Merge tag 'for-linus-v3.10-rc4' of git://oss.sgi.com/xfs/xfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / watchdog / octeon-wdt-main.c
1 /*
2 * Octeon Watchdog driver
3 *
4 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5 *
6 * Some parts derived from wdt.c
7 *
8 * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
9 * All Rights Reserved.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 *
16 * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17 * warranty for any of this software. This material is provided
18 * "AS-IS" and at no charge.
19 *
20 * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
21 *
22 * This file is subject to the terms and conditions of the GNU General Public
23 * License. See the file "COPYING" in the main directory of this archive
24 * for more details.
25 *
26 *
27 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28 * For most systems this is less than 10 seconds, so to allow for
29 * software to request longer watchdog heartbeats, we maintain software
30 * counters to count multiples of the base rate. If the system locks
31 * up in such a manner that we can not run the software counters, the
32 * only result is a watchdog reset sooner than was requested. But
33 * that is OK, because in this case userspace would likely not be able
34 * to do anything anyhow.
35 *
36 * The hardware watchdog interval we call the period. The OCTEON
37 * watchdog goes through several stages, after the first period an
38 * irq is asserted, then if it is not reset, after the next period NMI
39 * is asserted, then after an additional period a chip wide soft reset.
40 * So for the software counters, we reset watchdog after each period
41 * and decrement the counter. But for the last two periods we need to
42 * let the watchdog progress to the NMI stage so we disable the irq
43 * and let it proceed. Once in the NMI, we print the register state
44 * to the serial port and then wait for the reset.
45 *
46 * A watchdog is maintained for each CPU in the system, that way if
47 * one CPU suffers a lockup, we also get a register dump and reset.
48 * The userspace ping resets the watchdog on all CPUs.
49 *
50 * Before userspace opens the watchdog device, we still run the
51 * watchdogs to catch any lockups that may be kernel related.
52 *
53 */
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/miscdevice.h>
58 #include <linux/interrupt.h>
59 #include <linux/watchdog.h>
60 #include <linux/cpumask.h>
61 #include <linux/bitops.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/delay.h>
66 #include <linux/cpu.h>
67 #include <linux/smp.h>
68 #include <linux/fs.h>
69 #include <linux/irq.h>
70
71 #include <asm/mipsregs.h>
72 #include <asm/uasm.h>
73
74 #include <asm/octeon/octeon.h>
75
76 /* The count needed to achieve timeout_sec. */
77 static unsigned int timeout_cnt;
78
79 /* The maximum period supported. */
80 static unsigned int max_timeout_sec;
81
82 /* The current period. */
83 static unsigned int timeout_sec;
84
85 /* Set to non-zero when userspace countdown mode active */
86 static int do_coundown;
87 static unsigned int countdown_reset;
88 static unsigned int per_cpu_countdown[NR_CPUS];
89
90 static cpumask_t irq_enabled_cpus;
91
92 #define WD_TIMO 60 /* Default heartbeat = 60 seconds */
93
94 static int heartbeat = WD_TIMO;
95 module_param(heartbeat, int, S_IRUGO);
96 MODULE_PARM_DESC(heartbeat,
97 "Watchdog heartbeat in seconds. (0 < heartbeat, default="
98 __MODULE_STRING(WD_TIMO) ")");
99
100 static bool nowayout = WATCHDOG_NOWAYOUT;
101 module_param(nowayout, bool, S_IRUGO);
102 MODULE_PARM_DESC(nowayout,
103 "Watchdog cannot be stopped once started (default="
104 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
105
106 static unsigned long octeon_wdt_is_open;
107 static char expect_close;
108
109 static u32 __initdata nmi_stage1_insns[64];
110 /* We need one branch and therefore one relocation per target label. */
111 static struct uasm_label __initdata labels[5];
112 static struct uasm_reloc __initdata relocs[5];
113
114 enum lable_id {
115 label_enter_bootloader = 1
116 };
117
118 /* Some CP0 registers */
119 #define K0 26
120 #define C0_CVMMEMCTL 11, 7
121 #define C0_STATUS 12, 0
122 #define C0_EBASE 15, 1
123 #define C0_DESAVE 31, 0
124
125 void octeon_wdt_nmi_stage2(void);
126
127 static void __init octeon_wdt_build_stage1(void)
128 {
129 int i;
130 int len;
131 u32 *p = nmi_stage1_insns;
132 #ifdef CONFIG_HOTPLUG_CPU
133 struct uasm_label *l = labels;
134 struct uasm_reloc *r = relocs;
135 #endif
136
137 /*
138 * For the next few instructions running the debugger may
139 * cause corruption of k0 in the saved registers. Since we're
140 * about to crash, nobody probably cares.
