Merge git://git.infradead.org/users/willy/linux-nvme
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / bio.c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <scsi/sg.h> /* for struct sg_iovec */
32
33 #include <trace/events/block.h>
34
35 /*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39 #define BIO_INLINE_VECS 4
40
41 static mempool_t *bio_split_pool __read_mostly;
42
43 /*
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
47 */
48 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
49 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
50 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
51 };
52 #undef BV
53
54 /*
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
57 */
58 struct bio_set *fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
60
61 /*
62 * Our slab pool management
63 */
64 struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
69 };
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
73
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
75 {
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
81
82 mutex_lock(&bio_slab_lock);
83
84 i = 0;
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
87
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
94 }
95 i++;
96 }
97
98 if (slab)
99 goto out_unlock;
100
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
105 GFP_KERNEL);
106 if (!new_bio_slabs)
107 goto out_unlock;
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
110 }
111 if (entry == -1)
112 entry = bio_slab_nr++;
113
114 bslab = &bio_slabs[entry];
115
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
118 if (!slab)
119 goto out_unlock;
120
121 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125 out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
128 }
129
130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
134
135 mutex_lock(&bio_slab_lock);
136
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
141 }
142 }
143
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
146
147 WARN_ON(!bslab->slab_ref);
148
149 if (--bslab->slab_ref)
150 goto out;
151
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
154
155 out:
156 mutex_unlock(&bio_slab_lock);
157 }
158
159 unsigned int bvec_nr_vecs(unsigned short idx)
160 {
161 return bvec_slabs[idx].nr_vecs;
162 }
163
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
165 {
166 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
167
168 if (idx == BIOVEC_MAX_IDX)
169 mempool_free(bv, pool);
170 else {
171 struct biovec_slab *bvs = bvec_slabs + idx;
172
173 kmem_cache_free(bvs->slab, bv);
174 }
175 }
176
177 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
178 mempool_t *pool)
179 {
180 struct bio_vec *bvl;
181
182 /*
183 * see comment near bvec_array define!
184 */
185 switch (nr) {
186 case 1:
187 *idx = 0;
188 break;
189 case 2 ... 4:
190 *idx = 1;
191 break;
192 case 5 ... 16:
193 *idx = 2;
194 break;
195 case 17 ... 64:
196 *idx = 3;
197 break;
198 case 65 ... 128:
199 *idx = 4;
200 break;
201 case 129 ... BIO_MAX_PAGES:
202 *idx = 5;
203 break;
204 default:
205 return NULL;
206 }
207
208 /*
209 * idx now points to the pool we want to allocate from. only the
210 * 1-vec entry pool is mempool backed.
211 */
212 if (*idx == BIOVEC_MAX_IDX) {
213 fallback:
214 bvl = mempool_alloc(pool, gfp_mask);
215 } else {
216 struct biovec_slab *bvs = bvec_slabs + *idx;
217 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
218
219 /*
220 * Make this allocation restricted and don't dump info on
221 * allocation failures, since we'll fallback to the mempool
222 * in case of failure.
223 */
224 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
225
226 /*
227 * Try a slab allocation. If this fails and __GFP_WAIT
228 * is set, retry with the 1-entry mempool
229 */
230 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
231 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
232 *idx = BIOVEC_MAX_IDX;
233 goto fallback;
234 }
235 }
236
237 return bvl;
238 }
239
240 static void __bio_free(struct bio *bio)
241 {
242 bio_disassociate_task(bio);
243
244 if (bio_integrity(bio))
245 bio_integrity_free(bio);
246 }
247
248 static void bio_free(struct bio *bio)
249 {
250 struct bio_set *bs = bio->bi_pool;
251 void *p;
252
253 __bio_free(bio);
254
255 if (bs) {
256 if (bio_flagged(bio, BIO_OWNS_VEC))
257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
263 p -= bs->front_pad;
264
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
270 }
271
272 void bio_init(struct bio *bio)
273 {
274 memset(bio, 0, sizeof(*bio));
275 bio->bi_flags = 1 << BIO_UPTODATE;
276 atomic_set(&bio->bi_cnt, 1);
277 }
278 EXPORT_SYMBOL(bio_init);
279
280 /**
281 * bio_reset - reinitialize a bio
282 * @bio: bio to reset
283 *
284 * Description:
285 * After calling bio_reset(), @bio will be in the same state as a freshly
286 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
287 * preserved are the ones that are initialized by bio_alloc_bioset(). See
288 * comment in struct bio.
289 */
290 void bio_reset(struct bio *bio)
291 {
292 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
293
294 __bio_free(bio);
295
296 memset(bio, 0, BIO_RESET_BYTES);
297 bio->bi_flags = flags|(1 << BIO_UPTODATE);
298 }
299 EXPORT_SYMBOL(bio_reset);
300
301 static void bio_alloc_rescue(struct work_struct *work)
302 {
303 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
304 struct bio *bio;
305
306 while (1) {
307 spin_lock(&bs->rescue_lock);
308 bio = bio_list_pop(&bs->rescue_list);
309 spin_unlock(&bs->rescue_lock);
310
311 if (!bio)
312 break;
313
314 generic_make_request(bio);
315 }
316 }
317
318 static void punt_bios_to_rescuer(struct bio_set *bs)
319 {
320 struct bio_list punt, nopunt;
321 struct bio *bio;
322
323 /*
324 * In order to guarantee forward progress we must punt only bios that
325 * were allocated from this bio_set; otherwise, if there was a bio on
326 * there for a stacking driver higher up in the stack, processing it
327 * could require allocating bios from this bio_set, and doing that from
328 * our own rescuer would be bad.
329 *
330 * Since bio lists are singly linked, pop them all instead of trying to
331 * remove from the middle of the list:
332 */
333
334 bio_list_init(&punt);
335 bio_list_init(&nopunt);
336
337 while ((bio = bio_list_pop(current->bio_list)))
338 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
339
340 *current->bio_list = nopunt;
341
342 spin_lock(&bs->rescue_lock);
343 bio_list_merge(&bs->rescue_list, &punt);
344 spin_unlock(&bs->rescue_lock);
345
346 queue_work(bs->rescue_workqueue, &bs->rescue_work);
347 }
348
349 /**
350 * bio_alloc_bioset - allocate a bio for I/O
351 * @gfp_mask: the GFP_ mask given to the slab allocator
352 * @nr_iovecs: number of iovecs to pre-allocate
353 * @bs: the bio_set to allocate from.
354 *
355 * Description:
356 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
357 * backed by the @bs's mempool.
358 *
359 * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
360 * able to allocate a bio. This is due to the mempool guarantees. To make this
361 * work, callers must never allocate more than 1 bio at a time from this pool.
362 * Callers that need to allocate more than 1 bio must always submit the
363 * previously allocated bio for IO before attempting to allocate a new one.
364 * Failure to do so can cause deadlocks under memory pressure.
365 *
366 * Note that when running under generic_make_request() (i.e. any block
367 * driver), bios are not submitted until after you return - see the code in
368 * generic_make_request() that converts recursion into iteration, to prevent
369 * stack overflows.
