Merge tag 'mxs-fixes-3.10' of git://git.linaro.org/people/shawnguo/linux-2.6 into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / check-integrity.c
1 /*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 /*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
80 */
81
82 #include <linux/sched.h>
83 #include <linux/slab.h>
84 #include <linux/buffer_head.h>
85 #include <linux/mutex.h>
86 #include <linux/crc32c.h>
87 #include <linux/genhd.h>
88 #include <linux/blkdev.h>
89 #include "ctree.h"
90 #include "disk-io.h"
91 #include "transaction.h"
92 #include "extent_io.h"
93 #include "volumes.h"
94 #include "print-tree.h"
95 #include "locking.h"
96 #include "check-integrity.h"
97 #include "rcu-string.h"
98
99 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
100 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
101 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
102 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
103 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
104 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
105 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
106 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
107 * excluding " [...]" */
108 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
109
110 /*
111 * The definition of the bitmask fields for the print_mask.
112 * They are specified with the mount option check_integrity_print_mask.
113 */
114 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
115 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
116 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
117 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
118 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
119 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
120 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
121 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
122 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
123 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
124 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
125 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
126 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
127
128 struct btrfsic_dev_state;
129 struct btrfsic_state;
130
131 struct btrfsic_block {
132 u32 magic_num; /* only used for debug purposes */
133 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
134 unsigned int is_superblock:1; /* if it is one of the superblocks */
135 unsigned int is_iodone:1; /* if is done by lower subsystem */
136 unsigned int iodone_w_error:1; /* error was indicated to endio */
137 unsigned int never_written:1; /* block was added because it was
138 * referenced, not because it was
139 * written */
140 unsigned int mirror_num; /* large enough to hold
141 * BTRFS_SUPER_MIRROR_MAX */
142 struct btrfsic_dev_state *dev_state;
143 u64 dev_bytenr; /* key, physical byte num on disk */
144 u64 logical_bytenr; /* logical byte num on disk */
145 u64 generation;
146 struct btrfs_disk_key disk_key; /* extra info to print in case of
147 * issues, will not always be correct */
148 struct list_head collision_resolving_node; /* list node */
149 struct list_head all_blocks_node; /* list node */
150
151 /* the following two lists contain block_link items */
152 struct list_head ref_to_list; /* list */
153 struct list_head ref_from_list; /* list */
154 struct btrfsic_block *next_in_same_bio;
155 void *orig_bio_bh_private;
156 union {
157 bio_end_io_t *bio;
158 bh_end_io_t *bh;
159 } orig_bio_bh_end_io;
160 int submit_bio_bh_rw;
161 u64 flush_gen; /* only valid if !never_written */
162 };
163
164 /*
165 * Elements of this type are allocated dynamically and required because
166 * each block object can refer to and can be ref from multiple blocks.
167 * The key to lookup them in the hashtable is the dev_bytenr of
168 * the block ref to plus the one from the block refered from.
169 * The fact that they are searchable via a hashtable and that a
170 * ref_cnt is maintained is not required for the btrfs integrity
171 * check algorithm itself, it is only used to make the output more
172 * beautiful in case that an error is detected (an error is defined
173 * as a write operation to a block while that block is still referenced).
174 */
175 struct btrfsic_block_link {
176 u32 magic_num; /* only used for debug purposes */
177 u32 ref_cnt;
178 struct list_head node_ref_to; /* list node */
179 struct list_head node_ref_from; /* list node */
180 struct list_head collision_resolving_node; /* list node */
181 struct btrfsic_block *block_ref_to;
182 struct btrfsic_block *block_ref_from;
183 u64 parent_generation;
184 };
185
186 struct btrfsic_dev_state {
187 u32 magic_num; /* only used for debug purposes */
188 struct block_device *bdev;
189 struct btrfsic_state *state;
190 struct list_head collision_resolving_node; /* list node */
191 struct btrfsic_block dummy_block_for_bio_bh_flush;
192 u64 last_flush_gen;
193 char name[BDEVNAME_SIZE];
194 };
195
196 struct btrfsic_block_hashtable {
197 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
198 };
199
200 struct btrfsic_block_link_hashtable {
201 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
202 };
203
204 struct btrfsic_dev_state_hashtable {
205 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
206 };
207
208 struct btrfsic_block_data_ctx {
209 u64 start; /* virtual bytenr */
210 u64 dev_bytenr; /* physical bytenr on device */
211 u32 len;
212 struct btrfsic_dev_state *dev;
213 char **datav;
214 struct page **pagev;
215 void *mem_to_free;
216 };
217
218 /* This structure is used to implement recursion without occupying
219 * any stack space, refer to btrfsic_process_metablock() */
220 struct btrfsic_stack_frame {
221 u32 magic;
222 u32 nr;
223 int error;
224 int i;
225 int limit_nesting;
226 int num_copies;
227 int mirror_num;
228 struct btrfsic_block *block;
229 struct btrfsic_block_data_ctx *block_ctx;
230 struct btrfsic_block *next_block;
231 struct btrfsic_block_data_ctx next_block_ctx;
232 struct btrfs_header *hdr;
233 struct btrfsic_stack_frame *prev;
234 };
235
236 /* Some state per mounted filesystem */
237 struct btrfsic_state {
238 u32 print_mask;
239 int include_extent_data;
240 int csum_size;
241 struct list_head all_blocks_list;
242 struct btrfsic_block_hashtable block_hashtable;
243 struct btrfsic_block_link_hashtable block_link_hashtable;
244 struct btrfs_root *root;
245 u64 max_superblock_generation;
246 struct btrfsic_block *latest_superblock;
247 u32 metablock_size;
248 u32 datablock_size;
249 };
250
251 static void btrfsic_block_init(struct btrfsic_block *b);
252 static struct btrfsic_block *btrfsic_block_alloc(void);
253 static void btrfsic_block_free(struct btrfsic_block *b);
254 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
255 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
256 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
257 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
258 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
259 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
260 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
261 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
262 struct btrfsic_block_hashtable *h);
263 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
264 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
265 struct block_device *bdev,
266 u64 dev_bytenr,
267 struct btrfsic_block_hashtable *h);
268 static void btrfsic_block_link_hashtable_init(
269 struct btrfsic_block_link_hashtable *h);
270 static void btrfsic_block_link_hashtable_add(
271 struct btrfsic_block_link *l,
272 struct btrfsic_block_link_hashtable *h);
273 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
274 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
275 struct block_device *bdev_ref_to,
276 u64 dev_bytenr_ref_to,
277 struct block_device *bdev_ref_from,
278 u64 dev_bytenr_ref_from,
279 struct btrfsic_block_link_hashtable *h);
280 static void btrfsic_dev_state_hashtable_init(
281 struct btrfsic_dev_state_hashtable *h);
282 static void btrfsic_dev_state_hashtable_add(
283 struct btrfsic_dev_state *ds,
284 struct btrfsic_dev_state_hashtable *h);
285 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
286 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
287 struct block_device *bdev,
288 struct btrfsic_dev_state_hashtable *h);
289 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
290 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
291 static int btrfsic_process_superblock(struct btrfsic_state *state,
292 struct btrfs_fs_devices *fs_devices);
293 static int btrfsic_process_metablock(struct btrfsic_state *state,
294 struct btrfsic_block *block,
295 struct btrfsic_block_data_ctx *block_ctx,
296 int limit_nesting, int force_iodone_flag);
297 static void btrfsic_read_from_block_data(
298 struct btrfsic_block_data_ctx *block_ctx,
299 void *dst, u32 offset, size_t len);
300 static int btrfsic_create_link_to_next_block(
301 struct btrfsic_state *state,
302 struct btrfsic_block *block,
303 struct btrfsic_block_data_ctx
304 *block_ctx, u64 next_bytenr,
305 int limit_nesting,
306 struct btrfsic_block_data_ctx *next_block_ctx,
307 struct btrfsic_block **next_blockp,
308 int force_iodone_flag,
309 int *num_copiesp, int *mirror_nump,
310 struct btrfs_disk_key *disk_key,
311 u64 parent_generation);
312 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
313 struct btrfsic_block *block,
314 struct btrfsic_block_data_ctx *block_ctx,
315 u32 item_offset, int force_iodone_flag);
316 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
317 struct btrfsic_block_data_ctx *block_ctx_out,
318 int mirror_num);
319 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
320 u32 len, struct block_device *bdev,
321 struct btrfsic_block_data_ctx *block_ctx_out);
322 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
323 static int btrfsic_read_block(struct btrfsic_state *state,
324 struct btrfsic_block_data_ctx *block_ctx);
325 static void btrfsic_dump_database(struct btrfsic_state *state);
326 static void btrfsic_complete_bio_end_io(struct bio *bio, int err);
327 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
328 char **datav, unsigned int num_pages);
329 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
330 u64 dev_bytenr, char **mapped_datav,
331 unsigned int num_pages,
332 struct bio *bio, int *bio_is_patched,
333 struct buffer_head *bh,
334 int submit_bio_bh_rw);
335 static int btrfsic_process_written_superblock(
336 struct btrfsic_state *state,
337 struct btrfsic_block *const block,
338 struct btrfs_super_block *const super_hdr);
339 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status);
340 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
341 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
342 const struct btrfsic_block *block,
343 int recursion_level);
344 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
345 struct btrfsic_block *const block,
346 int recursion_level);
347 static void btrfsic_print_add_link(const struct btrfsic_state *state,
348 const struct btrfsic_block_link *l);
349 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
350 const struct btrfsic_block_link *l);
351 static char btrfsic_get_block_type(const struct btrfsic_state *state,
352 const struct btrfsic_block *block);
353 static void btrfsic_dump_tree(const struct btrfsic_state *state);
354 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
355 const struct btrfsic_block *block,
356 int indent_level);
357 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
358 struct btrfsic_state *state,
359 struct btrfsic_block_data_ctx *next_block_ctx,
360 struct btrfsic_block *next_block,
361 struct btrfsic_block *from_block,
362 u64 parent_generation);
363 static struct btrfsic_block *btrfsic_block_lookup_or_add(
364 struct btrfsic_state *state,
365 struct btrfsic_block_data_ctx *block_ctx,
366 const char *additional_string,
367 int is_metadata,
368 int is_iodone,
369 int never_written,
370 int mirror_num,
371 int *was_created);
372 static int btrfsic_process_superblock_dev_mirror(
373 struct btrfsic_state *state,
374 struct btrfsic_dev_state *dev_state,
375 struct btrfs_device *device,
376 int superblock_mirror_num,
377 struct btrfsic_dev_state **selected_dev_state,
378 struct btrfs_super_block *selected_super);
379 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
380 struct block_device *bdev);
381 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
382 u64 bytenr,
383 struct btrfsic_dev_state *dev_state,
384 u64 dev_bytenr);
385
386 static struct mutex btrfsic_mutex;
387 static int btrfsic_is_initialized;
388 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
389
390
391 static void btrfsic_block_init(struct btrfsic_block *b)
392 {
393 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
394 b->dev_state = NULL;
395 b->dev_bytenr = 0;
396 b->logical_bytenr = 0;
397 b->generation = BTRFSIC_GENERATION_UNKNOWN;
398 b->disk_key.objectid = 0;
399 b->disk_key.type = 0;
400 b->disk_key.offset = 0;
401 b->is_metadata = 0;
402 b->is_superblock = 0;
403 b->is_iodone = 0;
404 b->iodone_w_error = 0;
405 b->never_written = 0;
406 b->mirror_num = 0;
407 b->next_in_same_bio = NULL;
408 b->orig_bio_bh_private = NULL;
409 b->orig_bio_bh_end_io.bio = NULL;
410 INIT_LIST_HEAD(&b->collision_resolving_node);
411 INIT_LIST_HEAD(&b->all_blocks_node);
412 INIT_LIST_HEAD(&b->ref_to_list);
413 INIT_LIST_HEAD(&b->ref_from_list);
414 b->submit_bio_bh_rw = 0;
415 b->flush_gen = 0;
416 }
417
418 static struct btrfsic_block *btrfsic_block_alloc(void)
419 {
420 struct btrfsic_block *b;
421
422 b = kzalloc(sizeof(*b), GFP_NOFS);
423 if (NULL != b)
424 btrfsic_block_init(b);
425
426 return b;
427 }
428
429 static void btrfsic_block_free(struct btrfsic_block *b)
430 {
431 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
432 kfree(b);
433 }
434
435 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
436 {
437 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
438 l->ref_cnt = 1;
439 INIT_LIST_HEAD(&l->node_ref_to);
440 INIT_LIST_HEAD(&l->node_ref_from);
441 INIT_LIST_HEAD(&l->collision_resolving_node);
442 l->block_ref_to = NULL;
443 l->block_ref_from = NULL;
444 }
445
446 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
447 {
448 struct btrfsic_block_link *l;
449
450 l = kzalloc(sizeof(*l), GFP_NOFS);
451 if (NULL != l)
452 btrfsic_block_link_init(l);
453
454 return l;
455 }
456
457 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
458 {
459 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
460 kfree(l);
461 }
462
463 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
464 {
465 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
466 ds->bdev = NULL;
467 ds->state = NULL;
468 ds->name[0] = '\0';
469 INIT_LIST_HEAD(&ds->collision_resolving_node);
470 ds->last_flush_gen = 0;
471 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
472 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
473 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
474 }
475
476 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
477 {
478 struct btrfsic_dev_state *ds;
479
480 ds = kzalloc(sizeof(*ds), GFP_NOFS);
481 if (NULL != ds)
482 btrfsic_dev_state_init(ds);
483
484 return ds;
485 }
486
487 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
488 {
489 BUG_ON(!(NULL == ds ||
490 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
491 kfree(ds);
492 }
493
494 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
495 {
496 int i;
497
498 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
499 INIT_LIST_HEAD(h->table + i);
500 }
501
502 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
503 struct btrfsic_block_hashtable *h)
504 {
505 const unsigned int hashval =
506 (((unsigned int)(b->dev_bytenr >> 16)) ^
507 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
508 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
509
510 list_add(&b->collision_resolving_node, h->table + hashval);
511 }
512
513 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
514 {
515 list_del(&b->collision_resolving_node);
516 }
517
518 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
519 struct block_device *bdev,
520 u64 dev_bytenr,
521 struct btrfsic_block_hashtable *h)
522 {
523 const unsigned int hashval =
524 (((unsigned int)(dev_bytenr >> 16)) ^
525 ((unsigned int)((uintptr_t)bdev))) &
526 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
527 struct list_head *elem;
528
529 list_for_each(elem, h->table + hashval) {
530 struct btrfsic_block *const b =
531 list_entry(elem, struct btrfsic_block,
532 collision_resolving_node);
