Merge branch 'akpm' (incoming from Andrew)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h> /* for struct sg_iovec */
32
33 #include <trace/events/block.h>
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 static mempool_t *bio_split_pool __read_mostly;
42
43 /*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
48 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
49 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
50 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51 };
52 #undef BV
53
54 /*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
58 struct bio_set *fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60
61 /*
62 * Our slab pool management
63 */
64 struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
105 GFP_KERNEL);
106 if (!new_bio_slabs)
107 goto out_unlock;
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118 if (!slab)
119 goto out_unlock;
120
121 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125 out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155 out:
156 mutex_unlock(&bio_slab_lock);
157 }
158
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 return bvec_slabs[idx].nr_vecs;
162 }
163
164 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
165 {
166 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167
168 if (idx == BIOVEC_MAX_IDX)
169 mempool_free(bv, bs->bvec_pool);
170 else {
171 struct biovec_slab *bvs = bvec_slabs + idx;
172
173 kmem_cache_free(bvs->slab, bv);
174 }
175 }
176
177 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
178 struct bio_set *bs)
179 {
180 struct bio_vec *bvl;
181
182 /*
183 * see comment near bvec_array define!
184 */
185 switch (nr) {
186 case 1:
187 *idx = 0;
188 break;
189 case 2 ... 4:
190 *idx = 1;
191 break;
192 case 5 ... 16:
193 *idx = 2;
194 break;
195 case 17 ... 64:
196 *idx = 3;
197 break;
198 case 65 ... 128:
199 *idx = 4;
200 break;
201 case 129 ... BIO_MAX_PAGES:
202 *idx = 5;
203 break;
204 default:
205 return NULL;
206 }
207
208 /*
209 * idx now points to the pool we want to allocate from. only the
210 * 1-vec entry pool is mempool backed.
211 */
212 if (*idx == BIOVEC_MAX_IDX) {
213 fallback:
214 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
215 } else {
216 struct biovec_slab *bvs = bvec_slabs + *idx;
217 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218
219 /*
220 * Make this allocation restricted and don't dump info on
221 * allocation failures, since we'll fallback to the mempool
222 * in case of failure.
223 */
224 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
225
226 /*
227 * Try a slab allocation. If this fails and __GFP_WAIT
228 * is set, retry with the 1-entry mempool
229 */
230 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 *idx = BIOVEC_MAX_IDX;
233 goto fallback;
234 }
235 }
236
237 return bvl;
238 }
239
240 static void __bio_free(struct bio *bio)
241 {
242 bio_disassociate_task(bio);
243
244 if (bio_integrity(bio))
245 bio_integrity_free(bio);
246 }
247
248 static void bio_free(struct bio *bio)
249 {
250 struct bio_set *bs = bio->bi_pool;
251 void *p;
252
253 __bio_free(bio);
254
255 if (bs) {
256 if (bio_has_allocated_vec(bio))
257 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 void bio_init(struct bio *bio)
273 {
274 memset(bio, 0, sizeof(*bio));
275 bio->bi_flags = 1 << BIO_UPTODATE;
276 atomic_set(&bio->bi_cnt, 1);
277 }
278 EXPORT_SYMBOL(bio_init);
279
280 /**
281 * bio_reset - reinitialize a bio
282 * @bio: bio to reset
283 *
284 * Description:
285 * After calling bio_reset(), @bio will be in the same state as a freshly
286 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
287 * preserved are the ones that are initialized by bio_alloc_bioset(). See
288 * comment in struct bio.
289 */
290 void bio_reset(struct bio *bio)
291 {
292 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293
294 __bio_free(bio);
295
296 memset(bio, 0, BIO_RESET_BYTES);
297 bio->bi_flags = flags|(1 << BIO_UPTODATE);
298 }
299 EXPORT_SYMBOL(bio_reset);
300
301 /**
302 * bio_alloc_bioset - allocate a bio for I/O
303 * @gfp_mask: the GFP_ mask given to the slab allocator
304 * @nr_iovecs: number of iovecs to pre-allocate
305 * @bs: the bio_set to allocate from.
306 *
307 * Description:
308 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
309 * backed by the @bs's mempool.
310 *
311 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
312 * able to allocate a bio. This is due to the mempool guarantees. To make this
313 * work, callers must never allocate more than 1 bio at a time from this pool.
314 * Callers that need to allocate more than 1 bio must always submit the
315 * previously allocated bio for IO before attempting to allocate a new one.
316 * Failure to do so can cause deadlocks under memory pressure.
317 *
318 * RETURNS:
319 * Pointer to new bio on success, NULL on failure.
