Merge tag 'trace-fixes-v3.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
81 struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
87 int metadata;
88 struct list_head list;
89 struct btrfs_work work;
90 };
91
92 /*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
97 struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
103 int rw;
104 int mirror_num;
105 unsigned long bio_flags;
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
111 struct btrfs_work work;
112 int error;
113 };
114
115 /*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
125 *
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
129 *
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
133 *
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
137 */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 # error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164 int i, j;
165
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
173 }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
178 {
179 struct btrfs_lockdep_keyset *ks;
180
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
187
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
197 */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
200 int create)
201 {
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
205
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
212 goto out;
213 }
214 read_unlock(&em_tree->lock);
215
216 em = alloc_extent_map();
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
220 }
221 em->start = 0;
222 em->len = (u64)-1;
223 em->block_len = (u64)-1;
224 em->block_start = 0;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
230 free_extent_map(em);
231 em = lookup_extent_mapping(em_tree, start, len);
232 if (!em)
233 em = ERR_PTR(-EIO);
234 } else if (ret) {
235 free_extent_map(em);
236 em = ERR_PTR(ret);
237 }
238 write_unlock(&em_tree->lock);
239
240 out:
241 return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246 return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 put_unaligned_le32(~crc, result);
252 }
253
254 /*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260 {
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318 }
319
320 /*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329 {
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353 out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357 }
358
359 /*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365 struct btrfs_super_block *disk_sb =
366 (struct btrfs_super_block *)raw_disk_sb;
367 u16 csum_type = btrfs_super_csum_type(disk_sb);
368 int ret = 0;
369
370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371 u32 crc = ~(u32)0;
372 const int csum_size = sizeof(crc);
373 char result[csum_size];
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
384 if (memcmp(raw_disk_sb, result, csum_size))
385 ret = 1;
386
387 if (ret && btrfs_super_generation(disk_sb) < 10) {
388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389 ret = 0;
390 }
391 }
392
393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395 csum_type);
396 ret = 1;
397 }
398
399 return ret;
400 }
401
402 /*
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
405 */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407 struct extent_buffer *eb,
408 u64 start, u64 parent_transid)
409 {
410 struct extent_io_tree *io_tree;
411 int failed = 0;
412 int ret;
413 int num_copies = 0;
414 int mirror_num = 0;
415 int failed_mirror = 0;
416
417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419 while (1) {
420 ret = read_extent_buffer_pages(io_tree, eb, start,
421 WAIT_COMPLETE,
422 btree_get_extent, mirror_num);
423 if (!ret) {
424 if (!verify_parent_transid(io_tree, eb,
425 parent_transid, 0))
426 break;
427 else
428 ret = -EIO;
429 }
430
431 /*
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
434 * any less wrong.
435 */
436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437 break;
438
439 num_copies = btrfs_num_copies(root->fs_info,
440 eb->start, eb->len);
441 if (num_copies == 1)
442 break;
443
444 if (!failed_mirror) {
445 failed = 1;
446 failed_mirror = eb->read_mirror;
447 }
448
449 mirror_num++;
450 if (mirror_num == failed_mirror)
451 mirror_num++;
452
453 if (mirror_num > num_copies)
454 break;
455 }
456
457 if (failed && !ret && failed_mirror)
458 repair_eb_io_failure(root, eb, failed_mirror);
459
460 return ret;
461 }
462
463 /*
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
466 */
467
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470 struct extent_io_tree *tree;
471 u64 start = page_offset(page);
472 u64 found_start;
473 struct extent_buffer *eb;
474
475 tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477 eb = (struct extent_buffer *)page->private;
478 if (page != eb->pages[0])
479 return 0;
480 found_start = btrfs_header_bytenr(eb);
481 if (found_start != start) {
482 WARN_ON(1);
483 return 0;
484 }
485 if (!PageUptodate(page)) {
486 WARN_ON(1);
487 return 0;
488 }
489 csum_tree_block(root, eb, 0);
490 return 0;
491 }
492
493 static int check_tree_block_fsid(struct btrfs_root *root,
494 struct extent_buffer *eb)
495 {
496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497 u8 fsid[BTRFS_UUID_SIZE];
498 int ret = 1;
499
500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501 BTRFS_FSID_SIZE);
502 while (fs_devices) {
503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504 ret = 0;
505 break;
506 }
507 fs_devices = fs_devices->seed;
508 }
509 return ret;
510 }
511
512 #define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
517
518 static noinline int check_leaf(struct btrfs_root *root,
519 struct extent_buffer *leaf)
520 {
521 struct btrfs_key key;
522 struct btrfs_key leaf_key;
523 u32 nritems = btrfs_header_nritems(leaf);
524 int slot;
525
526 if (nritems == 0)
527 return 0;
528
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("invalid item offset size pair", leaf, root, 0);
533 return -EIO;
534 }
535
536 /*
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
541 * offset is correct.
542 */
543 for (slot = 0; slot < nritems - 1; slot++) {
544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549 CORRUPT("bad key order", leaf, root, slot);
550 return -EIO;
551 }
552
553 /*
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
556 * front.
557 */
558 if (btrfs_item_offset_nr(leaf, slot) !=
559 btrfs_item_end_nr(leaf, slot + 1)) {
560 CORRUPT("slot offset bad", leaf, root, slot);
561 return -EIO;
562 }
563
564 /*
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
568 */
569 if (btrfs_item_end_nr(leaf, slot) >
570 BTRFS_LEAF_DATA_SIZE(root)) {
571 CORRUPT("slot end outside of leaf", leaf, root, slot);
572 return -EIO;
573 }
574 }
575
576 return 0;
577 }
578
579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
580 struct extent_state *state, int mirror)
581 {
582 struct extent_io_tree *tree;
583 u64 found_start;
584 int found_level;
585 struct extent_buffer *eb;
586 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
587 int ret = 0;
588 int reads_done;
589
590 if (!page->private)
591 goto out;
592
593 tree = &BTRFS_I(page->mapping->host)->io_tree;
594 eb = (struct extent_buffer *)page->private;
595
596 /* the pending IO might have been the only thing that kept this buffer
597 * in memory. Make sure we have a ref for all this other checks
598 */
599 extent_buffer_get(eb);
600
601 reads_done = atomic_dec_and_test(&eb->io_pages);
602 if (!reads_done)
603 goto err;
604
605 eb->read_mirror = mirror;
606 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607 ret = -EIO;
608 goto err;
609 }
610
611 found_start = btrfs_header_bytenr(eb);
612 if (found_start != eb->start) {
613 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
614 "%llu %llu\n",
615 (unsigned long long)found_start,
616 (unsigned long long)eb->start);
617 ret = -EIO;
618 goto err;
619 }
620 if (check_tree_block_fsid(root, eb)) {
621 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622 (unsigned long long)eb->start);
623 ret = -EIO;
624 goto err;
625 }
626 found_level = btrfs_header_level(eb);
627 if (found_level >= BTRFS_MAX_LEVEL) {
628 btrfs_info(root->fs_info, "bad tree block level %d\n",
629 (int)btrfs_header_level(eb));
630 ret = -EIO;
631 goto err;
632 }
633
634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
635 eb, found_level);
636
637 ret = csum_tree_block(root, eb, 1);
638 if (ret) {
639 ret = -EIO;
640 goto err;
641 }
642
643 /*
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
646 * return -EIO.
647 */
648 if (found_level == 0 && check_leaf(root, eb)) {
649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 ret = -EIO;
651 }
652
653 if (!ret)
654 set_extent_buffer_uptodate(eb);
655 err:
656 if (reads_done &&
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(root, eb, eb->start, ret);
659
660 if (ret) {
661 /*
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
664 * to decrement
665 */
666 atomic_inc(&eb->io_pages);
667 clear_extent_buffer_uptodate(eb);
668 }
669 free_extent_buffer(eb);
670 out:
671 return ret;
672 }
673
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
675 {
676 struct extent_buffer *eb;
677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678
679 eb = (struct extent_buffer *)page->private;
680 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
681 eb->read_mirror = failed_mirror;
682 atomic_dec(&eb->io_pages);
683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684 btree_readahead_hook(root, eb, eb->start, -EIO);
685 return -EIO; /* we fixed nothing */
686 }
687
688 static void end_workqueue_bio(struct bio *bio, int err)
689 {
690 struct end_io_wq *end_io_wq = bio->bi_private;
691 struct btrfs_fs_info *fs_info;
692
693 fs_info = end_io_wq->info;
694 end_io_wq->error = err;
695 end_io_wq->work.func = end_workqueue_fn;
696 end_io_wq->work.flags = 0;
697
698 if (bio->bi_rw & REQ_WRITE) {
699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
700 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
701 &end_io_wq->work);
702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703 btrfs_queue_worker(&fs_info->endio_freespace_worker,
704 &end_io_wq->work);
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 btrfs_queue_worker(&fs_info->endio_raid56_workers,
707 &end_io_wq->work);
708 else
709 btrfs_queue_worker(&fs_info->endio_write_workers,
710 &end_io_wq->work);
711 } else {
712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713 btrfs_queue_worker(&fs_info->endio_raid56_workers,
714 &end_io_wq->work);
715 else if (end_io_wq->metadata)
716 btrfs_queue_worker(&fs_info->endio_meta_workers,
717 &end_io_wq->work);
718 else
719 btrfs_queue_worker(&fs_info->endio_workers,
720 &end_io_wq->work);
721 }
722 }
723
724 /*
725 * For the metadata arg you want
726 *
727 * 0 - if data
728 * 1 - if normal metadta
729 * 2 - if writing to the free space cache area
730 * 3 - raid parity work
731 */
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 int metadata)
734 {
735 struct end_io_wq *end_io_wq;
736 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
737 if (!end_io_wq)
738 return -ENOMEM;
739
740 end_io_wq->private = bio->bi_private;
741 end_io_wq->end_io = bio->bi_end_io;
742 end_io_wq->info = info;
743 end_io_wq->error = 0;
744 end_io_wq->bio = bio;
745 end_io_wq->metadata = metadata;
746
747 bio->bi_private = end_io_wq;
748 bio->bi_end_io = end_workqueue_bio;
749 return 0;
750 }
751
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
753 {
754 unsigned long limit = min_t(unsigned long,
755 info->workers.max_workers,
756 info->fs_devices->open_devices);
757 return 256 * limit;
758 }
759
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762 struct async_submit_bio *async;
763 int ret;
764
765 async = container_of(work, struct async_submit_bio, work);
766 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767 async->mirror_num, async->bio_flags,
768 async->bio_offset);
769 if (ret)
770 async->error = ret;
771 }
772
773 static void run_one_async_done(struct btrfs_work *work)
774 {
775 struct btrfs_fs_info *fs_info;
776 struct async_submit_bio *async;
777 int limit;
778
779 async = container_of(work, struct async_submit_bio, work);
780 fs_info = BTRFS_I(async->inode)->root->fs_info;
781
782 limit = btrfs_async_submit_limit(fs_info);
783 limit = limit * 2 / 3;
784
785 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
786 waitqueue_active(&fs_info->async_submit_wait))
787 wake_up(&fs_info->async_submit_wait);
788
789 /* If an error occured we just want to clean up the bio and move on */
790 if (async->error) {
791 bio_endio(async->bio, async->error);
792 return;
793 }
794
795 async->submit_bio_done(async->inode, async->rw, async->bio,
796 async->mirror_num, async->bio_flags,
797 async->bio_offset);
798 }
799
800 static void run_one_async_free(struct btrfs_work *work)
801 {
802 struct async_submit_bio *async;
803
804 async = container_of(work, struct async_submit_bio, work);
805 kfree(async);
806 }
807
808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809 int rw, struct bio *bio, int mirror_num,
810 unsigned long bio_flags,
811 u64 bio_offset,
812 extent_submit_bio_hook_t *submit_bio_start,
813 extent_submit_bio_hook_t *submit_bio_done)
814 {
815 struct async_submit_bio *async;
816
817 async = kmalloc(sizeof(*async), GFP_NOFS);
818 if (!async)
819 return -ENOMEM;
820
821 async->inode = inode;
822 async->rw = rw;
823 async->bio = bio;
824 async->mirror_num = mirror_num;
825 async->submit_bio_start = submit_bio_start;
826 async->submit_bio_done = submit_bio_done;
827
828 async->work.func = run_one_async_start;
829 async->work.ordered_func = run_one_async_done;
830 async->work.ordered_free = run_one_async_free;
831
832 async->work.flags = 0;
833 async->bio_flags = bio_flags;
834 async->bio_offset = bio_offset;
835
836 async->error = 0;
837
838 atomic_inc(&fs_info->nr_async_submits);
839
840 if (rw & REQ_SYNC)
841 btrfs_set_work_high_prio(&async->work);
842
843 btrfs_queue_worker(&fs_info->workers, &async->work);
844
845 while (atomic_read(&fs_info->async_submit_draining) &&
846 atomic_read(&fs_info->nr_async_submits)) {
847 wait_event(fs_info->async_submit_wait,
848 (atomic_read(&fs_info->nr_async_submits) == 0));
849 }
850
851 return 0;
852 }
853
854 static int btree_csum_one_bio(struct bio *bio)
855 {
856 struct bio_vec *bvec = bio->bi_io_vec;
857 int bio_index = 0;
858 struct btrfs_root *root;
859 int ret = 0;
860
861 WARN_ON(bio->bi_vcnt <= 0);
862 while (bio_index < bio->bi_vcnt) {
863 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864 ret = csum_dirty_buffer(root, bvec->bv_page);
865 if (ret)
866 break;
867 bio_index++;
868 bvec++;
869 }
870 return ret;
871 }
872
