fs: push i_mutex and filemap_write_and_wait down into ->fsync() handlers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/buffer_head.h>
20 #include <linux/pagevec.h>
21 #include <linux/writeback.h>
22 #include <linux/mpage.h>
23 #include <linux/mount.h>
24 #include <linux/uio.h>
25 #include <linux/namei.h>
26 #include <linux/log2.h>
27 #include <linux/kmemleak.h>
28 #include <asm/uaccess.h>
29 #include "internal.h"
30
31 struct bdev_inode {
32 struct block_device bdev;
33 struct inode vfs_inode;
34 };
35
36 static const struct address_space_operations def_blk_aops;
37
38 static inline struct bdev_inode *BDEV_I(struct inode *inode)
39 {
40 return container_of(inode, struct bdev_inode, vfs_inode);
41 }
42
43 inline struct block_device *I_BDEV(struct inode *inode)
44 {
45 return &BDEV_I(inode)->bdev;
46 }
47
48 EXPORT_SYMBOL(I_BDEV);
49
50 /*
51 * move the inode from it's current bdi to the a new bdi. if the inode is dirty
52 * we need to move it onto the dirty list of @dst so that the inode is always
53 * on the right list.
54 */
55 static void bdev_inode_switch_bdi(struct inode *inode,
56 struct backing_dev_info *dst)
57 {
58 spin_lock(&inode_wb_list_lock);
59 spin_lock(&inode->i_lock);
60 inode->i_data.backing_dev_info = dst;
61 if (inode->i_state & I_DIRTY)
62 list_move(&inode->i_wb_list, &dst->wb.b_dirty);
63 spin_unlock(&inode->i_lock);
64 spin_unlock(&inode_wb_list_lock);
65 }
66
67 static sector_t max_block(struct block_device *bdev)
68 {
69 sector_t retval = ~((sector_t)0);
70 loff_t sz = i_size_read(bdev->bd_inode);
71
72 if (sz) {
73 unsigned int size = block_size(bdev);
74 unsigned int sizebits = blksize_bits(size);
75 retval = (sz >> sizebits);
76 }
77 return retval;
78 }
79
80 /* Kill _all_ buffers and pagecache , dirty or not.. */
81 static void kill_bdev(struct block_device *bdev)
82 {
83 if (bdev->bd_inode->i_mapping->nrpages == 0)
84 return;
85 invalidate_bh_lrus();
86 truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
87 }
88
89 int set_blocksize(struct block_device *bdev, int size)
90 {
91 /* Size must be a power of two, and between 512 and PAGE_SIZE */
92 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
93 return -EINVAL;
94
95 /* Size cannot be smaller than the size supported by the device */
96 if (size < bdev_logical_block_size(bdev))
97 return -EINVAL;
98
99 /* Don't change the size if it is same as current */
100 if (bdev->bd_block_size != size) {
101 sync_blockdev(bdev);
102 bdev->bd_block_size = size;
103 bdev->bd_inode->i_blkbits = blksize_bits(size);
104 kill_bdev(bdev);
105 }
106 return 0;
107 }
108
109 EXPORT_SYMBOL(set_blocksize);
110
111 int sb_set_blocksize(struct super_block *sb, int size)
112 {
113 if (set_blocksize(sb->s_bdev, size))
114 return 0;
115 /* If we get here, we know size is power of two
116 * and it's value is between 512 and PAGE_SIZE */
117 sb->s_blocksize = size;
118 sb->s_blocksize_bits = blksize_bits(size);
119 return sb->s_blocksize;
120 }
121
122 EXPORT_SYMBOL(sb_set_blocksize);
123
124 int sb_min_blocksize(struct super_block *sb, int size)
125 {
126 int minsize = bdev_logical_block_size(sb->s_bdev);
127 if (size < minsize)
128 size = minsize;
129 return sb_set_blocksize(sb, size);
130 }
131
132 EXPORT_SYMBOL(sb_min_blocksize);
133
134 static int
135 blkdev_get_block(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh, int create)
137 {
138 if (iblock >= max_block(I_BDEV(inode))) {
139 if (create)
140 return -EIO;
141
142 /*
143 * for reads, we're just trying to fill a partial page.
144 * return a hole, they will have to call get_block again
145 * before they can fill it, and they will get -EIO at that
146 * time
147 */
148 return 0;
149 }
150 bh->b_bdev = I_BDEV(inode);
151 bh->b_blocknr = iblock;
152 set_buffer_mapped(bh);
153 return 0;
154 }
155
156 static int
157 blkdev_get_blocks(struct inode *inode, sector_t iblock,
158 struct buffer_head *bh, int create)
159 {
160 sector_t end_block = max_block(I_BDEV(inode));
161 unsigned long max_blocks = bh->b_size >> inode->i_blkbits;
162
163 if ((iblock + max_blocks) > end_block) {
164 max_blocks = end_block - iblock;
165 if ((long)max_blocks <= 0) {
166 if (create)
167 return -EIO; /* write fully beyond EOF */
168 /*
169 * It is a read which is fully beyond EOF. We return
170 * a !buffer_mapped buffer
171 */
172 max_blocks = 0;
173 }
174 }
175
176 bh->b_bdev = I_BDEV(inode);
177 bh->b_blocknr = iblock;
178 bh->b_size = max_blocks << inode->i_blkbits;
179 if (max_blocks)
180 set_buffer_mapped(bh);
181 return 0;
182 }
183
184 static ssize_t
185 blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
186 loff_t offset, unsigned long nr_segs)
187 {
188 struct file *file = iocb->ki_filp;
189 struct inode *inode = file->f_mapping->host;
190
191 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset,
192 nr_segs, blkdev_get_blocks, NULL, NULL, 0);
193 }
194
195 int __sync_blockdev(struct block_device *bdev, int wait)
196 {
197 if (!bdev)
198 return 0;
199 if (!wait)
200 return filemap_flush(bdev->bd_inode->i_mapping);
201 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
202 }
203
204 /*
205 * Write out and wait upon all the dirty data associated with a block
206 * device via its mapping. Does not take the superblock lock.
207 */
208 int sync_blockdev(struct block_device *bdev)
209 {
210 return __sync_blockdev(bdev, 1);
211 }
212 EXPORT_SYMBOL(sync_blockdev);
213
214 /*
215 * Write out and wait upon all dirty data associated with this
216 * device. Filesystem data as well as the underlying block
217 * device. Takes the superblock lock.
