drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/magic.h>
20 #include <linux/buffer_head.h>
21 #include <linux/swap.h>
22 #include <linux/pagevec.h>
23 #include <linux/writeback.h>
24 #include <linux/mpage.h>
25 #include <linux/mount.h>
26 #include <linux/uio.h>
27 #include <linux/namei.h>
28 #include <linux/log2.h>
29 #include <linux/cleancache.h>
30 #include <linux/aio.h>
31 #include <asm/uaccess.h>
32 #include "internal.h"
33
34 struct bdev_inode {
35 struct block_device bdev;
36 struct inode vfs_inode;
37 };
38
39 static const struct address_space_operations def_blk_aops;
40
41 static inline struct bdev_inode *BDEV_I(struct inode *inode)
42 {
43 return container_of(inode, struct bdev_inode, vfs_inode);
44 }
45
46 inline struct block_device *I_BDEV(struct inode *inode)
47 {
48 return &BDEV_I(inode)->bdev;
49 }
50 EXPORT_SYMBOL(I_BDEV);
51
52 /*
53 * Move the inode from its current bdi to a new bdi. If the inode is dirty we
54 * need to move it onto the dirty list of @dst so that the inode is always on
55 * the right list.
56 */
57 static void bdev_inode_switch_bdi(struct inode *inode,
58 struct backing_dev_info *dst)
59 {
60 struct backing_dev_info *old = inode->i_data.backing_dev_info;
61 bool wakeup_bdi = false;
62
63 if (unlikely(dst == old)) /* deadlock avoidance */
64 return;
65 bdi_lock_two(&old->wb, &dst->wb);
66 spin_lock(&inode->i_lock);
67 inode->i_data.backing_dev_info = dst;
68 if (inode->i_state & I_DIRTY) {
69 if (bdi_cap_writeback_dirty(dst) && !wb_has_dirty_io(&dst->wb))
70 wakeup_bdi = true;
71 list_move(&inode->i_wb_list, &dst->wb.b_dirty);
72 }
73 spin_unlock(&inode->i_lock);
74 spin_unlock(&old->wb.list_lock);
75 spin_unlock(&dst->wb.list_lock);
76
77 if (wakeup_bdi)
78 bdi_wakeup_thread_delayed(dst);
79 }
80
81 /* Kill _all_ buffers and pagecache , dirty or not.. */
82 void kill_bdev(struct block_device *bdev)
83 {
84 struct address_space *mapping = bdev->bd_inode->i_mapping;
85
86 if (mapping->nrpages == 0)
87 return;
88
89 invalidate_bh_lrus();
90 truncate_inode_pages(mapping, 0);
91 }
92 EXPORT_SYMBOL(kill_bdev);
93
94 /* Invalidate clean unused buffers and pagecache. */
95 void invalidate_bdev(struct block_device *bdev)
96 {
97 struct address_space *mapping = bdev->bd_inode->i_mapping;
98
99 if (mapping->nrpages == 0)
100 return;
101
102 invalidate_bh_lrus();
103 lru_add_drain_all(); /* make sure all lru add caches are flushed */
104 invalidate_mapping_pages(mapping, 0, -1);
105 /* 99% of the time, we don't need to flush the cleancache on the bdev.
106 * But, for the strange corners, lets be cautious
107 */
108 cleancache_invalidate_inode(mapping);
109 }
110 EXPORT_SYMBOL(invalidate_bdev);
111
112 int set_blocksize(struct block_device *bdev, int size)
113 {
114 /* Size must be a power of two, and between 512 and PAGE_SIZE */
115 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
116 return -EINVAL;
117
118 /* Size cannot be smaller than the size supported by the device */
119 if (size < bdev_logical_block_size(bdev))
120 return -EINVAL;
121
122 /* Don't change the size if it is same as current */
123 if (bdev->bd_block_size != size) {
124 sync_blockdev(bdev);
125 bdev->bd_block_size = size;
126 bdev->bd_inode->i_blkbits = blksize_bits(size);
127 kill_bdev(bdev);
128 }
129 return 0;
130 }
131
132 EXPORT_SYMBOL(set_blocksize);
133
134 int sb_set_blocksize(struct super_block *sb, int size)
135 {
136 if (set_blocksize(sb->s_bdev, size))
137 return 0;
138 /* If we get here, we know size is power of two
139 * and it's value is between 512 and PAGE_SIZE */
140 sb->s_blocksize = size;
141 sb->s_blocksize_bits = blksize_bits(size);
142 return sb->s_blocksize;
143 }
144
145 EXPORT_SYMBOL(sb_set_blocksize);
146
147 int sb_min_blocksize(struct super_block *sb, int size)
148 {
149 int minsize = bdev_logical_block_size(sb->s_bdev);
150 if (size < minsize)
151 size = minsize;
152 return sb_set_blocksize(sb, size);
153 }
154
155 EXPORT_SYMBOL(sb_min_blocksize);
156
157 static int
158 blkdev_get_block(struct inode *inode, sector_t iblock,
159 struct buffer_head *bh, int create)
160 {
161 bh->b_bdev = I_BDEV(inode);
162 bh->b_blocknr = iblock;
163 set_buffer_mapped(bh);
164 return 0;
165 }
166
167 static ssize_t
168 blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
169 loff_t offset, unsigned long nr_segs)
170 {
171 struct file *file = iocb->ki_filp;
172 struct inode *inode = file->f_mapping->host;
173
174 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset,
175 nr_segs, blkdev_get_block, NULL, NULL, 0);
176 }
177
178 int __sync_blockdev(struct block_device *bdev, int wait)
179 {
180 if (!bdev)
181 return 0;
182 if (!wait)
183 return filemap_flush(bdev->bd_inode->i_mapping);
184 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
185 }
186
187 /*
188 * Write out and wait upon all the dirty data associated with a block
189 * device via its mapping. Does not take the superblock lock.
190 */
191 int sync_blockdev(struct block_device *bdev)
192 {
193 return __sync_blockdev(bdev, 1);
194 }
195 EXPORT_SYMBOL(sync_blockdev);
196
197 /*
198 * Write out and wait upon all dirty data associated with this
199 * device. Filesystem data as well as the underlying block
200 * device. Takes the superblock lock.
201 */
202 int fsync_bdev(struct block_device *bdev)
203 {
204 struct super_block *sb = get_super(bdev);
205 if (sb) {
206 int res = sync_filesystem(sb);
207 drop_super(sb);
208 return res;
209 }
210 return sync_blockdev(bdev);
211 }
212 EXPORT_SYMBOL(fsync_bdev);
213
214 /**
215 * freeze_bdev -- lock a filesystem and force it into a consistent state
216 * @bdev: blockdevice to lock
217 *
218 * If a superblock is found on this device, we take the s_umount semaphore
219 * on it to make sure nobody unmounts until the snapshot creation is done.