320 */
321 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
322 {
323 unsigned front_pad;
324 unsigned inline_vecs;
325 unsigned long idx = BIO_POOL_NONE;
326 struct bio_vec *bvl = NULL;
327 struct bio *bio;
328 void *p;
329
330 if (!bs) {
331 if (nr_iovecs > UIO_MAXIOV)
332 return NULL;
333
334 p = kmalloc(sizeof(struct bio) +
335 nr_iovecs * sizeof(struct bio_vec),
336 gfp_mask);
337 front_pad = 0;
338 inline_vecs = nr_iovecs;
339 } else {
340 p = mempool_alloc(bs->bio_pool, gfp_mask);
341 front_pad = bs->front_pad;
342 inline_vecs = BIO_INLINE_VECS;
343 }
344
345 if (unlikely(!p))
346 return NULL;
347
348 bio = p + front_pad;
349 bio_init(bio);
350
351 if (nr_iovecs > inline_vecs) {
352 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
353 if (unlikely(!bvl))
354 goto err_free;
355 } else if (nr_iovecs) {
356 bvl = bio->bi_inline_vecs;
357 }
358
359 bio->bi_pool = bs;
360 bio->bi_flags |= idx << BIO_POOL_OFFSET;
361 bio->bi_max_vecs = nr_iovecs;
362 bio->bi_io_vec = bvl;
363 return bio;
364
365 err_free:
366 mempool_free(p, bs->bio_pool);
367 return NULL;
368 }
369 EXPORT_SYMBOL(bio_alloc_bioset);
370
371 void zero_fill_bio(struct bio *bio)
372 {
373 unsigned long flags;
374 struct bio_vec *bv;
375 int i;
376
377 bio_for_each_segment(bv, bio, i) {
378 char *data = bvec_kmap_irq(bv, &flags);
379 memset(data, 0, bv->bv_len);
380 flush_dcache_page(bv->bv_page);
381 bvec_kunmap_irq(data, &flags);
382 }
383 }
384 EXPORT_SYMBOL(zero_fill_bio);
385
386 /**
387 * bio_put - release a reference to a bio
388 * @bio: bio to release reference to
389 *
390 * Description:
391 * Put a reference to a &struct bio, either one you have gotten with
392 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
393 **/
394 void bio_put(struct bio *bio)
395 {
396 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
397
398 /*
399 * last put frees it
400 */
401 if (atomic_dec_and_test(&bio->bi_cnt))
402 bio_free(bio);
403 }
404 EXPORT_SYMBOL(bio_put);
405
406 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
407 {
408 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
409 blk_recount_segments(q, bio);
410
411 return bio->bi_phys_segments;
412 }
413 EXPORT_SYMBOL(bio_phys_segments);
414
415 /**
416 * __bio_clone - clone a bio
417 * @bio: destination bio
418 * @bio_src: bio to clone
419 *
420 * Clone a &bio. Caller will own the returned bio, but not
421 * the actual data it points to. Reference count of returned
422 * bio will be one.
423 */
424 void __bio_clone(struct bio *bio, struct bio *bio_src)
425 {
426 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
427 bio_src->bi_max_vecs * sizeof(struct bio_vec));
428
429 /*
430 * most users will be overriding ->bi_bdev with a new target,
431 * so we don't set nor calculate new physical/hw segment counts here
432 */
433 bio->bi_sector = bio_src->bi_sector;
434 bio->bi_bdev = bio_src->bi_bdev;
435 bio->bi_flags |= 1 << BIO_CLONED;
436 bio->bi_rw = bio_src->bi_rw;
437 bio->bi_vcnt = bio_src->bi_vcnt;
438 bio->bi_size = bio_src->bi_size;
439 bio->bi_idx = bio_src->bi_idx;
440 }
441 EXPORT_SYMBOL(__bio_clone);
442
443 /**
444 * bio_clone_bioset - clone a bio
445 * @bio: bio to clone
446 * @gfp_mask: allocation priority
447 * @bs: bio_set to allocate from
448 *
449 * Like __bio_clone, only also allocates the returned bio
450 */
451 struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
452 struct bio_set *bs)
453 {
454 struct bio *b;
455
456 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
457 if (!b)
458 return NULL;
459
460 __bio_clone(b, bio);
461
462 if (bio_integrity(bio)) {
463 int ret;
464
465 ret = bio_integrity_clone(b, bio, gfp_mask);
466
467 if (ret < 0) {
468 bio_put(b);
469 return NULL;
470 }
471 }
472
473 return b;
474 }
475 EXPORT_SYMBOL(bio_clone_bioset);
476
477 /**
478 * bio_get_nr_vecs - return approx number of vecs
479 * @bdev: I/O target
480 *
481 * Return the approximate number of pages we can send to this target.
482 * There's no guarantee that you will be able to fit this number of pages
483 * into a bio, it does not account for dynamic restrictions that vary
484 * on offset.
485 */
486 int bio_get_nr_vecs(struct block_device *bdev)
487 {
488 struct request_queue *q = bdev_get_queue(bdev);
489 int nr_pages;
490
491 nr_pages = min_t(unsigned,
492 queue_max_segments(q),
493 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
494
495 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
496
497 }
498 EXPORT_SYMBOL(bio_get_nr_vecs);
499
500 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
501 *page, unsigned int len, unsigned int offset,
502 unsigned short max_sectors)
503 {
504 int retried_segments = 0;
505 struct bio_vec *bvec;
506
507 /*
508 * cloned bio must not modify vec list
509 */
510 if (unlikely(bio_flagged(bio, BIO_CLONED)))
511 return 0;
512
513 if (((bio->bi_size + len) >> 9) > max_sectors)
514 return 0;
515
516 /*
517 * For filesystems with a blocksize smaller than the pagesize
518 * we will often be called with the same page as last time and
519 * a consecutive offset. Optimize this special case.
520 */
521 if (bio->bi_vcnt > 0) {
522 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
523
524 if (page == prev->bv_page &&
525 offset == prev->bv_offset + prev->bv_len) {
526 unsigned int prev_bv_len = prev->bv_len;
527 prev->bv_len += len;
528
529 if (q->merge_bvec_fn) {
530 struct bvec_merge_data bvm = {
531 /* prev_bvec is already charged in
532 bi_size, discharge it in order to
533 simulate merging updated prev_bvec
534 as new bvec. */
535 .bi_bdev = bio->bi_bdev,
536 .bi_sector = bio->bi_sector,
537 .bi_size = bio->bi_size - prev_bv_len,
538 .bi_rw = bio->bi_rw,
539 };
540
541 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
542 prev->bv_len -= len;
543 return 0;
544 }
545 }
546
547 goto done;
548 }
549 }
550
551 if (bio->bi_vcnt >= bio->bi_max_vecs)
552 return 0;
553
554 /*
555 * we might lose a segment or two here, but rather that than
556 * make this too complex.
