351 }
1352
1353 /*
1354 * look for inline back ref. if back ref is found, *ref_ret is set
1355 * to the address of inline back ref, and 0 is returned.
1356 *
1357 * if back ref isn't found, *ref_ret is set to the address where it
1358 * should be inserted, and -ENOENT is returned.
1359 *
1360 * if insert is true and there are too many inline back refs, the path
1361 * points to the extent item, and -EAGAIN is returned.
1362 *
1363 * NOTE: inline back refs are ordered in the same way that back ref
1364 * items in the tree are ordered.
1365 */
1366 static noinline_for_stack
1367 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1368 struct btrfs_root *root,
1369 struct btrfs_path *path,
1370 struct btrfs_extent_inline_ref **ref_ret,
1371 u64 bytenr, u64 num_bytes,
1372 u64 parent, u64 root_objectid,
1373 u64 owner, u64 offset, int insert)
1374 {
1375 struct btrfs_key key;
1376 struct extent_buffer *leaf;
1377 struct btrfs_extent_item *ei;
1378 struct btrfs_extent_inline_ref *iref;
1379 u64 flags;
1380 u64 item_size;
1381 unsigned long ptr;
1382 unsigned long end;
1383 int extra_size;
1384 int type;
1385 int want;
1386 int ret;
1387 int err = 0;
1388
1389 key.objectid = bytenr;
1390 key.type = BTRFS_EXTENT_ITEM_KEY;
1391 key.offset = num_bytes;
1392
1393 want = extent_ref_type(parent, owner);
1394 if (insert) {
1395 extra_size = btrfs_extent_inline_ref_size(want);
1396 path->keep_locks = 1;
1397 } else
1398 extra_size = -1;
1399 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1400 if (ret < 0) {
1401 err = ret;
1402 goto out;
1403 }
1404 BUG_ON(ret);
1405
1406 leaf = path->nodes[0];
1407 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1408 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1409 if (item_size < sizeof(*ei)) {
1410 if (!insert) {
1411 err = -ENOENT;
1412 goto out;
1413 }
1414 ret = convert_extent_item_v0(trans, root, path, owner,
1415 extra_size);
1416 if (ret < 0) {
1417 err = ret;
1418 goto out;
1419 }
1420 leaf = path->nodes[0];
1421 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1422 }
1423 #endif
1424 BUG_ON(item_size < sizeof(*ei));
1425
1426 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1427 flags = btrfs_extent_flags(leaf, ei);
1428
1429 ptr = (unsigned long)(ei + 1);
1430 end = (unsigned long)ei + item_size;
1431
1432 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1433 ptr += sizeof(struct btrfs_tree_block_info);
1434 BUG_ON(ptr > end);
1435 } else {
1436 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1437 }
1438
1439 err = -ENOENT;
1440 while (1) {
1441 if (ptr >= end) {
1442 WARN_ON(ptr > end);
1443 break;
1444 }
1445 iref = (struct btrfs_extent_inline_ref *)ptr;
1446 type = btrfs_extent_inline_ref_type(leaf, iref);
1447 if (want < type)
1448 break;
1449 if (want > type) {
1450 ptr += btrfs_extent_inline_ref_size(type);
1451 continue;
1452 }
1453
1454 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1455 struct btrfs_extent_data_ref *dref;
1456 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1457 if (match_extent_data_ref(leaf, dref, root_objectid,
1458 owner, offset)) {
1459 err = 0;
1460 break;
1461 }
1462 if (hash_extent_data_ref_item(leaf, dref) <
1463 hash_extent_data_ref(root_objectid, owner, offset))
1464 break;
1465 } else {
1466 u64 ref_offset;
1467 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1468 if (parent > 0) {
1469 if (parent == ref_offset) {
1470 err = 0;
1471 break;
1472 }
1473 if (ref_offset < parent)
1474 break;
1475 } else {
1476 if (root_objectid == ref_offset) {
1477 err = 0;
1478 break;
1479 }
1480 if (ref_offset < root_objectid)
1481 break;
1482 }
1483 }
1484 ptr += btrfs_extent_inline_ref_size(type);
1485 }
1486 if (err == -ENOENT && insert) {
1487 if (item_size + extra_size >=
1488 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1489 err = -EAGAIN;
1490 goto out;
1491 }
1492 /*
1493 * To add new inline back ref, we have to make sure
1494 * there is no corresponding back ref item.
1495 * For simplicity, we just do not add new inline back
1496 * ref if there is any kind of item for this block
1497 */
1498 if (find_next_key(path, 0, &key) == 0 &&
1499 key.objectid == bytenr &&
1500 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1501 err = -EAGAIN;
1502 goto out;
1503 }
1504 }
1505 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1506 out:
1507 if (insert) {
1508 path->keep_locks = 0;
1509 btrfs_unlock_up_safe(path, 1);
1510 }
1511 return err;
1512 }
1513
1514 /*
1515 * helper to add new inline back ref
1516 */
1517 static noinline_for_stack
1518 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1519 struct btrfs_root *root,
1520 struct btrfs_path *path,
1521 struct btrfs_extent_inline_ref *iref,
1522 u64 parent, u64 root_objectid,
1523 u64 owner, u64 offset, int refs_to_add,
1524 struct btrfs_delayed_extent_op *extent_op)
1525 {
1526 struct extent_buffer *leaf;
1527 struct btrfs_extent_item *ei;
1528 unsigned long ptr;
1529 unsigned long end;
1530 unsigned long item_offset;
1531 u64 refs;
1532 int size;
1533 int type;
1534 int ret;
1535
1536 leaf = path->nodes[0];
1537 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1538 item_offset = (unsigned long)iref - (unsigned long)ei;
1539
1540 type = extent_ref_type(parent, owner);
1541 size = btrfs_extent_inline_ref_size(type);
1542
1543 ret = btrfs_extend_item(trans, root, path, size);
1544 BUG_ON(ret);
1545
1546 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1547 refs = btrfs_extent_refs(leaf, ei);
1548 refs += refs_to_add;
1549 btrfs_set_extent_refs(leaf, ei, refs);
1550 if (extent_op)
1551 __run_delayed_extent_op(extent_op, leaf, ei);
1552
1553 ptr = (unsigned long)ei + item_offset;
1554 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1555 if (ptr < end - size)
1556 memmove_extent_buffer(leaf, ptr + size, ptr,
1557 end - size - ptr);
1558
1559 iref = (struct btrfs_extent_inline_ref *)ptr;
1560 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1561 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1562 struct btrfs_extent_data_ref *dref;
1563 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1564 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1565 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1566 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1567 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1568 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1569 struct btrfs_shared_data_ref *sref;
1570 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1571 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1572 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1573 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1574 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1575 } else {
1576 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1577 }
1578 btrfs_mark_buffer_dirty(leaf);
1579 return 0;
1580 }
1581
1582 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1583 struct btrfs_root *root,
1584 struct btrfs_path *path,
1585 struct btrfs_extent_inline_ref **ref_ret,
1586 u64 bytenr, u64 num_bytes, u64 parent,
1587 u64 root_objectid, u64 owner, u64 offset)
1588 {
1589 int ret;
1590
1591 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1592 bytenr, num_bytes, parent,
1593 root_objectid, owner, offset, 0);
1594 if (ret != -ENOENT)
1595 return ret;
1596
1597 btrfs_release_path(root, path);
1598 *ref_ret = NULL;
1599
1600 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1601 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1602 root_objectid);
1603 } else {
1604 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1605 root_objectid, owner, offset);
1606 }
1607 return ret;
1608 }
1609
1610 /*
1611 * helper to update/remove inline back ref
1612 */
1613 static noinline_for_stack
1614 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1615 struct btrfs_root *root,
1616 struct btrfs_path *path,
1617 struct btrfs_extent_inline_ref *iref,
1618 int refs_to_mod,
1619 struct btrfs_delayed_extent_op *extent_op)
1620 {
1621 struct extent_buffer *leaf;
1622 struct btrfs_extent_item *ei;
1623 struct btrfs_extent_data_ref *dref = NULL;
1624 struct btrfs_shared_data_ref *sref = NULL;
1625 unsigned long ptr;
1626 unsigned long end;
1627 u32 item_size;
1628 int size;
1629 int type;
1630 int ret;
1631 u64 refs;
1632
1633 leaf = path->nodes[0];
1634 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635 refs = btrfs_extent_refs(leaf, ei);
1636 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1637 refs += refs_to_mod;
1638 btrfs_set_extent_refs(leaf, ei, refs);
1639 if (extent_op)
1640 __run_delayed_extent_op(extent_op, leaf, ei);
1641
1642 type = btrfs_extent_inline_ref_type(leaf, iref);
1643
1644 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1645 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1646 refs = btrfs_extent_data_ref_count(leaf, dref);
1647 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1648 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1649 refs = btrfs_shared_data_ref_count(leaf, sref);
1650 } else {
1651 refs = 1;
1652 BUG_ON(refs_to_mod != -1);
1653 }
1654
1655 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1656 refs += refs_to_mod;
1657
1658 if (refs > 0) {
1659 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1660 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1661 else
1662 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1663 } else {
1664 size = btrfs_extent_inline_ref_size(type);
1665 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1666 ptr = (unsigned long)iref;
1667 end = (unsigned long)ei + item_size;
1668 if (ptr + size < end)
1669 memmove_extent_buffer(leaf, ptr, ptr + size,
1670 end - ptr - size);
1671 item_size -= size;
1672 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1673 BUG_ON(ret);
1674 }
1675 btrfs_mark_buffer_dirty(leaf);
1676 return 0;
1677 }
1678
1679 static noinline_for_stack
1680 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1681 struct btrfs_root *root,
1682 struct btrfs_path *path,
1683 u64 bytenr, u64 num_bytes, u64 parent,
1684 u64 root_objectid, u64 owner,
1685 u64 offset, int refs_to_add,
1686 struct btrfs_delayed_extent_op *extent_op)
1687 {
1688 struct btrfs_extent_inline_ref *iref;
1689 int ret;
1690
1691 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1692 bytenr, num_bytes, parent,
1693 root_objectid, owner, offset, 1);
1694 if (ret == 0) {
1695 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1696 ret = update_inline_extent_backref(trans, root, path, iref,
1697 refs_to_add, extent_op);
1698 } else if (ret == -ENOENT) {
1699 ret = setup_inline_extent_backref(trans, root, path, iref,
1700 parent, root_objectid,
1701 owner, offset, refs_to_add,
1702 extent_op);
1703 }
1704 return ret;
1705 }
1706
1707 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1708 struct btrfs_root *root,
1709 struct btrfs_path *path,
1710 u64 bytenr, u64 parent, u64 root_objectid,
1711 u64 owner, u64 offset, int refs_to_add)
1712 {
1713 int ret;
1714 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1715 BUG_ON(refs_to_add != 1);
1716 ret = insert_tree_block_ref(trans, root, path, bytenr,
1717 parent, root_objectid);
1718 } else {
1719 ret = insert_extent_data_ref(trans, root, path, bytenr,
1720 parent, root_objectid,
1721 owner, offset, refs_to_add);
1722 }
1723 return ret;
1724 }
1725
1726 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1727 struct btrfs_root *root,
1728 struct btrfs_path *path,
1729 struct btrfs_extent_inline_ref *iref,
1730 int refs_to_drop, int is_data)
1731 {
1732 int ret;
1733
1734 BUG_ON(!is_data && refs_to_drop != 1);
1735 if (iref) {
1736 ret = update_inline_extent_backref(trans, root, path, iref,
1737 -refs_to_drop, NULL);
1738 } else if (is_data) {
1739 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1740 } else {
1741 ret = btrfs_del_item(trans, root, path);
1742 }
1743 return ret;
1744 }
1745
1746 static void btrfs_issue_discard(struct block_device *bdev,
1747 u64 start, u64 len)
1748 {
1749 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL, 0);
1750 }
1751
1752 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1753 u64 num_bytes)
1754 {
1755 int ret;
1756 u64 map_length = num_bytes;
1757 struct btrfs_multi_bio *multi = NULL;
1758
1759 if (!btrfs_test_opt(root, DISCARD))
1760 return 0;
1761
1762 /* Tell the block device(s) that the sectors can be discarded */
1763 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1764 bytenr, &map_length, &multi, 0);
1765 if (!ret) {
1766 struct btrfs_bio_stripe *stripe = multi->stripes;
1767 int i;
1768
1769 if (map_length > num_bytes)
1770 map_length = num_bytes;
1771
1772 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1773 btrfs_issue_discard(stripe->dev->bdev,
1774 stripe->physical,
1775 map_length);
1776 }
1777 kfree(multi);
1778 }
1779
1780 return ret;
1781 }
1782
1783 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1784 struct btrfs_root *root,
1785 u64 bytenr, u64 num_bytes, u64 parent,
1786 u64 root_objectid, u64 owner, u64 offset)
1787 {
1788 int ret;
1789 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1790 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1791
1792 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1793 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1794 parent, root_objectid, (int)owner,
1795 BTRFS_ADD_DELAYED_REF, NULL);
1796 } else {
1797 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1798 parent, root_objectid, owner, offset,
1799 BTRFS_ADD_DELAYED_REF, NULL);
1800 }
1801 return ret;
1802 }
1803
1804 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1805 struct btrfs_root *root,
1806 u64 bytenr, u64 num_bytes,
1807 u64 parent, u64 root_objectid,
1808 u64 owner, u64 offset, int refs_to_add,
1809 struct btrfs_delayed_extent_op *extent_op)
1810 {
1811 struct btrfs_path *path;
1812 struct extent_buffer *leaf;
1813 struct btrfs_extent_item *item;
1814 u64 refs;
1815 int ret;
1816 int err = 0;
1817
1818 path = btrfs_alloc_path();
1819 if (!path)
1820 return -ENOMEM;
1821
1822 path->reada = 1;
1823 path->leave_spinning = 1;
1824 /* this will setup the path even if it fails to insert the back ref */
1825 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1826 path, bytenr, num_bytes, parent,
1827 root_objectid, owner, offset,
1828 refs_to_add, extent_op);
1829 if (ret == 0)
1830 goto out;
1831
1832 if (ret != -EAGAIN) {
1833 err = ret;
1834 goto out;
1835 }
1836
1837 leaf = path->nodes[0];
1838 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 refs = btrfs_extent_refs(leaf, item);
1840 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1841 if (extent_op)
1842 __run_delayed_extent_op(extent_op, leaf, item);
1843
1844 btrfs_mark_buffer_dirty(leaf);
1845 btrfs_release_path(root->fs_info->extent_root, path);
1846
1847 path->reada = 1;
1848 path->leave_spinning = 1;
1849
1850 /* now insert the actual backref */
1851 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1852 path, bytenr, parent, root_objectid,
1853 owner, offset, refs_to_add);
1854 BUG_ON(ret);
1855 out:
1856 btrfs_free_path(path);
1857 return err;
1858 }
1859
1860 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1861 struct btrfs_root *root,
1862 struct btrfs_delayed_ref_node *node,
1863 struct btrfs_delayed_extent_op *extent_op,
1864 int insert_reserved)
1865 {
1866 int ret = 0;
1867 struct btrfs_delayed_data_ref *ref;
1868 struct btrfs_key ins;
1869 u64 parent = 0;
1870 u64 ref_root = 0;
1871 u64 flags = 0;
1872
1873 ins.objectid = node->bytenr;
1874 ins.offset = node->num_bytes;
1875 ins.type = BTRFS_EXTENT_ITEM_KEY;
1876
1877 ref = btrfs_delayed_node_to_data_ref(node);
1878 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1879 parent = ref->parent;
1880 else
1881 ref_root = ref->root;
1882
1883 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1884 if (extent_op) {
1885 BUG_ON(extent_op->update_key);
1886 flags |= extent_op->flags_to_set;
1887 }
1888 ret = alloc_reserved_file_extent(trans, root,
1889 parent, ref_root, flags,
1890 ref->objectid, ref->offset,
1891 &ins, node->ref_mod);
1892 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1893 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1894 node->num_bytes, parent,
1895 ref_root, ref->objectid,
1896 ref->offset, node->ref_mod,
1897 extent_op);
1898 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1899 ret = __btrfs_free_extent(trans, root, node->bytenr,
1900 node->num_bytes, parent,
1901 ref_root, ref->objectid,
1902 ref->offset, node->ref_mod,
1903 extent_op);
1904 } else {
1905 BUG();
1906 }
1907 return ret;
1908 }
1909
1910 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1911 struct extent_buffer *leaf,
1912 struct btrfs_extent_item *ei)
1913 {
1914 u64 flags = btrfs_extent_flags(leaf, ei);
1915 if (extent_op->update_flags) {
1916 flags |= extent_op->flags_to_set;
1917 btrfs_set_extent_flags(leaf, ei, flags);
1918 }
1919
1920 if (extent_op->update_key) {
1921 struct btrfs_tree_block_info *bi;
1922 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1923 bi = (struct btrfs_tree_block_info *)(ei + 1);
1924 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1925 }
1926 }
1927
1928 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1929 struct btrfs_root *root,
1930 struct btrfs_delayed_ref_node *node,
1931 struct btrfs_delayed_extent_op *extent_op)
1932 {
1933 struct btrfs_key key;
1934 struct btrfs_path *path;
1935 struct btrfs_extent_item *ei;
1936 struct extent_buffer *leaf;
1937 u32 item_size;
1938 int ret;
1939 int err = 0;
1940
1941 path = btrfs_alloc_path();
1942 if (!path)
1943 return -ENOMEM;
1944
1945 key.objectid = node->bytenr;
1946 key.type = BTRFS_EXTENT_ITEM_KEY;
1947 key.offset = node->num_bytes;
1948
1949 path->reada = 1;
1950 path->leave_spinning = 1;
1951 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1952 path, 0, 1);
1953 if (ret < 0) {
1954 err = ret;
1955 goto out;
1956 }
1957 if (ret > 0) {
1958 err = -EIO;
1959 goto out;
1960 }
1961
1962 leaf = path->nodes[0];
1963 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1964 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1965 if (item_size < sizeof(*ei)) {
1966 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1967 path, (u64)-1, 0);
1968 if (ret < 0) {
1969 err = ret;
1970 goto out;
1971 }
1972 leaf = path->nodes[0];
1973 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1974 }
1975 #endif
1976 BUG_ON(item_size < sizeof(*ei));
1977 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1978 __run_delayed_extent_op(extent_op, leaf, ei);
1979
1980 btrfs_mark_buffer_dirty(leaf);
1981 out:
1982 btrfs_free_path(path);
1983 return err;
1984 }
1985
1986 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1987 struct btrfs_root *root,
1988 struct btrfs_delayed_ref_node *node,
1989 struct btrfs_delayed_extent_op *extent_op,
1990 int insert_reserved)
1991 {
1992 int ret = 0;
1993 struct btrfs_delayed_tree_ref *ref;
1994 struct btrfs_key ins;
1995 u64 parent = 0;
1996 u64 ref_root = 0;
1997
1998 ins.objectid = node->bytenr;
1999 ins.offset = node->num_bytes;
2000 ins.type = BTRFS_EXTENT_ITEM_KEY;
2001
2002 ref = btrfs_delayed_node_to_tree_ref(node);
2003 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2004 parent = ref->parent;
2005 else
2006 ref_root = ref->root;
2007
2008 BUG_ON(node->ref_mod != 1);
2009 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2010 BUG_ON(!extent_op || !extent_op->update_flags ||
2011 !extent_op->update_key);
2012 ret = alloc_reserved_tree_block(trans, root,
2013 parent, ref_root,
2014 extent_op->flags_to_set,
2015 &extent_op->key,
2016 ref->level, &ins);
2017 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2018 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2019 node->num_bytes, parent, ref_root,
2020 ref->level, 0, 1, extent_op);
2021 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2022 ret = __btrfs_free_extent(trans, root, node->bytenr,
2023 node->num_bytes, parent, ref_root,
2024 ref->level, 0, 1, extent_op);
2025 } else {
2026 BUG();
2027 }
2028 return ret;
2029 }
2030
2031 /* helper function to actually process a single delayed ref entry */
2032 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2033 struct btrfs_root *root,
2034 struct btrfs_delayed_ref_node *node,
2035 struct btrfs_delayed_extent_op *extent_op,
2036 int insert_reserved)
2037 {
2038 int ret;
2039 if (btrfs_delayed_ref_is_head(node)) {
2040 struct btrfs_delayed_ref_head *head;
2041 /*
2042 * we've hit the end of the chain and we were supposed
2043 * to insert this extent into the tree. But, it got
2044 * deleted before we ever needed to insert it, so all
2045 * we have to do is clean up the accounting
2046 */
2047 BUG_ON(extent_op);
2048 head = btrfs_delayed_node_to_head(node);
2049 if (insert_reserved) {
2050 btrfs_pin_extent(root, node->bytenr,
2051 node->num_bytes, 1);
2052 if (head->is_data) {
2053 ret = btrfs_del_csums(trans, root,
2054 node->bytenr,
2055 node->num_bytes);
2056 BUG_ON(ret);
2057 }
2058 }
2059 mutex_unlock(&head->mutex);
2060 return 0;
2061 }
2062
2063 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2064 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2065 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2066 insert_reserved);
2067 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2068 node->type == BTRFS_SHARED_DATA_REF_KEY)
2069 ret = run_delayed_data_ref(trans, root, node, extent_op,
2070 insert_reserved);
2071 else
2072 BUG();
2073 return ret;
2074 }
2075
2076 static noinline struct btrfs_delayed_ref_node *
2077 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2078 {
2079 struct rb_node *node;
2080 struct btrfs_delayed_ref_node *ref;
2081 int action = BTRFS_ADD_DELAYED_REF;
2082 again:
2083 /*
2084 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2085 * this prevents ref count from going down to zero when
2086 * there still are pending delayed ref.
2087 */
2088 node = rb_prev(&head->node.rb_node);
2089 while (1) {
2090 if (!node)
2091 break;
2092 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2093 rb_node);
2094 if (ref->bytenr != head->node.bytenr)
2095 break;
2096 if (ref->action == action)
2097 return ref;
2098 node = rb_prev(node);
2099 }
2100 if (action == BTRFS_ADD_DELAYED_REF) {
2101 action = BTRFS_DROP_DELAYED_REF;
2102 goto again;
2103 }
2104 return NULL;
2105 }
2106
2107 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2108 struct btrfs_root *root,
2109 struct list_head *cluster)
2110 {
2111 struct btrfs_delayed_ref_root *delayed_refs;
2112 struct btrfs_delayed_ref_node *ref;
2113 struct btrfs_delayed_ref_head *locked_ref = NULL;
2114 struct btrfs_delayed_extent_op *extent_op;
2115 int ret;
2116 int count = 0;
2117 int must_insert_reserved = 0;
2118
2119 delayed_refs = &trans->transaction->delayed_refs;
2120 while (1) {
2121 if (!locked_ref) {
2122 /* pick a new head ref from the cluster list */
2123 if (list_empty(cluster))
2124 break;
2125
2126 locked_ref = list_entry(cluster->next,
2127 struct btrfs_delayed_ref_head, cluster);
2128
2129 /* grab the lock that says we are going to process
2130 * all the refs for this head */
2131 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2132
2133 /*
2134 * we may have dropped the spin lock to get the head
2135 * mutex lock, and that might have given someone else
2136 * time to free the head. If that's true, it has been
2137 * removed from our list and we can move on.
2138 */
2139 if (ret == -EAGAIN) {
2140 locked_ref = NULL;
2141 count++;
2142 continue;
2143 }
2144 }
2145
2146 /*
2147 * record the must insert reserved flag before we
2148 * drop the spin lock.
2149 */
2150 must_insert_reserved = locked_ref->must_insert_reserved;
2151 locked_ref->must_insert_reserved = 0;
2152
2153 extent_op = locked_ref->extent_op;
2154 locked_ref->extent_op = NULL;
2155
2156 /*
2157 * locked_ref is the head node, so we have to go one
2158 * node back for any delayed ref updates
2159 */
2160 ref = select_delayed_ref(locked_ref);
2161 if (!ref) {
2162 /* All delayed refs have been processed, Go ahead
2163 * and send the head node to run_one_delayed_ref,
2164 * so that any accounting fixes can happen
2165 */
2166 ref = &locked_ref->node;
2167
2168 if (extent_op && must_insert_reserved) {
2169 kfree(extent_op);
2170 extent_op = NULL;
2171 }
2172
2173 if (extent_op) {
2174 spin_unlock(&delayed_refs->lock);
2175
2176 ret = run_delayed_extent_op(trans, root,
2177 ref, extent_op);
2178 BUG_ON(ret);
2179 kfree(extent_op);
2180
2181 cond_resched();
2182 spin_lock(&delayed_refs->lock);
2183 continue;
2184 }
2185
2186 list_del_init(&locked_ref->cluster);
2187 locked_ref = NULL;
2188 }
2189
2190 ref->in_tree = 0;
2191 rb_erase(&ref->rb_node, &delayed_refs->root);
2192 delayed_refs->num_entries--;
2193
2194 spin_unlock(&delayed_refs->lock);
2195
2196 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2197 must_insert_reserved);
2198 BUG_ON(ret);
2199
2200 btrfs_put_delayed_ref(ref);
2201 kfree(extent_op);
2202 count++;
2203
2204 cond_resched();
2205 spin_lock(&delayed_refs->lock);
2206 }
2207 return count;
2208 }
2209
2210 /*
2211 * this starts processing the delayed reference count updates and
2212 * extent insertions we have queued up so far. count can be
2213 * 0, which means to process everything in the tree at the start
2214 * of the run (but not newly added entries), or it can be some target
2215 * number you'd like to process.
