Btrfs: space leak tracepoints
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / delayed-inode.c
1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24
25 #define BTRFS_DELAYED_WRITEBACK 400
26 #define BTRFS_DELAYED_BACKGROUND 100
27
28 static struct kmem_cache *delayed_node_cache;
29
30 int __init btrfs_delayed_inode_init(void)
31 {
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
34 0,
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
40 }
41
42 void btrfs_delayed_inode_exit(void)
43 {
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
46 }
47
48 static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
51 {
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
65 }
66
67 static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
70 {
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
77 }
78
79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
81 {
82 return root->fs_info->delayed_root;
83 }
84
85 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
86 {
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
89 u64 ino = btrfs_ino(inode);
90 struct btrfs_delayed_node *node;
91
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
94 atomic_inc(&node->refs);
95 return node;
96 }
97
98 spin_lock(&root->inode_lock);
99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
100 if (node) {
101 if (btrfs_inode->delayed_node) {
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
104 spin_unlock(&root->inode_lock);
105 return node;
106 }
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
112 }
113 spin_unlock(&root->inode_lock);
114
115 return NULL;
116 }
117
118 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
119 struct inode *inode)
120 {
121 struct btrfs_delayed_node *node;
122 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
123 struct btrfs_root *root = btrfs_inode->root;
124 u64 ino = btrfs_ino(inode);
125 int ret;
126
127 again:
128 node = btrfs_get_delayed_node(inode);
129 if (node)
130 return node;
131
132 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
133 if (!node)
134 return ERR_PTR(-ENOMEM);
135 btrfs_init_delayed_node(node, root, ino);
136
137 atomic_inc(&node->refs); /* cached in the btrfs inode */
138 atomic_inc(&node->refs); /* can be accessed */
139
140 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
141 if (ret) {
142 kmem_cache_free(delayed_node_cache, node);
143 return ERR_PTR(ret);
144 }
145
146 spin_lock(&root->inode_lock);
147 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
148 if (ret == -EEXIST) {
149 kmem_cache_free(delayed_node_cache, node);
150 spin_unlock(&root->inode_lock);
151 radix_tree_preload_end();
152 goto again;
153 }
154 btrfs_inode->delayed_node = node;
155 spin_unlock(&root->inode_lock);
156 radix_tree_preload_end();
157
158 return node;
159 }
160
161 /*
162 * Call it when holding delayed_node->mutex
163 *
164 * If mod = 1, add this node into the prepared list.
165 */
166 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
167 struct btrfs_delayed_node *node,
168 int mod)
169 {
170 spin_lock(&root->lock);
171 if (node->in_list) {
172 if (!list_empty(&node->p_list))
173 list_move_tail(&node->p_list, &root->prepare_list);
174 else if (mod)
175 list_add_tail(&node->p_list, &root->prepare_list);
176 } else {
177 list_add_tail(&node->n_list, &root->node_list);
178 list_add_tail(&node->p_list, &root->prepare_list);
179 atomic_inc(&node->refs); /* inserted into list */
180 root->nodes++;
181 node->in_list = 1;
182 }
183 spin_unlock(&root->lock);
184 }
185
186 /* Call it when holding delayed_node->mutex */
187 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
188 struct btrfs_delayed_node *node)
189 {
190 spin_lock(&root->lock);
191 if (node->in_list) {
192 root->nodes--;
193 atomic_dec(&node->refs); /* not in the list */
194 list_del_init(&node->n_list);
195 if (!list_empty(&node->p_list))
196 list_del_init(&node->p_list);
197 node->in_list = 0;
198 }
199 spin_unlock(&root->lock);
200 }
201
202 struct btrfs_delayed_node *btrfs_first_delayed_node(
203 struct btrfs_delayed_root *delayed_root)
204 {
205 struct list_head *p;
206 struct btrfs_delayed_node *node = NULL;
207
208 spin_lock(&delayed_root->lock);
209 if (list_empty(&delayed_root->node_list))
210 goto out;
211
212 p = delayed_root->node_list.next;
213 node = list_entry(p, struct btrfs_delayed_node, n_list);
214 atomic_inc(&node->refs);
215 out:
216 spin_unlock(&delayed_root->lock);
217
218 return node;
219 }
220
221 struct btrfs_delayed_node *btrfs_next_delayed_node(
222 struct btrfs_delayed_node *node)
223 {
224 struct btrfs_delayed_root *delayed_root;
225 struct list_head *p;
226 struct btrfs_delayed_node *next = NULL;
227
228 delayed_root = node->root->fs_info->delayed_root;
229 spin_lock(&delayed_root->lock);
230 if (!node->in_list) { /* not in the list */
231 if (list_empty(&delayed_root->node_list))
232 goto out;
233 p = delayed_root->node_list.next;
234 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
235 goto out;
236 else
237 p = node->n_list.next;
238
239 next = list_entry(p, struct btrfs_delayed_node, n_list);
240 atomic_inc(&next->refs);
241 out:
242 spin_unlock(&delayed_root->lock);
243
244 return next;
245 }
246
247 static void __btrfs_release_delayed_node(
248 struct btrfs_delayed_node *delayed_node,
249 int mod)
250 {
251 struct btrfs_delayed_root *delayed_root;
252
253 if (!delayed_node)
254 return;
255
256 delayed_root = delayed_node->root->fs_info->delayed_root;
257
258 mutex_lock(&delayed_node->mutex);
259 if (delayed_node->count)
260 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
261 else
262 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
263 mutex_unlock(&delayed_node->mutex);
264
265 if (atomic_dec_and_test(&delayed_node->refs)) {
266 struct btrfs_root *root = delayed_node->root;
267 spin_lock(&root->inode_lock);
268 if (atomic_read(&delayed_node->refs) == 0) {
269 radix_tree_delete(&root->delayed_nodes_tree,
270 delayed_node->inode_id);
271 kmem_cache_free(delayed_node_cache, delayed_node);
272 }
273 spin_unlock(&root->inode_lock);
274 }
275 }
276
277 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
278 {
279 __btrfs_release_delayed_node(node, 0);
280 }
281
282 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
283 struct btrfs_delayed_root *delayed_root)
284 {
285 struct list_head *p;
286 struct btrfs_delayed_node *node = NULL;
287
288 spin_lock(&delayed_root->lock);
289 if (list_empty(&delayed_root->prepare_list))
290 goto out;
291
292 p = delayed_root->prepare_list.next;
293 list_del_init(p);
294 node = list_entry(p, struct btrfs_delayed_node, p_list);
295 atomic_inc(&node->refs);
296 out:
297 spin_unlock(&delayed_root->lock);
298
299 return node;
300 }
301
302 static inline void btrfs_release_prepared_delayed_node(
303 struct btrfs_delayed_node *node)
304 {
305 __btrfs_release_delayed_node(node, 1);
306 }
307
308 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
309 {
310 struct btrfs_delayed_item *item;
311 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
312 if (item) {
313 item->data_len = data_len;
314 item->ins_or_del = 0;
315 item->bytes_reserved = 0;
316 item->delayed_node = NULL;
317 atomic_set(&item->refs, 1);
318 }
319 return item;
320 }
321
322 /*
323 * __btrfs_lookup_delayed_item - look up the delayed item by key
324 * @delayed_node: pointer to the delayed node
325 * @key: the key to look up
326 * @prev: used to store the prev item if the right item isn't found
327 * @next: used to store the next item if the right item isn't found
328 *
329 * Note: if we don't find the right item, we will return the prev item and
330 * the next item.