557 */
558
559 while (bio->bi_phys_segments >= queue_max_segments(q)) {
560
561 if (retried_segments)
562 return 0;
563
564 retried_segments = 1;
565 blk_recount_segments(q, bio);
566 }
567
568 /*
569 * setup the new entry, we might clear it again later if we
570 * cannot add the page
571 */
572 bvec = &bio->bi_io_vec[bio->bi_vcnt];
573 bvec->bv_page = page;
574 bvec->bv_len = len;
575 bvec->bv_offset = offset;
576
577 /*
578 * if queue has other restrictions (eg varying max sector size
579 * depending on offset), it can specify a merge_bvec_fn in the
580 * queue to get further control
581 */
582 if (q->merge_bvec_fn) {
583 struct bvec_merge_data bvm = {
584 .bi_bdev = bio->bi_bdev,
585 .bi_sector = bio->bi_sector,
586 .bi_size = bio->bi_size,
587 .bi_rw = bio->bi_rw,
588 };
589
590 /*
591 * merge_bvec_fn() returns number of bytes it can accept
592 * at this offset
593 */
594 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
595 bvec->bv_page = NULL;
596 bvec->bv_len = 0;
597 bvec->bv_offset = 0;
598 return 0;
599 }
600 }
601
602 /* If we may be able to merge these biovecs, force a recount */
603 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
604 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
605
606 bio->bi_vcnt++;
607 bio->bi_phys_segments++;
608 done:
609 bio->bi_size += len;
610 return len;
611 }
612
613 /**
614 * bio_add_pc_page - attempt to add page to bio
615 * @q: the target queue
616 * @bio: destination bio
617 * @page: page to add
618 * @len: vec entry length
619 * @offset: vec entry offset
620 *
621 * Attempt to add a page to the bio_vec maplist. This can fail for a
622 * number of reasons, such as the bio being full or target block device
623 * limitations. The target block device must allow bio's up to PAGE_SIZE,
624 * so it is always possible to add a single page to an empty bio.
625 *
626 * This should only be used by REQ_PC bios.
627 */
628 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
629 unsigned int len, unsigned int offset)
630 {
631 return __bio_add_page(q, bio, page, len, offset,
632 queue_max_hw_sectors(q));
633 }
634 EXPORT_SYMBOL(bio_add_pc_page);
635
636 /**
637 * bio_add_page - attempt to add page to bio
638 * @bio: destination bio
639 * @page: page to add
640 * @len: vec entry length
641 * @offset: vec entry offset
642 *
643 * Attempt to add a page to the bio_vec maplist. This can fail for a
644 * number of reasons, such as the bio being full or target block device
645 * limitations. The target block device must allow bio's up to PAGE_SIZE,
646 * so it is always possible to add a single page to an empty bio.
647 */
648 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
649 unsigned int offset)
650 {
651 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
652 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
653 }
654 EXPORT_SYMBOL(bio_add_page);
655
656 struct bio_map_data {
657 struct bio_vec *iovecs;
658 struct sg_iovec *sgvecs;
659 int nr_sgvecs;
660 int is_our_pages;
661 };
662
663 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
664 struct sg_iovec *iov, int iov_count,
665 int is_our_pages)
666 {
667 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
668 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
669 bmd->nr_sgvecs = iov_count;
670 bmd->is_our_pages = is_our_pages;
671 bio->bi_private = bmd;
672 }
673
674 static void bio_free_map_data(struct bio_map_data *bmd)
675 {
676 kfree(bmd->iovecs);
677 kfree(bmd->sgvecs);
678 kfree(bmd);
679 }
680
681 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
682 unsigned int iov_count,
683 gfp_t gfp_mask)
684 {
685 struct bio_map_data *bmd;
686
687 if (iov_count > UIO_MAXIOV)
688 return NULL;
689
690 bmd = kmalloc(sizeof(*bmd), gfp_mask);
691 if (!bmd)
692 return NULL;
693
694 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
695 if (!bmd->iovecs) {
696 kfree(bmd);
697 return NULL;
698 }
699
700 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
701 if (bmd->sgvecs)
702 return bmd;
703
704 kfree(bmd->iovecs);
705 kfree(bmd);
706 return NULL;
707 }
708
709 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
710 struct sg_iovec *iov, int iov_count,
711 int to_user, int from_user, int do_free_page)
712 {
713 int ret = 0, i;
714 struct bio_vec *bvec;
715 int iov_idx = 0;
716 unsigned int iov_off = 0;
717
718 __bio_for_each_segment(bvec, bio, i, 0) {
719 char *bv_addr = page_address(bvec->bv_page);
720 unsigned int bv_len = iovecs[i].bv_len;
721
722 while (bv_len && iov_idx < iov_count) {
723 unsigned int bytes;
724 char __user *iov_addr;
725
726 bytes = min_t(unsigned int,
727 iov[iov_idx].iov_len - iov_off, bv_len);
728 iov_addr = iov[iov_idx].iov_base + iov_off;
729
730 if (!ret) {
731 if (to_user)
732 ret = copy_to_user(iov_addr, bv_addr,
733 bytes);
734
735 if (from_user)
736 ret = copy_from_user(bv_addr, iov_addr,
737 bytes);
738
739 if (ret)
740 ret = -EFAULT;
741 }
742
743 bv_len -= bytes;
744 bv_addr += bytes;
745 iov_addr += bytes;
746 iov_off += bytes;
747
748 if (iov[iov_idx].iov_len == iov_off) {
749 iov_idx++;
750 iov_off = 0;
751 }
752 }
753
754 if (do_free_page)
755 __free_page(bvec->bv_page);
756 }
757
758 return ret;
759 }
760
761 /**
762 * bio_uncopy_user - finish previously mapped bio
763 * @bio: bio being terminated
764 *
765 * Free pages allocated from bio_copy_user() and write back data
766 * to user space in case of a read.