370 *
371 * This would normally mean allocating multiple bios under
372 * generic_make_request() would be susceptible to deadlocks, but we have
373 * deadlock avoidance code that resubmits any blocked bios from a rescuer
374 * thread.
375 *
376 * However, we do not guarantee forward progress for allocations from other
377 * mempools. Doing multiple allocations from the same mempool under
378 * generic_make_request() should be avoided - instead, use bio_set's front_pad
379 * for per bio allocations.
380 *
381 * RETURNS:
382 * Pointer to new bio on success, NULL on failure.
383 */
384 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
385 {
386 gfp_t saved_gfp = gfp_mask;
387 unsigned front_pad;
388 unsigned inline_vecs;
389 unsigned long idx = BIO_POOL_NONE;
390 struct bio_vec *bvl = NULL;
391 struct bio *bio;
392 void *p;
393
394 if (!bs) {
395 if (nr_iovecs > UIO_MAXIOV)
396 return NULL;
397
398 p = kmalloc(sizeof(struct bio) +
399 nr_iovecs * sizeof(struct bio_vec),
400 gfp_mask);
401 front_pad = 0;
402 inline_vecs = nr_iovecs;
403 } else {
404 /*
405 * generic_make_request() converts recursion to iteration; this
406 * means if we're running beneath it, any bios we allocate and
407 * submit will not be submitted (and thus freed) until after we
408 * return.
409 *
410 * This exposes us to a potential deadlock if we allocate
411 * multiple bios from the same bio_set() while running
412 * underneath generic_make_request(). If we were to allocate
413 * multiple bios (say a stacking block driver that was splitting
414 * bios), we would deadlock if we exhausted the mempool's
415 * reserve.
416 *
417 * We solve this, and guarantee forward progress, with a rescuer
418 * workqueue per bio_set. If we go to allocate and there are
419 * bios on current->bio_list, we first try the allocation
420 * without __GFP_WAIT; if that fails, we punt those bios we
421 * would be blocking to the rescuer workqueue before we retry
422 * with the original gfp_flags.
423 */
424
425 if (current->bio_list && !bio_list_empty(current->bio_list))
426 gfp_mask &= ~__GFP_WAIT;
427
428 p = mempool_alloc(bs->bio_pool, gfp_mask);
429 if (!p && gfp_mask != saved_gfp) {
430 punt_bios_to_rescuer(bs);
431 gfp_mask = saved_gfp;
432 p = mempool_alloc(bs->bio_pool, gfp_mask);
433 }
434
435 front_pad = bs->front_pad;
436 inline_vecs = BIO_INLINE_VECS;
437 }
438
439 if (unlikely(!p))
440 return NULL;
441
442 bio = p + front_pad;
443 bio_init(bio);
444
445 if (nr_iovecs > inline_vecs) {
446 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
447 if (!bvl && gfp_mask != saved_gfp) {
448 punt_bios_to_rescuer(bs);
449 gfp_mask = saved_gfp;
450 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
451 }
452
453 if (unlikely(!bvl))
454 goto err_free;
455
456 bio->bi_flags |= 1 << BIO_OWNS_VEC;
457 } else if (nr_iovecs) {
458 bvl = bio->bi_inline_vecs;
459 }
460
461 bio->bi_pool = bs;
462 bio->bi_flags |= idx << BIO_POOL_OFFSET;
463 bio->bi_max_vecs = nr_iovecs;
464 bio->bi_io_vec = bvl;
465 return bio;
466
467 err_free:
468 mempool_free(p, bs->bio_pool);
469 return NULL;
470 }
471 EXPORT_SYMBOL(bio_alloc_bioset);
472
473 void zero_fill_bio(struct bio *bio)
474 {
475 unsigned long flags;
476 struct bio_vec *bv;
477 int i;
478
479 bio_for_each_segment(bv, bio, i) {
480 char *data = bvec_kmap_irq(bv, &flags);
481 memset(data, 0, bv->bv_len);
482 flush_dcache_page(bv->bv_page);
483 bvec_kunmap_irq(data, &flags);
484 }
485 }
486 EXPORT_SYMBOL(zero_fill_bio);
487
488 /**
489 * bio_put - release a reference to a bio
490 * @bio: bio to release reference to
491 *
492 * Description:
493 * Put a reference to a &struct bio, either one you have gotten with
494 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
495 **/
496 void bio_put(struct bio *bio)
497 {
498 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
499
500 /*
501 * last put frees it
502 */
503 if (atomic_dec_and_test(&bio->bi_cnt))
504 bio_free(bio);
505 }
506 EXPORT_SYMBOL(bio_put);
507
508 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
509 {
510 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
511 blk_recount_segments(q, bio);
512
513 return bio->bi_phys_segments;
514 }
515 EXPORT_SYMBOL(bio_phys_segments);
516
517 /**
518 * __bio_clone - clone a bio
519 * @bio: destination bio
520 * @bio_src: bio to clone
521 *
522 * Clone a &bio. Caller will own the returned bio, but not
523 * the actual data it points to. Reference count of returned
524 * bio will be one.
525 */
526 void __bio_clone(struct bio *bio, struct bio *bio_src)
527 {
528 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
529 bio_src->bi_max_vecs * sizeof(struct bio_vec));
530
531 /*
532 * most users will be overriding ->bi_bdev with a new target,
533 * so we don't set nor calculate new physical/hw segment counts here
534 */
535 bio->bi_sector = bio_src->bi_sector;
536 bio->bi_bdev = bio_src->bi_bdev;
537 bio->bi_flags |= 1 << BIO_CLONED;
538 bio->bi_rw = bio_src->bi_rw;
539 bio->bi_vcnt = bio_src->bi_vcnt;
540 bio->bi_size = bio_src->bi_size;
541 bio->bi_idx = bio_src->bi_idx;
542 }
543 EXPORT_SYMBOL(__bio_clone);
544
545 /**
546 * bio_clone_bioset - clone a bio
547 * @bio: bio to clone
548 * @gfp_mask: allocation priority
549 * @bs: bio_set to allocate from
550 *
551 * Like __bio_clone, only also allocates the returned bio
552 */
553 struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
554 struct bio_set *bs)
555 {
556 struct bio *b;
557
558 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
559 if (!b)
560 return NULL;
561
562 __bio_clone(b, bio);
563
564 if (bio_integrity(bio)) {
565 int ret;
566
567 ret = bio_integrity_clone(b, bio, gfp_mask);
568
569 if (ret < 0) {
570 bio_put(b);
571 return NULL;
572 }
573 }
574
575 return b;
576 }
577 EXPORT_SYMBOL(bio_clone_bioset);
578
579 /**
580 * bio_get_nr_vecs - return approx number of vecs
581 * @bdev: I/O target
582 *
583 * Return the approximate number of pages we can send to this target.
584 * There's no guarantee that you will be able to fit this number of pages
585 * into a bio, it does not account for dynamic restrictions that vary
586 * on offset.
