Merge branch 'cleanups' of git://repo.or.cz/linux-2.6/btrfs-unstable into inode_numbers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46
47 static struct extent_io_ops btree_extent_io_ops;
48 static void end_workqueue_fn(struct btrfs_work *work);
49 static void free_fs_root(struct btrfs_root *root);
50 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51 int read_only);
52 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 struct btrfs_root *root);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_root *root);
64
65 /*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
70 struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
76 int metadata;
77 struct list_head list;
78 struct btrfs_work work;
79 };
80
81 /*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
86 struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
92 int rw;
93 int mirror_num;
94 unsigned long bio_flags;
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
100 struct btrfs_work work;
101 };
102
103 /* These are used to set the lockdep class on the extent buffer locks.
104 * The class is set by the readpage_end_io_hook after the buffer has
105 * passed csum validation but before the pages are unlocked.
106 *
107 * The lockdep class is also set by btrfs_init_new_buffer on freshly
108 * allocated blocks.
109 *
110 * The class is based on the level in the tree block, which allows lockdep
111 * to know that lower nodes nest inside the locks of higher nodes.
112 *
113 * We also add a check to make sure the highest level of the tree is
114 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
115 * code needs update as well.
116 */
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 # if BTRFS_MAX_LEVEL != 8
119 # error
120 # endif
121 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
122 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
123 /* leaf */
124 "btrfs-extent-00",
125 "btrfs-extent-01",
126 "btrfs-extent-02",
127 "btrfs-extent-03",
128 "btrfs-extent-04",
129 "btrfs-extent-05",
130 "btrfs-extent-06",
131 "btrfs-extent-07",
132 /* highest possible level */
133 "btrfs-extent-08",
134 };
135 #endif
136
137 /*
138 * extents on the btree inode are pretty simple, there's one extent
139 * that covers the entire device
140 */
141 static struct extent_map *btree_get_extent(struct inode *inode,
142 struct page *page, size_t pg_offset, u64 start, u64 len,
143 int create)
144 {
145 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
146 struct extent_map *em;
147 int ret;
148
149 read_lock(&em_tree->lock);
150 em = lookup_extent_mapping(em_tree, start, len);
151 if (em) {
152 em->bdev =
153 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
154 read_unlock(&em_tree->lock);
155 goto out;
156 }
157 read_unlock(&em_tree->lock);
158
159 em = alloc_extent_map();
160 if (!em) {
161 em = ERR_PTR(-ENOMEM);
162 goto out;
163 }
164 em->start = 0;
165 em->len = (u64)-1;
166 em->block_len = (u64)-1;
167 em->block_start = 0;
168 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
169
170 write_lock(&em_tree->lock);
171 ret = add_extent_mapping(em_tree, em);
172 if (ret == -EEXIST) {
173 u64 failed_start = em->start;
174 u64 failed_len = em->len;
175
176 free_extent_map(em);
177 em = lookup_extent_mapping(em_tree, start, len);
178 if (em) {
179 ret = 0;
180 } else {
181 em = lookup_extent_mapping(em_tree, failed_start,
182 failed_len);
183 ret = -EIO;
184 }
185 } else if (ret) {
186 free_extent_map(em);
187 em = NULL;
188 }
189 write_unlock(&em_tree->lock);
190
191 if (ret)
192 em = ERR_PTR(ret);
193 out:
194 return em;
195 }
196
197 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
198 {
199 return crc32c(seed, data, len);
200 }
201
202 void btrfs_csum_final(u32 crc, char *result)
203 {
204 put_unaligned_le32(~crc, result);
205 }
206
207 /*
208 * compute the csum for a btree block, and either verify it or write it
209 * into the csum field of the block.
210 */
211 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
212 int verify)
213 {
214 u16 csum_size =
215 btrfs_super_csum_size(&root->fs_info->super_copy);
216 char *result = NULL;
217 unsigned long len;
218 unsigned long cur_len;
219 unsigned long offset = BTRFS_CSUM_SIZE;
220 char *map_token = NULL;
221 char *kaddr;
222 unsigned long map_start;
223 unsigned long map_len;
224 int err;
225 u32 crc = ~(u32)0;
226 unsigned long inline_result;
227
228 len = buf->len - offset;
229 while (len > 0) {
230 err = map_private_extent_buffer(buf, offset, 32,
231 &map_token, &kaddr,
232 &map_start, &map_len, KM_USER0);
233 if (err)
234 return 1;
235 cur_len = min(len, map_len - (offset - map_start));
236 crc = btrfs_csum_data(root, kaddr + offset - map_start,
237 crc, cur_len);
238 len -= cur_len;
239 offset += cur_len;
240 unmap_extent_buffer(buf, map_token, KM_USER0);
241 }
242 if (csum_size > sizeof(inline_result)) {
243 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
244 if (!result)
245 return 1;
246 } else {
247 result = (char *)&inline_result;
248 }
249
250 btrfs_csum_final(crc, result);
251
252 if (verify) {
253 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
254 u32 val;
255 u32 found = 0;
256 memcpy(&found, result, csum_size);
257
258 read_extent_buffer(buf, &val, 0, csum_size);
259 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
260 "failed on %llu wanted %X found %X "
261 "level %d\n",
262 root->fs_info->sb->s_id,
263 (unsigned long long)buf->start, val, found,
264 btrfs_header_level(buf));
265 if (result != (char *)&inline_result)
266 kfree(result);
267 return 1;
268 }
269 } else {
270 write_extent_buffer(buf, result, 0, csum_size);
271 }
272 if (result != (char *)&inline_result)
273 kfree(result);
274 return 0;
275 }
276
277 /*
278 * we can't consider a given block up to date unless the transid of the
279 * block matches the transid in the parent node's pointer. This is how we
280 * detect blocks that either didn't get written at all or got written
281 * in the wrong place.
282 */
283 static int verify_parent_transid(struct extent_io_tree *io_tree,
284 struct extent_buffer *eb, u64 parent_transid)
285 {
286 struct extent_state *cached_state = NULL;
287 int ret;
288
289 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
290 return 0;
291
292 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
293 0, &cached_state, GFP_NOFS);
294 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
295 btrfs_header_generation(eb) == parent_transid) {
296 ret = 0;
297 goto out;
298 }
299 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
300 "found %llu\n",
301 (unsigned long long)eb->start,
302 (unsigned long long)parent_transid,
303 (unsigned long long)btrfs_header_generation(eb));
304 ret = 1;
305 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
306 out:
307 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
308 &cached_state, GFP_NOFS);
309 return ret;
310 }
311
312 /*
313 * helper to read a given tree block, doing retries as required when
314 * the checksums don't match and we have alternate mirrors to try.
315 */
316 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
317 struct extent_buffer *eb,
318 u64 start, u64 parent_transid)
319 {
320 struct extent_io_tree *io_tree;
321 int ret;
322 int num_copies = 0;
323 int mirror_num = 0;
324
325 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
326 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
327 while (1) {
328 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
329 btree_get_extent, mirror_num);
330 if (!ret &&
331 !verify_parent_transid(io_tree, eb, parent_transid))
332 return ret;
333
334 /*
335 * This buffer's crc is fine, but its contents are corrupted, so
336 * there is no reason to read the other copies, they won't be
337 * any less wrong.
338 */
339 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
340 return ret;
341
342 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
343 eb->start, eb->len);
344 if (num_copies == 1)
345 return ret;
346
347 mirror_num++;
348 if (mirror_num > num_copies)
349 return ret;
350 }
351 return -EIO;
352 }
353
354 /*
355 * checksum a dirty tree block before IO. This has extra checks to make sure
356 * we only fill in the checksum field in the first page of a multi-page block
357 */
358
359 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
360 {
361 struct extent_io_tree *tree;
362 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
363 u64 found_start;
364 unsigned long len;
365 struct extent_buffer *eb;
366 int ret;
367
368 tree = &BTRFS_I(page->mapping->host)->io_tree;
369
370 if (page->private == EXTENT_PAGE_PRIVATE) {
371 WARN_ON(1);
372 goto out;
373 }
374 if (!page->private) {
375 WARN_ON(1);
376 goto out;
377 }
378 len = page->private >> 2;
379 WARN_ON(len == 0);
380
381 eb = alloc_extent_buffer(tree, start, len, page);
382 if (eb == NULL) {
383 WARN_ON(1);
384 goto out;
385 }
386 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
387 btrfs_header_generation(eb));
388 BUG_ON(ret);
389 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
390
391 found_start = btrfs_header_bytenr(eb);
392 if (found_start != start) {
393 WARN_ON(1);
394 goto err;
395 }
396 if (eb->first_page != page) {
397 WARN_ON(1);
398 goto err;
399 }
400 if (!PageUptodate(page)) {
401 WARN_ON(1);
402 goto err;
403 }
404 csum_tree_block(root, eb, 0);
405 err:
406 free_extent_buffer(eb);
407 out:
408 return 0;
409 }
410
411 static int check_tree_block_fsid(struct btrfs_root *root,
412 struct extent_buffer *eb)
413 {
414 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
415 u8 fsid[BTRFS_UUID_SIZE];
416 int ret = 1;
417
418 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
419 BTRFS_FSID_SIZE);
420 while (fs_devices) {
421 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
422 ret = 0;
423 break;
424 }
425 fs_devices = fs_devices->seed;
426 }
427 return ret;
428 }
429
430 #define CORRUPT(reason, eb, root, slot) \
431 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
432 "root=%llu, slot=%d\n", reason, \
433 (unsigned long long)btrfs_header_bytenr(eb), \
434 (unsigned long long)root->objectid, slot)
435
436 static noinline int check_leaf(struct btrfs_root *root,
437 struct extent_buffer *leaf)
438 {
439 struct btrfs_key key;
440 struct btrfs_key leaf_key;
441 u32 nritems = btrfs_header_nritems(leaf);
442 int slot;
443
444 if (nritems == 0)
445 return 0;
446
447 /* Check the 0 item */
448 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
449 BTRFS_LEAF_DATA_SIZE(root)) {
450 CORRUPT("invalid item offset size pair", leaf, root, 0);
451 return -EIO;
452 }
453
454 /*
455 * Check to make sure each items keys are in the correct order and their
456 * offsets make sense. We only have to loop through nritems-1 because
457 * we check the current slot against the next slot, which verifies the
458 * next slot's offset+size makes sense and that the current's slot
459 * offset is correct.
460 */
461 for (slot = 0; slot < nritems - 1; slot++) {
462 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
463 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
464
465 /* Make sure the keys are in the right order */
466 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
467 CORRUPT("bad key order", leaf, root, slot);
468 return -EIO;
469 }
470
471 /*
472 * Make sure the offset and ends are right, remember that the
473 * item data starts at the end of the leaf and grows towards the
474 * front.
475 */
476 if (btrfs_item_offset_nr(leaf, slot) !=
477 btrfs_item_end_nr(leaf, slot + 1)) {
478 CORRUPT("slot offset bad", leaf, root, slot);
479 return -EIO;
480 }
481
482 /*
483 * Check to make sure that we don't point outside of the leaf,
484 * just incase all the items are consistent to eachother, but
485 * all point outside of the leaf.