533
534 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
535 return b;
536 }
537
538 return NULL;
539 }
540
541 static void btrfsic_block_link_hashtable_init(
542 struct btrfsic_block_link_hashtable *h)
543 {
544 int i;
545
546 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
547 INIT_LIST_HEAD(h->table + i);
548 }
549
550 static void btrfsic_block_link_hashtable_add(
551 struct btrfsic_block_link *l,
552 struct btrfsic_block_link_hashtable *h)
553 {
554 const unsigned int hashval =
555 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
556 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
557 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
558 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
559 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
560
561 BUG_ON(NULL == l->block_ref_to);
562 BUG_ON(NULL == l->block_ref_from);
563 list_add(&l->collision_resolving_node, h->table + hashval);
564 }
565
566 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
567 {
568 list_del(&l->collision_resolving_node);
569 }
570
571 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
572 struct block_device *bdev_ref_to,
573 u64 dev_bytenr_ref_to,
574 struct block_device *bdev_ref_from,
575 u64 dev_bytenr_ref_from,
576 struct btrfsic_block_link_hashtable *h)
577 {
578 const unsigned int hashval =
579 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
580 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
581 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
582 ((unsigned int)((uintptr_t)bdev_ref_from))) &
583 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
584 struct list_head *elem;
585
586 list_for_each(elem, h->table + hashval) {
587 struct btrfsic_block_link *const l =
588 list_entry(elem, struct btrfsic_block_link,
589 collision_resolving_node);
590
591 BUG_ON(NULL == l->block_ref_to);
592 BUG_ON(NULL == l->block_ref_from);
593 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
594 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
595 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
596 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
597 return l;
598 }
599
600 return NULL;
601 }
602
603 static void btrfsic_dev_state_hashtable_init(
604 struct btrfsic_dev_state_hashtable *h)
605 {
606 int i;
607
608 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
609 INIT_LIST_HEAD(h->table + i);
610 }
611
612 static void btrfsic_dev_state_hashtable_add(
613 struct btrfsic_dev_state *ds,
614 struct btrfsic_dev_state_hashtable *h)
615 {
616 const unsigned int hashval =
617 (((unsigned int)((uintptr_t)ds->bdev)) &
618 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
619
620 list_add(&ds->collision_resolving_node, h->table + hashval);
621 }
622
623 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
624 {
625 list_del(&ds->collision_resolving_node);
626 }
627
628 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
629 struct block_device *bdev,
630 struct btrfsic_dev_state_hashtable *h)
631 {
632 const unsigned int hashval =
633 (((unsigned int)((uintptr_t)bdev)) &
634 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
635 struct list_head *elem;
636
637 list_for_each(elem, h->table + hashval) {
638 struct btrfsic_dev_state *const ds =
639 list_entry(elem, struct btrfsic_dev_state,
640 collision_resolving_node);
641
642 if (ds->bdev == bdev)
643 return ds;
644 }
645
646 return NULL;
647 }
648
649 static int btrfsic_process_superblock(struct btrfsic_state *state,
650 struct btrfs_fs_devices *fs_devices)
651 {
652 int ret = 0;
653 struct btrfs_super_block *selected_super;
654 struct list_head *dev_head = &fs_devices->devices;
655 struct btrfs_device *device;
656 struct btrfsic_dev_state *selected_dev_state = NULL;
657 int pass;
658
659 BUG_ON(NULL == state);
660 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
661 if (NULL == selected_super) {
662 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
663 return -1;
664 }
665
666 list_for_each_entry(device, dev_head, dev_list) {
667 int i;
668 struct btrfsic_dev_state *dev_state;
669
670 if (!device->bdev || !device->name)
671 continue;
672
673 dev_state = btrfsic_dev_state_lookup(device->bdev);
674 BUG_ON(NULL == dev_state);
675 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
676 ret = btrfsic_process_superblock_dev_mirror(
677 state, dev_state, device, i,
678 &selected_dev_state, selected_super);
679 if (0 != ret && 0 == i) {
680 kfree(selected_super);
681 return ret;
682 }
683 }
684 }
685
686 if (NULL == state->latest_superblock) {
687 printk(KERN_INFO "btrfsic: no superblock found!\n");
688 kfree(selected_super);
689 return -1;
690 }
691
692 state->csum_size = btrfs_super_csum_size(selected_super);
693
694 for (pass = 0; pass < 3; pass++) {
695 int num_copies;
696 int mirror_num;
697 u64 next_bytenr;
698
699 switch (pass) {
700 case 0:
701 next_bytenr = btrfs_super_root(selected_super);
702 if (state->print_mask &
703 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
704 printk(KERN_INFO "root@%llu\n",
705 (unsigned long long)next_bytenr);
706 break;
707 case 1:
708 next_bytenr = btrfs_super_chunk_root(selected_super);
709 if (state->print_mask &
710 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
711 printk(KERN_INFO "chunk@%llu\n",
712 (unsigned long long)next_bytenr);
713 break;
714 case 2:
715 next_bytenr = btrfs_super_log_root(selected_super);
716 if (0 == next_bytenr)
717 continue;
718 if (state->print_mask &
719 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
720 printk(KERN_INFO "log@%llu\n",
721 (unsigned long long)next_bytenr);
722 break;
723 }
724
725 num_copies =
726 btrfs_num_copies(state->root->fs_info,
727 next_bytenr, state->metablock_size);
728 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
729 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
730 (unsigned long long)next_bytenr, num_copies);
731
732 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
733 struct btrfsic_block *next_block;
734 struct btrfsic_block_data_ctx tmp_next_block_ctx;
735 struct btrfsic_block_link *l;
736
737 ret = btrfsic_map_block(state, next_bytenr,
738 state->metablock_size,
739 &tmp_next_block_ctx,
740 mirror_num);
741 if (ret) {
742 printk(KERN_INFO "btrfsic:"
743 " btrfsic_map_block(root @%llu,"
744 " mirror %d) failed!\n",
745 (unsigned long long)next_bytenr,
746 mirror_num);
747 kfree(selected_super);
748 return -1;
749 }
750
751 next_block = btrfsic_block_hashtable_lookup(
752 tmp_next_block_ctx.dev->bdev,
753 tmp_next_block_ctx.dev_bytenr,
754 &state->block_hashtable);
755 BUG_ON(NULL == next_block);
756
757 l = btrfsic_block_link_hashtable_lookup(
758 tmp_next_block_ctx.dev->bdev,
759 tmp_next_block_ctx.dev_bytenr,
760 state->latest_superblock->dev_state->
761 bdev,
762 state->latest_superblock->dev_bytenr,
763 &state->block_link_hashtable);
764 BUG_ON(NULL == l);
765
766 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
767 if (ret < (int)PAGE_CACHE_SIZE) {
768 printk(KERN_INFO
769 "btrfsic: read @logical %llu failed!\n",
770 (unsigned long long)
771 tmp_next_block_ctx.start);
772 btrfsic_release_block_ctx(&tmp_next_block_ctx);
773 kfree(selected_super);
774 return -1;
775 }
776
777 ret = btrfsic_process_metablock(state,
778 next_block,
779 &tmp_next_block_ctx,
780 BTRFS_MAX_LEVEL + 3, 1);
781 btrfsic_release_block_ctx(&tmp_next_block_ctx);
782 }
783 }
784
785 kfree(selected_super);
786 return ret;
787 }
788
789 static int btrfsic_process_superblock_dev_mirror(
790 struct btrfsic_state *state,
791 struct btrfsic_dev_state *dev_state,
792 struct btrfs_device *device,
793 int superblock_mirror_num,
794 struct btrfsic_dev_state **selected_dev_state,
795 struct btrfs_super_block *selected_super)
796 {
797 struct btrfs_super_block *super_tmp;
798 u64 dev_bytenr;
799 struct buffer_head *bh;
800 struct btrfsic_block *superblock_tmp;
801 int pass;
802 struct block_device *const superblock_bdev = device->bdev;
803
804 /* super block bytenr is always the unmapped device bytenr */
805 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
806 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
807 return -1;
808 bh = __bread(superblock_bdev, dev_bytenr / 4096,
809 BTRFS_SUPER_INFO_SIZE);
810 if (NULL == bh)
811 return -1;
812 super_tmp = (struct btrfs_super_block *)
813 (bh->b_data + (dev_bytenr & 4095));
814
815 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
816 super_tmp->magic != cpu_to_le64(BTRFS_MAGIC) ||
817 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
818 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
819 btrfs_super_leafsize(super_tmp) != state->metablock_size ||
820 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
821 brelse(bh);
822 return 0;
823 }
824
825 superblock_tmp =
826 btrfsic_block_hashtable_lookup(superblock_bdev,
827 dev_bytenr,
828 &state->block_hashtable);
829 if (NULL == superblock_tmp) {
830 superblock_tmp = btrfsic_block_alloc();
831 if (NULL == superblock_tmp) {
832 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
833 brelse(bh);
834 return -1;
835 }
836 /* for superblock, only the dev_bytenr makes sense */
837 superblock_tmp->dev_bytenr = dev_bytenr;
838 superblock_tmp->dev_state = dev_state;
839 superblock_tmp->logical_bytenr = dev_bytenr;
840 superblock_tmp->generation = btrfs_super_generation(super_tmp);
841 superblock_tmp->is_metadata = 1;
842 superblock_tmp->is_superblock = 1;
843 superblock_tmp->is_iodone = 1;
844 superblock_tmp->never_written = 0;
845 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
846 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
847 printk_in_rcu(KERN_INFO "New initial S-block (bdev %p, %s)"
848 " @%llu (%s/%llu/%d)\n",
849 superblock_bdev,
850 rcu_str_deref(device->name),
851 (unsigned long long)dev_bytenr,
852 dev_state->name,
853 (unsigned long long)dev_bytenr,
854 superblock_mirror_num);
855 list_add(&superblock_tmp->all_blocks_node,
856 &state->all_blocks_list);
857 btrfsic_block_hashtable_add(superblock_tmp,
858 &state->block_hashtable);
859 }
860
861 /* select the one with the highest generation field */
862 if (btrfs_super_generation(super_tmp) >
863 state->max_superblock_generation ||
864 0 == state->max_superblock_generation) {
865 memcpy(selected_super, super_tmp, sizeof(*selected_super));
866 *selected_dev_state = dev_state;
867 state->max_superblock_generation =
868 btrfs_super_generation(super_tmp);
869 state->latest_superblock = superblock_tmp;
870 }
871
872 for (pass = 0; pass < 3; pass++) {
873 u64 next_bytenr;
874 int num_copies;
875 int mirror_num;
876 const char *additional_string = NULL;
877 struct btrfs_disk_key tmp_disk_key;
878
879 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
880 tmp_disk_key.offset = 0;
881 switch (pass) {
882 case 0:
883 tmp_disk_key.objectid =
884 cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
885 additional_string = "initial root ";
886 next_bytenr = btrfs_super_root(super_tmp);
887 break;
888 case 1:
889 tmp_disk_key.objectid =
890 cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
891 additional_string = "initial chunk ";
892 next_bytenr = btrfs_super_chunk_root(super_tmp);
893 break;
894 case 2:
895 tmp_disk_key.objectid =
896 cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
897 additional_string = "initial log ";
898 next_bytenr = btrfs_super_log_root(super_tmp);
899 if (0 == next_bytenr)
900 continue;
901 break;
902 }
903
904 num_copies =
905 btrfs_num_copies(state->root->fs_info,
906 next_bytenr, state->metablock_size);
907 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
908 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
909 (unsigned long long)next_bytenr, num_copies);
910 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
911 struct btrfsic_block *next_block;
912 struct btrfsic_block_data_ctx tmp_next_block_ctx;
913 struct btrfsic_block_link *l;
914
915 if (btrfsic_map_block(state, next_bytenr,
916 state->metablock_size,
917 &tmp_next_block_ctx,
918 mirror_num)) {
919 printk(KERN_INFO "btrfsic: btrfsic_map_block("
920 "bytenr @%llu, mirror %d) failed!\n",
921 (unsigned long long)next_bytenr,
922 mirror_num);
923 brelse(bh);
924 return -1;
925 }
926
927 next_block = btrfsic_block_lookup_or_add(
928 state, &tmp_next_block_ctx,
929 additional_string, 1, 1, 0,
930 mirror_num, NULL);
931 if (NULL == next_block) {
932 btrfsic_release_block_ctx(&tmp_next_block_ctx);
933 brelse(bh);
934 return -1;
935 }
936
937 next_block->disk_key = tmp_disk_key;
938 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
939 l = btrfsic_block_link_lookup_or_add(
940 state, &tmp_next_block_ctx,
941 next_block, superblock_tmp,
942 BTRFSIC_GENERATION_UNKNOWN);
943 btrfsic_release_block_ctx(&tmp_next_block_ctx);
944 if (NULL == l) {
945 brelse(bh);
946 return -1;
947 }
948 }
949 }
950 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
951 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
952
953 brelse(bh);
954 return 0;
955 }
956
957 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
958 {
959 struct btrfsic_stack_frame *sf;
960
961 sf = kzalloc(sizeof(*sf), GFP_NOFS);
962 if (NULL == sf)
963 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
964 else
965 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
966 return sf;
967 }
968
969 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
970 {
971 BUG_ON(!(NULL == sf ||
972 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
973 kfree(sf);
974 }
975
976 static int btrfsic_process_metablock(
977 struct btrfsic_state *state,
978 struct btrfsic_block *const first_block,
979 struct btrfsic_block_data_ctx *const first_block_ctx,
980 int first_limit_nesting, int force_iodone_flag)
981 {
982 struct btrfsic_stack_frame initial_stack_frame = { 0 };
983 struct btrfsic_stack_frame *sf;
984 struct btrfsic_stack_frame *next_stack;
985 struct btrfs_header *const first_hdr =
986 (struct btrfs_header *)first_block_ctx->datav[0];
987
988 BUG_ON(!first_hdr);
989 sf = &initial_stack_frame;
990 sf->error = 0;
991 sf->i = -1;
992 sf->limit_nesting = first_limit_nesting;
993 sf->block = first_block;
994 sf->block_ctx = first_block_ctx;
995 sf->next_block = NULL;
996 sf->hdr = first_hdr;
997 sf->prev = NULL;
998
999 continue_with_new_stack_frame:
1000 sf->block->generation = le64_to_cpu(sf->hdr->generation);
1001 if (0 == sf->hdr->level) {
1002 struct btrfs_leaf *const leafhdr =
1003 (struct btrfs_leaf *)sf->hdr;
1004
1005 if (-1 == sf->i) {
1006 sf->nr = le32_to_cpu(leafhdr->header.nritems);
1007
1008 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1009 printk(KERN_INFO
1010 "leaf %llu items %d generation %llu"
1011 " owner %llu\n",
1012 (unsigned long long)
1013 sf->block_ctx->start,
1014 sf->nr,
1015 (unsigned long long)
1016 le64_to_cpu(leafhdr->header.generation),
1017 (unsigned long long)
1018 le64_to_cpu(leafhdr->header.owner));
1019 }
1020
1021 continue_with_current_leaf_stack_frame:
1022 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1023 sf->i++;
1024 sf->num_copies = 0;
1025 }
1026
1027 if (sf->i < sf->nr) {
1028 struct btrfs_item disk_item;
1029 u32 disk_item_offset =
1030 (uintptr_t)(leafhdr->items + sf->i) -
1031 (uintptr_t)leafhdr;
1032 struct btrfs_disk_key *disk_key;
1033 u8 type;
1034 u32 item_offset;
1035 u32 item_size;
1036
1037 if (disk_item_offset + sizeof(struct btrfs_item) >
1038 sf->block_ctx->len) {
1039 leaf_item_out_of_bounce_error:
1040 printk(KERN_INFO
1041 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1042 sf->block_ctx->start,
1043 sf->block_ctx->dev->name);
1044 goto one_stack_frame_backwards;
1045 }
1046 btrfsic_read_from_block_data(sf->block_ctx,
1047 &disk_item,
1048 disk_item_offset,
1049 sizeof(struct btrfs_item));
1050 item_offset = le32_to_cpu(disk_item.offset);
1051 item_size = le32_to_cpu(disk_item.size);
1052 disk_key = &disk_item.key;
1053 type = disk_key->type;
1054
1055 if (BTRFS_ROOT_ITEM_KEY == type) {
1056 struct btrfs_root_item root_item;
1057 u32 root_item_offset;
1058 u64 next_bytenr;
1059
1060 root_item_offset = item_offset +
1061 offsetof(struct btrfs_leaf, items);
1062 if (root_item_offset + item_size >
1063 sf->block_ctx->len)
1064 goto leaf_item_out_of_bounce_error;
1065 btrfsic_read_from_block_data(
1066 sf->block_ctx, &root_item,
1067 root_item_offset,
1068 item_size);
1069 next_bytenr = le64_to_cpu(root_item.bytenr);
1070
1071 sf->error =
1072 btrfsic_create_link_to_next_block(
1073 state,
1074 sf->block,
1075 sf->block_ctx,
1076 next_bytenr,
1077 sf->limit_nesting,
1078 &sf->next_block_ctx,
1079 &sf->next_block,
1080 force_iodone_flag,
1081 &sf->num_copies,
1082 &sf->mirror_num,
1083 disk_key,
1084 le64_to_cpu(root_item.