218 */
219 int fsync_bdev(struct block_device *bdev)
220 {
221 struct super_block *sb = get_super(bdev);
222 if (sb) {
223 int res = sync_filesystem(sb);
224 drop_super(sb);
225 return res;
226 }
227 return sync_blockdev(bdev);
228 }
229 EXPORT_SYMBOL(fsync_bdev);
230
231 /**
232 * freeze_bdev -- lock a filesystem and force it into a consistent state
233 * @bdev: blockdevice to lock
234 *
235 * If a superblock is found on this device, we take the s_umount semaphore
236 * on it to make sure nobody unmounts until the snapshot creation is done.
237 * The reference counter (bd_fsfreeze_count) guarantees that only the last
238 * unfreeze process can unfreeze the frozen filesystem actually when multiple
239 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
240 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
241 * actually.
242 */
243 struct super_block *freeze_bdev(struct block_device *bdev)
244 {
245 struct super_block *sb;
246 int error = 0;
247
248 mutex_lock(&bdev->bd_fsfreeze_mutex);
249 if (++bdev->bd_fsfreeze_count > 1) {
250 /*
251 * We don't even need to grab a reference - the first call
252 * to freeze_bdev grab an active reference and only the last
253 * thaw_bdev drops it.
254 */
255 sb = get_super(bdev);
256 drop_super(sb);
257 mutex_unlock(&bdev->bd_fsfreeze_mutex);
258 return sb;
259 }
260
261 sb = get_active_super(bdev);
262 if (!sb)
263 goto out;
264 error = freeze_super(sb);
265 if (error) {
266 deactivate_super(sb);
267 bdev->bd_fsfreeze_count--;
268 mutex_unlock(&bdev->bd_fsfreeze_mutex);
269 return ERR_PTR(error);
270 }
271 deactivate_super(sb);
272 out:
273 sync_blockdev(bdev);
274 mutex_unlock(&bdev->bd_fsfreeze_mutex);
275 return sb; /* thaw_bdev releases s->s_umount */
276 }
277 EXPORT_SYMBOL(freeze_bdev);
278
279 /**
280 * thaw_bdev -- unlock filesystem
281 * @bdev: blockdevice to unlock
282 * @sb: associated superblock
283 *
284 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
285 */
286 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
287 {
288 int error = -EINVAL;
289
290 mutex_lock(&bdev->bd_fsfreeze_mutex);
291 if (!bdev->bd_fsfreeze_count)
292 goto out;
293
294 error = 0;
295 if (--bdev->bd_fsfreeze_count > 0)
296 goto out;
297
298 if (!sb)
299 goto out;
300
301 error = thaw_super(sb);
302 if (error) {
303 bdev->bd_fsfreeze_count++;
304 mutex_unlock(&bdev->bd_fsfreeze_mutex);
305 return error;
306 }
307 out:
308 mutex_unlock(&bdev->bd_fsfreeze_mutex);
309 return 0;
310 }
311 EXPORT_SYMBOL(thaw_bdev);
312
313 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
314 {
315 return block_write_full_page(page, blkdev_get_block, wbc);
316 }
317
318 static int blkdev_readpage(struct file * file, struct page * page)
319 {
320 return block_read_full_page(page, blkdev_get_block);
321 }
322
323 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
324 loff_t pos, unsigned len, unsigned flags,
325 struct page **pagep, void **fsdata)
326 {
327 return block_write_begin(mapping, pos, len, flags, pagep,
328 blkdev_get_block);
329 }
330
331 static int blkdev_write_end(struct file *file, struct address_space *mapping,
332 loff_t pos, unsigned len, unsigned copied,
333 struct page *page, void *fsdata)
334 {
335 int ret;
336 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
337
338 unlock_page(page);
339 page_cache_release(page);
340
341 return ret;
342 }
343
344 /*
345 * private llseek:
346 * for a block special file file->f_path.dentry->d_inode->i_size is zero
347 * so we compute the size by hand (just as in block_read/write above)
348 */
349 static loff_t block_llseek(struct file *file, loff_t offset, int origin)
350 {
351 struct inode *bd_inode = file->f_mapping->host;
352 loff_t size;
353 loff_t retval;
354
355 mutex_lock(&bd_inode->i_mutex);
356 size = i_size_read(bd_inode);
357
358 retval = -EINVAL;
359 switch (origin) {
360 case SEEK_END:
361 offset += size;
362 break;
363 case SEEK_CUR:
364 offset += file->f_pos;
365 case SEEK_SET:
366 break;
367 default:
368 goto out;
369 }
370 if (offset >= 0 && offset <= size) {
371 if (offset != file->f_pos) {
372 file->f_pos = offset;
373 }
374 retval = offset;
375 }
376 out:
377 mutex_unlock(&bd_inode->i_mutex);
378 return retval;
379 }
380
381 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
382 {
383 struct inode *bd_inode = filp->f_mapping->host;
384 struct block_device *bdev = I_BDEV(bd_inode);
385 int error;
386
387 /*
388 * There is no need to serialise calls to blkdev_issue_flush with
389 * i_mutex and doing so causes performance issues with concurrent
390 * O_SYNC writers to a block device.