220 * The reference counter (bd_fsfreeze_count) guarantees that only the last
221 * unfreeze process can unfreeze the frozen filesystem actually when multiple
222 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
223 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
224 * actually.
225 */
226 struct super_block *freeze_bdev(struct block_device *bdev)
227 {
228 struct super_block *sb;
229 int error = 0;
230
231 mutex_lock(&bdev->bd_fsfreeze_mutex);
232 if (++bdev->bd_fsfreeze_count > 1) {
233 /*
234 * We don't even need to grab a reference - the first call
235 * to freeze_bdev grab an active reference and only the last
236 * thaw_bdev drops it.
237 */
238 sb = get_super(bdev);
239 drop_super(sb);
240 mutex_unlock(&bdev->bd_fsfreeze_mutex);
241 return sb;
242 }
243
244 sb = get_active_super(bdev);
245 if (!sb)
246 goto out;
247 error = freeze_super(sb);
248 if (error) {
249 deactivate_super(sb);
250 bdev->bd_fsfreeze_count--;
251 mutex_unlock(&bdev->bd_fsfreeze_mutex);
252 return ERR_PTR(error);
253 }
254 deactivate_super(sb);
255 out:
256 sync_blockdev(bdev);
257 mutex_unlock(&bdev->bd_fsfreeze_mutex);
258 return sb; /* thaw_bdev releases s->s_umount */
259 }
260 EXPORT_SYMBOL(freeze_bdev);
261
262 /**
263 * thaw_bdev -- unlock filesystem
264 * @bdev: blockdevice to unlock
265 * @sb: associated superblock
266 *
267 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
268 */
269 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
270 {
271 int error = -EINVAL;
272
273 mutex_lock(&bdev->bd_fsfreeze_mutex);
274 if (!bdev->bd_fsfreeze_count)
275 goto out;
276
277 error = 0;
278 if (--bdev->bd_fsfreeze_count > 0)
279 goto out;
280
281 if (!sb)
282 goto out;
283
284 error = thaw_super(sb);
285 if (error) {
286 bdev->bd_fsfreeze_count++;
287 mutex_unlock(&bdev->bd_fsfreeze_mutex);
288 return error;
289 }
290 out:
291 mutex_unlock(&bdev->bd_fsfreeze_mutex);
292 return 0;
293 }
294 EXPORT_SYMBOL(thaw_bdev);
295
296 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
297 {
298 return block_write_full_page(page, blkdev_get_block, wbc);
299 }
300
301 static int blkdev_readpage(struct file * file, struct page * page)
302 {
303 return block_read_full_page(page, blkdev_get_block);
304 }
305
306 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
307 loff_t pos, unsigned len, unsigned flags,
308 struct page **pagep, void **fsdata)
309 {
310 return block_write_begin(mapping, pos, len, flags, pagep,
311 blkdev_get_block);
312 }
313
314 static int blkdev_write_end(struct file *file, struct address_space *mapping,
315 loff_t pos, unsigned len, unsigned copied,
316 struct page *page, void *fsdata)
317 {
318 int ret;
319 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
320
321 unlock_page(page);
322 page_cache_release(page);
323
324 return ret;
325 }
326
327 /*
328 * private llseek:
329 * for a block special file file_inode(file)->i_size is zero
330 * so we compute the size by hand (just as in block_read/write above)
331 */
332 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
333 {
334 struct inode *bd_inode = file->f_mapping->host;
335 loff_t size;
336 loff_t retval;
337
338 mutex_lock(&bd_inode->i_mutex);
339 size = i_size_read(bd_inode);
340
341 retval = -EINVAL;
342 switch (whence) {
343 case SEEK_END:
344 offset += size;
345 break;
346 case SEEK_CUR:
347 offset += file->f_pos;
348 case SEEK_SET:
349 break;
350 default:
351 goto out;
352 }
353 if (offset >= 0 && offset <= size) {
354 if (offset != file->f_pos) {
355 file->f_pos = offset;
356 }
357 retval = offset;
358 }
359 out:
360 mutex_unlock(&bd_inode->i_mutex);
361 return retval;
362 }
363
364 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
365 {
366 struct inode *bd_inode = filp->f_mapping->host;
367 struct block_device *bdev = I_BDEV(bd_inode);
368 int error;
369
370 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
371 if (error)
372 return error;
373
374 /*
375 * There is no need to serialise calls to blkdev_issue_flush with
376 * i_mutex and doing so causes performance issues with concurrent
377 * O_SYNC writers to a block device.
378 */
379 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
380 if (error == -EOPNOTSUPP)
381 error = 0;
382
383 return error;
384 }
385 EXPORT_SYMBOL(blkdev_fsync);
386
387 /*
388 * pseudo-fs
389 */
390
391 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
392 static struct kmem_cache * bdev_cachep __read_mostly;
393
394 static struct inode *bdev_alloc_inode(struct super_block *sb)
395 {
396 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
397 if (!ei)
398 return NULL;
399 return &ei->vfs_inode;
400 }
401
402 static void bdev_i_callback(struct rcu_head *head)
403 {
404 struct inode *inode = container_of(head, struct inode, i_rcu);
405 struct bdev_inode *bdi = BDEV_I(inode);
406
407 kmem_cache_free(bdev_cachep, bdi);
408 }
409
410 static void bdev_destroy_inode(struct inode *inode)
411 {
412 call_rcu(&inode->i_rcu, bdev_i_callback);
413 }
414
415 static void init_once(void *foo)
416 {
417 struct bdev_inode *ei = (struct bdev_inode *) foo;
418 struct block_device *bdev = &ei->bdev;
419
420 memset(bdev, 0, sizeof(*bdev));
421 mutex_init(&bdev->bd_mutex);
422 INIT_LIST_HEAD(&bdev->bd_inodes);
423 INIT_LIST_HEAD(&bdev->bd_list);
424 #ifdef CONFIG_SYSFS
425 INIT_LIST_HEAD(&bdev->bd_holder_disks);
426 #endif
427 inode_init_once(&ei->vfs_inode);
428 /* Initialize mutex for freeze. */
429 mutex_init(&bdev->bd_fsfreeze_mutex);
430 }
431
432 static inline void __bd_forget(struct inode *inode)
433 {
434 list_del_init(&inode->i_devices);
435 inode->i_bdev = NULL;
436 inode->i_mapping = &inode->i_data;
437 }
438
439 static void bdev_evict_inode(struct inode *inode)
440 {
441 struct block_device *bdev = &BDEV_I(inode)->bdev;
442 struct list_head *p;
443 truncate_inode_pages(&inode->i_data, 0);
444 invalidate_inode_buffers(inode); /* is it needed here? */
445 clear_inode(inode);
446 spin_lock(&bdev_lock);
447 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
448 __bd_forget(list_entry(p, struct inode, i_devices));
449 }
450 list_del_init(&bdev->bd_list);
451 spin_unlock(&bdev_lock);
452 }
453
454 static const struct super_operations bdev_sops = {
455 .statfs = simple_statfs,
456 .alloc_inode = bdev_alloc_inode,
457 .destroy_inode = bdev_destroy_inode,
458 .drop_inode = generic_delete_inode,
459 .evict_inode = bdev_evict_inode,
460 };
461
462 static struct dentry *bd_mount(struct file_system_type *fs_type,
463 int flags, const char *dev_name, void *data)
464 {
465 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
466 }
467
468 static struct file_system_type bd_type = {
469 .name = "bdev",
470 .mount = bd_mount,
471 .kill_sb = kill_anon_super,
472 };
473
474 static struct super_block *blockdev_superblock __read_mostly;
475
476 void __init bdev_cache_init(void)
477 {
478 int err;
479 static struct vfsmount *bd_mnt;
480
481 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
482 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
483 SLAB_MEM_SPREAD|SLAB_PANIC),
484 init_once);
485 err = register_filesystem(&bd_type);
486 if (err)
487 panic("Cannot register bdev pseudo-fs");
488 bd_mnt = kern_mount(&bd_type);
489 if (IS_ERR(bd_mnt))
490 panic("Cannot create bdev pseudo-fs");
491 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
492 }
493
494 /*
495 * Most likely _very_ bad one - but then it's hardly critical for small
496 * /dev and can be fixed when somebody will need really large one.