486 */
487 if (btrfs_item_end_nr(leaf, slot) >
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("slot end outside of leaf", leaf, root, slot);
490 return -EIO;
491 }
492 }
493
494 return 0;
495 }
496
497 #ifdef CONFIG_DEBUG_LOCK_ALLOC
498 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
499 {
500 lockdep_set_class_and_name(&eb->lock,
501 &btrfs_eb_class[level],
502 btrfs_eb_name[level]);
503 }
504 #endif
505
506 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
507 struct extent_state *state)
508 {
509 struct extent_io_tree *tree;
510 u64 found_start;
511 int found_level;
512 unsigned long len;
513 struct extent_buffer *eb;
514 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
515 int ret = 0;
516
517 tree = &BTRFS_I(page->mapping->host)->io_tree;
518 if (page->private == EXTENT_PAGE_PRIVATE)
519 goto out;
520 if (!page->private)
521 goto out;
522
523 len = page->private >> 2;
524 WARN_ON(len == 0);
525
526 eb = alloc_extent_buffer(tree, start, len, page);
527 if (eb == NULL) {
528 ret = -EIO;
529 goto out;
530 }
531
532 found_start = btrfs_header_bytenr(eb);
533 if (found_start != start) {
534 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
535 "%llu %llu\n",
536 (unsigned long long)found_start,
537 (unsigned long long)eb->start);
538 ret = -EIO;
539 goto err;
540 }
541 if (eb->first_page != page) {
542 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
543 eb->first_page->index, page->index);
544 WARN_ON(1);
545 ret = -EIO;
546 goto err;
547 }
548 if (check_tree_block_fsid(root, eb)) {
549 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
550 (unsigned long long)eb->start);
551 ret = -EIO;
552 goto err;
553 }
554 found_level = btrfs_header_level(eb);
555
556 btrfs_set_buffer_lockdep_class(eb, found_level);
557
558 ret = csum_tree_block(root, eb, 1);
559 if (ret) {
560 ret = -EIO;
561 goto err;
562 }
563
564 /*
565 * If this is a leaf block and it is corrupt, set the corrupt bit so
566 * that we don't try and read the other copies of this block, just
567 * return -EIO.
568 */
569 if (found_level == 0 && check_leaf(root, eb)) {
570 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
571 ret = -EIO;
572 }
573
574 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
575 end = eb->start + end - 1;
576 err:
577 free_extent_buffer(eb);
578 out:
579 return ret;
580 }
581
582 static void end_workqueue_bio(struct bio *bio, int err)
583 {
584 struct end_io_wq *end_io_wq = bio->bi_private;
585 struct btrfs_fs_info *fs_info;
586
587 fs_info = end_io_wq->info;
588 end_io_wq->error = err;
589 end_io_wq->work.func = end_workqueue_fn;
590 end_io_wq->work.flags = 0;
591
592 if (bio->bi_rw & REQ_WRITE) {
593 if (end_io_wq->metadata == 1)
594 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
595 &end_io_wq->work);
596 else if (end_io_wq->metadata == 2)
597 btrfs_queue_worker(&fs_info->endio_freespace_worker,
598 &end_io_wq->work);
599 else
600 btrfs_queue_worker(&fs_info->endio_write_workers,
601 &end_io_wq->work);
602 } else {
603 if (end_io_wq->metadata)
604 btrfs_queue_worker(&fs_info->endio_meta_workers,
605 &end_io_wq->work);
606 else
607 btrfs_queue_worker(&fs_info->endio_workers,
608 &end_io_wq->work);
609 }
610 }
611
612 /*
613 * For the metadata arg you want
614 *
615 * 0 - if data
616 * 1 - if normal metadta
617 * 2 - if writing to the free space cache area
618 */
619 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
620 int metadata)
621 {
622 struct end_io_wq *end_io_wq;
623 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
624 if (!end_io_wq)
625 return -ENOMEM;
626
627 end_io_wq->private = bio->bi_private;
628 end_io_wq->end_io = bio->bi_end_io;
629 end_io_wq->info = info;
630 end_io_wq->error = 0;
631 end_io_wq->bio = bio;
632 end_io_wq->metadata = metadata;
633
634 bio->bi_private = end_io_wq;
635 bio->bi_end_io = end_workqueue_bio;
636 return 0;
637 }
638
639 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
640 {
641 unsigned long limit = min_t(unsigned long,
642 info->workers.max_workers,
643 info->fs_devices->open_devices);
644 return 256 * limit;
645 }
646
647 static void run_one_async_start(struct btrfs_work *work)
648 {
649 struct async_submit_bio *async;
650
651 async = container_of(work, struct async_submit_bio, work);
652 async->submit_bio_start(async->inode, async->rw, async->bio,
653 async->mirror_num, async->bio_flags,
654 async->bio_offset);
655 }
656
657 static void run_one_async_done(struct btrfs_work *work)
658 {
659 struct btrfs_fs_info *fs_info;
660 struct async_submit_bio *async;
661 int limit;
662
663 async = container_of(work, struct async_submit_bio, work);
664 fs_info = BTRFS_I(async->inode)->root->fs_info;
665
666 limit = btrfs_async_submit_limit(fs_info);
667 limit = limit * 2 / 3;
668
669 atomic_dec(&fs_info->nr_async_submits);
670
671 if (atomic_read(&fs_info->nr_async_submits) < limit &&
672 waitqueue_active(&fs_info->async_submit_wait))
673 wake_up(&fs_info->async_submit_wait);
674
675 async->submit_bio_done(async->inode, async->rw, async->bio,
676 async->mirror_num, async->bio_flags,
677 async->bio_offset);
678 }
679
680 static void run_one_async_free(struct btrfs_work *work)
681 {
682 struct async_submit_bio *async;
683
684 async = container_of(work, struct async_submit_bio, work);
685 kfree(async);
686 }
687
688 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
689 int rw, struct bio *bio, int mirror_num,
690 unsigned long bio_flags,
691 u64 bio_offset,
692 extent_submit_bio_hook_t *submit_bio_start,
693 extent_submit_bio_hook_t *submit_bio_done)
694 {
695 struct async_submit_bio *async;
696
697 async = kmalloc(sizeof(*async), GFP_NOFS);
698 if (!async)
699 return -ENOMEM;
700
701 async->inode = inode;
702 async->rw = rw;
703 async->bio = bio;
704 async->mirror_num = mirror_num;
705 async->submit_bio_start = submit_bio_start;
706 async->submit_bio_done = submit_bio_done;
707
708 async->work.func = run_one_async_start;
709 async->work.ordered_func = run_one_async_done;
710 async->work.ordered_free = run_one_async_free;
711
712 async->work.flags = 0;
713 async->bio_flags = bio_flags;
714 async->bio_offset = bio_offset;
715
716 atomic_inc(&fs_info->nr_async_submits);
717
718 if (rw & REQ_SYNC)
719 btrfs_set_work_high_prio(&async->work);
720
721 btrfs_queue_worker(&fs_info->workers, &async->work);
722
723 while (atomic_read(&fs_info->async_submit_draining) &&
724 atomic_read(&fs_info->nr_async_submits)) {
725 wait_event(fs_info->async_submit_wait,
726 (atomic_read(&fs_info->nr_async_submits) == 0));
727 }
728
729 return 0;
730 }
731
732 static int btree_csum_one_bio(struct bio *bio)
733 {
734 struct bio_vec *bvec = bio->bi_io_vec;
735 int bio_index = 0;
736 struct btrfs_root *root;
737
738 WARN_ON(bio->bi_vcnt <= 0);
739 while (bio_index < bio->bi_vcnt) {
740 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
741 csum_dirty_buffer(root, bvec->bv_page);
742 bio_index++;
743 bvec++;
744 }
745 return 0;
746 }
747
748 static int __btree_submit_bio_start(struct inode *inode, int rw,
749 struct bio *bio, int mirror_num,
750 unsigned long bio_flags,
751 u64 bio_offset)
752 {
753 /*
754 * when we're called for a write, we're already in the async
755 * submission context. Just jump into btrfs_map_bio
756 */
757 btree_csum_one_bio(bio);
758 return 0;
759 }
760
761 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
762 int mirror_num, unsigned long bio_flags,
763 u64 bio_offset)
764 {
765 /*
766 * when we're called for a write, we're already in the async
767 * submission context. Just jump into btrfs_map_bio
768 */
769 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
770 }
771
772 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
773 int mirror_num, unsigned long bio_flags,
774 u64 bio_offset)
775 {
776 int ret;
777
778 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
779 bio, 1);
780 BUG_ON(ret);
781
782 if (!(rw & REQ_WRITE)) {
783 /*
784 * called for a read, do the setup so that checksum validation
785 * can happen in the async kernel threads
786 */
787 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
788 mirror_num, 0);
789 }
790
791 /*
792 * kthread helpers are used to submit writes so that checksumming
793 * can happen in parallel across all CPUs
794 */
795 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
796 inode, rw, bio, mirror_num, 0,
797 bio_offset,
798 __btree_submit_bio_start,
799 __btree_submit_bio_done);
800 }
801
802 #ifdef CONFIG_MIGRATION
803 static int btree_migratepage(struct address_space *mapping,
804 struct page *newpage, struct page *page)
805 {
806 /*
807 * we can't safely write a btree page from here,
808 * we haven't done the locking hook
809 */
810 if (PageDirty(page))
811 return -EAGAIN;
812 /*
813 * Buffers may be managed in a filesystem specific way.
814 * We must have no buffers or drop them.