391 */
392 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
393 if (error == -EOPNOTSUPP)
394 error = 0;
395
396 return error;
397 }
398 EXPORT_SYMBOL(blkdev_fsync);
399
400 /*
401 * pseudo-fs
402 */
403
404 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
405 static struct kmem_cache * bdev_cachep __read_mostly;
406
407 static struct inode *bdev_alloc_inode(struct super_block *sb)
408 {
409 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
410 if (!ei)
411 return NULL;
412 return &ei->vfs_inode;
413 }
414
415 static void bdev_i_callback(struct rcu_head *head)
416 {
417 struct inode *inode = container_of(head, struct inode, i_rcu);
418 struct bdev_inode *bdi = BDEV_I(inode);
419
420 INIT_LIST_HEAD(&inode->i_dentry);
421 kmem_cache_free(bdev_cachep, bdi);
422 }
423
424 static void bdev_destroy_inode(struct inode *inode)
425 {
426 call_rcu(&inode->i_rcu, bdev_i_callback);
427 }
428
429 static void init_once(void *foo)
430 {
431 struct bdev_inode *ei = (struct bdev_inode *) foo;
432 struct block_device *bdev = &ei->bdev;
433
434 memset(bdev, 0, sizeof(*bdev));
435 mutex_init(&bdev->bd_mutex);
436 INIT_LIST_HEAD(&bdev->bd_inodes);
437 INIT_LIST_HEAD(&bdev->bd_list);
438 #ifdef CONFIG_SYSFS
439 INIT_LIST_HEAD(&bdev->bd_holder_disks);
440 #endif
441 inode_init_once(&ei->vfs_inode);
442 /* Initialize mutex for freeze. */
443 mutex_init(&bdev->bd_fsfreeze_mutex);
444 }
445
446 static inline void __bd_forget(struct inode *inode)
447 {
448 list_del_init(&inode->i_devices);
449 inode->i_bdev = NULL;
450 inode->i_mapping = &inode->i_data;
451 }
452
453 static void bdev_evict_inode(struct inode *inode)
454 {
455 struct block_device *bdev = &BDEV_I(inode)->bdev;
456 struct list_head *p;
457 truncate_inode_pages(&inode->i_data, 0);
458 invalidate_inode_buffers(inode); /* is it needed here? */
459 end_writeback(inode);
460 spin_lock(&bdev_lock);
461 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
462 __bd_forget(list_entry(p, struct inode, i_devices));
463 }
464 list_del_init(&bdev->bd_list);
465 spin_unlock(&bdev_lock);
466 }
467
468 static const struct super_operations bdev_sops = {
469 .statfs = simple_statfs,
470 .alloc_inode = bdev_alloc_inode,
471 .destroy_inode = bdev_destroy_inode,
472 .drop_inode = generic_delete_inode,
473 .evict_inode = bdev_evict_inode,
474 };
475
476 static struct dentry *bd_mount(struct file_system_type *fs_type,
477 int flags, const char *dev_name, void *data)
478 {
479 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, 0x62646576);
480 }
481
482 static struct file_system_type bd_type = {
483 .name = "bdev",
484 .mount = bd_mount,
485 .kill_sb = kill_anon_super,
486 };
487
488 struct super_block *blockdev_superblock __read_mostly;
489
490 void __init bdev_cache_init(void)
491 {
492 int err;
493 struct vfsmount *bd_mnt;
494
495 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
496 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
497 SLAB_MEM_SPREAD|SLAB_PANIC),
498 init_once);
499 err = register_filesystem(&bd_type);
500 if (err)
501 panic("Cannot register bdev pseudo-fs");
502 bd_mnt = kern_mount(&bd_type);
503 if (IS_ERR(bd_mnt))
504 panic("Cannot create bdev pseudo-fs");
505 /*
506 * This vfsmount structure is only used to obtain the
507 * blockdev_superblock, so tell kmemleak not to report it.
508 */
509 kmemleak_not_leak(bd_mnt);
510 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
511 }
512
513 /*
514 * Most likely _very_ bad one - but then it's hardly critical for small
515 * /dev and can be fixed when somebody will need really large one.
516 * Keep in mind that it will be fed through icache hash function too.
517 */
518 static inline unsigned long hash(dev_t dev)
519 {
520 return MAJOR(dev)+MINOR(dev);
521 }
522
523 static int bdev_test(struct inode *inode, void *data)
524 {
525 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
526 }
527
528 static int bdev_set(struct inode *inode, void *data)
529 {
530 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
531 return 0;
532 }
533
534 static LIST_HEAD(all_bdevs);
535
536 struct block_device *bdget(dev_t dev)
537 {
538 struct block_device *bdev;
539 struct inode *inode;
540
541 inode = iget5_locked(blockdev_superblock, hash(dev),
542 bdev_test, bdev_set, &dev);
543
544 if (!inode)
545 return NULL;
546
547 bdev = &BDEV_I(inode)->bdev;
548
549 if (inode->i_state & I_NEW) {
550 bdev->bd_contains = NULL;
551 bdev->bd_inode = inode;
552 bdev->bd_block_size = (1 << inode->i_blkbits);
553 bdev->bd_part_count = 0;
554 bdev->bd_invalidated = 0;
555 inode->i_mode = S_IFBLK;
556 inode->i_rdev = dev;
557 inode->i_bdev = bdev;
558 inode->i_data.a_ops = &def_blk_aops;
559 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
560 inode->i_data.backing_dev_info = &default_backing_dev_info;
561 spin_lock(&bdev_lock);
562 list_add(&bdev->bd_list, &all_bdevs);
563 spin_unlock(&bdev_lock);
564 unlock_new_inode(inode);
565 }
566 return bdev;
567 }
568
569 EXPORT_SYMBOL(bdget);
570
571 /**
572 * bdgrab -- Grab a reference to an already referenced block device
573 * @bdev: Block device to grab a reference to.
574 */
575 struct block_device *bdgrab(struct block_device *bdev)
576 {
577 ihold(bdev->bd_inode);
578 return bdev;
579 }
580
581 long nr_blockdev_pages(void)
582 {
583 struct block_device *bdev;
584 long ret = 0;
585 spin_lock(&bdev_lock);
586 list_for_each_entry(bdev, &all_bdevs, bd_list) {
587 ret += bdev->bd_inode->i_mapping->nrpages;
588 }
589 spin_unlock(&bdev_lock);
590 return ret;
591 }
592
593 void bdput(struct block_device *bdev)
594 {
595 iput(bdev->bd_inode);
596 }
597
598 EXPORT_SYMBOL(bdput);
599
600 static struct block_device *bd_acquire(struct inode *inode)
601 {
602 struct block_device *bdev;
603
604 spin_lock(&bdev_lock);
605 bdev = inode->i_bdev;
606 if (bdev) {
607 ihold(bdev->bd_inode);
608 spin_unlock(&bdev_lock);
609 return bdev;
610 }
611 spin_unlock(&bdev_lock);
612
613 bdev = bdget(inode->i_rdev);
614 if (bdev) {
615 spin_lock(&bdev_lock);
616 if (!inode->i_bdev) {
617 /*
618 * We take an additional reference to bd_inode,
619 * and it's released in clear_inode() of inode.
620 * So, we can access it via ->i_mapping always
621 * without igrab().