767 */
768 int bio_uncopy_user(struct bio *bio)
769 {
770 struct bio_map_data *bmd = bio->bi_private;
771 int ret = 0;
772
773 if (!bio_flagged(bio, BIO_NULL_MAPPED))
774 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
775 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
776 0, bmd->is_our_pages);
777 bio_free_map_data(bmd);
778 bio_put(bio);
779 return ret;
780 }
781 EXPORT_SYMBOL(bio_uncopy_user);
782
783 /**
784 * bio_copy_user_iov - copy user data to bio
785 * @q: destination block queue
786 * @map_data: pointer to the rq_map_data holding pages (if necessary)
787 * @iov: the iovec.
788 * @iov_count: number of elements in the iovec
789 * @write_to_vm: bool indicating writing to pages or not
790 * @gfp_mask: memory allocation flags
791 *
792 * Prepares and returns a bio for indirect user io, bouncing data
793 * to/from kernel pages as necessary. Must be paired with
794 * call bio_uncopy_user() on io completion.
795 */
796 struct bio *bio_copy_user_iov(struct request_queue *q,
797 struct rq_map_data *map_data,
798 struct sg_iovec *iov, int iov_count,
799 int write_to_vm, gfp_t gfp_mask)
800 {
801 struct bio_map_data *bmd;
802 struct bio_vec *bvec;
803 struct page *page;
804 struct bio *bio;
805 int i, ret;
806 int nr_pages = 0;
807 unsigned int len = 0;
808 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
809
810 for (i = 0; i < iov_count; i++) {
811 unsigned long uaddr;
812 unsigned long end;
813 unsigned long start;
814
815 uaddr = (unsigned long)iov[i].iov_base;
816 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
817 start = uaddr >> PAGE_SHIFT;
818
819 /*
820 * Overflow, abort
821 */
822 if (end < start)
823 return ERR_PTR(-EINVAL);
824
825 nr_pages += end - start;
826 len += iov[i].iov_len;
827 }
828
829 if (offset)
830 nr_pages++;
831
832 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
833 if (!bmd)
834 return ERR_PTR(-ENOMEM);
835
836 ret = -ENOMEM;
837 bio = bio_kmalloc(gfp_mask, nr_pages);
838 if (!bio)
839 goto out_bmd;
840
841 if (!write_to_vm)
842 bio->bi_rw |= REQ_WRITE;
843
844 ret = 0;
845
846 if (map_data) {
847 nr_pages = 1 << map_data->page_order;
848 i = map_data->offset / PAGE_SIZE;
849 }
850 while (len) {
851 unsigned int bytes = PAGE_SIZE;
852
853 bytes -= offset;
854
855 if (bytes > len)
856 bytes = len;
857
858 if (map_data) {
859 if (i == map_data->nr_entries * nr_pages) {
860 ret = -ENOMEM;
861 break;
862 }
863
864 page = map_data->pages[i / nr_pages];
865 page += (i % nr_pages);
866
867 i++;
868 } else {
869 page = alloc_page(q->bounce_gfp | gfp_mask);
870 if (!page) {
871 ret = -ENOMEM;
872 break;
873 }
874 }
875
876 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
877 break;
878
879 len -= bytes;
880 offset = 0;
881 }
882
883 if (ret)
884 goto cleanup;
885
886 /*
887 * success
888 */
889 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
890 (map_data && map_data->from_user)) {
891 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
892 if (ret)
893 goto cleanup;
894 }
895
896 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
897 return bio;
898 cleanup:
899 if (!map_data)
900 bio_for_each_segment(bvec, bio, i)
901 __free_page(bvec->bv_page);
902
903 bio_put(bio);
904 out_bmd:
905 bio_free_map_data(bmd);
906 return ERR_PTR(ret);
907 }
908
909 /**
910 * bio_copy_user - copy user data to bio
911 * @q: destination block queue
912 * @map_data: pointer to the rq_map_data holding pages (if necessary)
913 * @uaddr: start of user address
914 * @len: length in bytes
915 * @write_to_vm: bool indicating writing to pages or not
916 * @gfp_mask: memory allocation flags
917 *
918 * Prepares and returns a bio for indirect user io, bouncing data
919 * to/from kernel pages as necessary. Must be paired with
920 * call bio_uncopy_user() on io completion.
921 */
922 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
923 unsigned long uaddr, unsigned int len,
924 int write_to_vm, gfp_t gfp_mask)
925 {
926 struct sg_iovec iov;
927
928 iov.iov_base = (void __user *)uaddr;
929 iov.iov_len = len;
930
931 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
932 }
933 EXPORT_SYMBOL(bio_copy_user);
934
935 static struct bio *__bio_map_user_iov(struct request_queue *q,
936 struct block_device *bdev,
937 struct sg_iovec *iov, int iov_count,
938 int write_to_vm, gfp_t gfp_mask)
939 {
940 int i, j;
941 int nr_pages = 0;
942 struct page **pages;
943 struct bio *bio;
944 int cur_page = 0;
945 int ret, offset;
946
947 for (i = 0; i < iov_count; i++) {
948 unsigned long uaddr = (unsigned long)iov[i].iov_base;
949 unsigned long len = iov[i].iov_len;
950 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
951 unsigned long start = uaddr >> PAGE_SHIFT;
952
953 /*
954 * Overflow, abort
955 */
956 if (end < start)
957 return ERR_PTR(-EINVAL);
958
959 nr_pages += end - start;
960 /*
961 * buffer must be aligned to at least hardsector size for now
962 */
963 if (uaddr & queue_dma_alignment(q))
964 return ERR_PTR(-EINVAL);
965 }
966
967 if (!nr_pages)
968 return ERR_PTR(-EINVAL);
969
970 bio = bio_kmalloc(gfp_mask, nr_pages);
971 if (!bio)
972 return ERR_PTR(-ENOMEM);
973
974 ret = -ENOMEM;
975 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
976 if (!pages)
977 goto out;
978
979 for (i = 0; i < iov_count; i++) {
980 unsigned long uaddr = (unsigned long)iov[i].iov_base;
981 unsigned long len = iov[i].iov_len;
982 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
983 unsigned long start = uaddr >> PAGE_SHIFT;
984 const int local_nr_pages = end - start;
985 const int page_limit = cur_page + local_nr_pages;
986
987 ret = get_user_pages_fast(uaddr, local_nr_pages,
988 write_to_vm, &pages[cur_page]);
989 if (ret < local_nr_pages) {
990 ret = -EFAULT;
991 goto out_unmap;
992 }
993
994 offset = uaddr & ~PAGE_MASK;
995 for (j = cur_page; j < page_limit; j++) {
996 unsigned int bytes = PAGE_SIZE - offset;
997
998 if (len <= 0)
999 break;
1000
1001 if (bytes > len)
1002 bytes = len;
1003
1004 /*
1005 * sorry...