2216 */
2217 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2218 struct btrfs_root *root, unsigned long count)
2219 {
2220 struct rb_node *node;
2221 struct btrfs_delayed_ref_root *delayed_refs;
2222 struct btrfs_delayed_ref_node *ref;
2223 struct list_head cluster;
2224 int ret;
2225 int run_all = count == (unsigned long)-1;
2226 int run_most = 0;
2227
2228 if (root == root->fs_info->extent_root)
2229 root = root->fs_info->tree_root;
2230
2231 delayed_refs = &trans->transaction->delayed_refs;
2232 INIT_LIST_HEAD(&cluster);
2233 again:
2234 spin_lock(&delayed_refs->lock);
2235 if (count == 0) {
2236 count = delayed_refs->num_entries * 2;
2237 run_most = 1;
2238 }
2239 while (1) {
2240 if (!(run_all || run_most) &&
2241 delayed_refs->num_heads_ready < 64)
2242 break;
2243
2244 /*
2245 * go find something we can process in the rbtree. We start at
2246 * the beginning of the tree, and then build a cluster
2247 * of refs to process starting at the first one we are able to
2248 * lock
2249 */
2250 ret = btrfs_find_ref_cluster(trans, &cluster,
2251 delayed_refs->run_delayed_start);
2252 if (ret)
2253 break;
2254
2255 ret = run_clustered_refs(trans, root, &cluster);
2256 BUG_ON(ret < 0);
2257
2258 count -= min_t(unsigned long, ret, count);
2259
2260 if (count == 0)
2261 break;
2262 }
2263
2264 if (run_all) {
2265 node = rb_first(&delayed_refs->root);
2266 if (!node)
2267 goto out;
2268 count = (unsigned long)-1;
2269
2270 while (node) {
2271 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2272 rb_node);
2273 if (btrfs_delayed_ref_is_head(ref)) {
2274 struct btrfs_delayed_ref_head *head;
2275
2276 head = btrfs_delayed_node_to_head(ref);
2277 atomic_inc(&ref->refs);
2278
2279 spin_unlock(&delayed_refs->lock);
2280 mutex_lock(&head->mutex);
2281 mutex_unlock(&head->mutex);
2282
2283 btrfs_put_delayed_ref(ref);
2284 cond_resched();
2285 goto again;
2286 }
2287 node = rb_next(node);
2288 }
2289 spin_unlock(&delayed_refs->lock);
2290 schedule_timeout(1);
2291 goto again;
2292 }
2293 out:
2294 spin_unlock(&delayed_refs->lock);
2295 return 0;
2296 }
2297
2298 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2299 struct btrfs_root *root,
2300 u64 bytenr, u64 num_bytes, u64 flags,
2301 int is_data)
2302 {
2303 struct btrfs_delayed_extent_op *extent_op;
2304 int ret;
2305
2306 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2307 if (!extent_op)
2308 return -ENOMEM;
2309
2310 extent_op->flags_to_set = flags;
2311 extent_op->update_flags = 1;
2312 extent_op->update_key = 0;
2313 extent_op->is_data = is_data ? 1 : 0;
2314
2315 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2316 if (ret)
2317 kfree(extent_op);
2318 return ret;
2319 }
2320
2321 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2322 struct btrfs_root *root,
2323 struct btrfs_path *path,
2324 u64 objectid, u64 offset, u64 bytenr)
2325 {
2326 struct btrfs_delayed_ref_head *head;
2327 struct btrfs_delayed_ref_node *ref;
2328 struct btrfs_delayed_data_ref *data_ref;
2329 struct btrfs_delayed_ref_root *delayed_refs;
2330 struct rb_node *node;
2331 int ret = 0;
2332
2333 ret = -ENOENT;
2334 delayed_refs = &trans->transaction->delayed_refs;
2335 spin_lock(&delayed_refs->lock);
2336 head = btrfs_find_delayed_ref_head(trans, bytenr);
2337 if (!head)
2338 goto out;
2339
2340 if (!mutex_trylock(&head->mutex)) {
2341 atomic_inc(&head->node.refs);
2342 spin_unlock(&delayed_refs->lock);
2343
2344 btrfs_release_path(root->fs_info->extent_root, path);
2345
2346 mutex_lock(&head->mutex);
2347 mutex_unlock(&head->mutex);
2348 btrfs_put_delayed_ref(&head->node);
2349 return -EAGAIN;
2350 }
2351
2352 node = rb_prev(&head->node.rb_node);
2353 if (!node)
2354 goto out_unlock;
2355
2356 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2357
2358 if (ref->bytenr != bytenr)
2359 goto out_unlock;
2360
2361 ret = 1;
2362 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2363 goto out_unlock;
2364
2365 data_ref = btrfs_delayed_node_to_data_ref(ref);
2366
2367 node = rb_prev(node);
2368 if (node) {
2369 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2370 if (ref->bytenr == bytenr)
2371 goto out_unlock;
2372 }
2373
2374 if (data_ref->root != root->root_key.objectid ||
2375 data_ref->objectid != objectid || data_ref->offset != offset)
2376 goto out_unlock;
2377
2378 ret = 0;
2379 out_unlock:
2380 mutex_unlock(&head->mutex);
2381 out:
2382 spin_unlock(&delayed_refs->lock);
2383 return ret;
2384 }
2385
2386 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2387 struct btrfs_root *root,
2388 struct btrfs_path *path,
2389 u64 objectid, u64 offset, u64 bytenr)
2390 {
2391 struct btrfs_root *extent_root = root->fs_info->extent_root;
2392 struct extent_buffer *leaf;
2393 struct btrfs_extent_data_ref *ref;
2394 struct btrfs_extent_inline_ref *iref;
2395 struct btrfs_extent_item *ei;
2396 struct btrfs_key key;
2397 u32 item_size;
2398 int ret;
2399
2400 key.objectid = bytenr;
2401 key.offset = (u64)-1;
2402 key.type = BTRFS_EXTENT_ITEM_KEY;
2403
2404 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2405 if (ret < 0)
2406 goto out;
2407 BUG_ON(ret == 0);
2408
2409 ret = -ENOENT;
2410 if (path->slots[0] == 0)
2411 goto out;
2412
2413 path->slots[0]--;
2414 leaf = path->nodes[0];
2415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2416
2417 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2418 goto out;
2419
2420 ret = 1;
2421 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2423 if (item_size < sizeof(*ei)) {
2424 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2425 goto out;
2426 }
2427 #endif
2428 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2429
2430 if (item_size != sizeof(*ei) +
2431 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2432 goto out;
2433
2434 if (btrfs_extent_generation(leaf, ei) <=
2435 btrfs_root_last_snapshot(&root->root_item))
2436 goto out;
2437
2438 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2439 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2440 BTRFS_EXTENT_DATA_REF_KEY)
2441 goto out;
2442
2443 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2444 if (btrfs_extent_refs(leaf, ei) !=
2445 btrfs_extent_data_ref_count(leaf, ref) ||
2446 btrfs_extent_data_ref_root(leaf, ref) !=
2447 root->root_key.objectid ||
2448 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2449 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2450 goto out;
2451
2452 ret = 0;
2453 out:
2454 return ret;
2455 }
2456
2457 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2458 struct btrfs_root *root,
2459 u64 objectid, u64 offset, u64 bytenr)
2460 {
2461 struct btrfs_path *path;
2462 int ret;
2463 int ret2;
2464
2465 path = btrfs_alloc_path();
2466 if (!path)
2467 return -ENOENT;
2468
2469 do {
2470 ret = check_committed_ref(trans, root, path, objectid,
2471 offset, bytenr);
2472 if (ret && ret != -ENOENT)
2473 goto out;
2474
2475 ret2 = check_delayed_ref(trans, root, path, objectid,
2476 offset, bytenr);
2477 } while (ret2 == -EAGAIN);
2478
2479 if (ret2 && ret2 != -ENOENT) {
2480 ret = ret2;
2481 goto out;
2482 }
2483
2484 if (ret != -ENOENT || ret2 != -ENOENT)
2485 ret = 0;
2486 out:
2487 btrfs_free_path(path);
2488 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2489 WARN_ON(ret > 0);
2490 return ret;
2491 }
2492
2493 #if 0
2494 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2495 struct extent_buffer *buf, u32 nr_extents)
2496 {
2497 struct btrfs_key key;
2498 struct btrfs_file_extent_item *fi;
2499 u64 root_gen;
2500 u32 nritems;
2501 int i;
2502 int level;
2503 int ret = 0;
2504 int shared = 0;
2505
2506 if (!root->ref_cows)
2507 return 0;
2508
2509 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2510 shared = 0;
2511 root_gen = root->root_key.offset;
2512 } else {
2513 shared = 1;
2514 root_gen = trans->transid - 1;
2515 }
2516
2517 level = btrfs_header_level(buf);
2518 nritems = btrfs_header_nritems(buf);
2519
2520 if (level == 0) {
2521 struct btrfs_leaf_ref *ref;
2522 struct btrfs_extent_info *info;
2523
2524 ref = btrfs_alloc_leaf_ref(root, nr_extents);
2525 if (!ref) {
2526 ret = -ENOMEM;
2527 goto out;
2528 }
2529
2530 ref->root_gen = root_gen;
2531 ref->bytenr = buf->start;
2532 ref->owner = btrfs_header_owner(buf);
2533 ref->generation = btrfs_header_generation(buf);
2534 ref->nritems = nr_extents;
2535 info = ref->extents;
2536
2537 for (i = 0; nr_extents > 0 && i < nritems; i++) {
2538 u64 disk_bytenr;
2539 btrfs_item_key_to_cpu(buf, &key, i);
2540 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2541 continue;
2542 fi = btrfs_item_ptr(buf, i,
2543 struct btrfs_file_extent_item);
2544 if (btrfs_file_extent_type(buf, fi) ==
2545 BTRFS_FILE_EXTENT_INLINE)
2546 continue;
2547 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2548 if (disk_bytenr == 0)
2549 continue;
2550
2551 info->bytenr = disk_bytenr;
2552 info->num_bytes =
2553 btrfs_file_extent_disk_num_bytes(buf, fi);
2554 info->objectid = key.objectid;
2555 info->offset = key.offset;
2556 info++;
2557 }
2558
2559 ret = btrfs_add_leaf_ref(root, ref, shared);
2560 if (ret == -EEXIST && shared) {
2561 struct btrfs_leaf_ref *old;
2562 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2563 BUG_ON(!old);
2564 btrfs_remove_leaf_ref(root, old);
2565 btrfs_free_leaf_ref(root, old);
2566 ret = btrfs_add_leaf_ref(root, ref, shared);
2567 }
2568 WARN_ON(ret);
2569 btrfs_free_leaf_ref(root, ref);
2570 }
2571 out:
2572 return ret;
2573 }
2574
2575 /* when a block goes through cow, we update the reference counts of
2576 * everything that block points to. The internal pointers of the block
2577 * can be in just about any order, and it is likely to have clusters of
2578 * things that are close together and clusters of things that are not.
2579 *
2580 * To help reduce the seeks that come with updating all of these reference
2581 * counts, sort them by byte number before actual updates are done.
2582 *
2583 * struct refsort is used to match byte number to slot in the btree block.
2584 * we sort based on the byte number and then use the slot to actually
2585 * find the item.
2586 *
2587 * struct refsort is smaller than strcut btrfs_item and smaller than
2588 * struct btrfs_key_ptr. Since we're currently limited to the page size
2589 * for a btree block, there's no way for a kmalloc of refsorts for a
2590 * single node to be bigger than a page.
2591 */
2592 struct refsort {
2593 u64 bytenr;
2594 u32 slot;
2595 };
2596
2597 /*
2598 * for passing into sort()
2599 */
2600 static int refsort_cmp(const void *a_void, const void *b_void)
2601 {
2602 const struct refsort *a = a_void;
2603 const struct refsort *b = b_void;
2604
2605 if (a->bytenr < b->bytenr)
2606 return -1;
2607 if (a->bytenr > b->bytenr)
2608 return 1;
2609 return 0;
2610 }
2611 #endif
2612
2613 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2614 struct btrfs_root *root,
2615 struct extent_buffer *buf,
2616 int full_backref, int inc)
2617 {
2618 u64 bytenr;
2619 u64 num_bytes;
2620 u64 parent;
2621 u64 ref_root;
2622 u32 nritems;
2623 struct btrfs_key key;
2624 struct btrfs_file_extent_item *fi;
2625 int i;
2626 int level;
2627 int ret = 0;
2628 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2629 u64, u64, u64, u64, u64, u64);
2630
2631 ref_root = btrfs_header_owner(buf);
2632 nritems = btrfs_header_nritems(buf);
2633 level = btrfs_header_level(buf);
2634
2635 if (!root->ref_cows && level == 0)
2636 return 0;
2637
2638 if (inc)
2639 process_func = btrfs_inc_extent_ref;
2640 else
2641 process_func = btrfs_free_extent;
2642
2643 if (full_backref)
2644 parent = buf->start;
2645 else
2646 parent = 0;
2647
2648 for (i = 0; i < nritems; i++) {
2649 if (level == 0) {
2650 btrfs_item_key_to_cpu(buf, &key, i);
2651 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2652 continue;
2653 fi = btrfs_item_ptr(buf, i,
2654 struct btrfs_file_extent_item);
2655 if (btrfs_file_extent_type(buf, fi) ==
2656 BTRFS_FILE_EXTENT_INLINE)
2657 continue;
2658 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2659 if (bytenr == 0)
2660 continue;
2661
2662 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2663 key.offset -= btrfs_file_extent_offset(buf, fi);
2664 ret = process_func(trans, root, bytenr, num_bytes,
2665 parent, ref_root, key.objectid,
2666 key.offset);
2667 if (ret)
2668 goto fail;
2669 } else {
2670 bytenr = btrfs_node_blockptr(buf, i);
2671 num_bytes = btrfs_level_size(root, level - 1);
2672 ret = process_func(trans, root, bytenr, num_bytes,
2673 parent, ref_root, level - 1, 0);
2674 if (ret)
2675 goto fail;
2676 }
2677 }
2678 return 0;
2679 fail:
2680 BUG();
2681 return ret;
2682 }
2683
2684 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2685 struct extent_buffer *buf, int full_backref)
2686 {
2687 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2688 }
2689
2690 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2691 struct extent_buffer *buf, int full_backref)
2692 {
2693 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2694 }
2695
2696 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2697 struct btrfs_root *root,
2698 struct btrfs_path *path,
2699 struct btrfs_block_group_cache *cache)
2700 {
2701 int ret;
2702 struct btrfs_root *extent_root = root->fs_info->extent_root;
2703 unsigned long bi;
2704 struct extent_buffer *leaf;
2705
2706 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2707 if (ret < 0)
2708 goto fail;
2709 BUG_ON(ret);
2710
2711 leaf = path->nodes[0];
2712 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2713 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2714 btrfs_mark_buffer_dirty(leaf);
2715 btrfs_release_path(extent_root, path);
2716 fail:
2717 if (ret)
2718 return ret;
2719 return 0;
2720
2721 }
2722
2723 static struct btrfs_block_group_cache *
2724 next_block_group(struct btrfs_root *root,
2725 struct btrfs_block_group_cache *cache)
2726 {
2727 struct rb_node *node;
2728 spin_lock(&root->fs_info->block_group_cache_lock);
2729 node = rb_next(&cache->cache_node);
2730 btrfs_put_block_group(cache);
2731 if (node) {
2732 cache = rb_entry(node, struct btrfs_block_group_cache,
2733 cache_node);
2734 btrfs_get_block_group(cache);
2735 } else
2736 cache = NULL;
2737 spin_unlock(&root->fs_info->block_group_cache_lock);
2738 return cache;
2739 }
2740
2741 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2742 struct btrfs_trans_handle *trans,
2743 struct btrfs_path *path)
2744 {
2745 struct btrfs_root *root = block_group->fs_info->tree_root;
2746 struct inode *inode = NULL;
2747 u64 alloc_hint = 0;
2748 int dcs = BTRFS_DC_ERROR;
2749 int num_pages = 0;
2750 int retries = 0;
2751 int ret = 0;
2752
2753 /*
2754 * If this block group is smaller than 100 megs don't bother caching the
2755 * block group.
2756 */
2757 if (block_group->key.offset < (100 * 1024 * 1024)) {
2758 spin_lock(&block_group->lock);
2759 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2760 spin_unlock(&block_group->lock);
2761 return 0;
2762 }
2763
2764 again:
2765 inode = lookup_free_space_inode(root, block_group, path);
2766 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2767 ret = PTR_ERR(inode);
2768 btrfs_release_path(root, path);
2769 goto out;
2770 }
2771
2772 if (IS_ERR(inode)) {
2773 BUG_ON(retries);
2774 retries++;
2775
2776 if (block_group->ro)
2777 goto out_free;
2778
2779 ret = create_free_space_inode(root, trans, block_group, path);
2780 if (ret)
2781 goto out_free;
2782 goto again;
2783 }
2784
2785 /*
2786 * We want to set the generation to 0, that way if anything goes wrong
2787 * from here on out we know not to trust this cache when we load up next
2788 * time.
2789 */
2790 BTRFS_I(inode)->generation = 0;
2791 ret = btrfs_update_inode(trans, root, inode);
2792 WARN_ON(ret);
2793
2794 if (i_size_read(inode) > 0) {
2795 ret = btrfs_truncate_free_space_cache(root, trans, path,
2796 inode);
2797 if (ret)
2798 goto out_put;
2799 }
2800
2801 spin_lock(&block_group->lock);
2802 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2803 /* We're not cached, don't bother trying to write stuff out */
2804 dcs = BTRFS_DC_WRITTEN;
2805 spin_unlock(&block_group->lock);
2806 goto out_put;
2807 }
2808 spin_unlock(&block_group->lock);
2809
2810 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2811 if (!num_pages)
2812 num_pages = 1;
2813
2814 /*
2815 * Just to make absolutely sure we have enough space, we're going to
2816 * preallocate 12 pages worth of space for each block group. In
2817 * practice we ought to use at most 8, but we need extra space so we can
2818 * add our header and have a terminator between the extents and the
2819 * bitmaps.
2820 */
2821 num_pages *= 16;
2822 num_pages *= PAGE_CACHE_SIZE;
2823
2824 ret = btrfs_check_data_free_space(inode, num_pages);
2825 if (ret)
2826 goto out_put;
2827
2828 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2829 num_pages, num_pages,
2830 &alloc_hint);
2831 if (!ret)
2832 dcs = BTRFS_DC_SETUP;
2833 btrfs_free_reserved_data_space(inode, num_pages);
2834 out_put:
2835 iput(inode);
2836 out_free:
2837 btrfs_release_path(root, path);
2838 out:
2839 spin_lock(&block_group->lock);
2840 block_group->disk_cache_state = dcs;
2841 spin_unlock(&block_group->lock);
2842
2843 return ret;
2844 }
2845
2846 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2847 struct btrfs_root *root)
2848 {
2849 struct btrfs_block_group_cache *cache;
2850 int err = 0;
2851 struct btrfs_path *path;
2852 u64 last = 0;
2853
2854 path = btrfs_alloc_path();
2855 if (!path)
2856 return -ENOMEM;
2857
2858 again:
2859 while (1) {
2860 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2861 while (cache) {
2862 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2863 break;
2864 cache = next_block_group(root, cache);
2865 }
2866 if (!cache) {
2867 if (last == 0)
2868 break;
2869 last = 0;
2870 continue;
2871 }
2872 err = cache_save_setup(cache, trans, path);
2873 last = cache->key.objectid + cache->key.offset;
2874 btrfs_put_block_group(cache);
2875 }
2876
2877 while (1) {
2878 if (last == 0) {
2879 err = btrfs_run_delayed_refs(trans, root,
2880 (unsigned long)-1);
2881 BUG_ON(err);
2882 }
2883
2884 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2885 while (cache) {
2886 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2887 btrfs_put_block_group(cache);
2888 goto again;
2889 }
2890
2891 if (cache->dirty)
2892 break;
2893 cache = next_block_group(root, cache);
2894 }
2895 if (!cache) {
2896 if (last == 0)
2897 break;
2898 last = 0;
2899 continue;
2900 }
2901
2902 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2903 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2904 cache->dirty = 0;
2905 last = cache->key.objectid + cache->key.offset;
2906
2907 err = write_one_cache_group(trans, root, path, cache);
2908 BUG_ON(err);
2909 btrfs_put_block_group(cache);
2910 }
2911
2912 while (1) {
2913 /*
2914 * I don't think this is needed since we're just marking our
2915 * preallocated extent as written, but just in case it can't
2916 * hurt.
2917 */
2918 if (last == 0) {
2919 err = btrfs_run_delayed_refs(trans, root,
2920 (unsigned long)-1);
2921 BUG_ON(err);
2922 }
2923
2924 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2925 while (cache) {
2926 /*
2927 * Really this shouldn't happen, but it could if we
2928 * couldn't write the entire preallocated extent and
2929 * splitting the extent resulted in a new block.
2930 */
2931 if (cache->dirty) {
2932 btrfs_put_block_group(cache);
2933 goto again;
2934 }
2935 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2936 break;
2937 cache = next_block_group(root, cache);
2938 }
2939 if (!cache) {
2940 if (last == 0)
2941 break;
2942 last = 0;
2943 continue;
2944 }
2945
2946 btrfs_write_out_cache(root, trans, cache, path);
2947
2948 /*
2949 * If we didn't have an error then the cache state is still
2950 * NEED_WRITE, so we can set it to WRITTEN.
2951 */
2952 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2953 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2954 last = cache->key.objectid + cache->key.offset;
2955 btrfs_put_block_group(cache);
2956 }
2957
2958 btrfs_free_path(path);
2959 return 0;
2960 }
2961
2962 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2963 {
2964 struct btrfs_block_group_cache *block_group;
2965 int readonly = 0;
2966
2967 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2968 if (!block_group || block_group->ro)
2969 readonly = 1;
2970 if (block_group)
2971 btrfs_put_block_group(block_group);
2972 return readonly;
2973 }
2974
2975 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2976 u64 total_bytes, u64 bytes_used,
2977 struct btrfs_space_info **space_info)
2978 {
2979 struct btrfs_space_info *found;
2980 int i;
2981 int factor;
2982
2983 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2984 BTRFS_BLOCK_GROUP_RAID10))
2985 factor = 2;
2986 else
2987 factor = 1;
2988
2989 found = __find_space_info(info, flags);
2990 if (found) {
2991 spin_lock(&found->lock);
2992 found->total_bytes += total_bytes;
2993 found->disk_total += total_bytes * factor;
2994 found->bytes_used += bytes_used;
2995 found->disk_used += bytes_used * factor;
2996 found->full = 0;
2997 spin_unlock(&found->lock);
2998 *space_info = found;
2999 return 0;
3000 }
3001 found = kzalloc(sizeof(*found), GFP_NOFS);
3002 if (!found)
3003 return -ENOMEM;
3004
3005 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3006 INIT_LIST_HEAD(&found->block_groups[i]);
3007 init_rwsem(&found->groups_sem);
3008 spin_lock_init(&found->lock);
3009 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
3010 BTRFS_BLOCK_GROUP_SYSTEM |
3011 BTRFS_BLOCK_GROUP_METADATA);
3012 found->total_bytes = total_bytes;
3013 found->disk_total = total_bytes * factor;
3014 found->bytes_used = bytes_used;
3015 found->disk_used = bytes_used * factor;
3016 found->bytes_pinned = 0;
3017 found->bytes_reserved = 0;
3018 found->bytes_readonly = 0;
3019 found->bytes_may_use = 0;
3020 found->full = 0;
3021 found->force_alloc = 0;
3022 *space_info = found;
3023 list_add_rcu(&found->list, &info->space_info);
3024 atomic_set(&found->caching_threads, 0);
3025 return 0;
3026 }
3027
3028 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3029 {
3030 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
3031 BTRFS_BLOCK_GROUP_RAID1 |
3032 BTRFS_BLOCK_GROUP_RAID10 |
3033 BTRFS_BLOCK_GROUP_DUP);
3034 if (extra_flags) {
3035 if (flags & BTRFS_BLOCK_GROUP_DATA)
3036 fs_info->avail_data_alloc_bits |= extra_flags;
3037 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3038 fs_info->avail_metadata_alloc_bits |= extra_flags;
3039 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3040 fs_info->avail_system_alloc_bits |= extra_flags;
3041 }
3042 }
3043
3044 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3045 {
3046 /*
3047 * we add in the count of missing devices because we want
3048 * to make sure that any RAID levels on a degraded FS
3049 * continue to be honored.
3050 */
3051 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3052 root->fs_info->fs_devices->missing_devices;
3053
3054 if (num_devices == 1)
3055 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3056 if (num_devices < 4)
3057 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3058
3059 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3060 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3061 BTRFS_BLOCK_GROUP_RAID10))) {
3062 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3063 }
3064
3065 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3066 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3067 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3068 }
3069
3070 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3071 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3072 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3073 (flags & BTRFS_BLOCK_GROUP_DUP)))
3074 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3075 return flags;
3076 }
3077
3078 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3079 {
3080 if (flags & BTRFS_BLOCK_GROUP_DATA)
3081 flags |= root->fs_info->avail_data_alloc_bits &
3082 root->fs_info->data_alloc_profile;
3083 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3084 flags |= root->fs_info->avail_system_alloc_bits &
3085 root->fs_info->system_alloc_profile;
3086 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3087 flags |= root->fs_info->avail_metadata_alloc_bits &
3088 root->fs_info->metadata_alloc_profile;
3089 return btrfs_reduce_alloc_profile(root, flags);
3090 }
3091
3092 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3093 {
3094 u64 flags;
3095
3096 if (data)
3097 flags = BTRFS_BLOCK_GROUP_DATA;
3098 else if (root == root->fs_info->chunk_root)
3099 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3100 else
3101 flags = BTRFS_BLOCK_GROUP_METADATA;
3102
3103 return get_alloc_profile(root, flags);
3104 }
3105
3106 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3107 {
3108 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3109 BTRFS_BLOCK_GROUP_DATA);
3110 }
3111
3112 /*
3113 * This will check the space that the inode allocates from to make sure we have
3114 * enough space for bytes.
3115 */
3116 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3117 {
3118 struct btrfs_space_info *data_sinfo;
3119 struct btrfs_root *root = BTRFS_I(inode)->root;
3120 u64 used;
3121 int ret = 0, committed = 0, alloc_chunk = 1;
3122
3123 /* make sure bytes are sectorsize aligned */
3124 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3125
3126 if (root == root->fs_info->tree_root) {
3127 alloc_chunk = 0;
3128 committed = 1;
3129 }
3130
3131 data_sinfo = BTRFS_I(inode)->space_info;
3132 if (!data_sinfo)
3133 goto alloc;
3134
3135 again:
3136 /* make sure we have enough space to handle the data first */
3137 spin_lock(&data_sinfo->lock);
3138 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3139 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3140 data_sinfo->bytes_may_use;
3141
3142 if (used + bytes > data_sinfo->total_bytes) {
3143 struct btrfs_trans_handle *trans;
3144
3145 /*
3146 * if we don't have enough free bytes in this space then we need
3147 * to alloc a new chunk.
3148 */
3149 if (!data_sinfo->full && alloc_chunk) {
3150 u64 alloc_target;
3151
3152 data_sinfo->force_alloc = 1;
3153 spin_unlock(&data_sinfo->lock);
3154 alloc:
3155 alloc_target = btrfs_get_alloc_profile(root, 1);
3156 trans = btrfs_join_transaction(root, 1);
3157 if (IS_ERR(trans))
3158 return PTR_ERR(trans);
3159
3160 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3161 bytes + 2 * 1024 * 1024,
3162 alloc_target, 0);
3163 btrfs_end_transaction(trans, root);
3164 if (ret < 0) {
3165 if (ret != -ENOSPC)
3166 return ret;
3167 else
3168 goto commit_trans;
3169 }
3170
3171 if (!data_sinfo) {
3172 btrfs_set_inode_space_info(root, inode);
3173 data_sinfo = BTRFS_I(inode)->space_info;
3174 }
3175 goto again;
3176 }
3177 spin_unlock(&data_sinfo->lock);
3178
3179 /* commit the current transaction and try again */
3180 commit_trans:
3181 if (!committed && !root->fs_info->open_ioctl_trans) {
3182 committed = 1;
3183 trans = btrfs_join_transaction(root, 1);
3184 if (IS_ERR(trans))
3185 return PTR_ERR(trans);
3186 ret = btrfs_commit_transaction(trans, root);
3187 if (ret)
3188 return ret;
3189 goto again;
3190 }
3191
3192 #if 0 /* I hope we never need this code again, just in case */
3193 printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
3194 "%llu bytes_reserved, " "%llu bytes_pinned, "
3195 "%llu bytes_readonly, %llu may use %llu total\n",
3196 (unsigned long long)bytes,
3197 (unsigned long long)data_sinfo->bytes_used,
3198 (unsigned long long)data_sinfo->bytes_reserved,
3199 (unsigned long long)data_sinfo->bytes_pinned,
3200 (unsigned long long)data_sinfo->bytes_readonly,
3201 (unsigned long long)data_sinfo->bytes_may_use,
3202 (unsigned long long)data_sinfo->total_bytes);
3203 #endif
3204 return -ENOSPC;
3205 }
3206 data_sinfo->bytes_may_use += bytes;
3207 BTRFS_I(inode)->reserved_bytes += bytes;
3208 spin_unlock(&data_sinfo->lock);
3209
3210 return 0;
3211 }
3212
3213 /*
3214 * called when we are clearing an delalloc extent from the
3215 * inode's io_tree or there was an error for whatever reason
3216 * after calling btrfs_check_data_free_space
3217 */
3218 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3219 {
3220 struct btrfs_root *root = BTRFS_I(inode)->root;
3221 struct btrfs_space_info *data_sinfo;
3222
3223 /* make sure bytes are sectorsize aligned */
3224 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3225
3226 data_sinfo = BTRFS_I(inode)->space_info;
3227 spin_lock(&data_sinfo->lock);
3228 data_sinfo->bytes_may_use -= bytes;
3229 BTRFS_I(inode)->reserved_bytes -= bytes;
3230 spin_unlock(&data_sinfo->lock);
3231 }
3232
3233 static void force_metadata_allocation(struct btrfs_fs_info *info)
3234 {
3235 struct list_head *head = &info->space_info;
3236 struct btrfs_space_info *found;
3237
3238 rcu_read_lock();
3239 list_for_each_entry_rcu(found, head, list) {
3240 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3241 found->force_alloc = 1;
3242 }
3243 rcu_read_unlock();
3244 }
3245
3246 static int should_alloc_chunk(struct btrfs_root *root,
3247 struct btrfs_space_info *sinfo, u64 alloc_bytes)
3248 {
3249 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3250 u64 thresh;
3251
3252 if (sinfo->bytes_used + sinfo->bytes_reserved +
3253 alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3254 return 0;
3255
3256 if (sinfo->bytes_used + sinfo->bytes_reserved +
3257 alloc_bytes < div_factor(num_bytes, 8))
3258 return 0;
3259
3260 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3261 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3262
3263 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3264 return 0;
3265
3266 return 1;
3267 }
3268
3269 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3270 struct btrfs_root *extent_root, u64 alloc_bytes,
3271 u64 flags, int force)
3272 {
3273 struct btrfs_space_info *space_info;
3274 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3275 int ret = 0;
3276
3277 mutex_lock(&fs_info->chunk_mutex);
3278
3279 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3280
3281 space_info = __find_space_info(extent_root->fs_info, flags);
3282 if (!space_info) {
3283 ret = update_space_info(extent_root->fs_info, flags,
3284 0, 0, &space_info);
3285 BUG_ON(ret);
3286 }
3287 BUG_ON(!space_info);
3288
3289 spin_lock(&space_info->lock);
3290 if (space_info->force_alloc)
3291 force = 1;
3292 if (space_info->full) {
3293 spin_unlock(&space_info->lock);
3294 goto out;
3295 }
3296
3297 if (!force && !should_alloc_chunk(extent_root, space_info,
3298 alloc_bytes)) {
3299 spin_unlock(&space_info->lock);
3300 goto out;
3301 }
3302 spin_unlock(&space_info->lock);
3303
3304 /*
3305 * If we have mixed data/metadata chunks we want to make sure we keep
3306 * allocating mixed chunks instead of individual chunks.