622 */
623 ihold(bdev->bd_inode);
624 inode->i_bdev = bdev;
625 inode->i_mapping = bdev->bd_inode->i_mapping;
626 list_add(&inode->i_devices, &bdev->bd_inodes);
627 }
628 spin_unlock(&bdev_lock);
629 }
630 return bdev;
631 }
632
633 /* Call when you free inode */
634
635 void bd_forget(struct inode *inode)
636 {
637 struct block_device *bdev = NULL;
638
639 spin_lock(&bdev_lock);
640 if (inode->i_bdev) {
641 if (!sb_is_blkdev_sb(inode->i_sb))
642 bdev = inode->i_bdev;
643 __bd_forget(inode);
644 }
645 spin_unlock(&bdev_lock);
646
647 if (bdev)
648 iput(bdev->bd_inode);
649 }
650
651 /**
652 * bd_may_claim - test whether a block device can be claimed
653 * @bdev: block device of interest
654 * @whole: whole block device containing @bdev, may equal @bdev
655 * @holder: holder trying to claim @bdev
656 *
657 * Test whether @bdev can be claimed by @holder.
658 *
659 * CONTEXT:
660 * spin_lock(&bdev_lock).
661 *
662 * RETURNS:
663 * %true if @bdev can be claimed, %false otherwise.
664 */
665 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
666 void *holder)
667 {
668 if (bdev->bd_holder == holder)
669 return true; /* already a holder */
670 else if (bdev->bd_holder != NULL)
671 return false; /* held by someone else */
672 else if (bdev->bd_contains == bdev)
673 return true; /* is a whole device which isn't held */
674
675 else if (whole->bd_holder == bd_may_claim)
676 return true; /* is a partition of a device that is being partitioned */
677 else if (whole->bd_holder != NULL)
678 return false; /* is a partition of a held device */
679 else
680 return true; /* is a partition of an un-held device */
681 }
682
683 /**
684 * bd_prepare_to_claim - prepare to claim a block device
685 * @bdev: block device of interest
686 * @whole: the whole device containing @bdev, may equal @bdev
687 * @holder: holder trying to claim @bdev
688 *
689 * Prepare to claim @bdev. This function fails if @bdev is already
690 * claimed by another holder and waits if another claiming is in
691 * progress. This function doesn't actually claim. On successful
692 * return, the caller has ownership of bd_claiming and bd_holder[s].
693 *
694 * CONTEXT:
695 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
696 * it multiple times.
697 *
698 * RETURNS:
699 * 0 if @bdev can be claimed, -EBUSY otherwise.
700 */
701 static int bd_prepare_to_claim(struct block_device *bdev,
702 struct block_device *whole, void *holder)
703 {
704 retry:
705 /* if someone else claimed, fail */
706 if (!bd_may_claim(bdev, whole, holder))
707 return -EBUSY;
708
709 /* if claiming is already in progress, wait for it to finish */
710 if (whole->bd_claiming) {
711 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
712 DEFINE_WAIT(wait);
713
714 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
715 spin_unlock(&bdev_lock);
716 schedule();
717 finish_wait(wq, &wait);
718 spin_lock(&bdev_lock);
719 goto retry;
720 }
721
722 /* yay, all mine */
723 return 0;
724 }
725
726 /**
727 * bd_start_claiming - start claiming a block device
728 * @bdev: block device of interest
729 * @holder: holder trying to claim @bdev
730 *
731 * @bdev is about to be opened exclusively. Check @bdev can be opened
732 * exclusively and mark that an exclusive open is in progress. Each
733 * successful call to this function must be matched with a call to
734 * either bd_finish_claiming() or bd_abort_claiming() (which do not
735 * fail).
736 *
737 * This function is used to gain exclusive access to the block device
738 * without actually causing other exclusive open attempts to fail. It
739 * should be used when the open sequence itself requires exclusive
740 * access but may subsequently fail.
741 *
742 * CONTEXT:
743 * Might sleep.
744 *
745 * RETURNS:
746 * Pointer to the block device containing @bdev on success, ERR_PTR()
747 * value on failure.
748 */
749 static struct block_device *bd_start_claiming(struct block_device *bdev,
750 void *holder)
751 {
752 struct gendisk *disk;
753 struct block_device *whole;
754 int partno, err;
755
756 might_sleep();
757
758 /*
759 * @bdev might not have been initialized properly yet, look up
760 * and grab the outer block device the hard way.
761 */
762 disk = get_gendisk(bdev->bd_dev, &partno);
763 if (!disk)
764 return ERR_PTR(-ENXIO);
765
766 /*
767 * Normally, @bdev should equal what's returned from bdget_disk()
768 * if partno is 0; however, some drivers (floppy) use multiple
769 * bdev's for the same physical device and @bdev may be one of the
770 * aliases. Keep @bdev if partno is 0. This means claimer
771 * tracking is broken for those devices but it has always been that
772 * way.
773 */
774 if (partno)
775 whole = bdget_disk(disk, 0);
776 else
777 whole = bdgrab(bdev);
778
779 module_put(disk->fops->owner);
780 put_disk(disk);
781 if (!whole)
782 return ERR_PTR(-ENOMEM);
783
784 /* prepare to claim, if successful, mark claiming in progress */
785 spin_lock(&bdev_lock);
786
787 err = bd_prepare_to_claim(bdev, whole, holder);
788 if (err == 0) {
789 whole->bd_claiming = holder;
790 spin_unlock(&bdev_lock);
791 return whole;
792 } else {
793 spin_unlock(&bdev_lock);
794 bdput(whole);
795 return ERR_PTR(err);
796 }
797 }
798
799 #ifdef CONFIG_SYSFS
800 struct bd_holder_disk {
801 struct list_head list;
802 struct gendisk *disk;
803 int refcnt;
804 };
805
806 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
807 struct gendisk *disk)
808 {
809 struct bd_holder_disk *holder;
810
811 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
812 if (holder->disk == disk)
813 return holder;
814 return NULL;
815 }
816
817 static int add_symlink(struct kobject *from, struct kobject *to)
818 {
819 return sysfs_create_link(from, to, kobject_name(to));
820 }
821
822 static void del_symlink(struct kobject *from, struct kobject *to)
823 {
824 sysfs_remove_link(from, kobject_name(to));
825 }
826
827 /**
828 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
829 * @bdev: the claimed slave bdev
830 * @disk: the holding disk
831 *
832 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
833 *
834 * This functions creates the following sysfs symlinks.
835 *
836 * - from "slaves" directory of the holder @disk to the claimed @bdev
837 * - from "holders" directory of the @bdev to the holder @disk
838 *
839 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
840 * passed to bd_link_disk_holder(), then:
841 *
842 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
843 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
844 *
845 * The caller must have claimed @bdev before calling this function and
846 * ensure that both @bdev and @disk are valid during the creation and
847 * lifetime of these symlinks.