1006 */
1007 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1008 bytes)
1009 break;
1010
1011 len -= bytes;
1012 offset = 0;
1013 }
1014
1015 cur_page = j;
1016 /*
1017 * release the pages we didn't map into the bio, if any
1018 */
1019 while (j < page_limit)
1020 page_cache_release(pages[j++]);
1021 }
1022
1023 kfree(pages);
1024
1025 /*
1026 * set data direction, and check if mapped pages need bouncing
1027 */
1028 if (!write_to_vm)
1029 bio->bi_rw |= REQ_WRITE;
1030
1031 bio->bi_bdev = bdev;
1032 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1033 return bio;
1034
1035 out_unmap:
1036 for (i = 0; i < nr_pages; i++) {
1037 if(!pages[i])
1038 break;
1039 page_cache_release(pages[i]);
1040 }
1041 out:
1042 kfree(pages);
1043 bio_put(bio);
1044 return ERR_PTR(ret);
1045 }
1046
1047 /**
1048 * bio_map_user - map user address into bio
1049 * @q: the struct request_queue for the bio
1050 * @bdev: destination block device
1051 * @uaddr: start of user address
1052 * @len: length in bytes
1053 * @write_to_vm: bool indicating writing to pages or not
1054 * @gfp_mask: memory allocation flags
1055 *
1056 * Map the user space address into a bio suitable for io to a block
1057 * device. Returns an error pointer in case of error.
1058 */
1059 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1060 unsigned long uaddr, unsigned int len, int write_to_vm,
1061 gfp_t gfp_mask)
1062 {
1063 struct sg_iovec iov;
1064
1065 iov.iov_base = (void __user *)uaddr;
1066 iov.iov_len = len;
1067
1068 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1069 }
1070 EXPORT_SYMBOL(bio_map_user);
1071
1072 /**
1073 * bio_map_user_iov - map user sg_iovec table into bio
1074 * @q: the struct request_queue for the bio
1075 * @bdev: destination block device
1076 * @iov: the iovec.
1077 * @iov_count: number of elements in the iovec
1078 * @write_to_vm: bool indicating writing to pages or not
1079 * @gfp_mask: memory allocation flags
1080 *
1081 * Map the user space address into a bio suitable for io to a block
1082 * device. Returns an error pointer in case of error.
1083 */
1084 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1085 struct sg_iovec *iov, int iov_count,
1086 int write_to_vm, gfp_t gfp_mask)
1087 {
1088 struct bio *bio;
1089
1090 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1091 gfp_mask);
1092 if (IS_ERR(bio))
1093 return bio;
1094
1095 /*
1096 * subtle -- if __bio_map_user() ended up bouncing a bio,
1097 * it would normally disappear when its bi_end_io is run.
1098 * however, we need it for the unmap, so grab an extra
1099 * reference to it
1100 */
1101 bio_get(bio);
1102
1103 return bio;
1104 }
1105
1106 static void __bio_unmap_user(struct bio *bio)
1107 {
1108 struct bio_vec *bvec;
1109 int i;
1110
1111 /*
1112 * make sure we dirty pages we wrote to
1113 */
1114 __bio_for_each_segment(bvec, bio, i, 0) {
1115 if (bio_data_dir(bio) == READ)
1116 set_page_dirty_lock(bvec->bv_page);
1117
1118 page_cache_release(bvec->bv_page);
1119 }
1120
1121 bio_put(bio);
1122 }
1123
1124 /**
1125 * bio_unmap_user - unmap a bio
1126 * @bio: the bio being unmapped
1127 *
1128 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1129 * a process context.
1130 *
1131 * bio_unmap_user() may sleep.
1132 */
1133 void bio_unmap_user(struct bio *bio)
1134 {
1135 __bio_unmap_user(bio);
1136 bio_put(bio);
1137 }
1138 EXPORT_SYMBOL(bio_unmap_user);
1139
1140 static void bio_map_kern_endio(struct bio *bio, int err)
1141 {
1142 bio_put(bio);
1143 }
1144
1145 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1146 unsigned int len, gfp_t gfp_mask)
1147 {
1148 unsigned long kaddr = (unsigned long)data;
1149 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1150 unsigned long start = kaddr >> PAGE_SHIFT;
1151 const int nr_pages = end - start;
1152 int offset, i;
1153 struct bio *bio;
1154
1155 bio = bio_kmalloc(gfp_mask, nr_pages);
1156 if (!bio)
1157 return ERR_PTR(-ENOMEM);
1158
1159 offset = offset_in_page(kaddr);
1160 for (i = 0; i < nr_pages; i++) {
1161 unsigned int bytes = PAGE_SIZE - offset;
1162
1163 if (len <= 0)
1164 break;
1165
1166 if (bytes > len)
1167 bytes = len;
1168
1169 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1170 offset) < bytes)
1171 break;
1172
1173 data += bytes;
1174 len -= bytes;
1175 offset = 0;
1176 }
1177
1178 bio->bi_end_io = bio_map_kern_endio;
1179 return bio;
1180 }
1181
1182 /**
1183 * bio_map_kern - map kernel address into bio
1184 * @q: the struct request_queue for the bio
1185 * @data: pointer to buffer to map
1186 * @len: length in bytes
1187 * @gfp_mask: allocation flags for bio allocation
1188 *
1189 * Map the kernel address into a bio suitable for io to a block
1190 * device. Returns an error pointer in case of error.