1085 generation));
1086 if (sf->error)
1087 goto one_stack_frame_backwards;
1088
1089 if (NULL != sf->next_block) {
1090 struct btrfs_header *const next_hdr =
1091 (struct btrfs_header *)
1092 sf->next_block_ctx.datav[0];
1093
1094 next_stack =
1095 btrfsic_stack_frame_alloc();
1096 if (NULL == next_stack) {
1097 btrfsic_release_block_ctx(
1098 &sf->
1099 next_block_ctx);
1100 goto one_stack_frame_backwards;
1101 }
1102
1103 next_stack->i = -1;
1104 next_stack->block = sf->next_block;
1105 next_stack->block_ctx =
1106 &sf->next_block_ctx;
1107 next_stack->next_block = NULL;
1108 next_stack->hdr = next_hdr;
1109 next_stack->limit_nesting =
1110 sf->limit_nesting - 1;
1111 next_stack->prev = sf;
1112 sf = next_stack;
1113 goto continue_with_new_stack_frame;
1114 }
1115 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1116 state->include_extent_data) {
1117 sf->error = btrfsic_handle_extent_data(
1118 state,
1119 sf->block,
1120 sf->block_ctx,
1121 item_offset,
1122 force_iodone_flag);
1123 if (sf->error)
1124 goto one_stack_frame_backwards;
1125 }
1126
1127 goto continue_with_current_leaf_stack_frame;
1128 }
1129 } else {
1130 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1131
1132 if (-1 == sf->i) {
1133 sf->nr = le32_to_cpu(nodehdr->header.nritems);
1134
1135 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1136 printk(KERN_INFO "node %llu level %d items %d"
1137 " generation %llu owner %llu\n",
1138 (unsigned long long)
1139 sf->block_ctx->start,
1140 nodehdr->header.level, sf->nr,
1141 (unsigned long long)
1142 le64_to_cpu(nodehdr->header.generation),
1143 (unsigned long long)
1144 le64_to_cpu(nodehdr->header.owner));
1145 }
1146
1147 continue_with_current_node_stack_frame:
1148 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1149 sf->i++;
1150 sf->num_copies = 0;
1151 }
1152
1153 if (sf->i < sf->nr) {
1154 struct btrfs_key_ptr key_ptr;
1155 u32 key_ptr_offset;
1156 u64 next_bytenr;
1157
1158 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1159 (uintptr_t)nodehdr;
1160 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1161 sf->block_ctx->len) {
1162 printk(KERN_INFO
1163 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1164 sf->block_ctx->start,
1165 sf->block_ctx->dev->name);
1166 goto one_stack_frame_backwards;
1167 }
1168 btrfsic_read_from_block_data(
1169 sf->block_ctx, &key_ptr, key_ptr_offset,
1170 sizeof(struct btrfs_key_ptr));
1171 next_bytenr = le64_to_cpu(key_ptr.blockptr);
1172
1173 sf->error = btrfsic_create_link_to_next_block(
1174 state,
1175 sf->block,
1176 sf->block_ctx,
1177 next_bytenr,
1178 sf->limit_nesting,
1179 &sf->next_block_ctx,
1180 &sf->next_block,
1181 force_iodone_flag,
1182 &sf->num_copies,
1183 &sf->mirror_num,
1184 &key_ptr.key,
1185 le64_to_cpu(key_ptr.generation));
1186 if (sf->error)
1187 goto one_stack_frame_backwards;
1188
1189 if (NULL != sf->next_block) {
1190 struct btrfs_header *const next_hdr =
1191 (struct btrfs_header *)
1192 sf->next_block_ctx.datav[0];
1193
1194 next_stack = btrfsic_stack_frame_alloc();
1195 if (NULL == next_stack)
1196 goto one_stack_frame_backwards;
1197
1198 next_stack->i = -1;
1199 next_stack->block = sf->next_block;
1200 next_stack->block_ctx = &sf->next_block_ctx;
1201 next_stack->next_block = NULL;
1202 next_stack->hdr = next_hdr;
1203 next_stack->limit_nesting =
1204 sf->limit_nesting - 1;
1205 next_stack->prev = sf;
1206 sf = next_stack;
1207 goto continue_with_new_stack_frame;
1208 }
1209
1210 goto continue_with_current_node_stack_frame;
1211 }
1212 }
1213
1214 one_stack_frame_backwards:
1215 if (NULL != sf->prev) {
1216 struct btrfsic_stack_frame *const prev = sf->prev;
1217
1218 /* the one for the initial block is freed in the caller */
1219 btrfsic_release_block_ctx(sf->block_ctx);
1220
1221 if (sf->error) {
1222 prev->error = sf->error;
1223 btrfsic_stack_frame_free(sf);
1224 sf = prev;
1225 goto one_stack_frame_backwards;
1226 }
1227
1228 btrfsic_stack_frame_free(sf);
1229 sf = prev;
1230 goto continue_with_new_stack_frame;
1231 } else {
1232 BUG_ON(&initial_stack_frame != sf);
1233 }
1234
1235 return sf->error;
1236 }
1237
1238 static void btrfsic_read_from_block_data(
1239 struct btrfsic_block_data_ctx *block_ctx,
1240 void *dstv, u32 offset, size_t len)
1241 {
1242 size_t cur;
1243 size_t offset_in_page;
1244 char *kaddr;
1245 char *dst = (char *)dstv;
1246 size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
1247 unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
1248
1249 WARN_ON(offset + len > block_ctx->len);
1250 offset_in_page = (start_offset + offset) &
1251 ((unsigned long)PAGE_CACHE_SIZE - 1);
1252
1253 while (len > 0) {
1254 cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
1255 BUG_ON(i >= (block_ctx->len + PAGE_CACHE_SIZE - 1) >>
1256 PAGE_CACHE_SHIFT);
1257 kaddr = block_ctx->datav[i];
1258 memcpy(dst, kaddr + offset_in_page, cur);
1259
1260 dst += cur;
1261 len -= cur;
1262 offset_in_page = 0;
1263 i++;
1264 }
1265 }
1266
1267 static int btrfsic_create_link_to_next_block(
1268 struct btrfsic_state *state,
1269 struct btrfsic_block *block,
1270 struct btrfsic_block_data_ctx *block_ctx,
1271 u64 next_bytenr,
1272 int limit_nesting,
1273 struct btrfsic_block_data_ctx *next_block_ctx,
1274 struct btrfsic_block **next_blockp,
1275 int force_iodone_flag,
1276 int *num_copiesp, int *mirror_nump,
1277 struct btrfs_disk_key *disk_key,
1278 u64 parent_generation)
1279 {
1280 struct btrfsic_block *next_block = NULL;
1281 int ret;
1282 struct btrfsic_block_link *l;
1283 int did_alloc_block_link;
1284 int block_was_created;
1285
1286 *next_blockp = NULL;
1287 if (0 == *num_copiesp) {
1288 *num_copiesp =
1289 btrfs_num_copies(state->root->fs_info,
1290 next_bytenr, state->metablock_size);
1291 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1292 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1293 (unsigned long long)next_bytenr, *num_copiesp);
1294 *mirror_nump = 1;
1295 }
1296
1297 if (*mirror_nump > *num_copiesp)
1298 return 0;
1299
1300 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1301 printk(KERN_INFO
1302 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1303 *mirror_nump);
1304 ret = btrfsic_map_block(state, next_bytenr,
1305 state->metablock_size,
1306 next_block_ctx, *mirror_nump);
1307 if (ret) {
1308 printk(KERN_INFO
1309 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1310 (unsigned long long)next_bytenr, *mirror_nump);
1311 btrfsic_release_block_ctx(next_block_ctx);
1312 *next_blockp = NULL;
1313 return -1;
1314 }
1315
1316 next_block = btrfsic_block_lookup_or_add(state,
1317 next_block_ctx, "referenced ",
1318 1, force_iodone_flag,
1319 !force_iodone_flag,
1320 *mirror_nump,
1321 &block_was_created);
1322 if (NULL == next_block) {
1323 btrfsic_release_block_ctx(next_block_ctx);
1324 *next_blockp = NULL;
1325 return -1;
1326 }
1327 if (block_was_created) {
1328 l = NULL;
1329 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1330 } else {
1331 if (next_block->logical_bytenr != next_bytenr &&
1332 !(!next_block->is_metadata &&
1333 0 == next_block->logical_bytenr)) {
1334 printk(KERN_INFO
1335 "Referenced block @%llu (%s/%llu/%d)"
1336 " found in hash table, %c,"
1337 " bytenr mismatch (!= stored %llu).\n",
1338 (unsigned long long)next_bytenr,
1339 next_block_ctx->dev->name,
1340 (unsigned long long)next_block_ctx->dev_bytenr,
1341 *mirror_nump,
1342 btrfsic_get_block_type(state, next_block),
1343 (unsigned long long)next_block->logical_bytenr);
1344 } else if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1345 printk(KERN_INFO
1346 "Referenced block @%llu (%s/%llu/%d)"
1347 " found in hash table, %c.\n",
1348 (unsigned long long)next_bytenr,
1349 next_block_ctx->dev->name,
1350 (unsigned long long)next_block_ctx->dev_bytenr,
1351 *mirror_nump,
1352 btrfsic_get_block_type(state, next_block));
1353 next_block->logical_bytenr = next_bytenr;
1354
1355 next_block->mirror_num = *mirror_nump;
1356 l = btrfsic_block_link_hashtable_lookup(
1357 next_block_ctx->dev->bdev,
1358 next_block_ctx->dev_bytenr,
1359 block_ctx->dev->bdev,
1360 block_ctx->dev_bytenr,
1361 &state->block_link_hashtable);
1362 }
1363
1364 next_block->disk_key = *disk_key;
1365 if (NULL == l) {
1366 l = btrfsic_block_link_alloc();
1367 if (NULL == l) {
1368 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1369 btrfsic_release_block_ctx(next_block_ctx);
1370 *next_blockp = NULL;
1371 return -1;
1372 }
1373
1374 did_alloc_block_link = 1;
1375 l->block_ref_to = next_block;
1376 l->block_ref_from = block;
1377 l->ref_cnt = 1;
1378 l->parent_generation = parent_generation;
1379
1380 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1381 btrfsic_print_add_link(state, l);
1382
1383 list_add(&l->node_ref_to, &block->ref_to_list);
1384 list_add(&l->node_ref_from, &next_block->ref_from_list);
1385
1386 btrfsic_block_link_hashtable_add(l,
1387 &state->block_link_hashtable);
1388 } else {
1389 did_alloc_block_link = 0;
1390 if (0 == limit_nesting) {
1391 l->ref_cnt++;
1392 l->parent_generation = parent_generation;
1393 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1394 btrfsic_print_add_link(state, l);
1395 }
1396 }
1397
1398 if (limit_nesting > 0 && did_alloc_block_link) {
1399 ret = btrfsic_read_block(state, next_block_ctx);
1400 if (ret < (int)next_block_ctx->len) {
1401 printk(KERN_INFO
1402 "btrfsic: read block @logical %llu failed!\n",
1403 (unsigned long long)next_bytenr);
1404 btrfsic_release_block_ctx(next_block_ctx);
1405 *next_blockp = NULL;
1406 return -1;
1407 }
1408
1409 *next_blockp = next_block;
1410 } else {
1411 *next_blockp = NULL;
1412 }
1413 (*mirror_nump)++;
1414
1415 return 0;
1416 }
1417
1418 static int btrfsic_handle_extent_data(
1419 struct btrfsic_state *state,
1420 struct btrfsic_block *block,
1421 struct btrfsic_block_data_ctx *block_ctx,
1422 u32 item_offset, int force_iodone_flag)
1423 {
1424 int ret;
1425 struct btrfs_file_extent_item file_extent_item;
1426 u64 file_extent_item_offset;
1427 u64 next_bytenr;
1428 u64 num_bytes;
1429 u64 generation;
1430 struct btrfsic_block_link *l;
1431
1432 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1433 item_offset;
1434 if (file_extent_item_offset +
1435 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1436 block_ctx->len) {
1437 printk(KERN_INFO
1438 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1439 block_ctx->start, block_ctx->dev->name);
1440 return -1;
1441 }
1442
1443 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1444 file_extent_item_offset,
1445 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1446 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1447 ((u64)0) == le64_to_cpu(file_extent_item.disk_bytenr)) {
1448 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1449 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1450 file_extent_item.type,
1451 (unsigned long long)
1452 le64_to_cpu(file_extent_item.disk_bytenr));
1453 return 0;
1454 }
1455
1456 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1457 block_ctx->len) {
1458 printk(KERN_INFO
1459 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1460 block_ctx->start, block_ctx->dev->name);
1461 return -1;
1462 }