3307 */
3308 if (btrfs_mixed_space_info(space_info))
3309 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3310
3311 /*
3312 * if we're doing a data chunk, go ahead and make sure that
3313 * we keep a reasonable number of metadata chunks allocated in the
3314 * FS as well.
3315 */
3316 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3317 fs_info->data_chunk_allocations++;
3318 if (!(fs_info->data_chunk_allocations %
3319 fs_info->metadata_ratio))
3320 force_metadata_allocation(fs_info);
3321 }
3322
3323 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3324 spin_lock(&space_info->lock);
3325 if (ret)
3326 space_info->full = 1;
3327 else
3328 ret = 1;
3329 space_info->force_alloc = 0;
3330 spin_unlock(&space_info->lock);
3331 out:
3332 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3333 return ret;
3334 }
3335
3336 /*
3337 * shrink metadata reservation for delalloc
3338 */
3339 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3340 struct btrfs_root *root, u64 to_reclaim, int sync)
3341 {
3342 struct btrfs_block_rsv *block_rsv;
3343 struct btrfs_space_info *space_info;
3344 u64 reserved;
3345 u64 max_reclaim;
3346 u64 reclaimed = 0;
3347 int pause = 1;
3348 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3349
3350 block_rsv = &root->fs_info->delalloc_block_rsv;
3351 space_info = block_rsv->space_info;
3352
3353 smp_mb();
3354 reserved = space_info->bytes_reserved;
3355
3356 if (reserved == 0)
3357 return 0;
3358
3359 max_reclaim = min(reserved, to_reclaim);
3360
3361 while (1) {
3362 /* have the flusher threads jump in and do some IO */
3363 smp_mb();
3364 nr_pages = min_t(unsigned long, nr_pages,
3365 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3366 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3367
3368 spin_lock(&space_info->lock);
3369 if (reserved > space_info->bytes_reserved)
3370 reclaimed += reserved - space_info->bytes_reserved;
3371 reserved = space_info->bytes_reserved;
3372 spin_unlock(&space_info->lock);
3373
3374 if (reserved == 0 || reclaimed >= max_reclaim)
3375 break;
3376
3377 if (trans && trans->transaction->blocked)
3378 return -EAGAIN;
3379
3380 __set_current_state(TASK_INTERRUPTIBLE);
3381 schedule_timeout(pause);
3382 pause <<= 1;
3383 if (pause > HZ / 10)
3384 pause = HZ / 10;
3385
3386 }
3387 return reclaimed >= to_reclaim;
3388 }
3389
3390 /*
3391 * Retries tells us how many times we've called reserve_metadata_bytes. The
3392 * idea is if this is the first call (retries == 0) then we will add to our
3393 * reserved count if we can't make the allocation in order to hold our place
3394 * while we go and try and free up space. That way for retries > 1 we don't try
3395 * and add space, we just check to see if the amount of unused space is >= the
3396 * total space, meaning that our reservation is valid.
3397 *
3398 * However if we don't intend to retry this reservation, pass -1 as retries so
3399 * that it short circuits this logic.
3400 */
3401 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3402 struct btrfs_root *root,
3403 struct btrfs_block_rsv *block_rsv,
3404 u64 orig_bytes, int flush)
3405 {
3406 struct btrfs_space_info *space_info = block_rsv->space_info;
3407 u64 unused;
3408 u64 num_bytes = orig_bytes;
3409 int retries = 0;
3410 int ret = 0;
3411 bool reserved = false;
3412 bool committed = false;
3413
3414 again:
3415 ret = -ENOSPC;
3416 if (reserved)
3417 num_bytes = 0;
3418
3419 spin_lock(&space_info->lock);
3420 unused = space_info->bytes_used + space_info->bytes_reserved +
3421 space_info->bytes_pinned + space_info->bytes_readonly +
3422 space_info->bytes_may_use;
3423
3424 /*
3425 * The idea here is that we've not already over-reserved the block group
3426 * then we can go ahead and save our reservation first and then start
3427 * flushing if we need to. Otherwise if we've already overcommitted
3428 * lets start flushing stuff first and then come back and try to make
3429 * our reservation.
3430 */
3431 if (unused <= space_info->total_bytes) {
3432 unused = space_info->total_bytes - unused;
3433 if (unused >= num_bytes) {
3434 if (!reserved)
3435 space_info->bytes_reserved += orig_bytes;
3436 ret = 0;
3437 } else {
3438 /*
3439 * Ok set num_bytes to orig_bytes since we aren't
3440 * overocmmitted, this way we only try and reclaim what
3441 * we need.
3442 */
3443 num_bytes = orig_bytes;
3444 }
3445 } else {
3446 /*
3447 * Ok we're over committed, set num_bytes to the overcommitted
3448 * amount plus the amount of bytes that we need for this
3449 * reservation.
3450 */
3451 num_bytes = unused - space_info->total_bytes +
3452 (orig_bytes * (retries + 1));
3453 }
3454
3455 /*
3456 * Couldn't make our reservation, save our place so while we're trying
3457 * to reclaim space we can actually use it instead of somebody else
3458 * stealing it from us.
3459 */
3460 if (ret && !reserved) {
3461 space_info->bytes_reserved += orig_bytes;
3462 reserved = true;
3463 }
3464
3465 spin_unlock(&space_info->lock);
3466
3467 if (!ret)
3468 return 0;
3469
3470 if (!flush)
3471 goto out;
3472
3473 /*
3474 * We do synchronous shrinking since we don't actually unreserve
3475 * metadata until after the IO is completed.
3476 */
3477 ret = shrink_delalloc(trans, root, num_bytes, 1);
3478 if (ret > 0)
3479 return 0;
3480 else if (ret < 0)
3481 goto out;
3482
3483 /*
3484 * So if we were overcommitted it's possible that somebody else flushed
3485 * out enough space and we simply didn't have enough space to reclaim,
3486 * so go back around and try again.
3487 */
3488 if (retries < 2) {
3489 retries++;
3490 goto again;
3491 }
3492
3493 spin_lock(&space_info->lock);
3494 /*
3495 * Not enough space to be reclaimed, don't bother committing the
3496 * transaction.
3497 */
3498 if (space_info->bytes_pinned < orig_bytes)
3499 ret = -ENOSPC;
3500 spin_unlock(&space_info->lock);
3501 if (ret)
3502 goto out;
3503
3504 ret = -EAGAIN;
3505 if (trans || committed)
3506 goto out;
3507
3508 ret = -ENOSPC;
3509 trans = btrfs_join_transaction(root, 1);
3510 if (IS_ERR(trans))
3511 goto out;
3512 ret = btrfs_commit_transaction(trans, root);
3513 if (!ret) {
3514 trans = NULL;
3515 committed = true;
3516 goto again;
3517 }
3518
3519 out:
3520 if (reserved) {
3521 spin_lock(&space_info->lock);
3522 space_info->bytes_reserved -= orig_bytes;
3523 spin_unlock(&space_info->lock);
3524 }
3525
3526 return ret;
3527 }
3528
3529 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3530 struct btrfs_root *root)
3531 {
3532 struct btrfs_block_rsv *block_rsv;
3533 if (root->ref_cows)
3534 block_rsv = trans->block_rsv;
3535 else
3536 block_rsv = root->block_rsv;
3537
3538 if (!block_rsv)
3539 block_rsv = &root->fs_info->empty_block_rsv;
3540
3541 return block_rsv;
3542 }
3543
3544 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3545 u64 num_bytes)
3546 {
3547 int ret = -ENOSPC;
3548 spin_lock(&block_rsv->lock);
3549 if (block_rsv->reserved >= num_bytes) {
3550 block_rsv->reserved -= num_bytes;
3551 if (block_rsv->reserved < block_rsv->size)
3552 block_rsv->full = 0;
3553 ret = 0;
3554 }
3555 spin_unlock(&block_rsv->lock);
3556 return ret;
3557 }
3558
3559 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3560 u64 num_bytes, int update_size)
3561 {
3562 spin_lock(&block_rsv->lock);
3563 block_rsv->reserved += num_bytes;
3564 if (update_size)
3565 block_rsv->size += num_bytes;
3566 else if (block_rsv->reserved >= block_rsv->size)
3567 block_rsv->full = 1;
3568 spin_unlock(&block_rsv->lock);
3569 }
3570
3571 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3572 struct btrfs_block_rsv *dest, u64 num_bytes)
3573 {
3574 struct btrfs_space_info *space_info = block_rsv->space_info;
3575
3576 spin_lock(&block_rsv->lock);
3577 if (num_bytes == (u64)-1)
3578 num_bytes = block_rsv->size;
3579 block_rsv->size -= num_bytes;
3580 if (block_rsv->reserved >= block_rsv->size) {
3581 num_bytes = block_rsv->reserved - block_rsv->size;
3582 block_rsv->reserved = block_rsv->size;
3583 block_rsv->full = 1;
3584 } else {
3585 num_bytes = 0;
3586 }
3587 spin_unlock(&block_rsv->lock);
3588
3589 if (num_bytes > 0) {
3590 if (dest) {
3591 block_rsv_add_bytes(dest, num_bytes, 0);
3592 } else {
3593 spin_lock(&space_info->lock);
3594 space_info->bytes_reserved -= num_bytes;
3595 spin_unlock(&space_info->lock);
3596 }
3597 }
3598 }
3599
3600 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3601 struct btrfs_block_rsv *dst, u64 num_bytes)
3602 {
3603 int ret;
3604
3605 ret = block_rsv_use_bytes(src, num_bytes);
3606 if (ret)
3607 return ret;
3608
3609 block_rsv_add_bytes(dst, num_bytes, 1);
3610 return 0;
3611 }
3612
3613 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3614 {
3615 memset(rsv, 0, sizeof(*rsv));
3616 spin_lock_init(&rsv->lock);
3617 atomic_set(&rsv->usage, 1);
3618 rsv->priority = 6;
3619 INIT_LIST_HEAD(&rsv->list);
3620 }
3621
3622 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3623 {
3624 struct btrfs_block_rsv *block_rsv;
3625 struct btrfs_fs_info *fs_info = root->fs_info;
3626
3627 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3628 if (!block_rsv)
3629 return NULL;
3630
3631 btrfs_init_block_rsv(block_rsv);
3632 block_rsv->space_info = __find_space_info(fs_info,
3633 BTRFS_BLOCK_GROUP_METADATA);
3634 return block_rsv;
3635 }
3636
3637 void btrfs_free_block_rsv(struct btrfs_root *root,
3638 struct btrfs_block_rsv *rsv)
3639 {
3640 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3641 btrfs_block_rsv_release(root, rsv, (u64)-1);
3642 if (!rsv->durable)
3643 kfree(rsv);
3644 }
3645 }
3646
3647 /*
3648 * make the block_rsv struct be able to capture freed space.
3649 * the captured space will re-add to the the block_rsv struct
3650 * after transaction commit
3651 */
3652 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3653 struct btrfs_block_rsv *block_rsv)
3654 {
3655 block_rsv->durable = 1;
3656 mutex_lock(&fs_info->durable_block_rsv_mutex);
3657 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3658 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3659 }
3660
3661 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3662 struct btrfs_root *root,
3663 struct btrfs_block_rsv *block_rsv,
3664 u64 num_bytes)
3665 {
3666 int ret;
3667
3668 if (num_bytes == 0)
3669 return 0;
3670
3671 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3672 if (!ret) {
3673 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3674 return 0;
3675 }
3676
3677 return ret;
3678 }
3679
3680 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3681 struct btrfs_root *root,
3682 struct btrfs_block_rsv *block_rsv,
3683 u64 min_reserved, int min_factor)
3684 {
3685 u64 num_bytes = 0;
3686 int commit_trans = 0;
3687 int ret = -ENOSPC;
3688
3689 if (!block_rsv)
3690 return 0;
3691
3692 spin_lock(&block_rsv->lock);
3693 if (min_factor > 0)
3694 num_bytes = div_factor(block_rsv->size, min_factor);
3695 if (min_reserved > num_bytes)
3696 num_bytes = min_reserved;
3697
3698 if (block_rsv->reserved >= num_bytes) {
3699 ret = 0;
3700 } else {
3701 num_bytes -= block_rsv->reserved;
3702 if (block_rsv->durable &&
3703 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3704 commit_trans = 1;
3705 }
3706 spin_unlock(&block_rsv->lock);
3707 if (!ret)
3708 return 0;
3709
3710 if (block_rsv->refill_used) {
3711 ret = reserve_metadata_bytes(trans, root, block_rsv,
3712 num_bytes, 0);
3713 if (!ret) {
3714 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3715 return 0;
3716 }
3717 }
3718
3719 if (commit_trans) {
3720 if (trans)
3721 return -EAGAIN;
3722
3723 trans = btrfs_join_transaction(root, 1);
3724 BUG_ON(IS_ERR(trans));
3725 ret = btrfs_commit_transaction(trans, root);
3726 return 0;
3727 }
3728
3729 return -ENOSPC;
3730 }
3731
3732 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3733 struct btrfs_block_rsv *dst_rsv,
3734 u64 num_bytes)
3735 {
3736 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3737 }
3738
3739 void btrfs_block_rsv_release(struct btrfs_root *root,
3740 struct btrfs_block_rsv *block_rsv,
3741 u64 num_bytes)
3742 {
3743 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3744 if (global_rsv->full || global_rsv == block_rsv ||
3745 block_rsv->space_info != global_rsv->space_info)
3746 global_rsv = NULL;
3747 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3748 }
3749
3750 /*
3751 * helper to calculate size of global block reservation.
3752 * the desired value is sum of space used by extent tree,
3753 * checksum tree and root tree
3754 */
3755 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3756 {
3757 struct btrfs_space_info *sinfo;
3758 u64 num_bytes;
3759 u64 meta_used;
3760 u64 data_used;
3761 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3762 #if 0
3763 /*
3764 * per tree used space accounting can be inaccuracy, so we
3765 * can't rely on it.
3766 */
3767 spin_lock(&fs_info->extent_root->accounting_lock);
3768 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
3769 spin_unlock(&fs_info->extent_root->accounting_lock);
3770
3771 spin_lock(&fs_info->csum_root->accounting_lock);
3772 num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
3773 spin_unlock(&fs_info->csum_root->accounting_lock);
3774
3775 spin_lock(&fs_info->tree_root->accounting_lock);
3776 num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
3777 spin_unlock(&fs_info->tree_root->accounting_lock);
3778 #endif
3779 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3780 spin_lock(&sinfo->lock);
3781 data_used = sinfo->bytes_used;
3782 spin_unlock(&sinfo->lock);
3783
3784 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3785 spin_lock(&sinfo->lock);
3786 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3787 data_used = 0;
3788 meta_used = sinfo->bytes_used;
3789 spin_unlock(&sinfo->lock);
3790
3791 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3792 csum_size * 2;
3793 num_bytes += div64_u64(data_used + meta_used, 50);
3794
3795 if (num_bytes * 3 > meta_used)
3796 num_bytes = div64_u64(meta_used, 3);
3797
3798 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3799 }
3800
3801 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3802 {
3803 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3804 struct btrfs_space_info *sinfo = block_rsv->space_info;
3805 u64 num_bytes;
3806
3807 num_bytes = calc_global_metadata_size(fs_info);
3808
3809 spin_lock(&block_rsv->lock);
3810 spin_lock(&sinfo->lock);
3811
3812 block_rsv->size = num_bytes;
3813
3814 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3815 sinfo->bytes_reserved + sinfo->bytes_readonly +
3816 sinfo->bytes_may_use;
3817
3818 if (sinfo->total_bytes > num_bytes) {
3819 num_bytes = sinfo->total_bytes - num_bytes;
3820 block_rsv->reserved += num_bytes;
3821 sinfo->bytes_reserved += num_bytes;
3822 }
3823
3824 if (block_rsv->reserved >= block_rsv->size) {
3825 num_bytes = block_rsv->reserved - block_rsv->size;
3826 sinfo->bytes_reserved -= num_bytes;
3827 block_rsv->reserved = block_rsv->size;
3828 block_rsv->full = 1;
3829 }
3830 #if 0
3831 printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
3832 block_rsv->size, block_rsv->reserved);
3833 #endif
3834 spin_unlock(&sinfo->lock);
3835 spin_unlock(&block_rsv->lock);
3836 }
3837
3838 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3839 {
3840 struct btrfs_space_info *space_info;
3841
3842 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3843 fs_info->chunk_block_rsv.space_info = space_info;
3844 fs_info->chunk_block_rsv.priority = 10;
3845
3846 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3847 fs_info->global_block_rsv.space_info = space_info;
3848 fs_info->global_block_rsv.priority = 10;
3849 fs_info->global_block_rsv.refill_used = 1;
3850 fs_info->delalloc_block_rsv.space_info = space_info;
3851 fs_info->trans_block_rsv.space_info = space_info;
3852 fs_info->empty_block_rsv.space_info = space_info;
3853 fs_info->empty_block_rsv.priority = 10;
3854
3855 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3856 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3857 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3858 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3859 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3860
3861 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3862
3863 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3864
3865 update_global_block_rsv(fs_info);
3866 }
3867
3868 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3869 {
3870 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3871 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3872 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3873 WARN_ON(fs_info->trans_block_rsv.size > 0);
3874 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3875 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3876 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3877 }
3878
3879 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
3880 {
3881 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3882 3 * num_items;
3883 }
3884
3885 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3886 struct btrfs_root *root,
3887 int num_items)
3888 {
3889 u64 num_bytes;
3890 int ret;
3891
3892 if (num_items == 0 || root->fs_info->chunk_root == root)
3893 return 0;
3894
3895 num_bytes = calc_trans_metadata_size(root, num_items);
3896 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3897 num_bytes);
3898 if (!ret) {
3899 trans->bytes_reserved += num_bytes;
3900 trans->block_rsv = &root->fs_info->trans_block_rsv;
3901 }
3902 return ret;
3903 }
3904
3905 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3906 struct btrfs_root *root)
3907 {
3908 if (!trans->bytes_reserved)
3909 return;
3910
3911 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3912 btrfs_block_rsv_release(root, trans->block_rsv,
3913 trans->bytes_reserved);
3914 trans->bytes_reserved = 0;
3915 }
3916
3917 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3918 struct inode *inode)
3919 {
3920 struct btrfs_root *root = BTRFS_I(inode)->root;
3921 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3922 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3923
3924 /*
3925 * one for deleting orphan item, one for updating inode and
3926 * two for calling btrfs_truncate_inode_items.
3927 *
3928 * btrfs_truncate_inode_items is a delete operation, it frees
3929 * more space than it uses in most cases. So two units of
3930 * metadata space should be enough for calling it many times.
3931 * If all of the metadata space is used, we can commit
3932 * transaction and use space it freed.
3933 */
3934 u64 num_bytes = calc_trans_metadata_size(root, 4);
3935 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3936 }
3937
3938 void btrfs_orphan_release_metadata(struct inode *inode)
3939 {
3940 struct btrfs_root *root = BTRFS_I(inode)->root;
3941 u64 num_bytes = calc_trans_metadata_size(root, 4);
3942 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3943 }
3944
3945 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3946 struct btrfs_pending_snapshot *pending)
3947 {
3948 struct btrfs_root *root = pending->root;
3949 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3950 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3951 /*
3952 * two for root back/forward refs, two for directory entries
3953 * and one for root of the snapshot.
3954 */
3955 u64 num_bytes = calc_trans_metadata_size(root, 5);
3956 dst_rsv->space_info = src_rsv->space_info;
3957 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3958 }
3959
3960 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3961 {
3962 return num_bytes >>= 3;
3963 }
3964
3965 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3966 {
3967 struct btrfs_root *root = BTRFS_I(inode)->root;
3968 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3969 u64 to_reserve;
3970 int nr_extents;
3971 int ret;
3972
3973 if (btrfs_transaction_in_commit(root->fs_info))
3974 schedule_timeout(1);
3975
3976 num_bytes = ALIGN(num_bytes, root->sectorsize);
3977
3978 spin_lock(&BTRFS_I(inode)->accounting_lock);
3979 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3980 if (nr_extents > BTRFS_I(inode)->reserved_extents) {
3981 nr_extents -= BTRFS_I(inode)->reserved_extents;
3982 to_reserve = calc_trans_metadata_size(root, nr_extents);
3983 } else {
3984 nr_extents = 0;
3985 to_reserve = 0;
3986 }
3987 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3988
3989 to_reserve += calc_csum_metadata_size(inode, num_bytes);
3990 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
3991 if (ret)
3992 return ret;
3993
3994 spin_lock(&BTRFS_I(inode)->accounting_lock);
3995 BTRFS_I(inode)->reserved_extents += nr_extents;
3996 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3997 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3998
3999 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4000
4001 if (block_rsv->size > 512 * 1024 * 1024)
4002 shrink_delalloc(NULL, root, to_reserve, 0);
4003
4004 return 0;
4005 }
4006
4007 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4008 {
4009 struct btrfs_root *root = BTRFS_I(inode)->root;
4010 u64 to_free;
4011 int nr_extents;
4012
4013 num_bytes = ALIGN(num_bytes, root->sectorsize);
4014 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
4015
4016 spin_lock(&BTRFS_I(inode)->accounting_lock);
4017 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4018 if (nr_extents < BTRFS_I(inode)->reserved_extents) {
4019 nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents;
4020 BTRFS_I(inode)->reserved_extents -= nr_extents;
4021 } else {
4022 nr_extents = 0;
4023 }
4024 spin_unlock(&BTRFS_I(inode)->accounting_lock);
4025
4026 to_free = calc_csum_metadata_size(inode, num_bytes);
4027 if (nr_extents > 0)
4028 to_free += calc_trans_metadata_size(root, nr_extents);
4029
4030 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4031 to_free);
4032 }
4033
4034 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4035 {
4036 int ret;
4037
4038 ret = btrfs_check_data_free_space(inode, num_bytes);
4039 if (ret)
4040 return ret;
4041
4042 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4043 if (ret) {
4044 btrfs_free_reserved_data_space(inode, num_bytes);
4045 return ret;
4046 }
4047
4048 return 0;
4049 }
4050
4051 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4052 {
4053 btrfs_delalloc_release_metadata(inode, num_bytes);
4054 btrfs_free_reserved_data_space(inode, num_bytes);
4055 }
4056
4057 static int update_block_group(struct btrfs_trans_handle *trans,
4058 struct btrfs_root *root,
4059 u64 bytenr, u64 num_bytes, int alloc)
4060 {
4061 struct btrfs_block_group_cache *cache = NULL;
4062 struct btrfs_fs_info *info = root->fs_info;
4063 u64 total = num_bytes;
4064 u64 old_val;
4065 u64 byte_in_group;
4066 int factor;
4067
4068 /* block accounting for super block */
4069 spin_lock(&info->delalloc_lock);
4070 old_val = btrfs_super_bytes_used(&info->super_copy);
4071 if (alloc)
4072 old_val += num_bytes;
4073 else
4074 old_val -= num_bytes;
4075 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4076 spin_unlock(&info->delalloc_lock);
4077
4078 while (total) {
4079 cache = btrfs_lookup_block_group(info, bytenr);
4080 if (!cache)
4081 return -1;
4082 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4083 BTRFS_BLOCK_GROUP_RAID1 |
4084 BTRFS_BLOCK_GROUP_RAID10))
4085 factor = 2;
4086 else
4087 factor = 1;
4088 /*
4089 * If this block group has free space cache written out, we
4090 * need to make sure to load it if we are removing space. This
4091 * is because we need the unpinning stage to actually add the
4092 * space back to the block group, otherwise we will leak space.
4093 */
4094 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4095 cache_block_group(cache, trans, NULL, 1);
4096
4097 byte_in_group = bytenr - cache->key.objectid;
4098 WARN_ON(byte_in_group > cache->key.offset);
4099
4100 spin_lock(&cache->space_info->lock);
4101 spin_lock(&cache->lock);
4102
4103 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4104 cache->disk_cache_state < BTRFS_DC_CLEAR)
4105 cache->disk_cache_state = BTRFS_DC_CLEAR;
4106
4107 cache->dirty = 1;
4108 old_val = btrfs_block_group_used(&cache->item);
4109 num_bytes = min(total, cache->key.offset - byte_in_group);
4110 if (alloc) {
4111 old_val += num_bytes;
4112 btrfs_set_block_group_used(&cache->item, old_val);
4113 cache->reserved -= num_bytes;
4114 cache->space_info->bytes_reserved -= num_bytes;
4115 cache->space_info->bytes_used += num_bytes;
4116 cache->space_info->disk_used += num_bytes * factor;
4117 spin_unlock(&cache->lock);
4118 spin_unlock(&cache->space_info->lock);
4119 } else {
4120 old_val -= num_bytes;
4121 btrfs_set_block_group_used(&cache->item, old_val);
4122 cache->pinned += num_bytes;
4123 cache->space_info->bytes_pinned += num_bytes;
4124 cache->space_info->bytes_used -= num_bytes;
4125 cache->space_info->disk_used -= num_bytes * factor;
4126 spin_unlock(&cache->lock);
4127 spin_unlock(&cache->space_info->lock);
4128
4129 set_extent_dirty(info->pinned_extents,
4130 bytenr, bytenr + num_bytes - 1,
4131 GFP_NOFS | __GFP_NOFAIL);
4132 }
4133 btrfs_put_block_group(cache);
4134 total -= num_bytes;
4135 bytenr += num_bytes;
4136 }
4137 return 0;
4138 }
4139
4140 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4141 {
4142 struct btrfs_block_group_cache *cache;
4143 u64 bytenr;
4144
4145 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4146 if (!cache)
4147 return 0;
4148
4149 bytenr = cache->key.objectid;
4150 btrfs_put_block_group(cache);
4151
4152 return bytenr;
4153 }
4154
4155 static int pin_down_extent(struct btrfs_root *root,
4156 struct btrfs_block_group_cache *cache,
4157 u64 bytenr, u64 num_bytes, int reserved)
4158 {
4159 spin_lock(&cache->space_info->lock);
4160 spin_lock(&cache->lock);
4161 cache->pinned += num_bytes;
4162 cache->space_info->bytes_pinned += num_bytes;
4163 if (reserved) {
4164 cache->reserved -= num_bytes;
4165 cache->space_info->bytes_reserved -= num_bytes;
4166 }
4167 spin_unlock(&cache->lock);
4168 spin_unlock(&cache->space_info->lock);
4169
4170 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4171 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4172 return 0;
4173 }
4174
4175 /*
4176 * this function must be called within transaction
4177 */
4178 int btrfs_pin_extent(struct btrfs_root *root,
4179 u64 bytenr, u64 num_bytes, int reserved)
4180 {
4181 struct btrfs_block_group_cache *cache;
4182
4183 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4184 BUG_ON(!cache);
4185
4186 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4187
4188 btrfs_put_block_group(cache);
4189 return 0;
4190 }
4191
4192 /*
4193 * update size of reserved extents. this function may return -EAGAIN
4194 * if 'reserve' is true or 'sinfo' is false.