497 * Keep in mind that it will be fed through icache hash function too.
498 */
499 static inline unsigned long hash(dev_t dev)
500 {
501 return MAJOR(dev)+MINOR(dev);
502 }
503
504 static int bdev_test(struct inode *inode, void *data)
505 {
506 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
507 }
508
509 static int bdev_set(struct inode *inode, void *data)
510 {
511 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
512 return 0;
513 }
514
515 static LIST_HEAD(all_bdevs);
516
517 struct block_device *bdget(dev_t dev)
518 {
519 struct block_device *bdev;
520 struct inode *inode;
521
522 inode = iget5_locked(blockdev_superblock, hash(dev),
523 bdev_test, bdev_set, &dev);
524
525 if (!inode)
526 return NULL;
527
528 bdev = &BDEV_I(inode)->bdev;
529
530 if (inode->i_state & I_NEW) {
531 bdev->bd_contains = NULL;
532 bdev->bd_super = NULL;
533 bdev->bd_inode = inode;
534 bdev->bd_block_size = (1 << inode->i_blkbits);
535 bdev->bd_part_count = 0;
536 bdev->bd_invalidated = 0;
537 inode->i_mode = S_IFBLK;
538 inode->i_rdev = dev;
539 inode->i_bdev = bdev;
540 inode->i_data.a_ops = &def_blk_aops;
541 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
542 inode->i_data.backing_dev_info = &default_backing_dev_info;
543 spin_lock(&bdev_lock);
544 list_add(&bdev->bd_list, &all_bdevs);
545 spin_unlock(&bdev_lock);
546 unlock_new_inode(inode);
547 }
548 return bdev;
549 }
550
551 EXPORT_SYMBOL(bdget);
552
553 /**
554 * bdgrab -- Grab a reference to an already referenced block device
555 * @bdev: Block device to grab a reference to.
556 */
557 struct block_device *bdgrab(struct block_device *bdev)
558 {
559 ihold(bdev->bd_inode);
560 return bdev;
561 }
562 EXPORT_SYMBOL(bdgrab);
563
564 long nr_blockdev_pages(void)
565 {
566 struct block_device *bdev;
567 long ret = 0;
568 spin_lock(&bdev_lock);
569 list_for_each_entry(bdev, &all_bdevs, bd_list) {
570 ret += bdev->bd_inode->i_mapping->nrpages;
571 }
572 spin_unlock(&bdev_lock);
573 return ret;
574 }
575
576 void bdput(struct block_device *bdev)
577 {
578 iput(bdev->bd_inode);
579 }
580
581 EXPORT_SYMBOL(bdput);
582
583 static struct block_device *bd_acquire(struct inode *inode)
584 {
585 struct block_device *bdev;
586
587 spin_lock(&bdev_lock);
588 bdev = inode->i_bdev;
589 if (bdev) {
590 ihold(bdev->bd_inode);
591 spin_unlock(&bdev_lock);
592 return bdev;
593 }
594 spin_unlock(&bdev_lock);
595
596 bdev = bdget(inode->i_rdev);
597 if (bdev) {
598 spin_lock(&bdev_lock);
599 if (!inode->i_bdev) {
600 /*
601 * We take an additional reference to bd_inode,
602 * and it's released in clear_inode() of inode.
603 * So, we can access it via ->i_mapping always
604 * without igrab().
605 */
606 ihold(bdev->bd_inode);
607 inode->i_bdev = bdev;
608 inode->i_mapping = bdev->bd_inode->i_mapping;
609 list_add(&inode->i_devices, &bdev->bd_inodes);
610 }
611 spin_unlock(&bdev_lock);
612 }
613 return bdev;
614 }
615
616 static inline int sb_is_blkdev_sb(struct super_block *sb)
617 {
618 return sb == blockdev_superblock;
619 }
620
621 /* Call when you free inode */
622
623 void bd_forget(struct inode *inode)
624 {
625 struct block_device *bdev = NULL;
626
627 spin_lock(&bdev_lock);
628 if (!sb_is_blkdev_sb(inode->i_sb))
629 bdev = inode->i_bdev;
630 __bd_forget(inode);
631 spin_unlock(&bdev_lock);
632
633 if (bdev)
634 iput(bdev->bd_inode);
635 }
636
637 /**
638 * bd_may_claim - test whether a block device can be claimed
639 * @bdev: block device of interest
640 * @whole: whole block device containing @bdev, may equal @bdev
641 * @holder: holder trying to claim @bdev
642 *
643 * Test whether @bdev can be claimed by @holder.
644 *
645 * CONTEXT:
646 * spin_lock(&bdev_lock).
647 *
648 * RETURNS:
649 * %true if @bdev can be claimed, %false otherwise.
650 */
651 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
652 void *holder)
653 {
654 if (bdev->bd_holder == holder)
655 return true; /* already a holder */
656 else if (bdev->bd_holder != NULL)
657 return false; /* held by someone else */
658 else if (whole == bdev)
659 return true; /* is a whole device which isn't held */
660
661 else if (whole->bd_holder == bd_may_claim)
662 return true; /* is a partition of a device that is being partitioned */
663 else if (whole->bd_holder != NULL)
664 return false; /* is a partition of a held device */
665 else
666 return true; /* is a partition of an un-held device */
667 }
668
669 /**
670 * bd_prepare_to_claim - prepare to claim a block device
671 * @bdev: block device of interest
672 * @whole: the whole device containing @bdev, may equal @bdev
673 * @holder: holder trying to claim @bdev
674 *
675 * Prepare to claim @bdev. This function fails if @bdev is already
676 * claimed by another holder and waits if another claiming is in
677 * progress. This function doesn't actually claim. On successful
678 * return, the caller has ownership of bd_claiming and bd_holder[s].