1191 */
1192 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1193 gfp_t gfp_mask)
1194 {
1195 struct bio *bio;
1196
1197 bio = __bio_map_kern(q, data, len, gfp_mask);
1198 if (IS_ERR(bio))
1199 return bio;
1200
1201 if (bio->bi_size == len)
1202 return bio;
1203
1204 /*
1205 * Don't support partial mappings.
1206 */
1207 bio_put(bio);
1208 return ERR_PTR(-EINVAL);
1209 }
1210 EXPORT_SYMBOL(bio_map_kern);
1211
1212 static void bio_copy_kern_endio(struct bio *bio, int err)
1213 {
1214 struct bio_vec *bvec;
1215 const int read = bio_data_dir(bio) == READ;
1216 struct bio_map_data *bmd = bio->bi_private;
1217 int i;
1218 char *p = bmd->sgvecs[0].iov_base;
1219
1220 __bio_for_each_segment(bvec, bio, i, 0) {
1221 char *addr = page_address(bvec->bv_page);
1222 int len = bmd->iovecs[i].bv_len;
1223
1224 if (read)
1225 memcpy(p, addr, len);
1226
1227 __free_page(bvec->bv_page);
1228 p += len;
1229 }
1230
1231 bio_free_map_data(bmd);
1232 bio_put(bio);
1233 }
1234
1235 /**
1236 * bio_copy_kern - copy kernel address into bio
1237 * @q: the struct request_queue for the bio
1238 * @data: pointer to buffer to copy
1239 * @len: length in bytes
1240 * @gfp_mask: allocation flags for bio and page allocation
1241 * @reading: data direction is READ
1242 *
1243 * copy the kernel address into a bio suitable for io to a block
1244 * device. Returns an error pointer in case of error.
1245 */
1246 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1247 gfp_t gfp_mask, int reading)
1248 {
1249 struct bio *bio;
1250 struct bio_vec *bvec;
1251 int i;
1252
1253 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1254 if (IS_ERR(bio))
1255 return bio;
1256
1257 if (!reading) {
1258 void *p = data;
1259
1260 bio_for_each_segment(bvec, bio, i) {
1261 char *addr = page_address(bvec->bv_page);
1262
1263 memcpy(addr, p, bvec->bv_len);
1264 p += bvec->bv_len;
1265 }
1266 }
1267
1268 bio->bi_end_io = bio_copy_kern_endio;
1269
1270 return bio;
1271 }
1272 EXPORT_SYMBOL(bio_copy_kern);
1273
1274 /*
1275 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1276 * for performing direct-IO in BIOs.
1277 *
1278 * The problem is that we cannot run set_page_dirty() from interrupt context
1279 * because the required locks are not interrupt-safe. So what we can do is to
1280 * mark the pages dirty _before_ performing IO. And in interrupt context,
1281 * check that the pages are still dirty. If so, fine. If not, redirty them
1282 * in process context.
1283 *
1284 * We special-case compound pages here: normally this means reads into hugetlb
1285 * pages. The logic in here doesn't really work right for compound pages
1286 * because the VM does not uniformly chase down the head page in all cases.
1287 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1288 * handle them at all. So we skip compound pages here at an early stage.
1289 *
1290 * Note that this code is very hard to test under normal circumstances because
1291 * direct-io pins the pages with get_user_pages(). This makes
1292 * is_page_cache_freeable return false, and the VM will not clean the pages.
1293 * But other code (eg, flusher threads) could clean the pages if they are mapped
1294 * pagecache.
1295 *
1296 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1297 * deferred bio dirtying paths.
1298 */
1299
1300 /*
1301 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1302 */
1303 void bio_set_pages_dirty(struct bio *bio)
1304 {
1305 struct bio_vec *bvec = bio->bi_io_vec;
1306 int i;
1307
1308 for (i = 0; i < bio->bi_vcnt; i++) {
1309 struct page *page = bvec[i].bv_page;
1310
1311 if (page && !PageCompound(page))
1312 set_page_dirty_lock(page);
1313 }
1314 }
1315
1316 static void bio_release_pages(struct bio *bio)
1317 {
1318 struct bio_vec *bvec = bio->bi_io_vec;
1319 int i;
1320
1321 for (i = 0; i < bio->bi_vcnt; i++) {
1322 struct page *page = bvec[i].bv_page;
1323
1324 if (page)
1325 put_page(page);
1326 }
1327 }
1328
1329 /*
1330 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1331 * If they are, then fine. If, however, some pages are clean then they must
1332 * have been written out during the direct-IO read. So we take another ref on
1333 * the BIO and the offending pages and re-dirty the pages in process context.
1334 *
1335 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1336 * here on. It will run one page_cache_release() against each page and will
1337 * run one bio_put() against the BIO.