848 *
849 * CONTEXT:
850 * Might sleep.
851 *
852 * RETURNS:
853 * 0 on success, -errno on failure.
854 */
855 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
856 {
857 struct bd_holder_disk *holder;
858 int ret = 0;
859
860 mutex_lock(&bdev->bd_mutex);
861
862 WARN_ON_ONCE(!bdev->bd_holder);
863
864 /* FIXME: remove the following once add_disk() handles errors */
865 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
866 goto out_unlock;
867
868 holder = bd_find_holder_disk(bdev, disk);
869 if (holder) {
870 holder->refcnt++;
871 goto out_unlock;
872 }
873
874 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
875 if (!holder) {
876 ret = -ENOMEM;
877 goto out_unlock;
878 }
879
880 INIT_LIST_HEAD(&holder->list);
881 holder->disk = disk;
882 holder->refcnt = 1;
883
884 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
885 if (ret)
886 goto out_free;
887
888 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
889 if (ret)
890 goto out_del;
891 /*
892 * bdev could be deleted beneath us which would implicitly destroy
893 * the holder directory. Hold on to it.
894 */
895 kobject_get(bdev->bd_part->holder_dir);
896
897 list_add(&holder->list, &bdev->bd_holder_disks);
898 goto out_unlock;
899
900 out_del:
901 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
902 out_free:
903 kfree(holder);
904 out_unlock:
905 mutex_unlock(&bdev->bd_mutex);
906 return ret;
907 }
908 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
909
910 /**
911 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
912 * @bdev: the calimed slave bdev
913 * @disk: the holding disk
914 *
915 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
916 *
917 * CONTEXT:
918 * Might sleep.
919 */
920 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
921 {
922 struct bd_holder_disk *holder;
923
924 mutex_lock(&bdev->bd_mutex);
925
926 holder = bd_find_holder_disk(bdev, disk);
927
928 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
929 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
930 del_symlink(bdev->bd_part->holder_dir,
931 &disk_to_dev(disk)->kobj);
932 kobject_put(bdev->bd_part->holder_dir);
933 list_del_init(&holder->list);
934 kfree(holder);
935 }
936
937 mutex_unlock(&bdev->bd_mutex);
938 }
939 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
940 #endif
941
942 /**
943 * flush_disk - invalidates all buffer-cache entries on a disk
944 *
945 * @bdev: struct block device to be flushed
946 * @kill_dirty: flag to guide handling of dirty inodes
947 *
948 * Invalidates all buffer-cache entries on a disk. It should be called
949 * when a disk has been changed -- either by a media change or online
950 * resize.
951 */
952 static void flush_disk(struct block_device *bdev, bool kill_dirty)
953 {
954 if (__invalidate_device(bdev, kill_dirty)) {
955 char name[BDEVNAME_SIZE] = "";
956
957 if (bdev->bd_disk)
958 disk_name(bdev->bd_disk, 0, name);
959 printk(KERN_WARNING "VFS: busy inodes on changed media or "
960 "resized disk %s\n", name);
961 }
962
963 if (!bdev->bd_disk)
964 return;
965 if (disk_partitionable(bdev->bd_disk))
966 bdev->bd_invalidated = 1;
967 }
968
969 /**
970 * check_disk_size_change - checks for disk size change and adjusts bdev size.
971 * @disk: struct gendisk to check
972 * @bdev: struct bdev to adjust.
973 *
974 * This routine checks to see if the bdev size does not match the disk size
975 * and adjusts it if it differs.
976 */
977 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
978 {
979 loff_t disk_size, bdev_size;
980
981 disk_size = (loff_t)get_capacity(disk) << 9;
982 bdev_size = i_size_read(bdev->bd_inode);
983 if (disk_size != bdev_size) {
984 char name[BDEVNAME_SIZE];
985
986 disk_name(disk, 0, name);
987 printk(KERN_INFO
988 "%s: detected capacity change from %lld to %lld\n",
989 name, bdev_size, disk_size);
990 i_size_write(bdev->bd_inode, disk_size);
991 flush_disk(bdev, false);
992 }
993 }
994 EXPORT_SYMBOL(check_disk_size_change);
995
996 /**
997 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
998 * @disk: struct gendisk to be revalidated
999 *
1000 * This routine is a wrapper for lower-level driver's revalidate_disk
1001 * call-backs. It is used to do common pre and post operations needed
1002 * for all revalidate_disk operations.
1003 */
1004 int revalidate_disk(struct gendisk *disk)
1005 {
1006 struct block_device *bdev;
1007 int ret = 0;
1008
1009 if (disk->fops->revalidate_disk)
1010 ret = disk->fops->revalidate_disk(disk);
1011
1012 bdev = bdget_disk(disk, 0);
1013 if (!bdev)
1014 return ret;
1015
1016 mutex_lock(&bdev->bd_mutex);
1017 check_disk_size_change(disk, bdev);
1018 mutex_unlock(&bdev->bd_mutex);
1019 bdput(bdev);
1020 return ret;
1021 }
1022 EXPORT_SYMBOL(revalidate_disk);
1023
1024 /*
1025 * This routine checks whether a removable media has been changed,
1026 * and invalidates all buffer-cache-entries in that case. This
1027 * is a relatively slow routine, so we have to try to minimize using
1028 * it. Thus it is called only upon a 'mount' or 'open'. This
1029 * is the best way of combining speed and utility, I think.
1030 * People changing diskettes in the middle of an operation deserve
1031 * to lose :-)
1032 */
1033 int check_disk_change(struct block_device *bdev)
1034 {
1035 struct gendisk *disk = bdev->bd_disk;
1036 const struct block_device_operations *bdops = disk->fops;
1037 unsigned int events;
1038
1039 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1040 DISK_EVENT_EJECT_REQUEST);
1041 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1042 return 0;
1043
1044 flush_disk(bdev, true);
1045 if (bdops->revalidate_disk)
1046 bdops->revalidate_disk(bdev->bd_disk);
1047 return 1;
1048 }
1049
1050 EXPORT_SYMBOL(check_disk_change);
1051
1052 void bd_set_size(struct block_device *bdev, loff_t size)
1053 {
1054 unsigned bsize = bdev_logical_block_size(bdev);
1055
1056 bdev->bd_inode->i_size = size;
1057 while (bsize < PAGE_CACHE_SIZE) {
1058 if (size & bsize)
1059 break;
1060 bsize <<= 1;
1061 }
1062 bdev->bd_block_size = bsize;
1063 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1064 }
1065 EXPORT_SYMBOL(bd_set_size);
1066
1067 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1068
1069 /*
1070 * bd_mutex locking:
1071 *
1072 * mutex_lock(part->bd_mutex)
1073 * mutex_lock_nested(whole->bd_mutex, 1)
1074 */
1075
1076 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1077 {
1078 struct gendisk *disk;
1079 int ret;
1080 int partno;
1081 int perm = 0;
1082
1083 if (mode & FMODE_READ)
1084 perm |= MAY_READ;
1085 if (mode & FMODE_WRITE)
1086 perm |= MAY_WRITE;
1087 /*
1088 * hooks: /n/, see "layering violations".