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874 struct bio *bio, int mirror_num,
875 unsigned long bio_flags,
876 u64 bio_offset)
877 {
878 /*
879 * when we're called for a write, we're already in the async
880 * submission context. Just jump into btrfs_map_bio
881 */
882 return btree_csum_one_bio(bio);
883 }
884
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886 int mirror_num, unsigned long bio_flags,
887 u64 bio_offset)
888 {
889 int ret;
890
891 /*
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
894 */
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896 if (ret)
897 bio_endio(bio, ret);
898 return ret;
899 }
900
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
902 {
903 if (bio_flags & EXTENT_BIO_TREE_LOG)
904 return 0;
905 #ifdef CONFIG_X86
906 if (cpu_has_xmm4_2)
907 return 0;
908 #endif
909 return 1;
910 }
911
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913 int mirror_num, unsigned long bio_flags,
914 u64 bio_offset)
915 {
916 int async = check_async_write(inode, bio_flags);
917 int ret;
918
919 if (!(rw & REQ_WRITE)) {
920 /*
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
923 */
924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925 bio, 1);
926 if (ret)
927 goto out_w_error;
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929 mirror_num, 0);
930 } else if (!async) {
931 ret = btree_csum_one_bio(bio);
932 if (ret)
933 goto out_w_error;
934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935 mirror_num, 0);
936 } else {
937 /*
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
940 */
941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942 inode, rw, bio, mirror_num, 0,
943 bio_offset,
944 __btree_submit_bio_start,
945 __btree_submit_bio_done);
946 }
947
948 if (ret) {
949 out_w_error:
950 bio_endio(bio, ret);
951 }
952 return ret;
953 }
954
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957 struct page *newpage, struct page *page,
958 enum migrate_mode mode)
959 {
960 /*
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
963 */
964 if (PageDirty(page))
965 return -EAGAIN;
966 /*
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
969 */
970 if (page_has_private(page) &&
971 !try_to_release_page(page, GFP_KERNEL))
972 return -EAGAIN;
973 return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976
977
978 static int btree_writepages(struct address_space *mapping,
979 struct writeback_control *wbc)
980 {
981 struct extent_io_tree *tree;
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
985 tree = &BTRFS_I(mapping->host)->io_tree;
986 if (wbc->sync_mode == WB_SYNC_NONE) {
987
988 if (wbc->for_kupdate)
989 return 0;
990
991 fs_info = BTRFS_I(mapping->host)->root->fs_info;
992 /* this is a bit racy, but that's ok */
993 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994 BTRFS_DIRTY_METADATA_THRESH);
995 if (ret < 0)
996 return 0;
997 }
998 return btree_write_cache_pages(mapping, wbc);
999 }
1000
1001 static int btree_readpage(struct file *file, struct page *page)
1002 {
1003 struct extent_io_tree *tree;
1004 tree = &BTRFS_I(page->mapping->host)->io_tree;
1005 return extent_read_full_page(tree, page, btree_get_extent, 0);
1006 }
1007
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009 {
1010 if (PageWriteback(page) || PageDirty(page))
1011 return 0;
1012
1013 return try_release_extent_buffer(page);
1014 }
1015
1016 static void btree_invalidatepage(struct page *page, unsigned long offset)
1017 {
1018 struct extent_io_tree *tree;
1019 tree = &BTRFS_I(page->mapping->host)->io_tree;
1020 extent_invalidatepage(tree, page, offset);
1021 btree_releasepage(page, GFP_NOFS);
1022 if (PagePrivate(page)) {
1023 printk(KERN_WARNING "btrfs warning page private not zero "
1024 "on page %llu\n", (unsigned long long)page_offset(page));
1025 ClearPagePrivate(page);
1026 set_page_private(page, 0);
1027 page_cache_release(page);
1028 }
1029 }
1030
1031 static int btree_set_page_dirty(struct page *page)
1032 {
1033 #ifdef DEBUG
1034 struct extent_buffer *eb;
1035
1036 BUG_ON(!PagePrivate(page));
1037 eb = (struct extent_buffer *)page->private;
1038 BUG_ON(!eb);
1039 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040 BUG_ON(!atomic_read(&eb->refs));
1041 btrfs_assert_tree_locked(eb);
1042 #endif
1043 return __set_page_dirty_nobuffers(page);
1044 }
1045
1046 static const struct address_space_operations btree_aops = {
1047 .readpage = btree_readpage,
1048 .writepages = btree_writepages,
1049 .releasepage = btree_releasepage,
1050 .invalidatepage = btree_invalidatepage,
1051 #ifdef CONFIG_MIGRATION
1052 .migratepage = btree_migratepage,
1053 #endif
1054 .set_page_dirty = btree_set_page_dirty,
1055 };
1056
1057 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058 u64 parent_transid)
1059 {
1060 struct extent_buffer *buf = NULL;
1061 struct inode *btree_inode = root->fs_info->btree_inode;
1062 int ret = 0;
1063
1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065 if (!buf)
1066 return 0;
1067 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068 buf, 0, WAIT_NONE, btree_get_extent, 0);
1069 free_extent_buffer(buf);
1070 return ret;
1071 }
1072
1073 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074 int mirror_num, struct extent_buffer **eb)
1075 {
1076 struct extent_buffer *buf = NULL;
1077 struct inode *btree_inode = root->fs_info->btree_inode;
1078 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079 int ret;
1080
1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082 if (!buf)
1083 return 0;
1084
1085 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088 btree_get_extent, mirror_num);
1089 if (ret) {
1090 free_extent_buffer(buf);
1091 return ret;
1092 }
1093
1094 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095 free_extent_buffer(buf);
1096 return -EIO;
1097 } else if (extent_buffer_uptodate(buf)) {
1098 *eb = buf;
1099 } else {
1100 free_extent_buffer(buf);
1101 }
1102 return 0;
1103 }
1104
1105 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1107 {
1108 struct inode *btree_inode = root->fs_info->btree_inode;
1109 struct extent_buffer *eb;
1110 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1111 bytenr, blocksize);
1112 return eb;
1113 }
1114
1115 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1116 u64 bytenr, u32 blocksize)
1117 {
1118 struct inode *btree_inode = root->fs_info->btree_inode;
1119 struct extent_buffer *eb;
1120
1121 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1122 bytenr, blocksize);
1123 return eb;
1124 }
1125
1126
1127 int btrfs_write_tree_block(struct extent_buffer *buf)
1128 {
1129 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1130 buf->start + buf->len - 1);
1131 }
1132
1133 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1134 {
1135 return filemap_fdatawait_range(buf->pages[0]->mapping,
1136 buf->start, buf->start + buf->len - 1);
1137 }
1138
1139 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1140 u32 blocksize, u64 parent_transid)
1141 {
1142 struct extent_buffer *buf = NULL;
1143 int ret;
1144
1145 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1146 if (!buf)
1147 return NULL;
1148
1149 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1150 return buf;
1151
1152 }
1153
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155 struct extent_buffer *buf)
1156 {
1157 struct btrfs_fs_info *fs_info = root->fs_info;
1158
1159 if (btrfs_header_generation(buf) ==
1160 fs_info->running_transaction->transid) {
1161 btrfs_assert_tree_locked(buf);
1162
1163 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165 -buf->len,
1166 fs_info->dirty_metadata_batch);
1167 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168 btrfs_set_lock_blocking(buf);
1169 clear_extent_buffer_dirty(buf);
1170 }
1171 }
1172 }
1173
1174 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175 u32 stripesize, struct btrfs_root *root,
1176 struct btrfs_fs_info *fs_info,
1177 u64 objectid)
1178 {
1179 root->node = NULL;
1180 root->commit_root = NULL;
1181 root->sectorsize = sectorsize;
1182 root->nodesize = nodesize;
1183 root->leafsize = leafsize;
1184 root->stripesize = stripesize;
1185 root->ref_cows = 0;
1186 root->track_dirty = 0;
1187 root->in_radix = 0;
1188 root->orphan_item_inserted = 0;
1189 root->orphan_cleanup_state = 0;
1190
1191 root->objectid = objectid;
1192 root->last_trans = 0;
1193 root->highest_objectid = 0;
1194 root->name = NULL;
1195 root->inode_tree = RB_ROOT;
1196 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1197 root->block_rsv = NULL;
1198 root->orphan_block_rsv = NULL;
1199
1200 INIT_LIST_HEAD(&root->dirty_list);
1201 INIT_LIST_HEAD(&root->root_list);
1202 INIT_LIST_HEAD(&root->logged_list[0]);
1203 INIT_LIST_HEAD(&root->logged_list[1]);
1204 spin_lock_init(&root->orphan_lock);
1205 spin_lock_init(&root->inode_lock);
1206 spin_lock_init(&root->accounting_lock);
1207 spin_lock_init(&root->log_extents_lock[0]);
1208 spin_lock_init(&root->log_extents_lock[1]);
1209 mutex_init(&root->objectid_mutex);
1210 mutex_init(&root->log_mutex);
1211 init_waitqueue_head(&root->log_writer_wait);
1212 init_waitqueue_head(&root->log_commit_wait[0]);
1213 init_waitqueue_head(&root->log_commit_wait[1]);
1214 atomic_set(&root->log_commit[0], 0);
1215 atomic_set(&root->log_commit[1], 0);
1216 atomic_set(&root->log_writers, 0);
1217 atomic_set(&root->log_batch, 0);
1218 atomic_set(&root->orphan_inodes, 0);
1219 root->log_transid = 0;
1220 root->last_log_commit = 0;
1221 extent_io_tree_init(&root->dirty_log_pages,
1222 fs_info->btree_inode->i_mapping);
1223
1224 memset(&root->root_key, 0, sizeof(root->root_key));
1225 memset(&root->root_item, 0, sizeof(root->root_item));
1226 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1227 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1228 root->defrag_trans_start = fs_info->generation;
1229 init_completion(&root->kobj_unregister);
1230 root->defrag_running = 0;
1231 root->root_key.objectid = objectid;
1232 root->anon_dev = 0;
1233
1234 spin_lock_init(&root->root_item_lock);
1235 }
1236
1237 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1238 struct btrfs_fs_info *fs_info,
1239 u64 objectid,
1240 struct btrfs_root *root)
1241 {
1242 int ret;
1243 u32 blocksize;
1244 u64 generation;
1245
1246 __setup_root(tree_root->nodesize, tree_root->leafsize,
1247 tree_root->sectorsize, tree_root->stripesize,
1248 root, fs_info, objectid);
1249 ret = btrfs_find_last_root(tree_root, objectid,
1250 &root->root_item, &root->root_key);
1251 if (ret > 0)
1252 return -ENOENT;
1253 else if (ret < 0)
1254 return ret;
1255
1256 generation = btrfs_root_generation(&root->root_item);
1257 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1258 root->commit_root = NULL;
1259 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1260 blocksize, generation);
1261 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1262 free_extent_buffer(root->node);
1263 root->node = NULL;
1264 return -EIO;
1265 }
1266 root->commit_root = btrfs_root_node(root);
1267 return 0;
1268 }
1269
1270 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1271 {
1272 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1273 if (root)
1274 root->fs_info = fs_info;
1275 return root;
1276 }
1277
1278 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1279 struct btrfs_fs_info *fs_info,
1280 u64 objectid)
1281 {
1282 struct extent_buffer *leaf;
1283 struct btrfs_root *tree_root = fs_info->tree_root;
1284 struct btrfs_root *root;
1285 struct btrfs_key key;
1286 int ret = 0;
1287 u64 bytenr;
1288 uuid_le uuid;
1289
1290 root = btrfs_alloc_root(fs_info);
1291 if (!root)
1292 return ERR_PTR(-ENOMEM);
1293
1294 __setup_root(tree_root->nodesize, tree_root->leafsize,
1295 tree_root->sectorsize, tree_root->stripesize,
1296 root, fs_info, objectid);
1297 root->root_key.objectid = objectid;
1298 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1299 root->root_key.offset = 0;
1300
1301 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1302 0, objectid, NULL, 0, 0, 0);
1303 if (IS_ERR(leaf)) {
1304 ret = PTR_ERR(leaf);
1305 leaf = NULL;
1306 goto fail;
1307 }
1308
1309 bytenr = leaf->start;
1310 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1311 btrfs_set_header_bytenr(leaf, leaf->start);
1312 btrfs_set_header_generation(leaf, trans->transid);
1313 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1314 btrfs_set_header_owner(leaf, objectid);
1315 root->node = leaf;
1316
1317 write_extent_buffer(leaf, fs_info->fsid,
1318 (unsigned long)btrfs_header_fsid(leaf),
1319 BTRFS_FSID_SIZE);
1320 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1321 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1322 BTRFS_UUID_SIZE);
1323 btrfs_mark_buffer_dirty(leaf);
1324
1325 root->commit_root = btrfs_root_node(root);
1326 root->track_dirty = 1;
1327
1328
1329 root->root_item.flags = 0;
1330 root->root_item.byte_limit = 0;
1331 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1332 btrfs_set_root_generation(&root->root_item, trans->transid);
1333 btrfs_set_root_level(&root->root_item, 0);
1334 btrfs_set_root_refs(&root->root_item, 1);
1335 btrfs_set_root_used(&root->root_item, leaf->len);
1336 btrfs_set_root_last_snapshot(&root->root_item, 0);
1337 btrfs_set_root_dirid(&root->root_item, 0);
1338 uuid_le_gen(&uuid);
1339 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1340 root->root_item.drop_level = 0;
1341
1342 key.objectid = objectid;
1343 key.type = BTRFS_ROOT_ITEM_KEY;
1344 key.offset = 0;
1345 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1346 if (ret)
1347 goto fail;
1348
1349 btrfs_tree_unlock(leaf);
1350
1351 return root;
1352
1353 fail:
1354 if (leaf) {
1355 btrfs_tree_unlock(leaf);
1356 free_extent_buffer(leaf);
1357 }
1358 kfree(root);
1359
1360 return ERR_PTR(ret);
1361 }
1362
1363 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1364 struct btrfs_fs_info *fs_info)
1365 {
1366 struct btrfs_root *root;
1367 struct btrfs_root *tree_root = fs_info->tree_root;
1368 struct extent_buffer *leaf;
1369
1370 root = btrfs_alloc_root(fs_info);
1371 if (!root)
1372 return ERR_PTR(-ENOMEM);
1373
1374 __setup_root(tree_root->nodesize, tree_root->leafsize,
1375 tree_root->sectorsize, tree_root->stripesize,
1376 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1377
1378 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1379 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1380 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1381 /*
1382 * log trees do not get reference counted because they go away
1383 * before a real commit is actually done. They do store pointers
1384 * to file data extents, and those reference counts still get
1385 * updated (along with back refs to the log tree).
