drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / befs / btree.c
1 /*
2 * linux/fs/befs/btree.c
3 *
4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
5 *
6 * Licensed under the GNU GPL. See the file COPYING for details.
7 *
8 * 2002-02-05: Sergey S. Kostyliov added binary search within
9 * btree nodes.
10 *
11 * Many thanks to:
12 *
13 * Dominic Giampaolo, author of "Practical File System
14 * Design with the Be File System", for such a helpful book.
15 *
16 * Marcus J. Ranum, author of the b+tree package in
17 * comp.sources.misc volume 10. This code is not copied from that
18 * work, but it is partially based on it.
19 *
20 * Makoto Kato, author of the original BeFS for linux filesystem
21 * driver.
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/buffer_head.h>
29
30 #include "befs.h"
31 #include "btree.h"
32 #include "datastream.h"
33
34 /*
35 * The btree functions in this file are built on top of the
36 * datastream.c interface, which is in turn built on top of the
37 * io.c interface.
38 */
39
40 /* Befs B+tree structure:
41 *
42 * The first thing in the tree is the tree superblock. It tells you
43 * all kinds of useful things about the tree, like where the rootnode
44 * is located, and the size of the nodes (always 1024 with current version
45 * of BeOS).
46 *
47 * The rest of the tree consists of a series of nodes. Nodes contain a header
48 * (struct befs_btree_nodehead), the packed key data, an array of shorts
49 * containing the ending offsets for each of the keys, and an array of
50 * befs_off_t values. In interior nodes, the keys are the ending keys for
51 * the childnode they point to, and the values are offsets into the
52 * datastream containing the tree.
53 */
54
55 /* Note:
56 *
57 * The book states 2 confusing things about befs b+trees. First,
58 * it states that the overflow field of node headers is used by internal nodes
59 * to point to another node that "effectively continues this one". Here is what
60 * I believe that means. Each key in internal nodes points to another node that
61 * contains key values less than itself. Inspection reveals that the last key
62 * in the internal node is not the last key in the index. Keys that are
63 * greater than the last key in the internal node go into the overflow node.
64 * I imagine there is a performance reason for this.
65 *
66 * Second, it states that the header of a btree node is sufficient to
67 * distinguish internal nodes from leaf nodes. Without saying exactly how.
68 * After figuring out the first, it becomes obvious that internal nodes have
69 * overflow nodes and leafnodes do not.
70 */
71
72 /*
73 * Currently, this code is only good for directory B+trees.
74 * In order to be used for other BFS indexes, it needs to be extended to handle
75 * duplicate keys and non-string keytypes (int32, int64, float, double).
76 */
77
78 /*
79 * In memory structure of each btree node
80 */
81 typedef struct {
82 befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */
83 struct buffer_head *bh;
84 befs_btree_nodehead *od_node; /* on disk node */
85 } befs_btree_node;
86
87 /* local constants */
88 static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL;
89
90 /* local functions */
91 static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
92 befs_btree_super * bt_super,
93 befs_btree_node * this_node,
94 befs_off_t * node_off);
95
96 static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
97 befs_btree_super * sup);
98
99 static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
100 befs_btree_node * node, befs_off_t node_off);
101
102 static int befs_leafnode(befs_btree_node * node);
103
104 static fs16 *befs_bt_keylen_index(befs_btree_node * node);
105
106 static fs64 *befs_bt_valarray(befs_btree_node * node);
107
108 static char *befs_bt_keydata(befs_btree_node * node);
109
110 static int befs_find_key(struct super_block *sb, befs_btree_node * node,
111 const char *findkey, befs_off_t * value);
112
113 static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
114 int index, u16 * keylen);
115
116 static int befs_compare_strings(const void *key1, int keylen1,
117 const void *key2, int keylen2);
118
119 /**
120 * befs_bt_read_super - read in btree superblock convert to cpu byteorder
121 * @sb: Filesystem superblock
122 * @ds: Datastream to read from
123 * @sup: Buffer in which to place the btree superblock
124 *
125 * Calls befs_read_datastream to read in the btree superblock and
126 * makes sure it is in cpu byteorder, byteswapping if necessary.
