ARM: 7709/1: mcpm: Add explicit AFLAGS to support v6/v7 multiplatform kernels
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59 int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61 struct btrfs_root *root);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
72
73 /*
74 * end_io_wq structs are used to do processing in task context when an IO is
75 * complete. This is used during reads to verify checksums, and it is used
76 * by writes to insert metadata for new file extents after IO is complete.
77 */
78 struct end_io_wq {
79 struct bio *bio;
80 bio_end_io_t *end_io;
81 void *private;
82 struct btrfs_fs_info *info;
83 int error;
84 int metadata;
85 struct list_head list;
86 struct btrfs_work work;
87 };
88
89 /*
90 * async submit bios are used to offload expensive checksumming
91 * onto the worker threads. They checksum file and metadata bios
92 * just before they are sent down the IO stack.
93 */
94 struct async_submit_bio {
95 struct inode *inode;
96 struct bio *bio;
97 struct list_head list;
98 extent_submit_bio_hook_t *submit_bio_start;
99 extent_submit_bio_hook_t *submit_bio_done;
100 int rw;
101 int mirror_num;
102 unsigned long bio_flags;
103 /*
104 * bio_offset is optional, can be used if the pages in the bio
105 * can't tell us where in the file the bio should go
106 */
107 u64 bio_offset;
108 struct btrfs_work work;
109 int error;
110 };
111
112 /*
113 * Lockdep class keys for extent_buffer->lock's in this root. For a given
114 * eb, the lockdep key is determined by the btrfs_root it belongs to and
115 * the level the eb occupies in the tree.
116 *
117 * Different roots are used for different purposes and may nest inside each
118 * other and they require separate keysets. As lockdep keys should be
119 * static, assign keysets according to the purpose of the root as indicated
120 * by btrfs_root->objectid. This ensures that all special purpose roots
121 * have separate keysets.
122 *
123 * Lock-nesting across peer nodes is always done with the immediate parent
124 * node locked thus preventing deadlock. As lockdep doesn't know this, use
125 * subclass to avoid triggering lockdep warning in such cases.
126 *
127 * The key is set by the readpage_end_io_hook after the buffer has passed
128 * csum validation but before the pages are unlocked. It is also set by
129 * btrfs_init_new_buffer on freshly allocated blocks.
130 *
131 * We also add a check to make sure the highest level of the tree is the
132 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
133 * needs update as well.
134 */
135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
136 # if BTRFS_MAX_LEVEL != 8
137 # error
138 # endif
139
140 static struct btrfs_lockdep_keyset {
141 u64 id; /* root objectid */
142 const char *name_stem; /* lock name stem */
143 char names[BTRFS_MAX_LEVEL + 1][20];
144 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
145 } btrfs_lockdep_keysets[] = {
146 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
147 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
148 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
149 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
150 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
151 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
152 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
153 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
154 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
155 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
156 { .id = 0, .name_stem = "tree" },
157 };
158
159 void __init btrfs_init_lockdep(void)
160 {
161 int i, j;
162
163 /* initialize lockdep class names */
164 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166
167 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168 snprintf(ks->names[j], sizeof(ks->names[j]),
169 "btrfs-%s-%02d", ks->name_stem, j);
170 }
171 }
172
173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174 int level)
175 {
176 struct btrfs_lockdep_keyset *ks;
177
178 BUG_ON(level >= ARRAY_SIZE(ks->keys));
179
180 /* find the matching keyset, id 0 is the default entry */
181 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182 if (ks->id == objectid)
183 break;
184
185 lockdep_set_class_and_name(&eb->lock,
186 &ks->keys[level], ks->names[level]);
187 }
188
189 #endif
190
191 /*
192 * extents on the btree inode are pretty simple, there's one extent
193 * that covers the entire device
194 */
195 static struct extent_map *btree_get_extent(struct inode *inode,
196 struct page *page, size_t pg_offset, u64 start, u64 len,
197 int create)
198 {
199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200 struct extent_map *em;
201 int ret;
202
203 read_lock(&em_tree->lock);
204 em = lookup_extent_mapping(em_tree, start, len);
205 if (em) {
206 em->bdev =
207 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
208 read_unlock(&em_tree->lock);
209 goto out;
210 }
211 read_unlock(&em_tree->lock);
212
213 em = alloc_extent_map();
214 if (!em) {
215 em = ERR_PTR(-ENOMEM);
216 goto out;
217 }
218 em->start = 0;
219 em->len = (u64)-1;
220 em->block_len = (u64)-1;
221 em->block_start = 0;
222 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
223
224 write_lock(&em_tree->lock);
225 ret = add_extent_mapping(em_tree, em);
226 if (ret == -EEXIST) {
227 free_extent_map(em);
228 em = lookup_extent_mapping(em_tree, start, len);
229 if (!em)
230 em = ERR_PTR(-EIO);
231 } else if (ret) {
232 free_extent_map(em);
233 em = ERR_PTR(ret);
234 }
235 write_unlock(&em_tree->lock);
236
237 out:
238 return em;
239 }
240
241 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
242 {
243 return crc32c(seed, data, len);
244 }
245
246 void btrfs_csum_final(u32 crc, char *result)
247 {
248 put_unaligned_le32(~crc, result);
249 }
250
251 /*
252 * compute the csum for a btree block, and either verify it or write it
253 * into the csum field of the block.
254 */
255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256 int verify)
257 {
258 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
259 char *result = NULL;
260 unsigned long len;
261 unsigned long cur_len;
262 unsigned long offset = BTRFS_CSUM_SIZE;
263 char *kaddr;
264 unsigned long map_start;
265 unsigned long map_len;
266 int err;
267 u32 crc = ~(u32)0;
268 unsigned long inline_result;
269
270 len = buf->len - offset;
271 while (len > 0) {
272 err = map_private_extent_buffer(buf, offset, 32,
273 &kaddr, &map_start, &map_len);
274 if (err)
275 return 1;
276 cur_len = min(len, map_len - (offset - map_start));
277 crc = btrfs_csum_data(root, kaddr + offset - map_start,
278 crc, cur_len);
279 len -= cur_len;
280 offset += cur_len;
281 }
282 if (csum_size > sizeof(inline_result)) {
283 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284 if (!result)
285 return 1;
286 } else {
287 result = (char *)&inline_result;
288 }
289
290 btrfs_csum_final(crc, result);
291
292 if (verify) {
293 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
294 u32 val;
295 u32 found = 0;
296 memcpy(&found, result, csum_size);
297
298 read_extent_buffer(buf, &val, 0, csum_size);
299 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
300 "failed on %llu wanted %X found %X "
301 "level %d\n",
302 root->fs_info->sb->s_id,
303 (unsigned long long)buf->start, val, found,
304 btrfs_header_level(buf));
305 if (result != (char *)&inline_result)
306 kfree(result);
307 return 1;
308 }
309 } else {
310 write_extent_buffer(buf, result, 0, csum_size);
311 }
312 if (result != (char *)&inline_result)
313 kfree(result);
314 return 0;
315 }
316
317 /*
318 * we can't consider a given block up to date unless the transid of the
319 * block matches the transid in the parent node's pointer. This is how we
320 * detect blocks that either didn't get written at all or got written
321 * in the wrong place.
322 */
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324 struct extent_buffer *eb, u64 parent_transid,
325 int atomic)
326 {
327 struct extent_state *cached_state = NULL;
328 int ret;
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
333 if (atomic)
334 return -EAGAIN;
335
336 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
337 0, &cached_state);
338 if (extent_buffer_uptodate(eb) &&
339 btrfs_header_generation(eb) == parent_transid) {
340 ret = 0;
341 goto out;
342 }
343 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
344 "found %llu\n",
345 (unsigned long long)eb->start,
346 (unsigned long long)parent_transid,
347 (unsigned long long)btrfs_header_generation(eb));
348 ret = 1;
349 clear_extent_buffer_uptodate(eb);
350 out:
351 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352 &cached_state, GFP_NOFS);
353 return ret;
354 }
355
356 /*
357 * helper to read a given tree block, doing retries as required when
358 * the checksums don't match and we have alternate mirrors to try.
359 */
360 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361 struct extent_buffer *eb,
362 u64 start, u64 parent_transid)
363 {
364 struct extent_io_tree *io_tree;
365 int failed = 0;
366 int ret;
367 int num_copies = 0;
368 int mirror_num = 0;
369 int failed_mirror = 0;
370
371 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
372 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373 while (1) {
374 ret = read_extent_buffer_pages(io_tree, eb, start,
375 WAIT_COMPLETE,
376 btree_get_extent, mirror_num);
377 if (!ret) {
378 if (!verify_parent_transid(io_tree, eb,
379 parent_transid, 0))
380 break;
381 else
382 ret = -EIO;
383 }
384
385 /*
386 * This buffer's crc is fine, but its contents are corrupted, so
387 * there is no reason to read the other copies, they won't be
388 * any less wrong.
389 */
390 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391 break;
392
393 num_copies = btrfs_num_copies(root->fs_info,
394 eb->start, eb->len);
395 if (num_copies == 1)
396 break;
397
398 if (!failed_mirror) {
399 failed = 1;
400 failed_mirror = eb->read_mirror;
401 }
402
403 mirror_num++;
404 if (mirror_num == failed_mirror)
405 mirror_num++;
406
407 if (mirror_num > num_copies)
408 break;
409 }
410
411 if (failed && !ret && failed_mirror)
412 repair_eb_io_failure(root, eb, failed_mirror);
413
414 return ret;
415 }
416
417 /*
418 * checksum a dirty tree block before IO. This has extra checks to make sure
419 * we only fill in the checksum field in the first page of a multi-page block
420 */
421
422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
423 {
424 struct extent_io_tree *tree;
425 u64 start = page_offset(page);
426 u64 found_start;
427 struct extent_buffer *eb;
428
429 tree = &BTRFS_I(page->mapping->host)->io_tree;
430
431 eb = (struct extent_buffer *)page->private;
432 if (page != eb->pages[0])
433 return 0;
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
436 WARN_ON(1);
437 return 0;
438 }
439 if (!PageUptodate(page)) {
440 WARN_ON(1);
441 return 0;
442 }
443 csum_tree_block(root, eb, 0);
444 return 0;
445 }
446
447 static int check_tree_block_fsid(struct btrfs_root *root,
448 struct extent_buffer *eb)
449 {
450 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451 u8 fsid[BTRFS_UUID_SIZE];
452 int ret = 1;
453
454 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455 BTRFS_FSID_SIZE);
456 while (fs_devices) {
457 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458 ret = 0;
459 break;
460 }
461 fs_devices = fs_devices->seed;
462 }
463 return ret;
464 }
465
466 #define CORRUPT(reason, eb, root, slot) \
467 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
468 "root=%llu, slot=%d\n", reason, \
469 (unsigned long long)btrfs_header_bytenr(eb), \
470 (unsigned long long)root->objectid, slot)
471
472 static noinline int check_leaf(struct btrfs_root *root,
473 struct extent_buffer *leaf)
474 {
475 struct btrfs_key key;
476 struct btrfs_key leaf_key;
477 u32 nritems = btrfs_header_nritems(leaf);
478 int slot;
479
480 if (nritems == 0)
481 return 0;
482
483 /* Check the 0 item */
484 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485 BTRFS_LEAF_DATA_SIZE(root)) {
486 CORRUPT("invalid item offset size pair", leaf, root, 0);
487 return -EIO;
488 }
489
490 /*
491 * Check to make sure each items keys are in the correct order and their
492 * offsets make sense. We only have to loop through nritems-1 because
493 * we check the current slot against the next slot, which verifies the
494 * next slot's offset+size makes sense and that the current's slot
495 * offset is correct.
496 */
497 for (slot = 0; slot < nritems - 1; slot++) {
498 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500
501 /* Make sure the keys are in the right order */
502 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503 CORRUPT("bad key order", leaf, root, slot);
504 return -EIO;
505 }
506
507 /*
508 * Make sure the offset and ends are right, remember that the
509 * item data starts at the end of the leaf and grows towards the
510 * front.
511 */
512 if (btrfs_item_offset_nr(leaf, slot) !=
513 btrfs_item_end_nr(leaf, slot + 1)) {
514 CORRUPT("slot offset bad", leaf, root, slot);
515 return -EIO;
516 }
517
518 /*
519 * Check to make sure that we don't point outside of the leaf,
520 * just incase all the items are consistent to eachother, but
521 * all point outside of the leaf.
522 */
523 if (btrfs_item_end_nr(leaf, slot) >
524 BTRFS_LEAF_DATA_SIZE(root)) {
525 CORRUPT("slot end outside of leaf", leaf, root, slot);
526 return -EIO;
527 }
528 }
529
530 return 0;
531 }
532
533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534 struct page *page, int max_walk)
535 {
536 struct extent_buffer *eb;
537 u64 start = page_offset(page);
538 u64 target = start;
539 u64 min_start;
540
541 if (start < max_walk)
542 min_start = 0;
543 else
544 min_start = start - max_walk;
545
546 while (start >= min_start) {
547 eb = find_extent_buffer(tree, start, 0);
548 if (eb) {
549 /*
550 * we found an extent buffer and it contains our page
551 * horray!
552 */
553 if (eb->start <= target &&
554 eb->start + eb->len > target)
555 return eb;
556
557 /* we found an extent buffer that wasn't for us */
558 free_extent_buffer(eb);
559 return NULL;
560 }
561 if (start == 0)
562 break;
563 start -= PAGE_CACHE_SIZE;
564 }
565 return NULL;
566 }
567
568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
569 struct extent_state *state, int mirror)
570 {
571 struct extent_io_tree *tree;
572 u64 found_start;
573 int found_level;
574 struct extent_buffer *eb;
575 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576 int ret = 0;
577 int reads_done;
578
579 if (!page->private)
580 goto out;
581
582 tree = &BTRFS_I(page->mapping->host)->io_tree;
583 eb = (struct extent_buffer *)page->private;
584
585 /* the pending IO might have been the only thing that kept this buffer
586 * in memory. Make sure we have a ref for all this other checks
587 */
588 extent_buffer_get(eb);
589
590 reads_done = atomic_dec_and_test(&eb->io_pages);
591 if (!reads_done)
592 goto err;
593
594 eb->read_mirror = mirror;
595 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596 ret = -EIO;
597 goto err;
598 }
599
600 found_start = btrfs_header_bytenr(eb);
601 if (found_start != eb->start) {
602 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
603 "%llu %llu\n",
604 (unsigned long long)found_start,
605 (unsigned long long)eb->start);
606 ret = -EIO;
607 goto err;
608 }
609 if (check_tree_block_fsid(root, eb)) {
610 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611 (unsigned long long)eb->start);
612 ret = -EIO;
613 goto err;
614 }
615 found_level = btrfs_header_level(eb);
616
617 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
618 eb, found_level);
619
620 ret = csum_tree_block(root, eb, 1);
621 if (ret) {
622 ret = -EIO;
623 goto err;
624 }
625
626 /*
627 * If this is a leaf block and it is corrupt, set the corrupt bit so
628 * that we don't try and read the other copies of this block, just
629 * return -EIO.