141 *
142 * Save K0 into the debug scratch register
143 */
144 uasm_i_dmtc0(&p, K0, C0_DESAVE);
145
146 uasm_i_mfc0(&p, K0, C0_STATUS);
147 #ifdef CONFIG_HOTPLUG_CPU
148 uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
149 #endif
150 /* Force 64-bit addressing enabled */
151 uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
152 uasm_i_mtc0(&p, K0, C0_STATUS);
153
154 #ifdef CONFIG_HOTPLUG_CPU
155 uasm_i_mfc0(&p, K0, C0_EBASE);
156 /* Coreid number in K0 */
157 uasm_i_andi(&p, K0, K0, 0xf);
158 /* 8 * coreid in bits 16-31 */
159 uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
160 uasm_i_ori(&p, K0, K0, 0x8001);
161 uasm_i_dsll_safe(&p, K0, K0, 16);
162 uasm_i_ori(&p, K0, K0, 0x0700);
163 uasm_i_drotr_safe(&p, K0, K0, 32);
164 /*
165 * Should result in: 0x8001,0700,0000,8*coreid which is
166 * CVMX_CIU_WDOGX(coreid) - 0x0500
167 *
168 * Now ld K0, CVMX_CIU_WDOGX(coreid)
169 */
170 uasm_i_ld(&p, K0, 0x500, K0);
171 /*
172 * If bit one set handle the NMI as a watchdog event.
173 * otherwise transfer control to bootloader.
174 */
175 uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
176 uasm_i_nop(&p);
177 #endif
178
179 /* Clear Dcache so cvmseg works right. */
180 uasm_i_cache(&p, 1, 0, 0);
181
182 /* Use K0 to do a read/modify/write of CVMMEMCTL */
183 uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
184 /* Clear out the size of CVMSEG */
185 uasm_i_dins(&p, K0, 0, 0, 6);
186 /* Set CVMSEG to its largest value */
187 uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
188 /* Store the CVMMEMCTL value */
189 uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
190
191 /* Load the address of the second stage handler */
192 UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
193 uasm_i_jr(&p, K0);
194 uasm_i_dmfc0(&p, K0, C0_DESAVE);
195
196 #ifdef CONFIG_HOTPLUG_CPU
197 uasm_build_label(&l, p, label_enter_bootloader);
198 /* Jump to the bootloader and restore K0 */
199 UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
200 uasm_i_jr(&p, K0);
201 uasm_i_dmfc0(&p, K0, C0_DESAVE);
202 #endif
203 uasm_resolve_relocs(relocs, labels);
204
205 len = (int)(p - nmi_stage1_insns);
206 pr_debug("Synthesized NMI stage 1 handler (%d instructions)\n", len);
207
208 pr_debug("\t.set push\n");
209 pr_debug("\t.set noreorder\n");
210 for (i = 0; i < len; i++)
211 pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
212 pr_debug("\t.set pop\n");
213
214 if (len > 32)
215 panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
216 }
217
218 static int cpu2core(int cpu)
219 {
220 #ifdef CONFIG_SMP
221 return cpu_logical_map(cpu);
222 #else
223 return cvmx_get_core_num();
224 #endif
225 }
226
227 static int core2cpu(int coreid)
228 {
229 #ifdef CONFIG_SMP
230 return cpu_number_map(coreid);
231 #else
232 return 0;
233 #endif
234 }
235
236 /**
237 * Poke the watchdog when an interrupt is received
238 *
239 * @cpl:
240 * @dev_id:
241 *
242 * Returns
243 */
244 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
245 {
246 unsigned int core = cvmx_get_core_num();
247 int cpu = core2cpu(core);
248
249 if (do_coundown) {
250 if (per_cpu_countdown[cpu] > 0) {
251 /* We're alive, poke the watchdog */
252 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
253 per_cpu_countdown[cpu]--;
254 } else {
255 /* Bad news, you are about to reboot. */
256 disable_irq_nosync(cpl);
257 cpumask_clear_cpu(cpu, &irq_enabled_cpus);
258 }
259 } else {
260 /* Not open, just ping away... */
261 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
262 }
263 return IRQ_HANDLED;
264 }
265
266 /* From setup.c */
267 extern int prom_putchar(char c);
268
269 /**
270 * Write a string to the uart
271 *
272 * @str: String to write
273 */
274 static void octeon_wdt_write_string(const char *str)