815 */
816 if (page_has_private(page) &&
817 !try_to_release_page(page, GFP_KERNEL))
818 return -EAGAIN;
819 return migrate_page(mapping, newpage, page);
820 }
821 #endif
822
823 static int btree_writepage(struct page *page, struct writeback_control *wbc)
824 {
825 struct extent_io_tree *tree;
826 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
827 struct extent_buffer *eb;
828 int was_dirty;
829
830 tree = &BTRFS_I(page->mapping->host)->io_tree;
831 if (!(current->flags & PF_MEMALLOC)) {
832 return extent_write_full_page(tree, page,
833 btree_get_extent, wbc);
834 }
835
836 redirty_page_for_writepage(wbc, page);
837 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
838 WARN_ON(!eb);
839
840 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
841 if (!was_dirty) {
842 spin_lock(&root->fs_info->delalloc_lock);
843 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
844 spin_unlock(&root->fs_info->delalloc_lock);
845 }
846 free_extent_buffer(eb);
847
848 unlock_page(page);
849 return 0;
850 }
851
852 static int btree_writepages(struct address_space *mapping,
853 struct writeback_control *wbc)
854 {
855 struct extent_io_tree *tree;
856 tree = &BTRFS_I(mapping->host)->io_tree;
857 if (wbc->sync_mode == WB_SYNC_NONE) {
858 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
859 u64 num_dirty;
860 unsigned long thresh = 32 * 1024 * 1024;
861
862 if (wbc->for_kupdate)
863 return 0;
864
865 /* this is a bit racy, but that's ok */
866 num_dirty = root->fs_info->dirty_metadata_bytes;
867 if (num_dirty < thresh)
868 return 0;
869 }
870 return extent_writepages(tree, mapping, btree_get_extent, wbc);
871 }
872
873 static int btree_readpage(struct file *file, struct page *page)
874 {
875 struct extent_io_tree *tree;
876 tree = &BTRFS_I(page->mapping->host)->io_tree;
877 return extent_read_full_page(tree, page, btree_get_extent);
878 }
879
880 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
881 {
882 struct extent_io_tree *tree;
883 struct extent_map_tree *map;
884 int ret;
885
886 if (PageWriteback(page) || PageDirty(page))
887 return 0;
888
889 tree = &BTRFS_I(page->mapping->host)->io_tree;
890 map = &BTRFS_I(page->mapping->host)->extent_tree;
891
892 ret = try_release_extent_state(map, tree, page, gfp_flags);
893 if (!ret)
894 return 0;
895
896 ret = try_release_extent_buffer(tree, page);
897 if (ret == 1) {
898 ClearPagePrivate(page);
899 set_page_private(page, 0);
900 page_cache_release(page);
901 }
902
903 return ret;
904 }
905
906 static void btree_invalidatepage(struct page *page, unsigned long offset)
907 {
908 struct extent_io_tree *tree;
909 tree = &BTRFS_I(page->mapping->host)->io_tree;
910 extent_invalidatepage(tree, page, offset);
911 btree_releasepage(page, GFP_NOFS);
912 if (PagePrivate(page)) {
913 printk(KERN_WARNING "btrfs warning page private not zero "
914 "on page %llu\n", (unsigned long long)page_offset(page));
915 ClearPagePrivate(page);
916 set_page_private(page, 0);
917 page_cache_release(page);
918 }
919 }
920
921 static const struct address_space_operations btree_aops = {
922 .readpage = btree_readpage,
923 .writepage = btree_writepage,
924 .writepages = btree_writepages,
925 .releasepage = btree_releasepage,
926 .invalidatepage = btree_invalidatepage,
927 #ifdef CONFIG_MIGRATION
928 .migratepage = btree_migratepage,
929 #endif
930 };
931
932 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
933 u64 parent_transid)
934 {
935 struct extent_buffer *buf = NULL;
936 struct inode *btree_inode = root->fs_info->btree_inode;
937 int ret = 0;
938
939 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
940 if (!buf)
941 return 0;
942 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
943 buf, 0, 0, btree_get_extent, 0);
944 free_extent_buffer(buf);
945 return ret;
946 }
947
948 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
949 u64 bytenr, u32 blocksize)
950 {
951 struct inode *btree_inode = root->fs_info->btree_inode;
952 struct extent_buffer *eb;
953 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
954 bytenr, blocksize);
955 return eb;
956 }
957
958 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
959 u64 bytenr, u32 blocksize)
960 {
961 struct inode *btree_inode = root->fs_info->btree_inode;
962 struct extent_buffer *eb;
963
964 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
965 bytenr, blocksize, NULL);
966 return eb;
967 }
968
969
970 int btrfs_write_tree_block(struct extent_buffer *buf)
971 {
972 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
973 buf->start + buf->len - 1);
974 }
975
976 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
977 {
978 return filemap_fdatawait_range(buf->first_page->mapping,
979 buf->start, buf->start + buf->len - 1);
980 }
981
982 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
983 u32 blocksize, u64 parent_transid)
984 {
985 struct extent_buffer *buf = NULL;
986 int ret;
987
988 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
989 if (!buf)
990 return NULL;
991
992 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
993
994 if (ret == 0)
995 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
996 return buf;
997
998 }
999
1000 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1001 struct extent_buffer *buf)
1002 {
1003 struct inode *btree_inode = root->fs_info->btree_inode;
1004 if (btrfs_header_generation(buf) ==
1005 root->fs_info->running_transaction->transid) {
1006 btrfs_assert_tree_locked(buf);
1007
1008 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1009 spin_lock(&root->fs_info->delalloc_lock);
1010 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1011 root->fs_info->dirty_metadata_bytes -= buf->len;
1012 else
1013 WARN_ON(1);
1014 spin_unlock(&root->fs_info->delalloc_lock);
1015 }
1016
1017 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1018 btrfs_set_lock_blocking(buf);
1019 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1020 buf);
1021 }
1022 return 0;
1023 }
1024
1025 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1026 u32 stripesize, struct btrfs_root *root,
1027 struct btrfs_fs_info *fs_info,
1028 u64 objectid)
1029 {
1030 root->node = NULL;
1031 root->commit_root = NULL;
1032 root->sectorsize = sectorsize;
1033 root->nodesize = nodesize;
1034 root->leafsize = leafsize;
1035 root->stripesize = stripesize;
1036 root->ref_cows = 0;
1037 root->track_dirty = 0;
1038 root->in_radix = 0;
1039 root->orphan_item_inserted = 0;
1040 root->orphan_cleanup_state = 0;
1041
1042 root->fs_info = fs_info;
1043 root->objectid = objectid;
1044 root->last_trans = 0;
1045 root->highest_objectid = 0;
1046 root->name = NULL;
1047 root->in_sysfs = 0;
1048 root->inode_tree = RB_ROOT;
1049 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1050 root->block_rsv = NULL;
1051 root->orphan_block_rsv = NULL;
1052
1053 INIT_LIST_HEAD(&root->dirty_list);
1054 INIT_LIST_HEAD(&root->orphan_list);
1055 INIT_LIST_HEAD(&root->root_list);
1056 spin_lock_init(&root->node_lock);
1057 spin_lock_init(&root->orphan_lock);
1058 spin_lock_init(&root->inode_lock);
1059 spin_lock_init(&root->accounting_lock);
1060 mutex_init(&root->objectid_mutex);
1061 mutex_init(&root->log_mutex);
1062 init_waitqueue_head(&root->log_writer_wait);
1063 init_waitqueue_head(&root->log_commit_wait[0]);
1064 init_waitqueue_head(&root->log_commit_wait[1]);
1065 atomic_set(&root->log_commit[0], 0);
1066 atomic_set(&root->log_commit[1], 0);
1067 atomic_set(&root->log_writers, 0);
1068 root->log_batch = 0;
1069 root->log_transid = 0;
1070 root->last_log_commit = 0;
1071 extent_io_tree_init(&root->dirty_log_pages,
1072 fs_info->btree_inode->i_mapping);
1073
1074 memset(&root->root_key, 0, sizeof(root->root_key));
1075 memset(&root->root_item, 0, sizeof(root->root_item));
1076 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1077 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1078 root->defrag_trans_start = fs_info->generation;
1079 init_completion(&root->kobj_unregister);
1080 root->defrag_running = 0;
1081 root->root_key.objectid = objectid;
1082 root->anon_super.s_root = NULL;
1083 root->anon_super.s_dev = 0;
1084 INIT_LIST_HEAD(&root->anon_super.s_list);
1085 INIT_LIST_HEAD(&root->anon_super.s_instances);
1086 init_rwsem(&root->anon_super.s_umount);
1087
1088 return 0;
1089 }
1090
1091 static int find_and_setup_root(struct btrfs_root *tree_root,
1092 struct btrfs_fs_info *fs_info,
1093 u64 objectid,
1094 struct btrfs_root *root)
1095 {
1096 int ret;
1097 u32 blocksize;
1098 u64 generation;
1099
1100 __setup_root(tree_root->nodesize, tree_root->leafsize,
1101 tree_root->sectorsize, tree_root->stripesize,
1102 root, fs_info, objectid);
1103 ret = btrfs_find_last_root(tree_root, objectid,
1104 &root->root_item, &root->root_key);
1105 if (ret > 0)
1106 return -ENOENT;
1107 BUG_ON(ret);
1108
1109 generation = btrfs_root_generation(&root->root_item);
1110 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1111 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1112 blocksize, generation);
1113 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1114 free_extent_buffer(root->node);
1115 return -EIO;
1116 }
1117 root->commit_root = btrfs_root_node(root);
1118 return 0;
1119 }
1120
1121 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1122 struct btrfs_fs_info *fs_info)
1123 {
1124 struct btrfs_root *root;
1125 struct btrfs_root *tree_root = fs_info->tree_root;
1126 struct extent_buffer *leaf;
1127
1128 root = kzalloc(sizeof(*root), GFP_NOFS);
1129 if (!root)
1130 return ERR_PTR(-ENOMEM);
1131
1132 __setup_root(tree_root->nodesize, tree_root->leafsize,
1133 tree_root->sectorsize, tree_root->stripesize,
1134 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1135
1136 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1137 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1138 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1139 /*
1140 * log trees do not get reference counted because they go away
1141 * before a real commit is actually done. They do store pointers
1142 * to file data extents, and those reference counts still get
1143 * updated (along with back refs to the log tree).
1144 */
1145 root->ref_cows = 0;
1146
1147 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1148 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1149 if (IS_ERR(leaf)) {
1150 kfree(root);
1151 return ERR_CAST(leaf);
1152 }
1153
1154 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1155 btrfs_set_header_bytenr(leaf, leaf->start);
1156 btrfs_set_header_generation(leaf, trans->transid);
1157 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1158 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1159 root->node = leaf;
1160
1161 write_extent_buffer(root->node, root->fs_info->fsid,
1162 (unsigned long)btrfs_header_fsid(root->node),
1163 BTRFS_FSID_SIZE);
1164 btrfs_mark_buffer_dirty(root->node);
1165 btrfs_tree_unlock(root->node);
1166 return root;
1167 }
1168
1169 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1170 struct btrfs_fs_info *fs_info)
1171 {
1172 struct btrfs_root *log_root;
1173
1174 log_root = alloc_log_tree(trans, fs_info);
1175 if (IS_ERR(log_root))
1176 return PTR_ERR(log_root);
1177 WARN_ON(fs_info->log_root_tree);
1178 fs_info->log_root_tree = log_root;
1179 return 0;
1180 }
1181
1182 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root)
1184 {
1185 struct btrfs_root *log_root;
1186 struct btrfs_inode_item *inode_item;
1187
1188 log_root = alloc_log_tree(trans, root->fs_info);
1189 if (IS_ERR(log_root))
1190 return PTR_ERR(log_root);
1191
1192 log_root->last_trans = trans->transid;
1193 log_root->root_key.offset = root->root_key.objectid;
1194
1195 inode_item = &log_root->root_item.inode;
1196 inode_item->generation = cpu_to_le64(1);
1197 inode_item->size = cpu_to_le64(3);
1198 inode_item->nlink = cpu_to_le32(1);
1199 inode_item->nbytes = cpu_to_le64(root->leafsize);
1200 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1201
1202 btrfs_set_root_node(&log_root->root_item, log_root->node);
1203
1204 WARN_ON(root->log_root);
1205 root->log_root = log_root;
1206 root->log_transid = 0;
1207 root->last_log_commit = 0;
1208 return 0;
1209 }
1210
1211 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1212 struct btrfs_key *location)
1213 {
1214 struct btrfs_root *root;
1215 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1216 struct btrfs_path *path;
1217 struct extent_buffer *l;
1218 u64 generation;
1219 u32 blocksize;
1220 int ret = 0;
1221
1222 root = kzalloc(sizeof(*root), GFP_NOFS);
1223 if (!root)
1224 return ERR_PTR(-ENOMEM);
1225 if (location->offset == (u64)-1) {
1226 ret = find_and_setup_root(tree_root, fs_info,
1227 location->objectid, root);
1228 if (ret) {
1229 kfree(root);
1230 return ERR_PTR(ret);
1231 }
1232 goto out;
1233 }
1234
1235 __setup_root(tree_root->nodesize, tree_root->leafsize,
1236 tree_root->sectorsize, tree_root->stripesize,
1237 root, fs_info, location->objectid);
1238
1239 path = btrfs_alloc_path();
1240 if (!path) {
1241 kfree(root);
1242 return ERR_PTR(-ENOMEM);
1243 }
1244 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1245 if (ret == 0) {
1246 l = path->nodes[0];
1247 read_extent_buffer(l, &root->root_item,
1248 btrfs_item_ptr_offset(l, path->slots[0]),
1249 sizeof(root->root_item));
1250 memcpy(&root->root_key, location, sizeof(*location));
1251 }
1252 btrfs_free_path(path);
1253 if (ret) {
1254 kfree(root);
1255 if (ret > 0)
1256 ret = -ENOENT;
1257 return ERR_PTR(ret);
1258 }
1259
1260 generation = btrfs_root_generation(&root->root_item);
1261 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1262 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1263 blocksize, generation);
1264 root->commit_root = btrfs_root_node(root);
1265 BUG_ON(!root->node);
1266 out:
1267 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1268 root->ref_cows = 1;
1269 btrfs_check_and_init_root_item(&root->root_item);
1270 }
1271
1272 return root;
1273 }
1274
1275 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1276 struct btrfs_key *location)
1277 {
1278 struct btrfs_root *root;
1279 int ret;
1280
1281 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1282 return fs_info->tree_root;
1283 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1284 return fs_info->extent_root;
1285 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1286 return fs_info->chunk_root;
1287 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1288 return fs_info->dev_root;
1289 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1290 return fs_info->csum_root;
1291 again:
1292 spin_lock(&fs_info->fs_roots_radix_lock);
1293 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1294 (unsigned long)location->objectid);
1295 spin_unlock(&fs_info->fs_roots_radix_lock);
1296 if (root)
1297 return root;
1298
1299 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1300 if (IS_ERR(root))
1301 return root;
1302
1303 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1304 if (!root->free_ino_ctl)
1305 goto fail;
1306 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1307 GFP_NOFS);
1308 if (!root->free_ino_pinned)
1309 goto fail;
1310
1311 btrfs_init_free_ino_ctl(root);
1312 mutex_init(&root->fs_commit_mutex);
1313 spin_lock_init(&root->cache_lock);
1314 init_waitqueue_head(&root->cache_wait);
1315
1316 set_anon_super(&root->anon_super, NULL);
1317
1318 if (btrfs_root_refs(&root->root_item) == 0) {
1319 ret = -ENOENT;
1320 goto fail;
1321 }
1322
1323 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1324 if (ret < 0)
1325 goto fail;
1326 if (ret == 0)
1327 root->orphan_item_inserted = 1;
1328
1329 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1330 if (ret)
1331 goto fail;
1332
1333 spin_lock(&fs_info->fs_roots_radix_lock);
1334 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1335 (unsigned long)root->root_key.objectid,
1336 root);
1337 if (ret == 0)
1338 root->in_radix = 1;
1339
1340 spin_unlock(&fs_info->fs_roots_radix_lock);
1341 radix_tree_preload_end();
1342 if (ret) {
1343 if (ret == -EEXIST) {
1344 free_fs_root(root);
1345 goto again;
1346 }
1347 goto fail;
1348 }
1349
1350 ret = btrfs_find_dead_roots(fs_info->tree_root,
1351 root->root_key.objectid);
1352 WARN_ON(ret);
1353 return root;
1354 fail:
1355 free_fs_root(root);
1356 return ERR_PTR(ret);
1357 }
1358
1359 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1360 {
1361 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1362 int ret = 0;
1363 struct btrfs_device *device;
1364 struct backing_dev_info *bdi;
1365
1366 list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1367 if (!device->bdev)
1368 continue;
1369 bdi = blk_get_backing_dev_info(device->bdev);
1370 if (bdi && bdi_congested(bdi, bdi_bits)) {
1371 ret = 1;
1372 break;
1373 }
1374 }
1375 return ret;
1376 }
1377
1378 /*
1379 * If this fails, caller must call bdi_destroy() to get rid of the
1380 * bdi again.