679 *
680 * CONTEXT:
681 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
682 * it multiple times.
683 *
684 * RETURNS:
685 * 0 if @bdev can be claimed, -EBUSY otherwise.
686 */
687 static int bd_prepare_to_claim(struct block_device *bdev,
688 struct block_device *whole, void *holder)
689 {
690 retry:
691 /* if someone else claimed, fail */
692 if (!bd_may_claim(bdev, whole, holder))
693 return -EBUSY;
694
695 /* if claiming is already in progress, wait for it to finish */
696 if (whole->bd_claiming) {
697 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
698 DEFINE_WAIT(wait);
699
700 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
701 spin_unlock(&bdev_lock);
702 schedule();
703 finish_wait(wq, &wait);
704 spin_lock(&bdev_lock);
705 goto retry;
706 }
707
708 /* yay, all mine */
709 return 0;
710 }
711
712 /**
713 * bd_start_claiming - start claiming a block device
714 * @bdev: block device of interest
715 * @holder: holder trying to claim @bdev
716 *
717 * @bdev is about to be opened exclusively. Check @bdev can be opened
718 * exclusively and mark that an exclusive open is in progress. Each
719 * successful call to this function must be matched with a call to
720 * either bd_finish_claiming() or bd_abort_claiming() (which do not
721 * fail).
722 *
723 * This function is used to gain exclusive access to the block device
724 * without actually causing other exclusive open attempts to fail. It
725 * should be used when the open sequence itself requires exclusive
726 * access but may subsequently fail.
727 *
728 * CONTEXT:
729 * Might sleep.
730 *
731 * RETURNS:
732 * Pointer to the block device containing @bdev on success, ERR_PTR()
733 * value on failure.
734 */
735 static struct block_device *bd_start_claiming(struct block_device *bdev,
736 void *holder)
737 {
738 struct gendisk *disk;
739 struct block_device *whole;
740 int partno, err;
741
742 might_sleep();
743
744 /*
745 * @bdev might not have been initialized properly yet, look up
746 * and grab the outer block device the hard way.
747 */
748 disk = get_gendisk(bdev->bd_dev, &partno);
749 if (!disk)
750 return ERR_PTR(-ENXIO);
751
752 /*
753 * Normally, @bdev should equal what's returned from bdget_disk()
754 * if partno is 0; however, some drivers (floppy) use multiple
755 * bdev's for the same physical device and @bdev may be one of the
756 * aliases. Keep @bdev if partno is 0. This means claimer
757 * tracking is broken for those devices but it has always been that
758 * way.
759 */
760 if (partno)
761 whole = bdget_disk(disk, 0);
762 else
763 whole = bdgrab(bdev);
764
765 module_put(disk->fops->owner);
766 put_disk(disk);
767 if (!whole)
768 return ERR_PTR(-ENOMEM);
769
770 /* prepare to claim, if successful, mark claiming in progress */
771 spin_lock(&bdev_lock);
772
773 err = bd_prepare_to_claim(bdev, whole, holder);
774 if (err == 0) {
775 whole->bd_claiming = holder;
776 spin_unlock(&bdev_lock);
777 return whole;
778 } else {
779 spin_unlock(&bdev_lock);
780 bdput(whole);
781 return ERR_PTR(err);
782 }
783 }
784
785 #ifdef CONFIG_SYSFS
786 struct bd_holder_disk {
787 struct list_head list;
788 struct gendisk *disk;
789 int refcnt;
790 };
791
792 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
793 struct gendisk *disk)
794 {
795 struct bd_holder_disk *holder;
796
797 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
798 if (holder->disk == disk)
799 return holder;
800 return NULL;
801 }
802
803 static int add_symlink(struct kobject *from, struct kobject *to)
804 {
805 return sysfs_create_link(from, to, kobject_name(to));
806 }
807
808 static void del_symlink(struct kobject *from, struct kobject *to)
809 {
810 sysfs_remove_link(from, kobject_name(to));
811 }
812
813 /**
814 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
815 * @bdev: the claimed slave bdev
816 * @disk: the holding disk
817 *
818 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
819 *
820 * This functions creates the following sysfs symlinks.
821 *
822 * - from "slaves" directory of the holder @disk to the claimed @bdev
823 * - from "holders" directory of the @bdev to the holder @disk
824 *
825 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
826 * passed to bd_link_disk_holder(), then:
827 *
828 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
829 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
830 *
831 * The caller must have claimed @bdev before calling this function and
832 * ensure that both @bdev and @disk are valid during the creation and
833 * lifetime of these symlinks.
834 *
835 * CONTEXT:
836 * Might sleep.
837 *
838 * RETURNS:
839 * 0 on success, -errno on failure.
840 */
841 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
842 {
843 struct bd_holder_disk *holder;
844 int ret = 0;
845
846 mutex_lock(&bdev->bd_mutex);
847
848 WARN_ON_ONCE(!bdev->bd_holder);
849
850 /* FIXME: remove the following once add_disk() handles errors */
851 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
852 goto out_unlock;
853
854 holder = bd_find_holder_disk(bdev, disk);
855 if (holder) {
856 holder->refcnt++;
857 goto out_unlock;
858 }
859
860 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
861 if (!holder) {
862 ret = -ENOMEM;
863 goto out_unlock;
864 }
865
866 INIT_LIST_HEAD(&holder->list);
867 holder->disk = disk;
868 holder->refcnt = 1;
869
870 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
871 if (ret)
872 goto out_free;
873
874 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
875 if (ret)
876 goto out_del;
877 /*
878 * bdev could be deleted beneath us which would implicitly destroy
879 * the holder directory. Hold on to it.
880 */
881 kobject_get(bdev->bd_part->holder_dir);
882
883 list_add(&holder->list, &bdev->bd_holder_disks);
884 goto out_unlock;
885
886 out_del:
887 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
888 out_free:
889 kfree(holder);
890 out_unlock:
891 mutex_unlock(&bdev->bd_mutex);
892 return ret;
893 }
894 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
895
896 /**
897 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
898 * @bdev: the calimed slave bdev
899 * @disk: the holding disk
900 *
901 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
902 *
903 * CONTEXT:
904 * Might sleep.