630 */
631 if (found_level == 0 && check_leaf(root, eb)) {
632 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633 ret = -EIO;
634 }
635
636 if (!ret)
637 set_extent_buffer_uptodate(eb);
638 err:
639 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
640 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
641 btree_readahead_hook(root, eb, eb->start, ret);
642 }
643
644 if (ret) {
645 /*
646 * our io error hook is going to dec the io pages
647 * again, we have to make sure it has something
648 * to decrement
649 */
650 atomic_inc(&eb->io_pages);
651 clear_extent_buffer_uptodate(eb);
652 }
653 free_extent_buffer(eb);
654 out:
655 return ret;
656 }
657
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
659 {
660 struct extent_buffer *eb;
661 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662
663 eb = (struct extent_buffer *)page->private;
664 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665 eb->read_mirror = failed_mirror;
666 atomic_dec(&eb->io_pages);
667 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
668 btree_readahead_hook(root, eb, eb->start, -EIO);
669 return -EIO; /* we fixed nothing */
670 }
671
672 static void end_workqueue_bio(struct bio *bio, int err)
673 {
674 struct end_io_wq *end_io_wq = bio->bi_private;
675 struct btrfs_fs_info *fs_info;
676
677 fs_info = end_io_wq->info;
678 end_io_wq->error = err;
679 end_io_wq->work.func = end_workqueue_fn;
680 end_io_wq->work.flags = 0;
681
682 if (bio->bi_rw & REQ_WRITE) {
683 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685 &end_io_wq->work);
686 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
687 btrfs_queue_worker(&fs_info->endio_freespace_worker,
688 &end_io_wq->work);
689 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
690 btrfs_queue_worker(&fs_info->endio_raid56_workers,
691 &end_io_wq->work);
692 else
693 btrfs_queue_worker(&fs_info->endio_write_workers,
694 &end_io_wq->work);
695 } else {
696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
697 btrfs_queue_worker(&fs_info->endio_raid56_workers,
698 &end_io_wq->work);
699 else if (end_io_wq->metadata)
700 btrfs_queue_worker(&fs_info->endio_meta_workers,
701 &end_io_wq->work);
702 else
703 btrfs_queue_worker(&fs_info->endio_workers,
704 &end_io_wq->work);
705 }
706 }
707
708 /*
709 * For the metadata arg you want
710 *
711 * 0 - if data
712 * 1 - if normal metadta
713 * 2 - if writing to the free space cache area
714 * 3 - raid parity work
715 */
716 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
717 int metadata)
718 {
719 struct end_io_wq *end_io_wq;
720 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
721 if (!end_io_wq)
722 return -ENOMEM;
723
724 end_io_wq->private = bio->bi_private;
725 end_io_wq->end_io = bio->bi_end_io;
726 end_io_wq->info = info;
727 end_io_wq->error = 0;
728 end_io_wq->bio = bio;
729 end_io_wq->metadata = metadata;
730
731 bio->bi_private = end_io_wq;
732 bio->bi_end_io = end_workqueue_bio;
733 return 0;
734 }
735
736 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
737 {
738 unsigned long limit = min_t(unsigned long,
739 info->workers.max_workers,
740 info->fs_devices->open_devices);
741 return 256 * limit;
742 }
743
744 static void run_one_async_start(struct btrfs_work *work)
745 {
746 struct async_submit_bio *async;
747 int ret;
748
749 async = container_of(work, struct async_submit_bio, work);
750 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
751 async->mirror_num, async->bio_flags,
752 async->bio_offset);
753 if (ret)
754 async->error = ret;
755 }
756
757 static void run_one_async_done(struct btrfs_work *work)
758 {
759 struct btrfs_fs_info *fs_info;
760 struct async_submit_bio *async;
761 int limit;
762
763 async = container_of(work, struct async_submit_bio, work);
764 fs_info = BTRFS_I(async->inode)->root->fs_info;
765
766 limit = btrfs_async_submit_limit(fs_info);
767 limit = limit * 2 / 3;
768
769 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
770 waitqueue_active(&fs_info->async_submit_wait))
771 wake_up(&fs_info->async_submit_wait);
772
773 /* If an error occured we just want to clean up the bio and move on */
774 if (async->error) {
775 bio_endio(async->bio, async->error);
776 return;
777 }
778
779 async->submit_bio_done(async->inode, async->rw, async->bio,
780 async->mirror_num, async->bio_flags,
781 async->bio_offset);
782 }
783
784 static void run_one_async_free(struct btrfs_work *work)
785 {
786 struct async_submit_bio *async;
787
788 async = container_of(work, struct async_submit_bio, work);
789 kfree(async);
790 }
791
792 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
793 int rw, struct bio *bio, int mirror_num,
794 unsigned long bio_flags,
795 u64 bio_offset,
796 extent_submit_bio_hook_t *submit_bio_start,
797 extent_submit_bio_hook_t *submit_bio_done)
798 {
799 struct async_submit_bio *async;
800
801 async = kmalloc(sizeof(*async), GFP_NOFS);
802 if (!async)
803 return -ENOMEM;
804
805 async->inode = inode;
806 async->rw = rw;
807 async->bio = bio;
808 async->mirror_num = mirror_num;
809 async->submit_bio_start = submit_bio_start;
810 async->submit_bio_done = submit_bio_done;
811
812 async->work.func = run_one_async_start;
813 async->work.ordered_func = run_one_async_done;
814 async->work.ordered_free = run_one_async_free;
815
816 async->work.flags = 0;
817 async->bio_flags = bio_flags;
818 async->bio_offset = bio_offset;
819
820 async->error = 0;
821
822 atomic_inc(&fs_info->nr_async_submits);
823
824 if (rw & REQ_SYNC)
825 btrfs_set_work_high_prio(&async->work);
826
827 btrfs_queue_worker(&fs_info->workers, &async->work);
828
829 while (atomic_read(&fs_info->async_submit_draining) &&
830 atomic_read(&fs_info->nr_async_submits)) {
831 wait_event(fs_info->async_submit_wait,
832 (atomic_read(&fs_info->nr_async_submits) == 0));
833 }
834
835 return 0;
836 }
837
838 static int btree_csum_one_bio(struct bio *bio)
839 {
840 struct bio_vec *bvec = bio->bi_io_vec;
841 int bio_index = 0;
842 struct btrfs_root *root;
843 int ret = 0;
844
845 WARN_ON(bio->bi_vcnt <= 0);
846 while (bio_index < bio->bi_vcnt) {
847 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848 ret = csum_dirty_buffer(root, bvec->bv_page);
849 if (ret)
850 break;
851 bio_index++;
852 bvec++;
853 }
854 return ret;
855 }
856
857 static int __btree_submit_bio_start(struct inode *inode, int rw,
858 struct bio *bio, int mirror_num,
859 unsigned long bio_flags,
860 u64 bio_offset)
861 {
862 /*
863 * when we're called for a write, we're already in the async
864 * submission context. Just jump into btrfs_map_bio
865 */
866 return btree_csum_one_bio(bio);
867 }
868
869 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
870 int mirror_num, unsigned long bio_flags,
871 u64 bio_offset)
872 {
873 int ret;
874
875 /*
876 * when we're called for a write, we're already in the async
877 * submission context. Just jump into btrfs_map_bio
878 */
879 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
880 if (ret)
881 bio_endio(bio, ret);
882 return ret;
883 }
884
885 static int check_async_write(struct inode *inode, unsigned long bio_flags)
886 {
887 if (bio_flags & EXTENT_BIO_TREE_LOG)
888 return 0;
889 #ifdef CONFIG_X86
890 if (cpu_has_xmm4_2)
891 return 0;
892 #endif
893 return 1;
894 }
895
896 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
897 int mirror_num, unsigned long bio_flags,
898 u64 bio_offset)
899 {
900 int async = check_async_write(inode, bio_flags);
901 int ret;
902
903 if (!(rw & REQ_WRITE)) {
904 /*
905 * called for a read, do the setup so that checksum validation
906 * can happen in the async kernel threads
907 */
908 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
909 bio, 1);
910 if (ret)
911 goto out_w_error;
912 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
913 mirror_num, 0);
914 } else if (!async) {
915 ret = btree_csum_one_bio(bio);
916 if (ret)
917 goto out_w_error;
918 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919 mirror_num, 0);
920 } else {
921 /*
922 * kthread helpers are used to submit writes so that
923 * checksumming can happen in parallel across all CPUs
924 */
925 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
926 inode, rw, bio, mirror_num, 0,
927 bio_offset,
928 __btree_submit_bio_start,
929 __btree_submit_bio_done);
930 }
931
932 if (ret) {
933 out_w_error:
934 bio_endio(bio, ret);
935 }
936 return ret;
937 }
938
939 #ifdef CONFIG_MIGRATION
940 static int btree_migratepage(struct address_space *mapping,
941 struct page *newpage, struct page *page,
942 enum migrate_mode mode)
943 {
944 /*
945 * we can't safely write a btree page from here,
946 * we haven't done the locking hook
947 */
948 if (PageDirty(page))
949 return -EAGAIN;
950 /*
951 * Buffers may be managed in a filesystem specific way.
952 * We must have no buffers or drop them.
953 */
954 if (page_has_private(page) &&
955 !try_to_release_page(page, GFP_KERNEL))
956 return -EAGAIN;
957 return migrate_page(mapping, newpage, page, mode);
958 }
959 #endif
960
961
962 static int btree_writepages(struct address_space *mapping,
963 struct writeback_control *wbc)
964 {
965 struct extent_io_tree *tree;
966 struct btrfs_fs_info *fs_info;
967 int ret;
968
969 tree = &BTRFS_I(mapping->host)->io_tree;
970 if (wbc->sync_mode == WB_SYNC_NONE) {
971
972 if (wbc->for_kupdate)
973 return 0;
974
975 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976 /* this is a bit racy, but that's ok */
977 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978 BTRFS_DIRTY_METADATA_THRESH);
979 if (ret < 0)
980 return 0;
981 }
982 return btree_write_cache_pages(mapping, wbc);
983 }
984
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987 struct extent_io_tree *tree;
988 tree = &BTRFS_I(page->mapping->host)->io_tree;
989 return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994 if (PageWriteback(page) || PageDirty(page))
995 return 0;
996 /*
997 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
998 * slab allocation from alloc_extent_state down the callchain where
999 * it'd hit a BUG_ON as those flags are not allowed.