1381 */
1382 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1383 {
1384 int err;
1385
1386 bdi->capabilities = BDI_CAP_MAP_COPY;
1387 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1388 if (err)
1389 return err;
1390
1391 bdi->ra_pages = default_backing_dev_info.ra_pages;
1392 bdi->congested_fn = btrfs_congested_fn;
1393 bdi->congested_data = info;
1394 return 0;
1395 }
1396
1397 static int bio_ready_for_csum(struct bio *bio)
1398 {
1399 u64 length = 0;
1400 u64 buf_len = 0;
1401 u64 start = 0;
1402 struct page *page;
1403 struct extent_io_tree *io_tree = NULL;
1404 struct bio_vec *bvec;
1405 int i;
1406 int ret;
1407
1408 bio_for_each_segment(bvec, bio, i) {
1409 page = bvec->bv_page;
1410 if (page->private == EXTENT_PAGE_PRIVATE) {
1411 length += bvec->bv_len;
1412 continue;
1413 }
1414 if (!page->private) {
1415 length += bvec->bv_len;
1416 continue;
1417 }
1418 length = bvec->bv_len;
1419 buf_len = page->private >> 2;
1420 start = page_offset(page) + bvec->bv_offset;
1421 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1422 }
1423 /* are we fully contained in this bio? */
1424 if (buf_len <= length)
1425 return 1;
1426
1427 ret = extent_range_uptodate(io_tree, start + length,
1428 start + buf_len - 1);
1429 return ret;
1430 }
1431
1432 /*
1433 * called by the kthread helper functions to finally call the bio end_io
1434 * functions. This is where read checksum verification actually happens
1435 */
1436 static void end_workqueue_fn(struct btrfs_work *work)
1437 {
1438 struct bio *bio;
1439 struct end_io_wq *end_io_wq;
1440 struct btrfs_fs_info *fs_info;
1441 int error;
1442
1443 end_io_wq = container_of(work, struct end_io_wq, work);
1444 bio = end_io_wq->bio;
1445 fs_info = end_io_wq->info;
1446
1447 /* metadata bio reads are special because the whole tree block must
1448 * be checksummed at once. This makes sure the entire block is in
1449 * ram and up to date before trying to verify things. For
1450 * blocksize <= pagesize, it is basically a noop
1451 */
1452 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1453 !bio_ready_for_csum(bio)) {
1454 btrfs_queue_worker(&fs_info->endio_meta_workers,
1455 &end_io_wq->work);
1456 return;
1457 }
1458 error = end_io_wq->error;
1459 bio->bi_private = end_io_wq->private;
1460 bio->bi_end_io = end_io_wq->end_io;
1461 kfree(end_io_wq);
1462 bio_endio(bio, error);
1463 }
1464
1465 static int cleaner_kthread(void *arg)
1466 {
1467 struct btrfs_root *root = arg;
1468
1469 do {
1470 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1471
1472 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1473 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1474 btrfs_run_delayed_iputs(root);
1475 btrfs_clean_old_snapshots(root);
1476 mutex_unlock(&root->fs_info->cleaner_mutex);
1477 }
1478
1479 if (freezing(current)) {
1480 refrigerator();
1481 } else {
1482 set_current_state(TASK_INTERRUPTIBLE);
1483 if (!kthread_should_stop())
1484 schedule();
1485 __set_current_state(TASK_RUNNING);
1486 }
1487 } while (!kthread_should_stop());
1488 return 0;
1489 }
1490
1491 static int transaction_kthread(void *arg)
1492 {
1493 struct btrfs_root *root = arg;
1494 struct btrfs_trans_handle *trans;
1495 struct btrfs_transaction *cur;
1496 u64 transid;
1497 unsigned long now;
1498 unsigned long delay;
1499 int ret;
1500
1501 do {
1502 delay = HZ * 30;
1503 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1504 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1505
1506 spin_lock(&root->fs_info->new_trans_lock);
1507 cur = root->fs_info->running_transaction;
1508 if (!cur) {
1509 spin_unlock(&root->fs_info->new_trans_lock);
1510 goto sleep;
1511 }
1512
1513 now = get_seconds();
1514 if (!cur->blocked &&
1515 (now < cur->start_time || now - cur->start_time < 30)) {
1516 spin_unlock(&root->fs_info->new_trans_lock);
1517 delay = HZ * 5;
1518 goto sleep;
1519 }
1520 transid = cur->transid;
1521 spin_unlock(&root->fs_info->new_trans_lock);
1522
1523 trans = btrfs_join_transaction(root, 1);
1524 BUG_ON(IS_ERR(trans));
1525 if (transid == trans->transid) {
1526 ret = btrfs_commit_transaction(trans, root);
1527 BUG_ON(ret);
1528 } else {
1529 btrfs_end_transaction(trans, root);
1530 }
1531 sleep:
1532 wake_up_process(root->fs_info->cleaner_kthread);
1533 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1534
1535 if (freezing(current)) {
1536 refrigerator();
1537 } else {
1538 set_current_state(TASK_INTERRUPTIBLE);
1539 if (!kthread_should_stop() &&
1540 !btrfs_transaction_blocked(root->fs_info))
1541 schedule_timeout(delay);
1542 __set_current_state(TASK_RUNNING);
1543 }
1544 } while (!kthread_should_stop());
1545 return 0;
1546 }
1547
1548 struct btrfs_root *open_ctree(struct super_block *sb,
1549 struct btrfs_fs_devices *fs_devices,
1550 char *options)
1551 {
1552 u32 sectorsize;
1553 u32 nodesize;
1554 u32 leafsize;
1555 u32 blocksize;
1556 u32 stripesize;
1557 u64 generation;
1558 u64 features;
1559 struct btrfs_key location;
1560 struct buffer_head *bh;
1561 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1562 GFP_NOFS);
1563 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1564 GFP_NOFS);
1565 struct btrfs_root *tree_root = btrfs_sb(sb);
1566 struct btrfs_fs_info *fs_info = NULL;
1567 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1568 GFP_NOFS);
1569 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1570 GFP_NOFS);
1571 struct btrfs_root *log_tree_root;
1572
1573 int ret;
1574 int err = -EINVAL;
1575
1576 struct btrfs_super_block *disk_super;
1577
1578 if (!extent_root || !tree_root || !tree_root->fs_info ||
1579 !chunk_root || !dev_root || !csum_root) {
1580 err = -ENOMEM;
1581 goto fail;
1582 }
1583 fs_info = tree_root->fs_info;
1584
1585 ret = init_srcu_struct(&fs_info->subvol_srcu);
1586 if (ret) {
1587 err = ret;
1588 goto fail;
1589 }
1590
1591 ret = setup_bdi(fs_info, &fs_info->bdi);
1592 if (ret) {
1593 err = ret;
1594 goto fail_srcu;
1595 }
1596
1597 fs_info->btree_inode = new_inode(sb);
1598 if (!fs_info->btree_inode) {
1599 err = -ENOMEM;
1600 goto fail_bdi;
1601 }
1602
1603 fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
1604
1605 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1606 INIT_LIST_HEAD(&fs_info->trans_list);
1607 INIT_LIST_HEAD(&fs_info->dead_roots);
1608 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1609 INIT_LIST_HEAD(&fs_info->hashers);
1610 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1611 INIT_LIST_HEAD(&fs_info->ordered_operations);
1612 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1613 spin_lock_init(&fs_info->delalloc_lock);
1614 spin_lock_init(&fs_info->new_trans_lock);
1615 spin_lock_init(&fs_info->ref_cache_lock);
1616 spin_lock_init(&fs_info->fs_roots_radix_lock);
1617 spin_lock_init(&fs_info->delayed_iput_lock);
1618
1619 init_completion(&fs_info->kobj_unregister);
1620 fs_info->tree_root = tree_root;
1621 fs_info->extent_root = extent_root;
1622 fs_info->csum_root = csum_root;
1623 fs_info->chunk_root = chunk_root;
1624 fs_info->dev_root = dev_root;
1625 fs_info->fs_devices = fs_devices;
1626 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1627 INIT_LIST_HEAD(&fs_info->space_info);
1628 btrfs_mapping_init(&fs_info->mapping_tree);
1629 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1630 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1631 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1632 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1633 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1634 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1635 mutex_init(&fs_info->durable_block_rsv_mutex);
1636 atomic_set(&fs_info->nr_async_submits, 0);
1637 atomic_set(&fs_info->async_delalloc_pages, 0);
1638 atomic_set(&fs_info->async_submit_draining, 0);
1639 atomic_set(&fs_info->nr_async_bios, 0);
1640 fs_info->sb = sb;
1641 fs_info->max_inline = 8192 * 1024;
1642 fs_info->metadata_ratio = 0;
1643
1644 fs_info->thread_pool_size = min_t(unsigned long,
1645 num_online_cpus() + 2, 8);
1646
1647 INIT_LIST_HEAD(&fs_info->ordered_extents);
1648 spin_lock_init(&fs_info->ordered_extent_lock);
1649 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1650 GFP_NOFS);
1651 if (!fs_info->delayed_root) {
1652 err = -ENOMEM;
1653 goto fail_iput;
1654 }
1655 btrfs_init_delayed_root(fs_info->delayed_root);
1656
1657 sb->s_blocksize = 4096;
1658 sb->s_blocksize_bits = blksize_bits(4096);
1659 sb->s_bdi = &fs_info->bdi;
1660
1661 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1662 fs_info->btree_inode->i_nlink = 1;
1663 /*
1664 * we set the i_size on the btree inode to the max possible int.