4195 */
4196 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
4197 u64 num_bytes, int reserve, int sinfo)
4198 {
4199 int ret = 0;
4200 if (sinfo) {
4201 struct btrfs_space_info *space_info = cache->space_info;
4202 spin_lock(&space_info->lock);
4203 spin_lock(&cache->lock);
4204 if (reserve) {
4205 if (cache->ro) {
4206 ret = -EAGAIN;
4207 } else {
4208 cache->reserved += num_bytes;
4209 space_info->bytes_reserved += num_bytes;
4210 }
4211 } else {
4212 if (cache->ro)
4213 space_info->bytes_readonly += num_bytes;
4214 cache->reserved -= num_bytes;
4215 space_info->bytes_reserved -= num_bytes;
4216 }
4217 spin_unlock(&cache->lock);
4218 spin_unlock(&space_info->lock);
4219 } else {
4220 spin_lock(&cache->lock);
4221 if (cache->ro) {
4222 ret = -EAGAIN;
4223 } else {
4224 if (reserve)
4225 cache->reserved += num_bytes;
4226 else
4227 cache->reserved -= num_bytes;
4228 }
4229 spin_unlock(&cache->lock);
4230 }
4231 return ret;
4232 }
4233
4234 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4235 struct btrfs_root *root)
4236 {
4237 struct btrfs_fs_info *fs_info = root->fs_info;
4238 struct btrfs_caching_control *next;
4239 struct btrfs_caching_control *caching_ctl;
4240 struct btrfs_block_group_cache *cache;
4241
4242 down_write(&fs_info->extent_commit_sem);
4243
4244 list_for_each_entry_safe(caching_ctl, next,
4245 &fs_info->caching_block_groups, list) {
4246 cache = caching_ctl->block_group;
4247 if (block_group_cache_done(cache)) {
4248 cache->last_byte_to_unpin = (u64)-1;
4249 list_del_init(&caching_ctl->list);
4250 put_caching_control(caching_ctl);
4251 } else {
4252 cache->last_byte_to_unpin = caching_ctl->progress;
4253 }
4254 }
4255
4256 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4257 fs_info->pinned_extents = &fs_info->freed_extents[1];
4258 else
4259 fs_info->pinned_extents = &fs_info->freed_extents[0];
4260
4261 up_write(&fs_info->extent_commit_sem);
4262
4263 update_global_block_rsv(fs_info);
4264 return 0;
4265 }
4266
4267 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4268 {
4269 struct btrfs_fs_info *fs_info = root->fs_info;
4270 struct btrfs_block_group_cache *cache = NULL;
4271 u64 len;
4272
4273 while (start <= end) {
4274 if (!cache ||
4275 start >= cache->key.objectid + cache->key.offset) {
4276 if (cache)
4277 btrfs_put_block_group(cache);
4278 cache = btrfs_lookup_block_group(fs_info, start);
4279 BUG_ON(!cache);
4280 }
4281
4282 len = cache->key.objectid + cache->key.offset - start;
4283 len = min(len, end + 1 - start);
4284
4285 if (start < cache->last_byte_to_unpin) {
4286 len = min(len, cache->last_byte_to_unpin - start);
4287 btrfs_add_free_space(cache, start, len);
4288 }
4289
4290 start += len;
4291
4292 spin_lock(&cache->space_info->lock);
4293 spin_lock(&cache->lock);
4294 cache->pinned -= len;
4295 cache->space_info->bytes_pinned -= len;
4296 if (cache->ro) {
4297 cache->space_info->bytes_readonly += len;
4298 } else if (cache->reserved_pinned > 0) {
4299 len = min(len, cache->reserved_pinned);
4300 cache->reserved_pinned -= len;
4301 cache->space_info->bytes_reserved += len;
4302 }
4303 spin_unlock(&cache->lock);
4304 spin_unlock(&cache->space_info->lock);
4305 }
4306
4307 if (cache)
4308 btrfs_put_block_group(cache);
4309 return 0;
4310 }
4311
4312 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4313 struct btrfs_root *root)
4314 {
4315 struct btrfs_fs_info *fs_info = root->fs_info;
4316 struct extent_io_tree *unpin;
4317 struct btrfs_block_rsv *block_rsv;
4318 struct btrfs_block_rsv *next_rsv;
4319 u64 start;
4320 u64 end;
4321 int idx;
4322 int ret;
4323
4324 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4325 unpin = &fs_info->freed_extents[1];
4326 else
4327 unpin = &fs_info->freed_extents[0];
4328
4329 while (1) {
4330 ret = find_first_extent_bit(unpin, 0, &start, &end,
4331 EXTENT_DIRTY);
4332 if (ret)
4333 break;
4334
4335 ret = btrfs_discard_extent(root, start, end + 1 - start);
4336
4337 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4338 unpin_extent_range(root, start, end);
4339 cond_resched();
4340 }
4341
4342 mutex_lock(&fs_info->durable_block_rsv_mutex);
4343 list_for_each_entry_safe(block_rsv, next_rsv,
4344 &fs_info->durable_block_rsv_list, list) {
4345
4346 idx = trans->transid & 0x1;
4347 if (block_rsv->freed[idx] > 0) {
4348 block_rsv_add_bytes(block_rsv,
4349 block_rsv->freed[idx], 0);
4350 block_rsv->freed[idx] = 0;
4351 }
4352 if (atomic_read(&block_rsv->usage) == 0) {
4353 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4354
4355 if (block_rsv->freed[0] == 0 &&
4356 block_rsv->freed[1] == 0) {
4357 list_del_init(&block_rsv->list);
4358 kfree(block_rsv);
4359 }
4360 } else {
4361 btrfs_block_rsv_release(root, block_rsv, 0);
4362 }
4363 }
4364 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4365
4366 return 0;
4367 }
4368
4369 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4370 struct btrfs_root *root,
4371 u64 bytenr, u64 num_bytes, u64 parent,
4372 u64 root_objectid, u64 owner_objectid,
4373 u64 owner_offset, int refs_to_drop,
4374 struct btrfs_delayed_extent_op *extent_op)
4375 {
4376 struct btrfs_key key;
4377 struct btrfs_path *path;
4378 struct btrfs_fs_info *info = root->fs_info;
4379 struct btrfs_root *extent_root = info->extent_root;
4380 struct extent_buffer *leaf;
4381 struct btrfs_extent_item *ei;
4382 struct btrfs_extent_inline_ref *iref;
4383 int ret;
4384 int is_data;
4385 int extent_slot = 0;
4386 int found_extent = 0;
4387 int num_to_del = 1;
4388 u32 item_size;
4389 u64 refs;
4390
4391 path = btrfs_alloc_path();
4392 if (!path)
4393 return -ENOMEM;
4394
4395 path->reada = 1;
4396 path->leave_spinning = 1;
4397
4398 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4399 BUG_ON(!is_data && refs_to_drop != 1);
4400
4401 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4402 bytenr, num_bytes, parent,
4403 root_objectid, owner_objectid,
4404 owner_offset);
4405 if (ret == 0) {
4406 extent_slot = path->slots[0];
4407 while (extent_slot >= 0) {
4408 btrfs_item_key_to_cpu(path->nodes[0], &key,
4409 extent_slot);
4410 if (key.objectid != bytenr)
4411 break;
4412 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4413 key.offset == num_bytes) {
4414 found_extent = 1;
4415 break;
4416 }
4417 if (path->slots[0] - extent_slot > 5)
4418 break;
4419 extent_slot--;
4420 }
4421 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4422 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4423 if (found_extent && item_size < sizeof(*ei))
4424 found_extent = 0;
4425 #endif
4426 if (!found_extent) {
4427 BUG_ON(iref);
4428 ret = remove_extent_backref(trans, extent_root, path,
4429 NULL, refs_to_drop,
4430 is_data);
4431 BUG_ON(ret);
4432 btrfs_release_path(extent_root, path);
4433 path->leave_spinning = 1;
4434
4435 key.objectid = bytenr;
4436 key.type = BTRFS_EXTENT_ITEM_KEY;
4437 key.offset = num_bytes;
4438
4439 ret = btrfs_search_slot(trans, extent_root,
4440 &key, path, -1, 1);
4441 if (ret) {
4442 printk(KERN_ERR "umm, got %d back from search"
4443 ", was looking for %llu\n", ret,
4444 (unsigned long long)bytenr);
4445 btrfs_print_leaf(extent_root, path->nodes[0]);
4446 }
4447 BUG_ON(ret);
4448 extent_slot = path->slots[0];
4449 }
4450 } else {
4451 btrfs_print_leaf(extent_root, path->nodes[0]);
4452 WARN_ON(1);
4453 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4454 "parent %llu root %llu owner %llu offset %llu\n",
4455 (unsigned long long)bytenr,
4456 (unsigned long long)parent,
4457 (unsigned long long)root_objectid,
4458 (unsigned long long)owner_objectid,
4459 (unsigned long long)owner_offset);
4460 }
4461
4462 leaf = path->nodes[0];
4463 item_size = btrfs_item_size_nr(leaf, extent_slot);
4464 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4465 if (item_size < sizeof(*ei)) {
4466 BUG_ON(found_extent || extent_slot != path->slots[0]);
4467 ret = convert_extent_item_v0(trans, extent_root, path,
4468 owner_objectid, 0);
4469 BUG_ON(ret < 0);
4470
4471 btrfs_release_path(extent_root, path);
4472 path->leave_spinning = 1;
4473
4474 key.objectid = bytenr;
4475 key.type = BTRFS_EXTENT_ITEM_KEY;
4476 key.offset = num_bytes;
4477
4478 ret = btrfs_search_slot(trans, extent_root, &key, path,
4479 -1, 1);
4480 if (ret) {
4481 printk(KERN_ERR "umm, got %d back from search"
4482 ", was looking for %llu\n", ret,
4483 (unsigned long long)bytenr);
4484 btrfs_print_leaf(extent_root, path->nodes[0]);
4485 }
4486 BUG_ON(ret);
4487 extent_slot = path->slots[0];
4488 leaf = path->nodes[0];
4489 item_size = btrfs_item_size_nr(leaf, extent_slot);
4490 }
4491 #endif
4492 BUG_ON(item_size < sizeof(*ei));
4493 ei = btrfs_item_ptr(leaf, extent_slot,
4494 struct btrfs_extent_item);
4495 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4496 struct btrfs_tree_block_info *bi;
4497 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4498 bi = (struct btrfs_tree_block_info *)(ei + 1);
4499 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4500 }
4501
4502 refs = btrfs_extent_refs(leaf, ei);
4503 BUG_ON(refs < refs_to_drop);
4504 refs -= refs_to_drop;
4505
4506 if (refs > 0) {
4507 if (extent_op)
4508 __run_delayed_extent_op(extent_op, leaf, ei);
4509 /*
4510 * In the case of inline back ref, reference count will
4511 * be updated by remove_extent_backref
4512 */
4513 if (iref) {
4514 BUG_ON(!found_extent);
4515 } else {
4516 btrfs_set_extent_refs(leaf, ei, refs);
4517 btrfs_mark_buffer_dirty(leaf);
4518 }
4519 if (found_extent) {
4520 ret = remove_extent_backref(trans, extent_root, path,
4521 iref, refs_to_drop,
4522 is_data);
4523 BUG_ON(ret);
4524 }
4525 } else {
4526 if (found_extent) {
4527 BUG_ON(is_data && refs_to_drop !=
4528 extent_data_ref_count(root, path, iref));
4529 if (iref) {
4530 BUG_ON(path->slots[0] != extent_slot);
4531 } else {
4532 BUG_ON(path->slots[0] != extent_slot + 1);
4533 path->slots[0] = extent_slot;
4534 num_to_del = 2;
4535 }
4536 }
4537
4538 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4539 num_to_del);
4540 BUG_ON(ret);
4541 btrfs_release_path(extent_root, path);
4542
4543 if (is_data) {
4544 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4545 BUG_ON(ret);
4546 } else {
4547 invalidate_mapping_pages(info->btree_inode->i_mapping,
4548 bytenr >> PAGE_CACHE_SHIFT,
4549 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4550 }
4551
4552 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4553 BUG_ON(ret);
4554 }
4555 btrfs_free_path(path);
4556 return ret;
4557 }
4558
4559 /*
4560 * when we free an block, it is possible (and likely) that we free the last
4561 * delayed ref for that extent as well. This searches the delayed ref tree for
4562 * a given extent, and if there are no other delayed refs to be processed, it
4563 * removes it from the tree.
4564 */
4565 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4566 struct btrfs_root *root, u64 bytenr)
4567 {
4568 struct btrfs_delayed_ref_head *head;
4569 struct btrfs_delayed_ref_root *delayed_refs;
4570 struct btrfs_delayed_ref_node *ref;
4571 struct rb_node *node;
4572 int ret = 0;
4573
4574 delayed_refs = &trans->transaction->delayed_refs;
4575 spin_lock(&delayed_refs->lock);
4576 head = btrfs_find_delayed_ref_head(trans, bytenr);
4577 if (!head)
4578 goto out;
4579
4580 node = rb_prev(&head->node.rb_node);
4581 if (!node)
4582 goto out;
4583
4584 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4585
4586 /* there are still entries for this ref, we can't drop it */
4587 if (ref->bytenr == bytenr)
4588 goto out;
4589
4590 if (head->extent_op) {
4591 if (!head->must_insert_reserved)
4592 goto out;
4593 kfree(head->extent_op);
4594 head->extent_op = NULL;
4595 }
4596
4597 /*
4598 * waiting for the lock here would deadlock. If someone else has it
4599 * locked they are already in the process of dropping it anyway
4600 */
4601 if (!mutex_trylock(&head->mutex))
4602 goto out;
4603
4604 /*
4605 * at this point we have a head with no other entries. Go
4606 * ahead and process it.
4607 */
4608 head->node.in_tree = 0;
4609 rb_erase(&head->node.rb_node, &delayed_refs->root);
4610
4611 delayed_refs->num_entries--;
4612
4613 /*
4614 * we don't take a ref on the node because we're removing it from the
4615 * tree, so we just steal the ref the tree was holding.
4616 */
4617 delayed_refs->num_heads--;
4618 if (list_empty(&head->cluster))
4619 delayed_refs->num_heads_ready--;
4620
4621 list_del_init(&head->cluster);
4622 spin_unlock(&delayed_refs->lock);
4623
4624 BUG_ON(head->extent_op);
4625 if (head->must_insert_reserved)
4626 ret = 1;
4627
4628 mutex_unlock(&head->mutex);
4629 btrfs_put_delayed_ref(&head->node);
4630 return ret;
4631 out:
4632 spin_unlock(&delayed_refs->lock);
4633 return 0;
4634 }
4635
4636 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4637 struct btrfs_root *root,
4638 struct extent_buffer *buf,
4639 u64 parent, int last_ref)
4640 {
4641 struct btrfs_block_rsv *block_rsv;
4642 struct btrfs_block_group_cache *cache = NULL;
4643 int ret;
4644
4645 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4646 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4647 parent, root->root_key.objectid,
4648 btrfs_header_level(buf),
4649 BTRFS_DROP_DELAYED_REF, NULL);
4650 BUG_ON(ret);
4651 }
4652
4653 if (!last_ref)
4654 return;
4655
4656 block_rsv = get_block_rsv(trans, root);
4657 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4658 if (block_rsv->space_info != cache->space_info)
4659 goto out;
4660
4661 if (btrfs_header_generation(buf) == trans->transid) {
4662 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4663 ret = check_ref_cleanup(trans, root, buf->start);
4664 if (!ret)
4665 goto pin;
4666 }
4667
4668 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4669 pin_down_extent(root, cache, buf->start, buf->len, 1);
4670 goto pin;
4671 }
4672
4673 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4674
4675 btrfs_add_free_space(cache, buf->start, buf->len);
4676 ret = update_reserved_bytes(cache, buf->len, 0, 0);
4677 if (ret == -EAGAIN) {
4678 /* block group became read-only */
4679 update_reserved_bytes(cache, buf->len, 0, 1);
4680 goto out;
4681 }
4682
4683 ret = 1;
4684 spin_lock(&block_rsv->lock);
4685 if (block_rsv->reserved < block_rsv->size) {
4686 block_rsv->reserved += buf->len;
4687 ret = 0;
4688 }
4689 spin_unlock(&block_rsv->lock);
4690
4691 if (ret) {
4692 spin_lock(&cache->space_info->lock);
4693 cache->space_info->bytes_reserved -= buf->len;
4694 spin_unlock(&cache->space_info->lock);
4695 }
4696 goto out;
4697 }
4698 pin:
4699 if (block_rsv->durable && !cache->ro) {
4700 ret = 0;
4701 spin_lock(&cache->lock);
4702 if (!cache->ro) {
4703 cache->reserved_pinned += buf->len;
4704 ret = 1;
4705 }
4706 spin_unlock(&cache->lock);
4707
4708 if (ret) {
4709 spin_lock(&block_rsv->lock);
4710 block_rsv->freed[trans->transid & 0x1] += buf->len;
4711 spin_unlock(&block_rsv->lock);
4712 }
4713 }
4714 out:
4715 btrfs_put_block_group(cache);
4716 }
4717
4718 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4719 struct btrfs_root *root,
4720 u64 bytenr, u64 num_bytes, u64 parent,
4721 u64 root_objectid, u64 owner, u64 offset)
4722 {
4723 int ret;
4724
4725 /*
4726 * tree log blocks never actually go into the extent allocation
4727 * tree, just update pinning info and exit early.
4728 */
4729 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4730 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4731 /* unlocks the pinned mutex */
4732 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4733 ret = 0;
4734 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4735 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4736 parent, root_objectid, (int)owner,
4737 BTRFS_DROP_DELAYED_REF, NULL);
4738 BUG_ON(ret);
4739 } else {
4740 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4741 parent, root_objectid, owner,
4742 offset, BTRFS_DROP_DELAYED_REF, NULL);
4743 BUG_ON(ret);
4744 }
4745 return ret;
4746 }
4747
4748 static u64 stripe_align(struct btrfs_root *root, u64 val)
4749 {
4750 u64 mask = ((u64)root->stripesize - 1);
4751 u64 ret = (val + mask) & ~mask;
4752 return ret;
4753 }
4754
4755 /*
4756 * when we wait for progress in the block group caching, its because
4757 * our allocation attempt failed at least once. So, we must sleep
4758 * and let some progress happen before we try again.
4759 *
4760 * This function will sleep at least once waiting for new free space to
4761 * show up, and then it will check the block group free space numbers
4762 * for our min num_bytes. Another option is to have it go ahead
4763 * and look in the rbtree for a free extent of a given size, but this
4764 * is a good start.
4765 */
4766 static noinline int
4767 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4768 u64 num_bytes)
4769 {
4770 struct btrfs_caching_control *caching_ctl;
4771 DEFINE_WAIT(wait);
4772
4773 caching_ctl = get_caching_control(cache);
4774 if (!caching_ctl)
4775 return 0;
4776
4777 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4778 (cache->free_space >= num_bytes));
4779
4780 put_caching_control(caching_ctl);
4781 return 0;
4782 }
4783
4784 static noinline int
4785 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4786 {
4787 struct btrfs_caching_control *caching_ctl;
4788 DEFINE_WAIT(wait);
4789
4790 caching_ctl = get_caching_control(cache);
4791 if (!caching_ctl)
4792 return 0;
4793
4794 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4795
4796 put_caching_control(caching_ctl);
4797 return 0;
4798 }
4799
4800 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4801 {
4802 int index;
4803 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4804 index = 0;
4805 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4806 index = 1;
4807 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4808 index = 2;
4809 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4810 index = 3;
4811 else
4812 index = 4;
4813 return index;
4814 }
4815
4816 enum btrfs_loop_type {
4817 LOOP_FIND_IDEAL = 0,
4818 LOOP_CACHING_NOWAIT = 1,
4819 LOOP_CACHING_WAIT = 2,
4820 LOOP_ALLOC_CHUNK = 3,
4821 LOOP_NO_EMPTY_SIZE = 4,
4822 };
4823
4824 /*
4825 * walks the btree of allocated extents and find a hole of a given size.
4826 * The key ins is changed to record the hole:
4827 * ins->objectid == block start
4828 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4829 * ins->offset == number of blocks
4830 * Any available blocks before search_start are skipped.
4831 */
4832 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4833 struct btrfs_root *orig_root,
4834 u64 num_bytes, u64 empty_size,
4835 u64 search_start, u64 search_end,
4836 u64 hint_byte, struct btrfs_key *ins,
4837 int data)
4838 {
4839 int ret = 0;
4840 struct btrfs_root *root = orig_root->fs_info->extent_root;
4841 struct btrfs_free_cluster *last_ptr = NULL;
4842 struct btrfs_block_group_cache *block_group = NULL;
4843 int empty_cluster = 2 * 1024 * 1024;
4844 int allowed_chunk_alloc = 0;
4845 int done_chunk_alloc = 0;
4846 struct btrfs_space_info *space_info;
4847 int last_ptr_loop = 0;
4848 int loop = 0;
4849 int index = 0;
4850 bool found_uncached_bg = false;
4851 bool failed_cluster_refill = false;
4852 bool failed_alloc = false;
4853 bool use_cluster = true;
4854 u64 ideal_cache_percent = 0;
4855 u64 ideal_cache_offset = 0;
4856
4857 WARN_ON(num_bytes < root->sectorsize);
4858 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4859 ins->objectid = 0;
4860 ins->offset = 0;
4861
4862 space_info = __find_space_info(root->fs_info, data);
4863 if (!space_info) {
4864 printk(KERN_ERR "No space info for %d\n", data);
4865 return -ENOSPC;
4866 }
4867
4868 /*
4869 * If the space info is for both data and metadata it means we have a
4870 * small filesystem and we can't use the clustering stuff.
4871 */
4872 if (btrfs_mixed_space_info(space_info))
4873 use_cluster = false;
4874
4875 if (orig_root->ref_cows || empty_size)
4876 allowed_chunk_alloc = 1;
4877
4878 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4879 last_ptr = &root->fs_info->meta_alloc_cluster;
4880 if (!btrfs_test_opt(root, SSD))
4881 empty_cluster = 64 * 1024;
4882 }
4883
4884 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4885 btrfs_test_opt(root, SSD)) {
4886 last_ptr = &root->fs_info->data_alloc_cluster;
4887 }
4888
4889 if (last_ptr) {
4890 spin_lock(&last_ptr->lock);
4891 if (last_ptr->block_group)
4892 hint_byte = last_ptr->window_start;
4893 spin_unlock(&last_ptr->lock);
4894 }
4895
4896 search_start = max(search_start, first_logical_byte(root, 0));
4897 search_start = max(search_start, hint_byte);
4898
4899 if (!last_ptr)
4900 empty_cluster = 0;
4901
4902 if (search_start == hint_byte) {
4903 ideal_cache:
4904 block_group = btrfs_lookup_block_group(root->fs_info,
4905 search_start);
4906 /*
4907 * we don't want to use the block group if it doesn't match our
4908 * allocation bits, or if its not cached.
4909 *
4910 * However if we are re-searching with an ideal block group
4911 * picked out then we don't care that the block group is cached.
4912 */
4913 if (block_group && block_group_bits(block_group, data) &&
4914 (block_group->cached != BTRFS_CACHE_NO ||
4915 search_start == ideal_cache_offset)) {
4916 down_read(&space_info->groups_sem);
4917 if (list_empty(&block_group->list) ||
4918 block_group->ro) {
4919 /*
4920 * someone is removing this block group,
4921 * we can't jump into the have_block_group
4922 * target because our list pointers are not
4923 * valid
4924 */
4925 btrfs_put_block_group(block_group);
4926 up_read(&space_info->groups_sem);
4927 } else {
4928 index = get_block_group_index(block_group);
4929 goto have_block_group;
4930 }
4931 } else if (block_group) {
4932 btrfs_put_block_group(block_group);
4933 }
4934 }
4935 search:
4936 down_read(&space_info->groups_sem);
4937 list_for_each_entry(block_group, &space_info->block_groups[index],
4938 list) {
4939 u64 offset;
4940 int cached;
4941
4942 btrfs_get_block_group(block_group);
4943 search_start = block_group->key.objectid;
4944
4945 /*
4946 * this can happen if we end up cycling through all the
4947 * raid types, but we want to make sure we only allocate
4948 * for the proper type.
4949 */
4950 if (!block_group_bits(block_group, data)) {
4951 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4952 BTRFS_BLOCK_GROUP_RAID1 |
4953 BTRFS_BLOCK_GROUP_RAID10;
4954
4955 /*
4956 * if they asked for extra copies and this block group
4957 * doesn't provide them, bail. This does allow us to
4958 * fill raid0 from raid1.
4959 */
4960 if ((data & extra) && !(block_group->flags & extra))
4961 goto loop;
4962 }
4963
4964 have_block_group:
4965 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4966 u64 free_percent;
4967
4968 ret = cache_block_group(block_group, trans,
4969 orig_root, 1);
4970 if (block_group->cached == BTRFS_CACHE_FINISHED)
4971 goto have_block_group;
4972
4973 free_percent = btrfs_block_group_used(&block_group->item);
4974 free_percent *= 100;
4975 free_percent = div64_u64(free_percent,
4976 block_group->key.offset);
4977 free_percent = 100 - free_percent;
4978 if (free_percent > ideal_cache_percent &&
4979 likely(!block_group->ro)) {
4980 ideal_cache_offset = block_group->key.objectid;
4981 ideal_cache_percent = free_percent;
4982 }
4983
4984 /*
4985 * We only want to start kthread caching if we are at
4986 * the point where we will wait for caching to make
4987 * progress, or if our ideal search is over and we've
4988 * found somebody to start caching.
4989 */
4990 if (loop > LOOP_CACHING_NOWAIT ||
4991 (loop > LOOP_FIND_IDEAL &&
4992 atomic_read(&space_info->caching_threads) < 2)) {
4993 ret = cache_block_group(block_group, trans,
4994 orig_root, 0);
4995 BUG_ON(ret);
4996 }
4997 found_uncached_bg = true;
4998
4999 /*
5000 * If loop is set for cached only, try the next block
5001 * group.