1089 */
1090 if (!for_part) {
1091 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1092 if (ret != 0) {
1093 bdput(bdev);
1094 return ret;
1095 }
1096 }
1097
1098 restart:
1099
1100 ret = -ENXIO;
1101 disk = get_gendisk(bdev->bd_dev, &partno);
1102 if (!disk)
1103 goto out;
1104
1105 disk_block_events(disk);
1106 mutex_lock_nested(&bdev->bd_mutex, for_part);
1107 if (!bdev->bd_openers) {
1108 bdev->bd_disk = disk;
1109 bdev->bd_contains = bdev;
1110 if (!partno) {
1111 struct backing_dev_info *bdi;
1112
1113 ret = -ENXIO;
1114 bdev->bd_part = disk_get_part(disk, partno);
1115 if (!bdev->bd_part)
1116 goto out_clear;
1117
1118 ret = 0;
1119 if (disk->fops->open) {
1120 ret = disk->fops->open(bdev, mode);
1121 if (ret == -ERESTARTSYS) {
1122 /* Lost a race with 'disk' being
1123 * deleted, try again.
1124 * See md.c
1125 */
1126 disk_put_part(bdev->bd_part);
1127 bdev->bd_part = NULL;
1128 bdev->bd_disk = NULL;
1129 mutex_unlock(&bdev->bd_mutex);
1130 disk_unblock_events(disk);
1131 module_put(disk->fops->owner);
1132 put_disk(disk);
1133 goto restart;
1134 }
1135 }
1136
1137 if (!ret && !bdev->bd_openers) {
1138 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1139 bdi = blk_get_backing_dev_info(bdev);
1140 if (bdi == NULL)
1141 bdi = &default_backing_dev_info;
1142 bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1143 }
1144
1145 /*
1146 * If the device is invalidated, rescan partition
1147 * if open succeeded or failed with -ENOMEDIUM.
1148 * The latter is necessary to prevent ghost
1149 * partitions on a removed medium.
1150 */
1151 if (bdev->bd_invalidated && (!ret || ret == -ENOMEDIUM))
1152 rescan_partitions(disk, bdev);
1153 if (ret)
1154 goto out_clear;
1155 } else {
1156 struct block_device *whole;
1157 whole = bdget_disk(disk, 0);
1158 ret = -ENOMEM;
1159 if (!whole)
1160 goto out_clear;
1161 BUG_ON(for_part);
1162 ret = __blkdev_get(whole, mode, 1);
1163 if (ret)
1164 goto out_clear;
1165 bdev->bd_contains = whole;
1166 bdev_inode_switch_bdi(bdev->bd_inode,
1167 whole->bd_inode->i_data.backing_dev_info);
1168 bdev->bd_part = disk_get_part(disk, partno);
1169 if (!(disk->flags & GENHD_FL_UP) ||
1170 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1171 ret = -ENXIO;
1172 goto out_clear;
1173 }
1174 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1175 }
1176 } else {
1177 if (bdev->bd_contains == bdev) {
1178 ret = 0;
1179 if (bdev->bd_disk->fops->open)
1180 ret = bdev->bd_disk->fops->open(bdev, mode);
1181 /* the same as first opener case, read comment there */
1182 if (bdev->bd_invalidated && (!ret || ret == -ENOMEDIUM))
1183 rescan_partitions(bdev->bd_disk, bdev);
1184 if (ret)
1185 goto out_unlock_bdev;
1186 }
1187 /* only one opener holds refs to the module and disk */
1188 module_put(disk->fops->owner);
1189 put_disk(disk);
1190 }
1191 bdev->bd_openers++;
1192 if (for_part)
1193 bdev->bd_part_count++;
1194 mutex_unlock(&bdev->bd_mutex);
1195 disk_unblock_events(disk);
1196 return 0;
1197
1198 out_clear:
1199 disk_put_part(bdev->bd_part);
1200 bdev->bd_disk = NULL;
1201 bdev->bd_part = NULL;
1202 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1203 if (bdev != bdev->bd_contains)
1204 __blkdev_put(bdev->bd_contains, mode, 1);
1205 bdev->bd_contains = NULL;
1206 out_unlock_bdev:
1207 mutex_unlock(&bdev->bd_mutex);
1208 disk_unblock_events(disk);
1209 module_put(disk->fops->owner);
1210 put_disk(disk);
1211 out:
1212 bdput(bdev);
1213
1214 return ret;
1215 }
1216
1217 /**
1218 * blkdev_get - open a block device
1219 * @bdev: block_device to open
1220 * @mode: FMODE_* mask
1221 * @holder: exclusive holder identifier
1222 *
1223 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1224 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1225 * @holder is invalid. Exclusive opens may nest for the same @holder.
1226 *
1227 * On success, the reference count of @bdev is unchanged. On failure,
1228 * @bdev is put.
1229 *
1230 * CONTEXT:
1231 * Might sleep.
1232 *
1233 * RETURNS:
1234 * 0 on success, -errno on failure.