1665 * the real end of the address space is determined by all of
1666 * the devices in the system
1667 */
1668 fs_info->btree_inode->i_size = OFFSET_MAX;
1669 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1670 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1671
1672 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1673 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1674 fs_info->btree_inode->i_mapping);
1675 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1676
1677 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1678
1679 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1680 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1681 sizeof(struct btrfs_key));
1682 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1683 insert_inode_hash(fs_info->btree_inode);
1684
1685 spin_lock_init(&fs_info->block_group_cache_lock);
1686 fs_info->block_group_cache_tree = RB_ROOT;
1687
1688 extent_io_tree_init(&fs_info->freed_extents[0],
1689 fs_info->btree_inode->i_mapping);
1690 extent_io_tree_init(&fs_info->freed_extents[1],
1691 fs_info->btree_inode->i_mapping);
1692 fs_info->pinned_extents = &fs_info->freed_extents[0];
1693 fs_info->do_barriers = 1;
1694
1695
1696 mutex_init(&fs_info->trans_mutex);
1697 mutex_init(&fs_info->ordered_operations_mutex);
1698 mutex_init(&fs_info->tree_log_mutex);
1699 mutex_init(&fs_info->chunk_mutex);
1700 mutex_init(&fs_info->transaction_kthread_mutex);
1701 mutex_init(&fs_info->cleaner_mutex);
1702 mutex_init(&fs_info->volume_mutex);
1703 init_rwsem(&fs_info->extent_commit_sem);
1704 init_rwsem(&fs_info->cleanup_work_sem);
1705 init_rwsem(&fs_info->subvol_sem);
1706
1707 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1708 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1709
1710 init_waitqueue_head(&fs_info->transaction_throttle);
1711 init_waitqueue_head(&fs_info->transaction_wait);
1712 init_waitqueue_head(&fs_info->transaction_blocked_wait);
1713 init_waitqueue_head(&fs_info->async_submit_wait);
1714
1715 __setup_root(4096, 4096, 4096, 4096, tree_root,
1716 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1717
1718 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1719 if (!bh) {
1720 err = -EINVAL;
1721 goto fail_alloc;
1722 }
1723
1724 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1725 memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1726 sizeof(fs_info->super_for_commit));
1727 brelse(bh);
1728
1729 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1730
1731 disk_super = &fs_info->super_copy;
1732 if (!btrfs_super_root(disk_super))
1733 goto fail_alloc;
1734
1735 /* check FS state, whether FS is broken. */
1736 fs_info->fs_state |= btrfs_super_flags(disk_super);
1737
1738 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1739
1740 /*
1741 * In the long term, we'll store the compression type in the super
1742 * block, and it'll be used for per file compression control.
1743 */
1744 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1745
1746 ret = btrfs_parse_options(tree_root, options);
1747 if (ret) {
1748 err = ret;
1749 goto fail_alloc;
1750 }
1751
1752 features = btrfs_super_incompat_flags(disk_super) &
1753 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1754 if (features) {
1755 printk(KERN_ERR "BTRFS: couldn't mount because of "
1756 "unsupported optional features (%Lx).\n",
1757 (unsigned long long)features);
1758 err = -EINVAL;
1759 goto fail_alloc;
1760 }
1761
1762 features = btrfs_super_incompat_flags(disk_super);
1763 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1764 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1765 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1766 btrfs_set_super_incompat_flags(disk_super, features);
1767
1768 features = btrfs_super_compat_ro_flags(disk_super) &
1769 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1770 if (!(sb->s_flags & MS_RDONLY) && features) {
1771 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1772 "unsupported option features (%Lx).\n",
1773 (unsigned long long)features);
1774 err = -EINVAL;
1775 goto fail_alloc;
1776 }
1777
1778 btrfs_init_workers(&fs_info->generic_worker,
1779 "genwork", 1, NULL);
1780
1781 btrfs_init_workers(&fs_info->workers, "worker",
1782 fs_info->thread_pool_size,
1783 &fs_info->generic_worker);
1784
1785 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1786 fs_info->thread_pool_size,
1787 &fs_info->generic_worker);
1788
1789 btrfs_init_workers(&fs_info->submit_workers, "submit",
1790 min_t(u64, fs_devices->num_devices,
1791 fs_info->thread_pool_size),
1792 &fs_info->generic_worker);
1793
1794 /* a higher idle thresh on the submit workers makes it much more
1795 * likely that bios will be send down in a sane order to the
1796 * devices
1797 */
1798 fs_info->submit_workers.idle_thresh = 64;
1799
1800 fs_info->workers.idle_thresh = 16;
1801 fs_info->workers.ordered = 1;
1802
1803 fs_info->delalloc_workers.idle_thresh = 2;
1804 fs_info->delalloc_workers.ordered = 1;
1805
1806 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1807 &fs_info->generic_worker);
1808 btrfs_init_workers(&fs_info->endio_workers, "endio",
1809 fs_info->thread_pool_size,
1810 &fs_info->generic_worker);
1811 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1812 fs_info->thread_pool_size,
1813 &fs_info->generic_worker);
1814 btrfs_init_workers(&fs_info->endio_meta_write_workers,
1815 "endio-meta-write", fs_info->thread_pool_size,
1816 &fs_info->generic_worker);
1817 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1818 fs_info->thread_pool_size,
1819 &fs_info->generic_worker);
1820 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1821 1, &fs_info->generic_worker);
1822 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
1823 fs_info->thread_pool_size,
1824 &fs_info->generic_worker);
1825
1826 /*
1827 * endios are largely parallel and should have a very
1828 * low idle thresh
1829 */
1830 fs_info->endio_workers.idle_thresh = 4;
1831 fs_info->endio_meta_workers.idle_thresh = 4;
1832
1833 fs_info->endio_write_workers.idle_thresh = 2;
1834 fs_info->endio_meta_write_workers.idle_thresh = 2;
1835
1836 btrfs_start_workers(&fs_info->workers, 1);
1837 btrfs_start_workers(&fs_info->generic_worker, 1);
1838 btrfs_start_workers(&fs_info->submit_workers, 1);
1839 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1840 btrfs_start_workers(&fs_info->fixup_workers, 1);
1841 btrfs_start_workers(&fs_info->endio_workers, 1);
1842 btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1843 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1844 btrfs_start_workers(&fs_info->endio_write_workers, 1);
1845 btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1846 btrfs_start_workers(&fs_info->delayed_workers, 1);
1847
1848 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1849 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1850 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1851
1852 nodesize = btrfs_super_nodesize(disk_super);
1853 leafsize = btrfs_super_leafsize(disk_super);
1854 sectorsize = btrfs_super_sectorsize(disk_super);
1855 stripesize = btrfs_super_stripesize(disk_super);
1856 tree_root->nodesize = nodesize;
1857 tree_root->leafsize = leafsize;
1858 tree_root->sectorsize = sectorsize;
1859 tree_root->stripesize = stripesize;
1860
1861 sb->s_blocksize = sectorsize;
1862 sb->s_blocksize_bits = blksize_bits(sectorsize);
1863
1864 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1865 sizeof(disk_super->magic))) {
1866 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1867 goto fail_sb_buffer;
1868 }
1869
1870 mutex_lock(&fs_info->chunk_mutex);
1871 ret = btrfs_read_sys_array(tree_root);
1872 mutex_unlock(&fs_info->chunk_mutex);
1873 if (ret) {
1874 printk(KERN_WARNING "btrfs: failed to read the system "
1875 "array on %s\n", sb->s_id);
1876 goto fail_sb_buffer;
1877 }
1878
1879 blocksize = btrfs_level_size(tree_root,
1880 btrfs_super_chunk_root_level(disk_super));
1881 generation = btrfs_super_chunk_root_generation(disk_super);
1882
1883 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1884 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1885
1886 chunk_root->node = read_tree_block(chunk_root,
1887 btrfs_super_chunk_root(disk_super),
1888 blocksize, generation);
1889 BUG_ON(!chunk_root->node);
1890 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1891 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1892 sb->s_id);
1893 goto fail_chunk_root;
1894 }
1895 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1896 chunk_root->commit_root = btrfs_root_node(chunk_root);
1897
1898 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1899 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1900 BTRFS_UUID_SIZE);
1901
1902 mutex_lock(&fs_info->chunk_mutex);
1903 ret = btrfs_read_chunk_tree(chunk_root);
1904 mutex_unlock(&fs_info->chunk_mutex);
1905 if (ret) {
1906 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1907 sb->s_id);
1908 goto fail_chunk_root;
1909 }
1910
1911 btrfs_close_extra_devices(fs_devices);
1912
1913 blocksize = btrfs_level_size(tree_root,
1914 btrfs_super_root_level(disk_super));
1915 generation = btrfs_super_generation(disk_super);
1916
1917 tree_root->node = read_tree_block(tree_root,
1918 btrfs_super_root(disk_super),
1919 blocksize, generation);
1920 if (!tree_root->node)
1921 goto fail_chunk_root;
1922 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1923 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1924 sb->s_id);
1925 goto fail_tree_root;
1926 }
1927 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1928 tree_root->commit_root = btrfs_root_node(tree_root);
1929
1930 ret = find_and_setup_root(tree_root, fs_info,
1931 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1932 if (ret)
1933 goto fail_tree_root;
1934 extent_root->track_dirty = 1;
1935
1936 ret = find_and_setup_root(tree_root, fs_info,
1937 BTRFS_DEV_TREE_OBJECTID, dev_root);
1938 if (ret)
1939 goto fail_extent_root;
1940 dev_root->track_dirty = 1;
1941
1942 ret = find_and_setup_root(tree_root, fs_info,
1943 BTRFS_CSUM_TREE_OBJECTID, csum_root);
1944 if (ret)
1945 goto fail_dev_root;
1946
1947 csum_root->track_dirty = 1;
1948
1949 fs_info->generation = generation;
1950 fs_info->last_trans_committed = generation;
1951 fs_info->data_alloc_profile = (u64)-1;
1952 fs_info->metadata_alloc_profile = (u64)-1;
1953 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1954
1955 ret = btrfs_init_space_info(fs_info);
1956 if (ret) {
1957 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
1958 goto fail_block_groups;
1959 }
1960
1961 ret = btrfs_read_block_groups(extent_root);