1000 */
1001 gfp_flags &= ~GFP_SLAB_BUG_MASK;
1002
1003 return try_release_extent_buffer(page, gfp_flags);
1004 }
1005
1006 static void btree_invalidatepage(struct page *page, unsigned long offset)
1007 {
1008 struct extent_io_tree *tree;
1009 tree = &BTRFS_I(page->mapping->host)->io_tree;
1010 extent_invalidatepage(tree, page, offset);
1011 btree_releasepage(page, GFP_NOFS);
1012 if (PagePrivate(page)) {
1013 printk(KERN_WARNING "btrfs warning page private not zero "
1014 "on page %llu\n", (unsigned long long)page_offset(page));
1015 ClearPagePrivate(page);
1016 set_page_private(page, 0);
1017 page_cache_release(page);
1018 }
1019 }
1020
1021 static int btree_set_page_dirty(struct page *page)
1022 {
1023 #ifdef DEBUG
1024 struct extent_buffer *eb;
1025
1026 BUG_ON(!PagePrivate(page));
1027 eb = (struct extent_buffer *)page->private;
1028 BUG_ON(!eb);
1029 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030 BUG_ON(!atomic_read(&eb->refs));
1031 btrfs_assert_tree_locked(eb);
1032 #endif
1033 return __set_page_dirty_nobuffers(page);
1034 }
1035
1036 static const struct address_space_operations btree_aops = {
1037 .readpage = btree_readpage,
1038 .writepages = btree_writepages,
1039 .releasepage = btree_releasepage,
1040 .invalidatepage = btree_invalidatepage,
1041 #ifdef CONFIG_MIGRATION
1042 .migratepage = btree_migratepage,
1043 #endif
1044 .set_page_dirty = btree_set_page_dirty,
1045 };
1046
1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048 u64 parent_transid)
1049 {
1050 struct extent_buffer *buf = NULL;
1051 struct inode *btree_inode = root->fs_info->btree_inode;
1052 int ret = 0;
1053
1054 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055 if (!buf)
1056 return 0;
1057 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1058 buf, 0, WAIT_NONE, btree_get_extent, 0);
1059 free_extent_buffer(buf);
1060 return ret;
1061 }
1062
1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064 int mirror_num, struct extent_buffer **eb)
1065 {
1066 struct extent_buffer *buf = NULL;
1067 struct inode *btree_inode = root->fs_info->btree_inode;
1068 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069 int ret;
1070
1071 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072 if (!buf)
1073 return 0;
1074
1075 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1076
1077 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078 btree_get_extent, mirror_num);
1079 if (ret) {
1080 free_extent_buffer(buf);
1081 return ret;
1082 }
1083
1084 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085 free_extent_buffer(buf);
1086 return -EIO;
1087 } else if (extent_buffer_uptodate(buf)) {
1088 *eb = buf;
1089 } else {
1090 free_extent_buffer(buf);
1091 }
1092 return 0;
1093 }
1094
1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096 u64 bytenr, u32 blocksize)
1097 {
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099 struct extent_buffer *eb;
1100 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1101 bytenr, blocksize);
1102 return eb;
1103 }
1104
1105 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1107 {
1108 struct inode *btree_inode = root->fs_info->btree_inode;
1109 struct extent_buffer *eb;
1110
1111 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1112 bytenr, blocksize);
1113 return eb;
1114 }
1115
1116
1117 int btrfs_write_tree_block(struct extent_buffer *buf)
1118 {
1119 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1120 buf->start + buf->len - 1);
1121 }
1122
1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124 {
1125 return filemap_fdatawait_range(buf->pages[0]->mapping,
1126 buf->start, buf->start + buf->len - 1);
1127 }
1128
1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1130 u32 blocksize, u64 parent_transid)
1131 {
1132 struct extent_buffer *buf = NULL;
1133 int ret;
1134
1135 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136 if (!buf)
1137 return NULL;
1138
1139 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1140 return buf;
1141
1142 }
1143
1144 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1145 struct extent_buffer *buf)
1146 {
1147 struct btrfs_fs_info *fs_info = root->fs_info;
1148
1149 if (btrfs_header_generation(buf) ==
1150 fs_info->running_transaction->transid) {
1151 btrfs_assert_tree_locked(buf);
1152
1153 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1154 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1155 -buf->len,
1156 fs_info->dirty_metadata_batch);
1157 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1158 btrfs_set_lock_blocking(buf);
1159 clear_extent_buffer_dirty(buf);
1160 }
1161 }
1162 }
1163
1164 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1165 u32 stripesize, struct btrfs_root *root,
1166 struct btrfs_fs_info *fs_info,
1167 u64 objectid)
1168 {
1169 root->node = NULL;
1170 root->commit_root = NULL;
1171 root->sectorsize = sectorsize;
1172 root->nodesize = nodesize;
1173 root->leafsize = leafsize;
1174 root->stripesize = stripesize;
1175 root->ref_cows = 0;
1176 root->track_dirty = 0;
1177 root->in_radix = 0;
1178 root->orphan_item_inserted = 0;
1179 root->orphan_cleanup_state = 0;
1180
1181 root->objectid = objectid;
1182 root->last_trans = 0;
1183 root->highest_objectid = 0;
1184 root->name = NULL;
1185 root->inode_tree = RB_ROOT;
1186 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187 root->block_rsv = NULL;
1188 root->orphan_block_rsv = NULL;
1189
1190 INIT_LIST_HEAD(&root->dirty_list);
1191 INIT_LIST_HEAD(&root->root_list);
1192 INIT_LIST_HEAD(&root->logged_list[0]);
1193 INIT_LIST_HEAD(&root->logged_list[1]);
1194 spin_lock_init(&root->orphan_lock);
1195 spin_lock_init(&root->inode_lock);
1196 spin_lock_init(&root->accounting_lock);
1197 spin_lock_init(&root->log_extents_lock[0]);
1198 spin_lock_init(&root->log_extents_lock[1]);
1199 mutex_init(&root->objectid_mutex);
1200 mutex_init(&root->log_mutex);
1201 init_waitqueue_head(&root->log_writer_wait);
1202 init_waitqueue_head(&root->log_commit_wait[0]);
1203 init_waitqueue_head(&root->log_commit_wait[1]);
1204 atomic_set(&root->log_commit[0], 0);
1205 atomic_set(&root->log_commit[1], 0);
1206 atomic_set(&root->log_writers, 0);
1207 atomic_set(&root->log_batch, 0);
1208 atomic_set(&root->orphan_inodes, 0);
1209 root->log_transid = 0;
1210 root->last_log_commit = 0;
1211 extent_io_tree_init(&root->dirty_log_pages,
1212 fs_info->btree_inode->i_mapping);
1213
1214 memset(&root->root_key, 0, sizeof(root->root_key));
1215 memset(&root->root_item, 0, sizeof(root->root_item));
1216 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1217 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1218 root->defrag_trans_start = fs_info->generation;
1219 init_completion(&root->kobj_unregister);
1220 root->defrag_running = 0;
1221 root->root_key.objectid = objectid;
1222 root->anon_dev = 0;
1223
1224 spin_lock_init(&root->root_item_lock);
1225 }
1226
1227 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1228 struct btrfs_fs_info *fs_info,
1229 u64 objectid,
1230 struct btrfs_root *root)
1231 {
1232 int ret;
1233 u32 blocksize;
1234 u64 generation;
1235
1236 __setup_root(tree_root->nodesize, tree_root->leafsize,
1237 tree_root->sectorsize, tree_root->stripesize,
1238 root, fs_info, objectid);
1239 ret = btrfs_find_last_root(tree_root, objectid,
1240 &root->root_item, &root->root_key);
1241 if (ret > 0)
1242 return -ENOENT;
1243 else if (ret < 0)
1244 return ret;
1245
1246 generation = btrfs_root_generation(&root->root_item);
1247 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1248 root->commit_root = NULL;
1249 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1250 blocksize, generation);
1251 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1252 free_extent_buffer(root->node);
1253 root->node = NULL;
1254 return -EIO;
1255 }
1256 root->commit_root = btrfs_root_node(root);
1257 return 0;
1258 }
1259
1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1261 {
1262 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263 if (root)
1264 root->fs_info = fs_info;
1265 return root;
1266 }
1267
1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269 struct btrfs_fs_info *fs_info,
1270 u64 objectid)
1271 {
1272 struct extent_buffer *leaf;
1273 struct btrfs_root *tree_root = fs_info->tree_root;
1274 struct btrfs_root *root;
1275 struct btrfs_key key;
1276 int ret = 0;
1277 u64 bytenr;
1278
1279 root = btrfs_alloc_root(fs_info);
1280 if (!root)
1281 return ERR_PTR(-ENOMEM);
1282
1283 __setup_root(tree_root->nodesize, tree_root->leafsize,
1284 tree_root->sectorsize, tree_root->stripesize,
1285 root, fs_info, objectid);
1286 root->root_key.objectid = objectid;
1287 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288 root->root_key.offset = 0;
1289
1290 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291 0, objectid, NULL, 0, 0, 0);
1292 if (IS_ERR(leaf)) {
1293 ret = PTR_ERR(leaf);
1294 goto fail;
1295 }
1296
1297 bytenr = leaf->start;
1298 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1299 btrfs_set_header_bytenr(leaf, leaf->start);
1300 btrfs_set_header_generation(leaf, trans->transid);
1301 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1302 btrfs_set_header_owner(leaf, objectid);
1303 root->node = leaf;
1304
1305 write_extent_buffer(leaf, fs_info->fsid,
1306 (unsigned long)btrfs_header_fsid(leaf),
1307 BTRFS_FSID_SIZE);
1308 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1309 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1310 BTRFS_UUID_SIZE);
1311 btrfs_mark_buffer_dirty(leaf);
1312
1313 root->commit_root = btrfs_root_node(root);
1314 root->track_dirty = 1;
1315
1316
1317 root->root_item.flags = 0;
1318 root->root_item.byte_limit = 0;
1319 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1320 btrfs_set_root_generation(&root->root_item, trans->transid);
1321 btrfs_set_root_level(&root->root_item, 0);
1322 btrfs_set_root_refs(&root->root_item, 1);
1323 btrfs_set_root_used(&root->root_item, leaf->len);
1324 btrfs_set_root_last_snapshot(&root->root_item, 0);
1325 btrfs_set_root_dirid(&root->root_item, 0);
1326 root->root_item.drop_level = 0;
1327
1328 key.objectid = objectid;
1329 key.type = BTRFS_ROOT_ITEM_KEY;
1330 key.offset = 0;
1331 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1332 if (ret)
1333 goto fail;
1334
1335 btrfs_tree_unlock(leaf);
1336
1337 fail:
1338 if (ret)
1339 return ERR_PTR(ret);
1340
1341 return root;
1342 }
1343
1344 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1345 struct btrfs_fs_info *fs_info)
1346 {
1347 struct btrfs_root *root;
1348 struct btrfs_root *tree_root = fs_info->tree_root;
1349 struct extent_buffer *leaf;
1350
1351 root = btrfs_alloc_root(fs_info);
1352 if (!root)
1353 return ERR_PTR(-ENOMEM);
1354
1355 __setup_root(tree_root->nodesize, tree_root->leafsize,
1356 tree_root->sectorsize, tree_root->stripesize,
1357 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1358
1359 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1360 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1361 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1362 /*
1363 * log trees do not get reference counted because they go away
1364 * before a real commit is actually done. They do store pointers
1365 * to file data extents, and those reference counts still get
1366 * updated (along with back refs to the log tree).
1367 */
1368 root->ref_cows = 0;
1369
1370 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1371 BTRFS_TREE_LOG_OBJECTID, NULL,
1372 0, 0, 0);
1373 if (IS_ERR(leaf)) {
1374 kfree(root);
1375 return ERR_CAST(leaf);
1376 }
1377
1378 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1379 btrfs_set_header_bytenr(leaf, leaf->start);
1380 btrfs_set_header_generation(leaf, trans->transid);
1381 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1382 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1383 root->node = leaf;
1384
1385 write_extent_buffer(root->node, root->fs_info->fsid,
1386 (unsigned long)btrfs_header_fsid(root->node),
1387 BTRFS_FSID_SIZE);
1388 btrfs_mark_buffer_dirty(root->node);
1389 btrfs_tree_unlock(root->node);
1390 return root;
1391 }
1392
1393 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
1395 {
1396 struct btrfs_root *log_root;
1397
1398 log_root = alloc_log_tree(trans, fs_info);
1399 if (IS_ERR(log_root))
1400 return PTR_ERR(log_root);
1401 WARN_ON(fs_info->log_root_tree);
1402 fs_info->log_root_tree = log_root;
1403 return 0;
1404 }
1405
1406 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1407 struct btrfs_root *root)
1408 {
1409 struct btrfs_root *log_root;
1410 struct btrfs_inode_item *inode_item;
1411
1412 log_root = alloc_log_tree(trans, root->fs_info);
1413 if (IS_ERR(log_root))
1414 return PTR_ERR(log_root);
1415
1416 log_root->last_trans = trans->transid;
1417 log_root->root_key.offset = root->root_key.objectid;
1418
1419 inode_item = &log_root->root_item.inode;
1420 inode_item->generation = cpu_to_le64(1);
1421 inode_item->size = cpu_to_le64(3);
1422 inode_item->nlink = cpu_to_le32(1);
1423 inode_item->nbytes = cpu_to_le64(root->leafsize);
1424 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1425
1426 btrfs_set_root_node(&log_root->root_item, log_root->node);
1427
1428 WARN_ON(root->log_root);
1429 root->log_root = log_root;
1430 root->log_transid = 0;
1431 root->last_log_commit = 0;
1432 return 0;
1433 }
1434
1435 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1436 struct btrfs_key *location)
1437 {
1438 struct btrfs_root *root;
1439 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1440 struct btrfs_path *path;
1441 struct extent_buffer *l;
1442 u64 generation;
1443 u32 blocksize;
1444 int ret = 0;
1445 int slot;
1446
1447 root = btrfs_alloc_root(fs_info);
1448 if (!root)
1449 return ERR_PTR(-ENOMEM);
1450 if (location->offset == (u64)-1) {
1451 ret = find_and_setup_root(tree_root, fs_info,
1452 location->objectid, root);
1453 if (ret) {
1454 kfree(root);
1455 return ERR_PTR(ret);
1456 }
1457 goto out;
1458 }
1459
1460 __setup_root(tree_root->nodesize, tree_root->leafsize,
1461 tree_root->sectorsize, tree_root->stripesize,
1462 root, fs_info, location->objectid);
1463
1464 path = btrfs_alloc_path();
1465 if (!path) {
1466 kfree(root);
1467 return ERR_PTR(-ENOMEM);
1468 }
1469 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1470 if (ret == 0) {
1471 l = path->nodes[0];
1472 slot = path->slots[0];
1473 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1474 memcpy(&root->root_key, location, sizeof(*location));
1475 }
1476 btrfs_free_path(path);
1477 if (ret) {
1478 kfree(root);
1479 if (ret > 0)
1480 ret = -ENOENT;
1481 return ERR_PTR(ret);
1482 }
1483
1484 generation = btrfs_root_generation(&root->root_item);
1485 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1486 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1487 blocksize, generation);
1488 root->commit_root = btrfs_root_node(root);
1489 BUG_ON(!root->node); /* -ENOMEM */
1490 out:
1491 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1492 root->ref_cows = 1;
1493 btrfs_check_and_init_root_item(&root->root_item);
1494 }
1495
1496 return root;
1497 }
1498
1499 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1500 struct btrfs_key *location)
1501 {
1502 struct btrfs_root *root;
1503 int ret;
1504
1505 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1506 return fs_info->tree_root;
1507 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1508 return fs_info->extent_root;
1509 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1510 return fs_info->chunk_root;
1511 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1512 return fs_info->dev_root;
1513 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1514 return fs_info->csum_root;
1515 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1516 return fs_info->quota_root ? fs_info->quota_root :
1517 ERR_PTR(-ENOENT);
1518 again:
1519 spin_lock(&fs_info->fs_roots_radix_lock);
1520 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1521 (unsigned long)location->objectid);
1522 spin_unlock(&fs_info->fs_roots_radix_lock);
1523 if (root)
1524 return root;
1525
1526 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1527 if (IS_ERR(root))
1528 return root;
1529
1530 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1531 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1532 GFP_NOFS);
1533 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1534 ret = -ENOMEM;
1535 goto fail;
1536 }
1537
1538 btrfs_init_free_ino_ctl(root);
1539 mutex_init(&root->fs_commit_mutex);
1540 spin_lock_init(&root->cache_lock);
1541 init_waitqueue_head(&root->cache_wait);
1542
1543 ret = get_anon_bdev(&root->anon_dev);
1544 if (ret)
1545 goto fail;
1546
1547 if (btrfs_root_refs(&root->root_item) == 0) {
1548 ret = -ENOENT;
1549 goto fail;
1550 }
1551
1552 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1553 if (ret < 0)
1554 goto fail;
1555 if (ret == 0)
1556 root->orphan_item_inserted = 1;
1557
1558 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1559 if (ret)
1560 goto fail;
1561
1562 spin_lock(&fs_info->fs_roots_radix_lock);
1563 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1564 (unsigned long)root->root_key.objectid,
1565 root);
1566 if (ret == 0)
1567 root->in_radix = 1;
1568
1569 spin_unlock(&fs_info->fs_roots_radix_lock);
1570 radix_tree_preload_end();
1571 if (ret) {
1572 if (ret == -EEXIST) {
1573 free_fs_root(root);
1574 goto again;
1575 }
1576 goto fail;
1577 }
1578
1579 ret = btrfs_find_dead_roots(fs_info->tree_root,
1580 root->root_key.objectid);
1581 WARN_ON(ret);
1582 return root;
1583 fail:
1584 free_fs_root(root);
1585 return ERR_PTR(ret);
1586 }
1587
1588 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1589 {
1590 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1591 int ret = 0;
1592 struct btrfs_device *device;
1593 struct backing_dev_info *bdi;
1594
1595 rcu_read_lock();
1596 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1597 if (!device->bdev)
1598 continue;
1599 bdi = blk_get_backing_dev_info(device->bdev);
1600 if (bdi && bdi_congested(bdi, bdi_bits)) {
1601 ret = 1;
1602 break;
1603 }
1604 }
1605 rcu_read_unlock();
1606 return ret;
1607 }
1608
1609 /*
1610 * If this fails, caller must call bdi_destroy() to get rid of the
1611 * bdi again.