1386 */
1387 root->ref_cows = 0;
1388
1389 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1390 BTRFS_TREE_LOG_OBJECTID, NULL,
1391 0, 0, 0);
1392 if (IS_ERR(leaf)) {
1393 kfree(root);
1394 return ERR_CAST(leaf);
1395 }
1396
1397 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1398 btrfs_set_header_bytenr(leaf, leaf->start);
1399 btrfs_set_header_generation(leaf, trans->transid);
1400 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1401 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1402 root->node = leaf;
1403
1404 write_extent_buffer(root->node, root->fs_info->fsid,
1405 (unsigned long)btrfs_header_fsid(root->node),
1406 BTRFS_FSID_SIZE);
1407 btrfs_mark_buffer_dirty(root->node);
1408 btrfs_tree_unlock(root->node);
1409 return root;
1410 }
1411
1412 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info)
1414 {
1415 struct btrfs_root *log_root;
1416
1417 log_root = alloc_log_tree(trans, fs_info);
1418 if (IS_ERR(log_root))
1419 return PTR_ERR(log_root);
1420 WARN_ON(fs_info->log_root_tree);
1421 fs_info->log_root_tree = log_root;
1422 return 0;
1423 }
1424
1425 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1426 struct btrfs_root *root)
1427 {
1428 struct btrfs_root *log_root;
1429 struct btrfs_inode_item *inode_item;
1430
1431 log_root = alloc_log_tree(trans, root->fs_info);
1432 if (IS_ERR(log_root))
1433 return PTR_ERR(log_root);
1434
1435 log_root->last_trans = trans->transid;
1436 log_root->root_key.offset = root->root_key.objectid;
1437
1438 inode_item = &log_root->root_item.inode;
1439 inode_item->generation = cpu_to_le64(1);
1440 inode_item->size = cpu_to_le64(3);
1441 inode_item->nlink = cpu_to_le32(1);
1442 inode_item->nbytes = cpu_to_le64(root->leafsize);
1443 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1444
1445 btrfs_set_root_node(&log_root->root_item, log_root->node);
1446
1447 WARN_ON(root->log_root);
1448 root->log_root = log_root;
1449 root->log_transid = 0;
1450 root->last_log_commit = 0;
1451 return 0;
1452 }
1453
1454 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1455 struct btrfs_key *location)
1456 {
1457 struct btrfs_root *root;
1458 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1459 struct btrfs_path *path;
1460 struct extent_buffer *l;
1461 u64 generation;
1462 u32 blocksize;
1463 int ret = 0;
1464 int slot;
1465
1466 root = btrfs_alloc_root(fs_info);
1467 if (!root)
1468 return ERR_PTR(-ENOMEM);
1469 if (location->offset == (u64)-1) {
1470 ret = find_and_setup_root(tree_root, fs_info,
1471 location->objectid, root);
1472 if (ret) {
1473 kfree(root);
1474 return ERR_PTR(ret);
1475 }
1476 goto out;
1477 }
1478
1479 __setup_root(tree_root->nodesize, tree_root->leafsize,
1480 tree_root->sectorsize, tree_root->stripesize,
1481 root, fs_info, location->objectid);
1482
1483 path = btrfs_alloc_path();
1484 if (!path) {
1485 kfree(root);
1486 return ERR_PTR(-ENOMEM);
1487 }
1488 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1489 if (ret == 0) {
1490 l = path->nodes[0];
1491 slot = path->slots[0];
1492 btrfs_read_root_item(l, slot, &root->root_item);
1493 memcpy(&root->root_key, location, sizeof(*location));
1494 }
1495 btrfs_free_path(path);
1496 if (ret) {
1497 kfree(root);
1498 if (ret > 0)
1499 ret = -ENOENT;
1500 return ERR_PTR(ret);
1501 }
1502
1503 generation = btrfs_root_generation(&root->root_item);
1504 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1505 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1506 blocksize, generation);
1507 if (!root->node || !extent_buffer_uptodate(root->node)) {
1508 ret = (!root->node) ? -ENOMEM : -EIO;
1509
1510 free_extent_buffer(root->node);
1511 kfree(root);
1512 return ERR_PTR(ret);
1513 }
1514
1515 root->commit_root = btrfs_root_node(root);
1516 out:
1517 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1518 root->ref_cows = 1;
1519 btrfs_check_and_init_root_item(&root->root_item);
1520 }
1521
1522 return root;
1523 }
1524
1525 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1526 struct btrfs_key *location)
1527 {
1528 struct btrfs_root *root;
1529 int ret;
1530
1531 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1532 return fs_info->tree_root;
1533 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1534 return fs_info->extent_root;
1535 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1536 return fs_info->chunk_root;
1537 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1538 return fs_info->dev_root;
1539 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1540 return fs_info->csum_root;
1541 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1542 return fs_info->quota_root ? fs_info->quota_root :
1543 ERR_PTR(-ENOENT);
1544 again:
1545 spin_lock(&fs_info->fs_roots_radix_lock);
1546 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547 (unsigned long)location->objectid);
1548 spin_unlock(&fs_info->fs_roots_radix_lock);
1549 if (root)
1550 return root;
1551
1552 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1553 if (IS_ERR(root))
1554 return root;
1555
1556 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558 GFP_NOFS);
1559 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560 ret = -ENOMEM;
1561 goto fail;
1562 }
1563
1564 btrfs_init_free_ino_ctl(root);
1565 mutex_init(&root->fs_commit_mutex);
1566 spin_lock_init(&root->cache_lock);
1567 init_waitqueue_head(&root->cache_wait);
1568
1569 ret = get_anon_bdev(&root->anon_dev);
1570 if (ret)
1571 goto fail;
1572
1573 if (btrfs_root_refs(&root->root_item) == 0) {
1574 ret = -ENOENT;
1575 goto fail;
1576 }
1577
1578 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1579 if (ret < 0)
1580 goto fail;
1581 if (ret == 0)
1582 root->orphan_item_inserted = 1;
1583
1584 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1585 if (ret)
1586 goto fail;
1587
1588 spin_lock(&fs_info->fs_roots_radix_lock);
1589 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590 (unsigned long)root->root_key.objectid,
1591 root);
1592 if (ret == 0)
1593 root->in_radix = 1;
1594
1595 spin_unlock(&fs_info->fs_roots_radix_lock);
1596 radix_tree_preload_end();
1597 if (ret) {
1598 if (ret == -EEXIST) {
1599 free_fs_root(root);
1600 goto again;
1601 }
1602 goto fail;
1603 }
1604
1605 ret = btrfs_find_dead_roots(fs_info->tree_root,
1606 root->root_key.objectid);
1607 WARN_ON(ret);
1608 return root;
1609 fail:
1610 free_fs_root(root);
1611 return ERR_PTR(ret);
1612 }
1613
1614 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1615 {
1616 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1617 int ret = 0;
1618 struct btrfs_device *device;
1619 struct backing_dev_info *bdi;
1620
1621 rcu_read_lock();
1622 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1623 if (!device->bdev)
1624 continue;
1625 bdi = blk_get_backing_dev_info(device->bdev);
1626 if (bdi && bdi_congested(bdi, bdi_bits)) {
1627 ret = 1;
1628 break;
1629 }
1630 }
1631 rcu_read_unlock();
1632 return ret;
1633 }
1634
1635 /*
1636 * If this fails, caller must call bdi_destroy() to get rid of the
1637 * bdi again.
1638 */
1639 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1640 {
1641 int err;
1642
1643 bdi->capabilities = BDI_CAP_MAP_COPY;
1644 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1645 if (err)
1646 return err;
1647
1648 bdi->ra_pages = default_backing_dev_info.ra_pages;
1649 bdi->congested_fn = btrfs_congested_fn;
1650 bdi->congested_data = info;
1651 return 0;
1652 }
1653
1654 /*
1655 * called by the kthread helper functions to finally call the bio end_io
1656 * functions. This is where read checksum verification actually happens
1657 */
1658 static void end_workqueue_fn(struct btrfs_work *work)
1659 {
1660 struct bio *bio;
1661 struct end_io_wq *end_io_wq;
1662 struct btrfs_fs_info *fs_info;
1663 int error;
1664
1665 end_io_wq = container_of(work, struct end_io_wq, work);
1666 bio = end_io_wq->bio;
1667 fs_info = end_io_wq->info;
1668
1669 error = end_io_wq->error;
1670 bio->bi_private = end_io_wq->private;
1671 bio->bi_end_io = end_io_wq->end_io;
1672 kfree(end_io_wq);
1673 bio_endio(bio, error);
1674 }
1675
1676 static int cleaner_kthread(void *arg)
1677 {
1678 struct btrfs_root *root = arg;
1679
1680 do {
1681 int again = 0;
1682
1683 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1684 down_read_trylock(&root->fs_info->sb->s_umount)) {
1685 if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1686 btrfs_run_delayed_iputs(root);
1687 again = btrfs_clean_one_deleted_snapshot(root);
1688 mutex_unlock(&root->fs_info->cleaner_mutex);
1689 }
1690 btrfs_run_defrag_inodes(root->fs_info);
1691 up_read(&root->fs_info->sb->s_umount);
1692 }
1693
1694 if (!try_to_freeze() && !again) {
1695 set_current_state(TASK_INTERRUPTIBLE);
1696 if (!kthread_should_stop())
1697 schedule();
1698 __set_current_state(TASK_RUNNING);
1699 }
1700 } while (!kthread_should_stop());
1701 return 0;
1702 }
1703
1704 static int transaction_kthread(void *arg)
1705 {
1706 struct btrfs_root *root = arg;
1707 struct btrfs_trans_handle *trans;
1708 struct btrfs_transaction *cur;
1709 u64 transid;
1710 unsigned long now;
1711 unsigned long delay;
1712 bool cannot_commit;
1713
1714 do {
1715 cannot_commit = false;
1716 delay = HZ * 30;
1717 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1718
1719 spin_lock(&root->fs_info->trans_lock);
1720 cur = root->fs_info->running_transaction;
1721 if (!cur) {
1722 spin_unlock(&root->fs_info->trans_lock);
1723 goto sleep;
1724 }
1725
1726 now = get_seconds();
1727 if (!cur->blocked &&
1728 (now < cur->start_time || now - cur->start_time < 30)) {
1729 spin_unlock(&root->fs_info->trans_lock);
1730 delay = HZ * 5;
1731 goto sleep;
1732 }
1733 transid = cur->transid;
1734 spin_unlock(&root->fs_info->trans_lock);
1735
1736 /* If the file system is aborted, this will always fail. */
1737 trans = btrfs_attach_transaction(root);
1738 if (IS_ERR(trans)) {
1739 if (PTR_ERR(trans) != -ENOENT)
1740 cannot_commit = true;
1741 goto sleep;
1742 }
1743 if (transid == trans->transid) {
1744 btrfs_commit_transaction(trans, root);
1745 } else {
1746 btrfs_end_transaction(trans, root);
1747 }
1748 sleep:
1749 wake_up_process(root->fs_info->cleaner_kthread);
1750 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1751
1752 if (!try_to_freeze()) {
1753 set_current_state(TASK_INTERRUPTIBLE);
1754 if (!kthread_should_stop() &&
1755 (!btrfs_transaction_blocked(root->fs_info) ||
1756 cannot_commit))
1757 schedule_timeout(delay);
1758 __set_current_state(TASK_RUNNING);
1759 }
1760 } while (!kthread_should_stop());
1761 return 0;
1762 }
1763
1764 /*
1765 * this will find the highest generation in the array of
1766 * root backups. The index of the highest array is returned,
1767 * or -1 if we can't find anything.
1768 *
1769 * We check to make sure the array is valid by comparing the
1770 * generation of the latest root in the array with the generation
1771 * in the super block. If they don't match we pitch it.
1772 */
1773 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1774 {
1775 u64 cur;
1776 int newest_index = -1;
1777 struct btrfs_root_backup *root_backup;
1778 int i;
1779
1780 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1781 root_backup = info->super_copy->super_roots + i;
1782 cur = btrfs_backup_tree_root_gen(root_backup);
1783 if (cur == newest_gen)
1784 newest_index = i;
1785 }
1786
1787 /* check to see if we actually wrapped around */
1788 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1789 root_backup = info->super_copy->super_roots;
1790 cur = btrfs_backup_tree_root_gen(root_backup);
1791 if (cur == newest_gen)
1792 newest_index = 0;
1793 }
1794 return newest_index;
1795 }
1796
1797
1798 /*
1799 * find the oldest backup so we know where to store new entries
1800 * in the backup array. This will set the backup_root_index
1801 * field in the fs_info struct
1802 */
1803 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1804 u64 newest_gen)
1805 {
1806 int newest_index = -1;
1807
1808 newest_index = find_newest_super_backup(info, newest_gen);
1809 /* if there was garbage in there, just move along */
1810 if (newest_index == -1) {
1811 info->backup_root_index = 0;
1812 } else {
1813 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1814 }
1815 }
1816
1817 /*
1818 * copy all the root pointers into the super backup array.