127 *
128 * On success, returns BEFS_OK and *@sup contains the btree superblock,
129 * in cpu byte order.
130 *
131 * On failure, BEFS_ERR is returned.
132 */
133 static int
134 befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
135 befs_btree_super * sup)
136 {
137 struct buffer_head *bh = NULL;
138 befs_disk_btree_super *od_sup = NULL;
139
140 befs_debug(sb, "---> befs_btree_read_super()");
141
142 bh = befs_read_datastream(sb, ds, 0, NULL);
143
144 if (!bh) {
145 befs_error(sb, "Couldn't read index header.");
146 goto error;
147 }
148 od_sup = (befs_disk_btree_super *) bh->b_data;
149 befs_dump_index_entry(sb, od_sup);
150
151 sup->magic = fs32_to_cpu(sb, od_sup->magic);
152 sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
153 sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
154 sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
155 sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
156 sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr);
157 sup->max_size = fs64_to_cpu(sb, od_sup->max_size);
158
159 brelse(bh);
160 if (sup->magic != BEFS_BTREE_MAGIC) {
161 befs_error(sb, "Index header has bad magic.");
162 goto error;
163 }
164
165 befs_debug(sb, "<--- befs_btree_read_super()");
166 return BEFS_OK;
167
168 error:
169 befs_debug(sb, "<--- befs_btree_read_super() ERROR");
170 return BEFS_ERR;
171 }
172
173 /**
174 * befs_bt_read_node - read in btree node and convert to cpu byteorder
175 * @sb: Filesystem superblock
176 * @ds: Datastream to read from
177 * @node: Buffer in which to place the btree node
178 * @node_off: Starting offset (in bytes) of the node in @ds
179 *
180 * Calls befs_read_datastream to read in the indicated btree node and
181 * makes sure its header fields are in cpu byteorder, byteswapping if
182 * necessary.
183 * Note: node->bh must be NULL when this function called first
184 * time. Don't forget brelse(node->bh) after last call.
185 *
186 * On success, returns BEFS_OK and *@node contains the btree node that
187 * starts at @node_off, with the node->head fields in cpu byte order.
188 *
189 * On failure, BEFS_ERR is returned.
190 */
191
192 static int
193 befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
194 befs_btree_node * node, befs_off_t node_off)
195 {
196 uint off = 0;
197
198 befs_debug(sb, "---> befs_bt_read_node()");
199
200 if (node->bh)
201 brelse(node->bh);
202
203 node->bh = befs_read_datastream(sb, ds, node_off, &off);
204 if (!node->bh) {
205 befs_error(sb, "befs_bt_read_node() failed to read "
206 "node at %Lu", node_off);
207 befs_debug(sb, "<--- befs_bt_read_node() ERROR");
208
209 return BEFS_ERR;
210 }
211 node->od_node =
212 (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
213
214 befs_dump_index_node(sb, node->od_node);
215
216 node->head.left = fs64_to_cpu(sb, node->od_node->left);
217 node->head.right = fs64_to_cpu(sb, node->od_node->right);
218 node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
219 node->head.all_key_count =
220 fs16_to_cpu(sb, node->od_node->all_key_count);
221 node->head.all_key_length =
222 fs16_to_cpu(sb, node->od_node->all_key_length);
223
224 befs_debug(sb, "<--- befs_btree_read_node()");
225 return BEFS_OK;
226 }
227
228 /**
229 * befs_btree_find - Find a key in a befs B+tree
230 * @sb: Filesystem superblock
231 * @ds: Datastream containing btree
232 * @key: Key string to lookup in btree
233 * @value: Value stored with @key
234 *
235 * On success, returns BEFS_OK and sets *@value to the value stored
236 * with @key (usually the disk block number of an inode).
237 *
238 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
239 *
240 * Algorithm:
241 * Read the superblock and rootnode of the b+tree.
242 * Drill down through the interior nodes using befs_find_key().
243 * Once at the correct leaf node, use befs_find_key() again to get the
244 * actuall value stored with the key.