1612 */
1613 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1614 {
1615 int err;
1616
1617 bdi->capabilities = BDI_CAP_MAP_COPY;
1618 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1619 if (err)
1620 return err;
1621
1622 bdi->ra_pages = default_backing_dev_info.ra_pages;
1623 bdi->congested_fn = btrfs_congested_fn;
1624 bdi->congested_data = info;
1625 return 0;
1626 }
1627
1628 /*
1629 * called by the kthread helper functions to finally call the bio end_io
1630 * functions. This is where read checksum verification actually happens
1631 */
1632 static void end_workqueue_fn(struct btrfs_work *work)
1633 {
1634 struct bio *bio;
1635 struct end_io_wq *end_io_wq;
1636 struct btrfs_fs_info *fs_info;
1637 int error;
1638
1639 end_io_wq = container_of(work, struct end_io_wq, work);
1640 bio = end_io_wq->bio;
1641 fs_info = end_io_wq->info;
1642
1643 error = end_io_wq->error;
1644 bio->bi_private = end_io_wq->private;
1645 bio->bi_end_io = end_io_wq->end_io;
1646 kfree(end_io_wq);
1647 bio_endio(bio, error);
1648 }
1649
1650 static int cleaner_kthread(void *arg)
1651 {
1652 struct btrfs_root *root = arg;
1653
1654 do {
1655 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1656 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1657 btrfs_run_delayed_iputs(root);
1658 btrfs_clean_old_snapshots(root);
1659 mutex_unlock(&root->fs_info->cleaner_mutex);
1660 btrfs_run_defrag_inodes(root->fs_info);
1661 }
1662
1663 if (!try_to_freeze()) {
1664 set_current_state(TASK_INTERRUPTIBLE);
1665 if (!kthread_should_stop())
1666 schedule();
1667 __set_current_state(TASK_RUNNING);
1668 }
1669 } while (!kthread_should_stop());
1670 return 0;
1671 }
1672
1673 static int transaction_kthread(void *arg)
1674 {
1675 struct btrfs_root *root = arg;
1676 struct btrfs_trans_handle *trans;
1677 struct btrfs_transaction *cur;
1678 u64 transid;
1679 unsigned long now;
1680 unsigned long delay;
1681 bool cannot_commit;
1682
1683 do {
1684 cannot_commit = false;
1685 delay = HZ * 30;
1686 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1687
1688 spin_lock(&root->fs_info->trans_lock);
1689 cur = root->fs_info->running_transaction;
1690 if (!cur) {
1691 spin_unlock(&root->fs_info->trans_lock);
1692 goto sleep;
1693 }
1694
1695 now = get_seconds();
1696 if (!cur->blocked &&
1697 (now < cur->start_time || now - cur->start_time < 30)) {
1698 spin_unlock(&root->fs_info->trans_lock);
1699 delay = HZ * 5;
1700 goto sleep;
1701 }
1702 transid = cur->transid;
1703 spin_unlock(&root->fs_info->trans_lock);
1704
1705 /* If the file system is aborted, this will always fail. */
1706 trans = btrfs_attach_transaction(root);
1707 if (IS_ERR(trans)) {
1708 if (PTR_ERR(trans) != -ENOENT)
1709 cannot_commit = true;
1710 goto sleep;
1711 }
1712 if (transid == trans->transid) {
1713 btrfs_commit_transaction(trans, root);
1714 } else {
1715 btrfs_end_transaction(trans, root);
1716 }
1717 sleep:
1718 wake_up_process(root->fs_info->cleaner_kthread);
1719 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1720
1721 if (!try_to_freeze()) {
1722 set_current_state(TASK_INTERRUPTIBLE);
1723 if (!kthread_should_stop() &&
1724 (!btrfs_transaction_blocked(root->fs_info) ||
1725 cannot_commit))
1726 schedule_timeout(delay);
1727 __set_current_state(TASK_RUNNING);
1728 }
1729 } while (!kthread_should_stop());
1730 return 0;
1731 }
1732
1733 /*
1734 * this will find the highest generation in the array of
1735 * root backups. The index of the highest array is returned,
1736 * or -1 if we can't find anything.
1737 *
1738 * We check to make sure the array is valid by comparing the
1739 * generation of the latest root in the array with the generation
1740 * in the super block. If they don't match we pitch it.
1741 */
1742 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1743 {
1744 u64 cur;
1745 int newest_index = -1;
1746 struct btrfs_root_backup *root_backup;
1747 int i;
1748
1749 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1750 root_backup = info->super_copy->super_roots + i;
1751 cur = btrfs_backup_tree_root_gen(root_backup);
1752 if (cur == newest_gen)
1753 newest_index = i;
1754 }
1755
1756 /* check to see if we actually wrapped around */
1757 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1758 root_backup = info->super_copy->super_roots;
1759 cur = btrfs_backup_tree_root_gen(root_backup);
1760 if (cur == newest_gen)
1761 newest_index = 0;
1762 }
1763 return newest_index;
1764 }
1765
1766
1767 /*
1768 * find the oldest backup so we know where to store new entries
1769 * in the backup array. This will set the backup_root_index
1770 * field in the fs_info struct
1771 */
1772 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1773 u64 newest_gen)
1774 {
1775 int newest_index = -1;
1776
1777 newest_index = find_newest_super_backup(info, newest_gen);
1778 /* if there was garbage in there, just move along */
1779 if (newest_index == -1) {
1780 info->backup_root_index = 0;
1781 } else {
1782 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1783 }
1784 }
1785
1786 /*
1787 * copy all the root pointers into the super backup array.
1788 * this will bump the backup pointer by one when it is
1789 * done
1790 */
1791 static void backup_super_roots(struct btrfs_fs_info *info)
1792 {
1793 int next_backup;
1794 struct btrfs_root_backup *root_backup;
1795 int last_backup;
1796
1797 next_backup = info->backup_root_index;
1798 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1799 BTRFS_NUM_BACKUP_ROOTS;
1800
1801 /*
1802 * just overwrite the last backup if we're at the same generation
1803 * this happens only at umount
1804 */
1805 root_backup = info->super_for_commit->super_roots + last_backup;
1806 if (btrfs_backup_tree_root_gen(root_backup) ==
1807 btrfs_header_generation(info->tree_root->node))
1808 next_backup = last_backup;
1809
1810 root_backup = info->super_for_commit->super_roots + next_backup;
1811
1812 /*
1813 * make sure all of our padding and empty slots get zero filled
1814 * regardless of which ones we use today
1815 */
1816 memset(root_backup, 0, sizeof(*root_backup));
1817
1818 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1819
1820 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1821 btrfs_set_backup_tree_root_gen(root_backup,
1822 btrfs_header_generation(info->tree_root->node));
1823
1824 btrfs_set_backup_tree_root_level(root_backup,
1825 btrfs_header_level(info->tree_root->node));
1826
1827 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1828 btrfs_set_backup_chunk_root_gen(root_backup,
1829 btrfs_header_generation(info->chunk_root->node));
1830 btrfs_set_backup_chunk_root_level(root_backup,
1831 btrfs_header_level(info->chunk_root->node));
1832
1833 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1834 btrfs_set_backup_extent_root_gen(root_backup,
1835 btrfs_header_generation(info->extent_root->node));
1836 btrfs_set_backup_extent_root_level(root_backup,
1837 btrfs_header_level(info->extent_root->node));
1838
1839 /*
1840 * we might commit during log recovery, which happens before we set
1841 * the fs_root. Make sure it is valid before we fill it in.
1842 */
1843 if (info->fs_root && info->fs_root->node) {
1844 btrfs_set_backup_fs_root(root_backup,
1845 info->fs_root->node->start);
1846 btrfs_set_backup_fs_root_gen(root_backup,
1847 btrfs_header_generation(info->fs_root->node));
1848 btrfs_set_backup_fs_root_level(root_backup,
1849 btrfs_header_level(info->fs_root->node));
1850 }
1851
1852 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1853 btrfs_set_backup_dev_root_gen(root_backup,
1854 btrfs_header_generation(info->dev_root->node));
1855 btrfs_set_backup_dev_root_level(root_backup,
1856 btrfs_header_level(info->dev_root->node));
1857
1858 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1859 btrfs_set_backup_csum_root_gen(root_backup,
1860 btrfs_header_generation(info->csum_root->node));
1861 btrfs_set_backup_csum_root_level(root_backup,
1862 btrfs_header_level(info->csum_root->node));
1863
1864 btrfs_set_backup_total_bytes(root_backup,
1865 btrfs_super_total_bytes(info->super_copy));
1866 btrfs_set_backup_bytes_used(root_backup,
1867 btrfs_super_bytes_used(info->super_copy));
1868 btrfs_set_backup_num_devices(root_backup,
1869 btrfs_super_num_devices(info->super_copy));
1870
1871 /*
1872 * if we don't copy this out to the super_copy, it won't get remembered
1873 * for the next commit
1874 */
1875 memcpy(&info->super_copy->super_roots,
1876 &info->super_for_commit->super_roots,
1877 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1878 }
1879
1880 /*
1881 * this copies info out of the root backup array and back into
1882 * the in-memory super block. It is meant to help iterate through
1883 * the array, so you send it the number of backups you've already
1884 * tried and the last backup index you used.
1885 *
1886 * this returns -1 when it has tried all the backups
1887 */
1888 static noinline int next_root_backup(struct btrfs_fs_info *info,
1889 struct btrfs_super_block *super,
1890 int *num_backups_tried, int *backup_index)
1891 {
1892 struct btrfs_root_backup *root_backup;
1893 int newest = *backup_index;
1894
1895 if (*num_backups_tried == 0) {
1896 u64 gen = btrfs_super_generation(super);
1897
1898 newest = find_newest_super_backup(info, gen);
1899 if (newest == -1)
1900 return -1;
1901
1902 *backup_index = newest;
1903 *num_backups_tried = 1;
1904 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1905 /* we've tried all the backups, all done */
1906 return -1;
1907 } else {
1908 /* jump to the next oldest backup */
1909 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1910 BTRFS_NUM_BACKUP_ROOTS;
1911 *backup_index = newest;
1912 *num_backups_tried += 1;
1913 }
1914 root_backup = super->super_roots + newest;
1915
1916 btrfs_set_super_generation(super,
1917 btrfs_backup_tree_root_gen(root_backup));
1918 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1919 btrfs_set_super_root_level(super,
1920 btrfs_backup_tree_root_level(root_backup));
1921 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1922
1923 /*
1924 * fixme: the total bytes and num_devices need to match or we should
1925 * need a fsck
1926 */
1927 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1928 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1929 return 0;
1930 }
1931
1932 /* helper to cleanup tree roots */
1933 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1934 {
1935 free_extent_buffer(info->tree_root->node);
1936 free_extent_buffer(info->tree_root->commit_root);
1937 free_extent_buffer(info->dev_root->node);
1938 free_extent_buffer(info->dev_root->commit_root);
1939 free_extent_buffer(info->extent_root->node);
1940 free_extent_buffer(info->extent_root->commit_root);
1941 free_extent_buffer(info->csum_root->node);
1942 free_extent_buffer(info->csum_root->commit_root);
1943 if (info->quota_root) {
1944 free_extent_buffer(info->quota_root->node);
1945 free_extent_buffer(info->quota_root->commit_root);
1946 }
1947
1948 info->tree_root->node = NULL;
1949 info->tree_root->commit_root = NULL;
1950 info->dev_root->node = NULL;
1951 info->dev_root->commit_root = NULL;
1952 info->extent_root->node = NULL;
1953 info->extent_root->commit_root = NULL;
1954 info->csum_root->node = NULL;
1955 info->csum_root->commit_root = NULL;
1956 if (info->quota_root) {
1957 info->quota_root->node = NULL;
1958 info->quota_root->commit_root = NULL;
1959 }
1960
1961 if (chunk_root) {
1962 free_extent_buffer(info->chunk_root->node);
1963 free_extent_buffer(info->chunk_root->commit_root);
1964 info->chunk_root->node = NULL;
1965 info->chunk_root->commit_root = NULL;
1966 }
1967 }
1968
1969
1970 int open_ctree(struct super_block *sb,
1971 struct btrfs_fs_devices *fs_devices,
1972 char *options)
1973 {
1974 u32 sectorsize;
1975 u32 nodesize;
1976 u32 leafsize;
1977 u32 blocksize;
1978 u32 stripesize;
1979 u64 generation;
1980 u64 features;
1981 struct btrfs_key location;
1982 struct buffer_head *bh;
1983 struct btrfs_super_block *disk_super;
1984 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1985 struct btrfs_root *tree_root;
1986 struct btrfs_root *extent_root;
1987 struct btrfs_root *csum_root;
1988 struct btrfs_root *chunk_root;
1989 struct btrfs_root *dev_root;
1990 struct btrfs_root *quota_root;
1991 struct btrfs_root *log_tree_root;
1992 int ret;
1993 int err = -EINVAL;
1994 int num_backups_tried = 0;
1995 int backup_index = 0;
1996
1997 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1998 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1999 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2000 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2001 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2002 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2003
2004 if (!tree_root || !extent_root || !csum_root ||
2005 !chunk_root || !dev_root || !quota_root) {
2006 err = -ENOMEM;
2007 goto fail;
2008 }
2009
2010 ret = init_srcu_struct(&fs_info->subvol_srcu);
2011 if (ret) {
2012 err = ret;
2013 goto fail;
2014 }
2015
2016 ret = setup_bdi(fs_info, &fs_info->bdi);
2017 if (ret) {
2018 err = ret;
2019 goto fail_srcu;
2020 }
2021
2022 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2023 if (ret) {
2024 err = ret;
2025 goto fail_bdi;
2026 }
2027 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2028 (1 + ilog2(nr_cpu_ids));
2029
2030 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2031 if (ret) {
2032 err = ret;
2033 goto fail_dirty_metadata_bytes;
2034 }
2035
2036 fs_info->btree_inode = new_inode(sb);
2037 if (!fs_info->btree_inode) {
2038 err = -ENOMEM;
2039 goto fail_delalloc_bytes;
2040 }
2041
2042 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2043
2044 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2045 INIT_LIST_HEAD(&fs_info->trans_list);
2046 INIT_LIST_HEAD(&fs_info->dead_roots);
2047 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2048 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2049 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2050 spin_lock_init(&fs_info->delalloc_lock);
2051 spin_lock_init(&fs_info->trans_lock);
2052 spin_lock_init(&fs_info->fs_roots_radix_lock);
2053 spin_lock_init(&fs_info->delayed_iput_lock);
2054 spin_lock_init(&fs_info->defrag_inodes_lock);
2055 spin_lock_init(&fs_info->free_chunk_lock);
2056 spin_lock_init(&fs_info->tree_mod_seq_lock);
2057 rwlock_init(&fs_info->tree_mod_log_lock);
2058 mutex_init(&fs_info->reloc_mutex);
2059 seqlock_init(&fs_info->profiles_lock);
2060
2061 init_completion(&fs_info->kobj_unregister);
2062 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2063 INIT_LIST_HEAD(&fs_info->space_info);
2064 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2065 btrfs_mapping_init(&fs_info->mapping_tree);
2066 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2067 BTRFS_BLOCK_RSV_GLOBAL);
2068 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2069 BTRFS_BLOCK_RSV_DELALLOC);
2070 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2071 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2072 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2073 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2074 BTRFS_BLOCK_RSV_DELOPS);
2075 atomic_set(&fs_info->nr_async_submits, 0);
2076 atomic_set(&fs_info->async_delalloc_pages, 0);
2077 atomic_set(&fs_info->async_submit_draining, 0);
2078 atomic_set(&fs_info->nr_async_bios, 0);
2079 atomic_set(&fs_info->defrag_running, 0);
2080 atomic_set(&fs_info->tree_mod_seq, 0);
2081 fs_info->sb = sb;
2082 fs_info->max_inline = 8192 * 1024;
2083 fs_info->metadata_ratio = 0;
2084 fs_info->defrag_inodes = RB_ROOT;
2085 fs_info->trans_no_join = 0;
2086 fs_info->free_chunk_space = 0;
2087 fs_info->tree_mod_log = RB_ROOT;
2088
2089 /* readahead state */
2090 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2091 spin_lock_init(&fs_info->reada_lock);
2092
2093 fs_info->thread_pool_size = min_t(unsigned long,
2094 num_online_cpus() + 2, 8);
2095
2096 INIT_LIST_HEAD(&fs_info->ordered_extents);
2097 spin_lock_init(&fs_info->ordered_extent_lock);
2098 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2099 GFP_NOFS);
2100 if (!fs_info->delayed_root) {
2101 err = -ENOMEM;
2102 goto fail_iput;
2103 }
2104 btrfs_init_delayed_root(fs_info->delayed_root);
2105
2106 mutex_init(&fs_info->scrub_lock);
2107 atomic_set(&fs_info->scrubs_running, 0);
2108 atomic_set(&fs_info->scrub_pause_req, 0);
2109 atomic_set(&fs_info->scrubs_paused, 0);
2110 atomic_set(&fs_info->scrub_cancel_req, 0);
2111 init_waitqueue_head(&fs_info->scrub_pause_wait);
2112 init_rwsem(&fs_info->scrub_super_lock);
2113 fs_info->scrub_workers_refcnt = 0;
2114 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2115 fs_info->check_integrity_print_mask = 0;
2116 #endif
2117
2118 spin_lock_init(&fs_info->balance_lock);
2119 mutex_init(&fs_info->balance_mutex);
2120 atomic_set(&fs_info->balance_running, 0);
2121 atomic_set(&fs_info->balance_pause_req, 0);
2122 atomic_set(&fs_info->balance_cancel_req, 0);
2123 fs_info->balance_ctl = NULL;
2124 init_waitqueue_head(&fs_info->balance_wait_q);
2125
2126 sb->s_blocksize = 4096;
2127 sb->s_blocksize_bits = blksize_bits(4096);
2128 sb->s_bdi = &fs_info->bdi;
2129
2130 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2131 set_nlink(fs_info->btree_inode, 1);
2132 /*
2133 * we set the i_size on the btree inode to the max possible int.