1338 */
1339
1340 static void bio_dirty_fn(struct work_struct *work);
1341
1342 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1343 static DEFINE_SPINLOCK(bio_dirty_lock);
1344 static struct bio *bio_dirty_list;
1345
1346 /*
1347 * This runs in process context
1348 */
1349 static void bio_dirty_fn(struct work_struct *work)
1350 {
1351 unsigned long flags;
1352 struct bio *bio;
1353
1354 spin_lock_irqsave(&bio_dirty_lock, flags);
1355 bio = bio_dirty_list;
1356 bio_dirty_list = NULL;
1357 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1358
1359 while (bio) {
1360 struct bio *next = bio->bi_private;
1361
1362 bio_set_pages_dirty(bio);
1363 bio_release_pages(bio);
1364 bio_put(bio);
1365 bio = next;
1366 }
1367 }
1368
1369 void bio_check_pages_dirty(struct bio *bio)
1370 {
1371 struct bio_vec *bvec = bio->bi_io_vec;
1372 int nr_clean_pages = 0;
1373 int i;
1374
1375 for (i = 0; i < bio->bi_vcnt; i++) {
1376 struct page *page = bvec[i].bv_page;
1377
1378 if (PageDirty(page) || PageCompound(page)) {
1379 page_cache_release(page);
1380 bvec[i].bv_page = NULL;
1381 } else {
1382 nr_clean_pages++;
1383 }
1384 }
1385
1386 if (nr_clean_pages) {
1387 unsigned long flags;
1388
1389 spin_lock_irqsave(&bio_dirty_lock, flags);
1390 bio->bi_private = bio_dirty_list;
1391 bio_dirty_list = bio;
1392 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1393 schedule_work(&bio_dirty_work);
1394 } else {
1395 bio_put(bio);
1396 }
1397 }
1398
1399 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1400 void bio_flush_dcache_pages(struct bio *bi)
1401 {
1402 int i;
1403 struct bio_vec *bvec;
1404
1405 bio_for_each_segment(bvec, bi, i)
1406 flush_dcache_page(bvec->bv_page);
1407 }
1408 EXPORT_SYMBOL(bio_flush_dcache_pages);
1409 #endif
1410
1411 /**
1412 * bio_endio - end I/O on a bio
1413 * @bio: bio
1414 * @error: error, if any
1415 *
1416 * Description:
1417 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1418 * preferred way to end I/O on a bio, it takes care of clearing
1419 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1420 * established -Exxxx (-EIO, for instance) error values in case
1421 * something went wrong. No one should call bi_end_io() directly on a
1422 * bio unless they own it and thus know that it has an end_io
1423 * function.
1424 **/
1425 void bio_endio(struct bio *bio, int error)
1426 {
1427 if (error)
1428 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1429 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1430 error = -EIO;
1431
1432 if (bio->bi_end_io)
1433 bio->bi_end_io(bio, error);
1434 }
1435 EXPORT_SYMBOL(bio_endio);
1436
1437 void bio_pair_release(struct bio_pair *bp)
1438 {
1439 if (atomic_dec_and_test(&bp->cnt)) {
1440 struct bio *master = bp->bio1.bi_private;
1441
1442 bio_endio(master, bp->error);
1443 mempool_free(bp, bp->bio2.bi_private);
1444 }
1445 }
1446 EXPORT_SYMBOL(bio_pair_release);
1447
1448 static void bio_pair_end_1(struct bio *bi, int err)
1449 {
1450 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1451
1452 if (err)
1453 bp->error = err;
1454
1455 bio_pair_release(bp);
1456 }
1457
1458 static void bio_pair_end_2(struct bio *bi, int err)
1459 {
1460 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1461
1462 if (err)
1463 bp->error = err;
1464
1465 bio_pair_release(bp);
1466 }
1467
1468 /*
1469 * split a bio - only worry about a bio with a single page in its iovec
1470 */
1471 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1472 {
1473 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1474
1475 if (!bp)
1476 return bp;
1477
1478 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1479 bi->bi_sector + first_sectors);
1480
1481 BUG_ON(bi->bi_vcnt != 1 && bi->bi_vcnt != 0);
1482 BUG_ON(bi->bi_idx != 0);
1483 atomic_set(&bp->cnt, 3);
1484 bp->error = 0;
1485 bp->bio1 = *bi;
1486 bp->bio2 = *bi;
1487 bp->bio2.bi_sector += first_sectors;
1488 bp->bio2.bi_size -= first_sectors << 9;
1489 bp->bio1.bi_size = first_sectors << 9;
1490
1491 if (bi->bi_vcnt != 0) {
1492 bp->bv1 = bi->bi_io_vec[0];
1493 bp->bv2 = bi->bi_io_vec[0];
1494
1495 if (bio_is_rw(bi)) {
1496 bp->bv2.bv_offset += first_sectors << 9;
1497 bp->bv2.bv_len -= first_sectors << 9;
1498 bp->bv1.bv_len = first_sectors << 9;
1499 }
1500
1501 bp->bio1.bi_io_vec = &bp->bv1;
1502 bp->bio2.bi_io_vec = &bp->bv2;
1503
1504 bp->bio1.bi_max_vecs = 1;
1505 bp->bio2.bi_max_vecs = 1;
1506 }
1507
1508 bp->bio1.bi_end_io = bio_pair_end_1;
1509 bp->bio2.bi_end_io = bio_pair_end_2;
1510
1511 bp->bio1.bi_private = bi;
1512 bp->bio2.bi_private = bio_split_pool;
1513
1514 if (bio_integrity(bi))
1515 bio_integrity_split(bi, bp, first_sectors);
1516
1517 return bp;
1518 }
1519 EXPORT_SYMBOL(bio_split);
1520
1521 /**
1522 * bio_sector_offset - Find hardware sector offset in bio
1523 * @bio: bio to inspect
1524 * @index: bio_vec index
1525 * @offset: offset in bv_page
1526 *
1527 * Return the number of hardware sectors between beginning of bio
1528 * and an end point indicated by a bio_vec index and an offset
1529 * within that vector's page.