5002 */
5003 if (loop == LOOP_FIND_IDEAL)
5004 goto loop;
5005 }
5006
5007 cached = block_group_cache_done(block_group);
5008 if (unlikely(!cached))
5009 found_uncached_bg = true;
5010
5011 if (unlikely(block_group->ro))
5012 goto loop;
5013
5014 /*
5015 * Ok we want to try and use the cluster allocator, so lets look
5016 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5017 * have tried the cluster allocator plenty of times at this
5018 * point and not have found anything, so we are likely way too
5019 * fragmented for the clustering stuff to find anything, so lets
5020 * just skip it and let the allocator find whatever block it can
5021 * find
5022 */
5023 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5024 /*
5025 * the refill lock keeps out other
5026 * people trying to start a new cluster
5027 */
5028 spin_lock(&last_ptr->refill_lock);
5029 if (last_ptr->block_group &&
5030 (last_ptr->block_group->ro ||
5031 !block_group_bits(last_ptr->block_group, data))) {
5032 offset = 0;
5033 goto refill_cluster;
5034 }
5035
5036 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5037 num_bytes, search_start);
5038 if (offset) {
5039 /* we have a block, we're done */
5040 spin_unlock(&last_ptr->refill_lock);
5041 goto checks;
5042 }
5043
5044 spin_lock(&last_ptr->lock);
5045 /*
5046 * whoops, this cluster doesn't actually point to
5047 * this block group. Get a ref on the block
5048 * group is does point to and try again
5049 */
5050 if (!last_ptr_loop && last_ptr->block_group &&
5051 last_ptr->block_group != block_group) {
5052
5053 btrfs_put_block_group(block_group);
5054 block_group = last_ptr->block_group;
5055 btrfs_get_block_group(block_group);
5056 spin_unlock(&last_ptr->lock);
5057 spin_unlock(&last_ptr->refill_lock);
5058
5059 last_ptr_loop = 1;
5060 search_start = block_group->key.objectid;
5061 /*
5062 * we know this block group is properly
5063 * in the list because
5064 * btrfs_remove_block_group, drops the
5065 * cluster before it removes the block
5066 * group from the list
5067 */
5068 goto have_block_group;
5069 }
5070 spin_unlock(&last_ptr->lock);
5071 refill_cluster:
5072 /*
5073 * this cluster didn't work out, free it and
5074 * start over
5075 */
5076 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5077
5078 last_ptr_loop = 0;
5079
5080 /* allocate a cluster in this block group */
5081 ret = btrfs_find_space_cluster(trans, root,
5082 block_group, last_ptr,
5083 offset, num_bytes,
5084 empty_cluster + empty_size);
5085 if (ret == 0) {
5086 /*
5087 * now pull our allocation out of this
5088 * cluster
5089 */
5090 offset = btrfs_alloc_from_cluster(block_group,
5091 last_ptr, num_bytes,
5092 search_start);
5093 if (offset) {
5094 /* we found one, proceed */
5095 spin_unlock(&last_ptr->refill_lock);
5096 goto checks;
5097 }
5098 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5099 && !failed_cluster_refill) {
5100 spin_unlock(&last_ptr->refill_lock);
5101
5102 failed_cluster_refill = true;
5103 wait_block_group_cache_progress(block_group,
5104 num_bytes + empty_cluster + empty_size);
5105 goto have_block_group;
5106 }
5107
5108 /*
5109 * at this point we either didn't find a cluster
5110 * or we weren't able to allocate a block from our
5111 * cluster. Free the cluster we've been trying
5112 * to use, and go to the next block group
5113 */
5114 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5115 spin_unlock(&last_ptr->refill_lock);
5116 goto loop;
5117 }
5118
5119 offset = btrfs_find_space_for_alloc(block_group, search_start,
5120 num_bytes, empty_size);
5121 /*
5122 * If we didn't find a chunk, and we haven't failed on this
5123 * block group before, and this block group is in the middle of
5124 * caching and we are ok with waiting, then go ahead and wait
5125 * for progress to be made, and set failed_alloc to true.
5126 *
5127 * If failed_alloc is true then we've already waited on this
5128 * block group once and should move on to the next block group.
5129 */
5130 if (!offset && !failed_alloc && !cached &&
5131 loop > LOOP_CACHING_NOWAIT) {
5132 wait_block_group_cache_progress(block_group,
5133 num_bytes + empty_size);
5134 failed_alloc = true;
5135 goto have_block_group;
5136 } else if (!offset) {
5137 goto loop;
5138 }
5139 checks:
5140 search_start = stripe_align(root, offset);
5141 /* move on to the next group */
5142 if (search_start + num_bytes >= search_end) {
5143 btrfs_add_free_space(block_group, offset, num_bytes);
5144 goto loop;
5145 }
5146
5147 /* move on to the next group */
5148 if (search_start + num_bytes >
5149 block_group->key.objectid + block_group->key.offset) {
5150 btrfs_add_free_space(block_group, offset, num_bytes);
5151 goto loop;
5152 }
5153
5154 ins->objectid = search_start;
5155 ins->offset = num_bytes;
5156
5157 if (offset < search_start)
5158 btrfs_add_free_space(block_group, offset,
5159 search_start - offset);
5160 BUG_ON(offset > search_start);
5161
5162 ret = update_reserved_bytes(block_group, num_bytes, 1,
5163 (data & BTRFS_BLOCK_GROUP_DATA));
5164 if (ret == -EAGAIN) {
5165 btrfs_add_free_space(block_group, offset, num_bytes);
5166 goto loop;
5167 }
5168
5169 /* we are all good, lets return */
5170 ins->objectid = search_start;
5171 ins->offset = num_bytes;
5172
5173 if (offset < search_start)
5174 btrfs_add_free_space(block_group, offset,
5175 search_start - offset);
5176 BUG_ON(offset > search_start);
5177 break;
5178 loop:
5179 failed_cluster_refill = false;
5180 failed_alloc = false;
5181 BUG_ON(index != get_block_group_index(block_group));
5182 btrfs_put_block_group(block_group);
5183 }
5184 up_read(&space_info->groups_sem);
5185
5186 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5187 goto search;
5188
5189 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5190 * for them to make caching progress. Also
5191 * determine the best possible bg to cache
5192 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5193 * caching kthreads as we move along
5194 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5195 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5196 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5197 * again
5198 */
5199 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
5200 (found_uncached_bg || empty_size || empty_cluster ||
5201 allowed_chunk_alloc)) {
5202 index = 0;
5203 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5204 found_uncached_bg = false;
5205 loop++;
5206 if (!ideal_cache_percent &&
5207 atomic_read(&space_info->caching_threads))
5208 goto search;
5209
5210 /*
5211 * 1 of the following 2 things have happened so far
5212 *
5213 * 1) We found an ideal block group for caching that
5214 * is mostly full and will cache quickly, so we might
5215 * as well wait for it.
5216 *
5217 * 2) We searched for cached only and we didn't find
5218 * anything, and we didn't start any caching kthreads
5219 * either, so chances are we will loop through and
5220 * start a couple caching kthreads, and then come back
5221 * around and just wait for them. This will be slower
5222 * because we will have 2 caching kthreads reading at
5223 * the same time when we could have just started one
5224 * and waited for it to get far enough to give us an
5225 * allocation, so go ahead and go to the wait caching
5226 * loop.
5227 */
5228 loop = LOOP_CACHING_WAIT;
5229 search_start = ideal_cache_offset;
5230 ideal_cache_percent = 0;
5231 goto ideal_cache;
5232 } else if (loop == LOOP_FIND_IDEAL) {
5233 /*
5234 * Didn't find a uncached bg, wait on anything we find
5235 * next.
5236 */
5237 loop = LOOP_CACHING_WAIT;
5238 goto search;
5239 }
5240
5241 if (loop < LOOP_CACHING_WAIT) {
5242 loop++;
5243 goto search;
5244 }
5245
5246 if (loop == LOOP_ALLOC_CHUNK) {
5247 empty_size = 0;
5248 empty_cluster = 0;
5249 }
5250
5251 if (allowed_chunk_alloc) {
5252 ret = do_chunk_alloc(trans, root, num_bytes +
5253 2 * 1024 * 1024, data, 1);
5254 allowed_chunk_alloc = 0;
5255 done_chunk_alloc = 1;
5256 } else if (!done_chunk_alloc) {
5257 space_info->force_alloc = 1;
5258 }
5259
5260 if (loop < LOOP_NO_EMPTY_SIZE) {
5261 loop++;
5262 goto search;
5263 }
5264 ret = -ENOSPC;
5265 } else if (!ins->objectid) {
5266 ret = -ENOSPC;
5267 }
5268
5269 /* we found what we needed */
5270 if (ins->objectid) {
5271 if (!(data & BTRFS_BLOCK_GROUP_DATA))
5272 trans->block_group = block_group->key.objectid;
5273
5274 btrfs_put_block_group(block_group);
5275 ret = 0;
5276 }
5277
5278 return ret;
5279 }
5280
5281 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5282 int dump_block_groups)
5283 {
5284 struct btrfs_block_group_cache *cache;
5285 int index = 0;
5286
5287 spin_lock(&info->lock);
5288 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5289 (unsigned long long)(info->total_bytes - info->bytes_used -
5290 info->bytes_pinned - info->bytes_reserved -
5291 info->bytes_readonly),
5292 (info->full) ? "" : "not ");
5293 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5294 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5295 (unsigned long long)info->total_bytes,
5296 (unsigned long long)info->bytes_used,
5297 (unsigned long long)info->bytes_pinned,
5298 (unsigned long long)info->bytes_reserved,
5299 (unsigned long long)info->bytes_may_use,
5300 (unsigned long long)info->bytes_readonly);
5301 spin_unlock(&info->lock);
5302
5303 if (!dump_block_groups)
5304 return;
5305
5306 down_read(&info->groups_sem);
5307 again:
5308 list_for_each_entry(cache, &info->block_groups[index], list) {
5309 spin_lock(&cache->lock);
5310 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5311 "%llu pinned %llu reserved\n",
5312 (unsigned long long)cache->key.objectid,
5313 (unsigned long long)cache->key.offset,
5314 (unsigned long long)btrfs_block_group_used(&cache->item),
5315 (unsigned long long)cache->pinned,
5316 (unsigned long long)cache->reserved);
5317 btrfs_dump_free_space(cache, bytes);
5318 spin_unlock(&cache->lock);
5319 }
5320 if (++index < BTRFS_NR_RAID_TYPES)
5321 goto again;
5322 up_read(&info->groups_sem);
5323 }
5324
5325 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5326 struct btrfs_root *root,
5327 u64 num_bytes, u64 min_alloc_size,
5328 u64 empty_size, u64 hint_byte,
5329 u64 search_end, struct btrfs_key *ins,
5330 u64 data)
5331 {
5332 int ret;
5333 u64 search_start = 0;
5334
5335 data = btrfs_get_alloc_profile(root, data);
5336 again:
5337 /*
5338 * the only place that sets empty_size is btrfs_realloc_node, which
5339 * is not called recursively on allocations
5340 */
5341 if (empty_size || root->ref_cows)
5342 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5343 num_bytes + 2 * 1024 * 1024, data, 0);
5344
5345 WARN_ON(num_bytes < root->sectorsize);
5346 ret = find_free_extent(trans, root, num_bytes, empty_size,
5347 search_start, search_end, hint_byte,
5348 ins, data);
5349
5350 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5351 num_bytes = num_bytes >> 1;
5352 num_bytes = num_bytes & ~(root->sectorsize - 1);
5353 num_bytes = max(num_bytes, min_alloc_size);
5354 do_chunk_alloc(trans, root->fs_info->extent_root,
5355 num_bytes, data, 1);
5356 goto again;
5357 }
5358 if (ret == -ENOSPC) {
5359 struct btrfs_space_info *sinfo;
5360
5361 sinfo = __find_space_info(root->fs_info, data);
5362 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5363 "wanted %llu\n", (unsigned long long)data,
5364 (unsigned long long)num_bytes);
5365 dump_space_info(sinfo, num_bytes, 1);
5366 }
5367
5368 return ret;
5369 }
5370
5371 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5372 {
5373 struct btrfs_block_group_cache *cache;
5374 int ret = 0;
5375
5376 cache = btrfs_lookup_block_group(root->fs_info, start);
5377 if (!cache) {
5378 printk(KERN_ERR "Unable to find block group for %llu\n",
5379 (unsigned long long)start);
5380 return -ENOSPC;
5381 }
5382
5383 ret = btrfs_discard_extent(root, start, len);
5384
5385 btrfs_add_free_space(cache, start, len);
5386 update_reserved_bytes(cache, len, 0, 1);
5387 btrfs_put_block_group(cache);
5388
5389 return ret;
5390 }
5391
5392 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5393 struct btrfs_root *root,
5394 u64 parent, u64 root_objectid,
5395 u64 flags, u64 owner, u64 offset,
5396 struct btrfs_key *ins, int ref_mod)
5397 {
5398 int ret;
5399 struct btrfs_fs_info *fs_info = root->fs_info;
5400 struct btrfs_extent_item *extent_item;
5401 struct btrfs_extent_inline_ref *iref;
5402 struct btrfs_path *path;
5403 struct extent_buffer *leaf;
5404 int type;
5405 u32 size;
5406
5407 if (parent > 0)
5408 type = BTRFS_SHARED_DATA_REF_KEY;
5409 else
5410 type = BTRFS_EXTENT_DATA_REF_KEY;
5411
5412 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5413
5414 path = btrfs_alloc_path();
5415 BUG_ON(!path);
5416
5417 path->leave_spinning = 1;
5418 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5419 ins, size);
5420 BUG_ON(ret);
5421
5422 leaf = path->nodes[0];
5423 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5424 struct btrfs_extent_item);
5425 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5426 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5427 btrfs_set_extent_flags(leaf, extent_item,
5428 flags | BTRFS_EXTENT_FLAG_DATA);
5429
5430 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5431 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5432 if (parent > 0) {
5433 struct btrfs_shared_data_ref *ref;
5434 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5435 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5436 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5437 } else {
5438 struct btrfs_extent_data_ref *ref;
5439 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5440 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5441 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5442 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5443 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5444 }
5445
5446 btrfs_mark_buffer_dirty(path->nodes[0]);
5447 btrfs_free_path(path);
5448
5449 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5450 if (ret) {
5451 printk(KERN_ERR "btrfs update block group failed for %llu "
5452 "%llu\n", (unsigned long long)ins->objectid,
5453 (unsigned long long)ins->offset);
5454 BUG();
5455 }
5456 return ret;
5457 }
5458
5459 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5460 struct btrfs_root *root,
5461 u64 parent, u64 root_objectid,
5462 u64 flags, struct btrfs_disk_key *key,
5463 int level, struct btrfs_key *ins)
5464 {
5465 int ret;
5466 struct btrfs_fs_info *fs_info = root->fs_info;
5467 struct btrfs_extent_item *extent_item;
5468 struct btrfs_tree_block_info *block_info;
5469 struct btrfs_extent_inline_ref *iref;
5470 struct btrfs_path *path;
5471 struct extent_buffer *leaf;
5472 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5473
5474 path = btrfs_alloc_path();
5475 BUG_ON(!path);
5476
5477 path->leave_spinning = 1;
5478 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5479 ins, size);
5480 BUG_ON(ret);
5481
5482 leaf = path->nodes[0];
5483 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5484 struct btrfs_extent_item);
5485 btrfs_set_extent_refs(leaf, extent_item, 1);
5486 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5487 btrfs_set_extent_flags(leaf, extent_item,
5488 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5489 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5490
5491 btrfs_set_tree_block_key(leaf, block_info, key);
5492 btrfs_set_tree_block_level(leaf, block_info, level);
5493
5494 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5495 if (parent > 0) {
5496 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5497 btrfs_set_extent_inline_ref_type(leaf, iref,
5498 BTRFS_SHARED_BLOCK_REF_KEY);
5499 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5500 } else {
5501 btrfs_set_extent_inline_ref_type(leaf, iref,
5502 BTRFS_TREE_BLOCK_REF_KEY);
5503 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5504 }
5505
5506 btrfs_mark_buffer_dirty(leaf);
5507 btrfs_free_path(path);
5508
5509 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5510 if (ret) {
5511 printk(KERN_ERR "btrfs update block group failed for %llu "
5512 "%llu\n", (unsigned long long)ins->objectid,
5513 (unsigned long long)ins->offset);
5514 BUG();
5515 }
5516 return ret;
5517 }
5518
5519 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5520 struct btrfs_root *root,
5521 u64 root_objectid, u64 owner,
5522 u64 offset, struct btrfs_key *ins)
5523 {
5524 int ret;
5525
5526 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5527
5528 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5529 0, root_objectid, owner, offset,
5530 BTRFS_ADD_DELAYED_EXTENT, NULL);
5531 return ret;
5532 }
5533
5534 /*
5535 * this is used by the tree logging recovery code. It records that
5536 * an extent has been allocated and makes sure to clear the free
5537 * space cache bits as well
5538 */
5539 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5540 struct btrfs_root *root,
5541 u64 root_objectid, u64 owner, u64 offset,
5542 struct btrfs_key *ins)
5543 {
5544 int ret;
5545 struct btrfs_block_group_cache *block_group;
5546 struct btrfs_caching_control *caching_ctl;
5547 u64 start = ins->objectid;
5548 u64 num_bytes = ins->offset;
5549
5550 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5551 cache_block_group(block_group, trans, NULL, 0);
5552 caching_ctl = get_caching_control(block_group);
5553
5554 if (!caching_ctl) {
5555 BUG_ON(!block_group_cache_done(block_group));
5556 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5557 BUG_ON(ret);
5558 } else {
5559 mutex_lock(&caching_ctl->mutex);
5560
5561 if (start >= caching_ctl->progress) {
5562 ret = add_excluded_extent(root, start, num_bytes);
5563 BUG_ON(ret);
5564 } else if (start + num_bytes <= caching_ctl->progress) {
5565 ret = btrfs_remove_free_space(block_group,
5566 start, num_bytes);
5567 BUG_ON(ret);
5568 } else {
5569 num_bytes = caching_ctl->progress - start;
5570 ret = btrfs_remove_free_space(block_group,
5571 start, num_bytes);
5572 BUG_ON(ret);
5573
5574 start = caching_ctl->progress;
5575 num_bytes = ins->objectid + ins->offset -
5576 caching_ctl->progress;
5577 ret = add_excluded_extent(root, start, num_bytes);
5578 BUG_ON(ret);
5579 }
5580
5581 mutex_unlock(&caching_ctl->mutex);
5582 put_caching_control(caching_ctl);
5583 }
5584
5585 ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
5586 BUG_ON(ret);
5587 btrfs_put_block_group(block_group);
5588 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5589 0, owner, offset, ins, 1);
5590 return ret;
5591 }
5592
5593 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5594 struct btrfs_root *root,
5595 u64 bytenr, u32 blocksize,
5596 int level)
5597 {
5598 struct extent_buffer *buf;
5599
5600 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5601 if (!buf)
5602 return ERR_PTR(-ENOMEM);
5603 btrfs_set_header_generation(buf, trans->transid);
5604 btrfs_set_buffer_lockdep_class(buf, level);
5605 btrfs_tree_lock(buf);
5606 clean_tree_block(trans, root, buf);
5607
5608 btrfs_set_lock_blocking(buf);
5609 btrfs_set_buffer_uptodate(buf);
5610
5611 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5612 /*
5613 * we allow two log transactions at a time, use different
5614 * EXENT bit to differentiate dirty pages.
5615 */
5616 if (root->log_transid % 2 == 0)
5617 set_extent_dirty(&root->dirty_log_pages, buf->start,
5618 buf->start + buf->len - 1, GFP_NOFS);
5619 else
5620 set_extent_new(&root->dirty_log_pages, buf->start,
5621 buf->start + buf->len - 1, GFP_NOFS);
5622 } else {
5623 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5624 buf->start + buf->len - 1, GFP_NOFS);
5625 }
5626 trans->blocks_used++;
5627 /* this returns a buffer locked for blocking */
5628 return buf;
5629 }
5630
5631 static struct btrfs_block_rsv *
5632 use_block_rsv(struct btrfs_trans_handle *trans,
5633 struct btrfs_root *root, u32 blocksize)
5634 {
5635 struct btrfs_block_rsv *block_rsv;
5636 int ret;
5637
5638 block_rsv = get_block_rsv(trans, root);
5639
5640 if (block_rsv->size == 0) {
5641 ret = reserve_metadata_bytes(trans, root, block_rsv,
5642 blocksize, 0);
5643 if (ret)
5644 return ERR_PTR(ret);
5645 return block_rsv;
5646 }
5647
5648 ret = block_rsv_use_bytes(block_rsv, blocksize);
5649 if (!ret)
5650 return block_rsv;
5651
5652 return ERR_PTR(-ENOSPC);
5653 }
5654
5655 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5656 {
5657 block_rsv_add_bytes(block_rsv, blocksize, 0);
5658 block_rsv_release_bytes(block_rsv, NULL, 0);
5659 }
5660
5661 /*
5662 * finds a free extent and does all the dirty work required for allocation
5663 * returns the key for the extent through ins, and a tree buffer for
5664 * the first block of the extent through buf.
5665 *
5666 * returns the tree buffer or NULL.
5667 */
5668 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5669 struct btrfs_root *root, u32 blocksize,
5670 u64 parent, u64 root_objectid,
5671 struct btrfs_disk_key *key, int level,
5672 u64 hint, u64 empty_size)
5673 {
5674 struct btrfs_key ins;
5675 struct btrfs_block_rsv *block_rsv;
5676 struct extent_buffer *buf;
5677 u64 flags = 0;
5678 int ret;
5679
5680
5681 block_rsv = use_block_rsv(trans, root, blocksize);
5682 if (IS_ERR(block_rsv))
5683 return ERR_CAST(block_rsv);
5684
5685 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5686 empty_size, hint, (u64)-1, &ins, 0);
5687 if (ret) {
5688 unuse_block_rsv(block_rsv, blocksize);
5689 return ERR_PTR(ret);
5690 }
5691
5692 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5693 blocksize, level);
5694 BUG_ON(IS_ERR(buf));
5695
5696 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5697 if (parent == 0)
5698 parent = ins.objectid;
5699 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5700 } else
5701 BUG_ON(parent > 0);
5702
5703 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5704 struct btrfs_delayed_extent_op *extent_op;
5705 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5706 BUG_ON(!extent_op);
5707 if (key)
5708 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5709 else
5710 memset(&extent_op->key, 0, sizeof(extent_op->key));
5711 extent_op->flags_to_set = flags;
5712 extent_op->update_key = 1;
5713 extent_op->update_flags = 1;
5714 extent_op->is_data = 0;
5715
5716 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5717 ins.offset, parent, root_objectid,
5718 level, BTRFS_ADD_DELAYED_EXTENT,
5719 extent_op);
5720 BUG_ON(ret);
5721 }
5722 return buf;
5723 }
5724
5725 struct walk_control {
5726 u64 refs[BTRFS_MAX_LEVEL];
5727 u64 flags[BTRFS_MAX_LEVEL];
5728 struct btrfs_key update_progress;
5729 int stage;
5730 int level;
5731 int shared_level;
5732 int update_ref;
5733 int keep_locks;
5734 int reada_slot;
5735 int reada_count;
5736 };
5737
5738 #define DROP_REFERENCE 1
5739 #define UPDATE_BACKREF 2
5740
5741 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5742 struct btrfs_root *root,
5743 struct walk_control *wc,
5744 struct btrfs_path *path)
5745 {
5746 u64 bytenr;
5747 u64 generation;
5748 u64 refs;
5749 u64 flags;
5750 u32 nritems;
5751 u32 blocksize;
5752 struct btrfs_key key;
5753 struct extent_buffer *eb;
5754 int ret;
5755 int slot;
5756 int nread = 0;
5757
5758 if (path->slots[wc->level] < wc->reada_slot) {
5759 wc->reada_count = wc->reada_count * 2 / 3;
5760 wc->reada_count = max(wc->reada_count, 2);
5761 } else {
5762 wc->reada_count = wc->reada_count * 3 / 2;
5763 wc->reada_count = min_t(int, wc->reada_count,
5764 BTRFS_NODEPTRS_PER_BLOCK(root));
5765 }
5766
5767 eb = path->nodes[wc->level];
5768 nritems = btrfs_header_nritems(eb);
5769 blocksize = btrfs_level_size(root, wc->level - 1);
5770
5771 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5772 if (nread >= wc->reada_count)
5773 break;
5774
5775 cond_resched();
5776 bytenr = btrfs_node_blockptr(eb, slot);
5777 generation = btrfs_node_ptr_generation(eb, slot);
5778
5779 if (slot == path->slots[wc->level])
5780 goto reada;
5781
5782 if (wc->stage == UPDATE_BACKREF &&
5783 generation <= root->root_key.offset)
5784 continue;
5785
5786 /* We don't lock the tree block, it's OK to be racy here */
5787 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5788 &refs, &flags);
5789 BUG_ON(ret);
5790 BUG_ON(refs == 0);
5791
5792 if (wc->stage == DROP_REFERENCE) {
5793 if (refs == 1)
5794 goto reada;
5795
5796 if (wc->level == 1 &&
5797 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5798 continue;
5799 if (!wc->update_ref ||
5800 generation <= root->root_key.offset)
5801 continue;
5802 btrfs_node_key_to_cpu(eb, &key, slot);
5803 ret = btrfs_comp_cpu_keys(&key,
5804 &wc->update_progress);
5805 if (ret < 0)
5806 continue;
5807 } else {
5808 if (wc->level == 1 &&
5809 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5810 continue;
5811 }
5812 reada:
5813 ret = readahead_tree_block(root, bytenr, blocksize,
5814 generation);
5815 if (ret)
5816 break;
5817 nread++;
5818 }
5819 wc->reada_slot = slot;
5820 }
5821
5822 /*
5823 * hepler to process tree block while walking down the tree.
5824 *
5825 * when wc->stage == UPDATE_BACKREF, this function updates
5826 * back refs for pointers in the block.
5827 *
5828 * NOTE: return value 1 means we should stop walking down.
5829 */
5830 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5831 struct btrfs_root *root,
5832 struct btrfs_path *path,
5833 struct walk_control *wc, int lookup_info)
5834 {
5835 int level = wc->level;
5836 struct extent_buffer *eb = path->nodes[level];
5837 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5838 int ret;
5839
5840 if (wc->stage == UPDATE_BACKREF &&
5841 btrfs_header_owner(eb) != root->root_key.objectid)
5842 return 1;
5843
5844 /*
5845 * when reference count of tree block is 1, it won't increase
5846 * again. once full backref flag is set, we never clear it.
5847 */
5848 if (lookup_info &&
5849 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5850 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5851 BUG_ON(!path->locks[level]);
5852 ret = btrfs_lookup_extent_info(trans, root,
5853 eb->start, eb->len,
5854 &wc->refs[level],
5855 &wc->flags[level]);
5856 BUG_ON(ret);
5857 BUG_ON(wc->refs[level] == 0);
5858 }
5859
5860 if (wc->stage == DROP_REFERENCE) {
5861 if (wc->refs[level] > 1)
5862 return 1;
5863
5864 if (path->locks[level] && !wc->keep_locks) {
5865 btrfs_tree_unlock(eb);
5866 path->locks[level] = 0;
5867 }
5868 return 0;
5869 }
5870
5871 /* wc->stage == UPDATE_BACKREF */
5872 if (!(wc->flags[level] & flag)) {
5873 BUG_ON(!path->locks[level]);
5874 ret = btrfs_inc_ref(trans, root, eb, 1);
5875 BUG_ON(ret);
5876 ret = btrfs_dec_ref(trans, root, eb, 0);
5877 BUG_ON(ret);
5878 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5879 eb->len, flag, 0);
5880 BUG_ON(ret);
5881 wc->flags[level] |= flag;
5882 }
5883
5884 /*
5885 * the block is shared by multiple trees, so it's not good to
5886 * keep the tree lock
5887 */
5888 if (path->locks[level] && level > 0) {
5889 btrfs_tree_unlock(eb);
5890 path->locks[level] = 0;
5891 }
5892 return 0;
5893 }
5894
5895 /*
5896 * hepler to process tree block pointer.
5897 *
5898 * when wc->stage == DROP_REFERENCE, this function checks
5899 * reference count of the block pointed to. if the block
5900 * is shared and we need update back refs for the subtree
5901 * rooted at the block, this function changes wc->stage to
5902 * UPDATE_BACKREF. if the block is shared and there is no
5903 * need to update back, this function drops the reference
5904 * to the block.
5905 *
5906 * NOTE: return value 1 means we should stop walking down.