331 */
332 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
333 struct rb_root *root,
334 struct btrfs_key *key,
335 struct btrfs_delayed_item **prev,
336 struct btrfs_delayed_item **next)
337 {
338 struct rb_node *node, *prev_node = NULL;
339 struct btrfs_delayed_item *delayed_item = NULL;
340 int ret = 0;
341
342 node = root->rb_node;
343
344 while (node) {
345 delayed_item = rb_entry(node, struct btrfs_delayed_item,
346 rb_node);
347 prev_node = node;
348 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
349 if (ret < 0)
350 node = node->rb_right;
351 else if (ret > 0)
352 node = node->rb_left;
353 else
354 return delayed_item;
355 }
356
357 if (prev) {
358 if (!prev_node)
359 *prev = NULL;
360 else if (ret < 0)
361 *prev = delayed_item;
362 else if ((node = rb_prev(prev_node)) != NULL) {
363 *prev = rb_entry(node, struct btrfs_delayed_item,
364 rb_node);
365 } else
366 *prev = NULL;
367 }
368
369 if (next) {
370 if (!prev_node)
371 *next = NULL;
372 else if (ret > 0)
373 *next = delayed_item;
374 else if ((node = rb_next(prev_node)) != NULL) {
375 *next = rb_entry(node, struct btrfs_delayed_item,
376 rb_node);
377 } else
378 *next = NULL;
379 }
380 return NULL;
381 }
382
383 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
384 struct btrfs_delayed_node *delayed_node,
385 struct btrfs_key *key)
386 {
387 struct btrfs_delayed_item *item;
388
389 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
390 NULL, NULL);
391 return item;
392 }
393
394 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
395 struct btrfs_delayed_node *delayed_node,
396 struct btrfs_key *key)
397 {
398 struct btrfs_delayed_item *item;
399
400 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
401 NULL, NULL);
402 return item;
403 }
404
405 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
406 struct btrfs_delayed_node *delayed_node,
407 struct btrfs_key *key)
408 {
409 struct btrfs_delayed_item *item, *next;
410
411 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
412 NULL, &next);
413 if (!item)
414 item = next;
415
416 return item;
417 }
418
419 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
420 struct btrfs_delayed_node *delayed_node,
421 struct btrfs_key *key)
422 {
423 struct btrfs_delayed_item *item, *next;
424
425 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
426 NULL, &next);
427 if (!item)
428 item = next;
429
430 return item;
431 }
432
433 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
434 struct btrfs_delayed_item *ins,
435 int action)
436 {
437 struct rb_node **p, *node;
438 struct rb_node *parent_node = NULL;
439 struct rb_root *root;
440 struct btrfs_delayed_item *item;
441 int cmp;
442
443 if (action == BTRFS_DELAYED_INSERTION_ITEM)
444 root = &delayed_node->ins_root;
445 else if (action == BTRFS_DELAYED_DELETION_ITEM)
446 root = &delayed_node->del_root;
447 else
448 BUG();
449 p = &root->rb_node;
450 node = &ins->rb_node;
451
452 while (*p) {
453 parent_node = *p;
454 item = rb_entry(parent_node, struct btrfs_delayed_item,
455 rb_node);
456
457 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
458 if (cmp < 0)
459 p = &(*p)->rb_right;
460 else if (cmp > 0)
461 p = &(*p)->rb_left;
462 else
463 return -EEXIST;
464 }
465
466 rb_link_node(node, parent_node, p);
467 rb_insert_color(node, root);
468 ins->delayed_node = delayed_node;
469 ins->ins_or_del = action;
470
471 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
472 action == BTRFS_DELAYED_INSERTION_ITEM &&
473 ins->key.offset >= delayed_node->index_cnt)
474 delayed_node->index_cnt = ins->key.offset + 1;
475
476 delayed_node->count++;
477 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
478 return 0;
479 }
480
481 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
482 struct btrfs_delayed_item *item)
483 {
484 return __btrfs_add_delayed_item(node, item,
485 BTRFS_DELAYED_INSERTION_ITEM);
486 }
487
488 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
489 struct btrfs_delayed_item *item)
490 {
491 return __btrfs_add_delayed_item(node, item,
492 BTRFS_DELAYED_DELETION_ITEM);
493 }
494
495 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
496 {
497 struct rb_root *root;
498 struct btrfs_delayed_root *delayed_root;
499
500 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
501
502 BUG_ON(!delayed_root);
503 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
504 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
505
506 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
507 root = &delayed_item->delayed_node->ins_root;
508 else
509 root = &delayed_item->delayed_node->del_root;
510
511 rb_erase(&delayed_item->rb_node, root);
512 delayed_item->delayed_node->count--;
513 atomic_dec(&delayed_root->items);
514 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
515 waitqueue_active(&delayed_root->wait))
516 wake_up(&delayed_root->wait);
517 }
518
519 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
520 {
521 if (item) {
522 __btrfs_remove_delayed_item(item);
523 if (atomic_dec_and_test(&item->refs))
524 kfree(item);
525 }
526 }
527
528 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
529 struct btrfs_delayed_node *delayed_node)
530 {
531 struct rb_node *p;
532 struct btrfs_delayed_item *item = NULL;
533
534 p = rb_first(&delayed_node->ins_root);
535 if (p)
536 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
537
538 return item;
539 }
540
541 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
542 struct btrfs_delayed_node *delayed_node)
543 {
544 struct rb_node *p;
545 struct btrfs_delayed_item *item = NULL;
546
547 p = rb_first(&delayed_node->del_root);
548 if (p)
549 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
550
551 return item;
552 }
553
554 struct btrfs_delayed_item *__btrfs_next_delayed_item(
555 struct btrfs_delayed_item *item)
556 {
557 struct rb_node *p;
558 struct btrfs_delayed_item *next = NULL;
559
560 p = rb_next(&item->rb_node);