1530 */
1531 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1532 unsigned int offset)
1533 {
1534 unsigned int sector_sz;
1535 struct bio_vec *bv;
1536 sector_t sectors;
1537 int i;
1538
1539 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1540 sectors = 0;
1541
1542 if (index >= bio->bi_idx)
1543 index = bio->bi_vcnt - 1;
1544
1545 __bio_for_each_segment(bv, bio, i, 0) {
1546 if (i == index) {
1547 if (offset > bv->bv_offset)
1548 sectors += (offset - bv->bv_offset) / sector_sz;
1549 break;
1550 }
1551
1552 sectors += bv->bv_len / sector_sz;
1553 }
1554
1555 return sectors;
1556 }
1557 EXPORT_SYMBOL(bio_sector_offset);
1558
1559 /*
1560 * create memory pools for biovec's in a bio_set.
1561 * use the global biovec slabs created for general use.
1562 */
1563 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1564 {
1565 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1566
1567 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1568 if (!bs->bvec_pool)
1569 return -ENOMEM;
1570
1571 return 0;
1572 }
1573
1574 static void biovec_free_pools(struct bio_set *bs)
1575 {
1576 mempool_destroy(bs->bvec_pool);
1577 }
1578
1579 void bioset_free(struct bio_set *bs)
1580 {
1581 if (bs->bio_pool)
1582 mempool_destroy(bs->bio_pool);
1583
1584 bioset_integrity_free(bs);
1585 biovec_free_pools(bs);
1586 bio_put_slab(bs);
1587
1588 kfree(bs);
1589 }
1590 EXPORT_SYMBOL(bioset_free);
1591
1592 /**
1593 * bioset_create - Create a bio_set
1594 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1595 * @front_pad: Number of bytes to allocate in front of the returned bio
1596 *
1597 * Description:
1598 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1599 * to ask for a number of bytes to be allocated in front of the bio.
1600 * Front pad allocation is useful for embedding the bio inside
1601 * another structure, to avoid allocating extra data to go with the bio.
1602 * Note that the bio must be embedded at the END of that structure always,
1603 * or things will break badly.
1604 */
1605 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1606 {
1607 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1608 struct bio_set *bs;
1609
1610 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1611 if (!bs)
1612 return NULL;
1613
1614 bs->front_pad = front_pad;
1615
1616 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1617 if (!bs->bio_slab) {
1618 kfree(bs);
1619 return NULL;
1620 }
1621
1622 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1623 if (!bs->bio_pool)
1624 goto bad;
1625
1626 if (!biovec_create_pools(bs, pool_size))
1627 return bs;
1628
1629 bad:
1630 bioset_free(bs);
1631 return NULL;
1632 }
1633 EXPORT_SYMBOL(bioset_create);
1634
1635 #ifdef CONFIG_BLK_CGROUP
1636 /**
1637 * bio_associate_current - associate a bio with %current
1638 * @bio: target bio
1639 *
1640 * Associate @bio with %current if it hasn't been associated yet. Block
1641 * layer will treat @bio as if it were issued by %current no matter which
1642 * task actually issues it.
1643 *
1644 * This function takes an extra reference of @task's io_context and blkcg
1645 * which will be put when @bio is released. The caller must own @bio,
1646 * ensure %current->io_context exists, and is responsible for synchronizing
1647 * calls to this function.
1648 */
1649 int bio_associate_current(struct bio *bio)
1650 {
1651 struct io_context *ioc;
1652 struct cgroup_subsys_state *css;
1653
1654 if (bio->bi_ioc)
1655 return -EBUSY;
1656
1657 ioc = current->io_context;
1658 if (!ioc)
1659 return -ENOENT;
1660
1661 /* acquire active ref on @ioc and associate */
1662 get_io_context_active(ioc);
1663 bio->bi_ioc = ioc;
1664
1665 /* associate blkcg if exists */
1666 rcu_read_lock();
1667 css = task_subsys_state(current, blkio_subsys_id);
1668 if (css && css_tryget(css))
1669 bio->bi_css = css;
1670 rcu_read_unlock();
1671
1672 return 0;
1673 }
1674
1675 /**
1676 * bio_disassociate_task - undo bio_associate_current()
1677 * @bio: target bio
1678 */
1679 void bio_disassociate_task(struct bio *bio)
1680 {
1681 if (bio->bi_ioc) {
1682 put_io_context(bio->bi_ioc);
1683 bio->bi_ioc = NULL;
1684 }
1685 if (bio->bi_css) {
1686 css_put(bio->bi_css);
1687 bio->bi_css = NULL;
1688 }
1689 }
1690
1691 #endif /* CONFIG_BLK_CGROUP */
1692
1693 static void __init biovec_init_slabs(void)
1694 {
1695 int i;
1696
1697 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1698 int size;
1699 struct biovec_slab *bvs = bvec_slabs + i;
1700
1701 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1702 bvs->slab = NULL;
1703 continue;
1704 }
1705
1706 size = bvs->nr_vecs * sizeof(struct bio_vec);
1707 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1708 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1709 }
1710 }
1711
1712 static int __init init_bio(void)
1713 {
1714 bio_slab_max = 2;
1715 bio_slab_nr = 0;
1716 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1717 if (!bio_slabs)
1718 panic("bio: can't allocate bios\n");
1719
1720 bio_integrity_init();
1721 biovec_init_slabs();
1722
1723 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1724 if (!fs_bio_set)
1725 panic("bio: can't allocate bios\n");
1726
1727 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1728 panic("bio: can't create integrity pool\n");
1729
1730 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1731 sizeof(struct bio_pair));
1732 if (!bio_split_pool)
1733 panic("bio: can't create split pool\n");
1734
1735 return 0;
1736 }
1737 subsys_initcall(init_bio);