5907 */
5908 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5909 struct btrfs_root *root,
5910 struct btrfs_path *path,
5911 struct walk_control *wc, int *lookup_info)
5912 {
5913 u64 bytenr;
5914 u64 generation;
5915 u64 parent;
5916 u32 blocksize;
5917 struct btrfs_key key;
5918 struct extent_buffer *next;
5919 int level = wc->level;
5920 int reada = 0;
5921 int ret = 0;
5922
5923 generation = btrfs_node_ptr_generation(path->nodes[level],
5924 path->slots[level]);
5925 /*
5926 * if the lower level block was created before the snapshot
5927 * was created, we know there is no need to update back refs
5928 * for the subtree
5929 */
5930 if (wc->stage == UPDATE_BACKREF &&
5931 generation <= root->root_key.offset) {
5932 *lookup_info = 1;
5933 return 1;
5934 }
5935
5936 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5937 blocksize = btrfs_level_size(root, level - 1);
5938
5939 next = btrfs_find_tree_block(root, bytenr, blocksize);
5940 if (!next) {
5941 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5942 if (!next)
5943 return -ENOMEM;
5944 reada = 1;
5945 }
5946 btrfs_tree_lock(next);
5947 btrfs_set_lock_blocking(next);
5948
5949 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5950 &wc->refs[level - 1],
5951 &wc->flags[level - 1]);
5952 BUG_ON(ret);
5953 BUG_ON(wc->refs[level - 1] == 0);
5954 *lookup_info = 0;
5955
5956 if (wc->stage == DROP_REFERENCE) {
5957 if (wc->refs[level - 1] > 1) {
5958 if (level == 1 &&
5959 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5960 goto skip;
5961
5962 if (!wc->update_ref ||
5963 generation <= root->root_key.offset)
5964 goto skip;
5965
5966 btrfs_node_key_to_cpu(path->nodes[level], &key,
5967 path->slots[level]);
5968 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5969 if (ret < 0)
5970 goto skip;
5971
5972 wc->stage = UPDATE_BACKREF;
5973 wc->shared_level = level - 1;
5974 }
5975 } else {
5976 if (level == 1 &&
5977 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5978 goto skip;
5979 }
5980
5981 if (!btrfs_buffer_uptodate(next, generation)) {
5982 btrfs_tree_unlock(next);
5983 free_extent_buffer(next);
5984 next = NULL;
5985 *lookup_info = 1;
5986 }
5987
5988 if (!next) {
5989 if (reada && level == 1)
5990 reada_walk_down(trans, root, wc, path);
5991 next = read_tree_block(root, bytenr, blocksize, generation);
5992 btrfs_tree_lock(next);
5993 btrfs_set_lock_blocking(next);
5994 }
5995
5996 level--;
5997 BUG_ON(level != btrfs_header_level(next));
5998 path->nodes[level] = next;
5999 path->slots[level] = 0;
6000 path->locks[level] = 1;
6001 wc->level = level;
6002 if (wc->level == 1)
6003 wc->reada_slot = 0;
6004 return 0;
6005 skip:
6006 wc->refs[level - 1] = 0;
6007 wc->flags[level - 1] = 0;
6008 if (wc->stage == DROP_REFERENCE) {
6009 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6010 parent = path->nodes[level]->start;
6011 } else {
6012 BUG_ON(root->root_key.objectid !=
6013 btrfs_header_owner(path->nodes[level]));
6014 parent = 0;
6015 }
6016
6017 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6018 root->root_key.objectid, level - 1, 0);
6019 BUG_ON(ret);
6020 }
6021 btrfs_tree_unlock(next);
6022 free_extent_buffer(next);
6023 *lookup_info = 1;
6024 return 1;
6025 }
6026
6027 /*
6028 * hepler to process tree block while walking up the tree.
6029 *
6030 * when wc->stage == DROP_REFERENCE, this function drops
6031 * reference count on the block.
6032 *
6033 * when wc->stage == UPDATE_BACKREF, this function changes
6034 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6035 * to UPDATE_BACKREF previously while processing the block.
6036 *
6037 * NOTE: return value 1 means we should stop walking up.
6038 */
6039 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6040 struct btrfs_root *root,
6041 struct btrfs_path *path,
6042 struct walk_control *wc)
6043 {
6044 int ret;
6045 int level = wc->level;
6046 struct extent_buffer *eb = path->nodes[level];
6047 u64 parent = 0;
6048
6049 if (wc->stage == UPDATE_BACKREF) {
6050 BUG_ON(wc->shared_level < level);
6051 if (level < wc->shared_level)
6052 goto out;
6053
6054 ret = find_next_key(path, level + 1, &wc->update_progress);
6055 if (ret > 0)
6056 wc->update_ref = 0;
6057
6058 wc->stage = DROP_REFERENCE;
6059 wc->shared_level = -1;
6060 path->slots[level] = 0;
6061
6062 /*
6063 * check reference count again if the block isn't locked.
6064 * we should start walking down the tree again if reference
6065 * count is one.
6066 */
6067 if (!path->locks[level]) {
6068 BUG_ON(level == 0);
6069 btrfs_tree_lock(eb);
6070 btrfs_set_lock_blocking(eb);
6071 path->locks[level] = 1;
6072
6073 ret = btrfs_lookup_extent_info(trans, root,
6074 eb->start, eb->len,
6075 &wc->refs[level],
6076 &wc->flags[level]);
6077 BUG_ON(ret);
6078 BUG_ON(wc->refs[level] == 0);
6079 if (wc->refs[level] == 1) {
6080 btrfs_tree_unlock(eb);
6081 path->locks[level] = 0;
6082 return 1;
6083 }
6084 }
6085 }
6086
6087 /* wc->stage == DROP_REFERENCE */
6088 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6089
6090 if (wc->refs[level] == 1) {
6091 if (level == 0) {
6092 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6093 ret = btrfs_dec_ref(trans, root, eb, 1);
6094 else
6095 ret = btrfs_dec_ref(trans, root, eb, 0);
6096 BUG_ON(ret);
6097 }
6098 /* make block locked assertion in clean_tree_block happy */
6099 if (!path->locks[level] &&
6100 btrfs_header_generation(eb) == trans->transid) {
6101 btrfs_tree_lock(eb);
6102 btrfs_set_lock_blocking(eb);
6103 path->locks[level] = 1;
6104 }
6105 clean_tree_block(trans, root, eb);
6106 }
6107
6108 if (eb == root->node) {
6109 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6110 parent = eb->start;
6111 else
6112 BUG_ON(root->root_key.objectid !=
6113 btrfs_header_owner(eb));
6114 } else {
6115 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6116 parent = path->nodes[level + 1]->start;
6117 else
6118 BUG_ON(root->root_key.objectid !=
6119 btrfs_header_owner(path->nodes[level + 1]));
6120 }
6121
6122 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6123 out:
6124 wc->refs[level] = 0;
6125 wc->flags[level] = 0;
6126 return 0;
6127 }
6128
6129 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6130 struct btrfs_root *root,
6131 struct btrfs_path *path,
6132 struct walk_control *wc)
6133 {
6134 int level = wc->level;
6135 int lookup_info = 1;
6136 int ret;
6137
6138 while (level >= 0) {
6139 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6140 if (ret > 0)
6141 break;
6142
6143 if (level == 0)
6144 break;
6145
6146 if (path->slots[level] >=
6147 btrfs_header_nritems(path->nodes[level]))
6148 break;
6149
6150 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6151 if (ret > 0) {
6152 path->slots[level]++;
6153 continue;
6154 } else if (ret < 0)
6155 return ret;
6156 level = wc->level;
6157 }
6158 return 0;
6159 }
6160
6161 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6162 struct btrfs_root *root,
6163 struct btrfs_path *path,
6164 struct walk_control *wc, int max_level)
6165 {
6166 int level = wc->level;
6167 int ret;
6168
6169 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6170 while (level < max_level && path->nodes[level]) {
6171 wc->level = level;
6172 if (path->slots[level] + 1 <
6173 btrfs_header_nritems(path->nodes[level])) {
6174 path->slots[level]++;
6175 return 0;
6176 } else {
6177 ret = walk_up_proc(trans, root, path, wc);
6178 if (ret > 0)
6179 return 0;
6180
6181 if (path->locks[level]) {
6182 btrfs_tree_unlock(path->nodes[level]);
6183 path->locks[level] = 0;
6184 }
6185 free_extent_buffer(path->nodes[level]);
6186 path->nodes[level] = NULL;
6187 level++;
6188 }
6189 }
6190 return 1;
6191 }
6192
6193 /*
6194 * drop a subvolume tree.
6195 *
6196 * this function traverses the tree freeing any blocks that only
6197 * referenced by the tree.
6198 *
6199 * when a shared tree block is found. this function decreases its
6200 * reference count by one. if update_ref is true, this function
6201 * also make sure backrefs for the shared block and all lower level
6202 * blocks are properly updated.
6203 */
6204 int btrfs_drop_snapshot(struct btrfs_root *root,
6205 struct btrfs_block_rsv *block_rsv, int update_ref)
6206 {
6207 struct btrfs_path *path;
6208 struct btrfs_trans_handle *trans;
6209 struct btrfs_root *tree_root = root->fs_info->tree_root;
6210 struct btrfs_root_item *root_item = &root->root_item;
6211 struct walk_control *wc;
6212 struct btrfs_key key;
6213 int err = 0;
6214 int ret;
6215 int level;
6216
6217 path = btrfs_alloc_path();
6218 BUG_ON(!path);
6219
6220 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6221 BUG_ON(!wc);
6222
6223 trans = btrfs_start_transaction(tree_root, 0);
6224 if (block_rsv)
6225 trans->block_rsv = block_rsv;
6226
6227 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6228 level = btrfs_header_level(root->node);
6229 path->nodes[level] = btrfs_lock_root_node(root);
6230 btrfs_set_lock_blocking(path->nodes[level]);
6231 path->slots[level] = 0;
6232 path->locks[level] = 1;
6233 memset(&wc->update_progress, 0,
6234 sizeof(wc->update_progress));
6235 } else {
6236 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6237 memcpy(&wc->update_progress, &key,
6238 sizeof(wc->update_progress));
6239
6240 level = root_item->drop_level;
6241 BUG_ON(level == 0);
6242 path->lowest_level = level;
6243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6244 path->lowest_level = 0;
6245 if (ret < 0) {
6246 err = ret;
6247 goto out;
6248 }
6249 WARN_ON(ret > 0);
6250
6251 /*
6252 * unlock our path, this is safe because only this
6253 * function is allowed to delete this snapshot
6254 */
6255 btrfs_unlock_up_safe(path, 0);
6256
6257 level = btrfs_header_level(root->node);
6258 while (1) {
6259 btrfs_tree_lock(path->nodes[level]);
6260 btrfs_set_lock_blocking(path->nodes[level]);
6261
6262 ret = btrfs_lookup_extent_info(trans, root,
6263 path->nodes[level]->start,
6264 path->nodes[level]->len,
6265 &wc->refs[level],
6266 &wc->flags[level]);
6267 BUG_ON(ret);
6268 BUG_ON(wc->refs[level] == 0);
6269
6270 if (level == root_item->drop_level)
6271 break;
6272
6273 btrfs_tree_unlock(path->nodes[level]);
6274 WARN_ON(wc->refs[level] != 1);
6275 level--;
6276 }
6277 }
6278
6279 wc->level = level;
6280 wc->shared_level = -1;
6281 wc->stage = DROP_REFERENCE;
6282 wc->update_ref = update_ref;
6283 wc->keep_locks = 0;
6284 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6285
6286 while (1) {
6287 ret = walk_down_tree(trans, root, path, wc);
6288 if (ret < 0) {
6289 err = ret;
6290 break;
6291 }
6292
6293 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6294 if (ret < 0) {
6295 err = ret;
6296 break;
6297 }
6298
6299 if (ret > 0) {
6300 BUG_ON(wc->stage != DROP_REFERENCE);
6301 break;
6302 }
6303
6304 if (wc->stage == DROP_REFERENCE) {
6305 level = wc->level;
6306 btrfs_node_key(path->nodes[level],
6307 &root_item->drop_progress,
6308 path->slots[level]);
6309 root_item->drop_level = level;
6310 }
6311
6312 BUG_ON(wc->level == 0);
6313 if (btrfs_should_end_transaction(trans, tree_root)) {
6314 ret = btrfs_update_root(trans, tree_root,
6315 &root->root_key,
6316 root_item);
6317 BUG_ON(ret);
6318
6319 btrfs_end_transaction_throttle(trans, tree_root);
6320 trans = btrfs_start_transaction(tree_root, 0);
6321 if (block_rsv)
6322 trans->block_rsv = block_rsv;
6323 }
6324 }
6325 btrfs_release_path(root, path);
6326 BUG_ON(err);
6327
6328 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6329 BUG_ON(ret);
6330
6331 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6332 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6333 NULL, NULL);
6334 BUG_ON(ret < 0);
6335 if (ret > 0) {
6336 /* if we fail to delete the orphan item this time
6337 * around, it'll get picked up the next time.
6338 *
6339 * The most common failure here is just -ENOENT.
6340 */
6341 btrfs_del_orphan_item(trans, tree_root,
6342 root->root_key.objectid);
6343 }
6344 }
6345
6346 if (root->in_radix) {
6347 btrfs_free_fs_root(tree_root->fs_info, root);
6348 } else {
6349 free_extent_buffer(root->node);
6350 free_extent_buffer(root->commit_root);
6351 kfree(root);
6352 }
6353 out:
6354 btrfs_end_transaction_throttle(trans, tree_root);
6355 kfree(wc);
6356 btrfs_free_path(path);
6357 return err;
6358 }
6359
6360 /*
6361 * drop subtree rooted at tree block 'node'.
6362 *
6363 * NOTE: this function will unlock and release tree block 'node'
6364 */
6365 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6366 struct btrfs_root *root,
6367 struct extent_buffer *node,
6368 struct extent_buffer *parent)
6369 {
6370 struct btrfs_path *path;
6371 struct walk_control *wc;
6372 int level;
6373 int parent_level;
6374 int ret = 0;
6375 int wret;
6376
6377 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6378
6379 path = btrfs_alloc_path();
6380 BUG_ON(!path);
6381
6382 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6383 BUG_ON(!wc);
6384
6385 btrfs_assert_tree_locked(parent);
6386 parent_level = btrfs_header_level(parent);
6387 extent_buffer_get(parent);
6388 path->nodes[parent_level] = parent;
6389 path->slots[parent_level] = btrfs_header_nritems(parent);
6390
6391 btrfs_assert_tree_locked(node);
6392 level = btrfs_header_level(node);
6393 path->nodes[level] = node;
6394 path->slots[level] = 0;
6395 path->locks[level] = 1;
6396
6397 wc->refs[parent_level] = 1;
6398 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6399 wc->level = level;
6400 wc->shared_level = -1;
6401 wc->stage = DROP_REFERENCE;
6402 wc->update_ref = 0;
6403 wc->keep_locks = 1;
6404 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6405
6406 while (1) {
6407 wret = walk_down_tree(trans, root, path, wc);
6408 if (wret < 0) {
6409 ret = wret;
6410 break;
6411 }
6412
6413 wret = walk_up_tree(trans, root, path, wc, parent_level);
6414 if (wret < 0)
6415 ret = wret;
6416 if (wret != 0)
6417 break;
6418 }
6419
6420 kfree(wc);
6421 btrfs_free_path(path);
6422 return ret;
6423 }
6424
6425 #if 0
6426 static unsigned long calc_ra(unsigned long start, unsigned long last,
6427 unsigned long nr)
6428 {
6429 return min(last, start + nr - 1);
6430 }
6431
6432 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
6433 u64 len)
6434 {
6435 u64 page_start;
6436 u64 page_end;
6437 unsigned long first_index;
6438 unsigned long last_index;
6439 unsigned long i;
6440 struct page *page;
6441 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6442 struct file_ra_state *ra;
6443 struct btrfs_ordered_extent *ordered;
6444 unsigned int total_read = 0;
6445 unsigned int total_dirty = 0;
6446 int ret = 0;
6447
6448 ra = kzalloc(sizeof(*ra), GFP_NOFS);
6449
6450 mutex_lock(&inode->i_mutex);
6451 first_index = start >> PAGE_CACHE_SHIFT;
6452 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
6453
6454 /* make sure the dirty trick played by the caller work */
6455 ret = invalidate_inode_pages2_range(inode->i_mapping,
6456 first_index, last_index);
6457 if (ret)
6458 goto out_unlock;
6459
6460 file_ra_state_init(ra, inode->i_mapping);
6461
6462 for (i = first_index ; i <= last_index; i++) {
6463 if (total_read % ra->ra_pages == 0) {
6464 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
6465 calc_ra(i, last_index, ra->ra_pages));
6466 }
6467 total_read++;
6468 again:
6469 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
6470 BUG_ON(1);
6471 page = grab_cache_page(inode->i_mapping, i);
6472 if (!page) {
6473 ret = -ENOMEM;
6474 goto out_unlock;
6475 }
6476 if (!PageUptodate(page)) {
6477 btrfs_readpage(NULL, page);
6478 lock_page(page);
6479 if (!PageUptodate(page)) {
6480 unlock_page(page);
6481 page_cache_release(page);
6482 ret = -EIO;
6483 goto out_unlock;
6484 }
6485 }
6486 wait_on_page_writeback(page);
6487
6488 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
6489 page_end = page_start + PAGE_CACHE_SIZE - 1;
6490 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
6491
6492 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6493 if (ordered) {
6494 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6495 unlock_page(page);
6496 page_cache_release(page);
6497 btrfs_start_ordered_extent(inode, ordered, 1);
6498 btrfs_put_ordered_extent(ordered);
6499 goto again;
6500 }
6501 set_page_extent_mapped(page);
6502
6503 if (i == first_index)
6504 set_extent_bits(io_tree, page_start, page_end,
6505 EXTENT_BOUNDARY, GFP_NOFS);
6506 btrfs_set_extent_delalloc(inode, page_start, page_end);
6507
6508 set_page_dirty(page);
6509 total_dirty++;
6510
6511 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6512 unlock_page(page);
6513 page_cache_release(page);
6514 }
6515
6516 out_unlock:
6517 kfree(ra);
6518 mutex_unlock(&inode->i_mutex);
6519 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
6520 return ret;
6521 }
6522
6523 static noinline int relocate_data_extent(struct inode *reloc_inode,
6524 struct btrfs_key *extent_key,
6525 u64 offset)
6526 {
6527 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6528 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
6529 struct extent_map *em;
6530 u64 start = extent_key->objectid - offset;
6531 u64 end = start + extent_key->offset - 1;
6532
6533 em = alloc_extent_map(GFP_NOFS);
6534 BUG_ON(!em || IS_ERR(em));
6535
6536 em->start = start;
6537 em->len = extent_key->offset;
6538 em->block_len = extent_key->offset;
6539 em->block_start = extent_key->objectid;
6540 em->bdev = root->fs_info->fs_devices->latest_bdev;
6541 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6542
6543 /* setup extent map to cheat btrfs_readpage */
6544 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6545 while (1) {
6546 int ret;
6547 write_lock(&em_tree->lock);
6548 ret = add_extent_mapping(em_tree, em);
6549 write_unlock(&em_tree->lock);
6550 if (ret != -EEXIST) {
6551 free_extent_map(em);
6552 break;
6553 }
6554 btrfs_drop_extent_cache(reloc_inode, start, end, 0);
6555 }
6556 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6557
6558 return relocate_inode_pages(reloc_inode, start, extent_key->offset);
6559 }
6560
6561 struct btrfs_ref_path {
6562 u64 extent_start;
6563 u64 nodes[BTRFS_MAX_LEVEL];
6564 u64 root_objectid;
6565 u64 root_generation;
6566 u64 owner_objectid;
6567 u32 num_refs;
6568 int lowest_level;
6569 int current_level;
6570 int shared_level;
6571
6572 struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
6573 u64 new_nodes[BTRFS_MAX_LEVEL];
6574 };
6575
6576 struct disk_extent {
6577 u64 ram_bytes;
6578 u64 disk_bytenr;
6579 u64 disk_num_bytes;
6580 u64 offset;
6581 u64 num_bytes;
6582 u8 compression;
6583 u8 encryption;
6584 u16 other_encoding;
6585 };
6586
6587 static int is_cowonly_root(u64 root_objectid)
6588 {
6589 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
6590 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
6591 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
6592 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
6593 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6594 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
6595 return 1;
6596 return 0;
6597 }
6598
6599 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
6600 struct btrfs_root *extent_root,
6601 struct btrfs_ref_path *ref_path,
6602 int first_time)
6603 {
6604 struct extent_buffer *leaf;
6605 struct btrfs_path *path;
6606 struct btrfs_extent_ref *ref;
6607 struct btrfs_key key;
6608 struct btrfs_key found_key;
6609 u64 bytenr;
6610 u32 nritems;
6611 int level;
6612 int ret = 1;
6613
6614 path = btrfs_alloc_path();
6615 if (!path)
6616 return -ENOMEM;
6617
6618 if (first_time) {
6619 ref_path->lowest_level = -1;
6620 ref_path->current_level = -1;
6621 ref_path->shared_level = -1;
6622 goto walk_up;
6623 }
6624 walk_down:
6625 level = ref_path->current_level - 1;
6626 while (level >= -1) {
6627 u64 parent;
6628 if (level < ref_path->lowest_level)
6629 break;
6630
6631 if (level >= 0)
6632 bytenr = ref_path->nodes[level];
6633 else
6634 bytenr = ref_path->extent_start;
6635 BUG_ON(bytenr == 0);
6636
6637 parent = ref_path->nodes[level + 1];
6638 ref_path->nodes[level + 1] = 0;
6639 ref_path->current_level = level;
6640 BUG_ON(parent == 0);
6641
6642 key.objectid = bytenr;
6643 key.offset = parent + 1;
6644 key.type = BTRFS_EXTENT_REF_KEY;
6645
6646 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6647 if (ret < 0)
6648 goto out;
6649 BUG_ON(ret == 0);
6650
6651 leaf = path->nodes[0];
6652 nritems = btrfs_header_nritems(leaf);
6653 if (path->slots[0] >= nritems) {
6654 ret = btrfs_next_leaf(extent_root, path);
6655 if (ret < 0)
6656 goto out;
6657 if (ret > 0)
6658 goto next;
6659 leaf = path->nodes[0];
6660 }
6661
6662 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6663 if (found_key.objectid == bytenr &&
6664 found_key.type == BTRFS_EXTENT_REF_KEY) {
6665 if (level < ref_path->shared_level)
6666 ref_path->shared_level = level;
6667 goto found;
6668 }
6669 next:
6670 level--;
6671 btrfs_release_path(extent_root, path);
6672 cond_resched();
6673 }
6674 /* reached lowest level */
6675 ret = 1;
6676 goto out;
6677 walk_up:
6678 level = ref_path->current_level;
6679 while (level < BTRFS_MAX_LEVEL - 1) {
6680 u64 ref_objectid;
6681
6682 if (level >= 0)
6683 bytenr = ref_path->nodes[level];
6684 else
6685 bytenr = ref_path->extent_start;
6686
6687 BUG_ON(bytenr == 0);
6688
6689 key.objectid = bytenr;
6690 key.offset = 0;
6691 key.type = BTRFS_EXTENT_REF_KEY;
6692
6693 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6694 if (ret < 0)
6695 goto out;
6696
6697 leaf = path->nodes[0];
6698 nritems = btrfs_header_nritems(leaf);
6699 if (path->slots[0] >= nritems) {
6700 ret = btrfs_next_leaf(extent_root, path);
6701 if (ret < 0)
6702 goto out;
6703 if (ret > 0) {
6704 /* the extent was freed by someone */
6705 if (ref_path->lowest_level == level)
6706 goto out;
6707 btrfs_release_path(extent_root, path);
6708 goto walk_down;
6709 }
6710 leaf = path->nodes[0];
6711 }
6712
6713 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6714 if (found_key.objectid != bytenr ||
6715 found_key.type != BTRFS_EXTENT_REF_KEY) {
6716 /* the extent was freed by someone */
6717 if (ref_path->lowest_level == level) {
6718 ret = 1;
6719 goto out;
6720 }
6721 btrfs_release_path(extent_root, path);
6722 goto walk_down;
6723 }
6724 found:
6725 ref = btrfs_item_ptr(leaf, path->slots[0],
6726 struct btrfs_extent_ref);
6727 ref_objectid = btrfs_ref_objectid(leaf, ref);
6728 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
6729 if (first_time) {
6730 level = (int)ref_objectid;
6731 BUG_ON(level >= BTRFS_MAX_LEVEL);
6732 ref_path->lowest_level = level;
6733 ref_path->current_level = level;
6734 ref_path->nodes[level] = bytenr;
6735 } else {
6736 WARN_ON(ref_objectid != level);
6737 }
6738 } else {
6739 WARN_ON(level != -1);
6740 }
6741 first_time = 0;
6742
6743 if (ref_path->lowest_level == level) {
6744 ref_path->owner_objectid = ref_objectid;
6745 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6746 }
6747
6748 /*
6749 * the block is tree root or the block isn't in reference
6750 * counted tree.
6751 */
6752 if (found_key.objectid == found_key.offset ||
6753 is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6754 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6755 ref_path->root_generation =
6756 btrfs_ref_generation(leaf, ref);
6757 if (level < 0) {
6758 /* special reference from the tree log */
6759 ref_path->nodes[0] = found_key.offset;
6760 ref_path->current_level = 0;
6761 }
6762 ret = 0;
6763 goto out;
6764 }
6765
6766 level++;
6767 BUG_ON(ref_path->nodes[level] != 0);
6768 ref_path->nodes[level] = found_key.offset;
6769 ref_path->current_level = level;
6770
6771 /*
6772 * the reference was created in the running transaction,
6773 * no need to continue walking up.
6774 */
6775 if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6776 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6777 ref_path->root_generation =
6778 btrfs_ref_generation(leaf, ref);
6779 ret = 0;
6780 goto out;
6781 }
6782
6783 btrfs_release_path(extent_root, path);
6784 cond_resched();
6785 }
6786 /* reached max tree level, but no tree root found. */
6787 BUG();
6788 out:
6789 btrfs_free_path(path);
6790 return ret;
6791 }
6792
6793 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6794 struct btrfs_root *extent_root,
6795 struct btrfs_ref_path *ref_path,
6796 u64 extent_start)
6797 {
6798 memset(ref_path, 0, sizeof(*ref_path));
6799 ref_path->extent_start = extent_start;
6800
6801 return __next_ref_path(trans, extent_root, ref_path, 1);
6802 }
6803
6804 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6805 struct btrfs_root *extent_root,
6806 struct btrfs_ref_path *ref_path)
6807 {
6808 return __next_ref_path(trans, extent_root, ref_path, 0);
6809 }
6810
6811 static noinline int get_new_locations(struct inode *reloc_inode,
6812 struct btrfs_key *extent_key,
6813 u64 offset, int no_fragment,
6814 struct disk_extent **extents,
6815 int *nr_extents)
6816 {
6817 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6818 struct btrfs_path *path;
6819 struct btrfs_file_extent_item *fi;
6820 struct extent_buffer *leaf;
6821 struct disk_extent *exts = *extents;
6822 struct btrfs_key found_key;
6823 u64 cur_pos;
6824 u64 last_byte;
6825 u32 nritems;
6826 int nr = 0;
6827 int max = *nr_extents;
6828 int ret;
6829
6830 WARN_ON(!no_fragment && *extents);
6831 if (!exts) {
6832 max = 1;
6833 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6834 if (!exts)
6835 return -ENOMEM;
6836 }
6837
6838 path = btrfs_alloc_path();
6839 BUG_ON(!path);
6840
6841 cur_pos = extent_key->objectid - offset;
6842 last_byte = extent_key->objectid + extent_key->offset;
6843 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6844 cur_pos, 0);
6845 if (ret < 0)
6846 goto out;
6847 if (ret > 0) {
6848 ret = -ENOENT;
6849 goto out;
6850 }
6851
6852 while (1) {
6853 leaf = path->nodes[0];
6854 nritems = btrfs_header_nritems(leaf);
6855 if (path->slots[0] >= nritems) {
6856 ret = btrfs_next_leaf(root, path);
6857 if (ret < 0)
6858 goto out;
6859 if (ret > 0)
6860 break;
6861 leaf = path->nodes[0];
6862 }
6863
6864 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6865 if (found_key.offset != cur_pos ||
6866 found_key.type != BTRFS_EXTENT_DATA_KEY ||
6867 found_key.objectid != reloc_inode->i_ino)
6868 break;
6869
6870 fi = btrfs_item_ptr(leaf, path->slots[0],
6871 struct btrfs_file_extent_item);
6872 if (btrfs_file_extent_type(leaf, fi) !=
6873 BTRFS_FILE_EXTENT_REG ||
6874 btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6875 break;
6876
6877 if (nr == max) {
6878 struct disk_extent *old = exts;
6879 max *= 2;
6880 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6881 memcpy(exts, old, sizeof(*exts) * nr);
6882 if (old != *extents)
6883 kfree(old);
6884 }
6885
6886 exts[nr].disk_bytenr =
6887 btrfs_file_extent_disk_bytenr(leaf, fi);
6888 exts[nr].disk_num_bytes =
6889 btrfs_file_extent_disk_num_bytes(leaf, fi);
6890 exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6891 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6892 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6893 exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6894 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6895 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6896 fi);
6897 BUG_ON(exts[nr].offset > 0);
6898 BUG_ON(exts[nr].compression || exts[nr].encryption);
6899 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6900
6901 cur_pos += exts[nr].num_bytes;
6902 nr++;
6903
6904 if (cur_pos + offset >= last_byte)
6905 break;
6906
6907 if (no_fragment) {
6908 ret = 1;
6909 goto out;
6910 }
6911 path->slots[0]++;
6912 }
6913
6914 BUG_ON(cur_pos + offset > last_byte);
6915 if (cur_pos + offset < last_byte) {
6916 ret = -ENOENT;
6917 goto out;
6918 }
6919 ret = 0;
6920 out:
6921 btrfs_free_path(path);
6922 if (ret) {
6923 if (exts != *extents)
6924 kfree(exts);
6925 } else {
6926 *extents = exts;
6927 *nr_extents = nr;
6928 }
6929 return ret;
6930 }
6931
6932 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6933 struct btrfs_root *root,
6934 struct btrfs_path *path,
6935 struct btrfs_key *extent_key,
6936 struct btrfs_key *leaf_key,
6937 struct btrfs_ref_path *ref_path,
6938 struct disk_extent *new_extents,
6939 int nr_extents)
6940 {
6941 struct extent_buffer *leaf;
6942 struct btrfs_file_extent_item *fi;
6943 struct inode *inode = NULL;
6944 struct btrfs_key key;
6945 u64 lock_start = 0;
6946 u64 lock_end = 0;
6947 u64 num_bytes;
6948 u64 ext_offset;
6949 u64 search_end = (u64)-1;
6950 u32 nritems;
6951 int nr_scaned = 0;
6952 int extent_locked = 0;
6953 int extent_type;
6954 int ret;
6955
6956 memcpy(&key, leaf_key, sizeof(key));
6957 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6958 if (key.objectid < ref_path->owner_objectid ||
6959 (key.objectid == ref_path->owner_objectid &&
6960 key.type < BTRFS_EXTENT_DATA_KEY)) {
6961 key.objectid = ref_path->owner_objectid;
6962 key.type = BTRFS_EXTENT_DATA_KEY;
6963 key.offset = 0;
6964 }
6965 }
6966
6967 while (1) {
6968 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
6969 if (ret < 0)
6970 goto out;
6971
6972 leaf = path->nodes[0];
6973 nritems = btrfs_header_nritems(leaf);
6974 next:
6975 if (extent_locked && ret > 0) {
6976 /*
6977 * the file extent item was modified by someone
6978 * before the extent got locked.