1235 */
1236 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1237 {
1238 struct block_device *whole = NULL;
1239 int res;
1240
1241 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1242
1243 if ((mode & FMODE_EXCL) && holder) {
1244 whole = bd_start_claiming(bdev, holder);
1245 if (IS_ERR(whole)) {
1246 bdput(bdev);
1247 return PTR_ERR(whole);
1248 }
1249 }
1250
1251 res = __blkdev_get(bdev, mode, 0);
1252
1253 if (whole) {
1254 struct gendisk *disk = whole->bd_disk;
1255
1256 /* finish claiming */
1257 mutex_lock(&bdev->bd_mutex);
1258 spin_lock(&bdev_lock);
1259
1260 if (!res) {
1261 BUG_ON(!bd_may_claim(bdev, whole, holder));
1262 /*
1263 * Note that for a whole device bd_holders
1264 * will be incremented twice, and bd_holder
1265 * will be set to bd_may_claim before being
1266 * set to holder
1267 */
1268 whole->bd_holders++;
1269 whole->bd_holder = bd_may_claim;
1270 bdev->bd_holders++;
1271 bdev->bd_holder = holder;
1272 }
1273
1274 /* tell others that we're done */
1275 BUG_ON(whole->bd_claiming != holder);
1276 whole->bd_claiming = NULL;
1277 wake_up_bit(&whole->bd_claiming, 0);
1278
1279 spin_unlock(&bdev_lock);
1280
1281 /*
1282 * Block event polling for write claims if requested. Any
1283 * write holder makes the write_holder state stick until
1284 * all are released. This is good enough and tracking
1285 * individual writeable reference is too fragile given the
1286 * way @mode is used in blkdev_get/put().
1287 */
1288 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1289 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1290 bdev->bd_write_holder = true;
1291 disk_block_events(disk);
1292 }
1293
1294 mutex_unlock(&bdev->bd_mutex);
1295 bdput(whole);
1296 }
1297
1298 return res;
1299 }
1300 EXPORT_SYMBOL(blkdev_get);
1301
1302 /**
1303 * blkdev_get_by_path - open a block device by name
1304 * @path: path to the block device to open
1305 * @mode: FMODE_* mask
1306 * @holder: exclusive holder identifier
1307 *
1308 * Open the blockdevice described by the device file at @path. @mode
1309 * and @holder are identical to blkdev_get().
1310 *
1311 * On success, the returned block_device has reference count of one.
1312 *
1313 * CONTEXT:
1314 * Might sleep.
1315 *
1316 * RETURNS:
1317 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1318 */
1319 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1320 void *holder)
1321 {
1322 struct block_device *bdev;
1323 int err;
1324
1325 bdev = lookup_bdev(path);
1326 if (IS_ERR(bdev))
1327 return bdev;
1328
1329 err = blkdev_get(bdev, mode, holder);
1330 if (err)
1331 return ERR_PTR(err);
1332
1333 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1334 blkdev_put(bdev, mode);
1335 return ERR_PTR(-EACCES);
1336 }
1337
1338 return bdev;
1339 }
1340 EXPORT_SYMBOL(blkdev_get_by_path);
1341
1342 /**
1343 * blkdev_get_by_dev - open a block device by device number
1344 * @dev: device number of block device to open
1345 * @mode: FMODE_* mask
1346 * @holder: exclusive holder identifier
1347 *
1348 * Open the blockdevice described by device number @dev. @mode and
1349 * @holder are identical to blkdev_get().
1350 *
1351 * Use it ONLY if you really do not have anything better - i.e. when
1352 * you are behind a truly sucky interface and all you are given is a
1353 * device number. _Never_ to be used for internal purposes. If you
1354 * ever need it - reconsider your API.
1355 *
1356 * On success, the returned block_device has reference count of one.
1357 *
1358 * CONTEXT:
1359 * Might sleep.
1360 *
1361 * RETURNS:
1362 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1363 */
1364 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1365 {
1366 struct block_device *bdev;
1367 int err;
1368
1369 bdev = bdget(dev);
1370 if (!bdev)
1371 return ERR_PTR(-ENOMEM);
1372
1373 err = blkdev_get(bdev, mode, holder);
1374 if (err)
1375 return ERR_PTR(err);
1376
1377 return bdev;
1378 }
1379 EXPORT_SYMBOL(blkdev_get_by_dev);
1380
1381 static int blkdev_open(struct inode * inode, struct file * filp)
1382 {
1383 struct block_device *bdev;
1384
1385 /*
1386 * Preserve backwards compatibility and allow large file access
1387 * even if userspace doesn't ask for it explicitly. Some mkfs
1388 * binary needs it. We might want to drop this workaround
1389 * during an unstable branch.
1390 */
1391 filp->f_flags |= O_LARGEFILE;
1392
1393 if (filp->f_flags & O_NDELAY)
1394 filp->f_mode |= FMODE_NDELAY;
1395 if (filp->f_flags & O_EXCL)
1396 filp->f_mode |= FMODE_EXCL;
1397 if ((filp->f_flags & O_ACCMODE) == 3)
1398 filp->f_mode |= FMODE_WRITE_IOCTL;
1399
1400 bdev = bd_acquire(inode);
1401 if (bdev == NULL)
1402 return -ENOMEM;
1403
1404 filp->f_mapping = bdev->bd_inode->i_mapping;
1405
1406 return blkdev_get(bdev, filp->f_mode, filp);
1407 }
1408
1409 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1410 {
1411 int ret = 0;
1412 struct gendisk *disk = bdev->bd_disk;
1413 struct block_device *victim = NULL;
1414
1415 mutex_lock_nested(&bdev->bd_mutex, for_part);
1416 if (for_part)
1417 bdev->bd_part_count--;
1418
1419 if (!--bdev->bd_openers) {
1420 WARN_ON_ONCE(bdev->bd_holders);
1421 sync_blockdev(bdev);
1422 kill_bdev(bdev);
1423 }
1424 if (bdev->bd_contains == bdev) {
1425 if (disk->fops->release)
1426 ret = disk->fops->release(disk, mode);
1427 }
1428 if (!bdev->bd_openers) {
1429 struct module *owner = disk->fops->owner;
1430
1431 put_disk(disk);
1432 module_put(owner);
1433 disk_put_part(bdev->bd_part);
1434 bdev->bd_part = NULL;
1435 bdev->bd_disk = NULL;
1436 bdev_inode_switch_bdi(bdev->bd_inode,
1437 &default_backing_dev_info);
1438 if (bdev != bdev->bd_contains)
1439 victim = bdev->bd_contains;
1440 bdev->bd_contains = NULL;
1441 }
1442 mutex_unlock(&bdev->bd_mutex);
1443 bdput(bdev);
1444 if (victim)
1445 __blkdev_put(victim, mode, 1);
1446 return ret;
1447 }
1448
1449 int blkdev_put(struct block_device *bdev, fmode_t mode)
1450 {
1451 if (mode & FMODE_EXCL) {
1452 bool bdev_free;
1453
1454 /*
1455 * Release a claim on the device. The holder fields
1456 * are protected with bdev_lock. bd_mutex is to
1457 * synchronize disk_holder unlinking.