1463 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1464 file_extent_item_offset,
1465 sizeof(struct btrfs_file_extent_item));
1466 next_bytenr = le64_to_cpu(file_extent_item.disk_bytenr) +
1467 le64_to_cpu(file_extent_item.offset);
1468 generation = le64_to_cpu(file_extent_item.generation);
1469 num_bytes = le64_to_cpu(file_extent_item.num_bytes);
1470 generation = le64_to_cpu(file_extent_item.generation);
1471
1472 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1473 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1474 " offset = %llu, num_bytes = %llu\n",
1475 file_extent_item.type,
1476 (unsigned long long)
1477 le64_to_cpu(file_extent_item.disk_bytenr),
1478 (unsigned long long)le64_to_cpu(file_extent_item.offset),
1479 (unsigned long long)num_bytes);
1480 while (num_bytes > 0) {
1481 u32 chunk_len;
1482 int num_copies;
1483 int mirror_num;
1484
1485 if (num_bytes > state->datablock_size)
1486 chunk_len = state->datablock_size;
1487 else
1488 chunk_len = num_bytes;
1489
1490 num_copies =
1491 btrfs_num_copies(state->root->fs_info,
1492 next_bytenr, state->datablock_size);
1493 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1494 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1495 (unsigned long long)next_bytenr, num_copies);
1496 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1497 struct btrfsic_block_data_ctx next_block_ctx;
1498 struct btrfsic_block *next_block;
1499 int block_was_created;
1500
1501 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1502 printk(KERN_INFO "btrfsic_handle_extent_data("
1503 "mirror_num=%d)\n", mirror_num);
1504 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1505 printk(KERN_INFO
1506 "\tdisk_bytenr = %llu, num_bytes %u\n",
1507 (unsigned long long)next_bytenr,
1508 chunk_len);
1509 ret = btrfsic_map_block(state, next_bytenr,
1510 chunk_len, &next_block_ctx,
1511 mirror_num);
1512 if (ret) {
1513 printk(KERN_INFO
1514 "btrfsic: btrfsic_map_block(@%llu,"
1515 " mirror=%d) failed!\n",
1516 (unsigned long long)next_bytenr,
1517 mirror_num);
1518 return -1;
1519 }
1520
1521 next_block = btrfsic_block_lookup_or_add(
1522 state,
1523 &next_block_ctx,
1524 "referenced ",
1525 0,
1526 force_iodone_flag,
1527 !force_iodone_flag,
1528 mirror_num,
1529 &block_was_created);
1530 if (NULL == next_block) {
1531 printk(KERN_INFO
1532 "btrfsic: error, kmalloc failed!\n");
1533 btrfsic_release_block_ctx(&next_block_ctx);
1534 return -1;
1535 }
1536 if (!block_was_created) {
1537 if (next_block->logical_bytenr != next_bytenr &&
1538 !(!next_block->is_metadata &&
1539 0 == next_block->logical_bytenr)) {
1540 printk(KERN_INFO
1541 "Referenced block"
1542 " @%llu (%s/%llu/%d)"
1543 " found in hash table, D,"
1544 " bytenr mismatch"
1545 " (!= stored %llu).\n",
1546 (unsigned long long)next_bytenr,
1547 next_block_ctx.dev->name,
1548 (unsigned long long)
1549 next_block_ctx.dev_bytenr,
1550 mirror_num,
1551 (unsigned long long)
1552 next_block->logical_bytenr);
1553 }
1554 next_block->logical_bytenr = next_bytenr;
1555 next_block->mirror_num = mirror_num;
1556 }
1557
1558 l = btrfsic_block_link_lookup_or_add(state,
1559 &next_block_ctx,
1560 next_block, block,
1561 generation);
1562 btrfsic_release_block_ctx(&next_block_ctx);
1563 if (NULL == l)
1564 return -1;
1565 }
1566
1567 next_bytenr += chunk_len;
1568 num_bytes -= chunk_len;
1569 }
1570
1571 return 0;
1572 }
1573
1574 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1575 struct btrfsic_block_data_ctx *block_ctx_out,
1576 int mirror_num)
1577 {
1578 int ret;
1579 u64 length;
1580 struct btrfs_bio *multi = NULL;
1581 struct btrfs_device *device;
1582
1583 length = len;
1584 ret = btrfs_map_block(state->root->fs_info, READ,
1585 bytenr, &length, &multi, mirror_num);
1586
1587 if (ret) {
1588 block_ctx_out->start = 0;
1589 block_ctx_out->dev_bytenr = 0;
1590 block_ctx_out->len = 0;
1591 block_ctx_out->dev = NULL;
1592 block_ctx_out->datav = NULL;
1593 block_ctx_out->pagev = NULL;
1594 block_ctx_out->mem_to_free = NULL;
1595
1596 return ret;
1597 }
1598
1599 device = multi->stripes[0].dev;
1600 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1601 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1602 block_ctx_out->start = bytenr;
1603 block_ctx_out->len = len;
1604 block_ctx_out->datav = NULL;
1605 block_ctx_out->pagev = NULL;
1606 block_ctx_out->mem_to_free = NULL;
1607
1608 kfree(multi);
1609 if (NULL == block_ctx_out->dev) {
1610 ret = -ENXIO;
1611 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1612 }
1613
1614 return ret;
1615 }
1616
1617 static int btrfsic_map_superblock(struct btrfsic_state *state, u64 bytenr,
1618 u32 len, struct block_device *bdev,
1619 struct btrfsic_block_data_ctx *block_ctx_out)
1620 {
1621 block_ctx_out->dev = btrfsic_dev_state_lookup(bdev);
1622 block_ctx_out->dev_bytenr = bytenr;
1623 block_ctx_out->start = bytenr;
1624 block_ctx_out->len = len;
1625 block_ctx_out->datav = NULL;
1626 block_ctx_out->pagev = NULL;
1627 block_ctx_out->mem_to_free = NULL;
1628 if (NULL != block_ctx_out->dev) {
1629 return 0;
1630 } else {
1631 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#2)!\n");
1632 return -ENXIO;
1633 }
1634 }
1635
1636 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1637 {
1638 if (block_ctx->mem_to_free) {
1639 unsigned int num_pages;
1640
1641 BUG_ON(!block_ctx->datav);
1642 BUG_ON(!block_ctx->pagev);
1643 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1644 PAGE_CACHE_SHIFT;
1645 while (num_pages > 0) {
1646 num_pages--;
1647 if (block_ctx->datav[num_pages]) {
1648 kunmap(block_ctx->pagev[num_pages]);
1649 block_ctx->datav[num_pages] = NULL;
1650 }
1651 if (block_ctx->pagev[num_pages]) {
1652 __free_page(block_ctx->pagev[num_pages]);
1653 block_ctx->pagev[num_pages] = NULL;
1654 }
1655 }
1656
1657 kfree(block_ctx->mem_to_free);
1658 block_ctx->mem_to_free = NULL;
1659 block_ctx->pagev = NULL;
1660 block_ctx->datav = NULL;
1661 }
1662 }
1663
1664 static int btrfsic_read_block(struct btrfsic_state *state,
1665 struct btrfsic_block_data_ctx *block_ctx)
1666 {
1667 unsigned int num_pages;
1668 unsigned int i;
1669 u64 dev_bytenr;
1670 int ret;
1671
1672 BUG_ON(block_ctx->datav);
1673 BUG_ON(block_ctx->pagev);
1674 BUG_ON(block_ctx->mem_to_free);
1675 if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
1676 printk(KERN_INFO
1677 "btrfsic: read_block() with unaligned bytenr %llu\n",
1678 (unsigned long long)block_ctx->dev_bytenr);
1679 return -1;
1680 }
1681
1682 num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
1683 PAGE_CACHE_SHIFT;
1684 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1685 sizeof(*block_ctx->pagev)) *
1686 num_pages, GFP_NOFS);
1687 if (!block_ctx->mem_to_free)
1688 return -1;
1689 block_ctx->datav = block_ctx->mem_to_free;
1690 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1691 for (i = 0; i < num_pages; i++) {
1692 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1693 if (!block_ctx->pagev[i])
1694 return -1;
1695 }
1696
1697 dev_bytenr = block_ctx->dev_bytenr;
1698 for (i = 0; i < num_pages;) {
1699 struct bio *bio;
1700 unsigned int j;
1701 DECLARE_COMPLETION_ONSTACK(complete);
1702
1703 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1704 if (!bio) {
1705 printk(KERN_INFO
1706 "btrfsic: bio_alloc() for %u pages failed!\n",
1707 num_pages - i);
1708 return -1;
1709 }
1710 bio->bi_bdev = block_ctx->dev->bdev;
1711 bio->bi_sector = dev_bytenr >> 9;
1712 bio->bi_end_io = btrfsic_complete_bio_end_io;
1713 bio->bi_private = &complete;
1714
1715 for (j = i; j < num_pages; j++) {
1716 ret = bio_add_page(bio, block_ctx->pagev[j],
1717 PAGE_CACHE_SIZE, 0);
1718 if (PAGE_CACHE_SIZE != ret)
1719 break;
1720 }
1721 if (j == i) {
1722 printk(KERN_INFO
1723 "btrfsic: error, failed to add a single page!\n");
1724 return -1;
1725 }
1726 submit_bio(READ, bio);
1727
1728 /* this will also unplug the queue */
1729 wait_for_completion(&complete);
1730
1731 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1732 printk(KERN_INFO
1733 "btrfsic: read error at logical %llu dev %s!\n",
1734 block_ctx->start, block_ctx->dev->name);
1735 bio_put(bio);
1736 return -1;
1737 }
1738 bio_put(bio);
1739 dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
1740 i = j;
1741 }
1742 for (i = 0; i < num_pages; i++) {
1743 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1744 if (!block_ctx->datav[i]) {
1745 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1746 block_ctx->dev->name);
1747 return -1;
1748 }
1749 }
1750
1751 return block_ctx->len;
1752 }
1753
1754 static void btrfsic_complete_bio_end_io(struct bio *bio, int err)
1755 {
1756 complete((struct completion *)bio->bi_private);
1757 }
1758
1759 static void btrfsic_dump_database(struct btrfsic_state *state)
1760 {
1761 struct list_head *elem_all;
1762
1763 BUG_ON(NULL == state);
1764
1765 printk(KERN_INFO "all_blocks_list:\n");
1766 list_for_each(elem_all, &state->all_blocks_list) {
1767 const struct btrfsic_block *const b_all =
1768 list_entry(elem_all, struct btrfsic_block,
1769 all_blocks_node);
1770 struct list_head *elem_ref_to;
1771 struct list_head *elem_ref_from;
1772
1773 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1774 btrfsic_get_block_type(state, b_all),
1775 (unsigned long long)b_all->logical_bytenr,
1776 b_all->dev_state->name,
1777 (unsigned long long)b_all->dev_bytenr,
1778 b_all->mirror_num);
1779
1780 list_for_each(elem_ref_to, &b_all->ref_to_list) {
1781 const struct btrfsic_block_link *const l =
1782 list_entry(elem_ref_to,
1783 struct btrfsic_block_link,
1784 node_ref_to);
1785
1786 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1787 " refers %u* to"
1788 " %c @%llu (%s/%llu/%d)\n",
1789 btrfsic_get_block_type(state, b_all),
1790 (unsigned long long)b_all->logical_bytenr,
1791 b_all->dev_state->name,
1792 (unsigned long long)b_all->dev_bytenr,
1793 b_all->mirror_num,
1794 l->ref_cnt,
1795 btrfsic_get_block_type(state, l->block_ref_to),
1796 (unsigned long long)
1797 l->block_ref_to->logical_bytenr,
1798 l->block_ref_to->dev_state->name,
1799 (unsigned long long)l->block_ref_to->dev_bytenr,
1800 l->block_ref_to->mirror_num);
1801 }
1802
1803 list_for_each(elem_ref_from, &b_all->ref_from_list) {
1804 const struct btrfsic_block_link *const l =
1805 list_entry(elem_ref_from,
1806 struct btrfsic_block_link,
1807 node_ref_from);
1808
1809 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1810 " is ref %u* from"
1811 " %c @%llu (%s/%llu/%d)\n",
1812 btrfsic_get_block_type(state, b_all),
1813 (unsigned long long)b_all->logical_bytenr,
1814 b_all->dev_state->name,
1815 (unsigned long long)b_all->dev_bytenr,
1816 b_all->mirror_num,
1817 l->ref_cnt,
1818 btrfsic_get_block_type(state, l->block_ref_from),
1819 (unsigned long long)
1820 l->block_ref_from->logical_bytenr,
1821 l->block_ref_from->dev_state->name,
1822 (unsigned long long)
1823 l->block_ref_from->dev_bytenr,
1824 l->block_ref_from->mirror_num);
1825 }
1826
1827 printk(KERN_INFO "\n");
1828 }
1829 }
1830
1831 /*
1832 * Test whether the disk block contains a tree block (leaf or node)
1833 * (note that this test fails for the super block)
1834 */
1835 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1836 char **datav, unsigned int num_pages)