587 */
588 int bio_get_nr_vecs(struct block_device *bdev)
589 {
590 struct request_queue *q = bdev_get_queue(bdev);
591 int nr_pages;
592
593 nr_pages = min_t(unsigned,
594 queue_max_segments(q),
595 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
596
597 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
598
599 }
600 EXPORT_SYMBOL(bio_get_nr_vecs);
601
602 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
603 *page, unsigned int len, unsigned int offset,
604 unsigned short max_sectors)
605 {
606 int retried_segments = 0;
607 struct bio_vec *bvec;
608
609 /*
610 * cloned bio must not modify vec list
611 */
612 if (unlikely(bio_flagged(bio, BIO_CLONED)))
613 return 0;
614
615 if (((bio->bi_size + len) >> 9) > max_sectors)
616 return 0;
617
618 /*
619 * For filesystems with a blocksize smaller than the pagesize
620 * we will often be called with the same page as last time and
621 * a consecutive offset. Optimize this special case.
622 */
623 if (bio->bi_vcnt > 0) {
624 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
625
626 if (page == prev->bv_page &&
627 offset == prev->bv_offset + prev->bv_len) {
628 unsigned int prev_bv_len = prev->bv_len;
629 prev->bv_len += len;
630
631 if (q->merge_bvec_fn) {
632 struct bvec_merge_data bvm = {
633 /* prev_bvec is already charged in
634 bi_size, discharge it in order to
635 simulate merging updated prev_bvec
636 as new bvec. */
637 .bi_bdev = bio->bi_bdev,
638 .bi_sector = bio->bi_sector,
639 .bi_size = bio->bi_size - prev_bv_len,
640 .bi_rw = bio->bi_rw,
641 };
642
643 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
644 prev->bv_len -= len;
645 return 0;
646 }
647 }
648
649 goto done;
650 }
651 }
652
653 if (bio->bi_vcnt >= bio->bi_max_vecs)
654 return 0;
655
656 /*
657 * we might lose a segment or two here, but rather that than
658 * make this too complex.
659 */
660
661 while (bio->bi_phys_segments >= queue_max_segments(q)) {
662
663 if (retried_segments)
664 return 0;
665
666 retried_segments = 1;
667 blk_recount_segments(q, bio);
668 }
669
670 /*
671 * setup the new entry, we might clear it again later if we
672 * cannot add the page
673 */
674 bvec = &bio->bi_io_vec[bio->bi_vcnt];
675 bvec->bv_page = page;
676 bvec->bv_len = len;
677 bvec->bv_offset = offset;
678
679 /*
680 * if queue has other restrictions (eg varying max sector size
681 * depending on offset), it can specify a merge_bvec_fn in the
682 * queue to get further control
683 */
684 if (q->merge_bvec_fn) {
685 struct bvec_merge_data bvm = {
686 .bi_bdev = bio->bi_bdev,
687 .bi_sector = bio->bi_sector,
688 .bi_size = bio->bi_size,
689 .bi_rw = bio->bi_rw,
690 };
691
692 /*
693 * merge_bvec_fn() returns number of bytes it can accept
694 * at this offset
695 */
696 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
697 bvec->bv_page = NULL;
698 bvec->bv_len = 0;
699 bvec->bv_offset = 0;
700 return 0;
701 }
702 }
703
704 /* If we may be able to merge these biovecs, force a recount */
705 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
706 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
707
708 bio->bi_vcnt++;
709 bio->bi_phys_segments++;
710 done:
711 bio->bi_size += len;
712 return len;
713 }
714
715 /**
716 * bio_add_pc_page - attempt to add page to bio
717 * @q: the target queue
718 * @bio: destination bio
719 * @page: page to add
720 * @len: vec entry length
721 * @offset: vec entry offset
722 *
723 * Attempt to add a page to the bio_vec maplist. This can fail for a
724 * number of reasons, such as the bio being full or target block device
725 * limitations. The target block device must allow bio's up to PAGE_SIZE,
726 * so it is always possible to add a single page to an empty bio.
727 *
728 * This should only be used by REQ_PC bios.
729 */
730 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
731 unsigned int len, unsigned int offset)
732 {
733 return __bio_add_page(q, bio, page, len, offset,
734 queue_max_hw_sectors(q));
735 }
736 EXPORT_SYMBOL(bio_add_pc_page);
737
738 /**
739 * bio_add_page - attempt to add page to bio
740 * @bio: destination bio
741 * @page: page to add
742 * @len: vec entry length
743 * @offset: vec entry offset
744 *
745 * Attempt to add a page to the bio_vec maplist. This can fail for a
746 * number of reasons, such as the bio being full or target block device
747 * limitations. The target block device must allow bio's up to PAGE_SIZE,
748 * so it is always possible to add a single page to an empty bio.
749 */
750 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
751 unsigned int offset)
752 {
753 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
754 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
755 }
756 EXPORT_SYMBOL(bio_add_page);
757
758 struct submit_bio_ret {
759 struct completion event;
760 int error;
761 };
762
763 static void submit_bio_wait_endio(struct bio *bio, int error)
764 {
765 struct submit_bio_ret *ret = bio->bi_private;
766
767 ret->error = error;
768 complete(&ret->event);
769 }
770
771 /**
772 * submit_bio_wait - submit a bio, and wait until it completes
773 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
774 * @bio: The &struct bio which describes the I/O
775 *
776 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
777 * bio_endio() on failure.
778 */
779 int submit_bio_wait(int rw, struct bio *bio)
780 {
781 struct submit_bio_ret ret;
782
783 rw |= REQ_SYNC;
784 init_completion(&ret.event);
785 bio->bi_private = &ret;
786 bio->bi_end_io = submit_bio_wait_endio;
787 submit_bio(rw, bio);
788 wait_for_completion(&ret.event);
789
790 return ret.error;
791 }
792 EXPORT_SYMBOL(submit_bio_wait);
793
794 /**
795 * bio_advance - increment/complete a bio by some number of bytes
796 * @bio: bio to advance
797 * @bytes: number of bytes to complete
798 *
799 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
800 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
801 * be updated on the last bvec as well.
802 *
803 * @bio will then represent the remaining, uncompleted portion of the io.
804 */
805 void bio_advance(struct bio *bio, unsigned bytes)
806 {
807 if (bio_integrity(bio))
808 bio_integrity_advance(bio, bytes);
809
810 bio->bi_sector += bytes >> 9;
811 bio->bi_size -= bytes;
812
813 if (bio->bi_rw & BIO_NO_ADVANCE_ITER_MASK)
814 return;
815
816 while (bytes) {
817 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
818 WARN_ONCE(1, "bio idx %d >= vcnt %d\n",
819 bio->bi_idx, bio->bi_vcnt);
820 break;
821 }
822
823 if (bytes >= bio_iovec(bio)->bv_len) {
824 bytes -= bio_iovec(bio)->bv_len;
825 bio->bi_idx++;
826 } else {
827 bio_iovec(bio)->bv_len -= bytes;
828 bio_iovec(bio)->bv_offset += bytes;
829 bytes = 0;
830 }
831 }
832 }
833 EXPORT_SYMBOL(bio_advance);
834
835 /**
836 * bio_alloc_pages - allocates a single page for each bvec in a bio
837 * @bio: bio to allocate pages for
838 * @gfp_mask: flags for allocation
839 *
840 * Allocates pages up to @bio->bi_vcnt.