245 */
246 int
247 befs_btree_find(struct super_block *sb, befs_data_stream * ds,
248 const char *key, befs_off_t * value)
249 {
250 befs_btree_node *this_node = NULL;
251 befs_btree_super bt_super;
252 befs_off_t node_off;
253 int res;
254
255 befs_debug(sb, "---> befs_btree_find() Key: %s", key);
256
257 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
258 befs_error(sb,
259 "befs_btree_find() failed to read index superblock");
260 goto error;
261 }
262
263 this_node = kmalloc(sizeof (befs_btree_node),
264 GFP_NOFS);
265 if (!this_node) {
266 befs_error(sb, "befs_btree_find() failed to allocate %u "
267 "bytes of memory", sizeof (befs_btree_node));
268 goto error;
269 }
270
271 this_node->bh = NULL;
272
273 /* read in root node */
274 node_off = bt_super.root_node_ptr;
275 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
276 befs_error(sb, "befs_btree_find() failed to read "
277 "node at %Lu", node_off);
278 goto error_alloc;
279 }
280
281 while (!befs_leafnode(this_node)) {
282 res = befs_find_key(sb, this_node, key, &node_off);
283 if (res == BEFS_BT_NOT_FOUND)
284 node_off = this_node->head.overflow;
285 /* if no match, go to overflow node */
286 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
287 befs_error(sb, "befs_btree_find() failed to read "
288 "node at %Lu", node_off);
289 goto error_alloc;
290 }
291 }
292
293 /* at the correct leaf node now */
294
295 res = befs_find_key(sb, this_node, key, value);
296
297 brelse(this_node->bh);
298 kfree(this_node);
299
300 if (res != BEFS_BT_MATCH) {
301 befs_debug(sb, "<--- befs_btree_find() Key %s not found", key);
302 *value = 0;
303 return BEFS_BT_NOT_FOUND;
304 }
305 befs_debug(sb, "<--- befs_btree_find() Found key %s, value %Lu",
306 key, *value);
307 return BEFS_OK;
308
309 error_alloc:
310 kfree(this_node);
311 error:
312 *value = 0;
313 befs_debug(sb, "<--- befs_btree_find() ERROR");
314 return BEFS_ERR;
315 }
316
317 /**
318 * befs_find_key - Search for a key within a node
319 * @sb: Filesystem superblock
320 * @node: Node to find the key within
321 * @key: Keystring to search for
322 * @value: If key is found, the value stored with the key is put here
323 *
324 * finds exact match if one exists, and returns BEFS_BT_MATCH
325 * If no exact match, finds first key in node that is greater
326 * (alphabetically) than the search key and returns BEFS_BT_PARMATCH
327 * (for partial match, I guess). Can you think of something better to
328 * call it?
329 *
330 * If no key was a match or greater than the search key, return
331 * BEFS_BT_NOT_FOUND.
332 *
333 * Use binary search instead of a linear.
334 */
335 static int
336 befs_find_key(struct super_block *sb, befs_btree_node * node,
337 const char *findkey, befs_off_t * value)
338 {
339 int first, last, mid;
340 int eq;
341 u16 keylen;
342 int findkey_len;
343 char *thiskey;
344 fs64 *valarray;
345
346 befs_debug(sb, "---> befs_find_key() %s", findkey);
347
348 *value = 0;
349
350 findkey_len = strlen(findkey);
351
352 /* if node can not contain key, just skeep this node */
353 last = node->head.all_key_count - 1;
354 thiskey = befs_bt_get_key(sb, node, last, &keylen);
355
356 eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
357 if (eq < 0) {
358 befs_debug(sb, "<--- befs_find_key() %s not found", findkey);
359 return BEFS_BT_NOT_FOUND;
360 }
361
362 valarray = befs_bt_valarray(node);
363
364 /* simple binary search */
365 first = 0;
366 mid = 0;
367 while (last >= first) {
368 mid = (last + first) / 2;
369 befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
370 mid);
371 thiskey = befs_bt_get_key(sb, node, mid, &keylen);
372 eq = befs_compare_strings(thiskey, keylen, findkey,
373 findkey_len);
374
375 if (eq == 0) {
376 befs_debug(sb, "<--- befs_find_key() found %s at %d",
377 thiskey, mid);
378
379 *value = fs64_to_cpu(sb, valarray[mid]);
380 return BEFS_BT_MATCH;
381 }
382 if (eq > 0)
383 last = mid - 1;
384 else
385 first = mid + 1;
386 }
387 if (eq < 0)
388 *value = fs64_to_cpu(sb, valarray[mid + 1]);
389 else
390 *value = fs64_to_cpu(sb, valarray[mid]);
391 befs_debug(sb, "<--- befs_find_key() found %s at %d", thiskey, mid);
392 return BEFS_BT_PARMATCH;
393 }
394
395 /**
396 * befs_btree_read - Traverse leafnodes of a btree
397 * @sb: Filesystem superblock
398 * @ds: Datastream containing btree
399 * @key_no: Key number (alphabetical order) of key to read
400 * @bufsize: Size of the buffer to return key in
401 * @keybuf: Pointer to a buffer to put the key in
402 * @keysize: Length of the returned key
403 * @value: Value stored with the returned key
404 *
405 * Heres how it works: Key_no is the index of the key/value pair to
406 * return in keybuf/value.