6979 */
6980 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6981 lock_end, GFP_NOFS);
6982 extent_locked = 0;
6983 }
6984
6985 if (path->slots[0] >= nritems) {
6986 if (++nr_scaned > 2)
6987 break;
6988
6989 BUG_ON(extent_locked);
6990 ret = btrfs_next_leaf(root, path);
6991 if (ret < 0)
6992 goto out;
6993 if (ret > 0)
6994 break;
6995 leaf = path->nodes[0];
6996 nritems = btrfs_header_nritems(leaf);
6997 }
6998
6999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7000
7001 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
7002 if ((key.objectid > ref_path->owner_objectid) ||
7003 (key.objectid == ref_path->owner_objectid &&
7004 key.type > BTRFS_EXTENT_DATA_KEY) ||
7005 key.offset >= search_end)
7006 break;
7007 }
7008
7009 if (inode && key.objectid != inode->i_ino) {
7010 BUG_ON(extent_locked);
7011 btrfs_release_path(root, path);
7012 mutex_unlock(&inode->i_mutex);
7013 iput(inode);
7014 inode = NULL;
7015 continue;
7016 }
7017
7018 if (key.type != BTRFS_EXTENT_DATA_KEY) {
7019 path->slots[0]++;
7020 ret = 1;
7021 goto next;
7022 }
7023 fi = btrfs_item_ptr(leaf, path->slots[0],
7024 struct btrfs_file_extent_item);
7025 extent_type = btrfs_file_extent_type(leaf, fi);
7026 if ((extent_type != BTRFS_FILE_EXTENT_REG &&
7027 extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
7028 (btrfs_file_extent_disk_bytenr(leaf, fi) !=
7029 extent_key->objectid)) {
7030 path->slots[0]++;
7031 ret = 1;
7032 goto next;
7033 }
7034
7035 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7036 ext_offset = btrfs_file_extent_offset(leaf, fi);
7037
7038 if (search_end == (u64)-1) {
7039 search_end = key.offset - ext_offset +
7040 btrfs_file_extent_ram_bytes(leaf, fi);
7041 }
7042
7043 if (!extent_locked) {
7044 lock_start = key.offset;
7045 lock_end = lock_start + num_bytes - 1;
7046 } else {
7047 if (lock_start > key.offset ||
7048 lock_end + 1 < key.offset + num_bytes) {
7049 unlock_extent(&BTRFS_I(inode)->io_tree,
7050 lock_start, lock_end, GFP_NOFS);
7051 extent_locked = 0;
7052 }
7053 }
7054
7055 if (!inode) {
7056 btrfs_release_path(root, path);
7057
7058 inode = btrfs_iget_locked(root->fs_info->sb,
7059 key.objectid, root);
7060 if (inode->i_state & I_NEW) {
7061 BTRFS_I(inode)->root = root;
7062 BTRFS_I(inode)->location.objectid =
7063 key.objectid;
7064 BTRFS_I(inode)->location.type =
7065 BTRFS_INODE_ITEM_KEY;
7066 BTRFS_I(inode)->location.offset = 0;
7067 btrfs_read_locked_inode(inode);
7068 unlock_new_inode(inode);
7069 }
7070 /*
7071 * some code call btrfs_commit_transaction while
7072 * holding the i_mutex, so we can't use mutex_lock
7073 * here.
7074 */
7075 if (is_bad_inode(inode) ||
7076 !mutex_trylock(&inode->i_mutex)) {
7077 iput(inode);
7078 inode = NULL;
7079 key.offset = (u64)-1;
7080 goto skip;
7081 }
7082 }
7083
7084 if (!extent_locked) {
7085 struct btrfs_ordered_extent *ordered;
7086
7087 btrfs_release_path(root, path);
7088
7089 lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7090 lock_end, GFP_NOFS);
7091 ordered = btrfs_lookup_first_ordered_extent(inode,
7092 lock_end);
7093 if (ordered &&
7094 ordered->file_offset <= lock_end &&
7095 ordered->file_offset + ordered->len > lock_start) {
7096 unlock_extent(&BTRFS_I(inode)->io_tree,
7097 lock_start, lock_end, GFP_NOFS);
7098 btrfs_start_ordered_extent(inode, ordered, 1);
7099 btrfs_put_ordered_extent(ordered);
7100 key.offset += num_bytes;
7101 goto skip;
7102 }
7103 if (ordered)
7104 btrfs_put_ordered_extent(ordered);
7105
7106 extent_locked = 1;
7107 continue;
7108 }
7109
7110 if (nr_extents == 1) {
7111 /* update extent pointer in place */
7112 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7113 new_extents[0].disk_bytenr);
7114 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7115 new_extents[0].disk_num_bytes);
7116 btrfs_mark_buffer_dirty(leaf);
7117
7118 btrfs_drop_extent_cache(inode, key.offset,
7119 key.offset + num_bytes - 1, 0);
7120
7121 ret = btrfs_inc_extent_ref(trans, root,
7122 new_extents[0].disk_bytenr,
7123 new_extents[0].disk_num_bytes,
7124 leaf->start,
7125 root->root_key.objectid,
7126 trans->transid,
7127 key.objectid);
7128 BUG_ON(ret);
7129
7130 ret = btrfs_free_extent(trans, root,
7131 extent_key->objectid,
7132 extent_key->offset,
7133 leaf->start,
7134 btrfs_header_owner(leaf),
7135 btrfs_header_generation(leaf),
7136 key.objectid, 0);
7137 BUG_ON(ret);
7138
7139 btrfs_release_path(root, path);
7140 key.offset += num_bytes;
7141 } else {
7142 BUG_ON(1);
7143 #if 0
7144 u64 alloc_hint;
7145 u64 extent_len;
7146 int i;
7147 /*
7148 * drop old extent pointer at first, then insert the
7149 * new pointers one bye one
7150 */
7151 btrfs_release_path(root, path);
7152 ret = btrfs_drop_extents(trans, root, inode, key.offset,
7153 key.offset + num_bytes,
7154 key.offset, &alloc_hint);
7155 BUG_ON(ret);
7156
7157 for (i = 0; i < nr_extents; i++) {
7158 if (ext_offset >= new_extents[i].num_bytes) {
7159 ext_offset -= new_extents[i].num_bytes;
7160 continue;
7161 }
7162 extent_len = min(new_extents[i].num_bytes -
7163 ext_offset, num_bytes);
7164
7165 ret = btrfs_insert_empty_item(trans, root,
7166 path, &key,
7167 sizeof(*fi));
7168 BUG_ON(ret);
7169
7170 leaf = path->nodes[0];
7171 fi = btrfs_item_ptr(leaf, path->slots[0],
7172 struct btrfs_file_extent_item);
7173 btrfs_set_file_extent_generation(leaf, fi,
7174 trans->transid);
7175 btrfs_set_file_extent_type(leaf, fi,
7176 BTRFS_FILE_EXTENT_REG);
7177 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7178 new_extents[i].disk_bytenr);
7179 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7180 new_extents[i].disk_num_bytes);
7181 btrfs_set_file_extent_ram_bytes(leaf, fi,
7182 new_extents[i].ram_bytes);
7183
7184 btrfs_set_file_extent_compression(leaf, fi,
7185 new_extents[i].compression);
7186 btrfs_set_file_extent_encryption(leaf, fi,
7187 new_extents[i].encryption);
7188 btrfs_set_file_extent_other_encoding(leaf, fi,
7189 new_extents[i].other_encoding);
7190
7191 btrfs_set_file_extent_num_bytes(leaf, fi,
7192 extent_len);
7193 ext_offset += new_extents[i].offset;
7194 btrfs_set_file_extent_offset(leaf, fi,
7195 ext_offset);
7196 btrfs_mark_buffer_dirty(leaf);
7197
7198 btrfs_drop_extent_cache(inode, key.offset,
7199 key.offset + extent_len - 1, 0);
7200
7201 ret = btrfs_inc_extent_ref(trans, root,
7202 new_extents[i].disk_bytenr,
7203 new_extents[i].disk_num_bytes,
7204 leaf->start,
7205 root->root_key.objectid,
7206 trans->transid, key.objectid);
7207 BUG_ON(ret);
7208 btrfs_release_path(root, path);
7209
7210 inode_add_bytes(inode, extent_len);
7211
7212 ext_offset = 0;
7213 num_bytes -= extent_len;
7214 key.offset += extent_len;
7215
7216 if (num_bytes == 0)
7217 break;
7218 }
7219 BUG_ON(i >= nr_extents);
7220 #endif
7221 }
7222
7223 if (extent_locked) {
7224 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7225 lock_end, GFP_NOFS);
7226 extent_locked = 0;
7227 }
7228 skip:
7229 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
7230 key.offset >= search_end)
7231 break;
7232
7233 cond_resched();
7234 }
7235 ret = 0;
7236 out:
7237 btrfs_release_path(root, path);
7238 if (inode) {
7239 mutex_unlock(&inode->i_mutex);
7240 if (extent_locked) {
7241 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
7242 lock_end, GFP_NOFS);
7243 }
7244 iput(inode);
7245 }
7246 return ret;
7247 }
7248
7249 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
7250 struct btrfs_root *root,
7251 struct extent_buffer *buf, u64 orig_start)
7252 {
7253 int level;
7254 int ret;
7255
7256 BUG_ON(btrfs_header_generation(buf) != trans->transid);
7257 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7258
7259 level = btrfs_header_level(buf);
7260 if (level == 0) {
7261 struct btrfs_leaf_ref *ref;
7262 struct btrfs_leaf_ref *orig_ref;
7263
7264 orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
7265 if (!orig_ref)
7266 return -ENOENT;
7267
7268 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
7269 if (!ref) {
7270 btrfs_free_leaf_ref(root, orig_ref);
7271 return -ENOMEM;
7272 }
7273
7274 ref->nritems = orig_ref->nritems;
7275 memcpy(ref->extents, orig_ref->extents,
7276 sizeof(ref->extents[0]) * ref->nritems);
7277
7278 btrfs_free_leaf_ref(root, orig_ref);
7279
7280 ref->root_gen = trans->transid;
7281 ref->bytenr = buf->start;
7282 ref->owner = btrfs_header_owner(buf);
7283 ref->generation = btrfs_header_generation(buf);
7284
7285 ret = btrfs_add_leaf_ref(root, ref, 0);
7286 WARN_ON(ret);
7287 btrfs_free_leaf_ref(root, ref);
7288 }
7289 return 0;
7290 }
7291
7292 static noinline int invalidate_extent_cache(struct btrfs_root *root,
7293 struct extent_buffer *leaf,
7294 struct btrfs_block_group_cache *group,
7295 struct btrfs_root *target_root)
7296 {
7297 struct btrfs_key key;
7298 struct inode *inode = NULL;
7299 struct btrfs_file_extent_item *fi;
7300 struct extent_state *cached_state = NULL;
7301 u64 num_bytes;
7302 u64 skip_objectid = 0;
7303 u32 nritems;
7304 u32 i;
7305
7306 nritems = btrfs_header_nritems(leaf);
7307 for (i = 0; i < nritems; i++) {
7308 btrfs_item_key_to_cpu(leaf, &key, i);
7309 if (key.objectid == skip_objectid ||
7310 key.type != BTRFS_EXTENT_DATA_KEY)
7311 continue;
7312 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7313 if (btrfs_file_extent_type(leaf, fi) ==
7314 BTRFS_FILE_EXTENT_INLINE)
7315 continue;
7316 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
7317 continue;
7318 if (!inode || inode->i_ino != key.objectid) {
7319 iput(inode);
7320 inode = btrfs_ilookup(target_root->fs_info->sb,
7321 key.objectid, target_root, 1);
7322 }
7323 if (!inode) {
7324 skip_objectid = key.objectid;
7325 continue;
7326 }
7327 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7328
7329 lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
7330 key.offset + num_bytes - 1, 0, &cached_state,
7331 GFP_NOFS);
7332 btrfs_drop_extent_cache(inode, key.offset,
7333 key.offset + num_bytes - 1, 1);
7334 unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
7335 key.offset + num_bytes - 1, &cached_state,
7336 GFP_NOFS);
7337 cond_resched();
7338 }
7339 iput(inode);
7340 return 0;
7341 }
7342
7343 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
7344 struct btrfs_root *root,
7345 struct extent_buffer *leaf,
7346 struct btrfs_block_group_cache *group,
7347 struct inode *reloc_inode)
7348 {
7349 struct btrfs_key key;
7350 struct btrfs_key extent_key;
7351 struct btrfs_file_extent_item *fi;
7352 struct btrfs_leaf_ref *ref;
7353 struct disk_extent *new_extent;
7354 u64 bytenr;
7355 u64 num_bytes;
7356 u32 nritems;
7357 u32 i;
7358 int ext_index;
7359 int nr_extent;
7360 int ret;
7361
7362 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
7363 BUG_ON(!new_extent);
7364
7365 ref = btrfs_lookup_leaf_ref(root, leaf->start);
7366 BUG_ON(!ref);
7367
7368 ext_index = -1;
7369 nritems = btrfs_header_nritems(leaf);
7370 for (i = 0; i < nritems; i++) {
7371 btrfs_item_key_to_cpu(leaf, &key, i);
7372 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
7373 continue;
7374 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7375 if (btrfs_file_extent_type(leaf, fi) ==
7376 BTRFS_FILE_EXTENT_INLINE)
7377 continue;
7378 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7379 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
7380 if (bytenr == 0)
7381 continue;
7382
7383 ext_index++;
7384 if (bytenr >= group->key.objectid + group->key.offset ||
7385 bytenr + num_bytes <= group->key.objectid)
7386 continue;
7387
7388 extent_key.objectid = bytenr;
7389 extent_key.offset = num_bytes;
7390 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7391 nr_extent = 1;
7392 ret = get_new_locations(reloc_inode, &extent_key,
7393 group->key.objectid, 1,
7394 &new_extent, &nr_extent);
7395 if (ret > 0)
7396 continue;
7397 BUG_ON(ret < 0);
7398
7399 BUG_ON(ref->extents[ext_index].bytenr != bytenr);
7400 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
7401 ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
7402 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
7403
7404 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7405 new_extent->disk_bytenr);
7406 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7407 new_extent->disk_num_bytes);
7408 btrfs_mark_buffer_dirty(leaf);
7409
7410 ret = btrfs_inc_extent_ref(trans, root,
7411 new_extent->disk_bytenr,
7412 new_extent->disk_num_bytes,
7413 leaf->start,
7414 root->root_key.objectid,
7415 trans->transid, key.objectid);
7416 BUG_ON(ret);
7417
7418 ret = btrfs_free_extent(trans, root,
7419 bytenr, num_bytes, leaf->start,
7420 btrfs_header_owner(leaf),
7421 btrfs_header_generation(leaf),
7422 key.objectid, 0);
7423 BUG_ON(ret);
7424 cond_resched();
7425 }
7426 kfree(new_extent);
7427 BUG_ON(ext_index + 1 != ref->nritems);
7428 btrfs_free_leaf_ref(root, ref);
7429 return 0;
7430 }
7431
7432 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
7433 struct btrfs_root *root)
7434 {
7435 struct btrfs_root *reloc_root;
7436 int ret;
7437
7438 if (root->reloc_root) {
7439 reloc_root = root->reloc_root;
7440 root->reloc_root = NULL;
7441 list_add(&reloc_root->dead_list,
7442 &root->fs_info->dead_reloc_roots);
7443
7444 btrfs_set_root_bytenr(&reloc_root->root_item,
7445 reloc_root->node->start);
7446 btrfs_set_root_level(&root->root_item,
7447 btrfs_header_level(reloc_root->node));
7448 memset(&reloc_root->root_item.drop_progress, 0,
7449 sizeof(struct btrfs_disk_key));
7450 reloc_root->root_item.drop_level = 0;
7451
7452 ret = btrfs_update_root(trans, root->fs_info->tree_root,
7453 &reloc_root->root_key,
7454 &reloc_root->root_item);
7455 BUG_ON(ret);
7456 }
7457 return 0;
7458 }
7459
7460 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
7461 {
7462 struct btrfs_trans_handle *trans;
7463 struct btrfs_root *reloc_root;
7464 struct btrfs_root *prev_root = NULL;
7465 struct list_head dead_roots;
7466 int ret;
7467 unsigned long nr;
7468
7469 INIT_LIST_HEAD(&dead_roots);
7470 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
7471
7472 while (!list_empty(&dead_roots)) {
7473 reloc_root = list_entry(dead_roots.prev,
7474 struct btrfs_root, dead_list);
7475 list_del_init(&reloc_root->dead_list);
7476
7477 BUG_ON(reloc_root->commit_root != NULL);
7478 while (1) {
7479 trans = btrfs_join_transaction(root, 1);
7480 BUG_ON(!trans);
7481
7482 mutex_lock(&root->fs_info->drop_mutex);
7483 ret = btrfs_drop_snapshot(trans, reloc_root);
7484 if (ret != -EAGAIN)
7485 break;
7486 mutex_unlock(&root->fs_info->drop_mutex);
7487
7488 nr = trans->blocks_used;
7489 ret = btrfs_end_transaction(trans, root);
7490 BUG_ON(ret);
7491 btrfs_btree_balance_dirty(root, nr);
7492 }
7493
7494 free_extent_buffer(reloc_root->node);
7495
7496 ret = btrfs_del_root(trans, root->fs_info->tree_root,
7497 &reloc_root->root_key);
7498 BUG_ON(ret);
7499 mutex_unlock(&root->fs_info->drop_mutex);
7500
7501 nr = trans->blocks_used;
7502 ret = btrfs_end_transaction(trans, root);
7503 BUG_ON(ret);
7504 btrfs_btree_balance_dirty(root, nr);
7505
7506 kfree(prev_root);
7507 prev_root = reloc_root;
7508 }
7509 if (prev_root) {
7510 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
7511 kfree(prev_root);
7512 }
7513 return 0;
7514 }
7515
7516 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
7517 {
7518 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
7519 return 0;
7520 }
7521
7522 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
7523 {
7524 struct btrfs_root *reloc_root;
7525 struct btrfs_trans_handle *trans;
7526 struct btrfs_key location;
7527 int found;
7528 int ret;
7529
7530 mutex_lock(&root->fs_info->tree_reloc_mutex);
7531 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
7532 BUG_ON(ret);
7533 found = !list_empty(&root->fs_info->dead_reloc_roots);
7534 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7535
7536 if (found) {
7537 trans = btrfs_start_transaction(root, 1);
7538 BUG_ON(!trans);
7539 ret = btrfs_commit_transaction(trans, root);
7540 BUG_ON(ret);
7541 }
7542
7543 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
7544 location.offset = (u64)-1;
7545 location.type = BTRFS_ROOT_ITEM_KEY;
7546
7547 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
7548 BUG_ON(!reloc_root);
7549 btrfs_orphan_cleanup(reloc_root);
7550 return 0;
7551 }
7552
7553 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
7554 struct btrfs_root *root)
7555 {
7556 struct btrfs_root *reloc_root;
7557 struct extent_buffer *eb;
7558 struct btrfs_root_item *root_item;
7559 struct btrfs_key root_key;
7560 int ret;
7561
7562 BUG_ON(!root->ref_cows);
7563 if (root->reloc_root)
7564 return 0;
7565
7566 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
7567 BUG_ON(!root_item);
7568
7569 ret = btrfs_copy_root(trans, root, root->commit_root,
7570 &eb, BTRFS_TREE_RELOC_OBJECTID);
7571 BUG_ON(ret);
7572
7573 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
7574 root_key.offset = root->root_key.objectid;
7575 root_key.type = BTRFS_ROOT_ITEM_KEY;
7576
7577 memcpy(root_item, &root->root_item, sizeof(root_item));
7578 btrfs_set_root_refs(root_item, 0);
7579 btrfs_set_root_bytenr(root_item, eb->start);
7580 btrfs_set_root_level(root_item, btrfs_header_level(eb));
7581 btrfs_set_root_generation(root_item, trans->transid);
7582
7583 btrfs_tree_unlock(eb);
7584 free_extent_buffer(eb);
7585
7586 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
7587 &root_key, root_item);
7588 BUG_ON(ret);
7589 kfree(root_item);
7590
7591 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
7592 &root_key);
7593 BUG_ON(!reloc_root);
7594 reloc_root->last_trans = trans->transid;
7595 reloc_root->commit_root = NULL;
7596 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
7597
7598 root->reloc_root = reloc_root;
7599 return 0;
7600 }
7601
7602 /*
7603 * Core function of space balance.
7604 *
7605 * The idea is using reloc trees to relocate tree blocks in reference
7606 * counted roots. There is one reloc tree for each subvol, and all
7607 * reloc trees share same root key objectid. Reloc trees are snapshots
7608 * of the latest committed roots of subvols (root->commit_root).
7609 *
7610 * To relocate a tree block referenced by a subvol, there are two steps.
7611 * COW the block through subvol's reloc tree, then update block pointer
7612 * in the subvol to point to the new block. Since all reloc trees share
7613 * same root key objectid, doing special handing for tree blocks owned
7614 * by them is easy. Once a tree block has been COWed in one reloc tree,
7615 * we can use the resulting new block directly when the same block is
7616 * required to COW again through other reloc trees. By this way, relocated
7617 * tree blocks are shared between reloc trees, so they are also shared
7618 * between subvols.
7619 */
7620 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
7621 struct btrfs_root *root,
7622 struct btrfs_path *path,
7623 struct btrfs_key *first_key,
7624 struct btrfs_ref_path *ref_path,
7625 struct btrfs_block_group_cache *group,
7626 struct inode *reloc_inode)
7627 {
7628 struct btrfs_root *reloc_root;
7629 struct extent_buffer *eb = NULL;
7630 struct btrfs_key *keys;
7631 u64 *nodes;
7632 int level;
7633 int shared_level;
7634 int lowest_level = 0;
7635 int ret;
7636
7637 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
7638 lowest_level = ref_path->owner_objectid;
7639
7640 if (!root->ref_cows) {
7641 path->lowest_level = lowest_level;
7642 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
7643 BUG_ON(ret < 0);
7644 path->lowest_level = 0;
7645 btrfs_release_path(root, path);
7646 return 0;
7647 }
7648
7649 mutex_lock(&root->fs_info->tree_reloc_mutex);
7650 ret = init_reloc_tree(trans, root);
7651 BUG_ON(ret);
7652 reloc_root = root->reloc_root;
7653
7654 shared_level = ref_path->shared_level;
7655 ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
7656
7657 keys = ref_path->node_keys;
7658 nodes = ref_path->new_nodes;
7659 memset(&keys[shared_level + 1], 0,
7660 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
7661 memset(&nodes[shared_level + 1], 0,
7662 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
7663
7664 if (nodes[lowest_level] == 0) {
7665 path->lowest_level = lowest_level;
7666 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7667 0, 1);
7668 BUG_ON(ret);
7669 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
7670 eb = path->nodes[level];
7671 if (!eb || eb == reloc_root->node)
7672 break;
7673 nodes[level] = eb->start;
7674 if (level == 0)
7675 btrfs_item_key_to_cpu(eb, &keys[level], 0);
7676 else
7677 btrfs_node_key_to_cpu(eb, &keys[level], 0);
7678 }
7679 if (nodes[0] &&
7680 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7681 eb = path->nodes[0];
7682 ret = replace_extents_in_leaf(trans, reloc_root, eb,
7683 group, reloc_inode);
7684 BUG_ON(ret);
7685 }
7686 btrfs_release_path(reloc_root, path);
7687 } else {
7688 ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
7689 lowest_level);
7690 BUG_ON(ret);
7691 }
7692
7693 /*
7694 * replace tree blocks in the fs tree with tree blocks in
7695 * the reloc tree.
7696 */
7697 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
7698 BUG_ON(ret < 0);
7699
7700 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7701 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7702 0, 0);
7703 BUG_ON(ret);
7704 extent_buffer_get(path->nodes[0]);
7705 eb = path->nodes[0];
7706 btrfs_release_path(reloc_root, path);
7707 ret = invalidate_extent_cache(reloc_root, eb, group, root);
7708 BUG_ON(ret);
7709 free_extent_buffer(eb);
7710 }
7711
7712 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7713 path->lowest_level = 0;
7714 return 0;
7715 }
7716
7717 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
7718 struct btrfs_root *root,
7719 struct btrfs_path *path,
7720 struct btrfs_key *first_key,
7721 struct btrfs_ref_path *ref_path)
7722 {
7723 int ret;
7724
7725 ret = relocate_one_path(trans, root, path, first_key,
7726 ref_path, NULL, NULL);
7727 BUG_ON(ret);
7728
7729 return 0;
7730 }
7731
7732 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
7733 struct btrfs_root *extent_root,
7734 struct btrfs_path *path,
7735 struct btrfs_key *extent_key)
7736 {
7737 int ret;
7738
7739 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7740 if (ret)
7741 goto out;
7742 ret = btrfs_del_item(trans, extent_root, path);
7743 out:
7744 btrfs_release_path(extent_root, path);
7745 return ret;
7746 }
7747
7748 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7749 struct btrfs_ref_path *ref_path)
7750 {
7751 struct btrfs_key root_key;
7752
7753 root_key.objectid = ref_path->root_objectid;
7754 root_key.type = BTRFS_ROOT_ITEM_KEY;
7755 if (is_cowonly_root(ref_path->root_objectid))
7756 root_key.offset = 0;
7757 else
7758 root_key.offset = (u64)-1;
7759
7760 return btrfs_read_fs_root_no_name(fs_info, &root_key);
7761 }
7762
7763 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7764 struct btrfs_path *path,
7765 struct btrfs_key *extent_key,
7766 struct btrfs_block_group_cache *group,
7767 struct inode *reloc_inode, int pass)
7768 {
7769 struct btrfs_trans_handle *trans;
7770 struct btrfs_root *found_root;
7771 struct btrfs_ref_path *ref_path = NULL;
7772 struct disk_extent *new_extents = NULL;
7773 int nr_extents = 0;
7774 int loops;
7775 int ret;
7776 int level;
7777 struct btrfs_key first_key;
7778 u64 prev_block = 0;
7779
7780
7781 trans = btrfs_start_transaction(extent_root, 1);
7782 BUG_ON(!trans);
7783
7784 if (extent_key->objectid == 0) {
7785 ret = del_extent_zero(trans, extent_root, path, extent_key);
7786 goto out;
7787 }
7788
7789 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7790 if (!ref_path) {
7791 ret = -ENOMEM;
7792 goto out;
7793 }
7794
7795 for (loops = 0; ; loops++) {
7796 if (loops == 0) {
7797 ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7798 extent_key->objectid);
7799 } else {
7800 ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7801 }
7802 if (ret < 0)
7803 goto out;
7804 if (ret > 0)
7805 break;
7806
7807 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7808 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7809 continue;
7810
7811 found_root = read_ref_root(extent_root->fs_info, ref_path);
7812 BUG_ON(!found_root);
7813 /*
7814 * for reference counted tree, only process reference paths
7815 * rooted at the latest committed root.