1458 */
1459 mutex_lock(&bdev->bd_mutex);
1460 spin_lock(&bdev_lock);
1461
1462 WARN_ON_ONCE(--bdev->bd_holders < 0);
1463 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1464
1465 /* bd_contains might point to self, check in a separate step */
1466 if ((bdev_free = !bdev->bd_holders))
1467 bdev->bd_holder = NULL;
1468 if (!bdev->bd_contains->bd_holders)
1469 bdev->bd_contains->bd_holder = NULL;
1470
1471 spin_unlock(&bdev_lock);
1472
1473 /*
1474 * If this was the last claim, remove holder link and
1475 * unblock evpoll if it was a write holder.
1476 */
1477 if (bdev_free) {
1478 if (bdev->bd_write_holder) {
1479 disk_unblock_events(bdev->bd_disk);
1480 disk_check_events(bdev->bd_disk);
1481 bdev->bd_write_holder = false;
1482 }
1483 }
1484
1485 mutex_unlock(&bdev->bd_mutex);
1486 }
1487
1488 return __blkdev_put(bdev, mode, 0);
1489 }
1490 EXPORT_SYMBOL(blkdev_put);
1491
1492 static int blkdev_close(struct inode * inode, struct file * filp)
1493 {
1494 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1495
1496 return blkdev_put(bdev, filp->f_mode);
1497 }
1498
1499 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1500 {
1501 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1502 fmode_t mode = file->f_mode;
1503
1504 /*
1505 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1506 * to updated it before every ioctl.
1507 */
1508 if (file->f_flags & O_NDELAY)
1509 mode |= FMODE_NDELAY;
1510 else
1511 mode &= ~FMODE_NDELAY;
1512
1513 return blkdev_ioctl(bdev, mode, cmd, arg);
1514 }
1515
1516 /*
1517 * Write data to the block device. Only intended for the block device itself
1518 * and the raw driver which basically is a fake block device.
1519 *
1520 * Does not take i_mutex for the write and thus is not for general purpose
1521 * use.
1522 */
1523 ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1524 unsigned long nr_segs, loff_t pos)
1525 {
1526 struct file *file = iocb->ki_filp;
1527 ssize_t ret;
1528
1529 BUG_ON(iocb->ki_pos != pos);
1530
1531 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1532 if (ret > 0 || ret == -EIOCBQUEUED) {
1533 ssize_t err;
1534
1535 err = generic_write_sync(file, pos, ret);
1536 if (err < 0 && ret > 0)
1537 ret = err;
1538 }
1539 return ret;
1540 }
1541 EXPORT_SYMBOL_GPL(blkdev_aio_write);
1542
1543 /*
1544 * Try to release a page associated with block device when the system
1545 * is under memory pressure.
1546 */
1547 static int blkdev_releasepage(struct page *page, gfp_t wait)
1548 {
1549 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1550
1551 if (super && super->s_op->bdev_try_to_free_page)
1552 return super->s_op->bdev_try_to_free_page(super, page, wait);
1553
1554 return try_to_free_buffers(page);
1555 }
1556
1557 static const struct address_space_operations def_blk_aops = {
1558 .readpage = blkdev_readpage,
1559 .writepage = blkdev_writepage,
1560 .write_begin = blkdev_write_begin,
1561 .write_end = blkdev_write_end,
1562 .writepages = generic_writepages,
1563 .releasepage = blkdev_releasepage,
1564 .direct_IO = blkdev_direct_IO,
1565 };
1566
1567 const struct file_operations def_blk_fops = {
1568 .open = blkdev_open,
1569 .release = blkdev_close,
1570 .llseek = block_llseek,
1571 .read = do_sync_read,
1572 .write = do_sync_write,
1573 .aio_read = generic_file_aio_read,
1574 .aio_write = blkdev_aio_write,
1575 .mmap = generic_file_mmap,
1576 .fsync = blkdev_fsync,
1577 .unlocked_ioctl = block_ioctl,
1578 #ifdef CONFIG_COMPAT
1579 .compat_ioctl = compat_blkdev_ioctl,
1580 #endif
1581 .splice_read = generic_file_splice_read,
1582 .splice_write = generic_file_splice_write,
1583 };
1584
1585 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1586 {
1587 int res;
1588 mm_segment_t old_fs = get_fs();
1589 set_fs(KERNEL_DS);
1590 res = blkdev_ioctl(bdev, 0, cmd, arg);
1591 set_fs(old_fs);
1592 return res;
1593 }
1594
1595 EXPORT_SYMBOL(ioctl_by_bdev);
1596
1597 /**
1598 * lookup_bdev - lookup a struct block_device by name
1599 * @pathname: special file representing the block device
1600 *
1601 * Get a reference to the blockdevice at @pathname in the current
1602 * namespace if possible and return it. Return ERR_PTR(error)
1603 * otherwise.
1604 */
1605 struct block_device *lookup_bdev(const char *pathname)
1606 {
1607 struct block_device *bdev;
1608 struct inode *inode;
1609 struct path path;
1610 int error;
1611
1612 if (!pathname || !*pathname)
1613 return ERR_PTR(-EINVAL);
1614
1615 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1616 if (error)
1617 return ERR_PTR(error);
1618
1619 inode = path.dentry->d_inode;
1620 error = -ENOTBLK;
1621 if (!S_ISBLK(inode->i_mode))
1622 goto fail;
1623 error = -EACCES;
1624 if (path.mnt->mnt_flags & MNT_NODEV)
1625 goto fail;
1626 error = -ENOMEM;
1627 bdev = bd_acquire(inode);
1628 if (!bdev)
1629 goto fail;
1630 out:
1631 path_put(&path);
1632 return bdev;
1633 fail:
1634 bdev = ERR_PTR(error);
1635 goto out;
1636 }
1637 EXPORT_SYMBOL(lookup_bdev);
1638
1639 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1640 {
1641 struct super_block *sb = get_super(bdev);
1642 int res = 0;
1643
1644 if (sb) {
1645 /*
1646 * no need to lock the super, get_super holds the
1647 * read mutex so the filesystem cannot go away
1648 * under us (->put_super runs with the write lock
1649 * hold).
1650 */
1651 shrink_dcache_sb(sb);
1652 res = invalidate_inodes(sb, kill_dirty);
1653 drop_super(sb);
1654 }
1655 invalidate_bdev(bdev);
1656 return res;
1657 }
1658 EXPORT_SYMBOL(__invalidate_device);