1819 * this will bump the backup pointer by one when it is
1820 * done
1821 */
1822 static void backup_super_roots(struct btrfs_fs_info *info)
1823 {
1824 int next_backup;
1825 struct btrfs_root_backup *root_backup;
1826 int last_backup;
1827
1828 next_backup = info->backup_root_index;
1829 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1830 BTRFS_NUM_BACKUP_ROOTS;
1831
1832 /*
1833 * just overwrite the last backup if we're at the same generation
1834 * this happens only at umount
1835 */
1836 root_backup = info->super_for_commit->super_roots + last_backup;
1837 if (btrfs_backup_tree_root_gen(root_backup) ==
1838 btrfs_header_generation(info->tree_root->node))
1839 next_backup = last_backup;
1840
1841 root_backup = info->super_for_commit->super_roots + next_backup;
1842
1843 /*
1844 * make sure all of our padding and empty slots get zero filled
1845 * regardless of which ones we use today
1846 */
1847 memset(root_backup, 0, sizeof(*root_backup));
1848
1849 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1850
1851 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1852 btrfs_set_backup_tree_root_gen(root_backup,
1853 btrfs_header_generation(info->tree_root->node));
1854
1855 btrfs_set_backup_tree_root_level(root_backup,
1856 btrfs_header_level(info->tree_root->node));
1857
1858 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1859 btrfs_set_backup_chunk_root_gen(root_backup,
1860 btrfs_header_generation(info->chunk_root->node));
1861 btrfs_set_backup_chunk_root_level(root_backup,
1862 btrfs_header_level(info->chunk_root->node));
1863
1864 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1865 btrfs_set_backup_extent_root_gen(root_backup,
1866 btrfs_header_generation(info->extent_root->node));
1867 btrfs_set_backup_extent_root_level(root_backup,
1868 btrfs_header_level(info->extent_root->node));
1869
1870 /*
1871 * we might commit during log recovery, which happens before we set
1872 * the fs_root. Make sure it is valid before we fill it in.
1873 */
1874 if (info->fs_root && info->fs_root->node) {
1875 btrfs_set_backup_fs_root(root_backup,
1876 info->fs_root->node->start);
1877 btrfs_set_backup_fs_root_gen(root_backup,
1878 btrfs_header_generation(info->fs_root->node));
1879 btrfs_set_backup_fs_root_level(root_backup,
1880 btrfs_header_level(info->fs_root->node));
1881 }
1882
1883 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1884 btrfs_set_backup_dev_root_gen(root_backup,
1885 btrfs_header_generation(info->dev_root->node));
1886 btrfs_set_backup_dev_root_level(root_backup,
1887 btrfs_header_level(info->dev_root->node));
1888
1889 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1890 btrfs_set_backup_csum_root_gen(root_backup,
1891 btrfs_header_generation(info->csum_root->node));
1892 btrfs_set_backup_csum_root_level(root_backup,
1893 btrfs_header_level(info->csum_root->node));
1894
1895 btrfs_set_backup_total_bytes(root_backup,
1896 btrfs_super_total_bytes(info->super_copy));
1897 btrfs_set_backup_bytes_used(root_backup,
1898 btrfs_super_bytes_used(info->super_copy));
1899 btrfs_set_backup_num_devices(root_backup,
1900 btrfs_super_num_devices(info->super_copy));
1901
1902 /*
1903 * if we don't copy this out to the super_copy, it won't get remembered
1904 * for the next commit
1905 */
1906 memcpy(&info->super_copy->super_roots,
1907 &info->super_for_commit->super_roots,
1908 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1909 }
1910
1911 /*
1912 * this copies info out of the root backup array and back into
1913 * the in-memory super block. It is meant to help iterate through
1914 * the array, so you send it the number of backups you've already
1915 * tried and the last backup index you used.
1916 *
1917 * this returns -1 when it has tried all the backups
1918 */
1919 static noinline int next_root_backup(struct btrfs_fs_info *info,
1920 struct btrfs_super_block *super,
1921 int *num_backups_tried, int *backup_index)
1922 {
1923 struct btrfs_root_backup *root_backup;
1924 int newest = *backup_index;
1925
1926 if (*num_backups_tried == 0) {
1927 u64 gen = btrfs_super_generation(super);
1928
1929 newest = find_newest_super_backup(info, gen);
1930 if (newest == -1)
1931 return -1;
1932
1933 *backup_index = newest;
1934 *num_backups_tried = 1;
1935 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1936 /* we've tried all the backups, all done */
1937 return -1;
1938 } else {
1939 /* jump to the next oldest backup */
1940 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1941 BTRFS_NUM_BACKUP_ROOTS;
1942 *backup_index = newest;
1943 *num_backups_tried += 1;
1944 }
1945 root_backup = super->super_roots + newest;
1946
1947 btrfs_set_super_generation(super,
1948 btrfs_backup_tree_root_gen(root_backup));
1949 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1950 btrfs_set_super_root_level(super,
1951 btrfs_backup_tree_root_level(root_backup));
1952 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1953
1954 /*
1955 * fixme: the total bytes and num_devices need to match or we should
1956 * need a fsck
1957 */
1958 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1959 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1960 return 0;
1961 }
1962
1963 /* helper to cleanup workers */
1964 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1965 {
1966 btrfs_stop_workers(&fs_info->generic_worker);
1967 btrfs_stop_workers(&fs_info->fixup_workers);
1968 btrfs_stop_workers(&fs_info->delalloc_workers);
1969 btrfs_stop_workers(&fs_info->workers);
1970 btrfs_stop_workers(&fs_info->endio_workers);
1971 btrfs_stop_workers(&fs_info->endio_meta_workers);
1972 btrfs_stop_workers(&fs_info->endio_raid56_workers);
1973 btrfs_stop_workers(&fs_info->rmw_workers);
1974 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1975 btrfs_stop_workers(&fs_info->endio_write_workers);
1976 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1977 btrfs_stop_workers(&fs_info->submit_workers);
1978 btrfs_stop_workers(&fs_info->delayed_workers);
1979 btrfs_stop_workers(&fs_info->caching_workers);
1980 btrfs_stop_workers(&fs_info->readahead_workers);
1981 btrfs_stop_workers(&fs_info->flush_workers);
1982 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1983 }
1984
1985 /* helper to cleanup tree roots */
1986 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1987 {
1988 free_extent_buffer(info->tree_root->node);
1989 free_extent_buffer(info->tree_root->commit_root);
1990 info->tree_root->node = NULL;
1991 info->tree_root->commit_root = NULL;
1992
1993 if (info->dev_root) {
1994 free_extent_buffer(info->dev_root->node);
1995 free_extent_buffer(info->dev_root->commit_root);
1996 info->dev_root->node = NULL;
1997 info->dev_root->commit_root = NULL;
1998 }
1999 if (info->extent_root) {
2000 free_extent_buffer(info->extent_root->node);
2001 free_extent_buffer(info->extent_root->commit_root);
2002 info->extent_root->node = NULL;
2003 info->extent_root->commit_root = NULL;
2004 }
2005 if (info->csum_root) {
2006 free_extent_buffer(info->csum_root->node);
2007 free_extent_buffer(info->csum_root->commit_root);
2008 info->csum_root->node = NULL;
2009 info->csum_root->commit_root = NULL;
2010 }
2011 if (info->quota_root) {
2012 free_extent_buffer(info->quota_root->node);
2013 free_extent_buffer(info->quota_root->commit_root);
2014 info->quota_root->node = NULL;
2015 info->quota_root->commit_root = NULL;
2016 }
2017 if (chunk_root) {
2018 free_extent_buffer(info->chunk_root->node);
2019 free_extent_buffer(info->chunk_root->commit_root);
2020 info->chunk_root->node = NULL;
2021 info->chunk_root->commit_root = NULL;
2022 }
2023 }
2024
2025 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2026 {
2027 int ret;
2028 struct btrfs_root *gang[8];
2029 int i;
2030
2031 while (!list_empty(&fs_info->dead_roots)) {
2032 gang[0] = list_entry(fs_info->dead_roots.next,
2033 struct btrfs_root, root_list);
2034 list_del(&gang[0]->root_list);
2035
2036 if (gang[0]->in_radix) {
2037 btrfs_free_fs_root(fs_info, gang[0]);
2038 } else {
2039 free_extent_buffer(gang[0]->node);
2040 free_extent_buffer(gang[0]->commit_root);
2041 kfree(gang[0]);
2042 }
2043 }
2044
2045 while (1) {
2046 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2047 (void **)gang, 0,
2048 ARRAY_SIZE(gang));
2049 if (!ret)
2050 break;
2051 for (i = 0; i < ret; i++)
2052 btrfs_free_fs_root(fs_info, gang[i]);
2053 }
2054 }
2055
2056 int open_ctree(struct super_block *sb,
2057 struct btrfs_fs_devices *fs_devices,
2058 char *options)
2059 {
2060 u32 sectorsize;
2061 u32 nodesize;
2062 u32 leafsize;
2063 u32 blocksize;
2064 u32 stripesize;
2065 u64 generation;
2066 u64 features;
2067 struct btrfs_key location;
2068 struct buffer_head *bh;
2069 struct btrfs_super_block *disk_super;
2070 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2071 struct btrfs_root *tree_root;
2072 struct btrfs_root *extent_root;
2073 struct btrfs_root *csum_root;
2074 struct btrfs_root *chunk_root;
2075 struct btrfs_root *dev_root;
2076 struct btrfs_root *quota_root;
2077 struct btrfs_root *log_tree_root;
2078 int ret;
2079 int err = -EINVAL;
2080 int num_backups_tried = 0;
2081 int backup_index = 0;
2082
2083 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2084 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2085 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2086 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2087 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2088 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2089
2090 if (!tree_root || !extent_root || !csum_root ||
2091 !chunk_root || !dev_root || !quota_root) {
2092 err = -ENOMEM;
2093 goto fail;
2094 }
2095
2096 ret = init_srcu_struct(&fs_info->subvol_srcu);
2097 if (ret) {
2098 err = ret;
2099 goto fail;
2100 }
2101
2102 ret = setup_bdi(fs_info, &fs_info->bdi);
2103 if (ret) {
2104 err = ret;
2105 goto fail_srcu;
2106 }
2107
2108 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2109 if (ret) {
2110 err = ret;
2111 goto fail_bdi;
2112 }
2113 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2114 (1 + ilog2(nr_cpu_ids));
2115
2116 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2117 if (ret) {
2118 err = ret;
2119 goto fail_dirty_metadata_bytes;
2120 }
2121
2122 fs_info->btree_inode = new_inode(sb);
2123 if (!fs_info->btree_inode) {
2124 err = -ENOMEM;
2125 goto fail_delalloc_bytes;
2126 }
2127
2128 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2129
2130 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2131 INIT_LIST_HEAD(&fs_info->trans_list);
2132 INIT_LIST_HEAD(&fs_info->dead_roots);
2133 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2134 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2135 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2136 spin_lock_init(&fs_info->delalloc_lock);
2137 spin_lock_init(&fs_info->trans_lock);
2138 spin_lock_init(&fs_info->fs_roots_radix_lock);
2139 spin_lock_init(&fs_info->delayed_iput_lock);
2140 spin_lock_init(&fs_info->defrag_inodes_lock);
2141 spin_lock_init(&fs_info->free_chunk_lock);
2142 spin_lock_init(&fs_info->tree_mod_seq_lock);
2143 spin_lock_init(&fs_info->super_lock);
2144 rwlock_init(&fs_info->tree_mod_log_lock);
2145 mutex_init(&fs_info->reloc_mutex);
2146 seqlock_init(&fs_info->profiles_lock);
2147
2148 init_completion(&fs_info->kobj_unregister);
2149 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2150 INIT_LIST_HEAD(&fs_info->space_info);
2151 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2152 btrfs_mapping_init(&fs_info->mapping_tree);
2153 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2154 BTRFS_BLOCK_RSV_GLOBAL);
2155 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2156 BTRFS_BLOCK_RSV_DELALLOC);
2157 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2158 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2159 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2160 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2161 BTRFS_BLOCK_RSV_DELOPS);
2162 atomic_set(&fs_info->nr_async_submits, 0);
2163 atomic_set(&fs_info->async_delalloc_pages, 0);
2164 atomic_set(&fs_info->async_submit_draining, 0);
2165 atomic_set(&fs_info->nr_async_bios, 0);
2166 atomic_set(&fs_info->defrag_running, 0);
2167 atomic64_set(&fs_info->tree_mod_seq, 0);
2168 fs_info->sb = sb;
2169 fs_info->max_inline = 8192 * 1024;
2170 fs_info->metadata_ratio = 0;
2171 fs_info->defrag_inodes = RB_ROOT;
2172 fs_info->trans_no_join = 0;
2173 fs_info->free_chunk_space = 0;
2174 fs_info->tree_mod_log = RB_ROOT;
2175
2176 /* readahead state */
2177 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2178 spin_lock_init(&fs_info->reada_lock);
2179
2180 fs_info->thread_pool_size = min_t(unsigned long,
2181 num_online_cpus() + 2, 8);
2182
2183 INIT_LIST_HEAD(&fs_info->ordered_extents);
2184 spin_lock_init(&fs_info->ordered_extent_lock);
2185 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2186 GFP_NOFS);
2187 if (!fs_info->delayed_root) {
2188 err = -ENOMEM;
2189 goto fail_iput;
2190 }
2191 btrfs_init_delayed_root(fs_info->delayed_root);
2192
2193 mutex_init(&fs_info->scrub_lock);
2194 atomic_set(&fs_info->scrubs_running, 0);
2195 atomic_set(&fs_info->scrub_pause_req, 0);
2196 atomic_set(&fs_info->scrubs_paused, 0);
2197 atomic_set(&fs_info->scrub_cancel_req, 0);
2198 init_waitqueue_head(&fs_info->scrub_pause_wait);
2199 init_rwsem(&fs_info->scrub_super_lock);
2200 fs_info->scrub_workers_refcnt = 0;
2201 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2202 fs_info->check_integrity_print_mask = 0;
2203 #endif
2204
2205 spin_lock_init(&fs_info->balance_lock);
2206 mutex_init(&fs_info->balance_mutex);
2207 atomic_set(&fs_info->balance_running, 0);
2208 atomic_set(&fs_info->balance_pause_req, 0);
2209 atomic_set(&fs_info->balance_cancel_req, 0);
2210 fs_info->balance_ctl = NULL;
2211 init_waitqueue_head(&fs_info->balance_wait_q);
2212
2213 sb->s_blocksize = 4096;
2214 sb->s_blocksize_bits = blksize_bits(4096);
2215 sb->s_bdi = &fs_info->bdi;
2216
2217 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2218 set_nlink(fs_info->btree_inode, 1);
2219 /*
2220 * we set the i_size on the btree inode to the max possible int.