407 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
408 * the number of charecters in the key (just a convenience).
409 *
410 * Algorithm:
411 * Get the first leafnode of the tree. See if the requested key is in that
412 * node. If not, follow the node->right link to the next leafnode. Repeat
413 * until the (key_no)th key is found or the tree is out of keys.
414 */
415 int
416 befs_btree_read(struct super_block *sb, befs_data_stream * ds,
417 loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
418 befs_off_t * value)
419 {
420 befs_btree_node *this_node;
421 befs_btree_super bt_super;
422 befs_off_t node_off = 0;
423 int cur_key;
424 fs64 *valarray;
425 char *keystart;
426 u16 keylen;
427 int res;
428
429 uint key_sum = 0;
430
431 befs_debug(sb, "---> befs_btree_read()");
432
433 if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
434 befs_error(sb,
435 "befs_btree_read() failed to read index superblock");
436 goto error;
437 }
438
439 if ((this_node = kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) {
440 befs_error(sb, "befs_btree_read() failed to allocate %u "
441 "bytes of memory", sizeof (befs_btree_node));
442 goto error;
443 }
444
445 node_off = bt_super.root_node_ptr;
446 this_node->bh = NULL;
447
448 /* seeks down to first leafnode, reads it into this_node */
449 res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
450 if (res == BEFS_BT_EMPTY) {
451 brelse(this_node->bh);
452 kfree(this_node);
453 *value = 0;
454 *keysize = 0;
455 befs_debug(sb, "<--- befs_btree_read() Tree is EMPTY");
456 return BEFS_BT_EMPTY;
457 } else if (res == BEFS_ERR) {
458 goto error_alloc;
459 }
460
461 /* find the leaf node containing the key_no key */
462
463 while (key_sum + this_node->head.all_key_count <= key_no) {
464
465 /* no more nodes to look in: key_no is too large */
466 if (this_node->head.right == befs_bt_inval) {
467 *keysize = 0;
468 *value = 0;
469 befs_debug(sb,
470 "<--- befs_btree_read() END of keys at %Lu",
471 key_sum + this_node->head.all_key_count);
472 brelse(this_node->bh);
473 kfree(this_node);
474 return BEFS_BT_END;
475 }
476
477 key_sum += this_node->head.all_key_count;
478 node_off = this_node->head.right;
479
480 if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
481 befs_error(sb, "befs_btree_read() failed to read "
482 "node at %Lu", node_off);
483 goto error_alloc;
484 }
485 }
486
487 /* how many keys into this_node is key_no */
488 cur_key = key_no - key_sum;
489
490 /* get pointers to datastructures within the node body */
491 valarray = befs_bt_valarray(this_node);
492
493 keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
494
495 befs_debug(sb, "Read [%Lu,%d]: keysize %d", node_off, cur_key, keylen);
496
497 if (bufsize < keylen + 1) {
498 befs_error(sb, "befs_btree_read() keybuf too small (%u) "
499 "for key of size %d", bufsize, keylen);
500 brelse(this_node->bh);
501 goto error_alloc;
502 };
503
504 strncpy(keybuf, keystart, keylen);
505 *value = fs64_to_cpu(sb, valarray[cur_key]);
506 *keysize = keylen;
507 keybuf[keylen] = '\0';
508
509 befs_debug(sb, "Read [%Lu,%d]: Key \"%.*s\", Value %Lu", node_off,
510 cur_key, keylen, keybuf, *value);
511
512 brelse(this_node->bh);
513 kfree(this_node);
514
515 befs_debug(sb, "<--- befs_btree_read()");
516
517 return BEFS_OK;
518
519 error_alloc:
520 kfree(this_node);
521
522 error:
523 *keysize = 0;
524 *value = 0;
525 befs_debug(sb, "<--- befs_btree_read() ERROR");
526 return BEFS_ERR;
527 }
528
529 /**
530 * befs_btree_seekleaf - Find the first leafnode in the btree
531 * @sb: Filesystem superblock
532 * @ds: Datastream containing btree
533 * @bt_super: Pointer to the superblock of the btree
534 * @this_node: Buffer to return the leafnode in
535 * @node_off: Pointer to offset of current node within datastream. Modified
536 * by the function.