1962 if (ret) {
1963 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1964 goto fail_block_groups;
1965 }
1966
1967 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1968 "btrfs-cleaner");
1969 if (IS_ERR(fs_info->cleaner_kthread))
1970 goto fail_block_groups;
1971
1972 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1973 tree_root,
1974 "btrfs-transaction");
1975 if (IS_ERR(fs_info->transaction_kthread))
1976 goto fail_cleaner;
1977
1978 if (!btrfs_test_opt(tree_root, SSD) &&
1979 !btrfs_test_opt(tree_root, NOSSD) &&
1980 !fs_info->fs_devices->rotating) {
1981 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1982 "mode\n");
1983 btrfs_set_opt(fs_info->mount_opt, SSD);
1984 }
1985
1986 /* do not make disk changes in broken FS */
1987 if (btrfs_super_log_root(disk_super) != 0 &&
1988 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
1989 u64 bytenr = btrfs_super_log_root(disk_super);
1990
1991 if (fs_devices->rw_devices == 0) {
1992 printk(KERN_WARNING "Btrfs log replay required "
1993 "on RO media\n");
1994 err = -EIO;
1995 goto fail_trans_kthread;
1996 }
1997 blocksize =
1998 btrfs_level_size(tree_root,
1999 btrfs_super_log_root_level(disk_super));
2000
2001 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2002 if (!log_tree_root) {
2003 err = -ENOMEM;
2004 goto fail_trans_kthread;
2005 }
2006
2007 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2008 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2009
2010 log_tree_root->node = read_tree_block(tree_root, bytenr,
2011 blocksize,
2012 generation + 1);
2013 ret = btrfs_recover_log_trees(log_tree_root);
2014 BUG_ON(ret);
2015
2016 if (sb->s_flags & MS_RDONLY) {
2017 ret = btrfs_commit_super(tree_root);
2018 BUG_ON(ret);
2019 }
2020 }
2021
2022 ret = btrfs_find_orphan_roots(tree_root);
2023 BUG_ON(ret);
2024
2025 if (!(sb->s_flags & MS_RDONLY)) {
2026 ret = btrfs_cleanup_fs_roots(fs_info);
2027 BUG_ON(ret);
2028
2029 ret = btrfs_recover_relocation(tree_root);
2030 if (ret < 0) {
2031 printk(KERN_WARNING
2032 "btrfs: failed to recover relocation\n");
2033 err = -EINVAL;
2034 goto fail_trans_kthread;
2035 }
2036 }
2037
2038 location.objectid = BTRFS_FS_TREE_OBJECTID;
2039 location.type = BTRFS_ROOT_ITEM_KEY;
2040 location.offset = (u64)-1;
2041
2042 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2043 if (!fs_info->fs_root)
2044 goto fail_trans_kthread;
2045 if (IS_ERR(fs_info->fs_root)) {
2046 err = PTR_ERR(fs_info->fs_root);
2047 goto fail_trans_kthread;
2048 }
2049
2050 if (!(sb->s_flags & MS_RDONLY)) {
2051 down_read(&fs_info->cleanup_work_sem);
2052 err = btrfs_orphan_cleanup(fs_info->fs_root);
2053 if (!err)
2054 err = btrfs_orphan_cleanup(fs_info->tree_root);
2055 up_read(&fs_info->cleanup_work_sem);
2056 if (err) {
2057 close_ctree(tree_root);
2058 return ERR_PTR(err);
2059 }
2060 }
2061
2062 return tree_root;
2063
2064 fail_trans_kthread:
2065 kthread_stop(fs_info->transaction_kthread);
2066 fail_cleaner:
2067 kthread_stop(fs_info->cleaner_kthread);
2068
2069 /*
2070 * make sure we're done with the btree inode before we stop our
2071 * kthreads
2072 */
2073 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2074 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2075
2076 fail_block_groups:
2077 btrfs_free_block_groups(fs_info);
2078 free_extent_buffer(csum_root->node);
2079 free_extent_buffer(csum_root->commit_root);
2080 fail_dev_root:
2081 free_extent_buffer(dev_root->node);
2082 free_extent_buffer(dev_root->commit_root);
2083 fail_extent_root:
2084 free_extent_buffer(extent_root->node);
2085 free_extent_buffer(extent_root->commit_root);
2086 fail_tree_root:
2087 free_extent_buffer(tree_root->node);
2088 free_extent_buffer(tree_root->commit_root);
2089 fail_chunk_root:
2090 free_extent_buffer(chunk_root->node);
2091 free_extent_buffer(chunk_root->commit_root);
2092 fail_sb_buffer:
2093 btrfs_stop_workers(&fs_info->generic_worker);
2094 btrfs_stop_workers(&fs_info->fixup_workers);
2095 btrfs_stop_workers(&fs_info->delalloc_workers);
2096 btrfs_stop_workers(&fs_info->workers);
2097 btrfs_stop_workers(&fs_info->endio_workers);
2098 btrfs_stop_workers(&fs_info->endio_meta_workers);
2099 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2100 btrfs_stop_workers(&fs_info->endio_write_workers);
2101 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2102 btrfs_stop_workers(&fs_info->submit_workers);
2103 btrfs_stop_workers(&fs_info->delayed_workers);
2104 fail_alloc:
2105 kfree(fs_info->delayed_root);
2106 fail_iput:
2107 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2108 iput(fs_info->btree_inode);
2109
2110 btrfs_close_devices(fs_info->fs_devices);
2111 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2112 fail_bdi:
2113 bdi_destroy(&fs_info->bdi);
2114 fail_srcu:
2115 cleanup_srcu_struct(&fs_info->subvol_srcu);
2116 fail:
2117 kfree(extent_root);
2118 kfree(tree_root);
2119 kfree(fs_info);
2120 kfree(chunk_root);
2121 kfree(dev_root);
2122 kfree(csum_root);
2123 return ERR_PTR(err);
2124 }
2125
2126 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2127 {
2128 char b[BDEVNAME_SIZE];
2129
2130 if (uptodate) {
2131 set_buffer_uptodate(bh);
2132 } else {
2133 printk_ratelimited(KERN_WARNING "lost page write due to "
2134 "I/O error on %s\n",
2135 bdevname(bh->b_bdev, b));
2136 /* note, we dont' set_buffer_write_io_error because we have
2137 * our own ways of dealing with the IO errors
2138 */
2139 clear_buffer_uptodate(bh);
2140 }
2141 unlock_buffer(bh);
2142 put_bh(bh);
2143 }
2144
2145 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2146 {
2147 struct buffer_head *bh;
2148 struct buffer_head *latest = NULL;
2149 struct btrfs_super_block *super;
2150 int i;
2151 u64 transid = 0;
2152 u64 bytenr;
2153
2154 /* we would like to check all the supers, but that would make
2155 * a btrfs mount succeed after a mkfs from a different FS.
2156 * So, we need to add a special mount option to scan for
2157 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2158 */
2159 for (i = 0; i < 1; i++) {
2160 bytenr = btrfs_sb_offset(i);
2161 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2162 break;
2163 bh = __bread(bdev, bytenr / 4096, 4096);
2164 if (!bh)
2165 continue;
2166
2167 super = (struct btrfs_super_block *)bh->b_data;
2168 if (btrfs_super_bytenr(super) != bytenr ||
2169 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2170 sizeof(super->magic))) {
2171 brelse(bh);
2172 continue;
2173 }
2174
2175 if (!latest || btrfs_super_generation(super) > transid) {
2176 brelse(latest);
2177 latest = bh;
2178 transid = btrfs_super_generation(super);
2179 } else {
2180 brelse(bh);
2181 }
2182 }
2183 return latest;
2184 }
2185
2186 /*
2187 * this should be called twice, once with wait == 0 and
2188 * once with wait == 1. When wait == 0 is done, all the buffer heads
2189 * we write are pinned.
2190 *
2191 * They are released when wait == 1 is done.
2192 * max_mirrors must be the same for both runs, and it indicates how
2193 * many supers on this one device should be written.
2194 *
2195 * max_mirrors == 0 means to write them all.
2196 */
2197 static int write_dev_supers(struct btrfs_device *device,
2198 struct btrfs_super_block *sb,
2199 int do_barriers, int wait, int max_mirrors)
2200 {
2201 struct buffer_head *bh;
2202 int i;
2203 int ret;
2204 int errors = 0;
2205 u32 crc;
2206 u64 bytenr;
2207 int last_barrier = 0;
2208
2209 if (max_mirrors == 0)
2210 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2211
2212 /* make sure only the last submit_bh does a barrier */
2213 if (do_barriers) {
2214 for (i = 0; i < max_mirrors; i++) {
2215 bytenr = btrfs_sb_offset(i);
2216 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2217 device->total_bytes)
2218 break;
2219 last_barrier = i;
2220 }
2221 }
2222
2223 for (i = 0; i < max_mirrors; i++) {
2224 bytenr = btrfs_sb_offset(i);
2225 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2226 break;
2227
2228 if (wait) {
2229 bh = __find_get_block(device->bdev, bytenr / 4096,
2230 BTRFS_SUPER_INFO_SIZE);
2231 BUG_ON(!bh);
2232 wait_on_buffer(bh);
2233 if (!buffer_uptodate(bh))
2234 errors++;
2235
2236 /* drop our reference */
2237 brelse(bh);
2238
2239 /* drop the reference from the wait == 0 run */
2240 brelse(bh);
2241 continue;
2242 } else {
2243 btrfs_set_super_bytenr(sb, bytenr);
2244
2245 crc = ~(u32)0;
2246 crc = btrfs_csum_data(NULL, (char *)sb +
2247 BTRFS_CSUM_SIZE, crc,
2248 BTRFS_SUPER_INFO_SIZE -
2249 BTRFS_CSUM_SIZE);
2250 btrfs_csum_final(crc, sb->csum);
2251
2252 /*
2253 * one reference for us, and we leave it for the
2254 * caller
2255 */
2256 bh = __getblk(device->bdev, bytenr / 4096,
2257 BTRFS_SUPER_INFO_SIZE);
2258 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2259
2260 /* one reference for submit_bh */
2261 get_bh(bh);
2262
2263 set_buffer_uptodate(bh);
2264 lock_buffer(bh);
2265 bh->b_end_io = btrfs_end_buffer_write_sync;
2266 }
2267
2268 if (i == last_barrier && do_barriers)
2269 ret = submit_bh(WRITE_FLUSH_FUA, bh);
2270 else
2271 ret = submit_bh(WRITE_SYNC, bh);
2272
2273 if (ret)
2274 errors++;
2275 }
2276 return errors < i ? 0 : -1;
2277 }
2278
2279 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2280 {
2281 struct list_head *head;
2282 struct btrfs_device *dev;
2283 struct btrfs_super_block *sb;
2284 struct btrfs_dev_item *dev_item;
2285 int ret;
2286 int do_barriers;
2287 int max_errors;
2288 int total_errors = 0;
2289 u64 flags;
2290
2291 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2292 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2293
2294 sb = &root->fs_info->super_for_commit;
2295 dev_item = &sb->dev_item;
2296
2297 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2298 head = &root->fs_info->fs_devices->devices;
2299 list_for_each_entry(dev, head, dev_list) {
2300 if (!dev->bdev) {
2301 total_errors++;
2302 continue;
2303 }
2304 if (!dev->in_fs_metadata || !dev->writeable)
2305 continue;
2306
2307 btrfs_set_stack_device_generation(dev_item, 0);
2308 btrfs_set_stack_device_type(dev_item, dev->type);
2309 btrfs_set_stack_device_id(dev_item, dev->devid);
2310 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2311 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2312 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2313 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2314 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2315 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2316 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2317
2318 flags = btrfs_super_flags(sb);
2319 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2320