561 if (p)
562 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
563
564 return next;
565 }
566
567 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
568 u64 root_id)
569 {
570 struct btrfs_key root_key;
571
572 if (root->objectid == root_id)
573 return root;
574
575 root_key.objectid = root_id;
576 root_key.type = BTRFS_ROOT_ITEM_KEY;
577 root_key.offset = (u64)-1;
578 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
579 }
580
581 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584 {
585 struct btrfs_block_rsv *src_rsv;
586 struct btrfs_block_rsv *dst_rsv;
587 u64 num_bytes;
588 int ret;
589
590 if (!trans->bytes_reserved)
591 return 0;
592
593 src_rsv = trans->block_rsv;
594 dst_rsv = &root->fs_info->delayed_block_rsv;
595
596 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
597 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
598 if (!ret) {
599 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
600 item->key.objectid,
601 num_bytes, 1);
602 item->bytes_reserved = num_bytes;
603 }
604
605 return ret;
606 }
607
608 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
609 struct btrfs_delayed_item *item)
610 {
611 struct btrfs_block_rsv *rsv;
612
613 if (!item->bytes_reserved)
614 return;
615
616 rsv = &root->fs_info->delayed_block_rsv;
617 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
618 item->key.objectid, item->bytes_reserved,
619 0);
620 btrfs_block_rsv_release(root, rsv,
621 item->bytes_reserved);
622 }
623
624 static int btrfs_delayed_inode_reserve_metadata(
625 struct btrfs_trans_handle *trans,
626 struct btrfs_root *root,
627 struct inode *inode,
628 struct btrfs_delayed_node *node)
629 {
630 struct btrfs_block_rsv *src_rsv;
631 struct btrfs_block_rsv *dst_rsv;
632 u64 num_bytes;
633 int ret;
634 bool release = false;
635
636 src_rsv = trans->block_rsv;
637 dst_rsv = &root->fs_info->delayed_block_rsv;
638
639 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
640
641 /*
642 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
643 * which doesn't reserve space for speed. This is a problem since we
644 * still need to reserve space for this update, so try to reserve the
645 * space.
646 *
647 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
648 * we're accounted for.
649 */
650 if (!src_rsv || (!trans->bytes_reserved &&
651 src_rsv != &root->fs_info->delalloc_block_rsv)) {
652 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
653 /*
654 * Since we're under a transaction reserve_metadata_bytes could
655 * try to commit the transaction which will make it return
656 * EAGAIN to make us stop the transaction we have, so return
657 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
658 */
659 if (ret == -EAGAIN)
660 ret = -ENOSPC;
661 if (!ret) {
662 node->bytes_reserved = num_bytes;
663 trace_btrfs_space_reservation(root->fs_info,
664 "delayed_inode",
665 btrfs_ino(inode),
666 num_bytes, 1);
667 }
668 return ret;
669 } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
670 spin_lock(&BTRFS_I(inode)->lock);
671 if (BTRFS_I(inode)->delalloc_meta_reserved) {
672 BTRFS_I(inode)->delalloc_meta_reserved = 0;
673 spin_unlock(&BTRFS_I(inode)->lock);
674 release = true;
675 goto migrate;
676 }
677 spin_unlock(&BTRFS_I(inode)->lock);
678
679 /* Ok we didn't have space pre-reserved. This shouldn't happen
680 * too often but it can happen if we do delalloc to an existing
681 * inode which gets dirtied because of the time update, and then
682 * isn't touched again until after the transaction commits and
683 * then we try to write out the data. First try to be nice and
684 * reserve something strictly for us. If not be a pain and try
685 * to steal from the delalloc block rsv.
686 */
687 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
688 if (!ret)
689 goto out;
690
691 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
692 if (!ret)
693 goto out;
694
695 /*
696 * Ok this is a problem, let's just steal from the global rsv
697 * since this really shouldn't happen that often.
698 */
699 WARN_ON(1);
700 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
701 dst_rsv, num_bytes);
702 goto out;
703 }
704
705 migrate:
706 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
707
708 out:
709 /*
710 * Migrate only takes a reservation, it doesn't touch the size of the
711 * block_rsv. This is to simplify people who don't normally have things
712 * migrated from their block rsv. If they go to release their
713 * reservation, that will decrease the size as well, so if migrate
714 * reduced size we'd end up with a negative size. But for the
715 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
716 * but we could in fact do this reserve/migrate dance several times
717 * between the time we did the original reservation and we'd clean it
718 * up. So to take care of this, release the space for the meta
719 * reservation here. I think it may be time for a documentation page on
720 * how block rsvs. work.
721 */
722 if (!ret) {
723 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
724 btrfs_ino(inode), num_bytes, 1);
725 node->bytes_reserved = num_bytes;
726 }
727
728 if (release) {
729 trace_btrfs_space_reservation(root->fs_info, "delalloc",
730 btrfs_ino(inode), num_bytes, 0);
731 btrfs_block_rsv_release(root, src_rsv, num_bytes);
732 }
733
734 return ret;
735 }
736
737 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
738 struct btrfs_delayed_node *node)
739 {
740 struct btrfs_block_rsv *rsv;
741
742 if (!node->bytes_reserved)
743 return;
744
745 rsv = &root->fs_info->delayed_block_rsv;
746 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
747 node->inode_id, node->bytes_reserved, 0);
748 btrfs_block_rsv_release(root, rsv,
749 node->bytes_reserved);
750 node->bytes_reserved = 0;
751 }
752
753 /*
754 * This helper will insert some continuous items into the same leaf according
755 * to the free space of the leaf.