537 *
538 *
539 * Helper function for btree traverse. Moves the current position to the
540 * start of the first leaf node.
541 *
542 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
543 */
544 static int
545 befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
546 befs_btree_super * bt_super, befs_btree_node * this_node,
547 befs_off_t * node_off)
548 {
549
550 befs_debug(sb, "---> befs_btree_seekleaf()");
551
552 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
553 befs_error(sb, "befs_btree_seekleaf() failed to read "
554 "node at %Lu", *node_off);
555 goto error;
556 }
557 befs_debug(sb, "Seekleaf to root node %Lu", *node_off);
558
559 if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
560 befs_debug(sb, "<--- befs_btree_seekleaf() Tree is EMPTY");
561 return BEFS_BT_EMPTY;
562 }
563
564 while (!befs_leafnode(this_node)) {
565
566 if (this_node->head.all_key_count == 0) {
567 befs_debug(sb, "befs_btree_seekleaf() encountered "
568 "an empty interior node: %Lu. Using Overflow "
569 "node: %Lu", *node_off,
570 this_node->head.overflow);
571 *node_off = this_node->head.overflow;
572 } else {
573 fs64 *valarray = befs_bt_valarray(this_node);
574 *node_off = fs64_to_cpu(sb, valarray[0]);
575 }
576 if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
577 befs_error(sb, "befs_btree_seekleaf() failed to read "
578 "node at %Lu", *node_off);
579 goto error;
580 }
581
582 befs_debug(sb, "Seekleaf to child node %Lu", *node_off);
583 }
584 befs_debug(sb, "Node %Lu is a leaf node", *node_off);
585
586 return BEFS_OK;
587
588 error:
589 befs_debug(sb, "<--- befs_btree_seekleaf() ERROR");
590 return BEFS_ERR;
591 }
592
593 /**
594 * befs_leafnode - Determine if the btree node is a leaf node or an
595 * interior node
596 * @node: Pointer to node structure to test
597 *
598 * Return 1 if leaf, 0 if interior
599 */
600 static int
601 befs_leafnode(befs_btree_node * node)
602 {
603 /* all interior nodes (and only interior nodes) have an overflow node */
604 if (node->head.overflow == befs_bt_inval)
605 return 1;
606 else
607 return 0;
608 }
609
610 /**
611 * befs_bt_keylen_index - Finds start of keylen index in a node
612 * @node: Pointer to the node structure to find the keylen index within
613 *
614 * Returns a pointer to the start of the key length index array
615 * of the B+tree node *@node
616 *
617 * "The length of all the keys in the node is added to the size of the
618 * header and then rounded up to a multiple of four to get the beginning
619 * of the key length index" (p.88, practical filesystem design).
620 *
621 * Except that rounding up to 8 works, and rounding up to 4 doesn't.