1837 {
1838 struct btrfs_header *h;
1839 u8 csum[BTRFS_CSUM_SIZE];
1840 u32 crc = ~(u32)0;
1841 unsigned int i;
1842
1843 if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
1844 return 1; /* not metadata */
1845 num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
1846 h = (struct btrfs_header *)datav[0];
1847
1848 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1849 return 1;
1850
1851 for (i = 0; i < num_pages; i++) {
1852 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1853 size_t sublen = i ? PAGE_CACHE_SIZE :
1854 (PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
1855
1856 crc = crc32c(crc, data, sublen);
1857 }
1858 btrfs_csum_final(crc, csum);
1859 if (memcmp(csum, h->csum, state->csum_size))
1860 return 1;
1861
1862 return 0; /* is metadata */
1863 }
1864
1865 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1866 u64 dev_bytenr, char **mapped_datav,
1867 unsigned int num_pages,
1868 struct bio *bio, int *bio_is_patched,
1869 struct buffer_head *bh,
1870 int submit_bio_bh_rw)
1871 {
1872 int is_metadata;
1873 struct btrfsic_block *block;
1874 struct btrfsic_block_data_ctx block_ctx;
1875 int ret;
1876 struct btrfsic_state *state = dev_state->state;
1877 struct block_device *bdev = dev_state->bdev;
1878 unsigned int processed_len;
1879
1880 if (NULL != bio_is_patched)
1881 *bio_is_patched = 0;
1882
1883 again:
1884 if (num_pages == 0)
1885 return;
1886
1887 processed_len = 0;
1888 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1889 num_pages));
1890
1891 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1892 &state->block_hashtable);
1893 if (NULL != block) {
1894 u64 bytenr = 0;
1895 struct list_head *elem_ref_to;
1896 struct list_head *tmp_ref_to;
1897
1898 if (block->is_superblock) {
1899 bytenr = le64_to_cpu(((struct btrfs_super_block *)
1900 mapped_datav[0])->bytenr);
1901 if (num_pages * PAGE_CACHE_SIZE <
1902 BTRFS_SUPER_INFO_SIZE) {
1903 printk(KERN_INFO
1904 "btrfsic: cannot work with too short bios!\n");
1905 return;
1906 }
1907 is_metadata = 1;
1908 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
1909 processed_len = BTRFS_SUPER_INFO_SIZE;
1910 if (state->print_mask &
1911 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1912 printk(KERN_INFO
1913 "[before new superblock is written]:\n");
1914 btrfsic_dump_tree_sub(state, block, 0);
1915 }
1916 }
1917 if (is_metadata) {
1918 if (!block->is_superblock) {
1919 if (num_pages * PAGE_CACHE_SIZE <
1920 state->metablock_size) {
1921 printk(KERN_INFO
1922 "btrfsic: cannot work with too short bios!\n");
1923 return;
1924 }
1925 processed_len = state->metablock_size;
1926 bytenr = le64_to_cpu(((struct btrfs_header *)
1927 mapped_datav[0])->bytenr);
1928 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1929 dev_state,
1930 dev_bytenr);
1931 }
1932 if (block->logical_bytenr != bytenr) {
1933 printk(KERN_INFO
1934 "Written block @%llu (%s/%llu/%d)"
1935 " found in hash table, %c,"
1936 " bytenr mismatch"
1937 " (!= stored %llu).\n",
1938 (unsigned long long)bytenr,
1939 dev_state->name,
1940 (unsigned long long)dev_bytenr,
1941 block->mirror_num,
1942 btrfsic_get_block_type(state, block),
1943 (unsigned long long)
1944 block->logical_bytenr);
1945 block->logical_bytenr = bytenr;
1946 } else if (state->print_mask &
1947 BTRFSIC_PRINT_MASK_VERBOSE)
1948 printk(KERN_INFO
1949 "Written block @%llu (%s/%llu/%d)"
1950 " found in hash table, %c.\n",
1951 (unsigned long long)bytenr,
1952 dev_state->name,
1953 (unsigned long long)dev_bytenr,
1954 block->mirror_num,
1955 btrfsic_get_block_type(state, block));
1956 } else {
1957 if (num_pages * PAGE_CACHE_SIZE <
1958 state->datablock_size) {
1959 printk(KERN_INFO
1960 "btrfsic: cannot work with too short bios!\n");
1961 return;
1962 }
1963 processed_len = state->datablock_size;
1964 bytenr = block->logical_bytenr;
1965 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1966 printk(KERN_INFO
1967 "Written block @%llu (%s/%llu/%d)"
1968 " found in hash table, %c.\n",
1969 (unsigned long long)bytenr,
1970 dev_state->name,
1971 (unsigned long long)dev_bytenr,
1972 block->mirror_num,
1973 btrfsic_get_block_type(state, block));
1974 }
1975
1976 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1977 printk(KERN_INFO
1978 "ref_to_list: %cE, ref_from_list: %cE\n",
1979 list_empty(&block->ref_to_list) ? ' ' : '!',
1980 list_empty(&block->ref_from_list) ? ' ' : '!');
1981 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1982 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1983 " @%llu (%s/%llu/%d), old(gen=%llu,"
1984 " objectid=%llu, type=%d, offset=%llu),"
1985 " new(gen=%llu),"
1986 " which is referenced by most recent superblock"
1987 " (superblockgen=%llu)!\n",
1988 btrfsic_get_block_type(state, block),
1989 (unsigned long long)bytenr,
1990 dev_state->name,
1991 (unsigned long long)dev_bytenr,
1992 block->mirror_num,
1993 (unsigned long long)block->generation,
1994 (unsigned long long)
1995 le64_to_cpu(block->disk_key.objectid),
1996 block->disk_key.type,
1997 (unsigned long long)
1998 le64_to_cpu(block->disk_key.offset),
1999 (unsigned long long)
2000 le64_to_cpu(((struct btrfs_header *)
2001 mapped_datav[0])->generation),
2002 (unsigned long long)
2003 state->max_superblock_generation);
2004 btrfsic_dump_tree(state);
2005 }
2006
2007 if (!block->is_iodone && !block->never_written) {
2008 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
2009 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
2010 " which is not yet iodone!\n",
2011 btrfsic_get_block_type(state, block),
2012 (unsigned long long)bytenr,
2013 dev_state->name,
2014 (unsigned long long)dev_bytenr,
2015 block->mirror_num,
2016 (unsigned long long)block->generation,
2017 (unsigned long long)
2018 le64_to_cpu(((struct btrfs_header *)
2019 mapped_datav[0])->generation));
2020 /* it would not be safe to go on */
2021 btrfsic_dump_tree(state);
2022 goto continue_loop;
2023 }
2024
2025 /*
2026 * Clear all references of this block. Do not free
2027 * the block itself even if is not referenced anymore
2028 * because it still carries valueable information
2029 * like whether it was ever written and IO completed.
2030 */
2031 list_for_each_safe(elem_ref_to, tmp_ref_to,
2032 &block->ref_to_list) {
2033 struct btrfsic_block_link *const l =
2034 list_entry(elem_ref_to,
2035 struct btrfsic_block_link,
2036 node_ref_to);
2037
2038 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2039 btrfsic_print_rem_link(state, l);
2040 l->ref_cnt--;
2041 if (0 == l->ref_cnt) {
2042 list_del(&l->node_ref_to);
2043 list_del(&l->node_ref_from);
2044 btrfsic_block_link_hashtable_remove(l);
2045 btrfsic_block_link_free(l);
2046 }
2047 }
2048
2049 if (block->is_superblock)
2050 ret = btrfsic_map_superblock(state, bytenr,
2051 processed_len,
2052 bdev, &block_ctx);
2053 else
2054 ret = btrfsic_map_block(state, bytenr, processed_len,
2055 &block_ctx, 0);
2056 if (ret) {
2057 printk(KERN_INFO
2058 "btrfsic: btrfsic_map_block(root @%llu)"
2059 " failed!\n", (unsigned long long)bytenr);
2060 goto continue_loop;
2061 }
2062 block_ctx.datav = mapped_datav;
2063 /* the following is required in case of writes to mirrors,
2064 * use the same that was used for the lookup */
2065 block_ctx.dev = dev_state;
2066 block_ctx.dev_bytenr = dev_bytenr;
2067
2068 if (is_metadata || state->include_extent_data) {
2069 block->never_written = 0;
2070 block->iodone_w_error = 0;
2071 if (NULL != bio) {
2072 block->is_iodone = 0;
2073 BUG_ON(NULL == bio_is_patched);
2074 if (!*bio_is_patched) {
2075 block->orig_bio_bh_private =
2076 bio->bi_private;
2077 block->orig_bio_bh_end_io.bio =
2078 bio->bi_end_io;
2079 block->next_in_same_bio = NULL;
2080 bio->bi_private = block;
2081 bio->bi_end_io = btrfsic_bio_end_io;
2082 *bio_is_patched = 1;
2083 } else {
2084 struct btrfsic_block *chained_block =
2085 (struct btrfsic_block *)
2086 bio->bi_private;
2087
2088 BUG_ON(NULL == chained_block);
2089 block->orig_bio_bh_private =
2090 chained_block->orig_bio_bh_private;
2091 block->orig_bio_bh_end_io.bio =
2092 chained_block->orig_bio_bh_end_io.
2093 bio;
2094 block->next_in_same_bio = chained_block;
2095 bio->bi_private = block;
2096 }
2097 } else if (NULL != bh) {
2098 block->is_iodone = 0;
2099 block->orig_bio_bh_private = bh->b_private;
2100 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2101 block->next_in_same_bio = NULL;
2102 bh->b_private = block;
2103 bh->b_end_io = btrfsic_bh_end_io;
2104 } else {
2105 block->is_iodone = 1;
2106 block->orig_bio_bh_private = NULL;
2107 block->orig_bio_bh_end_io.bio = NULL;
2108 block->next_in_same_bio = NULL;
2109 }
2110 }
2111
2112 block->flush_gen = dev_state->last_flush_gen + 1;
2113 block->submit_bio_bh_rw = submit_bio_bh_rw;
2114 if (is_metadata) {
2115 block->logical_bytenr = bytenr;
2116 block->is_metadata = 1;
2117 if (block->is_superblock) {
2118 BUG_ON(PAGE_CACHE_SIZE !=
2119 BTRFS_SUPER_INFO_SIZE);
2120 ret = btrfsic_process_written_superblock(
2121 state,
2122 block,
2123 (struct btrfs_super_block *)
2124 mapped_datav[0]);
2125 if (state->print_mask &
2126 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2127 printk(KERN_INFO
2128 "[after new superblock is written]:\n");
2129 btrfsic_dump_tree_sub(state, block, 0);
2130 }
2131 } else {
2132 block->mirror_num = 0; /* unknown */
2133 ret = btrfsic_process_metablock(
2134 state,
2135 block,
2136 &block_ctx,
2137 0, 0);
2138 }
2139 if (ret)
2140 printk(KERN_INFO
2141 "btrfsic: btrfsic_process_metablock"
2142 "(root @%llu) failed!\n",
2143 (unsigned long long)dev_bytenr);
2144 } else {
2145 block->is_metadata = 0;
2146 block->mirror_num = 0; /* unknown */
2147 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2148 if (!state->include_extent_data
2149 && list_empty(&block->ref_from_list)) {
2150 /*
2151 * disk block is overwritten with extent
2152 * data (not meta data) and we are configured
2153 * to not include extent data: take the
2154 * chance and free the block's memory
2155 */
2156 btrfsic_block_hashtable_remove(block);
2157 list_del(&block->all_blocks_node);
2158 btrfsic_block_free(block);
2159 }
2160 }
2161 btrfsic_release_block_ctx(&block_ctx);
2162 } else {
2163 /* block has not been found in hash table */
2164 u64 bytenr;
2165
2166 if (!is_metadata) {
2167 processed_len = state->datablock_size;
2168 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2169 printk(KERN_INFO "Written block (%s/%llu/?)"
2170 " !found in hash table, D.\n",
2171 dev_state->name,
2172 (unsigned long long)dev_bytenr);
2173 if (!state->include_extent_data) {
2174 /* ignore that written D block */
2175 goto continue_loop;
2176 }
2177
2178 /* this is getting ugly for the
2179 * include_extent_data case... */
2180 bytenr = 0; /* unknown */
2181 block_ctx.start = bytenr;
2182 block_ctx.len = processed_len;
2183 block_ctx.mem_to_free = NULL;
2184 block_ctx.pagev = NULL;
2185 } else {
2186 processed_len = state->metablock_size;
2187 bytenr = le64_to_cpu(((struct btrfs_header *)
2188 mapped_datav[0])->bytenr);
2189 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2190 dev_bytenr);
2191 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2192 printk(KERN_INFO
2193 "Written block @%llu (%s/%llu/?)"