756 */
757 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
758 struct btrfs_root *root,
759 struct btrfs_path *path,
760 struct btrfs_delayed_item *item)
761 {
762 struct btrfs_delayed_item *curr, *next;
763 int free_space;
764 int total_data_size = 0, total_size = 0;
765 struct extent_buffer *leaf;
766 char *data_ptr;
767 struct btrfs_key *keys;
768 u32 *data_size;
769 struct list_head head;
770 int slot;
771 int nitems;
772 int i;
773 int ret = 0;
774
775 BUG_ON(!path->nodes[0]);
776
777 leaf = path->nodes[0];
778 free_space = btrfs_leaf_free_space(root, leaf);
779 INIT_LIST_HEAD(&head);
780
781 next = item;
782 nitems = 0;
783
784 /*
785 * count the number of the continuous items that we can insert in batch
786 */
787 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
788 free_space) {
789 total_data_size += next->data_len;
790 total_size += next->data_len + sizeof(struct btrfs_item);
791 list_add_tail(&next->tree_list, &head);
792 nitems++;
793
794 curr = next;
795 next = __btrfs_next_delayed_item(curr);
796 if (!next)
797 break;
798
799 if (!btrfs_is_continuous_delayed_item(curr, next))
800 break;
801 }
802
803 if (!nitems) {
804 ret = 0;
805 goto out;
806 }
807
808 /*
809 * we need allocate some memory space, but it might cause the task
810 * to sleep, so we set all locked nodes in the path to blocking locks
811 * first.
812 */
813 btrfs_set_path_blocking(path);
814
815 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
816 if (!keys) {
817 ret = -ENOMEM;
818 goto out;
819 }
820
821 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
822 if (!data_size) {
823 ret = -ENOMEM;
824 goto error;
825 }
826
827 /* get keys of all the delayed items */
828 i = 0;
829 list_for_each_entry(next, &head, tree_list) {
830 keys[i] = next->key;
831 data_size[i] = next->data_len;
832 i++;
833 }
834
835 /* reset all the locked nodes in the patch to spinning locks. */
836 btrfs_clear_path_blocking(path, NULL, 0);
837
838 /* insert the keys of the items */
839 ret = setup_items_for_insert(trans, root, path, keys, data_size,
840 total_data_size, total_size, nitems);
841 if (ret)
842 goto error;
843
844 /* insert the dir index items */
845 slot = path->slots[0];
846 list_for_each_entry_safe(curr, next, &head, tree_list) {
847 data_ptr = btrfs_item_ptr(leaf, slot, char);
848 write_extent_buffer(leaf, &curr->data,
849 (unsigned long)data_ptr,
850 curr->data_len);
851 slot++;
852
853 btrfs_delayed_item_release_metadata(root, curr);
854
855 list_del(&curr->tree_list);
856 btrfs_release_delayed_item(curr);
857 }
858
859 error:
860 kfree(data_size);
861 kfree(keys);
862 out:
863 return ret;
864 }
865
866 /*
867 * This helper can just do simple insertion that needn't extend item for new
868 * data, such as directory name index insertion, inode insertion.
869 */
870 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
871 struct btrfs_root *root,
872 struct btrfs_path *path,
873 struct btrfs_delayed_item *delayed_item)
874 {
875 struct extent_buffer *leaf;
876 struct btrfs_item *item;
877 char *ptr;
878 int ret;
879
880 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
881 delayed_item->data_len);
882 if (ret < 0 && ret != -EEXIST)
883 return ret;
884
885 leaf = path->nodes[0];
886
887 item = btrfs_item_nr(leaf, path->slots[0]);
888 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
889
890 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
891 delayed_item->data_len);
892 btrfs_mark_buffer_dirty(leaf);
893
894 btrfs_delayed_item_release_metadata(root, delayed_item);
895 return 0;
896 }
897
898 /*
899 * we insert an item first, then if there are some continuous items, we try
900 * to insert those items into the same leaf.
901 */
902 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
903 struct btrfs_path *path,
904 struct btrfs_root *root,
905 struct btrfs_delayed_node *node)
906 {
907 struct btrfs_delayed_item *curr, *prev;
908 int ret = 0;
909
910 do_again:
911 mutex_lock(&node->mutex);
912 curr = __btrfs_first_delayed_insertion_item(node);
913 if (!curr)
914 goto insert_end;
915
916 ret = btrfs_insert_delayed_item(trans, root, path, curr);
917 if (ret < 0) {
918 btrfs_release_path(path);
919 goto insert_end;
920 }
921
922 prev = curr;
923 curr = __btrfs_next_delayed_item(prev);
924 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
925 /* insert the continuous items into the same leaf */
926 path->slots[0]++;
927 btrfs_batch_insert_items(trans, root, path, curr);
928 }
929 btrfs_release_delayed_item(prev);
930 btrfs_mark_buffer_dirty(path->nodes[0]);
931
932 btrfs_release_path(path);
933 mutex_unlock(&node->mutex);
934 goto do_again;
935
936 insert_end:
937 mutex_unlock(&node->mutex);
938 return ret;
939 }
940
941 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
942 struct btrfs_root *root,
943 struct btrfs_path *path,
944 struct btrfs_delayed_item *item)
945 {
946 struct btrfs_delayed_item *curr, *next;
947 struct extent_buffer *leaf;
948 struct btrfs_key key;
949 struct list_head head;
950 int nitems, i, last_item;
951 int ret = 0;
952
953 BUG_ON(!path->nodes[0]);
954
955 leaf = path->nodes[0];
956
957 i = path->slots[0];
958 last_item = btrfs_header_nritems(leaf) - 1;
959 if (i > last_item)
960 return -ENOENT; /* FIXME: Is errno suitable? */
961
962 next = item;
963 INIT_LIST_HEAD(&head);
964 btrfs_item_key_to_cpu(leaf, &key, i);
965 nitems = 0;
966 /*
967 * count the number of the dir index items that we can delete in batch
968 */
969 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
970 list_add_tail(&next->tree_list, &head);
971 nitems++;
972
973 curr = next;
974 next = __btrfs_next_delayed_item(curr);
975 if (!next)
976 break;
977
978 if (!btrfs_is_continuous_delayed_item(curr, next))
979 break;
980
981 i++;
982 if (i > last_item)
983 break;
984 btrfs_item_key_to_cpu(leaf, &key, i);
985 }
986
987 if (!nitems)
988 return 0;
989
990 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
991 if (ret)
992 goto out;
993
994 list_for_each_entry_safe(curr, next, &head, tree_list) {
995 btrfs_delayed_item_release_metadata(root, curr);
996 list_del(&curr->tree_list);
997 btrfs_release_delayed_item(curr);
998 }
999
1000 out:
1001 return ret;
1002 }
1003
1004 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1005 struct btrfs_path *path,
1006 struct btrfs_root *root,
1007 struct btrfs_delayed_node *node)
1008 {
1009 struct btrfs_delayed_item *curr, *prev;
1010 int ret = 0;
1011
1012 do_again:
1013 mutex_lock(&node->mutex);
1014 curr = __btrfs_first_delayed_deletion_item(node);
1015 if (!curr)
1016 goto delete_fail;
1017
1018 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1019 if (ret < 0)
1020 goto delete_fail;
1021 else if (ret > 0) {
1022 /*
1023 * can't find the item which the node points to, so this node
1024 * is invalid, just drop it.