2134 * the real end of the address space is determined by all of
2135 * the devices in the system
2136 */
2137 fs_info->btree_inode->i_size = OFFSET_MAX;
2138 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2139 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2140
2141 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2142 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2143 fs_info->btree_inode->i_mapping);
2144 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2145 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2146
2147 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2148
2149 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2150 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2151 sizeof(struct btrfs_key));
2152 set_bit(BTRFS_INODE_DUMMY,
2153 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2154 insert_inode_hash(fs_info->btree_inode);
2155
2156 spin_lock_init(&fs_info->block_group_cache_lock);
2157 fs_info->block_group_cache_tree = RB_ROOT;
2158 fs_info->first_logical_byte = (u64)-1;
2159
2160 extent_io_tree_init(&fs_info->freed_extents[0],
2161 fs_info->btree_inode->i_mapping);
2162 extent_io_tree_init(&fs_info->freed_extents[1],
2163 fs_info->btree_inode->i_mapping);
2164 fs_info->pinned_extents = &fs_info->freed_extents[0];
2165 fs_info->do_barriers = 1;
2166
2167
2168 mutex_init(&fs_info->ordered_operations_mutex);
2169 mutex_init(&fs_info->tree_log_mutex);
2170 mutex_init(&fs_info->chunk_mutex);
2171 mutex_init(&fs_info->transaction_kthread_mutex);
2172 mutex_init(&fs_info->cleaner_mutex);
2173 mutex_init(&fs_info->volume_mutex);
2174 init_rwsem(&fs_info->extent_commit_sem);
2175 init_rwsem(&fs_info->cleanup_work_sem);
2176 init_rwsem(&fs_info->subvol_sem);
2177 fs_info->dev_replace.lock_owner = 0;
2178 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2179 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2180 mutex_init(&fs_info->dev_replace.lock_management_lock);
2181 mutex_init(&fs_info->dev_replace.lock);
2182
2183 spin_lock_init(&fs_info->qgroup_lock);
2184 fs_info->qgroup_tree = RB_ROOT;
2185 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2186 fs_info->qgroup_seq = 1;
2187 fs_info->quota_enabled = 0;
2188 fs_info->pending_quota_state = 0;
2189
2190 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2191 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2192
2193 init_waitqueue_head(&fs_info->transaction_throttle);
2194 init_waitqueue_head(&fs_info->transaction_wait);
2195 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2196 init_waitqueue_head(&fs_info->async_submit_wait);
2197
2198 ret = btrfs_alloc_stripe_hash_table(fs_info);
2199 if (ret) {
2200 err = ret;
2201 goto fail_alloc;
2202 }
2203
2204 __setup_root(4096, 4096, 4096, 4096, tree_root,
2205 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2206
2207 invalidate_bdev(fs_devices->latest_bdev);
2208 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2209 if (!bh) {
2210 err = -EINVAL;
2211 goto fail_alloc;
2212 }
2213
2214 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2215 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2216 sizeof(*fs_info->super_for_commit));
2217 brelse(bh);
2218
2219 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2220
2221 disk_super = fs_info->super_copy;
2222 if (!btrfs_super_root(disk_super))
2223 goto fail_alloc;
2224
2225 /* check FS state, whether FS is broken. */
2226 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2227 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2228
2229 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2230 if (ret) {
2231 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2232 err = ret;
2233 goto fail_alloc;
2234 }
2235
2236 /*
2237 * run through our array of backup supers and setup
2238 * our ring pointer to the oldest one
2239 */
2240 generation = btrfs_super_generation(disk_super);
2241 find_oldest_super_backup(fs_info, generation);
2242
2243 /*
2244 * In the long term, we'll store the compression type in the super
2245 * block, and it'll be used for per file compression control.
2246 */
2247 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2248
2249 ret = btrfs_parse_options(tree_root, options);
2250 if (ret) {
2251 err = ret;
2252 goto fail_alloc;
2253 }
2254
2255 features = btrfs_super_incompat_flags(disk_super) &
2256 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2257 if (features) {
2258 printk(KERN_ERR "BTRFS: couldn't mount because of "
2259 "unsupported optional features (%Lx).\n",
2260 (unsigned long long)features);
2261 err = -EINVAL;
2262 goto fail_alloc;
2263 }
2264
2265 if (btrfs_super_leafsize(disk_super) !=
2266 btrfs_super_nodesize(disk_super)) {
2267 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2268 "blocksizes don't match. node %d leaf %d\n",
2269 btrfs_super_nodesize(disk_super),
2270 btrfs_super_leafsize(disk_super));
2271 err = -EINVAL;
2272 goto fail_alloc;
2273 }
2274 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2275 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2276 "blocksize (%d) was too large\n",
2277 btrfs_super_leafsize(disk_super));
2278 err = -EINVAL;
2279 goto fail_alloc;
2280 }
2281
2282 features = btrfs_super_incompat_flags(disk_super);
2283 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2284 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2285 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2286
2287 /*
2288 * flag our filesystem as having big metadata blocks if
2289 * they are bigger than the page size
2290 */
2291 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2292 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2293 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2294 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2295 }
2296
2297 nodesize = btrfs_super_nodesize(disk_super);
2298 leafsize = btrfs_super_leafsize(disk_super);
2299 sectorsize = btrfs_super_sectorsize(disk_super);
2300 stripesize = btrfs_super_stripesize(disk_super);
2301 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2302 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2303
2304 /*
2305 * mixed block groups end up with duplicate but slightly offset
2306 * extent buffers for the same range. It leads to corruptions
2307 */
2308 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2309 (sectorsize != leafsize)) {
2310 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2311 "are not allowed for mixed block groups on %s\n",
2312 sb->s_id);
2313 goto fail_alloc;
2314 }
2315
2316 btrfs_set_super_incompat_flags(disk_super, features);
2317
2318 features = btrfs_super_compat_ro_flags(disk_super) &
2319 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2320 if (!(sb->s_flags & MS_RDONLY) && features) {
2321 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2322 "unsupported option features (%Lx).\n",
2323 (unsigned long long)features);
2324 err = -EINVAL;
2325 goto fail_alloc;
2326 }
2327
2328 btrfs_init_workers(&fs_info->generic_worker,
2329 "genwork", 1, NULL);
2330
2331 btrfs_init_workers(&fs_info->workers, "worker",
2332 fs_info->thread_pool_size,
2333 &fs_info->generic_worker);
2334
2335 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2336 fs_info->thread_pool_size,
2337 &fs_info->generic_worker);
2338
2339 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2340 fs_info->thread_pool_size,
2341 &fs_info->generic_worker);
2342
2343 btrfs_init_workers(&fs_info->submit_workers, "submit",
2344 min_t(u64, fs_devices->num_devices,
2345 fs_info->thread_pool_size),
2346 &fs_info->generic_worker);
2347
2348 btrfs_init_workers(&fs_info->caching_workers, "cache",
2349 2, &fs_info->generic_worker);
2350
2351 /* a higher idle thresh on the submit workers makes it much more
2352 * likely that bios will be send down in a sane order to the
2353 * devices
2354 */
2355 fs_info->submit_workers.idle_thresh = 64;
2356
2357 fs_info->workers.idle_thresh = 16;
2358 fs_info->workers.ordered = 1;
2359
2360 fs_info->delalloc_workers.idle_thresh = 2;
2361 fs_info->delalloc_workers.ordered = 1;
2362
2363 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2364 &fs_info->generic_worker);
2365 btrfs_init_workers(&fs_info->endio_workers, "endio",
2366 fs_info->thread_pool_size,
2367 &fs_info->generic_worker);
2368 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2369 fs_info->thread_pool_size,
2370 &fs_info->generic_worker);
2371 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2372 "endio-meta-write", fs_info->thread_pool_size,
2373 &fs_info->generic_worker);
2374 btrfs_init_workers(&fs_info->endio_raid56_workers,
2375 "endio-raid56", fs_info->thread_pool_size,
2376 &fs_info->generic_worker);
2377 btrfs_init_workers(&fs_info->rmw_workers,
2378 "rmw", fs_info->thread_pool_size,
2379 &fs_info->generic_worker);
2380 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2381 fs_info->thread_pool_size,
2382 &fs_info->generic_worker);
2383 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2384 1, &fs_info->generic_worker);
2385 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2386 fs_info->thread_pool_size,
2387 &fs_info->generic_worker);
2388 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2389 fs_info->thread_pool_size,
2390 &fs_info->generic_worker);
2391
2392 /*
2393 * endios are largely parallel and should have a very
2394 * low idle thresh
2395 */
2396 fs_info->endio_workers.idle_thresh = 4;
2397 fs_info->endio_meta_workers.idle_thresh = 4;
2398 fs_info->endio_raid56_workers.idle_thresh = 4;
2399 fs_info->rmw_workers.idle_thresh = 2;
2400
2401 fs_info->endio_write_workers.idle_thresh = 2;
2402 fs_info->endio_meta_write_workers.idle_thresh = 2;
2403 fs_info->readahead_workers.idle_thresh = 2;
2404
2405 /*
2406 * btrfs_start_workers can really only fail because of ENOMEM so just
2407 * return -ENOMEM if any of these fail.