2221 * the real end of the address space is determined by all of
2222 * the devices in the system
2223 */
2224 fs_info->btree_inode->i_size = OFFSET_MAX;
2225 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2226 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2227
2228 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2229 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2230 fs_info->btree_inode->i_mapping);
2231 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2232 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2233
2234 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2235
2236 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2237 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2238 sizeof(struct btrfs_key));
2239 set_bit(BTRFS_INODE_DUMMY,
2240 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2241 insert_inode_hash(fs_info->btree_inode);
2242
2243 spin_lock_init(&fs_info->block_group_cache_lock);
2244 fs_info->block_group_cache_tree = RB_ROOT;
2245 fs_info->first_logical_byte = (u64)-1;
2246
2247 extent_io_tree_init(&fs_info->freed_extents[0],
2248 fs_info->btree_inode->i_mapping);
2249 extent_io_tree_init(&fs_info->freed_extents[1],
2250 fs_info->btree_inode->i_mapping);
2251 fs_info->pinned_extents = &fs_info->freed_extents[0];
2252 fs_info->do_barriers = 1;
2253
2254
2255 mutex_init(&fs_info->ordered_operations_mutex);
2256 mutex_init(&fs_info->tree_log_mutex);
2257 mutex_init(&fs_info->chunk_mutex);
2258 mutex_init(&fs_info->transaction_kthread_mutex);
2259 mutex_init(&fs_info->cleaner_mutex);
2260 mutex_init(&fs_info->volume_mutex);
2261 init_rwsem(&fs_info->extent_commit_sem);
2262 init_rwsem(&fs_info->cleanup_work_sem);
2263 init_rwsem(&fs_info->subvol_sem);
2264 fs_info->dev_replace.lock_owner = 0;
2265 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2266 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2267 mutex_init(&fs_info->dev_replace.lock_management_lock);
2268 mutex_init(&fs_info->dev_replace.lock);
2269
2270 spin_lock_init(&fs_info->qgroup_lock);
2271 mutex_init(&fs_info->qgroup_ioctl_lock);
2272 fs_info->qgroup_tree = RB_ROOT;
2273 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2274 fs_info->qgroup_seq = 1;
2275 fs_info->quota_enabled = 0;
2276 fs_info->pending_quota_state = 0;
2277 mutex_init(&fs_info->qgroup_rescan_lock);
2278
2279 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2280 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2281
2282 init_waitqueue_head(&fs_info->transaction_throttle);
2283 init_waitqueue_head(&fs_info->transaction_wait);
2284 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2285 init_waitqueue_head(&fs_info->async_submit_wait);
2286
2287 ret = btrfs_alloc_stripe_hash_table(fs_info);
2288 if (ret) {
2289 err = ret;
2290 goto fail_alloc;
2291 }
2292
2293 __setup_root(4096, 4096, 4096, 4096, tree_root,
2294 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2295
2296 invalidate_bdev(fs_devices->latest_bdev);
2297
2298 /*
2299 * Read super block and check the signature bytes only
2300 */
2301 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2302 if (!bh) {
2303 err = -EINVAL;
2304 goto fail_alloc;
2305 }
2306
2307 /*
2308 * We want to check superblock checksum, the type is stored inside.
2309 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2310 */
2311 if (btrfs_check_super_csum(bh->b_data)) {
2312 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2313 err = -EINVAL;
2314 goto fail_alloc;
2315 }
2316
2317 /*
2318 * super_copy is zeroed at allocation time and we never touch the
2319 * following bytes up to INFO_SIZE, the checksum is calculated from
2320 * the whole block of INFO_SIZE
2321 */
2322 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2323 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2324 sizeof(*fs_info->super_for_commit));
2325 brelse(bh);
2326
2327 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2328
2329 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2330 if (ret) {
2331 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2332 err = -EINVAL;
2333 goto fail_alloc;
2334 }
2335
2336 disk_super = fs_info->super_copy;
2337 if (!btrfs_super_root(disk_super))
2338 goto fail_alloc;
2339
2340 /* check FS state, whether FS is broken. */
2341 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2342 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2343
2344 /*
2345 * run through our array of backup supers and setup
2346 * our ring pointer to the oldest one
2347 */
2348 generation = btrfs_super_generation(disk_super);
2349 find_oldest_super_backup(fs_info, generation);
2350
2351 /*
2352 * In the long term, we'll store the compression type in the super
2353 * block, and it'll be used for per file compression control.
2354 */
2355 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2356
2357 ret = btrfs_parse_options(tree_root, options);
2358 if (ret) {
2359 err = ret;
2360 goto fail_alloc;
2361 }
2362
2363 features = btrfs_super_incompat_flags(disk_super) &
2364 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2365 if (features) {
2366 printk(KERN_ERR "BTRFS: couldn't mount because of "
2367 "unsupported optional features (%Lx).\n",
2368 (unsigned long long)features);
2369 err = -EINVAL;
2370 goto fail_alloc;
2371 }
2372
2373 if (btrfs_super_leafsize(disk_super) !=
2374 btrfs_super_nodesize(disk_super)) {
2375 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2376 "blocksizes don't match. node %d leaf %d\n",
2377 btrfs_super_nodesize(disk_super),
2378 btrfs_super_leafsize(disk_super));
2379 err = -EINVAL;
2380 goto fail_alloc;
2381 }
2382 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2383 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2384 "blocksize (%d) was too large\n",
2385 btrfs_super_leafsize(disk_super));
2386 err = -EINVAL;
2387 goto fail_alloc;
2388 }
2389
2390 features = btrfs_super_incompat_flags(disk_super);
2391 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2392 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2393 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2394
2395 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2396 printk(KERN_ERR "btrfs: has skinny extents\n");
2397
2398 /*
2399 * flag our filesystem as having big metadata blocks if
2400 * they are bigger than the page size
2401 */
2402 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2403 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2404 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2405 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2406 }
2407
2408 nodesize = btrfs_super_nodesize(disk_super);
2409 leafsize = btrfs_super_leafsize(disk_super);
2410 sectorsize = btrfs_super_sectorsize(disk_super);
2411 stripesize = btrfs_super_stripesize(disk_super);
2412 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2413 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2414
2415 /*
2416 * mixed block groups end up with duplicate but slightly offset
2417 * extent buffers for the same range. It leads to corruptions
2418 */
2419 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2420 (sectorsize != leafsize)) {
2421 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2422 "are not allowed for mixed block groups on %s\n",
2423 sb->s_id);
2424 goto fail_alloc;
2425 }
2426
2427 /*
2428 * Needn't use the lock because there is no other task which will
2429 * update the flag.
2430 */
2431 btrfs_set_super_incompat_flags(disk_super, features);
2432
2433 features = btrfs_super_compat_ro_flags(disk_super) &
2434 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2435 if (!(sb->s_flags & MS_RDONLY) && features) {
2436 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2437 "unsupported option features (%Lx).\n",
2438 (unsigned long long)features);
2439 err = -EINVAL;
2440 goto fail_alloc;
2441 }
2442
2443 btrfs_init_workers(&fs_info->generic_worker,
2444 "genwork", 1, NULL);
2445
2446 btrfs_init_workers(&fs_info->workers, "worker",
2447 fs_info->thread_pool_size,
2448 &fs_info->generic_worker);
2449
2450 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2451 fs_info->thread_pool_size,
2452 &fs_info->generic_worker);
2453
2454 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2455 fs_info->thread_pool_size,
2456 &fs_info->generic_worker);
2457
2458 btrfs_init_workers(&fs_info->submit_workers, "submit",
2459 min_t(u64, fs_devices->num_devices,
2460 fs_info->thread_pool_size),
2461 &fs_info->generic_worker);
2462
2463 btrfs_init_workers(&fs_info->caching_workers, "cache",
2464 2, &fs_info->generic_worker);
2465
2466 /* a higher idle thresh on the submit workers makes it much more
2467 * likely that bios will be send down in a sane order to the
2468 * devices
2469 */
2470 fs_info->submit_workers.idle_thresh = 64;
2471
2472 fs_info->workers.idle_thresh = 16;
2473 fs_info->workers.ordered = 1;
2474
2475 fs_info->delalloc_workers.idle_thresh = 2;
2476 fs_info->delalloc_workers.ordered = 1;
2477
2478 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2479 &fs_info->generic_worker);
2480 btrfs_init_workers(&fs_info->endio_workers, "endio",
2481 fs_info->thread_pool_size,
2482 &fs_info->generic_worker);
2483 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2484 fs_info->thread_pool_size,
2485 &fs_info->generic_worker);
2486 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2487 "endio-meta-write", fs_info->thread_pool_size,
2488 &fs_info->generic_worker);
2489 btrfs_init_workers(&fs_info->endio_raid56_workers,
2490 "endio-raid56", fs_info->thread_pool_size,
2491 &fs_info->generic_worker);
2492 btrfs_init_workers(&fs_info->rmw_workers,
2493 "rmw", fs_info->thread_pool_size,
2494 &fs_info->generic_worker);
2495 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2496 fs_info->thread_pool_size,
2497 &fs_info->generic_worker);
2498 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2499 1, &fs_info->generic_worker);
2500 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2501 fs_info->thread_pool_size,
2502 &fs_info->generic_worker);
2503 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2504 fs_info->thread_pool_size,
2505 &fs_info->generic_worker);
2506 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2507 &fs_info->generic_worker);
2508
2509 /*
2510 * endios are largely parallel and should have a very
2511 * low idle thresh
2512 */
2513 fs_info->endio_workers.idle_thresh = 4;
2514 fs_info->endio_meta_workers.idle_thresh = 4;
2515 fs_info->endio_raid56_workers.idle_thresh = 4;
2516 fs_info->rmw_workers.idle_thresh = 2;
2517
2518 fs_info->endio_write_workers.idle_thresh = 2;
2519 fs_info->endio_meta_write_workers.idle_thresh = 2;
2520 fs_info->readahead_workers.idle_thresh = 2;
2521
2522 /*
2523 * btrfs_start_workers can really only fail because of ENOMEM so just
2524 * return -ENOMEM if any of these fail.