1025 */
1026 prev = curr;
1027 curr = __btrfs_next_delayed_item(prev);
1028 btrfs_release_delayed_item(prev);
1029 ret = 0;
1030 btrfs_release_path(path);
1031 if (curr)
1032 goto do_again;
1033 else
1034 goto delete_fail;
1035 }
1036
1037 btrfs_batch_delete_items(trans, root, path, curr);
1038 btrfs_release_path(path);
1039 mutex_unlock(&node->mutex);
1040 goto do_again;
1041
1042 delete_fail:
1043 btrfs_release_path(path);
1044 mutex_unlock(&node->mutex);
1045 return ret;
1046 }
1047
1048 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1049 {
1050 struct btrfs_delayed_root *delayed_root;
1051
1052 if (delayed_node && delayed_node->inode_dirty) {
1053 BUG_ON(!delayed_node->root);
1054 delayed_node->inode_dirty = 0;
1055 delayed_node->count--;
1056
1057 delayed_root = delayed_node->root->fs_info->delayed_root;
1058 atomic_dec(&delayed_root->items);
1059 if (atomic_read(&delayed_root->items) <
1060 BTRFS_DELAYED_BACKGROUND &&
1061 waitqueue_active(&delayed_root->wait))
1062 wake_up(&delayed_root->wait);
1063 }
1064 }
1065
1066 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1067 struct btrfs_root *root,
1068 struct btrfs_path *path,
1069 struct btrfs_delayed_node *node)
1070 {
1071 struct btrfs_key key;
1072 struct btrfs_inode_item *inode_item;
1073 struct extent_buffer *leaf;
1074 int ret;
1075
1076 mutex_lock(&node->mutex);
1077 if (!node->inode_dirty) {
1078 mutex_unlock(&node->mutex);
1079 return 0;
1080 }
1081
1082 key.objectid = node->inode_id;
1083 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1084 key.offset = 0;
1085 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1086 if (ret > 0) {
1087 btrfs_release_path(path);
1088 mutex_unlock(&node->mutex);
1089 return -ENOENT;
1090 } else if (ret < 0) {
1091 mutex_unlock(&node->mutex);
1092 return ret;
1093 }
1094
1095 btrfs_unlock_up_safe(path, 1);
1096 leaf = path->nodes[0];
1097 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1098 struct btrfs_inode_item);
1099 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1100 sizeof(struct btrfs_inode_item));
1101 btrfs_mark_buffer_dirty(leaf);
1102 btrfs_release_path(path);
1103
1104 btrfs_delayed_inode_release_metadata(root, node);
1105 btrfs_release_delayed_inode(node);
1106 mutex_unlock(&node->mutex);
1107
1108 return 0;
1109 }
1110
1111 /* Called when committing the transaction. */
1112 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1113 struct btrfs_root *root)
1114 {
1115 struct btrfs_delayed_root *delayed_root;
1116 struct btrfs_delayed_node *curr_node, *prev_node;
1117 struct btrfs_path *path;
1118 struct btrfs_block_rsv *block_rsv;
1119 int ret = 0;
1120
1121 path = btrfs_alloc_path();
1122 if (!path)
1123 return -ENOMEM;
1124 path->leave_spinning = 1;
1125
1126 block_rsv = trans->block_rsv;
1127 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1128
1129 delayed_root = btrfs_get_delayed_root(root);
1130
1131 curr_node = btrfs_first_delayed_node(delayed_root);
1132 while (curr_node) {
1133 root = curr_node->root;
1134 ret = btrfs_insert_delayed_items(trans, path, root,
1135 curr_node);
1136 if (!ret)
1137 ret = btrfs_delete_delayed_items(trans, path, root,
1138 curr_node);
1139 if (!ret)
1140 ret = btrfs_update_delayed_inode(trans, root, path,
1141 curr_node);
1142 if (ret) {
1143 btrfs_release_delayed_node(curr_node);
1144 break;
1145 }
1146
1147 prev_node = curr_node;
1148 curr_node = btrfs_next_delayed_node(curr_node);
1149 btrfs_release_delayed_node(prev_node);
1150 }
1151
1152 btrfs_free_path(path);
1153 trans->block_rsv = block_rsv;
1154 return ret;
1155 }
1156
1157 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1158 struct btrfs_delayed_node *node)
1159 {
1160 struct btrfs_path *path;
1161 struct btrfs_block_rsv *block_rsv;
1162 int ret;
1163
1164 path = btrfs_alloc_path();
1165 if (!path)
1166 return -ENOMEM;
1167 path->leave_spinning = 1;
1168
1169 block_rsv = trans->block_rsv;
1170 trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1171
1172 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1173 if (!ret)
1174 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1175 if (!ret)
1176 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1177 btrfs_free_path(path);
1178
1179 trans->block_rsv = block_rsv;
1180 return ret;
1181 }
1182
1183 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1184 struct inode *inode)
1185 {
1186 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1187 int ret;
1188
1189 if (!delayed_node)
1190 return 0;
1191
1192 mutex_lock(&delayed_node->mutex);
1193 if (!delayed_node->count) {
1194 mutex_unlock(&delayed_node->mutex);
1195 btrfs_release_delayed_node(delayed_node);
1196 return 0;
1197 }
1198 mutex_unlock(&delayed_node->mutex);
1199
1200 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1201 btrfs_release_delayed_node(delayed_node);
1202 return ret;
1203 }
1204
1205 void btrfs_remove_delayed_node(struct inode *inode)
1206 {
1207 struct btrfs_delayed_node *delayed_node;
1208
1209 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1210 if (!delayed_node)
1211 return;
1212
1213 BTRFS_I(inode)->delayed_node = NULL;
1214 btrfs_release_delayed_node(delayed_node);
1215 }
1216
1217 struct btrfs_async_delayed_node {
1218 struct btrfs_root *root;
1219 struct btrfs_delayed_node *delayed_node;
1220 struct btrfs_work work;
1221 };
1222
1223 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1224 {
1225 struct btrfs_async_delayed_node *async_node;
1226 struct btrfs_trans_handle *trans;
1227 struct btrfs_path *path;
1228 struct btrfs_delayed_node *delayed_node = NULL;
1229 struct btrfs_root *root;
1230 struct btrfs_block_rsv *block_rsv;
1231 unsigned long nr = 0;
1232 int need_requeue = 0;
1233 int ret;
1234
1235 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1236
1237 path = btrfs_alloc_path();
1238 if (!path)
1239 goto out;
1240 path->leave_spinning = 1;
1241
1242 delayed_node = async_node->delayed_node;
1243 root = delayed_node->root;
1244
1245 trans = btrfs_join_transaction(root);
1246 if (IS_ERR(trans))
1247 goto free_path;
1248
1249 block_rsv = trans->block_rsv;
1250 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1251
1252 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1253 if (!ret)
1254 ret = btrfs_delete_delayed_items(trans, path, root,
1255 delayed_node);
1256
1257 if (!ret)
1258 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1259
1260 /*
1261 * Maybe new delayed items have been inserted, so we need requeue
1262 * the work. Besides that, we must dequeue the empty delayed nodes
1263 * to avoid the race between delayed items balance and the worker.