2194 " !found in hash table, M.\n",
2195 (unsigned long long)bytenr,
2196 dev_state->name,
2197 (unsigned long long)dev_bytenr);
2198
2199 ret = btrfsic_map_block(state, bytenr, processed_len,
2200 &block_ctx, 0);
2201 if (ret) {
2202 printk(KERN_INFO
2203 "btrfsic: btrfsic_map_block(root @%llu)"
2204 " failed!\n",
2205 (unsigned long long)dev_bytenr);
2206 goto continue_loop;
2207 }
2208 }
2209 block_ctx.datav = mapped_datav;
2210 /* the following is required in case of writes to mirrors,
2211 * use the same that was used for the lookup */
2212 block_ctx.dev = dev_state;
2213 block_ctx.dev_bytenr = dev_bytenr;
2214
2215 block = btrfsic_block_alloc();
2216 if (NULL == block) {
2217 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2218 btrfsic_release_block_ctx(&block_ctx);
2219 goto continue_loop;
2220 }
2221 block->dev_state = dev_state;
2222 block->dev_bytenr = dev_bytenr;
2223 block->logical_bytenr = bytenr;
2224 block->is_metadata = is_metadata;
2225 block->never_written = 0;
2226 block->iodone_w_error = 0;
2227 block->mirror_num = 0; /* unknown */
2228 block->flush_gen = dev_state->last_flush_gen + 1;
2229 block->submit_bio_bh_rw = submit_bio_bh_rw;
2230 if (NULL != bio) {
2231 block->is_iodone = 0;
2232 BUG_ON(NULL == bio_is_patched);
2233 if (!*bio_is_patched) {
2234 block->orig_bio_bh_private = bio->bi_private;
2235 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2236 block->next_in_same_bio = NULL;
2237 bio->bi_private = block;
2238 bio->bi_end_io = btrfsic_bio_end_io;
2239 *bio_is_patched = 1;
2240 } else {
2241 struct btrfsic_block *chained_block =
2242 (struct btrfsic_block *)
2243 bio->bi_private;
2244
2245 BUG_ON(NULL == chained_block);
2246 block->orig_bio_bh_private =
2247 chained_block->orig_bio_bh_private;
2248 block->orig_bio_bh_end_io.bio =
2249 chained_block->orig_bio_bh_end_io.bio;
2250 block->next_in_same_bio = chained_block;
2251 bio->bi_private = block;
2252 }
2253 } else if (NULL != bh) {
2254 block->is_iodone = 0;
2255 block->orig_bio_bh_private = bh->b_private;
2256 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2257 block->next_in_same_bio = NULL;
2258 bh->b_private = block;
2259 bh->b_end_io = btrfsic_bh_end_io;
2260 } else {
2261 block->is_iodone = 1;
2262 block->orig_bio_bh_private = NULL;
2263 block->orig_bio_bh_end_io.bio = NULL;
2264 block->next_in_same_bio = NULL;
2265 }
2266 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2267 printk(KERN_INFO
2268 "New written %c-block @%llu (%s/%llu/%d)\n",
2269 is_metadata ? 'M' : 'D',
2270 (unsigned long long)block->logical_bytenr,
2271 block->dev_state->name,
2272 (unsigned long long)block->dev_bytenr,
2273 block->mirror_num);
2274 list_add(&block->all_blocks_node, &state->all_blocks_list);
2275 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2276
2277 if (is_metadata) {
2278 ret = btrfsic_process_metablock(state, block,
2279 &block_ctx, 0, 0);
2280 if (ret)
2281 printk(KERN_INFO
2282 "btrfsic: process_metablock(root @%llu)"
2283 " failed!\n",
2284 (unsigned long long)dev_bytenr);
2285 }
2286 btrfsic_release_block_ctx(&block_ctx);
2287 }
2288
2289 continue_loop:
2290 BUG_ON(!processed_len);
2291 dev_bytenr += processed_len;
2292 mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
2293 num_pages -= processed_len >> PAGE_CACHE_SHIFT;
2294 goto again;
2295 }
2296
2297 static void btrfsic_bio_end_io(struct bio *bp, int bio_error_status)
2298 {
2299 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2300 int iodone_w_error;
2301
2302 /* mutex is not held! This is not save if IO is not yet completed
2303 * on umount */
2304 iodone_w_error = 0;
2305 if (bio_error_status)
2306 iodone_w_error = 1;
2307
2308 BUG_ON(NULL == block);
2309 bp->bi_private = block->orig_bio_bh_private;
2310 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2311
2312 do {
2313 struct btrfsic_block *next_block;
2314 struct btrfsic_dev_state *const dev_state = block->dev_state;
2315
2316 if ((dev_state->state->print_mask &
2317 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2318 printk(KERN_INFO
2319 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2320 bio_error_status,
2321 btrfsic_get_block_type(dev_state->state, block),
2322 (unsigned long long)block->logical_bytenr,
2323 dev_state->name,
2324 (unsigned long long)block->dev_bytenr,
2325 block->mirror_num);
2326 next_block = block->next_in_same_bio;
2327 block->iodone_w_error = iodone_w_error;
2328 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2329 dev_state->last_flush_gen++;
2330 if ((dev_state->state->print_mask &
2331 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2332 printk(KERN_INFO
2333 "bio_end_io() new %s flush_gen=%llu\n",
2334 dev_state->name,
2335 (unsigned long long)
2336 dev_state->last_flush_gen);
2337 }
2338 if (block->submit_bio_bh_rw & REQ_FUA)
2339 block->flush_gen = 0; /* FUA completed means block is
2340 * on disk */
2341 block->is_iodone = 1; /* for FLUSH, this releases the block */
2342 block = next_block;
2343 } while (NULL != block);
2344
2345 bp->bi_end_io(bp, bio_error_status);
2346 }
2347
2348 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2349 {
2350 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2351 int iodone_w_error = !uptodate;
2352 struct btrfsic_dev_state *dev_state;
2353
2354 BUG_ON(NULL == block);
2355 dev_state = block->dev_state;
2356 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2357 printk(KERN_INFO
2358 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2359 iodone_w_error,
2360 btrfsic_get_block_type(dev_state->state, block),
2361 (unsigned long long)block->logical_bytenr,
2362 block->dev_state->name,
2363 (unsigned long long)block->dev_bytenr,
2364 block->mirror_num);
2365
2366 block->iodone_w_error = iodone_w_error;
2367 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2368 dev_state->last_flush_gen++;
2369 if ((dev_state->state->print_mask &
2370 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2371 printk(KERN_INFO
2372 "bh_end_io() new %s flush_gen=%llu\n",
2373 dev_state->name,
2374 (unsigned long long)dev_state->last_flush_gen);
2375 }
2376 if (block->submit_bio_bh_rw & REQ_FUA)
2377 block->flush_gen = 0; /* FUA completed means block is on disk */
2378
2379 bh->b_private = block->orig_bio_bh_private;
2380 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2381 block->is_iodone = 1; /* for FLUSH, this releases the block */
2382 bh->b_end_io(bh, uptodate);
2383 }
2384
2385 static int btrfsic_process_written_superblock(
2386 struct btrfsic_state *state,
2387 struct btrfsic_block *const superblock,
2388 struct btrfs_super_block *const super_hdr)
2389 {
2390 int pass;
2391
2392 superblock->generation = btrfs_super_generation(super_hdr);
2393 if (!(superblock->generation > state->max_superblock_generation ||
2394 0 == state->max_superblock_generation)) {
2395 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2396 printk(KERN_INFO
2397 "btrfsic: superblock @%llu (%s/%llu/%d)"
2398 " with old gen %llu <= %llu\n",
2399 (unsigned long long)superblock->logical_bytenr,
2400 superblock->dev_state->name,
2401 (unsigned long long)superblock->dev_bytenr,
2402 superblock->mirror_num,
2403 (unsigned long long)
2404 btrfs_super_generation(super_hdr),
2405 (unsigned long long)
2406 state->max_superblock_generation);
2407 } else {
2408 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2409 printk(KERN_INFO
2410 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2411 " with new gen %llu > %llu\n",
2412 (unsigned long long)superblock->logical_bytenr,
2413 superblock->dev_state->name,
2414 (unsigned long long)superblock->dev_bytenr,
2415 superblock->mirror_num,
2416 (unsigned long long)
2417 btrfs_super_generation(super_hdr),
2418 (unsigned long long)
2419 state->max_superblock_generation);
2420
2421 state->max_superblock_generation =
2422 btrfs_super_generation(super_hdr);
2423 state->latest_superblock = superblock;
2424 }
2425
2426 for (pass = 0; pass < 3; pass++) {
2427 int ret;
2428 u64 next_bytenr;
2429 struct btrfsic_block *next_block;
2430 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2431 struct btrfsic_block_link *l;
2432 int num_copies;
2433 int mirror_num;
2434 const char *additional_string = NULL;
2435 struct btrfs_disk_key tmp_disk_key;
2436
2437 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
2438 tmp_disk_key.offset = 0;
2439
2440 switch (pass) {
2441 case 0:
2442 tmp_disk_key.objectid =
2443 cpu_to_le64(BTRFS_ROOT_TREE_OBJECTID);
2444 additional_string = "root ";
2445 next_bytenr = btrfs_super_root(super_hdr);
2446 if (state->print_mask &
2447 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2448 printk(KERN_INFO "root@%llu\n",
2449 (unsigned long long)next_bytenr);
2450 break;
2451 case 1:
2452 tmp_disk_key.objectid =
2453 cpu_to_le64(BTRFS_CHUNK_TREE_OBJECTID);
2454 additional_string = "chunk ";
2455 next_bytenr = btrfs_super_chunk_root(super_hdr);
2456 if (state->print_mask &
2457 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2458 printk(KERN_INFO "chunk@%llu\n",
2459 (unsigned long long)next_bytenr);
2460 break;
2461 case 2:
2462 tmp_disk_key.objectid =
2463 cpu_to_le64(BTRFS_TREE_LOG_OBJECTID);
2464 additional_string = "log ";
2465 next_bytenr = btrfs_super_log_root(super_hdr);
2466 if (0 == next_bytenr)
2467 continue;
2468 if (state->print_mask &
2469 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2470 printk(KERN_INFO "log@%llu\n",
2471 (unsigned long long)next_bytenr);
2472 break;
2473 }
2474
2475 num_copies =
2476 btrfs_num_copies(state->root->fs_info,
2477 next_bytenr, BTRFS_SUPER_INFO_SIZE);
2478 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2479 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2480 (unsigned long long)next_bytenr, num_copies);
2481 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2482 int was_created;
2483
2484 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2485 printk(KERN_INFO
2486 "btrfsic_process_written_superblock("
2487 "mirror_num=%d)\n", mirror_num);
2488 ret = btrfsic_map_block(state, next_bytenr,
2489 BTRFS_SUPER_INFO_SIZE,
2490 &tmp_next_block_ctx,
2491 mirror_num);
2492 if (ret) {
2493 printk(KERN_INFO
2494 "btrfsic: btrfsic_map_block(@%llu,"
2495 " mirror=%d) failed!\n",
2496 (unsigned long long)next_bytenr,
2497 mirror_num);
2498 return -1;
2499 }
2500
2501 next_block = btrfsic_block_lookup_or_add(
2502 state,
2503 &tmp_next_block_ctx,
2504 additional_string,
2505 1, 0, 1,
2506 mirror_num,
2507 &was_created);
2508 if (NULL == next_block) {
2509 printk(KERN_INFO
2510 "btrfsic: error, kmalloc failed!\n");
2511 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2512 return -1;
2513 }
2514
2515 next_block->disk_key = tmp_disk_key;
2516 if (was_created)
2517 next_block->generation =
2518 BTRFSIC_GENERATION_UNKNOWN;
2519 l = btrfsic_block_link_lookup_or_add(
2520 state,
2521 &tmp_next_block_ctx,
2522 next_block,
2523 superblock,
2524 BTRFSIC_GENERATION_UNKNOWN);
2525 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2526 if (NULL == l)
2527 return -1;
2528 }
2529 }
2530
2531 if (-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)) {
2532 WARN_ON(1);
2533 btrfsic_dump_tree(state);
2534 }
2535
2536 return 0;
2537 }
2538
2539 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2540 struct btrfsic_block *const block,
2541 int recursion_level)
2542 {
2543 struct list_head *elem_ref_to;
2544 int ret = 0;
2545
2546 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2547 /*
2548 * Note that this situation can happen and does not
2549 * indicate an error in regular cases. It happens
2550 * when disk blocks are freed and later reused.
2551 * The check-integrity module is not aware of any
2552 * block free operations, it just recognizes block
2553 * write operations. Therefore it keeps the linkage
2554 * information for a block until a block is
2555 * rewritten. This can temporarily cause incorrect
2556 * and even circular linkage informations. This
2557 * causes no harm unless such blocks are referenced
2558 * by the most recent super block.
2559 */
2560 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2561 printk(KERN_INFO
2562 "btrfsic: abort cyclic linkage (case 1).\n");
2563
2564 return ret;
2565 }
2566
2567 /*
2568 * This algorithm is recursive because the amount of used stack
2569 * space is very small and the max recursion depth is limited.