2408 */
2409 ret = btrfs_start_workers(&fs_info->workers);
2410 ret |= btrfs_start_workers(&fs_info->generic_worker);
2411 ret |= btrfs_start_workers(&fs_info->submit_workers);
2412 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2413 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2414 ret |= btrfs_start_workers(&fs_info->endio_workers);
2415 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2416 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2417 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2418 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2419 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2420 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2421 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2422 ret |= btrfs_start_workers(&fs_info->caching_workers);
2423 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2424 ret |= btrfs_start_workers(&fs_info->flush_workers);
2425 if (ret) {
2426 err = -ENOMEM;
2427 goto fail_sb_buffer;
2428 }
2429
2430 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2431 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2432 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2433
2434 tree_root->nodesize = nodesize;
2435 tree_root->leafsize = leafsize;
2436 tree_root->sectorsize = sectorsize;
2437 tree_root->stripesize = stripesize;
2438
2439 sb->s_blocksize = sectorsize;
2440 sb->s_blocksize_bits = blksize_bits(sectorsize);
2441
2442 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2443 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2444 goto fail_sb_buffer;
2445 }
2446
2447 if (sectorsize != PAGE_SIZE) {
2448 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2449 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2450 goto fail_sb_buffer;
2451 }
2452
2453 mutex_lock(&fs_info->chunk_mutex);
2454 ret = btrfs_read_sys_array(tree_root);
2455 mutex_unlock(&fs_info->chunk_mutex);
2456 if (ret) {
2457 printk(KERN_WARNING "btrfs: failed to read the system "
2458 "array on %s\n", sb->s_id);
2459 goto fail_sb_buffer;
2460 }
2461
2462 blocksize = btrfs_level_size(tree_root,
2463 btrfs_super_chunk_root_level(disk_super));
2464 generation = btrfs_super_chunk_root_generation(disk_super);
2465
2466 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2467 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2468
2469 chunk_root->node = read_tree_block(chunk_root,
2470 btrfs_super_chunk_root(disk_super),
2471 blocksize, generation);
2472 BUG_ON(!chunk_root->node); /* -ENOMEM */
2473 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2474 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2475 sb->s_id);
2476 goto fail_tree_roots;
2477 }
2478 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2479 chunk_root->commit_root = btrfs_root_node(chunk_root);
2480
2481 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2482 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2483 BTRFS_UUID_SIZE);
2484
2485 ret = btrfs_read_chunk_tree(chunk_root);
2486 if (ret) {
2487 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2488 sb->s_id);
2489 goto fail_tree_roots;
2490 }
2491
2492 /*
2493 * keep the device that is marked to be the target device for the
2494 * dev_replace procedure
2495 */
2496 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2497
2498 if (!fs_devices->latest_bdev) {
2499 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2500 sb->s_id);
2501 goto fail_tree_roots;
2502 }
2503
2504 retry_root_backup:
2505 blocksize = btrfs_level_size(tree_root,
2506 btrfs_super_root_level(disk_super));
2507 generation = btrfs_super_generation(disk_super);
2508
2509 tree_root->node = read_tree_block(tree_root,
2510 btrfs_super_root(disk_super),
2511 blocksize, generation);
2512 if (!tree_root->node ||
2513 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2514 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2515 sb->s_id);
2516
2517 goto recovery_tree_root;
2518 }
2519
2520 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2521 tree_root->commit_root = btrfs_root_node(tree_root);
2522
2523 ret = find_and_setup_root(tree_root, fs_info,
2524 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2525 if (ret)
2526 goto recovery_tree_root;
2527 extent_root->track_dirty = 1;
2528
2529 ret = find_and_setup_root(tree_root, fs_info,
2530 BTRFS_DEV_TREE_OBJECTID, dev_root);
2531 if (ret)
2532 goto recovery_tree_root;
2533 dev_root->track_dirty = 1;
2534
2535 ret = find_and_setup_root(tree_root, fs_info,
2536 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2537 if (ret)
2538 goto recovery_tree_root;
2539 csum_root->track_dirty = 1;
2540
2541 ret = find_and_setup_root(tree_root, fs_info,
2542 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2543 if (ret) {
2544 kfree(quota_root);
2545 quota_root = fs_info->quota_root = NULL;
2546 } else {
2547 quota_root->track_dirty = 1;
2548 fs_info->quota_enabled = 1;
2549 fs_info->pending_quota_state = 1;
2550 }
2551
2552 fs_info->generation = generation;
2553 fs_info->last_trans_committed = generation;
2554
2555 ret = btrfs_recover_balance(fs_info);
2556 if (ret) {
2557 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2558 goto fail_block_groups;
2559 }
2560
2561 ret = btrfs_init_dev_stats(fs_info);
2562 if (ret) {
2563 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2564 ret);
2565 goto fail_block_groups;
2566 }
2567
2568 ret = btrfs_init_dev_replace(fs_info);
2569 if (ret) {
2570 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2571 goto fail_block_groups;
2572 }
2573
2574 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2575
2576 ret = btrfs_init_space_info(fs_info);
2577 if (ret) {
2578 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2579 goto fail_block_groups;
2580 }
2581
2582 ret = btrfs_read_block_groups(extent_root);
2583 if (ret) {
2584 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2585 goto fail_block_groups;
2586 }
2587 fs_info->num_tolerated_disk_barrier_failures =
2588 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2589 if (fs_info->fs_devices->missing_devices >
2590 fs_info->num_tolerated_disk_barrier_failures &&
2591 !(sb->s_flags & MS_RDONLY)) {
2592 printk(KERN_WARNING
2593 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2594 goto fail_block_groups;
2595 }
2596
2597 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2598 "btrfs-cleaner");
2599 if (IS_ERR(fs_info->cleaner_kthread))
2600 goto fail_block_groups;
2601
2602 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2603 tree_root,
2604 "btrfs-transaction");
2605 if (IS_ERR(fs_info->transaction_kthread))
2606 goto fail_cleaner;
2607
2608 if (!btrfs_test_opt(tree_root, SSD) &&
2609 !btrfs_test_opt(tree_root, NOSSD) &&
2610 !fs_info->fs_devices->rotating) {
2611 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2612 "mode\n");
2613 btrfs_set_opt(fs_info->mount_opt, SSD);
2614 }
2615
2616 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2617 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2618 ret = btrfsic_mount(tree_root, fs_devices,
2619 btrfs_test_opt(tree_root,
2620 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2621 1 : 0,
2622 fs_info->check_integrity_print_mask);
2623 if (ret)
2624 printk(KERN_WARNING "btrfs: failed to initialize"
2625 " integrity check module %s\n", sb->s_id);
2626 }
2627 #endif
2628 ret = btrfs_read_qgroup_config(fs_info);
2629 if (ret)
2630 goto fail_trans_kthread;
2631
2632 /* do not make disk changes in broken FS */
2633 if (btrfs_super_log_root(disk_super) != 0) {
2634 u64 bytenr = btrfs_super_log_root(disk_super);
2635
2636 if (fs_devices->rw_devices == 0) {
2637 printk(KERN_WARNING "Btrfs log replay required "
2638 "on RO media\n");
2639 err = -EIO;
2640 goto fail_qgroup;
2641 }
2642 blocksize =
2643 btrfs_level_size(tree_root,
2644 btrfs_super_log_root_level(disk_super));
2645
2646 log_tree_root = btrfs_alloc_root(fs_info);
2647 if (!log_tree_root) {
2648 err = -ENOMEM;
2649 goto fail_qgroup;
2650 }
2651
2652 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2653 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2654
2655 log_tree_root->node = read_tree_block(tree_root, bytenr,
2656 blocksize,
2657 generation + 1);
2658 /* returns with log_tree_root freed on success */
2659 ret = btrfs_recover_log_trees(log_tree_root);
2660 if (ret) {
2661 btrfs_error(tree_root->fs_info, ret,
2662 "Failed to recover log tree");
2663 free_extent_buffer(log_tree_root->node);
2664 kfree(log_tree_root);
2665 goto fail_trans_kthread;
2666 }
2667
2668 if (sb->s_flags & MS_RDONLY) {
2669 ret = btrfs_commit_super(tree_root);
2670 if (ret)
2671 goto fail_trans_kthread;
2672 }
2673 }
2674
2675 ret = btrfs_find_orphan_roots(tree_root);
2676 if (ret)
2677 goto fail_trans_kthread;
2678
2679 if (!(sb->s_flags & MS_RDONLY)) {
2680 ret = btrfs_cleanup_fs_roots(fs_info);
2681 if (ret)
2682 goto fail_trans_kthread;
2683
2684 ret = btrfs_recover_relocation(tree_root);
2685 if (ret < 0) {
2686 printk(KERN_WARNING
2687 "btrfs: failed to recover relocation\n");
2688 err = -EINVAL;
2689 goto fail_qgroup;
2690 }
2691 }
2692
2693 location.objectid = BTRFS_FS_TREE_OBJECTID;
2694 location.type = BTRFS_ROOT_ITEM_KEY;
2695 location.offset = (u64)-1;
2696
2697 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2698 if (!fs_info->fs_root)
2699 goto fail_qgroup;
2700 if (IS_ERR(fs_info->fs_root)) {
2701 err = PTR_ERR(fs_info->fs_root);
2702 goto fail_qgroup;
2703 }
2704
2705 if (sb->s_flags & MS_RDONLY)
2706 return 0;
2707
2708 down_read(&fs_info->cleanup_work_sem);
2709 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2710 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2711 up_read(&fs_info->cleanup_work_sem);
2712 close_ctree(tree_root);
2713 return ret;
2714 }
2715 up_read(&fs_info->cleanup_work_sem);
2716
2717 ret = btrfs_resume_balance_async(fs_info);
2718 if (ret) {
2719 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2720 close_ctree(tree_root);
2721 return ret;
2722 }
2723
2724 ret = btrfs_resume_dev_replace_async(fs_info);
2725 if (ret) {
2726 pr_warn("btrfs: failed to resume dev_replace\n");
2727 close_ctree(tree_root);
2728 return ret;
2729 }
2730
2731 return 0;
2732
2733 fail_qgroup:
2734 btrfs_free_qgroup_config(fs_info);
2735 fail_trans_kthread:
2736 kthread_stop(fs_info->transaction_kthread);
2737 fail_cleaner:
2738 kthread_stop(fs_info->cleaner_kthread);
2739
2740 /*
2741 * make sure we're done with the btree inode before we stop our
2742 * kthreads
2743 */
2744 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2745
2746 fail_block_groups:
2747 btrfs_free_block_groups(fs_info);
2748
2749 fail_tree_roots:
2750 free_root_pointers(fs_info, 1);
2751 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2752
2753 fail_sb_buffer:
2754 btrfs_stop_workers(&fs_info->generic_worker);
2755 btrfs_stop_workers(&fs_info->readahead_workers);
2756 btrfs_stop_workers(&fs_info->fixup_workers);
2757 btrfs_stop_workers(&fs_info->delalloc_workers);
2758 btrfs_stop_workers(&fs_info->workers);
2759 btrfs_stop_workers(&fs_info->endio_workers);
2760 btrfs_stop_workers(&fs_info->endio_meta_workers);
2761 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2762 btrfs_stop_workers(&fs_info->rmw_workers);
2763 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2764 btrfs_stop_workers(&fs_info->endio_write_workers);
2765 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2766 btrfs_stop_workers(&fs_info->submit_workers);
2767 btrfs_stop_workers(&fs_info->delayed_workers);
2768 btrfs_stop_workers(&fs_info->caching_workers);
2769 btrfs_stop_workers(&fs_info->flush_workers);
2770 fail_alloc:
2771 fail_iput:
2772 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2773
2774 iput(fs_info->btree_inode);
2775 fail_delalloc_bytes:
2776 percpu_counter_destroy(&fs_info->delalloc_bytes);
2777 fail_dirty_metadata_bytes:
2778 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2779 fail_bdi:
2780 bdi_destroy(&fs_info->bdi);
2781 fail_srcu:
2782 cleanup_srcu_struct(&fs_info->subvol_srcu);
2783 fail:
2784 btrfs_free_stripe_hash_table(fs_info);
2785 btrfs_close_devices(fs_info->fs_devices);
2786 return err;
2787
2788 recovery_tree_root:
2789 if (!btrfs_test_opt(tree_root, RECOVERY))
2790 goto fail_tree_roots;
2791
2792 free_root_pointers(fs_info, 0);
2793
2794 /* don't use the log in recovery mode, it won't be valid */
2795 btrfs_set_super_log_root(disk_super, 0);
2796
2797 /* we can't trust the free space cache either */
2798 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2799
2800 ret = next_root_backup(fs_info, fs_info->super_copy,
2801 &num_backups_tried, &backup_index);
2802 if (ret == -1)
2803 goto fail_block_groups;
2804 goto retry_root_backup;
2805 }
2806
2807 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2808 {
2809 if (uptodate) {
2810 set_buffer_uptodate(bh);
2811 } else {
2812 struct btrfs_device *device = (struct btrfs_device *)
2813 bh->b_private;
2814
2815 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2816 "I/O error on %s\n",
2817 rcu_str_deref(device->name));
2818 /* note, we dont' set_buffer_write_io_error because we have
2819 * our own ways of dealing with the IO errors
2820 */
2821 clear_buffer_uptodate(bh);
2822 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2823 }
2824 unlock_buffer(bh);
2825 put_bh(bh);
2826 }
2827
2828 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2829 {
2830 struct buffer_head *bh;
2831 struct buffer_head *latest = NULL;
2832 struct btrfs_super_block *super;
2833 int i;
2834 u64 transid = 0;
2835 u64 bytenr;
2836
2837 /* we would like to check all the supers, but that would make
2838 * a btrfs mount succeed after a mkfs from a different FS.
2839 * So, we need to add a special mount option to scan for
2840 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2841 */
2842 for (i = 0; i < 1; i++) {
2843 bytenr = btrfs_sb_offset(i);
2844 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2845 break;
2846 bh = __bread(bdev, bytenr / 4096, 4096);
2847 if (!bh)
2848 continue;
2849
2850 super = (struct btrfs_super_block *)bh->b_data;
2851 if (btrfs_super_bytenr(super) != bytenr ||
2852 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2853 brelse(bh);
2854 continue;
2855 }
2856
2857 if (!latest || btrfs_super_generation(super) > transid) {
2858 brelse(latest);
2859 latest = bh;
2860 transid = btrfs_super_generation(super);
2861 } else {
2862 brelse(bh);
2863 }
2864 }
2865 return latest;
2866 }
2867
2868 /*
2869 * this should be called twice, once with wait == 0 and
2870 * once with wait == 1. When wait == 0 is done, all the buffer heads
2871 * we write are pinned.
2872 *
2873 * They are released when wait == 1 is done.
2874 * max_mirrors must be the same for both runs, and it indicates how
2875 * many supers on this one device should be written.
2876 *
2877 * max_mirrors == 0 means to write them all.
2878 */
2879 static int write_dev_supers(struct btrfs_device *device,
2880 struct btrfs_super_block *sb,
2881 int do_barriers, int wait, int max_mirrors)
2882 {
2883 struct buffer_head *bh;
2884 int i;
2885 int ret;
2886 int errors = 0;
2887 u32 crc;
2888 u64 bytenr;
2889
2890 if (max_mirrors == 0)
2891 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2892
2893 for (i = 0; i < max_mirrors; i++) {
2894 bytenr = btrfs_sb_offset(i);
2895 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2896 break;
2897
2898 if (wait) {
2899 bh = __find_get_block(device->bdev, bytenr / 4096,
2900 BTRFS_SUPER_INFO_SIZE);
2901 BUG_ON(!bh);
2902 wait_on_buffer(bh);
2903 if (!buffer_uptodate(bh))
2904 errors++;
2905
2906 /* drop our reference */
2907 brelse(bh);
2908
2909 /* drop the reference from the wait == 0 run */
2910 brelse(bh);
2911 continue;
2912 } else {
2913 btrfs_set_super_bytenr(sb, bytenr);
2914
2915 crc = ~(u32)0;
2916 crc = btrfs_csum_data(NULL, (char *)sb +
2917 BTRFS_CSUM_SIZE, crc,
2918 BTRFS_SUPER_INFO_SIZE -
2919 BTRFS_CSUM_SIZE);
2920 btrfs_csum_final(crc, sb->csum);
2921
2922 /*
2923 * one reference for us, and we leave it for the
2924 * caller
2925 */
2926 bh = __getblk(device->bdev, bytenr / 4096,
2927 BTRFS_SUPER_INFO_SIZE);
2928 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2929
2930 /* one reference for submit_bh */
2931 get_bh(bh);
2932
2933 set_buffer_uptodate(bh);
2934 lock_buffer(bh);
2935 bh->b_end_io = btrfs_end_buffer_write_sync;
2936 bh->b_private = device;
2937 }
2938
2939 /*
2940 * we fua the first super. The others we allow
2941 * to go down lazy.
2942 */
2943 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2944 if (ret)
2945 errors++;
2946 }
2947 return errors < i ? 0 : -1;
2948 }
2949
2950 /*
2951 * endio for the write_dev_flush, this will wake anyone waiting
2952 * for the barrier when it is done
2953 */
2954 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2955 {
2956 if (err) {
2957 if (err == -EOPNOTSUPP)
2958 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2959 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2960 }
2961 if (bio->bi_private)
2962 complete(bio->bi_private);
2963 bio_put(bio);
2964 }
2965
2966 /*
2967 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2968 * sent down. With wait == 1, it waits for the previous flush.