1264 * The race like this:
1265 * Task1 Worker thread
1266 * count == 0, needn't requeue
1267 * also needn't insert the
1268 * delayed node into prepare
1269 * list again.
1270 * add lots of delayed items
1271 * queue the delayed node
1272 * already in the list,
1273 * and not in the prepare
1274 * list, it means the delayed
1275 * node is being dealt with
1276 * by the worker.
1277 * do delayed items balance
1278 * the delayed node is being
1279 * dealt with by the worker
1280 * now, just wait.
1281 * the worker goto idle.
1282 * Task1 will sleep until the transaction is commited.
1283 */
1284 mutex_lock(&delayed_node->mutex);
1285 if (delayed_node->count)
1286 need_requeue = 1;
1287 else
1288 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1289 delayed_node);
1290 mutex_unlock(&delayed_node->mutex);
1291
1292 nr = trans->blocks_used;
1293
1294 trans->block_rsv = block_rsv;
1295 btrfs_end_transaction_dmeta(trans, root);
1296 __btrfs_btree_balance_dirty(root, nr);
1297 free_path:
1298 btrfs_free_path(path);
1299 out:
1300 if (need_requeue)
1301 btrfs_requeue_work(&async_node->work);
1302 else {
1303 btrfs_release_prepared_delayed_node(delayed_node);
1304 kfree(async_node);
1305 }
1306 }
1307
1308 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1309 struct btrfs_root *root, int all)
1310 {
1311 struct btrfs_async_delayed_node *async_node;
1312 struct btrfs_delayed_node *curr;
1313 int count = 0;
1314
1315 again:
1316 curr = btrfs_first_prepared_delayed_node(delayed_root);
1317 if (!curr)
1318 return 0;
1319
1320 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1321 if (!async_node) {
1322 btrfs_release_prepared_delayed_node(curr);
1323 return -ENOMEM;
1324 }
1325
1326 async_node->root = root;
1327 async_node->delayed_node = curr;
1328
1329 async_node->work.func = btrfs_async_run_delayed_node_done;
1330 async_node->work.flags = 0;
1331
1332 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1333 count++;
1334
1335 if (all || count < 4)
1336 goto again;
1337
1338 return 0;
1339 }
1340
1341 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1342 {
1343 struct btrfs_delayed_root *delayed_root;
1344 delayed_root = btrfs_get_delayed_root(root);
1345 WARN_ON(btrfs_first_delayed_node(delayed_root));
1346 }
1347
1348 void btrfs_balance_delayed_items(struct btrfs_root *root)
1349 {
1350 struct btrfs_delayed_root *delayed_root;
1351
1352 delayed_root = btrfs_get_delayed_root(root);
1353
1354 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1355 return;
1356
1357 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1358 int ret;
1359 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1360 if (ret)
1361 return;
1362
1363 wait_event_interruptible_timeout(
1364 delayed_root->wait,
1365 (atomic_read(&delayed_root->items) <
1366 BTRFS_DELAYED_BACKGROUND),
1367 HZ);
1368 return;
1369 }
1370
1371 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1372 }
1373
1374 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1375 struct btrfs_root *root, const char *name,
1376 int name_len, struct inode *dir,
1377 struct btrfs_disk_key *disk_key, u8 type,
1378 u64 index)
1379 {
1380 struct btrfs_delayed_node *delayed_node;
1381 struct btrfs_delayed_item *delayed_item;
1382 struct btrfs_dir_item *dir_item;
1383 int ret;
1384
1385 delayed_node = btrfs_get_or_create_delayed_node(dir);
1386 if (IS_ERR(delayed_node))
1387 return PTR_ERR(delayed_node);
1388
1389 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1390 if (!delayed_item) {
1391 ret = -ENOMEM;
1392 goto release_node;
1393 }
1394
1395 delayed_item->key.objectid = btrfs_ino(dir);
1396 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1397 delayed_item->key.offset = index;
1398
1399 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1400 dir_item->location = *disk_key;
1401 dir_item->transid = cpu_to_le64(trans->transid);
1402 dir_item->data_len = 0;
1403 dir_item->name_len = cpu_to_le16(name_len);
1404 dir_item->type = type;
1405 memcpy((char *)(dir_item + 1), name, name_len);
1406
1407 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1408 /*
1409 * we have reserved enough space when we start a new transaction,
1410 * so reserving metadata failure is impossible
1411 */
1412 BUG_ON(ret);
1413
1414
1415 mutex_lock(&delayed_node->mutex);
1416 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1417 if (unlikely(ret)) {
1418 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1419 "the insertion tree of the delayed node"
1420 "(root id: %llu, inode id: %llu, errno: %d)\n",
1421 name,
1422 (unsigned long long)delayed_node->root->objectid,
1423 (unsigned long long)delayed_node->inode_id,
1424 ret);
1425 BUG();
1426 }
1427 mutex_unlock(&delayed_node->mutex);
1428
1429 release_node:
1430 btrfs_release_delayed_node(delayed_node);
1431 return ret;
1432 }
1433
1434 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1435 struct btrfs_delayed_node *node,
1436 struct btrfs_key *key)
1437 {
1438 struct btrfs_delayed_item *item;
1439
1440 mutex_lock(&node->mutex);
1441 item = __btrfs_lookup_delayed_insertion_item(node, key);
1442 if (!item) {
1443 mutex_unlock(&node->mutex);
1444 return 1;
1445 }
1446
1447 btrfs_delayed_item_release_metadata(root, item);
1448 btrfs_release_delayed_item(item);
1449 mutex_unlock(&node->mutex);
1450 return 0;
1451 }
1452
1453 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1454 struct btrfs_root *root, struct inode *dir,
1455 u64 index)
1456 {
1457 struct btrfs_delayed_node *node;
1458 struct btrfs_delayed_item *item;
1459 struct btrfs_key item_key;
1460 int ret;
1461
1462 node = btrfs_get_or_create_delayed_node(dir);
1463 if (IS_ERR(node))
1464 return PTR_ERR(node);
1465
1466 item_key.objectid = btrfs_ino(dir);
1467 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1468 item_key.offset = index;
1469
1470 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1471 if (!ret)
1472 goto end;
1473
1474 item = btrfs_alloc_delayed_item(0);
1475 if (!item) {
1476 ret = -ENOMEM;
1477 goto end;
1478 }
1479
1480 item->key = item_key;
1481
1482 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1483 /*
1484 * we have reserved enough space when we start a new transaction,
1485 * so reserving metadata failure is impossible.