2570 */
2571 list_for_each(elem_ref_to, &block->ref_to_list) {
2572 const struct btrfsic_block_link *const l =
2573 list_entry(elem_ref_to, struct btrfsic_block_link,
2574 node_ref_to);
2575
2576 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2577 printk(KERN_INFO
2578 "rl=%d, %c @%llu (%s/%llu/%d)"
2579 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2580 recursion_level,
2581 btrfsic_get_block_type(state, block),
2582 (unsigned long long)block->logical_bytenr,
2583 block->dev_state->name,
2584 (unsigned long long)block->dev_bytenr,
2585 block->mirror_num,
2586 l->ref_cnt,
2587 btrfsic_get_block_type(state, l->block_ref_to),
2588 (unsigned long long)
2589 l->block_ref_to->logical_bytenr,
2590 l->block_ref_to->dev_state->name,
2591 (unsigned long long)l->block_ref_to->dev_bytenr,
2592 l->block_ref_to->mirror_num);
2593 if (l->block_ref_to->never_written) {
2594 printk(KERN_INFO "btrfs: attempt to write superblock"
2595 " which references block %c @%llu (%s/%llu/%d)"
2596 " which is never written!\n",
2597 btrfsic_get_block_type(state, l->block_ref_to),
2598 (unsigned long long)
2599 l->block_ref_to->logical_bytenr,
2600 l->block_ref_to->dev_state->name,
2601 (unsigned long long)l->block_ref_to->dev_bytenr,
2602 l->block_ref_to->mirror_num);
2603 ret = -1;
2604 } else if (!l->block_ref_to->is_iodone) {
2605 printk(KERN_INFO "btrfs: attempt to write superblock"
2606 " which references block %c @%llu (%s/%llu/%d)"
2607 " which is not yet iodone!\n",
2608 btrfsic_get_block_type(state, l->block_ref_to),
2609 (unsigned long long)
2610 l->block_ref_to->logical_bytenr,
2611 l->block_ref_to->dev_state->name,
2612 (unsigned long long)l->block_ref_to->dev_bytenr,
2613 l->block_ref_to->mirror_num);
2614 ret = -1;
2615 } else if (l->block_ref_to->iodone_w_error) {
2616 printk(KERN_INFO "btrfs: attempt to write superblock"
2617 " which references block %c @%llu (%s/%llu/%d)"
2618 " which has write error!\n",
2619 btrfsic_get_block_type(state, l->block_ref_to),
2620 (unsigned long long)
2621 l->block_ref_to->logical_bytenr,
2622 l->block_ref_to->dev_state->name,
2623 (unsigned long long)l->block_ref_to->dev_bytenr,
2624 l->block_ref_to->mirror_num);
2625 ret = -1;
2626 } else if (l->parent_generation !=
2627 l->block_ref_to->generation &&
2628 BTRFSIC_GENERATION_UNKNOWN !=
2629 l->parent_generation &&
2630 BTRFSIC_GENERATION_UNKNOWN !=
2631 l->block_ref_to->generation) {
2632 printk(KERN_INFO "btrfs: attempt to write superblock"
2633 " which references block %c @%llu (%s/%llu/%d)"
2634 " with generation %llu !="
2635 " parent generation %llu!\n",
2636 btrfsic_get_block_type(state, l->block_ref_to),
2637 (unsigned long long)
2638 l->block_ref_to->logical_bytenr,
2639 l->block_ref_to->dev_state->name,
2640 (unsigned long long)l->block_ref_to->dev_bytenr,
2641 l->block_ref_to->mirror_num,
2642 (unsigned long long)l->block_ref_to->generation,
2643 (unsigned long long)l->parent_generation);
2644 ret = -1;
2645 } else if (l->block_ref_to->flush_gen >
2646 l->block_ref_to->dev_state->last_flush_gen) {
2647 printk(KERN_INFO "btrfs: attempt to write superblock"
2648 " which references block %c @%llu (%s/%llu/%d)"
2649 " which is not flushed out of disk's write cache"
2650 " (block flush_gen=%llu,"
2651 " dev->flush_gen=%llu)!\n",
2652 btrfsic_get_block_type(state, l->block_ref_to),
2653 (unsigned long long)
2654 l->block_ref_to->logical_bytenr,
2655 l->block_ref_to->dev_state->name,
2656 (unsigned long long)l->block_ref_to->dev_bytenr,
2657 l->block_ref_to->mirror_num,
2658 (unsigned long long)block->flush_gen,
2659 (unsigned long long)
2660 l->block_ref_to->dev_state->last_flush_gen);
2661 ret = -1;
2662 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2663 l->block_ref_to,
2664 recursion_level +
2665 1)) {
2666 ret = -1;
2667 }
2668 }
2669
2670 return ret;
2671 }
2672
2673 static int btrfsic_is_block_ref_by_superblock(
2674 const struct btrfsic_state *state,
2675 const struct btrfsic_block *block,
2676 int recursion_level)
2677 {
2678 struct list_head *elem_ref_from;
2679
2680 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2681 /* refer to comment at "abort cyclic linkage (case 1)" */
2682 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2683 printk(KERN_INFO
2684 "btrfsic: abort cyclic linkage (case 2).\n");
2685
2686 return 0;
2687 }
2688
2689 /*
2690 * This algorithm is recursive because the amount of used stack space
2691 * is very small and the max recursion depth is limited.
2692 */
2693 list_for_each(elem_ref_from, &block->ref_from_list) {
2694 const struct btrfsic_block_link *const l =
2695 list_entry(elem_ref_from, struct btrfsic_block_link,
2696 node_ref_from);
2697
2698 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2699 printk(KERN_INFO
2700 "rl=%d, %c @%llu (%s/%llu/%d)"
2701 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2702 recursion_level,
2703 btrfsic_get_block_type(state, block),
2704 (unsigned long long)block->logical_bytenr,
2705 block->dev_state->name,
2706 (unsigned long long)block->dev_bytenr,
2707 block->mirror_num,
2708 l->ref_cnt,
2709 btrfsic_get_block_type(state, l->block_ref_from),
2710 (unsigned long long)
2711 l->block_ref_from->logical_bytenr,
2712 l->block_ref_from->dev_state->name,
2713 (unsigned long long)
2714 l->block_ref_from->dev_bytenr,
2715 l->block_ref_from->mirror_num);
2716 if (l->block_ref_from->is_superblock &&
2717 state->latest_superblock->dev_bytenr ==
2718 l->block_ref_from->dev_bytenr &&
2719 state->latest_superblock->dev_state->bdev ==
2720 l->block_ref_from->dev_state->bdev)
2721 return 1;
2722 else if (btrfsic_is_block_ref_by_superblock(state,
2723 l->block_ref_from,
2724 recursion_level +
2725 1))
2726 return 1;
2727 }
2728
2729 return 0;
2730 }
2731
2732 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2733 const struct btrfsic_block_link *l)
2734 {
2735 printk(KERN_INFO
2736 "Add %u* link from %c @%llu (%s/%llu/%d)"
2737 " to %c @%llu (%s/%llu/%d).\n",
2738 l->ref_cnt,
2739 btrfsic_get_block_type(state, l->block_ref_from),
2740 (unsigned long long)l->block_ref_from->logical_bytenr,
2741 l->block_ref_from->dev_state->name,
2742 (unsigned long long)l->block_ref_from->dev_bytenr,
2743 l->block_ref_from->mirror_num,
2744 btrfsic_get_block_type(state, l->block_ref_to),
2745 (unsigned long long)l->block_ref_to->logical_bytenr,
2746 l->block_ref_to->dev_state->name,
2747 (unsigned long long)l->block_ref_to->dev_bytenr,
2748 l->block_ref_to->mirror_num);
2749 }
2750
2751 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2752 const struct btrfsic_block_link *l)
2753 {
2754 printk(KERN_INFO
2755 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2756 " to %c @%llu (%s/%llu/%d).\n",
2757 l->ref_cnt,
2758 btrfsic_get_block_type(state, l->block_ref_from),
2759 (unsigned long long)l->block_ref_from->logical_bytenr,
2760 l->block_ref_from->dev_state->name,
2761 (unsigned long long)l->block_ref_from->dev_bytenr,
2762 l->block_ref_from->mirror_num,
2763 btrfsic_get_block_type(state, l->block_ref_to),
2764 (unsigned long long)l->block_ref_to->logical_bytenr,
2765 l->block_ref_to->dev_state->name,
2766 (unsigned long long)l->block_ref_to->dev_bytenr,
2767 l->block_ref_to->mirror_num);
2768 }
2769
2770 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2771 const struct btrfsic_block *block)
2772 {
2773 if (block->is_superblock &&
2774 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2775 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2776 return 'S';
2777 else if (block->is_superblock)
2778 return 's';
2779 else if (block->is_metadata)
2780 return 'M';
2781 else
2782 return 'D';
2783 }
2784
2785 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2786 {
2787 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2788 }
2789
2790 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2791 const struct btrfsic_block *block,
2792 int indent_level)
2793 {
2794 struct list_head *elem_ref_to;
2795 int indent_add;
2796 static char buf[80];
2797 int cursor_position;
2798
2799 /*
2800 * Should better fill an on-stack buffer with a complete line and
2801 * dump it at once when it is time to print a newline character.
2802 */
2803
2804 /*
2805 * This algorithm is recursive because the amount of used stack space
2806 * is very small and the max recursion depth is limited.
2807 */
2808 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2809 btrfsic_get_block_type(state, block),
2810 (unsigned long long)block->logical_bytenr,
2811 block->dev_state->name,
2812 (unsigned long long)block->dev_bytenr,
2813 block->mirror_num);
2814 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2815 printk("[...]\n");
2816 return;
2817 }
2818 printk(buf);
2819 indent_level += indent_add;
2820 if (list_empty(&block->ref_to_list)) {
2821 printk("\n");
2822 return;
2823 }
2824 if (block->mirror_num > 1 &&
2825 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2826 printk(" [...]\n");
2827 return;
2828 }
2829
2830 cursor_position = indent_level;
2831 list_for_each(elem_ref_to, &block->ref_to_list) {
2832 const struct btrfsic_block_link *const l =
2833 list_entry(elem_ref_to, struct btrfsic_block_link,
2834 node_ref_to);
2835
2836 while (cursor_position < indent_level) {
2837 printk(" ");
2838 cursor_position++;
2839 }
2840 if (l->ref_cnt > 1)
2841 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2842 else
2843 indent_add = sprintf(buf, " --> ");
2844 if (indent_level + indent_add >
2845 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2846 printk("[...]\n");
2847 cursor_position = 0;
2848 continue;
2849 }
2850
2851 printk(buf);
2852
2853 btrfsic_dump_tree_sub(state, l->block_ref_to,
2854 indent_level + indent_add);
2855 cursor_position = 0;
2856 }
2857 }
2858
2859 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2860 struct btrfsic_state *state,
2861 struct btrfsic_block_data_ctx *next_block_ctx,
2862 struct btrfsic_block *next_block,
2863 struct btrfsic_block *from_block,
2864 u64 parent_generation)
2865 {
2866 struct btrfsic_block_link *l;
2867
2868 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2869 next_block_ctx->dev_bytenr,
2870 from_block->dev_state->bdev,
2871 from_block->dev_bytenr,
2872 &state->block_link_hashtable);
2873 if (NULL == l) {
2874 l = btrfsic_block_link_alloc();
2875 if (NULL == l) {
2876 printk(KERN_INFO
2877 "btrfsic: error, kmalloc" " failed!\n");
2878 return NULL;
2879 }
2880
2881 l->block_ref_to = next_block;
2882 l->block_ref_from = from_block;
2883 l->ref_cnt = 1;
2884 l->parent_generation = parent_generation;
2885
2886 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2887 btrfsic_print_add_link(state, l);
2888
2889 list_add(&l->node_ref_to, &from_block->ref_to_list);
2890 list_add(&l->node_ref_from, &next_block->ref_from_list);
2891
2892 btrfsic_block_link_hashtable_add(l,
2893 &state->block_link_hashtable);
2894 } else {
2895 l->ref_cnt++;
2896 l->parent_generation = parent_generation;
2897 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2898 btrfsic_print_add_link(state, l);
2899 }
2900
2901 return l;
2902 }
2903
2904 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2905 struct btrfsic_state *state,
2906 struct btrfsic_block_data_ctx *block_ctx,
2907 const char *additional_string,
2908 int is_metadata,
2909 int is_iodone,
2910 int never_written,
2911 int mirror_num,
2912 int *was_created)
2913 {
2914 struct btrfsic_block *block;
2915
2916 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2917 block_ctx->dev_bytenr,
2918 &state->block_hashtable);
2919 if (NULL == block) {
2920 struct btrfsic_dev_state *dev_state;
2921
2922 block = btrfsic_block_alloc();
2923 if (NULL == block) {
2924 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2925 return NULL;
2926 }
2927 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2928 if (NULL == dev_state) {
2929 printk(KERN_INFO
2930 "btrfsic: error, lookup dev_state failed!\n");
2931 btrfsic_block_free(block);
2932 return NULL;
2933 }
2934 block->dev_state = dev_state;
2935 block->dev_bytenr = block_ctx->dev_bytenr;
2936 block->logical_bytenr = block_ctx->start;
2937 block->is_metadata = is_metadata;
2938 block->is_iodone = is_iodone;
2939 block->never_written = never_written;
2940 block->mirror_num = mirror_num;
2941 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2942 printk(KERN_INFO
2943 "New %s%c-block @%llu (%s/%llu/%d)\n",
2944 additional_string,
2945 btrfsic_get_block_type(state, block),
2946 (unsigned long long)block->logical_bytenr,
2947 dev_state->name,
2948 (unsigned long long)block->dev_bytenr,
2949 mirror_num);
2950 list_add(&block->all_blocks_node, &state->all_blocks_list);
2951 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2952 if (NULL != was_created)
2953 *was_created = 1;
2954 } else {
2955 if (NULL != was_created)
2956 *was_created = 0;
2957 }
2958
2959 return block;
2960 }
2961
2962 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2963 u64 bytenr,