275 {
276 /* Just loop writing one byte at a time */
277 while (*str)
278 prom_putchar(*str++);
279 }
280
281 /**
282 * Write a hex number out of the uart
283 *
284 * @value: Number to display
285 * @digits: Number of digits to print (1 to 16)
286 */
287 static void octeon_wdt_write_hex(u64 value, int digits)
288 {
289 int d;
290 int v;
291 for (d = 0; d < digits; d++) {
292 v = (value >> ((digits - d - 1) * 4)) & 0xf;
293 if (v >= 10)
294 prom_putchar('a' + v - 10);
295 else
296 prom_putchar('0' + v);
297 }
298 }
299
300 const char *reg_name[] = {
301 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
302 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
303 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
304 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
305 };
306
307 /**
308 * NMI stage 3 handler. NMIs are handled in the following manner:
309 * 1) The first NMI handler enables CVMSEG and transfers from
310 * the bootbus region into normal memory. It is careful to not
311 * destroy any registers.
312 * 2) The second stage handler uses CVMSEG to save the registers
313 * and create a stack for C code. It then calls the third level
314 * handler with one argument, a pointer to the register values.
315 * 3) The third, and final, level handler is the following C
316 * function that prints out some useful infomration.
317 *
318 * @reg: Pointer to register state before the NMI
319 */
320 void octeon_wdt_nmi_stage3(u64 reg[32])
321 {
322 u64 i;
323
324 unsigned int coreid = cvmx_get_core_num();
325 /*
326 * Save status and cause early to get them before any changes
327 * might happen.
328 */
329 u64 cp0_cause = read_c0_cause();
330 u64 cp0_status = read_c0_status();
331 u64 cp0_error_epc = read_c0_errorepc();
332 u64 cp0_epc = read_c0_epc();
333
334 /* Delay so output from all cores output is not jumbled together. */
335 __delay(100000000ull * coreid);
336
337 octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
338 octeon_wdt_write_hex(coreid, 1);
339 octeon_wdt_write_string(" ***\r\n");
340 for (i = 0; i < 32; i++) {
341 octeon_wdt_write_string("\t");
342 octeon_wdt_write_string(reg_name[i]);
343 octeon_wdt_write_string("\t0x");
344 octeon_wdt_write_hex(reg[i], 16);
345 if (i & 1)
346 octeon_wdt_write_string("\r\n");
347 }
348 octeon_wdt_write_string("\terr_epc\t0x");
349 octeon_wdt_write_hex(cp0_error_epc, 16);
350
351 octeon_wdt_write_string("\tepc\t0x");
352 octeon_wdt_write_hex(cp0_epc, 16);
353 octeon_wdt_write_string("\r\n");
354
355 octeon_wdt_write_string("\tstatus\t0x");
356 octeon_wdt_write_hex(cp0_status, 16);
357 octeon_wdt_write_string("\tcause\t0x");
358 octeon_wdt_write_hex(cp0_cause, 16);
359 octeon_wdt_write_string("\r\n");
360
361 octeon_wdt_write_string("\tsum0\t0x");
362 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
363 octeon_wdt_write_string("\ten0\t0x");
364 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
365 octeon_wdt_write_string("\r\n");
366
367 octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
368 }
369
370 static void octeon_wdt_disable_interrupt(int cpu)
371 {
372 unsigned int core;
373 unsigned int irq;
374 union cvmx_ciu_wdogx ciu_wdog;
375
376 core = cpu2core(cpu);
377
378 irq = OCTEON_IRQ_WDOG0 + core;
379
380 /* Poke the watchdog to clear out its state */
381 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
382
383 /* Disable the hardware. */
384 ciu_wdog.u64 = 0;
385 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
386
387 free_irq(irq, octeon_wdt_poke_irq);
388 }
389
390 static void octeon_wdt_setup_interrupt(int cpu)
391 {
392 unsigned int core;
393 unsigned int irq;
394 union cvmx_ciu_wdogx ciu_wdog;
395
396 core = cpu2core(cpu);
397
398 /* Disable it before doing anything with the interrupts. */