2321 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2322 if (ret)
2323 total_errors++;
2324 }
2325 if (total_errors > max_errors) {
2326 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2327 total_errors);
2328 BUG();
2329 }
2330
2331 total_errors = 0;
2332 list_for_each_entry(dev, head, dev_list) {
2333 if (!dev->bdev)
2334 continue;
2335 if (!dev->in_fs_metadata || !dev->writeable)
2336 continue;
2337
2338 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2339 if (ret)
2340 total_errors++;
2341 }
2342 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2343 if (total_errors > max_errors) {
2344 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2345 total_errors);
2346 BUG();
2347 }
2348 return 0;
2349 }
2350
2351 int write_ctree_super(struct btrfs_trans_handle *trans,
2352 struct btrfs_root *root, int max_mirrors)
2353 {
2354 int ret;
2355
2356 ret = write_all_supers(root, max_mirrors);
2357 return ret;
2358 }
2359
2360 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2361 {
2362 spin_lock(&fs_info->fs_roots_radix_lock);
2363 radix_tree_delete(&fs_info->fs_roots_radix,
2364 (unsigned long)root->root_key.objectid);
2365 spin_unlock(&fs_info->fs_roots_radix_lock);
2366
2367 if (btrfs_root_refs(&root->root_item) == 0)
2368 synchronize_srcu(&fs_info->subvol_srcu);
2369
2370 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2371 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2372 free_fs_root(root);
2373 return 0;
2374 }
2375
2376 static void free_fs_root(struct btrfs_root *root)
2377 {
2378 iput(root->cache_inode);
2379 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2380 if (root->anon_super.s_dev) {
2381 down_write(&root->anon_super.s_umount);
2382 kill_anon_super(&root->anon_super);
2383 }
2384 free_extent_buffer(root->node);
2385 free_extent_buffer(root->commit_root);
2386 kfree(root->free_ino_ctl);
2387 kfree(root->free_ino_pinned);
2388 kfree(root->name);
2389 kfree(root);
2390 }
2391
2392 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2393 {
2394 int ret;
2395 struct btrfs_root *gang[8];
2396 int i;
2397
2398 while (!list_empty(&fs_info->dead_roots)) {
2399 gang[0] = list_entry(fs_info->dead_roots.next,
2400 struct btrfs_root, root_list);
2401 list_del(&gang[0]->root_list);
2402
2403 if (gang[0]->in_radix) {
2404 btrfs_free_fs_root(fs_info, gang[0]);
2405 } else {
2406 free_extent_buffer(gang[0]->node);
2407 free_extent_buffer(gang[0]->commit_root);
2408 kfree(gang[0]);
2409 }
2410 }
2411
2412 while (1) {
2413 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2414 (void **)gang, 0,
2415 ARRAY_SIZE(gang));
2416 if (!ret)
2417 break;
2418 for (i = 0; i < ret; i++)
2419 btrfs_free_fs_root(fs_info, gang[i]);
2420 }
2421 return 0;
2422 }
2423
2424 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2425 {
2426 u64 root_objectid = 0;
2427 struct btrfs_root *gang[8];
2428 int i;
2429 int ret;
2430
2431 while (1) {
2432 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2433 (void **)gang, root_objectid,
2434 ARRAY_SIZE(gang));
2435 if (!ret)
2436 break;
2437
2438 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2439 for (i = 0; i < ret; i++) {
2440 int err;
2441
2442 root_objectid = gang[i]->root_key.objectid;
2443 err = btrfs_orphan_cleanup(gang[i]);
2444 if (err)
2445 return err;
2446 }
2447 root_objectid++;
2448 }
2449 return 0;
2450 }
2451
2452 int btrfs_commit_super(struct btrfs_root *root)
2453 {
2454 struct btrfs_trans_handle *trans;
2455 int ret;
2456
2457 mutex_lock(&root->fs_info->cleaner_mutex);
2458 btrfs_run_delayed_iputs(root);
2459 btrfs_clean_old_snapshots(root);
2460 mutex_unlock(&root->fs_info->cleaner_mutex);
2461
2462 /* wait until ongoing cleanup work done */
2463 down_write(&root->fs_info->cleanup_work_sem);
2464 up_write(&root->fs_info->cleanup_work_sem);
2465
2466 trans = btrfs_join_transaction(root, 1);
2467 if (IS_ERR(trans))
2468 return PTR_ERR(trans);
2469 ret = btrfs_commit_transaction(trans, root);
2470 BUG_ON(ret);
2471 /* run commit again to drop the original snapshot */
2472 trans = btrfs_join_transaction(root, 1);
2473 if (IS_ERR(trans))
2474 return PTR_ERR(trans);
2475 btrfs_commit_transaction(trans, root);
2476 ret = btrfs_write_and_wait_transaction(NULL, root);
2477 BUG_ON(ret);
2478
2479 ret = write_ctree_super(NULL, root, 0);
2480 return ret;
2481 }
2482
2483 int close_ctree(struct btrfs_root *root)
2484 {
2485 struct btrfs_fs_info *fs_info = root->fs_info;
2486 int ret;
2487
2488 fs_info->closing = 1;
2489 smp_mb();
2490
2491 btrfs_put_block_group_cache(fs_info);
2492
2493 /*
2494 * Here come 2 situations when btrfs is broken to flip readonly:
2495 *
2496 * 1. when btrfs flips readonly somewhere else before
2497 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2498 * and btrfs will skip to write sb directly to keep
2499 * ERROR state on disk.
2500 *
2501 * 2. when btrfs flips readonly just in btrfs_commit_super,
2502 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2503 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2504 * btrfs will cleanup all FS resources first and write sb then.
2505 */
2506 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2507 ret = btrfs_commit_super(root);
2508 if (ret)
2509 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2510 }
2511
2512 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2513 ret = btrfs_error_commit_super(root);
2514 if (ret)
2515 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2516 }
2517
2518 kthread_stop(root->fs_info->transaction_kthread);
2519 kthread_stop(root->fs_info->cleaner_kthread);
2520
2521 fs_info->closing = 2;
2522 smp_mb();
2523
2524 if (fs_info->delalloc_bytes) {
2525 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2526 (unsigned long long)fs_info->delalloc_bytes);
2527 }
2528 if (fs_info->total_ref_cache_size) {
2529 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2530 (unsigned long long)fs_info->total_ref_cache_size);
2531 }
2532
2533 free_extent_buffer(fs_info->extent_root->node);
2534 free_extent_buffer(fs_info->extent_root->commit_root);
2535 free_extent_buffer(fs_info->tree_root->node);
2536 free_extent_buffer(fs_info->tree_root->commit_root);
2537 free_extent_buffer(root->fs_info->chunk_root->node);
2538 free_extent_buffer(root->fs_info->chunk_root->commit_root);
2539 free_extent_buffer(root->fs_info->dev_root->node);
2540 free_extent_buffer(root->fs_info->dev_root->commit_root);
2541 free_extent_buffer(root->fs_info->csum_root->node);
2542 free_extent_buffer(root->fs_info->csum_root->commit_root);
2543
2544 btrfs_free_block_groups(root->fs_info);
2545
2546 del_fs_roots(fs_info);
2547
2548 iput(fs_info->btree_inode);
2549 kfree(fs_info->delayed_root);
2550
2551 btrfs_stop_workers(&fs_info->generic_worker);
2552 btrfs_stop_workers(&fs_info->fixup_workers);
2553 btrfs_stop_workers(&fs_info->delalloc_workers);
2554 btrfs_stop_workers(&fs_info->workers);
2555 btrfs_stop_workers(&fs_info->endio_workers);
2556 btrfs_stop_workers(&fs_info->endio_meta_workers);
2557 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2558 btrfs_stop_workers(&fs_info->endio_write_workers);
2559 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2560 btrfs_stop_workers(&fs_info->submit_workers);
2561 btrfs_stop_workers(&fs_info->delayed_workers);
2562
2563 btrfs_close_devices(fs_info->fs_devices);
2564 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2565
2566 bdi_destroy(&fs_info->bdi);
2567 cleanup_srcu_struct(&fs_info->subvol_srcu);
2568
2569 kfree(fs_info->extent_root);
2570 kfree(fs_info->tree_root);
2571 kfree(fs_info->chunk_root);
2572 kfree(fs_info->dev_root);
2573 kfree(fs_info->csum_root);
2574 kfree(fs_info);
2575
2576 return 0;
2577 }
2578
2579 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2580 {
2581 int ret;
2582 struct inode *btree_inode = buf->first_page->mapping->host;
2583
2584 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2585 NULL);
2586 if (!ret)
2587 return ret;
2588
2589 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2590 parent_transid);
2591 return !ret;
2592 }
2593
2594 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2595 {
2596 struct inode *btree_inode = buf->first_page->mapping->host;
2597 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2598 buf);
2599 }
2600
2601 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2602 {
2603 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2604 u64 transid = btrfs_header_generation(buf);
2605 struct inode *btree_inode = root->fs_info->btree_inode;
2606 int was_dirty;
2607
2608 btrfs_assert_tree_locked(buf);
2609 if (transid != root->fs_info->generation) {
2610 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2611 "found %llu running %llu\n",
2612 (unsigned long long)buf->start,
2613 (unsigned long long)transid,
2614 (unsigned long long)root->fs_info->generation);
2615 WARN_ON(1);
2616 }
2617 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2618 buf);
2619 if (!was_dirty) {
2620 spin_lock(&root->fs_info->delalloc_lock);
2621 root->fs_info->dirty_metadata_bytes += buf->len;
2622 spin_unlock(&root->fs_info->delalloc_lock);
2623 }
2624 }
2625
2626 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2627 {
2628 /*
2629 * looks as though older kernels can get into trouble with
2630 * this code, they end up stuck in balance_dirty_pages forever
2631 */
2632 u64 num_dirty;
2633 unsigned long thresh = 32 * 1024 * 1024;
2634
2635 if (current->flags & PF_MEMALLOC)
2636 return;
2637
2638 btrfs_balance_delayed_items(root);
2639
2640 num_dirty = root->fs_info->dirty_metadata_bytes;
2641
2642 if (num_dirty > thresh) {
2643 balance_dirty_pages_ratelimited_nr(
2644 root->fs_info->btree_inode->i_mapping, 1);
2645 }
2646 return;
2647 }
2648
2649 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2650 {
2651 /*
2652 * looks as though older kernels can get into trouble with
2653 * this code, they end up stuck in balance_dirty_pages forever
2654 */
2655 u64 num_dirty;
2656 unsigned long thresh = 32 * 1024 * 1024;
2657
2658 if (current->flags & PF_MEMALLOC)
2659 return;
2660
2661 num_dirty = root->fs_info->dirty_metadata_bytes;
2662
2663 if (num_dirty > thresh) {
2664 balance_dirty_pages_ratelimited_nr(
2665 root->fs_info->btree_inode->i_mapping, 1);
2666 }
2667 return;
2668 }
2669
2670 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2671 {
2672 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2673 int ret;
2674 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2675 if (ret == 0)
2676 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2677 return ret;
2678 }
2679
2680 int btree_lock_page_hook(struct page *page)