1486 */
1487 BUG_ON(ret);
1488
1489 mutex_lock(&node->mutex);
1490 ret = __btrfs_add_delayed_deletion_item(node, item);
1491 if (unlikely(ret)) {
1492 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1493 "into the deletion tree of the delayed node"
1494 "(root id: %llu, inode id: %llu, errno: %d)\n",
1495 (unsigned long long)index,
1496 (unsigned long long)node->root->objectid,
1497 (unsigned long long)node->inode_id,
1498 ret);
1499 BUG();
1500 }
1501 mutex_unlock(&node->mutex);
1502 end:
1503 btrfs_release_delayed_node(node);
1504 return ret;
1505 }
1506
1507 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1508 {
1509 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1510
1511 if (!delayed_node)
1512 return -ENOENT;
1513
1514 /*
1515 * Since we have held i_mutex of this directory, it is impossible that
1516 * a new directory index is added into the delayed node and index_cnt
1517 * is updated now. So we needn't lock the delayed node.
1518 */
1519 if (!delayed_node->index_cnt) {
1520 btrfs_release_delayed_node(delayed_node);
1521 return -EINVAL;
1522 }
1523
1524 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1525 btrfs_release_delayed_node(delayed_node);
1526 return 0;
1527 }
1528
1529 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1530 struct list_head *del_list)
1531 {
1532 struct btrfs_delayed_node *delayed_node;
1533 struct btrfs_delayed_item *item;
1534
1535 delayed_node = btrfs_get_delayed_node(inode);
1536 if (!delayed_node)
1537 return;
1538
1539 mutex_lock(&delayed_node->mutex);
1540 item = __btrfs_first_delayed_insertion_item(delayed_node);
1541 while (item) {
1542 atomic_inc(&item->refs);
1543 list_add_tail(&item->readdir_list, ins_list);
1544 item = __btrfs_next_delayed_item(item);
1545 }
1546
1547 item = __btrfs_first_delayed_deletion_item(delayed_node);
1548 while (item) {
1549 atomic_inc(&item->refs);
1550 list_add_tail(&item->readdir_list, del_list);
1551 item = __btrfs_next_delayed_item(item);
1552 }
1553 mutex_unlock(&delayed_node->mutex);
1554 /*
1555 * This delayed node is still cached in the btrfs inode, so refs
1556 * must be > 1 now, and we needn't check it is going to be freed
1557 * or not.
1558 *
1559 * Besides that, this function is used to read dir, we do not
1560 * insert/delete delayed items in this period. So we also needn't
1561 * requeue or dequeue this delayed node.
1562 */
1563 atomic_dec(&delayed_node->refs);
1564 }
1565
1566 void btrfs_put_delayed_items(struct list_head *ins_list,
1567 struct list_head *del_list)
1568 {
1569 struct btrfs_delayed_item *curr, *next;
1570
1571 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1572 list_del(&curr->readdir_list);
1573 if (atomic_dec_and_test(&curr->refs))
1574 kfree(curr);
1575 }
1576
1577 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1578 list_del(&curr->readdir_list);
1579 if (atomic_dec_and_test(&curr->refs))
1580 kfree(curr);
1581 }
1582 }
1583
1584 int btrfs_should_delete_dir_index(struct list_head *del_list,
1585 u64 index)
1586 {
1587 struct btrfs_delayed_item *curr, *next;
1588 int ret;
1589
1590 if (list_empty(del_list))
1591 return 0;
1592
1593 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1594 if (curr->key.offset > index)
1595 break;
1596
1597 list_del(&curr->readdir_list);
1598 ret = (curr->key.offset == index);
1599
1600 if (atomic_dec_and_test(&curr->refs))
1601 kfree(curr);
1602
1603 if (ret)
1604 return 1;
1605 else
1606 continue;
1607 }
1608 return 0;
1609 }
1610
1611 /*
1612 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1613 *
1614 */
1615 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1616 filldir_t filldir,
1617 struct list_head *ins_list)
1618 {
1619 struct btrfs_dir_item *di;
1620 struct btrfs_delayed_item *curr, *next;
1621 struct btrfs_key location;
1622 char *name;
1623 int name_len;
1624 int over = 0;
1625 unsigned char d_type;
1626
1627 if (list_empty(ins_list))
1628 return 0;
1629
1630 /*
1631 * Changing the data of the delayed item is impossible. So
1632 * we needn't lock them. And we have held i_mutex of the
1633 * directory, nobody can delete any directory indexes now.