841 *
842 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
843 * freed.
844 */
845 int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
846 {
847 int i;
848 struct bio_vec *bv;
849
850 bio_for_each_segment_all(bv, bio, i) {
851 bv->bv_page = alloc_page(gfp_mask);
852 if (!bv->bv_page) {
853 while (--bv >= bio->bi_io_vec)
854 __free_page(bv->bv_page);
855 return -ENOMEM;
856 }
857 }
858
859 return 0;
860 }
861 EXPORT_SYMBOL(bio_alloc_pages);
862
863 /**
864 * bio_copy_data - copy contents of data buffers from one chain of bios to
865 * another
866 * @src: source bio list
867 * @dst: destination bio list
868 *
869 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
870 * @src and @dst as linked lists of bios.
871 *
872 * Stops when it reaches the end of either @src or @dst - that is, copies
873 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
874 */
875 void bio_copy_data(struct bio *dst, struct bio *src)
876 {
877 struct bio_vec *src_bv, *dst_bv;
878 unsigned src_offset, dst_offset, bytes;
879 void *src_p, *dst_p;
880
881 src_bv = bio_iovec(src);
882 dst_bv = bio_iovec(dst);
883
884 src_offset = src_bv->bv_offset;
885 dst_offset = dst_bv->bv_offset;
886
887 while (1) {
888 if (src_offset == src_bv->bv_offset + src_bv->bv_len) {
889 src_bv++;
890 if (src_bv == bio_iovec_idx(src, src->bi_vcnt)) {
891 src = src->bi_next;
892 if (!src)
893 break;
894
895 src_bv = bio_iovec(src);
896 }
897
898 src_offset = src_bv->bv_offset;
899 }
900
901 if (dst_offset == dst_bv->bv_offset + dst_bv->bv_len) {
902 dst_bv++;
903 if (dst_bv == bio_iovec_idx(dst, dst->bi_vcnt)) {
904 dst = dst->bi_next;
905 if (!dst)
906 break;
907
908 dst_bv = bio_iovec(dst);
909 }
910
911 dst_offset = dst_bv->bv_offset;
912 }
913
914 bytes = min(dst_bv->bv_offset + dst_bv->bv_len - dst_offset,
915 src_bv->bv_offset + src_bv->bv_len - src_offset);
916
917 src_p = kmap_atomic(src_bv->bv_page);
918 dst_p = kmap_atomic(dst_bv->bv_page);
919
920 memcpy(dst_p + dst_bv->bv_offset,
921 src_p + src_bv->bv_offset,
922 bytes);
923
924 kunmap_atomic(dst_p);
925 kunmap_atomic(src_p);
926
927 src_offset += bytes;
928 dst_offset += bytes;
929 }
930 }
931 EXPORT_SYMBOL(bio_copy_data);
932
933 struct bio_map_data {
934 struct bio_vec *iovecs;
935 struct sg_iovec *sgvecs;
936 int nr_sgvecs;
937 int is_our_pages;
938 };
939
940 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
941 struct sg_iovec *iov, int iov_count,
942 int is_our_pages)
943 {
944 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
945 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
946 bmd->nr_sgvecs = iov_count;
947 bmd->is_our_pages = is_our_pages;
948 bio->bi_private = bmd;
949 }
950
951 static void bio_free_map_data(struct bio_map_data *bmd)
952 {
953 kfree(bmd->iovecs);
954 kfree(bmd->sgvecs);
955 kfree(bmd);
956 }
957
958 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
959 unsigned int iov_count,
960 gfp_t gfp_mask)
961 {
962 struct bio_map_data *bmd;
963
964 if (iov_count > UIO_MAXIOV)
965 return NULL;
966
967 bmd = kmalloc(sizeof(*bmd), gfp_mask);
968 if (!bmd)
969 return NULL;
970
971 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
972 if (!bmd->iovecs) {
973 kfree(bmd);
974 return NULL;
975 }
976
977 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
978 if (bmd->sgvecs)
979 return bmd;
980
981 kfree(bmd->iovecs);
982 kfree(bmd);
983 return NULL;
984 }
985
986 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
987 struct sg_iovec *iov, int iov_count,
988 int to_user, int from_user, int do_free_page)
989 {
990 int ret = 0, i;
991 struct bio_vec *bvec;
992 int iov_idx = 0;
993 unsigned int iov_off = 0;
994
995 bio_for_each_segment_all(bvec, bio, i) {
996 char *bv_addr = page_address(bvec->bv_page);
997 unsigned int bv_len = iovecs[i].bv_len;
998
999 while (bv_len && iov_idx < iov_count) {
1000 unsigned int bytes;
1001 char __user *iov_addr;
1002
1003 bytes = min_t(unsigned int,
1004 iov[iov_idx].iov_len - iov_off, bv_len);
1005 iov_addr = iov[iov_idx].iov_base + iov_off;
1006
1007 if (!ret) {
1008 if (to_user)
1009 ret = copy_to_user(iov_addr, bv_addr,
1010 bytes);
1011
1012 if (from_user)
1013 ret = copy_from_user(bv_addr, iov_addr,
1014 bytes);
1015
1016 if (ret)
1017 ret = -EFAULT;
1018 }
1019
1020 bv_len -= bytes;
1021 bv_addr += bytes;
1022 iov_addr += bytes;
1023 iov_off += bytes;
1024
1025 if (iov[iov_idx].iov_len == iov_off) {
1026 iov_idx++;
1027 iov_off = 0;
1028 }
1029 }
1030
1031 if (do_free_page)
1032 __free_page(bvec->bv_page);
1033 }
1034
1035 return ret;
1036 }
1037
1038 /**
1039 * bio_uncopy_user - finish previously mapped bio
1040 * @bio: bio being terminated
1041 *
1042 * Free pages allocated from bio_copy_user() and write back data
1043 * to user space in case of a read.
1044 */
1045 int bio_uncopy_user(struct bio *bio)
1046 {
1047 struct bio_map_data *bmd = bio->bi_private;
1048 int ret = 0;
1049
1050 if (!bio_flagged(bio, BIO_NULL_MAPPED))
1051 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1052 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
1053 0, bmd->is_our_pages);
1054 bio_free_map_data(bmd);
1055 bio_put(bio);
1056 return ret;
1057 }
1058 EXPORT_SYMBOL(bio_uncopy_user);
1059
1060 /**
1061 * bio_copy_user_iov - copy user data to bio
1062 * @q: destination block queue
1063 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1064 * @iov: the iovec.
1065 * @iov_count: number of elements in the iovec
1066 * @write_to_vm: bool indicating writing to pages or not
1067 * @gfp_mask: memory allocation flags
1068 *
1069 * Prepares and returns a bio for indirect user io, bouncing data
1070 * to/from kernel pages as necessary. Must be paired with
1071 * call bio_uncopy_user() on io completion.