2525 */
2526 ret = btrfs_start_workers(&fs_info->workers);
2527 ret |= btrfs_start_workers(&fs_info->generic_worker);
2528 ret |= btrfs_start_workers(&fs_info->submit_workers);
2529 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2530 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2531 ret |= btrfs_start_workers(&fs_info->endio_workers);
2532 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2533 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2534 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2535 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2536 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2537 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2538 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2539 ret |= btrfs_start_workers(&fs_info->caching_workers);
2540 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2541 ret |= btrfs_start_workers(&fs_info->flush_workers);
2542 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2543 if (ret) {
2544 err = -ENOMEM;
2545 goto fail_sb_buffer;
2546 }
2547
2548 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2549 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2550 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2551
2552 tree_root->nodesize = nodesize;
2553 tree_root->leafsize = leafsize;
2554 tree_root->sectorsize = sectorsize;
2555 tree_root->stripesize = stripesize;
2556
2557 sb->s_blocksize = sectorsize;
2558 sb->s_blocksize_bits = blksize_bits(sectorsize);
2559
2560 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2561 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2562 goto fail_sb_buffer;
2563 }
2564
2565 if (sectorsize != PAGE_SIZE) {
2566 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2567 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2568 goto fail_sb_buffer;
2569 }
2570
2571 mutex_lock(&fs_info->chunk_mutex);
2572 ret = btrfs_read_sys_array(tree_root);
2573 mutex_unlock(&fs_info->chunk_mutex);
2574 if (ret) {
2575 printk(KERN_WARNING "btrfs: failed to read the system "
2576 "array on %s\n", sb->s_id);
2577 goto fail_sb_buffer;
2578 }
2579
2580 blocksize = btrfs_level_size(tree_root,
2581 btrfs_super_chunk_root_level(disk_super));
2582 generation = btrfs_super_chunk_root_generation(disk_super);
2583
2584 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2585 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2586
2587 chunk_root->node = read_tree_block(chunk_root,
2588 btrfs_super_chunk_root(disk_super),
2589 blocksize, generation);
2590 if (!chunk_root->node ||
2591 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2592 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2593 sb->s_id);
2594 goto fail_tree_roots;
2595 }
2596 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2597 chunk_root->commit_root = btrfs_root_node(chunk_root);
2598
2599 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2600 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2601 BTRFS_UUID_SIZE);
2602
2603 ret = btrfs_read_chunk_tree(chunk_root);
2604 if (ret) {
2605 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2606 sb->s_id);
2607 goto fail_tree_roots;
2608 }
2609
2610 /*
2611 * keep the device that is marked to be the target device for the
2612 * dev_replace procedure
2613 */
2614 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2615
2616 if (!fs_devices->latest_bdev) {
2617 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2618 sb->s_id);
2619 goto fail_tree_roots;
2620 }
2621
2622 retry_root_backup:
2623 blocksize = btrfs_level_size(tree_root,
2624 btrfs_super_root_level(disk_super));
2625 generation = btrfs_super_generation(disk_super);
2626
2627 tree_root->node = read_tree_block(tree_root,
2628 btrfs_super_root(disk_super),
2629 blocksize, generation);
2630 if (!tree_root->node ||
2631 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2632 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2633 sb->s_id);
2634
2635 goto recovery_tree_root;
2636 }
2637
2638 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2639 tree_root->commit_root = btrfs_root_node(tree_root);
2640
2641 ret = find_and_setup_root(tree_root, fs_info,
2642 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2643 if (ret)
2644 goto recovery_tree_root;
2645 extent_root->track_dirty = 1;
2646
2647 ret = find_and_setup_root(tree_root, fs_info,
2648 BTRFS_DEV_TREE_OBJECTID, dev_root);
2649 if (ret)
2650 goto recovery_tree_root;
2651 dev_root->track_dirty = 1;
2652
2653 ret = find_and_setup_root(tree_root, fs_info,
2654 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2655 if (ret)
2656 goto recovery_tree_root;
2657 csum_root->track_dirty = 1;
2658
2659 ret = find_and_setup_root(tree_root, fs_info,
2660 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2661 if (ret) {
2662 kfree(quota_root);
2663 quota_root = fs_info->quota_root = NULL;
2664 } else {
2665 quota_root->track_dirty = 1;
2666 fs_info->quota_enabled = 1;
2667 fs_info->pending_quota_state = 1;
2668 }
2669
2670 fs_info->generation = generation;
2671 fs_info->last_trans_committed = generation;
2672
2673 ret = btrfs_recover_balance(fs_info);
2674 if (ret) {
2675 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2676 goto fail_block_groups;
2677 }
2678
2679 ret = btrfs_init_dev_stats(fs_info);
2680 if (ret) {
2681 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2682 ret);
2683 goto fail_block_groups;
2684 }
2685
2686 ret = btrfs_init_dev_replace(fs_info);
2687 if (ret) {
2688 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2689 goto fail_block_groups;
2690 }
2691
2692 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2693
2694 ret = btrfs_init_space_info(fs_info);
2695 if (ret) {
2696 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2697 goto fail_block_groups;
2698 }
2699
2700 ret = btrfs_read_block_groups(extent_root);
2701 if (ret) {
2702 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2703 goto fail_block_groups;
2704 }
2705 fs_info->num_tolerated_disk_barrier_failures =
2706 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2707 if (fs_info->fs_devices->missing_devices >
2708 fs_info->num_tolerated_disk_barrier_failures &&
2709 !(sb->s_flags & MS_RDONLY)) {
2710 printk(KERN_WARNING
2711 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2712 goto fail_block_groups;
2713 }
2714
2715 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2716 "btrfs-cleaner");
2717 if (IS_ERR(fs_info->cleaner_kthread))
2718 goto fail_block_groups;
2719
2720 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2721 tree_root,
2722 "btrfs-transaction");
2723 if (IS_ERR(fs_info->transaction_kthread))
2724 goto fail_cleaner;
2725
2726 if (!btrfs_test_opt(tree_root, SSD) &&
2727 !btrfs_test_opt(tree_root, NOSSD) &&
2728 !fs_info->fs_devices->rotating) {
2729 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2730 "mode\n");
2731 btrfs_set_opt(fs_info->mount_opt, SSD);
2732 }
2733
2734 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2735 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2736 ret = btrfsic_mount(tree_root, fs_devices,
2737 btrfs_test_opt(tree_root,
2738 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2739 1 : 0,
2740 fs_info->check_integrity_print_mask);
2741 if (ret)
2742 printk(KERN_WARNING "btrfs: failed to initialize"
2743 " integrity check module %s\n", sb->s_id);
2744 }
2745 #endif
2746 ret = btrfs_read_qgroup_config(fs_info);
2747 if (ret)
2748 goto fail_trans_kthread;
2749
2750 /* do not make disk changes in broken FS */
2751 if (btrfs_super_log_root(disk_super) != 0) {
2752 u64 bytenr = btrfs_super_log_root(disk_super);
2753
2754 if (fs_devices->rw_devices == 0) {
2755 printk(KERN_WARNING "Btrfs log replay required "
2756 "on RO media\n");
2757 err = -EIO;
2758 goto fail_qgroup;
2759 }
2760 blocksize =
2761 btrfs_level_size(tree_root,
2762 btrfs_super_log_root_level(disk_super));
2763
2764 log_tree_root = btrfs_alloc_root(fs_info);
2765 if (!log_tree_root) {
2766 err = -ENOMEM;
2767 goto fail_qgroup;
2768 }
2769
2770 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2771 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2772
2773 log_tree_root->node = read_tree_block(tree_root, bytenr,
2774 blocksize,
2775 generation + 1);
2776 if (!log_tree_root->node ||
2777 !extent_buffer_uptodate(log_tree_root->node)) {
2778 printk(KERN_ERR "btrfs: failed to read log tree\n");
2779 free_extent_buffer(log_tree_root->node);
2780 kfree(log_tree_root);
2781 goto fail_trans_kthread;
2782 }
2783 /* returns with log_tree_root freed on success */
2784 ret = btrfs_recover_log_trees(log_tree_root);
2785 if (ret) {
2786 btrfs_error(tree_root->fs_info, ret,
2787 "Failed to recover log tree");
2788 free_extent_buffer(log_tree_root->node);
2789 kfree(log_tree_root);
2790 goto fail_trans_kthread;
2791 }
2792
2793 if (sb->s_flags & MS_RDONLY) {
2794 ret = btrfs_commit_super(tree_root);
2795 if (ret)
2796 goto fail_trans_kthread;
2797 }
2798 }
2799
2800 ret = btrfs_find_orphan_roots(tree_root);
2801 if (ret)
2802 goto fail_trans_kthread;
2803
2804 if (!(sb->s_flags & MS_RDONLY)) {
2805 ret = btrfs_cleanup_fs_roots(fs_info);
2806 if (ret)
2807 goto fail_trans_kthread;
2808
2809 ret = btrfs_recover_relocation(tree_root);
2810 if (ret < 0) {
2811 printk(KERN_WARNING
2812 "btrfs: failed to recover relocation\n");
2813 err = -EINVAL;
2814 goto fail_qgroup;
2815 }
2816 }
2817
2818 location.objectid = BTRFS_FS_TREE_OBJECTID;
2819 location.type = BTRFS_ROOT_ITEM_KEY;
2820 location.offset = (u64)-1;
2821
2822 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2823 if (!fs_info->fs_root)
2824 goto fail_qgroup;
2825 if (IS_ERR(fs_info->fs_root)) {
2826 err = PTR_ERR(fs_info->fs_root);
2827 goto fail_qgroup;
2828 }
2829
2830 if (sb->s_flags & MS_RDONLY)
2831 return 0;
2832
2833 down_read(&fs_info->cleanup_work_sem);
2834 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2835 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2836 up_read(&fs_info->cleanup_work_sem);
2837 close_ctree(tree_root);
2838 return ret;
2839 }
2840 up_read(&fs_info->cleanup_work_sem);
2841
2842 ret = btrfs_resume_balance_async(fs_info);
2843 if (ret) {
2844 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2845 close_ctree(tree_root);
2846 return ret;
2847 }
2848
2849 ret = btrfs_resume_dev_replace_async(fs_info);
2850 if (ret) {
2851 pr_warn("btrfs: failed to resume dev_replace\n");
2852 close_ctree(tree_root);
2853 return ret;
2854 }
2855
2856 return 0;
2857
2858 fail_qgroup:
2859 btrfs_free_qgroup_config(fs_info);
2860 fail_trans_kthread:
2861 kthread_stop(fs_info->transaction_kthread);
2862 del_fs_roots(fs_info);
2863 btrfs_cleanup_transaction(fs_info->tree_root);
2864 fail_cleaner:
2865 kthread_stop(fs_info->cleaner_kthread);
2866
2867 /*
2868 * make sure we're done with the btree inode before we stop our
2869 * kthreads
2870 */
2871 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2872
2873 fail_block_groups:
2874 btrfs_put_block_group_cache(fs_info);
2875 btrfs_free_block_groups(fs_info);
2876
2877 fail_tree_roots:
2878 free_root_pointers(fs_info, 1);
2879 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2880
2881 fail_sb_buffer:
2882 btrfs_stop_all_workers(fs_info);
2883 fail_alloc:
2884 fail_iput:
2885 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2886
2887 iput(fs_info->btree_inode);
2888 fail_delalloc_bytes:
2889 percpu_counter_destroy(&fs_info->delalloc_bytes);
2890 fail_dirty_metadata_bytes:
2891 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2892 fail_bdi:
2893 bdi_destroy(&fs_info->bdi);
2894 fail_srcu:
2895 cleanup_srcu_struct(&fs_info->subvol_srcu);
2896 fail:
2897 btrfs_free_stripe_hash_table(fs_info);
2898 btrfs_close_devices(fs_info->fs_devices);
2899 return err;
2900
2901 recovery_tree_root:
2902 if (!btrfs_test_opt(tree_root, RECOVERY))
2903 goto fail_tree_roots;
2904
2905 free_root_pointers(fs_info, 0);
2906
2907 /* don't use the log in recovery mode, it won't be valid */
2908 btrfs_set_super_log_root(disk_super, 0);
2909
2910 /* we can't trust the free space cache either */
2911 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2912
2913 ret = next_root_backup(fs_info, fs_info->super_copy,
2914 &num_backups_tried, &backup_index);
2915 if (ret == -1)
2916 goto fail_block_groups;
2917 goto retry_root_backup;
2918 }
2919
2920 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2921 {
2922 if (uptodate) {
2923 set_buffer_uptodate(bh);
2924 } else {
2925 struct btrfs_device *device = (struct btrfs_device *)
2926 bh->b_private;
2927
2928 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2929 "I/O error on %s\n",
2930 rcu_str_deref(device->name));
2931 /* note, we dont' set_buffer_write_io_error because we have
2932 * our own ways of dealing with the IO errors
2933 */
2934 clear_buffer_uptodate(bh);
2935 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2936 }
2937 unlock_buffer(bh);
2938 put_bh(bh);
2939 }
2940
2941 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2942 {
2943 struct buffer_head *bh;
2944 struct buffer_head *latest = NULL;
2945 struct btrfs_super_block *super;
2946 int i;
2947 u64 transid = 0;
2948 u64 bytenr;
2949
2950 /* we would like to check all the supers, but that would make
2951 * a btrfs mount succeed after a mkfs from a different FS.
2952 * So, we need to add a special mount option to scan for
2953 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2954 */
2955 for (i = 0; i < 1; i++) {
2956 bytenr = btrfs_sb_offset(i);
2957 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2958 break;
2959 bh = __bread(bdev, bytenr / 4096, 4096);
2960 if (!bh)
2961 continue;
2962
2963 super = (struct btrfs_super_block *)bh->b_data;
2964 if (btrfs_super_bytenr(super) != bytenr ||
2965 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2966 brelse(bh);
2967 continue;
2968 }
2969
2970 if (!latest || btrfs_super_generation(super) > transid) {
2971 brelse(latest);
2972 latest = bh;
2973 transid = btrfs_super_generation(super);
2974 } else {
2975 brelse(bh);
2976 }
2977 }
2978 return latest;
2979 }
2980
2981 /*
2982 * this should be called twice, once with wait == 0 and
2983 * once with wait == 1. When wait == 0 is done, all the buffer heads
2984 * we write are pinned.
2985 *
2986 * They are released when wait == 1 is done.
2987 * max_mirrors must be the same for both runs, and it indicates how
2988 * many supers on this one device should be written.
2989 *
2990 * max_mirrors == 0 means to write them all.
2991 */
2992 static int write_dev_supers(struct btrfs_device *device,
2993 struct btrfs_super_block *sb,
2994 int do_barriers, int wait, int max_mirrors)
2995 {
2996 struct buffer_head *bh;
2997 int i;
2998 int ret;
2999 int errors = 0;
3000 u32 crc;
3001 u64 bytenr;
3002
3003 if (max_mirrors == 0)
3004 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3005
3006 for (i = 0; i < max_mirrors; i++) {
3007 bytenr = btrfs_sb_offset(i);
3008 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3009 break;
3010
3011 if (wait) {
3012 bh = __find_get_block(device->bdev, bytenr / 4096,
3013 BTRFS_SUPER_INFO_SIZE);
3014 if (!bh) {
3015 errors++;
3016 continue;
3017 }
3018 wait_on_buffer(bh);
3019 if (!buffer_uptodate(bh))
3020 errors++;
3021
3022 /* drop our reference */
3023 brelse(bh);
3024
3025 /* drop the reference from the wait == 0 run */
3026 brelse(bh);
3027 continue;
3028 } else {
3029 btrfs_set_super_bytenr(sb, bytenr);
3030
3031 crc = ~(u32)0;
3032 crc = btrfs_csum_data((char *)sb +
3033 BTRFS_CSUM_SIZE, crc,
3034 BTRFS_SUPER_INFO_SIZE -
3035 BTRFS_CSUM_SIZE);
3036 btrfs_csum_final(crc, sb->csum);
3037
3038 /*
3039 * one reference for us, and we leave it for the
3040 * caller
3041 */
3042 bh = __getblk(device->bdev, bytenr / 4096,
3043 BTRFS_SUPER_INFO_SIZE);
3044 if (!bh) {
3045 printk(KERN_ERR "btrfs: couldn't get super "
3046 "buffer head for bytenr %Lu\n", bytenr);
3047 errors++;
3048 continue;
3049 }
3050
3051 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3052
3053 /* one reference for submit_bh */
3054 get_bh(bh);
3055
3056 set_buffer_uptodate(bh);
3057 lock_buffer(bh);
3058 bh->b_end_io = btrfs_end_buffer_write_sync;
3059 bh->b_private = device;
3060 }
3061
3062 /*
3063 * we fua the first super. The others we allow
3064 * to go down lazy.