1634 */
1635 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1636 list_del(&curr->readdir_list);
1637
1638 if (curr->key.offset < filp->f_pos) {
1639 if (atomic_dec_and_test(&curr->refs))
1640 kfree(curr);
1641 continue;
1642 }
1643
1644 filp->f_pos = curr->key.offset;
1645
1646 di = (struct btrfs_dir_item *)curr->data;
1647 name = (char *)(di + 1);
1648 name_len = le16_to_cpu(di->name_len);
1649
1650 d_type = btrfs_filetype_table[di->type];
1651 btrfs_disk_key_to_cpu(&location, &di->location);
1652
1653 over = filldir(dirent, name, name_len, curr->key.offset,
1654 location.objectid, d_type);
1655
1656 if (atomic_dec_and_test(&curr->refs))
1657 kfree(curr);
1658
1659 if (over)
1660 return 1;
1661 }
1662 return 0;
1663 }
1664
1665 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1666 generation, 64);
1667 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1668 sequence, 64);
1669 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1670 transid, 64);
1671 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1672 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1673 nbytes, 64);
1674 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1675 block_group, 64);
1676 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1677 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1678 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1679 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1680 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1681 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1682
1683 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1684 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1685
1686 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1687 struct btrfs_inode_item *inode_item,
1688 struct inode *inode)
1689 {
1690 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1691 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1692 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1693 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1694 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1695 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1696 btrfs_set_stack_inode_generation(inode_item,
1697 BTRFS_I(inode)->generation);
1698 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1699 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1700 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1701 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1702 btrfs_set_stack_inode_block_group(inode_item, 0);
1703
1704 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1705 inode->i_atime.tv_sec);
1706 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1707 inode->i_atime.tv_nsec);
1708
1709 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1710 inode->i_mtime.tv_sec);
1711 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1712 inode->i_mtime.tv_nsec);
1713
1714 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1715 inode->i_ctime.tv_sec);
1716 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1717 inode->i_ctime.tv_nsec);
1718 }
1719
1720 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1721 {
1722 struct btrfs_delayed_node *delayed_node;
1723 struct btrfs_inode_item *inode_item;
1724 struct btrfs_timespec *tspec;
1725
1726 delayed_node = btrfs_get_delayed_node(inode);
1727 if (!delayed_node)
1728 return -ENOENT;
1729
1730 mutex_lock(&delayed_node->mutex);
1731 if (!delayed_node->inode_dirty) {
1732 mutex_unlock(&delayed_node->mutex);
1733 btrfs_release_delayed_node(delayed_node);
1734 return -ENOENT;
1735 }
1736
1737 inode_item = &delayed_node->inode_item;
1738
1739 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1740 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1741 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1742 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1743 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1744 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1745 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1746 BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
1747 inode->i_rdev = 0;
1748 *rdev = btrfs_stack_inode_rdev(inode_item);
1749 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1750
1751 tspec = btrfs_inode_atime(inode_item);
1752 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1753 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1754
1755 tspec = btrfs_inode_mtime(inode_item);
1756 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1757 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1758
1759 tspec = btrfs_inode_ctime(inode_item);
1760 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1761 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1762
1763 inode->i_generation = BTRFS_I(inode)->generation;
1764 BTRFS_I(inode)->index_cnt = (u64)-1;
1765
1766 mutex_unlock(&delayed_node->mutex);
1767 btrfs_release_delayed_node(delayed_node);
1768 return 0;
1769 }
1770
1771 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1772 struct btrfs_root *root, struct inode *inode)
1773 {
1774 struct btrfs_delayed_node *delayed_node;
1775 int ret = 0;
1776
1777 delayed_node = btrfs_get_or_create_delayed_node(inode);
1778 if (IS_ERR(delayed_node))
1779 return PTR_ERR(delayed_node);
1780
1781 mutex_lock(&delayed_node->mutex);
1782 if (delayed_node->inode_dirty) {
1783 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1784 goto release_node;
1785 }
1786
1787 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1788 delayed_node);
1789 if (ret)
1790 goto release_node;
1791
1792 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1793 delayed_node->inode_dirty = 1;
1794 delayed_node->count++;
1795 atomic_inc(&root->fs_info->delayed_root->items);
1796 release_node:
1797 mutex_unlock(&delayed_node->mutex);
1798 btrfs_release_delayed_node(delayed_node);
1799 return ret;
1800 }
1801
1802 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1803 {
1804 struct btrfs_root *root = delayed_node->root;
1805 struct btrfs_delayed_item *curr_item, *prev_item;
1806
1807 mutex_lock(&delayed_node->mutex);
1808 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1809 while (curr_item) {
1810 btrfs_delayed_item_release_metadata(root, curr_item);
1811 prev_item = curr_item;
1812 curr_item = __btrfs_next_delayed_item(prev_item);
1813 btrfs_release_delayed_item(prev_item);
1814 }
1815
1816 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1817 while (curr_item) {
1818 btrfs_delayed_item_release_metadata(root, curr_item);
1819 prev_item = curr_item;
1820 curr_item = __btrfs_next_delayed_item(prev_item);
1821 btrfs_release_delayed_item(prev_item);
1822 }
1823
1824 if (delayed_node->inode_dirty) {
1825 btrfs_delayed_inode_release_metadata(root, delayed_node);
1826 btrfs_release_delayed_inode(delayed_node);
1827 }
1828 mutex_unlock(&delayed_node->mutex);
1829 }
1830
1831 void btrfs_kill_delayed_inode_items(struct inode *inode)
1832 {
1833 struct btrfs_delayed_node *delayed_node;
1834
1835 delayed_node = btrfs_get_delayed_node(inode);
1836 if (!delayed_node)
1837 return;
1838
1839 __btrfs_kill_delayed_node(delayed_node);
1840 btrfs_release_delayed_node(delayed_node);
1841 }
1842
1843 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1844 {
1845 u64 inode_id = 0;
1846 struct btrfs_delayed_node *delayed_nodes[8];
1847 int i, n;
1848
1849 while (1) {
1850 spin_lock(&root->inode_lock);
1851 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1852 (void **)delayed_nodes, inode_id,
1853 ARRAY_SIZE(delayed_nodes));
1854 if (!n) {
1855 spin_unlock(&root->inode_lock);
1856 break;
1857 }
1858
1859 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1860
1861 for (i = 0; i < n; i++)
1862 atomic_inc(&delayed_nodes[i]->refs);
1863 spin_unlock(&root->inode_lock);
1864
1865 for (i = 0; i < n; i++) {
1866 __btrfs_kill_delayed_node(delayed_nodes[i]);
1867 btrfs_release_delayed_node(delayed_nodes[i]);
1868 }
1869 }
1870 }