905 */
906 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
907 {
908 struct bd_holder_disk *holder;
909
910 mutex_lock(&bdev->bd_mutex);
911
912 holder = bd_find_holder_disk(bdev, disk);
913
914 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
915 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
916 del_symlink(bdev->bd_part->holder_dir,
917 &disk_to_dev(disk)->kobj);
918 kobject_put(bdev->bd_part->holder_dir);
919 list_del_init(&holder->list);
920 kfree(holder);
921 }
922
923 mutex_unlock(&bdev->bd_mutex);
924 }
925 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
926 #endif
927
928 /**
929 * flush_disk - invalidates all buffer-cache entries on a disk
930 *
931 * @bdev: struct block device to be flushed
932 * @kill_dirty: flag to guide handling of dirty inodes
933 *
934 * Invalidates all buffer-cache entries on a disk. It should be called
935 * when a disk has been changed -- either by a media change or online
936 * resize.
937 */
938 static void flush_disk(struct block_device *bdev, bool kill_dirty)
939 {
940 if (__invalidate_device(bdev, kill_dirty)) {
941 char name[BDEVNAME_SIZE] = "";
942
943 if (bdev->bd_disk)
944 disk_name(bdev->bd_disk, 0, name);
945 printk(KERN_WARNING "VFS: busy inodes on changed media or "
946 "resized disk %s\n", name);
947 }
948
949 if (!bdev->bd_disk)
950 return;
951 if (disk_part_scan_enabled(bdev->bd_disk))
952 bdev->bd_invalidated = 1;
953 }
954
955 /**
956 * check_disk_size_change - checks for disk size change and adjusts bdev size.
957 * @disk: struct gendisk to check
958 * @bdev: struct bdev to adjust.
959 *
960 * This routine checks to see if the bdev size does not match the disk size
961 * and adjusts it if it differs.
962 */
963 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
964 {
965 loff_t disk_size, bdev_size;
966
967 disk_size = (loff_t)get_capacity(disk) << 9;
968 bdev_size = i_size_read(bdev->bd_inode);
969 if (disk_size != bdev_size) {
970 char name[BDEVNAME_SIZE];
971
972 disk_name(disk, 0, name);
973 printk(KERN_INFO
974 "%s: detected capacity change from %lld to %lld\n",
975 name, bdev_size, disk_size);
976 i_size_write(bdev->bd_inode, disk_size);
977 flush_disk(bdev, false);
978 }
979 }
980 EXPORT_SYMBOL(check_disk_size_change);
981
982 /**
983 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
984 * @disk: struct gendisk to be revalidated
985 *
986 * This routine is a wrapper for lower-level driver's revalidate_disk
987 * call-backs. It is used to do common pre and post operations needed
988 * for all revalidate_disk operations.
989 */
990 int revalidate_disk(struct gendisk *disk)
991 {
992 struct block_device *bdev;
993 int ret = 0;
994
995 if (disk->fops->revalidate_disk)
996 ret = disk->fops->revalidate_disk(disk);
997
998 bdev = bdget_disk(disk, 0);
999 if (!bdev)
1000 return ret;
1001
1002 mutex_lock(&bdev->bd_mutex);
1003 check_disk_size_change(disk, bdev);
1004 bdev->bd_invalidated = 0;
1005 mutex_unlock(&bdev->bd_mutex);
1006 bdput(bdev);
1007 return ret;
1008 }
1009 EXPORT_SYMBOL(revalidate_disk);
1010
1011 /*
1012 * This routine checks whether a removable media has been changed,
1013 * and invalidates all buffer-cache-entries in that case. This
1014 * is a relatively slow routine, so we have to try to minimize using
1015 * it. Thus it is called only upon a 'mount' or 'open'. This
1016 * is the best way of combining speed and utility, I think.
1017 * People changing diskettes in the middle of an operation deserve
1018 * to lose :-)
1019 */
1020 int check_disk_change(struct block_device *bdev)
1021 {
1022 struct gendisk *disk = bdev->bd_disk;
1023 const struct block_device_operations *bdops = disk->fops;
1024 unsigned int events;
1025
1026 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1027 #ifdef CONFIG_MTK_MULTI_PARTITION_MOUNT_ONLY_SUPPORT
1028 DISK_EVENT_EJECT_REQUEST | DISK_EVENT_MEDIA_DISAPPEAR); //add DISK_EVENT_MEDIA_DISAPPEAR for sd hotplug
1029 #else
1030 DISK_EVENT_EJECT_REQUEST);
1031 #endif
1032 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1033 return 0;
1034
1035 flush_disk(bdev, true);
1036 if (bdops->revalidate_disk)
1037 bdops->revalidate_disk(bdev->bd_disk);
1038 return 1;
1039 }
1040
1041 EXPORT_SYMBOL(check_disk_change);
1042
1043 void bd_set_size(struct block_device *bdev, loff_t size)
1044 {
1045 unsigned bsize = bdev_logical_block_size(bdev);
1046
1047 mutex_lock(&bdev->bd_inode->i_mutex);
1048 i_size_write(bdev->bd_inode, size);
1049 mutex_unlock(&bdev->bd_inode->i_mutex);
1050 while (bsize < PAGE_CACHE_SIZE) {
1051 if (size & bsize)
1052 break;
1053 bsize <<= 1;
1054 }
1055 bdev->bd_block_size = bsize;
1056 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1057 }
1058 EXPORT_SYMBOL(bd_set_size);
1059
1060 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1061
1062 /*
1063 * bd_mutex locking:
1064 *
1065 * mutex_lock(part->bd_mutex)
1066 * mutex_lock_nested(whole->bd_mutex, 1)
1067 */
1068
1069 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1070 {
1071 struct gendisk *disk;
1072 struct module *owner;
1073 int ret;
1074 int partno;
1075 int perm = 0;
1076
1077 if (mode & FMODE_READ)
1078 perm |= MAY_READ;
1079 if (mode & FMODE_WRITE)
1080 perm |= MAY_WRITE;
1081 /*
1082 * hooks: /n/, see "layering violations".
1083 */
1084 if (!for_part) {
1085 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1086 if (ret != 0) {
1087 bdput(bdev);
1088 return ret;
1089 }
1090 }
1091
1092 restart:
1093
1094 ret = -ENXIO;
1095 disk = get_gendisk(bdev->bd_dev, &partno);
1096 if (!disk)
1097 goto out;
1098 owner = disk->fops->owner;
1099
1100 disk_block_events(disk);
1101 mutex_lock_nested(&bdev->bd_mutex, for_part);
1102 if (!bdev->bd_openers) {
1103 bdev->bd_disk = disk;
1104 bdev->bd_queue = disk->queue;
1105 bdev->bd_contains = bdev;
1106 if (!partno) {
1107 struct backing_dev_info *bdi;
1108
1109 ret = -ENXIO;
1110 bdev->bd_part = disk_get_part(disk, partno);
1111 if (!bdev->bd_part)
1112 goto out_clear;
1113
1114 ret = 0;
1115 if (disk->fops->open) {
1116 ret = disk->fops->open(bdev, mode);
1117 if (ret == -ERESTARTSYS) {
1118 /* Lost a race with 'disk' being
1119 * deleted, try again.