3065 */
3066 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3067 if (ret)
3068 errors++;
3069 }
3070 return errors < i ? 0 : -1;
3071 }
3072
3073 /*
3074 * endio for the write_dev_flush, this will wake anyone waiting
3075 * for the barrier when it is done
3076 */
3077 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3078 {
3079 if (err) {
3080 if (err == -EOPNOTSUPP)
3081 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3082 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3083 }
3084 if (bio->bi_private)
3085 complete(bio->bi_private);
3086 bio_put(bio);
3087 }
3088
3089 /*
3090 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3091 * sent down. With wait == 1, it waits for the previous flush.
3092 *
3093 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3094 * capable
3095 */
3096 static int write_dev_flush(struct btrfs_device *device, int wait)
3097 {
3098 struct bio *bio;
3099 int ret = 0;
3100
3101 if (device->nobarriers)
3102 return 0;
3103
3104 if (wait) {
3105 bio = device->flush_bio;
3106 if (!bio)
3107 return 0;
3108
3109 wait_for_completion(&device->flush_wait);
3110
3111 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3112 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3113 rcu_str_deref(device->name));
3114 device->nobarriers = 1;
3115 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3116 ret = -EIO;
3117 btrfs_dev_stat_inc_and_print(device,
3118 BTRFS_DEV_STAT_FLUSH_ERRS);
3119 }
3120
3121 /* drop the reference from the wait == 0 run */
3122 bio_put(bio);
3123 device->flush_bio = NULL;
3124
3125 return ret;
3126 }
3127
3128 /*
3129 * one reference for us, and we leave it for the
3130 * caller
3131 */
3132 device->flush_bio = NULL;
3133 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3134 if (!bio)
3135 return -ENOMEM;
3136
3137 bio->bi_end_io = btrfs_end_empty_barrier;
3138 bio->bi_bdev = device->bdev;
3139 init_completion(&device->flush_wait);
3140 bio->bi_private = &device->flush_wait;
3141 device->flush_bio = bio;
3142
3143 bio_get(bio);
3144 btrfsic_submit_bio(WRITE_FLUSH, bio);
3145
3146 return 0;
3147 }
3148
3149 /*
3150 * send an empty flush down to each device in parallel,
3151 * then wait for them
3152 */
3153 static int barrier_all_devices(struct btrfs_fs_info *info)
3154 {
3155 struct list_head *head;
3156 struct btrfs_device *dev;
3157 int errors_send = 0;
3158 int errors_wait = 0;
3159 int ret;
3160
3161 /* send down all the barriers */
3162 head = &info->fs_devices->devices;
3163 list_for_each_entry_rcu(dev, head, dev_list) {
3164 if (!dev->bdev) {
3165 errors_send++;
3166 continue;
3167 }
3168 if (!dev->in_fs_metadata || !dev->writeable)
3169 continue;
3170
3171 ret = write_dev_flush(dev, 0);
3172 if (ret)
3173 errors_send++;
3174 }
3175
3176 /* wait for all the barriers */
3177 list_for_each_entry_rcu(dev, head, dev_list) {
3178 if (!dev->bdev) {
3179 errors_wait++;
3180 continue;
3181 }
3182 if (!dev->in_fs_metadata || !dev->writeable)
3183 continue;
3184
3185 ret = write_dev_flush(dev, 1);
3186 if (ret)
3187 errors_wait++;
3188 }
3189 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3190 errors_wait > info->num_tolerated_disk_barrier_failures)
3191 return -EIO;
3192 return 0;
3193 }
3194
3195 int btrfs_calc_num_tolerated_disk_barrier_failures(
3196 struct btrfs_fs_info *fs_info)
3197 {
3198 struct btrfs_ioctl_space_info space;
3199 struct btrfs_space_info *sinfo;
3200 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3201 BTRFS_BLOCK_GROUP_SYSTEM,
3202 BTRFS_BLOCK_GROUP_METADATA,
3203 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3204 int num_types = 4;
3205 int i;
3206 int c;
3207 int num_tolerated_disk_barrier_failures =
3208 (int)fs_info->fs_devices->num_devices;
3209
3210 for (i = 0; i < num_types; i++) {
3211 struct btrfs_space_info *tmp;
3212
3213 sinfo = NULL;
3214 rcu_read_lock();
3215 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3216 if (tmp->flags == types[i]) {
3217 sinfo = tmp;
3218 break;
3219 }
3220 }
3221 rcu_read_unlock();
3222
3223 if (!sinfo)
3224 continue;
3225
3226 down_read(&sinfo->groups_sem);
3227 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3228 if (!list_empty(&sinfo->block_groups[c])) {
3229 u64 flags;
3230
3231 btrfs_get_block_group_info(
3232 &sinfo->block_groups[c], &space);
3233 if (space.total_bytes == 0 ||
3234 space.used_bytes == 0)
3235 continue;
3236 flags = space.flags;
3237 /*
3238 * return
3239 * 0: if dup, single or RAID0 is configured for
3240 * any of metadata, system or data, else
3241 * 1: if RAID5 is configured, or if RAID1 or
3242 * RAID10 is configured and only two mirrors
3243 * are used, else
3244 * 2: if RAID6 is configured, else
3245 * num_mirrors - 1: if RAID1 or RAID10 is
3246 * configured and more than
3247 * 2 mirrors are used.
3248 */
3249 if (num_tolerated_disk_barrier_failures > 0 &&
3250 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3251 BTRFS_BLOCK_GROUP_RAID0)) ||
3252 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3253 == 0)))
3254 num_tolerated_disk_barrier_failures = 0;
3255 else if (num_tolerated_disk_barrier_failures > 1) {
3256 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3257 BTRFS_BLOCK_GROUP_RAID5 |
3258 BTRFS_BLOCK_GROUP_RAID10)) {
3259 num_tolerated_disk_barrier_failures = 1;
3260 } else if (flags &
3261 BTRFS_BLOCK_GROUP_RAID5) {
3262 num_tolerated_disk_barrier_failures = 2;
3263 }
3264 }
3265 }
3266 }
3267 up_read(&sinfo->groups_sem);
3268 }
3269
3270 return num_tolerated_disk_barrier_failures;
3271 }
3272
3273 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3274 {
3275 struct list_head *head;
3276 struct btrfs_device *dev;
3277 struct btrfs_super_block *sb;
3278 struct btrfs_dev_item *dev_item;
3279 int ret;
3280 int do_barriers;
3281 int max_errors;
3282 int total_errors = 0;
3283 u64 flags;
3284
3285 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3286 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3287 backup_super_roots(root->fs_info);
3288
3289 sb = root->fs_info->super_for_commit;
3290 dev_item = &sb->dev_item;
3291
3292 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3293 head = &root->fs_info->fs_devices->devices;
3294
3295 if (do_barriers) {
3296 ret = barrier_all_devices(root->fs_info);
3297 if (ret) {
3298 mutex_unlock(
3299 &root->fs_info->fs_devices->device_list_mutex);
3300 btrfs_error(root->fs_info, ret,
3301 "errors while submitting device barriers.");
3302 return ret;
3303 }
3304 }
3305
3306 list_for_each_entry_rcu(dev, head, dev_list) {
3307 if (!dev->bdev) {
3308 total_errors++;
3309 continue;
3310 }
3311 if (!dev->in_fs_metadata || !dev->writeable)
3312 continue;
3313
3314 btrfs_set_stack_device_generation(dev_item, 0);
3315 btrfs_set_stack_device_type(dev_item, dev->type);
3316 btrfs_set_stack_device_id(dev_item, dev->devid);
3317 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3318 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3319 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3320 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3321 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3322 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3323 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3324
3325 flags = btrfs_super_flags(sb);
3326 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3327
3328 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3329 if (ret)
3330 total_errors++;
3331 }
3332 if (total_errors > max_errors) {
3333 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3334 total_errors);
3335
3336 /* This shouldn't happen. FUA is masked off if unsupported */
3337 BUG();
3338 }
3339
3340 total_errors = 0;
3341 list_for_each_entry_rcu(dev, head, dev_list) {
3342 if (!dev->bdev)
3343 continue;
3344 if (!dev->in_fs_metadata || !dev->writeable)
3345 continue;
3346
3347 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3348 if (ret)
3349 total_errors++;
3350 }
3351 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3352 if (total_errors > max_errors) {
3353 btrfs_error(root->fs_info, -EIO,
3354 "%d errors while writing supers", total_errors);
3355 return -EIO;
3356 }
3357 return 0;
3358 }
3359
3360 int write_ctree_super(struct btrfs_trans_handle *trans,
3361 struct btrfs_root *root, int max_mirrors)
3362 {
3363 int ret;
3364
3365 ret = write_all_supers(root, max_mirrors);
3366 return ret;
3367 }
3368
3369 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3370 {
3371 spin_lock(&fs_info->fs_roots_radix_lock);
3372 radix_tree_delete(&fs_info->fs_roots_radix,
3373 (unsigned long)root->root_key.objectid);
3374 spin_unlock(&fs_info->fs_roots_radix_lock);
3375
3376 if (btrfs_root_refs(&root->root_item) == 0)
3377 synchronize_srcu(&fs_info->subvol_srcu);
3378
3379 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3380 btrfs_free_log(NULL, root);
3381 btrfs_free_log_root_tree(NULL, fs_info);
3382 }
3383
3384 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3385 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3386 free_fs_root(root);
3387 }
3388
3389 static void free_fs_root(struct btrfs_root *root)
3390 {
3391 iput(root->cache_inode);
3392 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3393 if (root->anon_dev)
3394 free_anon_bdev(root->anon_dev);
3395 free_extent_buffer(root->node);
3396 free_extent_buffer(root->commit_root);
3397 kfree(root->free_ino_ctl);
3398 kfree(root->free_ino_pinned);
3399 kfree(root->name);
3400 kfree(root);
3401 }
3402
3403 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3404 {
3405 u64 root_objectid = 0;
3406 struct btrfs_root *gang[8];
3407 int i;
3408 int ret;
3409
3410 while (1) {
3411 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3412 (void **)gang, root_objectid,
3413 ARRAY_SIZE(gang));
3414 if (!ret)
3415 break;
3416
3417 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3418 for (i = 0; i < ret; i++) {
3419 int err;
3420
3421 root_objectid = gang[i]->root_key.objectid;
3422 err = btrfs_orphan_cleanup(gang[i]);
3423 if (err)
3424 return err;
3425 }
3426 root_objectid++;
3427 }
3428 return 0;
3429 }
3430
3431 int btrfs_commit_super(struct btrfs_root *root)
3432 {
3433 struct btrfs_trans_handle *trans;
3434 int ret;
3435
3436 mutex_lock(&root->fs_info->cleaner_mutex);
3437 btrfs_run_delayed_iputs(root);
3438 mutex_unlock(&root->fs_info->cleaner_mutex);
3439 wake_up_process(root->fs_info->cleaner_kthread);
3440
3441 /* wait until ongoing cleanup work done */
3442 down_write(&root->fs_info->cleanup_work_sem);
3443 up_write(&root->fs_info->cleanup_work_sem);
3444
3445 trans = btrfs_join_transaction(root);
3446 if (IS_ERR(trans))
3447 return PTR_ERR(trans);
3448 ret = btrfs_commit_transaction(trans, root);
3449 if (ret)
3450 return ret;
3451 /* run commit again to drop the original snapshot */
3452 trans = btrfs_join_transaction(root);
3453 if (IS_ERR(trans))
3454 return PTR_ERR(trans);
3455 ret = btrfs_commit_transaction(trans, root);
3456 if (ret)
3457 return ret;
3458 ret = btrfs_write_and_wait_transaction(NULL, root);
3459 if (ret) {
3460 btrfs_error(root->fs_info, ret,
3461 "Failed to sync btree inode to disk.");
3462 return ret;
3463 }
3464
3465 ret = write_ctree_super(NULL, root, 0);
3466 return ret;
3467 }
3468
3469 int close_ctree(struct btrfs_root *root)
3470 {
3471 struct btrfs_fs_info *fs_info = root->fs_info;
3472 int ret;
3473
3474 fs_info->closing = 1;
3475 smp_mb();
3476
3477 /* pause restriper - we want to resume on mount */
3478 btrfs_pause_balance(fs_info);
3479
3480 btrfs_dev_replace_suspend_for_unmount(fs_info);
3481
3482 btrfs_scrub_cancel(fs_info);
3483
3484 /* wait for any defraggers to finish */
3485 wait_event(fs_info->transaction_wait,
3486 (atomic_read(&fs_info->defrag_running) == 0));
3487
3488 /* clear out the rbtree of defraggable inodes */
3489 btrfs_cleanup_defrag_inodes(fs_info);
3490
3491 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3492 ret = btrfs_commit_super(root);
3493 if (ret)
3494 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3495 }
3496
3497 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3498 btrfs_error_commit_super(root);
3499
3500 btrfs_put_block_group_cache(fs_info);
3501
3502 kthread_stop(fs_info->transaction_kthread);
3503 kthread_stop(fs_info->cleaner_kthread);
3504
3505 fs_info->closing = 2;
3506 smp_mb();
3507
3508 btrfs_free_qgroup_config(root->fs_info);
3509
3510 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3511 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3512 percpu_counter_sum(&fs_info->delalloc_bytes));
3513 }
3514
3515 free_root_pointers(fs_info, 1);
3516
3517 btrfs_free_block_groups(fs_info);
3518
3519 del_fs_roots(fs_info);
3520
3521 iput(fs_info->btree_inode);
3522
3523 btrfs_stop_all_workers(fs_info);
3524