7816 */
7817 if (found_root->ref_cows &&
7818 ref_path->root_generation != found_root->root_key.offset)
7819 continue;
7820
7821 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7822 if (pass == 0) {
7823 /*
7824 * copy data extents to new locations
7825 */
7826 u64 group_start = group->key.objectid;
7827 ret = relocate_data_extent(reloc_inode,
7828 extent_key,
7829 group_start);
7830 if (ret < 0)
7831 goto out;
7832 break;
7833 }
7834 level = 0;
7835 } else {
7836 level = ref_path->owner_objectid;
7837 }
7838
7839 if (prev_block != ref_path->nodes[level]) {
7840 struct extent_buffer *eb;
7841 u64 block_start = ref_path->nodes[level];
7842 u64 block_size = btrfs_level_size(found_root, level);
7843
7844 eb = read_tree_block(found_root, block_start,
7845 block_size, 0);
7846 btrfs_tree_lock(eb);
7847 BUG_ON(level != btrfs_header_level(eb));
7848
7849 if (level == 0)
7850 btrfs_item_key_to_cpu(eb, &first_key, 0);
7851 else
7852 btrfs_node_key_to_cpu(eb, &first_key, 0);
7853
7854 btrfs_tree_unlock(eb);
7855 free_extent_buffer(eb);
7856 prev_block = block_start;
7857 }
7858
7859 mutex_lock(&extent_root->fs_info->trans_mutex);
7860 btrfs_record_root_in_trans(found_root);
7861 mutex_unlock(&extent_root->fs_info->trans_mutex);
7862 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7863 /*
7864 * try to update data extent references while
7865 * keeping metadata shared between snapshots.
7866 */
7867 if (pass == 1) {
7868 ret = relocate_one_path(trans, found_root,
7869 path, &first_key, ref_path,
7870 group, reloc_inode);
7871 if (ret < 0)
7872 goto out;
7873 continue;
7874 }
7875 /*
7876 * use fallback method to process the remaining
7877 * references.
7878 */
7879 if (!new_extents) {
7880 u64 group_start = group->key.objectid;
7881 new_extents = kmalloc(sizeof(*new_extents),
7882 GFP_NOFS);
7883 nr_extents = 1;
7884 ret = get_new_locations(reloc_inode,
7885 extent_key,
7886 group_start, 1,
7887 &new_extents,
7888 &nr_extents);
7889 if (ret)
7890 goto out;
7891 }
7892 ret = replace_one_extent(trans, found_root,
7893 path, extent_key,
7894 &first_key, ref_path,
7895 new_extents, nr_extents);
7896 } else {
7897 ret = relocate_tree_block(trans, found_root, path,
7898 &first_key, ref_path);
7899 }
7900 if (ret < 0)
7901 goto out;
7902 }
7903 ret = 0;
7904 out:
7905 btrfs_end_transaction(trans, extent_root);
7906 kfree(new_extents);
7907 kfree(ref_path);
7908 return ret;
7909 }
7910 #endif
7911
7912 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7913 {
7914 u64 num_devices;
7915 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7916 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7917
7918 /*
7919 * we add in the count of missing devices because we want
7920 * to make sure that any RAID levels on a degraded FS
7921 * continue to be honored.
7922 */
7923 num_devices = root->fs_info->fs_devices->rw_devices +
7924 root->fs_info->fs_devices->missing_devices;
7925
7926 if (num_devices == 1) {
7927 stripped |= BTRFS_BLOCK_GROUP_DUP;
7928 stripped = flags & ~stripped;
7929
7930 /* turn raid0 into single device chunks */
7931 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7932 return stripped;
7933
7934 /* turn mirroring into duplication */
7935 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7936 BTRFS_BLOCK_GROUP_RAID10))
7937 return stripped | BTRFS_BLOCK_GROUP_DUP;
7938 return flags;
7939 } else {
7940 /* they already had raid on here, just return */
7941 if (flags & stripped)
7942 return flags;
7943
7944 stripped |= BTRFS_BLOCK_GROUP_DUP;
7945 stripped = flags & ~stripped;
7946
7947 /* switch duplicated blocks with raid1 */
7948 if (flags & BTRFS_BLOCK_GROUP_DUP)
7949 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7950
7951 /* turn single device chunks into raid0 */
7952 return stripped | BTRFS_BLOCK_GROUP_RAID0;
7953 }
7954 return flags;
7955 }
7956
7957 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
7958 {
7959 struct btrfs_space_info *sinfo = cache->space_info;
7960 u64 num_bytes;
7961 int ret = -ENOSPC;
7962
7963 if (cache->ro)
7964 return 0;
7965
7966 spin_lock(&sinfo->lock);
7967 spin_lock(&cache->lock);
7968 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7969 cache->bytes_super - btrfs_block_group_used(&cache->item);
7970
7971 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7972 sinfo->bytes_may_use + sinfo->bytes_readonly +
7973 cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
7974 sinfo->bytes_readonly += num_bytes;
7975 sinfo->bytes_reserved += cache->reserved_pinned;
7976 cache->reserved_pinned = 0;
7977 cache->ro = 1;
7978 ret = 0;
7979 }
7980
7981 spin_unlock(&cache->lock);
7982 spin_unlock(&sinfo->lock);
7983 return ret;
7984 }
7985
7986 int btrfs_set_block_group_ro(struct btrfs_root *root,
7987 struct btrfs_block_group_cache *cache)
7988
7989 {
7990 struct btrfs_trans_handle *trans;
7991 u64 alloc_flags;
7992 int ret;
7993
7994 BUG_ON(cache->ro);
7995
7996 trans = btrfs_join_transaction(root, 1);
7997 BUG_ON(IS_ERR(trans));
7998
7999 alloc_flags = update_block_group_flags(root, cache->flags);
8000 if (alloc_flags != cache->flags)
8001 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8002
8003 ret = set_block_group_ro(cache);
8004 if (!ret)
8005 goto out;
8006 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8007 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
8008 if (ret < 0)
8009 goto out;
8010 ret = set_block_group_ro(cache);
8011 out:
8012 btrfs_end_transaction(trans, root);
8013 return ret;
8014 }
8015
8016 /*
8017 * helper to account the unused space of all the readonly block group in the
8018 * list. takes mirrors into account.
8019 */
8020 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8021 {
8022 struct btrfs_block_group_cache *block_group;
8023 u64 free_bytes = 0;
8024 int factor;
8025
8026 list_for_each_entry(block_group, groups_list, list) {
8027 spin_lock(&block_group->lock);
8028
8029 if (!block_group->ro) {
8030 spin_unlock(&block_group->lock);
8031 continue;
8032 }
8033
8034 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8035 BTRFS_BLOCK_GROUP_RAID10 |
8036 BTRFS_BLOCK_GROUP_DUP))
8037 factor = 2;
8038 else
8039 factor = 1;
8040
8041 free_bytes += (block_group->key.offset -
8042 btrfs_block_group_used(&block_group->item)) *
8043 factor;
8044
8045 spin_unlock(&block_group->lock);
8046 }
8047
8048 return free_bytes;
8049 }
8050
8051 /*
8052 * helper to account the unused space of all the readonly block group in the
8053 * space_info. takes mirrors into account.
8054 */
8055 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8056 {
8057 int i;
8058 u64 free_bytes = 0;
8059
8060 spin_lock(&sinfo->lock);
8061
8062 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8063 if (!list_empty(&sinfo->block_groups[i]))
8064 free_bytes += __btrfs_get_ro_block_group_free_space(
8065 &sinfo->block_groups[i]);
8066
8067 spin_unlock(&sinfo->lock);
8068
8069 return free_bytes;
8070 }
8071
8072 int btrfs_set_block_group_rw(struct btrfs_root *root,
8073 struct btrfs_block_group_cache *cache)
8074 {
8075 struct btrfs_space_info *sinfo = cache->space_info;
8076 u64 num_bytes;
8077
8078 BUG_ON(!cache->ro);
8079
8080 spin_lock(&sinfo->lock);
8081 spin_lock(&cache->lock);
8082 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8083 cache->bytes_super - btrfs_block_group_used(&cache->item);
8084 sinfo->bytes_readonly -= num_bytes;
8085 cache->ro = 0;
8086 spin_unlock(&cache->lock);
8087 spin_unlock(&sinfo->lock);
8088 return 0;
8089 }
8090
8091 /*
8092 * checks to see if its even possible to relocate this block group.
8093 *
8094 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8095 * ok to go ahead and try.
8096 */
8097 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8098 {
8099 struct btrfs_block_group_cache *block_group;
8100 struct btrfs_space_info *space_info;
8101 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8102 struct btrfs_device *device;
8103 int full = 0;
8104 int ret = 0;
8105
8106 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8107
8108 /* odd, couldn't find the block group, leave it alone */
8109 if (!block_group)
8110 return -1;
8111
8112 /* no bytes used, we're good */
8113 if (!btrfs_block_group_used(&block_group->item))
8114 goto out;
8115
8116 space_info = block_group->space_info;
8117 spin_lock(&space_info->lock);
8118
8119 full = space_info->full;
8120
8121 /*
8122 * if this is the last block group we have in this space, we can't
8123 * relocate it unless we're able to allocate a new chunk below.
8124 *
8125 * Otherwise, we need to make sure we have room in the space to handle
8126 * all of the extents from this block group. If we can, we're good
8127 */
8128 if ((space_info->total_bytes != block_group->key.offset) &&
8129 (space_info->bytes_used + space_info->bytes_reserved +
8130 space_info->bytes_pinned + space_info->bytes_readonly +
8131 btrfs_block_group_used(&block_group->item) <
8132 space_info->total_bytes)) {
8133 spin_unlock(&space_info->lock);
8134 goto out;
8135 }
8136 spin_unlock(&space_info->lock);
8137
8138 /*
8139 * ok we don't have enough space, but maybe we have free space on our
8140 * devices to allocate new chunks for relocation, so loop through our
8141 * alloc devices and guess if we have enough space. However, if we
8142 * were marked as full, then we know there aren't enough chunks, and we
8143 * can just return.
8144 */
8145 ret = -1;
8146 if (full)
8147 goto out;
8148
8149 mutex_lock(&root->fs_info->chunk_mutex);
8150 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8151 u64 min_free = btrfs_block_group_used(&block_group->item);
8152 u64 dev_offset;
8153
8154 /*
8155 * check to make sure we can actually find a chunk with enough
8156 * space to fit our block group in.
8157 */
8158 if (device->total_bytes > device->bytes_used + min_free) {
8159 ret = find_free_dev_extent(NULL, device, min_free,
8160 &dev_offset, NULL);
8161 if (!ret)
8162 break;
8163 ret = -1;
8164 }
8165 }
8166 mutex_unlock(&root->fs_info->chunk_mutex);
8167 out:
8168 btrfs_put_block_group(block_group);
8169 return ret;
8170 }
8171
8172 static int find_first_block_group(struct btrfs_root *root,
8173 struct btrfs_path *path, struct btrfs_key *key)
8174 {
8175 int ret = 0;
8176 struct btrfs_key found_key;
8177 struct extent_buffer *leaf;
8178 int slot;
8179
8180 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8181 if (ret < 0)
8182 goto out;
8183
8184 while (1) {
8185 slot = path->slots[0];
8186 leaf = path->nodes[0];
8187 if (slot >= btrfs_header_nritems(leaf)) {
8188 ret = btrfs_next_leaf(root, path);
8189 if (ret == 0)
8190 continue;
8191 if (ret < 0)
8192 goto out;
8193 break;
8194 }
8195 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8196
8197 if (found_key.objectid >= key->objectid &&
8198 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8199 ret = 0;
8200 goto out;
8201 }
8202 path->slots[0]++;
8203 }
8204 out:
8205 return ret;
8206 }
8207
8208 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8209 {
8210 struct btrfs_block_group_cache *block_group;
8211 u64 last = 0;
8212
8213 while (1) {
8214 struct inode *inode;
8215
8216 block_group = btrfs_lookup_first_block_group(info, last);
8217 while (block_group) {
8218 spin_lock(&block_group->lock);
8219 if (block_group->iref)
8220 break;
8221 spin_unlock(&block_group->lock);
8222 block_group = next_block_group(info->tree_root,
8223 block_group);
8224 }
8225 if (!block_group) {
8226 if (last == 0)
8227 break;
8228 last = 0;
8229 continue;
8230 }
8231
8232 inode = block_group->inode;
8233 block_group->iref = 0;
8234 block_group->inode = NULL;
8235 spin_unlock(&block_group->lock);
8236 iput(inode);
8237 last = block_group->key.objectid + block_group->key.offset;
8238 btrfs_put_block_group(block_group);
8239 }
8240 }
8241
8242 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8243 {
8244 struct btrfs_block_group_cache *block_group;
8245 struct btrfs_space_info *space_info;
8246 struct btrfs_caching_control *caching_ctl;
8247 struct rb_node *n;
8248
8249 down_write(&info->extent_commit_sem);
8250 while (!list_empty(&info->caching_block_groups)) {
8251 caching_ctl = list_entry(info->caching_block_groups.next,
8252 struct btrfs_caching_control, list);
8253 list_del(&caching_ctl->list);
8254 put_caching_control(caching_ctl);
8255 }
8256 up_write(&info->extent_commit_sem);
8257
8258 spin_lock(&info->block_group_cache_lock);
8259 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8260 block_group = rb_entry(n, struct btrfs_block_group_cache,
8261 cache_node);
8262 rb_erase(&block_group->cache_node,
8263 &info->block_group_cache_tree);
8264 spin_unlock(&info->block_group_cache_lock);
8265
8266 down_write(&block_group->space_info->groups_sem);
8267 list_del(&block_group->list);
8268 up_write(&block_group->space_info->groups_sem);
8269
8270 if (block_group->cached == BTRFS_CACHE_STARTED)
8271 wait_block_group_cache_done(block_group);
8272
8273 btrfs_remove_free_space_cache(block_group);
8274 btrfs_put_block_group(block_group);
8275
8276 spin_lock(&info->block_group_cache_lock);
8277 }
8278 spin_unlock(&info->block_group_cache_lock);
8279
8280 /* now that all the block groups are freed, go through and
8281 * free all the space_info structs. This is only called during
8282 * the final stages of unmount, and so we know nobody is
8283 * using them. We call synchronize_rcu() once before we start,
8284 * just to be on the safe side.
8285 */
8286 synchronize_rcu();
8287
8288 release_global_block_rsv(info);
8289
8290 while(!list_empty(&info->space_info)) {
8291 space_info = list_entry(info->space_info.next,
8292 struct btrfs_space_info,
8293 list);
8294 if (space_info->bytes_pinned > 0 ||
8295 space_info->bytes_reserved > 0) {
8296 WARN_ON(1);
8297 dump_space_info(space_info, 0, 0);
8298 }
8299 list_del(&space_info->list);
8300 kfree(space_info);
8301 }
8302 return 0;
8303 }
8304
8305 static void __link_block_group(struct btrfs_space_info *space_info,
8306 struct btrfs_block_group_cache *cache)
8307 {
8308 int index = get_block_group_index(cache);
8309
8310 down_write(&space_info->groups_sem);
8311 list_add_tail(&cache->list, &space_info->block_groups[index]);
8312 up_write(&space_info->groups_sem);
8313 }
8314
8315 int btrfs_read_block_groups(struct btrfs_root *root)
8316 {
8317 struct btrfs_path *path;
8318 int ret;
8319 struct btrfs_block_group_cache *cache;
8320 struct btrfs_fs_info *info = root->fs_info;
8321 struct btrfs_space_info *space_info;
8322 struct btrfs_key key;
8323 struct btrfs_key found_key;
8324 struct extent_buffer *leaf;
8325 int need_clear = 0;
8326 u64 cache_gen;
8327
8328 root = info->extent_root;
8329 key.objectid = 0;
8330 key.offset = 0;
8331 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8332 path = btrfs_alloc_path();
8333 if (!path)
8334 return -ENOMEM;
8335
8336 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
8337 if (cache_gen != 0 &&
8338 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
8339 need_clear = 1;
8340 if (btrfs_test_opt(root, CLEAR_CACHE))
8341 need_clear = 1;
8342 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
8343 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
8344
8345 while (1) {
8346 ret = find_first_block_group(root, path, &key);
8347 if (ret > 0)
8348 break;
8349 if (ret != 0)
8350 goto error;
8351 leaf = path->nodes[0];
8352 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8353 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8354 if (!cache) {
8355 ret = -ENOMEM;
8356 goto error;
8357 }
8358
8359 atomic_set(&cache->count, 1);
8360 spin_lock_init(&cache->lock);
8361 spin_lock_init(&cache->tree_lock);
8362 cache->fs_info = info;
8363 INIT_LIST_HEAD(&cache->list);
8364 INIT_LIST_HEAD(&cache->cluster_list);
8365
8366 if (need_clear)
8367 cache->disk_cache_state = BTRFS_DC_CLEAR;
8368
8369 /*
8370 * we only want to have 32k of ram per block group for keeping
8371 * track of free space, and if we pass 1/2 of that we want to
8372 * start converting things over to using bitmaps
8373 */
8374 cache->extents_thresh = ((1024 * 32) / 2) /
8375 sizeof(struct btrfs_free_space);
8376
8377 read_extent_buffer(leaf, &cache->item,
8378 btrfs_item_ptr_offset(leaf, path->slots[0]),
8379 sizeof(cache->item));
8380 memcpy(&cache->key, &found_key, sizeof(found_key));
8381
8382 key.objectid = found_key.objectid + found_key.offset;
8383 btrfs_release_path(root, path);
8384 cache->flags = btrfs_block_group_flags(&cache->item);
8385 cache->sectorsize = root->sectorsize;
8386
8387 /*
8388 * check for two cases, either we are full, and therefore
8389 * don't need to bother with the caching work since we won't
8390 * find any space, or we are empty, and we can just add all
8391 * the space in and be done with it. This saves us _alot_ of
8392 * time, particularly in the full case.
8393 */
8394 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8395 exclude_super_stripes(root, cache);
8396 cache->last_byte_to_unpin = (u64)-1;
8397 cache->cached = BTRFS_CACHE_FINISHED;
8398 free_excluded_extents(root, cache);
8399 } else if (btrfs_block_group_used(&cache->item) == 0) {
8400 exclude_super_stripes(root, cache);
8401 cache->last_byte_to_unpin = (u64)-1;
8402 cache->cached = BTRFS_CACHE_FINISHED;
8403 add_new_free_space(cache, root->fs_info,
8404 found_key.objectid,
8405 found_key.objectid +
8406 found_key.offset);
8407 free_excluded_extents(root, cache);
8408 }
8409
8410 ret = update_space_info(info, cache->flags, found_key.offset,
8411 btrfs_block_group_used(&cache->item),
8412 &space_info);
8413 BUG_ON(ret);
8414 cache->space_info = space_info;
8415 spin_lock(&cache->space_info->lock);
8416 cache->space_info->bytes_readonly += cache->bytes_super;
8417 spin_unlock(&cache->space_info->lock);
8418
8419 __link_block_group(space_info, cache);
8420
8421 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8422 BUG_ON(ret);
8423
8424 set_avail_alloc_bits(root->fs_info, cache->flags);
8425 if (btrfs_chunk_readonly(root, cache->key.objectid))
8426 set_block_group_ro(cache);
8427 }
8428
8429 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8430 if (!(get_alloc_profile(root, space_info->flags) &
8431 (BTRFS_BLOCK_GROUP_RAID10 |
8432 BTRFS_BLOCK_GROUP_RAID1 |
8433 BTRFS_BLOCK_GROUP_DUP)))
8434 continue;
8435 /*
8436 * avoid allocating from un-mirrored block group if there are
8437 * mirrored block groups.
8438 */
8439 list_for_each_entry(cache, &space_info->block_groups[3], list)
8440 set_block_group_ro(cache);
8441 list_for_each_entry(cache, &space_info->block_groups[4], list)
8442 set_block_group_ro(cache);
8443 }
8444
8445 init_global_block_rsv(info);
8446 ret = 0;
8447 error:
8448 btrfs_free_path(path);
8449 return ret;
8450 }
8451
8452 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8453 struct btrfs_root *root, u64 bytes_used,
8454 u64 type, u64 chunk_objectid, u64 chunk_offset,
8455 u64 size)
8456 {
8457 int ret;
8458 struct btrfs_root *extent_root;
8459 struct btrfs_block_group_cache *cache;
8460
8461 extent_root = root->fs_info->extent_root;
8462
8463 root->fs_info->last_trans_log_full_commit = trans->transid;
8464
8465 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8466 if (!cache)
8467 return -ENOMEM;
8468
8469 cache->key.objectid = chunk_offset;
8470 cache->key.offset = size;
8471 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8472 cache->sectorsize = root->sectorsize;
8473 cache->fs_info = root->fs_info;
8474
8475 /*
8476 * we only want to have 32k of ram per block group for keeping track
8477 * of free space, and if we pass 1/2 of that we want to start
8478 * converting things over to using bitmaps
8479 */
8480 cache->extents_thresh = ((1024 * 32) / 2) /
8481 sizeof(struct btrfs_free_space);
8482 atomic_set(&cache->count, 1);
8483 spin_lock_init(&cache->lock);
8484 spin_lock_init(&cache->tree_lock);
8485 INIT_LIST_HEAD(&cache->list);
8486 INIT_LIST_HEAD(&cache->cluster_list);
8487
8488 btrfs_set_block_group_used(&cache->item, bytes_used);
8489 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8490 cache->flags = type;
8491 btrfs_set_block_group_flags(&cache->item, type);
8492
8493 cache->last_byte_to_unpin = (u64)-1;
8494 cache->cached = BTRFS_CACHE_FINISHED;
8495 exclude_super_stripes(root, cache);
8496
8497 add_new_free_space(cache, root->fs_info, chunk_offset,
8498 chunk_offset + size);
8499
8500 free_excluded_extents(root, cache);
8501
8502 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8503 &cache->space_info);
8504 BUG_ON(ret);
8505
8506 spin_lock(&cache->space_info->lock);
8507 cache->space_info->bytes_readonly += cache->bytes_super;
8508 spin_unlock(&cache->space_info->lock);
8509
8510 __link_block_group(cache->space_info, cache);
8511
8512 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8513 BUG_ON(ret);
8514
8515 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
8516 sizeof(cache->item));
8517 BUG_ON(ret);
8518
8519 set_avail_alloc_bits(extent_root->fs_info, type);
8520
8521 return 0;
8522 }
8523
8524 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8525 struct btrfs_root *root, u64 group_start)
8526 {
8527 struct btrfs_path *path;
8528 struct btrfs_block_group_cache *block_group;
8529 struct btrfs_free_cluster *cluster;
8530 struct btrfs_root *tree_root = root->fs_info->tree_root;
8531 struct btrfs_key key;
8532 struct inode *inode;
8533 int ret;
8534 int factor;
8535
8536 root = root->fs_info->extent_root;
8537
8538 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8539 BUG_ON(!block_group);
8540 BUG_ON(!block_group->ro);
8541
8542 memcpy(&key, &block_group->key, sizeof(key));
8543 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8544 BTRFS_BLOCK_GROUP_RAID1 |
8545 BTRFS_BLOCK_GROUP_RAID10))
8546 factor = 2;
8547 else
8548 factor = 1;
8549
8550 /* make sure this block group isn't part of an allocation cluster */
8551 cluster = &root->fs_info->data_alloc_cluster;
8552 spin_lock(&cluster->refill_lock);
8553 btrfs_return_cluster_to_free_space(block_group, cluster);
8554 spin_unlock(&cluster->refill_lock);
8555
8556 /*
8557 * make sure this block group isn't part of a metadata
8558 * allocation cluster
8559 */
8560 cluster = &root->fs_info->meta_alloc_cluster;
8561 spin_lock(&cluster->refill_lock);
8562 btrfs_return_cluster_to_free_space(block_group, cluster);
8563 spin_unlock(&cluster->refill_lock);
8564
8565 path = btrfs_alloc_path();
8566 BUG_ON(!path);
8567
8568 inode = lookup_free_space_inode(root, block_group, path);
8569 if (!IS_ERR(inode)) {
8570 btrfs_orphan_add(trans, inode);
8571 clear_nlink(inode);
8572 /* One for the block groups ref */
8573 spin_lock(&block_group->lock);
8574 if (block_group->iref) {
8575 block_group->iref = 0;
8576 block_group->inode = NULL;
8577 spin_unlock(&block_group->lock);
8578 iput(inode);
8579 } else {
8580 spin_unlock(&block_group->lock);
8581 }
8582 /* One for our lookup ref */
8583 iput(inode);
8584 }
8585
8586 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8587 key.offset = block_group->key.objectid;
8588 key.type = 0;
8589
8590 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8591 if (ret < 0)
8592 goto out;
8593 if (ret > 0)
8594 btrfs_release_path(tree_root, path);
8595 if (ret == 0) {
8596 ret = btrfs_del_item(trans, tree_root, path);
8597 if (ret)
8598 goto out;
8599 btrfs_release_path(tree_root, path);
8600 }
8601
8602 spin_lock(&root->fs_info->block_group_cache_lock);
8603 rb_erase(&block_group->cache_node,
8604 &root->fs_info->block_group_cache_tree);
8605 spin_unlock(&root->fs_info->block_group_cache_lock);
8606
8607 down_write(&block_group->space_info->groups_sem);
8608 /*
8609 * we must use list_del_init so people can check to see if they
8610 * are still on the list after taking the semaphore
8611 */
8612 list_del_init(&block_group->list);
8613 up_write(&block_group->space_info->groups_sem);
8614
8615 if (block_group->cached == BTRFS_CACHE_STARTED)
8616 wait_block_group_cache_done(block_group);
8617
8618 btrfs_remove_free_space_cache(block_group);
8619
8620 spin_lock(&block_group->space_info->lock);
8621 block_group->space_info->total_bytes -= block_group->key.offset;
8622 block_group->space_info->bytes_readonly -= block_group->key.offset;
8623 block_group->space_info->disk_total -= block_group->key.offset * factor;
8624 spin_unlock(&block_group->space_info->lock);
8625
8626 memcpy(&key, &block_group->key, sizeof(key));
8627
8628 btrfs_clear_space_info_full(root->fs_info);
8629
8630 btrfs_put_block_group(block_group);
8631 btrfs_put_block_group(block_group);
8632
8633 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8634 if (ret > 0)
8635 ret = -EIO;
8636 if (ret < 0)
8637 goto out;
8638
8639 ret = btrfs_del_item(trans, root, path);
8640 out:
8641 btrfs_free_path(path);
8642 return ret;
8643 }
8644
8645 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8646 {
8647 return unpin_extent_range(root, start, end);
8648 }
8649
8650 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8651 u64 num_bytes)
8652 {
8653 return btrfs_discard_extent(root, bytenr, num_bytes);
8654 }