622 */
623 static fs16 *
624 befs_bt_keylen_index(befs_btree_node * node)
625 {
626 const int keylen_align = 8;
627 unsigned long int off =
628 (sizeof (befs_btree_nodehead) + node->head.all_key_length);
629 ulong tmp = off % keylen_align;
630
631 if (tmp)
632 off += keylen_align - tmp;
633
634 return (fs16 *) ((void *) node->od_node + off);
635 }
636
637 /**
638 * befs_bt_valarray - Finds the start of value array in a node
639 * @node: Pointer to the node structure to find the value array within
640 *
641 * Returns a pointer to the start of the value array
642 * of the node pointed to by the node header
643 */
644 static fs64 *
645 befs_bt_valarray(befs_btree_node * node)
646 {
647 void *keylen_index_start = (void *) befs_bt_keylen_index(node);
648 size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
649
650 return (fs64 *) (keylen_index_start + keylen_index_size);
651 }
652
653 /**
654 * befs_bt_keydata - Finds start of keydata array in a node
655 * @node: Pointer to the node structure to find the keydata array within
656 *
657 * Returns a pointer to the start of the keydata array
658 * of the node pointed to by the node header
659 */
660 static char *
661 befs_bt_keydata(befs_btree_node * node)
662 {
663 return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
664 }
665
666 /**
667 * befs_bt_get_key - returns a pointer to the start of a key
668 * @sb: filesystem superblock
669 * @node: node in which to look for the key
670 * @index: the index of the key to get
671 * @keylen: modified to be the length of the key at @index
672 *
673 * Returns a valid pointer into @node on success.
674 * Returns NULL on failure (bad input) and sets *@keylen = 0
675 */
676 static char *
677 befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
678 int index, u16 * keylen)
679 {
680 int prev_key_end;
681 char *keystart;
682 fs16 *keylen_index;
683
684 if (index < 0 || index > node->head.all_key_count) {
685 *keylen = 0;
686 return NULL;
687 }
688
689 keystart = befs_bt_keydata(node);
690 keylen_index = befs_bt_keylen_index(node);
691
692 if (index == 0)
693 prev_key_end = 0;
694 else
695 prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
696
697 *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
698
699 return keystart + prev_key_end;
700 }
701
702 /**
703 * befs_compare_strings - compare two strings
704 * @key1: pointer to the first key to be compared
705 * @keylen1: length in bytes of key1
706 * @key2: pointer to the second key to be compared
707 * @kelen2: length in bytes of key2
708 *
709 * Returns 0 if @key1 and @key2 are equal.
710 * Returns >0 if @key1 is greater.
711 * Returns <0 if @key2 is greater..
712 */
713 static int
714 befs_compare_strings(const void *key1, int keylen1,
715 const void *key2, int keylen2)
716 {
717 int len = min_t(int, keylen1, keylen2);
718 int result = strncmp(key1, key2, len);
719 if (result == 0)
720 result = keylen1 - keylen2;
721 return result;
722 }
723
724 /* These will be used for non-string keyed btrees */
725 #if 0
726 static int
727 btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
728 {
729 return *(int32_t *) key1 - *(int32_t *) key2;
730 }
731
732 static int
733 btree_compare_uint32(cont void *key1, int keylen1,
734 const void *key2, int keylen2)
735 {
736 if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
737 return 0;
738 else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
739 return 1;
740
741 return -1;
742 }
743 static int
744 btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
745 {
746 if (*(int64_t *) key1 == *(int64_t *) key2)
747 return 0;
748 else if (*(int64_t *) key1 > *(int64_t *) key2)
749 return 1;
750
751 return -1;
752 }
753
754 static int
755 btree_compare_uint64(cont void *key1, int keylen1,
756 const void *key2, int keylen2)
757 {
758 if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
759 return 0;
760 else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
761 return 1;
762
763 return -1;
764 }
765
766 static int
767 btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
768 {
769 float result = *(float *) key1 - *(float *) key2;
770 if (result == 0.0f)
771 return 0;
772
773 return (result < 0.0f) ? -1 : 1;
774 }
775
776 static int
777 btree_compare_double(cont void *key1, int keylen1,
778 const void *key2, int keylen2)
779 {
780 double result = *(double *) key1 - *(double *) key2;
781 if (result == 0.0)
782 return 0;
783
784 return (result < 0.0) ? -1 : 1;
785 }
786 #endif //0