2681 {
2682 struct inode *inode = page->mapping->host;
2683 struct btrfs_root *root = BTRFS_I(inode)->root;
2684 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2685 struct extent_buffer *eb;
2686 unsigned long len;
2687 u64 bytenr = page_offset(page);
2688
2689 if (page->private == EXTENT_PAGE_PRIVATE)
2690 goto out;
2691
2692 len = page->private >> 2;
2693 eb = find_extent_buffer(io_tree, bytenr, len);
2694 if (!eb)
2695 goto out;
2696
2697 btrfs_tree_lock(eb);
2698 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2699
2700 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2701 spin_lock(&root->fs_info->delalloc_lock);
2702 if (root->fs_info->dirty_metadata_bytes >= eb->len)
2703 root->fs_info->dirty_metadata_bytes -= eb->len;
2704 else
2705 WARN_ON(1);
2706 spin_unlock(&root->fs_info->delalloc_lock);
2707 }
2708
2709 btrfs_tree_unlock(eb);
2710 free_extent_buffer(eb);
2711 out:
2712 lock_page(page);
2713 return 0;
2714 }
2715
2716 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2717 int read_only)
2718 {
2719 if (read_only)
2720 return;
2721
2722 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2723 printk(KERN_WARNING "warning: mount fs with errors, "
2724 "running btrfsck is recommended\n");
2725 }
2726
2727 int btrfs_error_commit_super(struct btrfs_root *root)
2728 {
2729 int ret;
2730
2731 mutex_lock(&root->fs_info->cleaner_mutex);
2732 btrfs_run_delayed_iputs(root);
2733 mutex_unlock(&root->fs_info->cleaner_mutex);
2734
2735 down_write(&root->fs_info->cleanup_work_sem);
2736 up_write(&root->fs_info->cleanup_work_sem);
2737
2738 /* cleanup FS via transaction */
2739 btrfs_cleanup_transaction(root);
2740
2741 ret = write_ctree_super(NULL, root, 0);
2742
2743 return ret;
2744 }
2745
2746 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2747 {
2748 struct btrfs_inode *btrfs_inode;
2749 struct list_head splice;
2750
2751 INIT_LIST_HEAD(&splice);
2752
2753 mutex_lock(&root->fs_info->ordered_operations_mutex);
2754 spin_lock(&root->fs_info->ordered_extent_lock);
2755
2756 list_splice_init(&root->fs_info->ordered_operations, &splice);
2757 while (!list_empty(&splice)) {
2758 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2759 ordered_operations);
2760
2761 list_del_init(&btrfs_inode->ordered_operations);
2762
2763 btrfs_invalidate_inodes(btrfs_inode->root);
2764 }
2765
2766 spin_unlock(&root->fs_info->ordered_extent_lock);
2767 mutex_unlock(&root->fs_info->ordered_operations_mutex);
2768
2769 return 0;
2770 }
2771
2772 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2773 {
2774 struct list_head splice;
2775 struct btrfs_ordered_extent *ordered;
2776 struct inode *inode;
2777
2778 INIT_LIST_HEAD(&splice);
2779
2780 spin_lock(&root->fs_info->ordered_extent_lock);
2781
2782 list_splice_init(&root->fs_info->ordered_extents, &splice);
2783 while (!list_empty(&splice)) {
2784 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2785 root_extent_list);
2786
2787 list_del_init(&ordered->root_extent_list);
2788 atomic_inc(&ordered->refs);
2789
2790 /* the inode may be getting freed (in sys_unlink path). */
2791 inode = igrab(ordered->inode);
2792
2793 spin_unlock(&root->fs_info->ordered_extent_lock);
2794 if (inode)
2795 iput(inode);
2796
2797 atomic_set(&ordered->refs, 1);
2798 btrfs_put_ordered_extent(ordered);
2799
2800 spin_lock(&root->fs_info->ordered_extent_lock);
2801 }
2802
2803 spin_unlock(&root->fs_info->ordered_extent_lock);
2804
2805 return 0;
2806 }
2807
2808 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2809 struct btrfs_root *root)
2810 {
2811 struct rb_node *node;
2812 struct btrfs_delayed_ref_root *delayed_refs;
2813 struct btrfs_delayed_ref_node *ref;
2814 int ret = 0;
2815
2816 delayed_refs = &trans->delayed_refs;
2817
2818 spin_lock(&delayed_refs->lock);
2819 if (delayed_refs->num_entries == 0) {
2820 spin_unlock(&delayed_refs->lock);
2821 printk(KERN_INFO "delayed_refs has NO entry\n");
2822 return ret;
2823 }
2824
2825 node = rb_first(&delayed_refs->root);
2826 while (node) {
2827 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2828 node = rb_next(node);
2829
2830 ref->in_tree = 0;
2831 rb_erase(&ref->rb_node, &delayed_refs->root);
2832 delayed_refs->num_entries--;
2833
2834 atomic_set(&ref->refs, 1);
2835 if (btrfs_delayed_ref_is_head(ref)) {
2836 struct btrfs_delayed_ref_head *head;
2837
2838 head = btrfs_delayed_node_to_head(ref);
2839 mutex_lock(&head->mutex);
2840 kfree(head->extent_op);
2841 delayed_refs->num_heads--;
2842 if (list_empty(&head->cluster))
2843 delayed_refs->num_heads_ready--;
2844 list_del_init(&head->cluster);
2845 mutex_unlock(&head->mutex);
2846 }
2847
2848 spin_unlock(&delayed_refs->lock);
2849 btrfs_put_delayed_ref(ref);
2850
2851 cond_resched();
2852 spin_lock(&delayed_refs->lock);
2853 }
2854
2855 spin_unlock(&delayed_refs->lock);
2856
2857 return ret;
2858 }
2859
2860 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2861 {
2862 struct btrfs_pending_snapshot *snapshot;
2863 struct list_head splice;
2864
2865 INIT_LIST_HEAD(&splice);
2866
2867 list_splice_init(&t->pending_snapshots, &splice);
2868
2869 while (!list_empty(&splice)) {
2870 snapshot = list_entry(splice.next,
2871 struct btrfs_pending_snapshot,
2872 list);
2873
2874 list_del_init(&snapshot->list);
2875
2876 kfree(snapshot);
2877 }
2878
2879 return 0;
2880 }
2881
2882 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2883 {
2884 struct btrfs_inode *btrfs_inode;
2885 struct list_head splice;
2886
2887 INIT_LIST_HEAD(&splice);
2888
2889 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2890
2891 spin_lock(&root->fs_info->delalloc_lock);
2892
2893 while (!list_empty(&splice)) {
2894 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2895 delalloc_inodes);
2896
2897 list_del_init(&btrfs_inode->delalloc_inodes);
2898
2899 btrfs_invalidate_inodes(btrfs_inode->root);
2900 }
2901
2902 spin_unlock(&root->fs_info->delalloc_lock);
2903
2904 return 0;
2905 }
2906
2907 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2908 struct extent_io_tree *dirty_pages,
2909 int mark)
2910 {
2911 int ret;
2912 struct page *page;
2913 struct inode *btree_inode = root->fs_info->btree_inode;
2914 struct extent_buffer *eb;
2915 u64 start = 0;
2916 u64 end;
2917 u64 offset;
2918 unsigned long index;
2919
2920 while (1) {
2921 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2922 mark);
2923 if (ret)
2924 break;
2925
2926 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2927 while (start <= end) {
2928 index = start >> PAGE_CACHE_SHIFT;
2929 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2930 page = find_get_page(btree_inode->i_mapping, index);
2931 if (!page)
2932 continue;
2933 offset = page_offset(page);
2934
2935 spin_lock(&dirty_pages->buffer_lock);
2936 eb = radix_tree_lookup(
2937 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2938 offset >> PAGE_CACHE_SHIFT);
2939 spin_unlock(&dirty_pages->buffer_lock);
2940 if (eb) {
2941 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2942 &eb->bflags);
2943 atomic_set(&eb->refs, 1);
2944 }
2945 if (PageWriteback(page))
2946 end_page_writeback(page);
2947
2948 lock_page(page);
2949 if (PageDirty(page)) {
2950 clear_page_dirty_for_io(page);
2951 spin_lock_irq(&page->mapping->tree_lock);
2952 radix_tree_tag_clear(&page->mapping->page_tree,
2953 page_index(page),
2954 PAGECACHE_TAG_DIRTY);
2955 spin_unlock_irq(&page->mapping->tree_lock);
2956 }
2957
2958 page->mapping->a_ops->invalidatepage(page, 0);
2959 unlock_page(page);
2960 }
2961 }
2962
2963 return ret;
2964 }
2965
2966 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
2967 struct extent_io_tree *pinned_extents)
2968 {
2969 struct extent_io_tree *unpin;
2970 u64 start;
2971 u64 end;
2972 int ret;
2973
2974 unpin = pinned_extents;
2975 while (1) {
2976 ret = find_first_extent_bit(unpin, 0, &start, &end,
2977 EXTENT_DIRTY);
2978 if (ret)
2979 break;
2980
2981 /* opt_discard */
2982 if (btrfs_test_opt(root, DISCARD))
2983 ret = btrfs_error_discard_extent(root, start,
2984 end + 1 - start,
2985 NULL);
2986
2987 clear_extent_dirty(unpin, start, end, GFP_NOFS);
2988 btrfs_error_unpin_extent_range(root, start, end);
2989 cond_resched();
2990 }
2991
2992 return 0;
2993 }
2994
2995 static int btrfs_cleanup_transaction(struct btrfs_root *root)
2996 {
2997 struct btrfs_transaction *t;
2998 LIST_HEAD(list);
2999
3000 WARN_ON(1);
3001
3002 mutex_lock(&root->fs_info->trans_mutex);
3003 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3004
3005 list_splice_init(&root->fs_info->trans_list, &list);
3006 while (!list_empty(&list)) {
3007 t = list_entry(list.next, struct btrfs_transaction, list);
3008 if (!t)
3009 break;
3010
3011 btrfs_destroy_ordered_operations(root);
3012
3013 btrfs_destroy_ordered_extents(root);
3014
3015 btrfs_destroy_delayed_refs(t, root);
3016
3017 btrfs_block_rsv_release(root,
3018 &root->fs_info->trans_block_rsv,
3019 t->dirty_pages.dirty_bytes);
3020
3021 /* FIXME: cleanup wait for commit */
3022 t->in_commit = 1;
3023 t->blocked = 1;
3024 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3025 wake_up(&root->fs_info->transaction_blocked_wait);
3026
3027 t->blocked = 0;
3028 if (waitqueue_active(&root->fs_info->transaction_wait))
3029 wake_up(&root->fs_info->transaction_wait);
3030 mutex_unlock(&root->fs_info->trans_mutex);
3031
3032 mutex_lock(&root->fs_info->trans_mutex);
3033 t->commit_done = 1;
3034 if (waitqueue_active(&t->commit_wait))
3035 wake_up(&t->commit_wait);
3036 mutex_unlock(&root->fs_info->trans_mutex);
3037
3038 mutex_lock(&root->fs_info->trans_mutex);
3039
3040 btrfs_destroy_pending_snapshots(t);
3041
3042 btrfs_destroy_delalloc_inodes(root);
3043
3044 spin_lock(&root->fs_info->new_trans_lock);
3045 root->fs_info->running_transaction = NULL;
3046 spin_unlock(&root->fs_info->new_trans_lock);
3047
3048 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3049 EXTENT_DIRTY);
3050
3051 btrfs_destroy_pinned_extent(root,
3052 root->fs_info->pinned_extents);
3053
3054 atomic_set(&t->use_count, 0);
3055 list_del_init(&t->list);
3056 memset(t, 0, sizeof(*t));
3057 kmem_cache_free(btrfs_transaction_cachep, t);
3058 }
3059
3060 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3061 mutex_unlock(&root->fs_info->trans_mutex);
3062
3063 return 0;
3064 }
3065
3066 static struct extent_io_ops btree_extent_io_ops = {
3067 .write_cache_pages_lock_hook = btree_lock_page_hook,
3068 .readpage_end_io_hook = btree_readpage_end_io_hook,
3069 .submit_bio_hook = btree_submit_bio_hook,
3070 /* note we're sharing with inode.c for the merge bio hook */
3071 .merge_bio_hook = btrfs_merge_bio_hook,
3072 };