1120 * See md.c
1121 */
1122 disk_put_part(bdev->bd_part);
1123 bdev->bd_part = NULL;
1124 bdev->bd_disk = NULL;
1125 bdev->bd_queue = NULL;
1126 mutex_unlock(&bdev->bd_mutex);
1127 disk_unblock_events(disk);
1128 put_disk(disk);
1129 module_put(owner);
1130 goto restart;
1131 }
1132 }
1133
1134 if (!ret) {
1135 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1136 bdi = blk_get_backing_dev_info(bdev);
1137 if (bdi == NULL)
1138 bdi = &default_backing_dev_info;
1139 bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1140 }
1141
1142 /*
1143 * If the device is invalidated, rescan partition
1144 * if open succeeded or failed with -ENOMEDIUM.
1145 * The latter is necessary to prevent ghost
1146 * partitions on a removed medium.
1147 */
1148 if (bdev->bd_invalidated) {
1149 if (!ret)
1150 rescan_partitions(disk, bdev);
1151 else if (ret == -ENOMEDIUM)
1152 invalidate_partitions(disk, bdev);
1153 }
1154 if (ret)
1155 goto out_clear;
1156 } else {
1157 struct block_device *whole;
1158 whole = bdget_disk(disk, 0);
1159 ret = -ENOMEM;
1160 if (!whole)
1161 goto out_clear;
1162 BUG_ON(for_part);
1163 ret = __blkdev_get(whole, mode, 1);
1164 if (ret)
1165 goto out_clear;
1166 bdev->bd_contains = whole;
1167 bdev_inode_switch_bdi(bdev->bd_inode,
1168 whole->bd_inode->i_data.backing_dev_info);
1169 bdev->bd_part = disk_get_part(disk, partno);
1170 if (!(disk->flags & GENHD_FL_UP) ||
1171 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1172 ret = -ENXIO;
1173 goto out_clear;
1174 }
1175 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1176 }
1177 } else {
1178 if (bdev->bd_contains == bdev) {
1179 ret = 0;
1180 if (bdev->bd_disk->fops->open)
1181 ret = bdev->bd_disk->fops->open(bdev, mode);
1182 /* the same as first opener case, read comment there */
1183 if (bdev->bd_invalidated) {
1184 if (!ret)
1185 rescan_partitions(bdev->bd_disk, bdev);
1186 else if (ret == -ENOMEDIUM)
1187 invalidate_partitions(bdev->bd_disk, bdev);
1188 }
1189 if (ret)
1190 goto out_unlock_bdev;
1191 }
1192 /* only one opener holds refs to the module and disk */
1193 put_disk(disk);
1194 module_put(owner);
1195 }
1196 bdev->bd_openers++;
1197 if (for_part)
1198 bdev->bd_part_count++;
1199 mutex_unlock(&bdev->bd_mutex);
1200 disk_unblock_events(disk);
1201 return 0;
1202
1203 out_clear:
1204 disk_put_part(bdev->bd_part);
1205 bdev->bd_disk = NULL;
1206 bdev->bd_part = NULL;
1207 bdev->bd_queue = NULL;
1208 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1209 if (bdev != bdev->bd_contains)
1210 __blkdev_put(bdev->bd_contains, mode, 1);
1211 bdev->bd_contains = NULL;
1212 out_unlock_bdev:
1213 mutex_unlock(&bdev->bd_mutex);
1214 disk_unblock_events(disk);
1215 put_disk(disk);
1216 module_put(owner);
1217 out:
1218 bdput(bdev);
1219
1220 return ret;
1221 }
1222
1223 /**
1224 * blkdev_get - open a block device
1225 * @bdev: block_device to open
1226 * @mode: FMODE_* mask
1227 * @holder: exclusive holder identifier
1228 *
1229 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1230 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1231 * @holder is invalid. Exclusive opens may nest for the same @holder.
1232 *
1233 * On success, the reference count of @bdev is unchanged. On failure,
1234 * @bdev is put.
1235 *
1236 * CONTEXT:
1237 * Might sleep.
1238 *
1239 * RETURNS:
1240 * 0 on success, -errno on failure.
1241 */
1242 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1243 {
1244 struct block_device *whole = NULL;
1245 int res;
1246
1247 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1248
1249 if ((mode & FMODE_EXCL) && holder) {
1250 whole = bd_start_claiming(bdev, holder);
1251 if (IS_ERR(whole)) {
1252 bdput(bdev);
1253 return PTR_ERR(whole);
1254 }
1255 }
1256
1257 res = __blkdev_get(bdev, mode, 0);
1258
1259 if (whole) {
1260 struct gendisk *disk = whole->bd_disk;
1261
1262 /* finish claiming */
1263 mutex_lock(&bdev->bd_mutex);
1264 spin_lock(&bdev_lock);
1265
1266 if (!res) {
1267 BUG_ON(!bd_may_claim(bdev, whole, holder));
1268 /*
1269 * Note that for a whole device bd_holders
1270 * will be incremented twice, and bd_holder
1271 * will be set to bd_may_claim before being
1272 * set to holder
1273 */
1274 whole->bd_holders++;
1275 whole->bd_holder = bd_may_claim;
1276 bdev->bd_holders++;
1277 bdev->bd_holder = holder;
1278 }
1279
1280 /* tell others that we're done */
1281 BUG_ON(whole->bd_claiming != holder);
1282 whole->bd_claiming = NULL;
1283 wake_up_bit(&whole->bd_claiming, 0);
1284
1285 spin_unlock(&bdev_lock);
1286
1287 /*
1288 * Block event polling for write claims if requested. Any
1289 * write holder makes the write_holder state stick until
1290 * all are released. This is good enough and tracking
1291 * individual writeable reference is too fragile given the
1292 * way @mode is used in blkdev_get/put().
1293 */
1294 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1295 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1296 bdev->bd_write_holder = true;
1297 disk_block_events(disk);
1298 }
1299
1300 mutex_unlock(&bdev->bd_mutex);
1301 bdput(whole);
1302 }
1303
1304 return res;
1305 }
1306 EXPORT_SYMBOL(blkdev_get);
1307
1308 /**
1309 * blkdev_get_by_path - open a block device by name
1310 * @path: path to the block device to open
1311 * @mode: FMODE_* mask
1312 * @holder: exclusive holder identifier
1313 *
1314 * Open the blockdevice described by the device file at @path. @mode
1315 * and @holder are identical to blkdev_get().