1072 */
1073 struct bio *bio_copy_user_iov(struct request_queue *q,
1074 struct rq_map_data *map_data,
1075 struct sg_iovec *iov, int iov_count,
1076 int write_to_vm, gfp_t gfp_mask)
1077 {
1078 struct bio_map_data *bmd;
1079 struct bio_vec *bvec;
1080 struct page *page;
1081 struct bio *bio;
1082 int i, ret;
1083 int nr_pages = 0;
1084 unsigned int len = 0;
1085 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1086
1087 for (i = 0; i < iov_count; i++) {
1088 unsigned long uaddr;
1089 unsigned long end;
1090 unsigned long start;
1091
1092 uaddr = (unsigned long)iov[i].iov_base;
1093 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1094 start = uaddr >> PAGE_SHIFT;
1095
1096 /*
1097 * Overflow, abort
1098 */
1099 if (end < start)
1100 return ERR_PTR(-EINVAL);
1101
1102 nr_pages += end - start;
1103 len += iov[i].iov_len;
1104 }
1105
1106 if (offset)
1107 nr_pages++;
1108
1109 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1110 if (!bmd)
1111 return ERR_PTR(-ENOMEM);
1112
1113 ret = -ENOMEM;
1114 bio = bio_kmalloc(gfp_mask, nr_pages);
1115 if (!bio)
1116 goto out_bmd;
1117
1118 if (!write_to_vm)
1119 bio->bi_rw |= REQ_WRITE;
1120
1121 ret = 0;
1122
1123 if (map_data) {
1124 nr_pages = 1 << map_data->page_order;
1125 i = map_data->offset / PAGE_SIZE;
1126 }
1127 while (len) {
1128 unsigned int bytes = PAGE_SIZE;
1129
1130 bytes -= offset;
1131
1132 if (bytes > len)
1133 bytes = len;
1134
1135 if (map_data) {
1136 if (i == map_data->nr_entries * nr_pages) {
1137 ret = -ENOMEM;
1138 break;
1139 }
1140
1141 page = map_data->pages[i / nr_pages];
1142 page += (i % nr_pages);
1143
1144 i++;
1145 } else {
1146 page = alloc_page(q->bounce_gfp | gfp_mask);
1147 if (!page) {
1148 ret = -ENOMEM;
1149 break;
1150 }
1151 }
1152
1153 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1154 break;
1155
1156 len -= bytes;
1157 offset = 0;
1158 }
1159
1160 if (ret)
1161 goto cleanup;
1162
1163 /*
1164 * success
1165 */
1166 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
1167 (map_data && map_data->from_user)) {
1168 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
1169 if (ret)
1170 goto cleanup;
1171 }
1172
1173 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1174 return bio;
1175 cleanup:
1176 if (!map_data)
1177 bio_for_each_segment_all(bvec, bio, i)
1178 __free_page(bvec->bv_page);
1179
1180 bio_put(bio);
1181 out_bmd:
1182 bio_free_map_data(bmd);
1183 return ERR_PTR(ret);
1184 }
1185
1186 /**
1187 * bio_copy_user - copy user data to bio
1188 * @q: destination block queue
1189 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1190 * @uaddr: start of user address
1191 * @len: length in bytes
1192 * @write_to_vm: bool indicating writing to pages or not
1193 * @gfp_mask: memory allocation flags
1194 *
1195 * Prepares and returns a bio for indirect user io, bouncing data
1196 * to/from kernel pages as necessary. Must be paired with
1197 * call bio_uncopy_user() on io completion.
1198 */
1199 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
1200 unsigned long uaddr, unsigned int len,
1201 int write_to_vm, gfp_t gfp_mask)
1202 {
1203 struct sg_iovec iov;
1204
1205 iov.iov_base = (void __user *)uaddr;
1206 iov.iov_len = len;
1207
1208 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1209 }
1210 EXPORT_SYMBOL(bio_copy_user);
1211
1212 static struct bio *__bio_map_user_iov(struct request_queue *q,
1213 struct block_device *bdev,
1214 struct sg_iovec *iov, int iov_count,
1215 int write_to_vm, gfp_t gfp_mask)
1216 {
1217 int i, j;
1218 int nr_pages = 0;
1219 struct page **pages;
1220 struct bio *bio;
1221 int cur_page = 0;
1222 int ret, offset;
1223
1224 for (i = 0; i < iov_count; i++) {
1225 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1226 unsigned long len = iov[i].iov_len;
1227 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1228 unsigned long start = uaddr >> PAGE_SHIFT;
1229
1230 /*
1231 * Overflow, abort
1232 */
1233 if (end < start)
1234 return ERR_PTR(-EINVAL);
1235
1236 nr_pages += end - start;
1237 /*
1238 * buffer must be aligned to at least hardsector size for now
1239 */
1240 if (uaddr & queue_dma_alignment(q))
1241 return ERR_PTR(-EINVAL);
1242 }
1243
1244 if (!nr_pages)
1245 return ERR_PTR(-EINVAL);
1246
1247 bio = bio_kmalloc(gfp_mask, nr_pages);
1248 if (!bio)
1249 return ERR_PTR(-ENOMEM);
1250
1251 ret = -ENOMEM;
1252 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1253 if (!pages)
1254 goto out;
1255
1256 for (i = 0; i < iov_count; i++) {
1257 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1258 unsigned long len = iov[i].iov_len;
1259 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1260 unsigned long start = uaddr >> PAGE_SHIFT;
1261 const int local_nr_pages = end - start;
1262 const int page_limit = cur_page + local_nr_pages;
1263
1264 ret = get_user_pages_fast(uaddr, local_nr_pages,
1265 write_to_vm, &pages[cur_page]);
1266 if (ret < local_nr_pages) {
1267 ret = -EFAULT;
1268 goto out_unmap;
1269 }
1270
1271 offset = uaddr & ~PAGE_MASK;
1272 for (j = cur_page; j < page_limit; j++) {
1273 unsigned int bytes = PAGE_SIZE - offset;
1274
1275 if (len <= 0)
1276 break;
1277
1278 if (bytes > len)
1279 bytes = len;
1280
1281 /*
1282 * sorry...
1283 */
1284 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1285 bytes)
1286 break;
1287
1288 len -= bytes;
1289 offset = 0;
1290 }
1291
1292 cur_page = j;
1293 /*
1294 * release the pages we didn't map into the bio, if any
1295 */
1296 while (j < page_limit)
1297 page_cache_release(pages[j++]);
1298 }
1299
1300 kfree(pages);
1301
1302 /*
1303 * set data direction, and check if mapped pages need bouncing
1304 */
1305 if (!write_to_vm)
1306 bio->bi_rw |= REQ_WRITE;
1307
1308 bio->bi_bdev = bdev;
1309 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1310 return bio;
1311
1312 out_unmap:
1313 for (i = 0; i < nr_pages; i++) {
1314 if(!pages[i])
1315 break;
1316 page_cache_release(pages[i]);
1317 }
1318 out:
1319 kfree(pages);
1320 bio_put(bio);
1321 return ERR_PTR(ret);
1322 }
1323
1324 /**
1325 * bio_map_user - map user address into bio
1326 * @q: the struct request_queue for the bio
1327 * @bdev: destination block device
1328 * @uaddr: start of user address
1329 * @len: length in bytes
1330 * @write_to_vm: bool indicating writing to pages or not
1331 * @gfp_mask: memory allocation flags
1332 *
1333 * Map the user space address into a bio suitable for io to a block
1334 * device. Returns an error pointer in case of error.