2969 *
2970 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2971 * capable
2972 */
2973 static int write_dev_flush(struct btrfs_device *device, int wait)
2974 {
2975 struct bio *bio;
2976 int ret = 0;
2977
2978 if (device->nobarriers)
2979 return 0;
2980
2981 if (wait) {
2982 bio = device->flush_bio;
2983 if (!bio)
2984 return 0;
2985
2986 wait_for_completion(&device->flush_wait);
2987
2988 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2989 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2990 rcu_str_deref(device->name));
2991 device->nobarriers = 1;
2992 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2993 ret = -EIO;
2994 btrfs_dev_stat_inc_and_print(device,
2995 BTRFS_DEV_STAT_FLUSH_ERRS);
2996 }
2997
2998 /* drop the reference from the wait == 0 run */
2999 bio_put(bio);
3000 device->flush_bio = NULL;
3001
3002 return ret;
3003 }
3004
3005 /*
3006 * one reference for us, and we leave it for the
3007 * caller
3008 */
3009 device->flush_bio = NULL;
3010 bio = bio_alloc(GFP_NOFS, 0);
3011 if (!bio)
3012 return -ENOMEM;
3013
3014 bio->bi_end_io = btrfs_end_empty_barrier;
3015 bio->bi_bdev = device->bdev;
3016 init_completion(&device->flush_wait);
3017 bio->bi_private = &device->flush_wait;
3018 device->flush_bio = bio;
3019
3020 bio_get(bio);
3021 btrfsic_submit_bio(WRITE_FLUSH, bio);
3022
3023 return 0;
3024 }
3025
3026 /*
3027 * send an empty flush down to each device in parallel,
3028 * then wait for them
3029 */
3030 static int barrier_all_devices(struct btrfs_fs_info *info)
3031 {
3032 struct list_head *head;
3033 struct btrfs_device *dev;
3034 int errors_send = 0;
3035 int errors_wait = 0;
3036 int ret;
3037
3038 /* send down all the barriers */
3039 head = &info->fs_devices->devices;
3040 list_for_each_entry_rcu(dev, head, dev_list) {
3041 if (!dev->bdev) {
3042 errors_send++;
3043 continue;
3044 }
3045 if (!dev->in_fs_metadata || !dev->writeable)
3046 continue;
3047
3048 ret = write_dev_flush(dev, 0);
3049 if (ret)
3050 errors_send++;
3051 }
3052
3053 /* wait for all the barriers */
3054 list_for_each_entry_rcu(dev, head, dev_list) {
3055 if (!dev->bdev) {
3056 errors_wait++;
3057 continue;
3058 }
3059 if (!dev->in_fs_metadata || !dev->writeable)
3060 continue;
3061
3062 ret = write_dev_flush(dev, 1);
3063 if (ret)
3064 errors_wait++;
3065 }
3066 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3067 errors_wait > info->num_tolerated_disk_barrier_failures)
3068 return -EIO;
3069 return 0;
3070 }
3071
3072 int btrfs_calc_num_tolerated_disk_barrier_failures(
3073 struct btrfs_fs_info *fs_info)
3074 {
3075 struct btrfs_ioctl_space_info space;
3076 struct btrfs_space_info *sinfo;
3077 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3078 BTRFS_BLOCK_GROUP_SYSTEM,
3079 BTRFS_BLOCK_GROUP_METADATA,
3080 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3081 int num_types = 4;
3082 int i;
3083 int c;
3084 int num_tolerated_disk_barrier_failures =
3085 (int)fs_info->fs_devices->num_devices;
3086
3087 for (i = 0; i < num_types; i++) {
3088 struct btrfs_space_info *tmp;
3089
3090 sinfo = NULL;
3091 rcu_read_lock();
3092 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3093 if (tmp->flags == types[i]) {
3094 sinfo = tmp;
3095 break;
3096 }
3097 }
3098 rcu_read_unlock();
3099
3100 if (!sinfo)
3101 continue;
3102
3103 down_read(&sinfo->groups_sem);
3104 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3105 if (!list_empty(&sinfo->block_groups[c])) {
3106 u64 flags;
3107
3108 btrfs_get_block_group_info(
3109 &sinfo->block_groups[c], &space);
3110 if (space.total_bytes == 0 ||
3111 space.used_bytes == 0)
3112 continue;
3113 flags = space.flags;
3114 /*
3115 * return
3116 * 0: if dup, single or RAID0 is configured for
3117 * any of metadata, system or data, else
3118 * 1: if RAID5 is configured, or if RAID1 or
3119 * RAID10 is configured and only two mirrors
3120 * are used, else
3121 * 2: if RAID6 is configured, else
3122 * num_mirrors - 1: if RAID1 or RAID10 is
3123 * configured and more than
3124 * 2 mirrors are used.
3125 */
3126 if (num_tolerated_disk_barrier_failures > 0 &&
3127 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3128 BTRFS_BLOCK_GROUP_RAID0)) ||
3129 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3130 == 0)))
3131 num_tolerated_disk_barrier_failures = 0;
3132 else if (num_tolerated_disk_barrier_failures > 1) {
3133 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3134 BTRFS_BLOCK_GROUP_RAID5 |
3135 BTRFS_BLOCK_GROUP_RAID10)) {
3136 num_tolerated_disk_barrier_failures = 1;
3137 } else if (flags &
3138 BTRFS_BLOCK_GROUP_RAID5) {
3139 num_tolerated_disk_barrier_failures = 2;
3140 }
3141 }
3142 }
3143 }
3144 up_read(&sinfo->groups_sem);
3145 }
3146
3147 return num_tolerated_disk_barrier_failures;
3148 }
3149
3150 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3151 {
3152 struct list_head *head;
3153 struct btrfs_device *dev;
3154 struct btrfs_super_block *sb;
3155 struct btrfs_dev_item *dev_item;
3156 int ret;
3157 int do_barriers;
3158 int max_errors;
3159 int total_errors = 0;
3160 u64 flags;
3161
3162 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3163 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3164 backup_super_roots(root->fs_info);
3165
3166 sb = root->fs_info->super_for_commit;
3167 dev_item = &sb->dev_item;
3168
3169 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3170 head = &root->fs_info->fs_devices->devices;
3171
3172 if (do_barriers) {
3173 ret = barrier_all_devices(root->fs_info);
3174 if (ret) {
3175 mutex_unlock(
3176 &root->fs_info->fs_devices->device_list_mutex);
3177 btrfs_error(root->fs_info, ret,
3178 "errors while submitting device barriers.");
3179 return ret;
3180 }
3181 }
3182
3183 list_for_each_entry_rcu(dev, head, dev_list) {
3184 if (!dev->bdev) {
3185 total_errors++;
3186 continue;
3187 }
3188 if (!dev->in_fs_metadata || !dev->writeable)
3189 continue;
3190
3191 btrfs_set_stack_device_generation(dev_item, 0);
3192 btrfs_set_stack_device_type(dev_item, dev->type);
3193 btrfs_set_stack_device_id(dev_item, dev->devid);
3194 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3195 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3196 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3197 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3198 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3199 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3200 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3201
3202 flags = btrfs_super_flags(sb);
3203 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3204
3205 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3206 if (ret)
3207 total_errors++;
3208 }
3209 if (total_errors > max_errors) {
3210 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3211 total_errors);
3212
3213 /* This shouldn't happen. FUA is masked off if unsupported */
3214 BUG();
3215 }
3216
3217 total_errors = 0;
3218 list_for_each_entry_rcu(dev, head, dev_list) {
3219 if (!dev->bdev)
3220 continue;
3221 if (!dev->in_fs_metadata || !dev->writeable)
3222 continue;
3223
3224 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3225 if (ret)
3226 total_errors++;
3227 }
3228 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3229 if (total_errors > max_errors) {
3230 btrfs_error(root->fs_info, -EIO,
3231 "%d errors while writing supers", total_errors);
3232 return -EIO;
3233 }
3234 return 0;
3235 }
3236
3237 int write_ctree_super(struct btrfs_trans_handle *trans,
3238 struct btrfs_root *root, int max_mirrors)
3239 {
3240 int ret;
3241
3242 ret = write_all_supers(root, max_mirrors);
3243 return ret;
3244 }
3245
3246 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3247 {
3248 spin_lock(&fs_info->fs_roots_radix_lock);
3249 radix_tree_delete(&fs_info->fs_roots_radix,
3250 (unsigned long)root->root_key.objectid);
3251 spin_unlock(&fs_info->fs_roots_radix_lock);
3252
3253 if (btrfs_root_refs(&root->root_item) == 0)
3254 synchronize_srcu(&fs_info->subvol_srcu);
3255
3256 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3257 btrfs_free_log(NULL, root);
3258 btrfs_free_log_root_tree(NULL, fs_info);
3259 }
3260
3261 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3262 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3263 free_fs_root(root);
3264 }
3265
3266 static void free_fs_root(struct btrfs_root *root)
3267 {
3268 iput(root->cache_inode);
3269 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3270 if (root->anon_dev)
3271 free_anon_bdev(root->anon_dev);
3272 free_extent_buffer(root->node);
3273 free_extent_buffer(root->commit_root);
3274 kfree(root->free_ino_ctl);
3275 kfree(root->free_ino_pinned);
3276 kfree(root->name);
3277 kfree(root);
3278 }
3279
3280 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3281 {
3282 int ret;
3283 struct btrfs_root *gang[8];
3284 int i;
3285
3286 while (!list_empty(&fs_info->dead_roots)) {
3287 gang[0] = list_entry(fs_info->dead_roots.next,
3288 struct btrfs_root, root_list);
3289 list_del(&gang[0]->root_list);
3290
3291 if (gang[0]->in_radix) {
3292 btrfs_free_fs_root(fs_info, gang[0]);
3293 } else {
3294 free_extent_buffer(gang[0]->node);
3295 free_extent_buffer(gang[0]->commit_root);
3296 kfree(gang[0]);
3297 }
3298 }
3299
3300 while (1) {
3301 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3302 (void **)gang, 0,
3303 ARRAY_SIZE(gang));
3304 if (!ret)
3305 break;
3306 for (i = 0; i < ret; i++)
3307 btrfs_free_fs_root(fs_info, gang[i]);
3308 }
3309 }
3310
3311 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3312 {
3313 u64 root_objectid = 0;
3314 struct btrfs_root *gang[8];
3315 int i;
3316 int ret;
3317
3318 while (1) {
3319 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3320 (void **)gang, root_objectid,
3321 ARRAY_SIZE(gang));
3322 if (!ret)
3323 break;
3324
3325 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3326 for (i = 0; i < ret; i++) {
3327 int err;
3328
3329 root_objectid = gang[i]->root_key.objectid;
3330 err = btrfs_orphan_cleanup(gang[i]);
3331 if (err)
3332 return err;
3333 }
3334 root_objectid++;
3335 }
3336 return 0;
3337 }
3338
3339 int btrfs_commit_super(struct btrfs_root *root)
3340 {
3341 struct btrfs_trans_handle *trans;
3342 int ret;
3343
3344 mutex_lock(&root->fs_info->cleaner_mutex);
3345 btrfs_run_delayed_iputs(root);
3346 btrfs_clean_old_snapshots(root);
3347 mutex_unlock(&root->fs_info->cleaner_mutex);
3348
3349 /* wait until ongoing cleanup work done */
3350 down_write(&root->fs_info->cleanup_work_sem);
3351 up_write(&root->fs_info->cleanup_work_sem);
3352
3353 trans = btrfs_join_transaction(root);
3354 if (IS_ERR(trans))
3355 return PTR_ERR(trans);
3356 ret = btrfs_commit_transaction(trans, root);
3357 if (ret)
3358 return ret;
3359 /* run commit again to drop the original snapshot */
3360 trans = btrfs_join_transaction(root);
3361 if (IS_ERR(trans))
3362 return PTR_ERR(trans);
3363 ret = btrfs_commit_transaction(trans, root);
3364 if (ret)
3365 return ret;
3366 ret = btrfs_write_and_wait_transaction(NULL, root);
3367 if (ret) {
3368 btrfs_error(root->fs_info, ret,
3369 "Failed to sync btree inode to disk.");
3370 return ret;
3371 }
3372
3373 ret = write_ctree_super(NULL, root, 0);
3374 return ret;
3375 }
3376
3377 int close_ctree(struct btrfs_root *root)
3378 {
3379 struct btrfs_fs_info *fs_info = root->fs_info;
3380 int ret;
3381
3382 fs_info->closing = 1;
3383 smp_mb();
3384
3385 /* pause restriper - we want to resume on mount */
3386 btrfs_pause_balance(fs_info);
3387
3388 btrfs_dev_replace_suspend_for_unmount(fs_info);
3389
3390 btrfs_scrub_cancel(fs_info);
3391
3392 /* wait for any defraggers to finish */
3393 wait_event(fs_info->transaction_wait,
3394 (atomic_read(&fs_info->defrag_running) == 0));
3395
3396 /* clear out the rbtree of defraggable inodes */
3397 btrfs_cleanup_defrag_inodes(fs_info);
3398
3399 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3400 ret = btrfs_commit_super(root);
3401 if (ret)
3402 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3403 }
3404
3405 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3406 btrfs_error_commit_super(root);
3407
3408 btrfs_put_block_group_cache(fs_info);
3409
3410 kthread_stop(fs_info->transaction_kthread);
3411 kthread_stop(fs_info->cleaner_kthread);
3412
3413 fs_info->closing = 2;
3414 smp_mb();
3415
3416 btrfs_free_qgroup_config(root->fs_info);
3417
3418 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3419 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3420 percpu_counter_sum(&fs_info->delalloc_bytes));
3421 }
3422
3423 free_extent_buffer(fs_info->extent_root->node);
3424 free_extent_buffer(fs_info->extent_root->commit_root);
3425 free_extent_buffer(fs_info->tree_root->node);
3426 free_extent_buffer(fs_info->tree_root->commit_root);
3427 free_extent_buffer(fs_info->chunk_root->node);
3428 free_extent_buffer(fs_info->chunk_root->commit_root);
3429 free_extent_buffer(fs_info->dev_root->node);
3430 free_extent_buffer(fs_info->dev_root->commit_root);
3431 free_extent_buffer(fs_info->csum_root->node);
3432 free_extent_buffer(fs_info->csum_root->commit_root);
3433 if (fs_info->quota_root) {
3434 free_extent_buffer(fs_info->quota_root->node);
3435 free_extent_buffer(fs_info->quota_root->commit_root);
3436 }
3437
3438 btrfs_free_block_groups(fs_info);
3439
3440 del_fs_roots(fs_info);
3441
3442 iput(fs_info->btree_inode);
3443
3444 btrfs_stop_workers(&fs_info->generic_worker);
3445 btrfs_stop_workers(&fs_info->fixup_workers);
3446 btrfs_stop_workers(&fs_info->delalloc_workers);
3447 btrfs_stop_workers(&fs_info->workers);
3448 btrfs_stop_workers(&fs_info->endio_workers);
3449 btrfs_stop_workers(&fs_info->endio_meta_workers);
3450 btrfs_stop_workers(&fs_info->endio_raid56_workers);
3451 btrfs_stop_workers(&fs_info->rmw_workers);
3452 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3453 btrfs_stop_workers(&fs_info->endio_write_workers);