1316 *
1317 * On success, the returned block_device has reference count of one.
1318 *
1319 * CONTEXT:
1320 * Might sleep.
1321 *
1322 * RETURNS:
1323 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1324 */
1325 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1326 void *holder)
1327 {
1328 struct block_device *bdev;
1329 int err;
1330
1331 bdev = lookup_bdev(path);
1332 if (IS_ERR(bdev))
1333 return bdev;
1334
1335 err = blkdev_get(bdev, mode, holder);
1336 if (err)
1337 return ERR_PTR(err);
1338
1339 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1340 blkdev_put(bdev, mode);
1341 return ERR_PTR(-EACCES);
1342 }
1343
1344 return bdev;
1345 }
1346 EXPORT_SYMBOL(blkdev_get_by_path);
1347
1348 /**
1349 * blkdev_get_by_dev - open a block device by device number
1350 * @dev: device number of block device to open
1351 * @mode: FMODE_* mask
1352 * @holder: exclusive holder identifier
1353 *
1354 * Open the blockdevice described by device number @dev. @mode and
1355 * @holder are identical to blkdev_get().
1356 *
1357 * Use it ONLY if you really do not have anything better - i.e. when
1358 * you are behind a truly sucky interface and all you are given is a
1359 * device number. _Never_ to be used for internal purposes. If you
1360 * ever need it - reconsider your API.
1361 *
1362 * On success, the returned block_device has reference count of one.
1363 *
1364 * CONTEXT:
1365 * Might sleep.
1366 *
1367 * RETURNS:
1368 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1369 */
1370 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1371 {
1372 struct block_device *bdev;
1373 int err;
1374
1375 bdev = bdget(dev);
1376 if (!bdev)
1377 return ERR_PTR(-ENOMEM);
1378
1379 err = blkdev_get(bdev, mode, holder);
1380 if (err)
1381 return ERR_PTR(err);
1382
1383 return bdev;
1384 }
1385 EXPORT_SYMBOL(blkdev_get_by_dev);
1386
1387 static int blkdev_open(struct inode * inode, struct file * filp)
1388 {
1389 struct block_device *bdev;
1390
1391 /*
1392 * Preserve backwards compatibility and allow large file access
1393 * even if userspace doesn't ask for it explicitly. Some mkfs
1394 * binary needs it. We might want to drop this workaround
1395 * during an unstable branch.
1396 */
1397 filp->f_flags |= O_LARGEFILE;
1398
1399 if (filp->f_flags & O_NDELAY)
1400 filp->f_mode |= FMODE_NDELAY;
1401 if (filp->f_flags & O_EXCL)
1402 filp->f_mode |= FMODE_EXCL;
1403 if ((filp->f_flags & O_ACCMODE) == 3)
1404 filp->f_mode |= FMODE_WRITE_IOCTL;
1405
1406 bdev = bd_acquire(inode);
1407 if (bdev == NULL)
1408 return -ENOMEM;
1409
1410 filp->f_mapping = bdev->bd_inode->i_mapping;
1411
1412 return blkdev_get(bdev, filp->f_mode, filp);
1413 }
1414
1415 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1416 {
1417 struct gendisk *disk = bdev->bd_disk;
1418 struct block_device *victim = NULL;
1419
1420 mutex_lock_nested(&bdev->bd_mutex, for_part);
1421 if (for_part)
1422 bdev->bd_part_count--;
1423
1424 if (!--bdev->bd_openers) {
1425 WARN_ON_ONCE(bdev->bd_holders);
1426 sync_blockdev(bdev);
1427 kill_bdev(bdev);
1428 /* ->release can cause the old bdi to disappear,
1429 * so must switch it out first
1430 */
1431 bdev_inode_switch_bdi(bdev->bd_inode,
1432 &default_backing_dev_info);
1433 }
1434 if (bdev->bd_contains == bdev) {
1435 if (disk->fops->release)
1436 disk->fops->release(disk, mode);
1437 }
1438 if (!bdev->bd_openers) {
1439 struct module *owner = disk->fops->owner;
1440
1441 disk_put_part(bdev->bd_part);
1442 bdev->bd_part = NULL;
1443 bdev->bd_disk = NULL;
1444 if (bdev != bdev->bd_contains)
1445 victim = bdev->bd_contains;
1446 bdev->bd_contains = NULL;
1447
1448 put_disk(disk);
1449 module_put(owner);
1450 }
1451 mutex_unlock(&bdev->bd_mutex);
1452 bdput(bdev);
1453 if (victim)
1454 __blkdev_put(victim, mode, 1);
1455 }
1456
1457 void blkdev_put(struct block_device *bdev, fmode_t mode)
1458 {
1459 mutex_lock(&bdev->bd_mutex);
1460
1461 if (mode & FMODE_EXCL) {
1462 bool bdev_free;
1463
1464 /*
1465 * Release a claim on the device. The holder fields
1466 * are protected with bdev_lock. bd_mutex is to
1467 * synchronize disk_holder unlinking.
1468 */
1469 spin_lock(&bdev_lock);
1470
1471 WARN_ON_ONCE(--bdev->bd_holders < 0);
1472 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1473
1474 /* bd_contains might point to self, check in a separate step */
1475 if ((bdev_free = !bdev->bd_holders))
1476 bdev->bd_holder = NULL;
1477 if (!bdev->bd_contains->bd_holders)
1478 bdev->bd_contains->bd_holder = NULL;
1479
1480 spin_unlock(&bdev_lock);
1481
1482 /*
1483 * If this was the last claim, remove holder link and
1484 * unblock evpoll if it was a write holder.
1485 */
1486 if (bdev_free && bdev->bd_write_holder) {
1487 disk_unblock_events(bdev->bd_disk);
1488 bdev->bd_write_holder = false;
1489 }
1490 }
1491
1492 /*
1493 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1494 * event. This is to ensure detection of media removal commanded
1495 * from userland - e.g. eject(1).
1496 */
1497 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1498
1499 mutex_unlock(&bdev->bd_mutex);
1500
1501 __blkdev_put(bdev, mode, 0);
1502 }
1503 EXPORT_SYMBOL(blkdev_put);
1504
1505 static int blkdev_close(struct inode * inode, struct file * filp)
1506 {
1507 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1508 blkdev_put(bdev, filp->f_mode);
1509 return 0;
1510 }
1511
1512 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1513 {
1514 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1515 fmode_t mode = file->f_mode;
1516
1517 /*
1518 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1519 * to updated it before every ioctl.
1520 */
1521 if (file->f_flags & O_NDELAY)
1522 mode |= FMODE_NDELAY;
1523 else
1524 mode &= ~FMODE_NDELAY;
1525
1526 return blkdev_ioctl(bdev, mode, cmd, arg);
1527 }
1528
1529 /*
1530 * Write data to the block device. Only intended for the block device itself
1531 * and the raw driver which basically is a fake block device.