1335 */
1336 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1337 unsigned long uaddr, unsigned int len, int write_to_vm,
1338 gfp_t gfp_mask)
1339 {
1340 struct sg_iovec iov;
1341
1342 iov.iov_base = (void __user *)uaddr;
1343 iov.iov_len = len;
1344
1345 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1346 }
1347 EXPORT_SYMBOL(bio_map_user);
1348
1349 /**
1350 * bio_map_user_iov - map user sg_iovec table into bio
1351 * @q: the struct request_queue for the bio
1352 * @bdev: destination block device
1353 * @iov: the iovec.
1354 * @iov_count: number of elements in the iovec
1355 * @write_to_vm: bool indicating writing to pages or not
1356 * @gfp_mask: memory allocation flags
1357 *
1358 * Map the user space address into a bio suitable for io to a block
1359 * device. Returns an error pointer in case of error.
1360 */
1361 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1362 struct sg_iovec *iov, int iov_count,
1363 int write_to_vm, gfp_t gfp_mask)
1364 {
1365 struct bio *bio;
1366
1367 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1368 gfp_mask);
1369 if (IS_ERR(bio))
1370 return bio;
1371
1372 /*
1373 * subtle -- if __bio_map_user() ended up bouncing a bio,
1374 * it would normally disappear when its bi_end_io is run.
1375 * however, we need it for the unmap, so grab an extra
1376 * reference to it
1377 */
1378 bio_get(bio);
1379
1380 return bio;
1381 }
1382
1383 static void __bio_unmap_user(struct bio *bio)
1384 {
1385 struct bio_vec *bvec;
1386 int i;
1387
1388 /*
1389 * make sure we dirty pages we wrote to
1390 */
1391 bio_for_each_segment_all(bvec, bio, i) {
1392 if (bio_data_dir(bio) == READ)
1393 set_page_dirty_lock(bvec->bv_page);
1394
1395 page_cache_release(bvec->bv_page);
1396 }
1397
1398 bio_put(bio);
1399 }
1400
1401 /**
1402 * bio_unmap_user - unmap a bio
1403 * @bio: the bio being unmapped
1404 *
1405 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1406 * a process context.
1407 *
1408 * bio_unmap_user() may sleep.
1409 */
1410 void bio_unmap_user(struct bio *bio)
1411 {
1412 __bio_unmap_user(bio);
1413 bio_put(bio);
1414 }
1415 EXPORT_SYMBOL(bio_unmap_user);
1416
1417 static void bio_map_kern_endio(struct bio *bio, int err)
1418 {
1419 bio_put(bio);
1420 }
1421
1422 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1423 unsigned int len, gfp_t gfp_mask)
1424 {
1425 unsigned long kaddr = (unsigned long)data;
1426 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1427 unsigned long start = kaddr >> PAGE_SHIFT;
1428 const int nr_pages = end - start;
1429 int offset, i;
1430 struct bio *bio;
1431
1432 bio = bio_kmalloc(gfp_mask, nr_pages);
1433 if (!bio)
1434 return ERR_PTR(-ENOMEM);
1435
1436 offset = offset_in_page(kaddr);
1437 for (i = 0; i < nr_pages; i++) {
1438 unsigned int bytes = PAGE_SIZE - offset;
1439
1440 if (len <= 0)
1441 break;
1442
1443 if (bytes > len)
1444 bytes = len;
1445
1446 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1447 offset) < bytes)
1448 break;
1449
1450 data += bytes;
1451 len -= bytes;
1452 offset = 0;
1453 }
1454
1455 bio->bi_end_io = bio_map_kern_endio;
1456 return bio;
1457 }
1458
1459 /**
1460 * bio_map_kern - map kernel address into bio
1461 * @q: the struct request_queue for the bio
1462 * @data: pointer to buffer to map
1463 * @len: length in bytes
1464 * @gfp_mask: allocation flags for bio allocation
1465 *
1466 * Map the kernel address into a bio suitable for io to a block
1467 * device. Returns an error pointer in case of error.
1468 */
1469 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1470 gfp_t gfp_mask)
1471 {
1472 struct bio *bio;
1473
1474 bio = __bio_map_kern(q, data, len, gfp_mask);
1475 if (IS_ERR(bio))
1476 return bio;
1477
1478 if (bio->bi_size == len)
1479 return bio;
1480
1481 /*
1482 * Don't support partial mappings.
1483 */
1484 bio_put(bio);
1485 return ERR_PTR(-EINVAL);
1486 }
1487 EXPORT_SYMBOL(bio_map_kern);
1488
1489 static void bio_copy_kern_endio(struct bio *bio, int err)
1490 {
1491 struct bio_vec *bvec;
1492 const int read = bio_data_dir(bio) == READ;
1493 struct bio_map_data *bmd = bio->bi_private;
1494 int i;
1495 char *p = bmd->sgvecs[0].iov_base;
1496
1497 bio_for_each_segment_all(bvec, bio, i) {
1498 char *addr = page_address(bvec->bv_page);
1499 int len = bmd->iovecs[i].bv_len;
1500
1501 if (read)
1502 memcpy(p, addr, len);
1503
1504 __free_page(bvec->bv_page);
1505 p += len;
1506 }
1507
1508 bio_free_map_data(bmd);
1509 bio_put(bio);
1510 }
1511
1512 /**
1513 * bio_copy_kern - copy kernel address into bio
1514 * @q: the struct request_queue for the bio
1515 * @data: pointer to buffer to copy
1516 * @len: length in bytes
1517 * @gfp_mask: allocation flags for bio and page allocation
1518 * @reading: data direction is READ
1519 *
1520 * copy the kernel address into a bio suitable for io to a block
1521 * device. Returns an error pointer in case of error.
1522 */
1523 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1524 gfp_t gfp_mask, int reading)
1525 {
1526 struct bio *bio;
1527 struct bio_vec *bvec;
1528 int i;
1529
1530 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1531 if (IS_ERR(bio))
1532 return bio;
1533
1534 if (!reading) {
1535 void *p = data;
1536
1537 bio_for_each_segment_all(bvec, bio, i) {
1538 char *addr = page_address(bvec->bv_page);
1539
1540 memcpy(addr, p, bvec->bv_len);
1541 p += bvec->bv_len;
1542 }
1543 }
1544
1545 bio->bi_end_io = bio_copy_kern_endio;
1546
1547 return bio;
1548 }
1549 EXPORT_SYMBOL(bio_copy_kern);
1550
1551 /*
1552 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1553 * for performing direct-IO in BIOs.