2964 struct btrfsic_dev_state *dev_state,
2965 u64 dev_bytenr)
2966 {
2967 int num_copies;
2968 int mirror_num;
2969 int ret;
2970 struct btrfsic_block_data_ctx block_ctx;
2971 int match = 0;
2972
2973 num_copies = btrfs_num_copies(state->root->fs_info,
2974 bytenr, state->metablock_size);
2975
2976 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2977 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2978 &block_ctx, mirror_num);
2979 if (ret) {
2980 printk(KERN_INFO "btrfsic:"
2981 " btrfsic_map_block(logical @%llu,"
2982 " mirror %d) failed!\n",
2983 (unsigned long long)bytenr, mirror_num);
2984 continue;
2985 }
2986
2987 if (dev_state->bdev == block_ctx.dev->bdev &&
2988 dev_bytenr == block_ctx.dev_bytenr) {
2989 match++;
2990 btrfsic_release_block_ctx(&block_ctx);
2991 break;
2992 }
2993 btrfsic_release_block_ctx(&block_ctx);
2994 }
2995
2996 if (!match) {
2997 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2998 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2999 " phys_bytenr=%llu)!\n",
3000 (unsigned long long)bytenr, dev_state->name,
3001 (unsigned long long)dev_bytenr);
3002 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
3003 ret = btrfsic_map_block(state, bytenr,
3004 state->metablock_size,
3005 &block_ctx, mirror_num);
3006 if (ret)
3007 continue;
3008
3009 printk(KERN_INFO "Read logical bytenr @%llu maps to"
3010 " (%s/%llu/%d)\n",
3011 (unsigned long long)bytenr,
3012 block_ctx.dev->name,
3013 (unsigned long long)block_ctx.dev_bytenr,
3014 mirror_num);
3015 }
3016 WARN_ON(1);
3017 }
3018 }
3019
3020 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
3021 struct block_device *bdev)
3022 {
3023 struct btrfsic_dev_state *ds;
3024
3025 ds = btrfsic_dev_state_hashtable_lookup(bdev,
3026 &btrfsic_dev_state_hashtable);
3027 return ds;
3028 }
3029
3030 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
3031 {
3032 struct btrfsic_dev_state *dev_state;
3033
3034 if (!btrfsic_is_initialized)
3035 return submit_bh(rw, bh);
3036
3037 mutex_lock(&btrfsic_mutex);
3038 /* since btrfsic_submit_bh() might also be called before
3039 * btrfsic_mount(), this might return NULL */
3040 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
3041
3042 /* Only called to write the superblock (incl. FLUSH/FUA) */
3043 if (NULL != dev_state &&
3044 (rw & WRITE) && bh->b_size > 0) {
3045 u64 dev_bytenr;
3046
3047 dev_bytenr = 4096 * bh->b_blocknr;
3048 if (dev_state->state->print_mask &
3049 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3050 printk(KERN_INFO
3051 "submit_bh(rw=0x%x, blocknr=%lu (bytenr %llu),"
3052 " size=%lu, data=%p, bdev=%p)\n",
3053 rw, (unsigned long)bh->b_blocknr,
3054 (unsigned long long)dev_bytenr,
3055 (unsigned long)bh->b_size, bh->b_data,
3056 bh->b_bdev);
3057 btrfsic_process_written_block(dev_state, dev_bytenr,
3058 &bh->b_data, 1, NULL,
3059 NULL, bh, rw);
3060 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3061 if (dev_state->state->print_mask &
3062 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3063 printk(KERN_INFO
3064 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
3065 rw, bh->b_bdev);
3066 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3067 if ((dev_state->state->print_mask &
3068 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3069 BTRFSIC_PRINT_MASK_VERBOSE)))
3070 printk(KERN_INFO
3071 "btrfsic_submit_bh(%s) with FLUSH"
3072 " but dummy block already in use"
3073 " (ignored)!\n",
3074 dev_state->name);
3075 } else {
3076 struct btrfsic_block *const block =
3077 &dev_state->dummy_block_for_bio_bh_flush;
3078
3079 block->is_iodone = 0;
3080 block->never_written = 0;
3081 block->iodone_w_error = 0;
3082 block->flush_gen = dev_state->last_flush_gen + 1;
3083 block->submit_bio_bh_rw = rw;
3084 block->orig_bio_bh_private = bh->b_private;
3085 block->orig_bio_bh_end_io.bh = bh->b_end_io;
3086 block->next_in_same_bio = NULL;
3087 bh->b_private = block;
3088 bh->b_end_io = btrfsic_bh_end_io;
3089 }
3090 }
3091 mutex_unlock(&btrfsic_mutex);
3092 return submit_bh(rw, bh);
3093 }
3094
3095 void btrfsic_submit_bio(int rw, struct bio *bio)
3096 {
3097 struct btrfsic_dev_state *dev_state;
3098
3099 if (!btrfsic_is_initialized) {
3100 submit_bio(rw, bio);
3101 return;
3102 }
3103
3104 mutex_lock(&btrfsic_mutex);
3105 /* since btrfsic_submit_bio() is also called before
3106 * btrfsic_mount(), this might return NULL */
3107 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
3108 if (NULL != dev_state &&
3109 (rw & WRITE) && NULL != bio->bi_io_vec) {
3110 unsigned int i;
3111 u64 dev_bytenr;
3112 int bio_is_patched;
3113 char **mapped_datav;
3114
3115 dev_bytenr = 512 * bio->bi_sector;
3116 bio_is_patched = 0;
3117 if (dev_state->state->print_mask &
3118 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3119 printk(KERN_INFO
3120 "submit_bio(rw=0x%x, bi_vcnt=%u,"
3121 " bi_sector=%lu (bytenr %llu), bi_bdev=%p)\n",
3122 rw, bio->bi_vcnt, (unsigned long)bio->bi_sector,
3123 (unsigned long long)dev_bytenr,
3124 bio->bi_bdev);
3125
3126 mapped_datav = kmalloc(sizeof(*mapped_datav) * bio->bi_vcnt,
3127 GFP_NOFS);
3128 if (!mapped_datav)
3129 goto leave;
3130 for (i = 0; i < bio->bi_vcnt; i++) {
3131 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
3132 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
3133 if (!mapped_datav[i]) {
3134 while (i > 0) {
3135 i--;
3136 kunmap(bio->bi_io_vec[i].bv_page);
3137 }
3138 kfree(mapped_datav);
3139 goto leave;
3140 }
3141 if ((BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3142 BTRFSIC_PRINT_MASK_VERBOSE) ==
3143 (dev_state->state->print_mask &
3144 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3145 BTRFSIC_PRINT_MASK_VERBOSE)))
3146 printk(KERN_INFO
3147 "#%u: page=%p, len=%u, offset=%u\n",
3148 i, bio->bi_io_vec[i].bv_page,
3149 bio->bi_io_vec[i].bv_len,
3150 bio->bi_io_vec[i].bv_offset);
3151 }
3152 btrfsic_process_written_block(dev_state, dev_bytenr,
3153 mapped_datav, bio->bi_vcnt,
3154 bio, &bio_is_patched,
3155 NULL, rw);
3156 while (i > 0) {
3157 i--;
3158 kunmap(bio->bi_io_vec[i].bv_page);
3159 }
3160 kfree(mapped_datav);
3161 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
3162 if (dev_state->state->print_mask &
3163 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
3164 printk(KERN_INFO
3165 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
3166 rw, bio->bi_bdev);
3167 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
3168 if ((dev_state->state->print_mask &
3169 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
3170 BTRFSIC_PRINT_MASK_VERBOSE)))
3171 printk(KERN_INFO
3172 "btrfsic_submit_bio(%s) with FLUSH"
3173 " but dummy block already in use"
3174 " (ignored)!\n",
3175 dev_state->name);
3176 } else {
3177 struct btrfsic_block *const block =
3178 &dev_state->dummy_block_for_bio_bh_flush;
3179
3180 block->is_iodone = 0;
3181 block->never_written = 0;
3182 block->iodone_w_error = 0;
3183 block->flush_gen = dev_state->last_flush_gen + 1;
3184 block->submit_bio_bh_rw = rw;
3185 block->orig_bio_bh_private = bio->bi_private;
3186 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3187 block->next_in_same_bio = NULL;
3188 bio->bi_private = block;
3189 bio->bi_end_io = btrfsic_bio_end_io;
3190 }
3191 }
3192 leave:
3193 mutex_unlock(&btrfsic_mutex);
3194
3195 submit_bio(rw, bio);
3196 }
3197
3198 int btrfsic_mount(struct btrfs_root *root,
3199 struct btrfs_fs_devices *fs_devices,
3200 int including_extent_data, u32 print_mask)
3201 {
3202 int ret;
3203 struct btrfsic_state *state;
3204 struct list_head *dev_head = &fs_devices->devices;
3205 struct btrfs_device *device;
3206
3207 if (root->nodesize != root->leafsize) {
3208 printk(KERN_INFO
3209 "btrfsic: cannot handle nodesize %d != leafsize %d!\n",
3210 root->nodesize, root->leafsize);
3211 return -1;
3212 }
3213 if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
3214 printk(KERN_INFO
3215 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3216 root->nodesize, (unsigned long)PAGE_CACHE_SIZE);
3217 return -1;
3218 }
3219 if (root->leafsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3220 printk(KERN_INFO
3221 "btrfsic: cannot handle leafsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3222 root->leafsize, (unsigned long)PAGE_CACHE_SIZE);
3223 return -1;
3224 }
3225 if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
3226 printk(KERN_INFO
3227 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
3228 root->sectorsize, (unsigned long)PAGE_CACHE_SIZE);
3229 return -1;
3230 }
3231 state = kzalloc(sizeof(*state), GFP_NOFS);
3232 if (NULL == state) {
3233 printk(KERN_INFO "btrfs check-integrity: kmalloc() failed!\n");
3234 return -1;
3235 }
3236
3237 if (!btrfsic_is_initialized) {
3238 mutex_init(&btrfsic_mutex);
3239 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3240 btrfsic_is_initialized = 1;
3241 }
3242 mutex_lock(&btrfsic_mutex);
3243 state->root = root;
3244 state->print_mask = print_mask;
3245 state->include_extent_data = including_extent_data;
3246 state->csum_size = 0;
3247 state->metablock_size = root->nodesize;
3248 state->datablock_size = root->sectorsize;
3249 INIT_LIST_HEAD(&state->all_blocks_list);
3250 btrfsic_block_hashtable_init(&state->block_hashtable);
3251 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3252 state->max_superblock_generation = 0;
3253 state->latest_superblock = NULL;
3254
3255 list_for_each_entry(device, dev_head, dev_list) {
3256 struct btrfsic_dev_state *ds;
3257 char *p;
3258
3259 if (!device->bdev || !device->name)
3260 continue;
3261
3262 ds = btrfsic_dev_state_alloc();
3263 if (NULL == ds) {
3264 printk(KERN_INFO
3265 "btrfs check-integrity: kmalloc() failed!\n");
3266 mutex_unlock(&btrfsic_mutex);
3267 return -1;
3268 }
3269 ds->bdev = device->bdev;
3270 ds->state = state;
3271 bdevname(ds->bdev, ds->name);
3272 ds->name[BDEVNAME_SIZE - 1] = '\0';
3273 for (p = ds->name; *p != '\0'; p++);
3274 while (p > ds->name && *p != '/')
3275 p--;
3276 if (*p == '/')
3277 p++;
3278 strlcpy(ds->name, p, sizeof(ds->name));
3279 btrfsic_dev_state_hashtable_add(ds,
3280 &btrfsic_dev_state_hashtable);
3281 }
3282
3283 ret = btrfsic_process_superblock(state, fs_devices);
3284 if (0 != ret) {
3285 mutex_unlock(&btrfsic_mutex);
3286 btrfsic_unmount(root, fs_devices);
3287 return ret;
3288 }
3289
3290 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3291 btrfsic_dump_database(state);
3292 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3293 btrfsic_dump_tree(state);
3294
3295 mutex_unlock(&btrfsic_mutex);
3296 return 0;
3297 }
3298
3299 void btrfsic_unmount(struct btrfs_root *root,
3300 struct btrfs_fs_devices *fs_devices)
3301 {
3302 struct list_head *elem_all;
3303 struct list_head *tmp_all;
3304 struct btrfsic_state *state;
3305 struct list_head *dev_head = &fs_devices->devices;
3306 struct btrfs_device *device;
3307
3308 if (!btrfsic_is_initialized)
3309 return;
3310
3311 mutex_lock(&btrfsic_mutex);
3312
3313 state = NULL;
3314 list_for_each_entry(device, dev_head, dev_list) {
3315 struct btrfsic_dev_state *ds;
3316
3317 if (!device->bdev || !device->name)
3318 continue;
3319
3320 ds = btrfsic_dev_state_hashtable_lookup(
3321 device->bdev,
3322 &btrfsic_dev_state_hashtable);
3323 if (NULL != ds) {
3324 state = ds->state;
3325 btrfsic_dev_state_hashtable_remove(ds);
3326 btrfsic_dev_state_free(ds);
3327 }
3328 }
3329
3330 if (NULL == state) {
3331 printk(KERN_INFO
3332 "btrfsic: error, cannot find state information"
3333 " on umount!\n");
3334 mutex_unlock(&btrfsic_mutex);
3335 return;
3336 }
3337
3338 /*
3339 * Don't care about keeping the lists' state up to date,
3340 * just free all memory that was allocated dynamically.
3341 * Free the blocks and the block_links.
3342 */
3343 list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
3344 struct btrfsic_block *const b_all =
3345 list_entry(elem_all, struct btrfsic_block,
3346 all_blocks_node);
3347 struct list_head *elem_ref_to;
3348 struct list_head *tmp_ref_to;
3349
3350 list_for_each_safe(elem_ref_to, tmp_ref_to,
3351 &b_all->ref_to_list) {
3352 struct btrfsic_block_link *const l =
3353 list_entry(elem_ref_to,
3354 struct btrfsic_block_link,
3355 node_ref_to);
3356
3357 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3358 btrfsic_print_rem_link(state, l);
3359
3360 l->ref_cnt--;
3361 if (0 == l->ref_cnt)
3362 btrfsic_block_link_free(l);
3363 }
3364
3365 if (b_all->is_iodone || b_all->never_written)
3366 btrfsic_block_free(b_all);
3367 else
3368 printk(KERN_INFO "btrfs: attempt to free %c-block"
3369 " @%llu (%s/%llu/%d) on umount which is"
3370 " not yet iodone!\n",
3371 btrfsic_get_block_type(state, b_all),
3372 (unsigned long long)b_all->logical_bytenr,
3373 b_all->dev_state->name,
3374 (unsigned long long)b_all->dev_bytenr,
3375 b_all->mirror_num);
3376 }
3377
3378 mutex_unlock(&btrfsic_mutex);
3379
3380 kfree(state);
3381 }