1532 *
1533 * Does not take i_mutex for the write and thus is not for general purpose
1534 * use.
1535 */
1536 ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1537 unsigned long nr_segs, loff_t pos)
1538 {
1539 struct file *file = iocb->ki_filp;
1540 struct blk_plug plug;
1541 ssize_t ret;
1542
1543 BUG_ON(iocb->ki_pos != pos);
1544
1545 blk_start_plug(&plug);
1546 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1547 if (ret > 0 || ret == -EIOCBQUEUED) {
1548 ssize_t err;
1549
1550 err = generic_write_sync(file, pos, ret);
1551 if (err < 0 && ret > 0)
1552 ret = err;
1553 }
1554 blk_finish_plug(&plug);
1555 return ret;
1556 }
1557 EXPORT_SYMBOL_GPL(blkdev_aio_write);
1558
1559 static ssize_t blkdev_aio_read(struct kiocb *iocb, const struct iovec *iov,
1560 unsigned long nr_segs, loff_t pos)
1561 {
1562 struct file *file = iocb->ki_filp;
1563 struct inode *bd_inode = file->f_mapping->host;
1564 loff_t size = i_size_read(bd_inode);
1565
1566 if (pos >= size)
1567 return 0;
1568
1569 size -= pos;
1570 if (size < iocb->ki_left)
1571 nr_segs = iov_shorten((struct iovec *)iov, nr_segs, size);
1572 return generic_file_aio_read(iocb, iov, nr_segs, pos);
1573 }
1574
1575 /*
1576 * Try to release a page associated with block device when the system
1577 * is under memory pressure.
1578 */
1579 static int blkdev_releasepage(struct page *page, gfp_t wait)
1580 {
1581 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1582
1583 if (super && super->s_op->bdev_try_to_free_page)
1584 return super->s_op->bdev_try_to_free_page(super, page, wait);
1585
1586 return try_to_free_buffers(page);
1587 }
1588
1589 static const struct address_space_operations def_blk_aops = {
1590 .readpage = blkdev_readpage,
1591 .writepage = blkdev_writepage,
1592 .write_begin = blkdev_write_begin,
1593 .write_end = blkdev_write_end,
1594 .writepages = generic_writepages,
1595 .releasepage = blkdev_releasepage,
1596 .direct_IO = blkdev_direct_IO,
1597 };
1598
1599 const struct file_operations def_blk_fops = {
1600 .open = blkdev_open,
1601 .release = blkdev_close,
1602 .llseek = block_llseek,
1603 .read = do_sync_read,
1604 .write = do_sync_write,
1605 .aio_read = blkdev_aio_read,
1606 .aio_write = blkdev_aio_write,
1607 .mmap = generic_file_mmap,
1608 .fsync = blkdev_fsync,
1609 .unlocked_ioctl = block_ioctl,
1610 #ifdef CONFIG_COMPAT
1611 .compat_ioctl = compat_blkdev_ioctl,
1612 #endif
1613 .splice_read = generic_file_splice_read,
1614 .splice_write = generic_file_splice_write,
1615 };
1616
1617 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1618 {
1619 int res;
1620 mm_segment_t old_fs = get_fs();
1621 set_fs(KERNEL_DS);
1622 res = blkdev_ioctl(bdev, 0, cmd, arg);
1623 set_fs(old_fs);
1624 return res;
1625 }
1626
1627 EXPORT_SYMBOL(ioctl_by_bdev);
1628
1629 /**
1630 * lookup_bdev - lookup a struct block_device by name
1631 * @pathname: special file representing the block device
1632 *
1633 * Get a reference to the blockdevice at @pathname in the current
1634 * namespace if possible and return it. Return ERR_PTR(error)
1635 * otherwise.
1636 */
1637 struct block_device *lookup_bdev(const char *pathname)
1638 {
1639 struct block_device *bdev;
1640 struct inode *inode;
1641 struct path path;
1642 int error;
1643
1644 if (!pathname || !*pathname)
1645 return ERR_PTR(-EINVAL);
1646
1647 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1648 if (error)
1649 return ERR_PTR(error);
1650
1651 inode = path.dentry->d_inode;
1652 error = -ENOTBLK;
1653 if (!S_ISBLK(inode->i_mode))
1654 goto fail;
1655 error = -EACCES;
1656 if (path.mnt->mnt_flags & MNT_NODEV)
1657 goto fail;
1658 error = -ENOMEM;
1659 bdev = bd_acquire(inode);
1660 if (!bdev)
1661 goto fail;
1662 out:
1663 path_put(&path);
1664 return bdev;
1665 fail:
1666 bdev = ERR_PTR(error);
1667 goto out;
1668 }
1669 EXPORT_SYMBOL(lookup_bdev);
1670
1671 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1672 {
1673 struct super_block *sb = get_super(bdev);
1674 int res = 0;
1675
1676 if (sb) {
1677 /*
1678 * no need to lock the super, get_super holds the
1679 * read mutex so the filesystem cannot go away
1680 * under us (->put_super runs with the write lock
1681 * hold).
1682 */
1683 shrink_dcache_sb(sb);
1684 res = invalidate_inodes(sb, kill_dirty);
1685 drop_super(sb);
1686 }
1687 invalidate_bdev(bdev);
1688 return res;
1689 }
1690 EXPORT_SYMBOL(__invalidate_device);
1691
1692 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1693 {
1694 struct inode *inode, *old_inode = NULL;
1695
1696 spin_lock(&inode_sb_list_lock);
1697 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1698 struct address_space *mapping = inode->i_mapping;
1699 struct block_device *bdev;
1700
1701 spin_lock(&inode->i_lock);
1702 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1703 mapping->nrpages == 0) {
1704 spin_unlock(&inode->i_lock);
1705 continue;
1706 }
1707 __iget(inode);
1708 spin_unlock(&inode->i_lock);
1709 spin_unlock(&inode_sb_list_lock);
1710 /*
1711 * We hold a reference to 'inode' so it couldn't have been
1712 * removed from s_inodes list while we dropped the
1713 * inode_sb_list_lock. We cannot iput the inode now as we can
1714 * be holding the last reference and we cannot iput it under
1715 * inode_sb_list_lock. So we keep the reference and iput it
1716 * later.
1717 */
1718 iput(old_inode);
1719 old_inode = inode;
1720 bdev = I_BDEV(inode);
1721
1722 mutex_lock(&bdev->bd_mutex);
1723 if (bdev->bd_openers)
1724 func(bdev, arg);
1725 mutex_unlock(&bdev->bd_mutex);
1726
1727 spin_lock(&inode_sb_list_lock);
1728 }
1729 spin_unlock(&inode_sb_list_lock);
1730 iput(old_inode);
1731 }