1554 *
1555 * The problem is that we cannot run set_page_dirty() from interrupt context
1556 * because the required locks are not interrupt-safe. So what we can do is to
1557 * mark the pages dirty _before_ performing IO. And in interrupt context,
1558 * check that the pages are still dirty. If so, fine. If not, redirty them
1559 * in process context.
1560 *
1561 * We special-case compound pages here: normally this means reads into hugetlb
1562 * pages. The logic in here doesn't really work right for compound pages
1563 * because the VM does not uniformly chase down the head page in all cases.
1564 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1565 * handle them at all. So we skip compound pages here at an early stage.
1566 *
1567 * Note that this code is very hard to test under normal circumstances because
1568 * direct-io pins the pages with get_user_pages(). This makes
1569 * is_page_cache_freeable return false, and the VM will not clean the pages.
1570 * But other code (eg, flusher threads) could clean the pages if they are mapped
1571 * pagecache.
1572 *
1573 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1574 * deferred bio dirtying paths.
1575 */
1576
1577 /*
1578 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1579 */
1580 void bio_set_pages_dirty(struct bio *bio)
1581 {
1582 struct bio_vec *bvec;
1583 int i;
1584
1585 bio_for_each_segment_all(bvec, bio, i) {
1586 struct page *page = bvec->bv_page;
1587
1588 if (page && !PageCompound(page))
1589 set_page_dirty_lock(page);
1590 }
1591 }
1592
1593 static void bio_release_pages(struct bio *bio)
1594 {
1595 struct bio_vec *bvec;
1596 int i;
1597
1598 bio_for_each_segment_all(bvec, bio, i) {
1599 struct page *page = bvec->bv_page;
1600
1601 if (page)
1602 put_page(page);
1603 }
1604 }
1605
1606 /*
1607 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1608 * If they are, then fine. If, however, some pages are clean then they must
1609 * have been written out during the direct-IO read. So we take another ref on
1610 * the BIO and the offending pages and re-dirty the pages in process context.
1611 *
1612 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1613 * here on. It will run one page_cache_release() against each page and will
1614 * run one bio_put() against the BIO.
1615 */
1616
1617 static void bio_dirty_fn(struct work_struct *work);
1618
1619 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1620 static DEFINE_SPINLOCK(bio_dirty_lock);
1621 static struct bio *bio_dirty_list;
1622
1623 /*
1624 * This runs in process context
1625 */
1626 static void bio_dirty_fn(struct work_struct *work)
1627 {
1628 unsigned long flags;
1629 struct bio *bio;
1630
1631 spin_lock_irqsave(&bio_dirty_lock, flags);
1632 bio = bio_dirty_list;
1633 bio_dirty_list = NULL;
1634 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1635
1636 while (bio) {
1637 struct bio *next = bio->bi_private;
1638
1639 bio_set_pages_dirty(bio);
1640 bio_release_pages(bio);
1641 bio_put(bio);
1642 bio = next;
1643 }
1644 }
1645
1646 void bio_check_pages_dirty(struct bio *bio)
1647 {
1648 struct bio_vec *bvec;
1649 int nr_clean_pages = 0;
1650 int i;
1651
1652 bio_for_each_segment_all(bvec, bio, i) {
1653 struct page *page = bvec->bv_page;
1654
1655 if (PageDirty(page) || PageCompound(page)) {
1656 page_cache_release(page);
1657 bvec->bv_page = NULL;
1658 } else {
1659 nr_clean_pages++;
1660 }
1661 }
1662
1663 if (nr_clean_pages) {
1664 unsigned long flags;
1665
1666 spin_lock_irqsave(&bio_dirty_lock, flags);
1667 bio->bi_private = bio_dirty_list;
1668 bio_dirty_list = bio;
1669 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1670 schedule_work(&bio_dirty_work);
1671 } else {
1672 bio_put(bio);
1673 }
1674 }
1675
1676 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1677 void bio_flush_dcache_pages(struct bio *bi)
1678 {
1679 int i;
1680 struct bio_vec *bvec;
1681
1682 bio_for_each_segment(bvec, bi, i)
1683 flush_dcache_page(bvec->bv_page);
1684 }
1685 EXPORT_SYMBOL(bio_flush_dcache_pages);
1686 #endif
1687
1688 /**
1689 * bio_endio - end I/O on a bio
1690 * @bio: bio
1691 * @error: error, if any
1692 *
1693 * Description:
1694 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1695 * preferred way to end I/O on a bio, it takes care of clearing
1696 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1697 * established -Exxxx (-EIO, for instance) error values in case
1698 * something went wrong. No one should call bi_end_io() directly on a
1699 * bio unless they own it and thus know that it has an end_io
1700 * function.
1701 **/
1702 void bio_endio(struct bio *bio, int error)
1703 {
1704 if (error)
1705 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1706 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1707 error = -EIO;
1708
1709 if (bio->bi_end_io)
1710 bio->bi_end_io(bio, error);
1711 }
1712 EXPORT_SYMBOL(bio_endio);
1713
1714 void bio_pair_release(struct bio_pair *bp)
1715 {
1716 if (atomic_dec_and_test(&bp->cnt)) {
1717 struct bio *master = bp->bio1.bi_private;
1718
1719 bio_endio(master, bp->error);
1720 mempool_free(bp, bp->bio2.bi_private);
1721 }
1722 }
1723 EXPORT_SYMBOL(bio_pair_release);
1724
1725 static void bio_pair_end_1(struct bio *bi, int err)
1726 {
1727 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1728
1729 if (err)
1730 bp->error = err;
1731
1732 bio_pair_release(bp);
1733 }
1734
1735 static void bio_pair_end_2(struct bio *bi, int err)
1736 {
1737 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1738
1739 if (err)
1740 bp->error = err;
1741
1742 bio_pair_release(bp);
1743 }
1744
1745 /*
1746 * split a bio - only worry about a bio with a single page in its iovec
1747 */
1748 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1749 {
1750 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1751
1752 if (!bp)
1753 return bp;
1754
1755 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1756 bi->bi_sector + first_sectors);
1757
1758 BUG_ON(bio_segments(bi) > 1);
1759 atomic_set(&bp->cnt, 3);
1760 bp->error = 0;
1761 bp->bio1 = *bi;
1762 bp->bio2 = *bi;
1763 bp->bio2.bi_sector += first_sectors;
1764 bp->bio2.bi_size -= first_sectors << 9;
1765 bp->bio1.bi_size = first_sectors << 9;
1766
1767 if (bi->bi_vcnt != 0) {
1768 bp->bv1 = *bio_iovec(bi);
1769 bp->bv2 = *bio_iovec(bi);
1770
1771 if (bio_is_rw(bi)) {
1772 bp->bv2.bv_offset += first_sectors << 9;
1773 bp->bv2.bv_len -= first_sectors << 9;
1774 bp->bv1.bv_len = first_sectors << 9;
1775 }
1776
1777 bp->bio1.bi_io_vec = &bp->bv1;
1778 bp->bio2.bi_io_vec = &bp->bv2;
1779
1780 bp->bio1.bi_max_vecs = 1;
1781 bp->bio2.bi_max_vecs = 1;
1782 }
1783
1784 bp->bio1.bi_end_io = bio_pair_end_1;
1785 bp->bio2.bi_end_io = bio_pair_end_2;
1786
1787 bp->bio1.bi_private = bi;
1788 bp->bio2.bi_private = bio_split_pool;
1789
1790 if (bio_integrity(bi))
1791 bio_integrity_split(bi, bp, first_sectors);
1792
1793 return bp;
1794 }
1795 EXPORT_SYMBOL(bio_split);
1796
1797 /**
1798 * bio_sector_offset - Find hardware sector offset in bio
1799 * @bio: bio to inspect
1800 * @index: bio_vec index
1801 * @offset: offset in bv_page
1802 *
1803 * Return the number of hardware sectors between beginning of bio
1804 * and an end point indicated by a bio_vec index and an offset
1805 * within that vector's page.