3454 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3455 btrfs_stop_workers(&fs_info->submit_workers);
3456 btrfs_stop_workers(&fs_info->delayed_workers);
3457 btrfs_stop_workers(&fs_info->caching_workers);
3458 btrfs_stop_workers(&fs_info->readahead_workers);
3459 btrfs_stop_workers(&fs_info->flush_workers);
3460
3461 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3462 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3463 btrfsic_unmount(root, fs_info->fs_devices);
3464 #endif
3465
3466 btrfs_close_devices(fs_info->fs_devices);
3467 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3468
3469 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3470 percpu_counter_destroy(&fs_info->delalloc_bytes);
3471 bdi_destroy(&fs_info->bdi);
3472 cleanup_srcu_struct(&fs_info->subvol_srcu);
3473
3474 btrfs_free_stripe_hash_table(fs_info);
3475
3476 return 0;
3477 }
3478
3479 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3480 int atomic)
3481 {
3482 int ret;
3483 struct inode *btree_inode = buf->pages[0]->mapping->host;
3484
3485 ret = extent_buffer_uptodate(buf);
3486 if (!ret)
3487 return ret;
3488
3489 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3490 parent_transid, atomic);
3491 if (ret == -EAGAIN)
3492 return ret;
3493 return !ret;
3494 }
3495
3496 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3497 {
3498 return set_extent_buffer_uptodate(buf);
3499 }
3500
3501 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3502 {
3503 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3504 u64 transid = btrfs_header_generation(buf);
3505 int was_dirty;
3506
3507 btrfs_assert_tree_locked(buf);
3508 if (transid != root->fs_info->generation)
3509 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3510 "found %llu running %llu\n",
3511 (unsigned long long)buf->start,
3512 (unsigned long long)transid,
3513 (unsigned long long)root->fs_info->generation);
3514 was_dirty = set_extent_buffer_dirty(buf);
3515 if (!was_dirty)
3516 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3517 buf->len,
3518 root->fs_info->dirty_metadata_batch);
3519 }
3520
3521 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3522 int flush_delayed)
3523 {
3524 /*
3525 * looks as though older kernels can get into trouble with
3526 * this code, they end up stuck in balance_dirty_pages forever
3527 */
3528 int ret;
3529
3530 if (current->flags & PF_MEMALLOC)
3531 return;
3532
3533 if (flush_delayed)
3534 btrfs_balance_delayed_items(root);
3535
3536 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3537 BTRFS_DIRTY_METADATA_THRESH);
3538 if (ret > 0) {
3539 balance_dirty_pages_ratelimited(
3540 root->fs_info->btree_inode->i_mapping);
3541 }
3542 return;
3543 }
3544
3545 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3546 {
3547 __btrfs_btree_balance_dirty(root, 1);
3548 }
3549
3550 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3551 {
3552 __btrfs_btree_balance_dirty(root, 0);
3553 }
3554
3555 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3556 {
3557 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3558 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3559 }
3560
3561 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3562 int read_only)
3563 {
3564 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3565 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3566 return -EINVAL;
3567 }
3568
3569 if (read_only)
3570 return 0;
3571
3572 return 0;
3573 }
3574
3575 void btrfs_error_commit_super(struct btrfs_root *root)
3576 {
3577 mutex_lock(&root->fs_info->cleaner_mutex);
3578 btrfs_run_delayed_iputs(root);
3579 mutex_unlock(&root->fs_info->cleaner_mutex);
3580
3581 down_write(&root->fs_info->cleanup_work_sem);
3582 up_write(&root->fs_info->cleanup_work_sem);
3583
3584 /* cleanup FS via transaction */
3585 btrfs_cleanup_transaction(root);
3586 }
3587
3588 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3589 struct btrfs_root *root)
3590 {
3591 struct btrfs_inode *btrfs_inode;
3592 struct list_head splice;
3593
3594 INIT_LIST_HEAD(&splice);
3595
3596 mutex_lock(&root->fs_info->ordered_operations_mutex);
3597 spin_lock(&root->fs_info->ordered_extent_lock);
3598
3599 list_splice_init(&t->ordered_operations, &splice);
3600 while (!list_empty(&splice)) {
3601 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3602 ordered_operations);
3603
3604 list_del_init(&btrfs_inode->ordered_operations);
3605
3606 btrfs_invalidate_inodes(btrfs_inode->root);
3607 }
3608
3609 spin_unlock(&root->fs_info->ordered_extent_lock);
3610 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3611 }
3612
3613 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3614 {
3615 struct btrfs_ordered_extent *ordered;
3616
3617 spin_lock(&root->fs_info->ordered_extent_lock);
3618 /*
3619 * This will just short circuit the ordered completion stuff which will
3620 * make sure the ordered extent gets properly cleaned up.
3621 */
3622 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3623 root_extent_list)
3624 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3625 spin_unlock(&root->fs_info->ordered_extent_lock);
3626 }
3627
3628 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3629 struct btrfs_root *root)
3630 {
3631 struct rb_node *node;
3632 struct btrfs_delayed_ref_root *delayed_refs;
3633 struct btrfs_delayed_ref_node *ref;
3634 int ret = 0;
3635
3636 delayed_refs = &trans->delayed_refs;
3637
3638 spin_lock(&delayed_refs->lock);
3639 if (delayed_refs->num_entries == 0) {
3640 spin_unlock(&delayed_refs->lock);
3641 printk(KERN_INFO "delayed_refs has NO entry\n");
3642 return ret;
3643 }
3644
3645 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3646 struct btrfs_delayed_ref_head *head = NULL;
3647
3648 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3649 atomic_set(&ref->refs, 1);
3650 if (btrfs_delayed_ref_is_head(ref)) {
3651
3652 head = btrfs_delayed_node_to_head(ref);
3653 if (!mutex_trylock(&head->mutex)) {
3654 atomic_inc(&ref->refs);
3655 spin_unlock(&delayed_refs->lock);
3656
3657 /* Need to wait for the delayed ref to run */
3658 mutex_lock(&head->mutex);
3659 mutex_unlock(&head->mutex);
3660 btrfs_put_delayed_ref(ref);
3661
3662 spin_lock(&delayed_refs->lock);
3663 continue;
3664 }
3665
3666 btrfs_free_delayed_extent_op(head->extent_op);
3667 delayed_refs->num_heads--;
3668 if (list_empty(&head->cluster))
3669 delayed_refs->num_heads_ready--;
3670 list_del_init(&head->cluster);
3671 }
3672
3673 ref->in_tree = 0;
3674 rb_erase(&ref->rb_node, &delayed_refs->root);
3675 delayed_refs->num_entries--;
3676 if (head)
3677 mutex_unlock(&head->mutex);
3678 spin_unlock(&delayed_refs->lock);
3679 btrfs_put_delayed_ref(ref);
3680
3681 cond_resched();
3682 spin_lock(&delayed_refs->lock);
3683 }
3684
3685 spin_unlock(&delayed_refs->lock);
3686
3687 return ret;
3688 }
3689
3690 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3691 {
3692 struct btrfs_pending_snapshot *snapshot;
3693 struct list_head splice;
3694
3695 INIT_LIST_HEAD(&splice);
3696
3697 list_splice_init(&t->pending_snapshots, &splice);
3698
3699 while (!list_empty(&splice)) {
3700 snapshot = list_entry(splice.next,
3701 struct btrfs_pending_snapshot,
3702 list);
3703 snapshot->error = -ECANCELED;
3704 list_del_init(&snapshot->list);
3705 }
3706 }
3707
3708 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3709 {
3710 struct btrfs_inode *btrfs_inode;
3711 struct list_head splice;
3712
3713 INIT_LIST_HEAD(&splice);
3714
3715 spin_lock(&root->fs_info->delalloc_lock);
3716 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3717
3718 while (!list_empty(&splice)) {
3719 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3720 delalloc_inodes);
3721
3722 list_del_init(&btrfs_inode->delalloc_inodes);
3723 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3724 &btrfs_inode->runtime_flags);
3725
3726 btrfs_invalidate_inodes(btrfs_inode->root);
3727 }
3728
3729 spin_unlock(&root->fs_info->delalloc_lock);
3730 }
3731
3732 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3733 struct extent_io_tree *dirty_pages,
3734 int mark)
3735 {
3736 int ret;
3737 struct page *page;
3738 struct inode *btree_inode = root->fs_info->btree_inode;
3739 struct extent_buffer *eb;
3740 u64 start = 0;
3741 u64 end;
3742 u64 offset;
3743 unsigned long index;
3744
3745 while (1) {
3746 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3747 mark, NULL);
3748 if (ret)
3749 break;
3750
3751 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3752 while (start <= end) {
3753 index = start >> PAGE_CACHE_SHIFT;
3754 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3755 page = find_get_page(btree_inode->i_mapping, index);
3756 if (!page)
3757 continue;
3758 offset = page_offset(page);
3759
3760 spin_lock(&dirty_pages->buffer_lock);
3761 eb = radix_tree_lookup(
3762 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3763 offset >> PAGE_CACHE_SHIFT);
3764 spin_unlock(&dirty_pages->buffer_lock);
3765 if (eb)
3766 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3767 &eb->bflags);
3768 if (PageWriteback(page))
3769 end_page_writeback(page);
3770
3771 lock_page(page);
3772 if (PageDirty(page)) {
3773 clear_page_dirty_for_io(page);
3774 spin_lock_irq(&page->mapping->tree_lock);
3775 radix_tree_tag_clear(&page->mapping->page_tree,
3776 page_index(page),
3777 PAGECACHE_TAG_DIRTY);
3778 spin_unlock_irq(&page->mapping->tree_lock);
3779 }
3780
3781 unlock_page(page);
3782 page_cache_release(page);
3783 }
3784 }
3785
3786 return ret;
3787 }
3788
3789 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3790 struct extent_io_tree *pinned_extents)
3791 {
3792 struct extent_io_tree *unpin;
3793 u64 start;
3794 u64 end;
3795 int ret;
3796 bool loop = true;
3797
3798 unpin = pinned_extents;
3799 again:
3800 while (1) {
3801 ret = find_first_extent_bit(unpin, 0, &start, &end,
3802 EXTENT_DIRTY, NULL);
3803 if (ret)
3804 break;
3805
3806 /* opt_discard */
3807 if (btrfs_test_opt(root, DISCARD))
3808 ret = btrfs_error_discard_extent(root, start,
3809 end + 1 - start,
3810 NULL);
3811
3812 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3813 btrfs_error_unpin_extent_range(root, start, end);
3814 cond_resched();
3815 }
3816
3817 if (loop) {
3818 if (unpin == &root->fs_info->freed_extents[0])
3819 unpin = &root->fs_info->freed_extents[1];
3820 else
3821 unpin = &root->fs_info->freed_extents[0];
3822 loop = false;
3823 goto again;
3824 }
3825
3826 return 0;
3827 }
3828
3829 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3830 struct btrfs_root *root)
3831 {
3832 btrfs_destroy_delayed_refs(cur_trans, root);
3833 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3834 cur_trans->dirty_pages.dirty_bytes);
3835
3836 /* FIXME: cleanup wait for commit */
3837 cur_trans->in_commit = 1;
3838 cur_trans->blocked = 1;
3839 wake_up(&root->fs_info->transaction_blocked_wait);
3840
3841 btrfs_evict_pending_snapshots(cur_trans);
3842
3843 cur_trans->blocked = 0;
3844 wake_up(&root->fs_info->transaction_wait);
3845
3846 cur_trans->commit_done = 1;
3847 wake_up(&cur_trans->commit_wait);
3848
3849 btrfs_destroy_delayed_inodes(root);
3850 btrfs_assert_delayed_root_empty(root);
3851
3852 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3853 EXTENT_DIRTY);
3854 btrfs_destroy_pinned_extent(root,
3855 root->fs_info->pinned_extents);
3856
3857 /*
3858 memset(cur_trans, 0, sizeof(*cur_trans));
3859 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3860 */
3861 }
3862
3863 int btrfs_cleanup_transaction(struct btrfs_root *root)
3864 {
3865 struct btrfs_transaction *t;
3866 LIST_HEAD(list);
3867
3868 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3869
3870 spin_lock(&root->fs_info->trans_lock);
3871 list_splice_init(&root->fs_info->trans_list, &list);
3872 root->fs_info->trans_no_join = 1;
3873 spin_unlock(&root->fs_info->trans_lock);
3874
3875 while (!list_empty(&list)) {
3876 t = list_entry(list.next, struct btrfs_transaction, list);
3877
3878 btrfs_destroy_ordered_operations(t, root);
3879
3880 btrfs_destroy_ordered_extents(root);
3881
3882 btrfs_destroy_delayed_refs(t, root);
3883
3884 btrfs_block_rsv_release(root,
3885 &root->fs_info->trans_block_rsv,
3886 t->dirty_pages.dirty_bytes);
3887
3888 /* FIXME: cleanup wait for commit */
3889 t->in_commit = 1;
3890 t->blocked = 1;
3891 smp_mb();
3892 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3893 wake_up(&root->fs_info->transaction_blocked_wait);
3894
3895 btrfs_evict_pending_snapshots(t);
3896
3897 t->blocked = 0;
3898 smp_mb();
3899 if (waitqueue_active(&root->fs_info->transaction_wait))
3900 wake_up(&root->fs_info->transaction_wait);
3901
3902 t->commit_done = 1;
3903 smp_mb();
3904 if (waitqueue_active(&t->commit_wait))
3905 wake_up(&t->commit_wait);
3906
3907 btrfs_destroy_delayed_inodes(root);
3908 btrfs_assert_delayed_root_empty(root);
3909
3910 btrfs_destroy_delalloc_inodes(root);
3911
3912 spin_lock(&root->fs_info->trans_lock);
3913 root->fs_info->running_transaction = NULL;
3914 spin_unlock(&root->fs_info->trans_lock);
3915
3916 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3917 EXTENT_DIRTY);
3918
3919 btrfs_destroy_pinned_extent(root,
3920 root->fs_info->pinned_extents);
3921
3922 atomic_set(&t->use_count, 0);
3923 list_del_init(&t->list);
3924 memset(t, 0, sizeof(*t));
3925 kmem_cache_free(btrfs_transaction_cachep, t);
3926 }
3927
3928 spin_lock(&root->fs_info->trans_lock);
3929 root->fs_info->trans_no_join = 0;
3930 spin_unlock(&root->fs_info->trans_lock);
3931 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3932
3933 return 0;
3934 }
3935
3936 static struct extent_io_ops btree_extent_io_ops = {
3937 .readpage_end_io_hook = btree_readpage_end_io_hook,
3938 .readpage_io_failed_hook = btree_io_failed_hook,
3939 .submit_bio_hook = btree_submit_bio_hook,
3940 /* note we're sharing with inode.c for the merge bio hook */
3941 .merge_bio_hook = btrfs_merge_bio_hook,
3942 };