3525 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3526 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3527 btrfsic_unmount(root, fs_info->fs_devices);
3528 #endif
3529
3530 btrfs_close_devices(fs_info->fs_devices);
3531 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3532
3533 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3534 percpu_counter_destroy(&fs_info->delalloc_bytes);
3535 bdi_destroy(&fs_info->bdi);
3536 cleanup_srcu_struct(&fs_info->subvol_srcu);
3537
3538 btrfs_free_stripe_hash_table(fs_info);
3539
3540 return 0;
3541 }
3542
3543 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3544 int atomic)
3545 {
3546 int ret;
3547 struct inode *btree_inode = buf->pages[0]->mapping->host;
3548
3549 ret = extent_buffer_uptodate(buf);
3550 if (!ret)
3551 return ret;
3552
3553 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3554 parent_transid, atomic);
3555 if (ret == -EAGAIN)
3556 return ret;
3557 return !ret;
3558 }
3559
3560 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3561 {
3562 return set_extent_buffer_uptodate(buf);
3563 }
3564
3565 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3566 {
3567 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3568 u64 transid = btrfs_header_generation(buf);
3569 int was_dirty;
3570
3571 btrfs_assert_tree_locked(buf);
3572 if (transid != root->fs_info->generation)
3573 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3574 "found %llu running %llu\n",
3575 (unsigned long long)buf->start,
3576 (unsigned long long)transid,
3577 (unsigned long long)root->fs_info->generation);
3578 was_dirty = set_extent_buffer_dirty(buf);
3579 if (!was_dirty)
3580 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3581 buf->len,
3582 root->fs_info->dirty_metadata_batch);
3583 }
3584
3585 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3586 int flush_delayed)
3587 {
3588 /*
3589 * looks as though older kernels can get into trouble with
3590 * this code, they end up stuck in balance_dirty_pages forever
3591 */
3592 int ret;
3593
3594 if (current->flags & PF_MEMALLOC)
3595 return;
3596
3597 if (flush_delayed)
3598 btrfs_balance_delayed_items(root);
3599
3600 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3601 BTRFS_DIRTY_METADATA_THRESH);
3602 if (ret > 0) {
3603 balance_dirty_pages_ratelimited(
3604 root->fs_info->btree_inode->i_mapping);
3605 }
3606 return;
3607 }
3608
3609 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3610 {
3611 __btrfs_btree_balance_dirty(root, 1);
3612 }
3613
3614 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3615 {
3616 __btrfs_btree_balance_dirty(root, 0);
3617 }
3618
3619 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3620 {
3621 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3622 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3623 }
3624
3625 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3626 int read_only)
3627 {
3628 /*
3629 * Placeholder for checks
3630 */
3631 return 0;
3632 }
3633
3634 static void btrfs_error_commit_super(struct btrfs_root *root)
3635 {
3636 mutex_lock(&root->fs_info->cleaner_mutex);
3637 btrfs_run_delayed_iputs(root);
3638 mutex_unlock(&root->fs_info->cleaner_mutex);
3639
3640 down_write(&root->fs_info->cleanup_work_sem);
3641 up_write(&root->fs_info->cleanup_work_sem);
3642
3643 /* cleanup FS via transaction */
3644 btrfs_cleanup_transaction(root);
3645 }
3646
3647 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3648 struct btrfs_root *root)
3649 {
3650 struct btrfs_inode *btrfs_inode;
3651 struct list_head splice;
3652
3653 INIT_LIST_HEAD(&splice);
3654
3655 mutex_lock(&root->fs_info->ordered_operations_mutex);
3656 spin_lock(&root->fs_info->ordered_extent_lock);
3657
3658 list_splice_init(&t->ordered_operations, &splice);
3659 while (!list_empty(&splice)) {
3660 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3661 ordered_operations);
3662
3663 list_del_init(&btrfs_inode->ordered_operations);
3664 spin_unlock(&root->fs_info->ordered_extent_lock);
3665
3666 btrfs_invalidate_inodes(btrfs_inode->root);
3667
3668 spin_lock(&root->fs_info->ordered_extent_lock);
3669 }
3670
3671 spin_unlock(&root->fs_info->ordered_extent_lock);
3672 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3673 }
3674
3675 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3676 {
3677 struct btrfs_ordered_extent *ordered;
3678
3679 spin_lock(&root->fs_info->ordered_extent_lock);
3680 /*
3681 * This will just short circuit the ordered completion stuff which will
3682 * make sure the ordered extent gets properly cleaned up.
3683 */
3684 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3685 root_extent_list)
3686 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3687 spin_unlock(&root->fs_info->ordered_extent_lock);
3688 }
3689
3690 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3691 struct btrfs_root *root)
3692 {
3693 struct rb_node *node;
3694 struct btrfs_delayed_ref_root *delayed_refs;
3695 struct btrfs_delayed_ref_node *ref;
3696 int ret = 0;
3697
3698 delayed_refs = &trans->delayed_refs;
3699
3700 spin_lock(&delayed_refs->lock);
3701 if (delayed_refs->num_entries == 0) {
3702 spin_unlock(&delayed_refs->lock);
3703 printk(KERN_INFO "delayed_refs has NO entry\n");
3704 return ret;
3705 }
3706
3707 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3708 struct btrfs_delayed_ref_head *head = NULL;
3709
3710 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3711 atomic_set(&ref->refs, 1);
3712 if (btrfs_delayed_ref_is_head(ref)) {
3713
3714 head = btrfs_delayed_node_to_head(ref);
3715 if (!mutex_trylock(&head->mutex)) {
3716 atomic_inc(&ref->refs);
3717 spin_unlock(&delayed_refs->lock);
3718
3719 /* Need to wait for the delayed ref to run */
3720 mutex_lock(&head->mutex);
3721 mutex_unlock(&head->mutex);
3722 btrfs_put_delayed_ref(ref);
3723
3724 spin_lock(&delayed_refs->lock);
3725 continue;
3726 }
3727
3728 if (head->must_insert_reserved)
3729 btrfs_pin_extent(root, ref->bytenr,
3730 ref->num_bytes, 1);
3731 btrfs_free_delayed_extent_op(head->extent_op);
3732 delayed_refs->num_heads--;
3733 if (list_empty(&head->cluster))
3734 delayed_refs->num_heads_ready--;
3735 list_del_init(&head->cluster);
3736 }
3737
3738 ref->in_tree = 0;
3739 rb_erase(&ref->rb_node, &delayed_refs->root);
3740 delayed_refs->num_entries--;
3741 if (head)
3742 mutex_unlock(&head->mutex);
3743 spin_unlock(&delayed_refs->lock);
3744 btrfs_put_delayed_ref(ref);
3745
3746 cond_resched();
3747 spin_lock(&delayed_refs->lock);
3748 }
3749
3750 spin_unlock(&delayed_refs->lock);
3751
3752 return ret;
3753 }
3754
3755 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3756 {
3757 struct btrfs_pending_snapshot *snapshot;
3758 struct list_head splice;
3759
3760 INIT_LIST_HEAD(&splice);
3761
3762 list_splice_init(&t->pending_snapshots, &splice);
3763
3764 while (!list_empty(&splice)) {
3765 snapshot = list_entry(splice.next,
3766 struct btrfs_pending_snapshot,
3767 list);
3768 snapshot->error = -ECANCELED;
3769 list_del_init(&snapshot->list);
3770 }
3771 }
3772
3773 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3774 {
3775 struct btrfs_inode *btrfs_inode;
3776 struct list_head splice;
3777
3778 INIT_LIST_HEAD(&splice);
3779
3780 spin_lock(&root->fs_info->delalloc_lock);
3781 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3782
3783 while (!list_empty(&splice)) {
3784 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3785 delalloc_inodes);
3786
3787 list_del_init(&btrfs_inode->delalloc_inodes);
3788 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3789 &btrfs_inode->runtime_flags);
3790 spin_unlock(&root->fs_info->delalloc_lock);
3791
3792 btrfs_invalidate_inodes(btrfs_inode->root);
3793
3794 spin_lock(&root->fs_info->delalloc_lock);
3795 }
3796
3797 spin_unlock(&root->fs_info->delalloc_lock);
3798 }
3799
3800 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3801 struct extent_io_tree *dirty_pages,
3802 int mark)
3803 {
3804 int ret;
3805 struct extent_buffer *eb;
3806 u64 start = 0;
3807 u64 end;
3808
3809 while (1) {
3810 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3811 mark, NULL);
3812 if (ret)
3813 break;
3814
3815 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3816 while (start <= end) {
3817 eb = btrfs_find_tree_block(root, start,
3818 root->leafsize);
3819 start += root->leafsize;
3820 if (!eb)
3821 continue;
3822 wait_on_extent_buffer_writeback(eb);
3823
3824 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3825 &eb->bflags))
3826 clear_extent_buffer_dirty(eb);
3827 free_extent_buffer_stale(eb);
3828 }
3829 }
3830
3831 return ret;
3832 }
3833
3834 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3835 struct extent_io_tree *pinned_extents)
3836 {
3837 struct extent_io_tree *unpin;
3838 u64 start;
3839 u64 end;
3840 int ret;
3841 bool loop = true;
3842
3843 unpin = pinned_extents;
3844 again:
3845 while (1) {
3846 ret = find_first_extent_bit(unpin, 0, &start, &end,
3847 EXTENT_DIRTY, NULL);
3848 if (ret)
3849 break;
3850
3851 /* opt_discard */
3852 if (btrfs_test_opt(root, DISCARD))
3853 ret = btrfs_error_discard_extent(root, start,
3854 end + 1 - start,
3855 NULL);
3856
3857 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3858 btrfs_error_unpin_extent_range(root, start, end);
3859 cond_resched();
3860 }
3861
3862 if (loop) {
3863 if (unpin == &root->fs_info->freed_extents[0])
3864 unpin = &root->fs_info->freed_extents[1];
3865 else
3866 unpin = &root->fs_info->freed_extents[0];
3867 loop = false;
3868 goto again;
3869 }
3870
3871 return 0;
3872 }
3873
3874 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3875 struct btrfs_root *root)
3876 {
3877 btrfs_destroy_delayed_refs(cur_trans, root);
3878 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3879 cur_trans->dirty_pages.dirty_bytes);
3880
3881 /* FIXME: cleanup wait for commit */
3882 cur_trans->in_commit = 1;
3883 cur_trans->blocked = 1;
3884 wake_up(&root->fs_info->transaction_blocked_wait);
3885
3886 btrfs_evict_pending_snapshots(cur_trans);
3887
3888 cur_trans->blocked = 0;
3889 wake_up(&root->fs_info->transaction_wait);
3890
3891 cur_trans->commit_done = 1;
3892 wake_up(&cur_trans->commit_wait);
3893
3894 btrfs_destroy_delayed_inodes(root);
3895 btrfs_assert_delayed_root_empty(root);
3896
3897 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3898 EXTENT_DIRTY);
3899 btrfs_destroy_pinned_extent(root,
3900 root->fs_info->pinned_extents);
3901
3902 /*
3903 memset(cur_trans, 0, sizeof(*cur_trans));
3904 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3905 */
3906 }
3907
3908 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3909 {
3910 struct btrfs_transaction *t;
3911 LIST_HEAD(list);
3912
3913 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3914
3915 spin_lock(&root->fs_info->trans_lock);
3916 list_splice_init(&root->fs_info->trans_list, &list);
3917 root->fs_info->trans_no_join = 1;
3918 spin_unlock(&root->fs_info->trans_lock);
3919
3920 while (!list_empty(&list)) {
3921 t = list_entry(list.next, struct btrfs_transaction, list);
3922
3923 btrfs_destroy_ordered_operations(t, root);
3924
3925 btrfs_destroy_ordered_extents(root);
3926
3927 btrfs_destroy_delayed_refs(t, root);
3928
3929 /* FIXME: cleanup wait for commit */
3930 t->in_commit = 1;
3931 t->blocked = 1;
3932 smp_mb();
3933 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3934 wake_up(&root->fs_info->transaction_blocked_wait);
3935
3936 btrfs_evict_pending_snapshots(t);
3937
3938 t->blocked = 0;
3939 smp_mb();
3940 if (waitqueue_active(&root->fs_info->transaction_wait))
3941 wake_up(&root->fs_info->transaction_wait);
3942
3943 t->commit_done = 1;
3944 smp_mb();
3945 if (waitqueue_active(&t->commit_wait))
3946 wake_up(&t->commit_wait);
3947
3948 btrfs_destroy_delayed_inodes(root);
3949 btrfs_assert_delayed_root_empty(root);
3950
3951 btrfs_destroy_delalloc_inodes(root);
3952
3953 spin_lock(&root->fs_info->trans_lock);
3954 root->fs_info->running_transaction = NULL;
3955 spin_unlock(&root->fs_info->trans_lock);
3956
3957 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3958 EXTENT_DIRTY);
3959
3960 btrfs_destroy_pinned_extent(root,
3961 root->fs_info->pinned_extents);
3962
3963 atomic_set(&t->use_count, 0);
3964 list_del_init(&t->list);
3965 memset(t, 0, sizeof(*t));
3966 kmem_cache_free(btrfs_transaction_cachep, t);
3967 }
3968
3969 spin_lock(&root->fs_info->trans_lock);
3970 root->fs_info->trans_no_join = 0;
3971 spin_unlock(&root->fs_info->trans_lock);
3972 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3973
3974 return 0;
3975 }
3976
3977 static struct extent_io_ops btree_extent_io_ops = {
3978 .readpage_end_io_hook = btree_readpage_end_io_hook,
3979 .readpage_io_failed_hook = btree_io_failed_hook,
3980 .submit_bio_hook = btree_submit_bio_hook,
3981 /* note we're sharing with inode.c for the merge bio hook */
3982 .merge_bio_hook = btrfs_merge_bio_hook,
3983 };