1806 */
1807 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1808 unsigned int offset)
1809 {
1810 unsigned int sector_sz;
1811 struct bio_vec *bv;
1812 sector_t sectors;
1813 int i;
1814
1815 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1816 sectors = 0;
1817
1818 if (index >= bio->bi_idx)
1819 index = bio->bi_vcnt - 1;
1820
1821 bio_for_each_segment_all(bv, bio, i) {
1822 if (i == index) {
1823 if (offset > bv->bv_offset)
1824 sectors += (offset - bv->bv_offset) / sector_sz;
1825 break;
1826 }
1827
1828 sectors += bv->bv_len / sector_sz;
1829 }
1830
1831 return sectors;
1832 }
1833 EXPORT_SYMBOL(bio_sector_offset);
1834
1835 /*
1836 * create memory pools for biovec's in a bio_set.
1837 * use the global biovec slabs created for general use.
1838 */
1839 mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
1840 {
1841 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1842
1843 return mempool_create_slab_pool(pool_entries, bp->slab);
1844 }
1845
1846 void bioset_free(struct bio_set *bs)
1847 {
1848 if (bs->rescue_workqueue)
1849 destroy_workqueue(bs->rescue_workqueue);
1850
1851 if (bs->bio_pool)
1852 mempool_destroy(bs->bio_pool);
1853
1854 if (bs->bvec_pool)
1855 mempool_destroy(bs->bvec_pool);
1856
1857 bioset_integrity_free(bs);
1858 bio_put_slab(bs);
1859
1860 kfree(bs);
1861 }
1862 EXPORT_SYMBOL(bioset_free);
1863
1864 /**
1865 * bioset_create - Create a bio_set
1866 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1867 * @front_pad: Number of bytes to allocate in front of the returned bio
1868 *
1869 * Description:
1870 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1871 * to ask for a number of bytes to be allocated in front of the bio.
1872 * Front pad allocation is useful for embedding the bio inside
1873 * another structure, to avoid allocating extra data to go with the bio.
1874 * Note that the bio must be embedded at the END of that structure always,
1875 * or things will break badly.
1876 */
1877 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1878 {
1879 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1880 struct bio_set *bs;
1881
1882 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1883 if (!bs)
1884 return NULL;
1885
1886 bs->front_pad = front_pad;
1887
1888 spin_lock_init(&bs->rescue_lock);
1889 bio_list_init(&bs->rescue_list);
1890 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1891
1892 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1893 if (!bs->bio_slab) {
1894 kfree(bs);
1895 return NULL;
1896 }
1897
1898 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1899 if (!bs->bio_pool)
1900 goto bad;
1901
1902 bs->bvec_pool = biovec_create_pool(bs, pool_size);
1903 if (!bs->bvec_pool)
1904 goto bad;
1905
1906 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1907 if (!bs->rescue_workqueue)
1908 goto bad;
1909
1910 return bs;
1911 bad:
1912 bioset_free(bs);
1913 return NULL;
1914 }
1915 EXPORT_SYMBOL(bioset_create);
1916
1917 #ifdef CONFIG_BLK_CGROUP
1918 /**
1919 * bio_associate_current - associate a bio with %current
1920 * @bio: target bio
1921 *
1922 * Associate @bio with %current if it hasn't been associated yet. Block
1923 * layer will treat @bio as if it were issued by %current no matter which
1924 * task actually issues it.
1925 *
1926 * This function takes an extra reference of @task's io_context and blkcg
1927 * which will be put when @bio is released. The caller must own @bio,
1928 * ensure %current->io_context exists, and is responsible for synchronizing
1929 * calls to this function.
1930 */
1931 int bio_associate_current(struct bio *bio)
1932 {
1933 struct io_context *ioc;
1934 struct cgroup_subsys_state *css;
1935
1936 if (bio->bi_ioc)
1937 return -EBUSY;
1938
1939 ioc = current->io_context;
1940 if (!ioc)
1941 return -ENOENT;
1942
1943 /* acquire active ref on @ioc and associate */
1944 get_io_context_active(ioc);
1945 bio->bi_ioc = ioc;
1946
1947 /* associate blkcg if exists */
1948 rcu_read_lock();
1949 css = task_subsys_state(current, blkio_subsys_id);
1950 if (css && css_tryget(css))
1951 bio->bi_css = css;
1952 rcu_read_unlock();
1953
1954 return 0;
1955 }
1956
1957 /**
1958 * bio_disassociate_task - undo bio_associate_current()
1959 * @bio: target bio
1960 */
1961 void bio_disassociate_task(struct bio *bio)
1962 {
1963 if (bio->bi_ioc) {
1964 put_io_context(bio->bi_ioc);
1965 bio->bi_ioc = NULL;
1966 }
1967 if (bio->bi_css) {
1968 css_put(bio->bi_css);
1969 bio->bi_css = NULL;
1970 }
1971 }
1972
1973 #endif /* CONFIG_BLK_CGROUP */
1974
1975 static void __init biovec_init_slabs(void)
1976 {
1977 int i;
1978
1979 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1980 int size;
1981 struct biovec_slab *bvs = bvec_slabs + i;
1982
1983 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1984 bvs->slab = NULL;
1985 continue;
1986 }
1987
1988 size = bvs->nr_vecs * sizeof(struct bio_vec);
1989 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1990 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1991 }
1992 }
1993
1994 static int __init init_bio(void)
1995 {
1996 bio_slab_max = 2;
1997 bio_slab_nr = 0;
1998 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1999 if (!bio_slabs)
2000 panic("bio: can't allocate bios\n");
2001
2002 bio_integrity_init();
2003 biovec_init_slabs();
2004
2005 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2006 if (!fs_bio_set)
2007 panic("bio: can't allocate bios\n");
2008
2009 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2010 panic("bio: can't create integrity pool\n");
2011
2012 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
2013 sizeof(struct bio_pair));
2014 if (!bio_split_pool)
2015 panic("bio: can't create split pool\n");
2016
2017 return 0;
2018 }
2019 subsys_initcall(init_bio);