399 ciu_wdog.u64 = 0;
400 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
401
402 per_cpu_countdown[cpu] = countdown_reset;
403
404 irq = OCTEON_IRQ_WDOG0 + core;
405
406 if (request_irq(irq, octeon_wdt_poke_irq,
407 IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
408 panic("octeon_wdt: Couldn't obtain irq %d", irq);
409
410 cpumask_set_cpu(cpu, &irq_enabled_cpus);
411
412 /* Poke the watchdog to clear out its state */
413 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
414
415 /* Finally enable the watchdog now that all handlers are installed */
416 ciu_wdog.u64 = 0;
417 ciu_wdog.s.len = timeout_cnt;
418 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
419 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
420 }
421
422 static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
423 unsigned long action, void *hcpu)
424 {
425 unsigned int cpu = (unsigned long)hcpu;
426
427 switch (action) {
428 case CPU_DOWN_PREPARE:
429 octeon_wdt_disable_interrupt(cpu);
430 break;
431 case CPU_ONLINE:
432 case CPU_DOWN_FAILED:
433 octeon_wdt_setup_interrupt(cpu);
434 break;
435 default:
436 break;
437 }
438 return NOTIFY_OK;
439 }
440
441 static void octeon_wdt_ping(void)
442 {
443 int cpu;
444 int coreid;
445
446 for_each_online_cpu(cpu) {
447 coreid = cpu2core(cpu);
448 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
449 per_cpu_countdown[cpu] = countdown_reset;
450 if ((countdown_reset || !do_coundown) &&
451 !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
452 /* We have to enable the irq */
453 int irq = OCTEON_IRQ_WDOG0 + coreid;
454 enable_irq(irq);
455 cpumask_set_cpu(cpu, &irq_enabled_cpus);
456 }
457 }
458 }
459
460 static void octeon_wdt_calc_parameters(int t)
461 {
462 unsigned int periods;
463
464 timeout_sec = max_timeout_sec;
465
466
467 /*
468 * Find the largest interrupt period, that can evenly divide
469 * the requested heartbeat time.
470 */
471 while ((t % timeout_sec) != 0)
472 timeout_sec--;
473
474 periods = t / timeout_sec;
475
476 /*
477 * The last two periods are after the irq is disabled, and
478 * then to the nmi, so we subtract them off.
479 */
480
481 countdown_reset = periods > 2 ? periods - 2 : 0;
482 heartbeat = t;
483 timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
484 }
485
486 static int octeon_wdt_set_heartbeat(int t)
487 {
488 int cpu;
489 int coreid;
490 union cvmx_ciu_wdogx ciu_wdog;
491
492 if (t <= 0)
493 return -1;
494
495 octeon_wdt_calc_parameters(t);
496
497 for_each_online_cpu(cpu) {
498 coreid = cpu2core(cpu);
499 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
500 ciu_wdog.u64 = 0;
501 ciu_wdog.s.len = timeout_cnt;
502 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
503 cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
504 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
505 }
506 octeon_wdt_ping(); /* Get the irqs back on. */
507 return 0;
508 }
509
510 /**
511 * octeon_wdt_write:
512 * @file: file handle to the watchdog
513 * @buf: buffer to write (unused as data does not matter here
514 * @count: count of bytes
515 * @ppos: pointer to the position to write. No seeks allowed
516 *
517 * A write to a watchdog device is defined as a keepalive signal. Any
518 * write of data will do, as we we don't define content meaning.
519 */
520
521 static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
522 size_t count, loff_t *ppos)
523 {
524 if (count) {
525 if (!nowayout) {
526 size_t i;
527
528 /* In case it was set long ago */
529 expect_close = 0;
530
531 for (i = 0; i != count; i++) {
532 char c;
533 if (get_user(c, buf + i))
534 return -EFAULT;
535 if (c == 'V')
536 expect_close = 1;
537 }
538 }
539 octeon_wdt_ping();
540 }
541 return count;
542 }
543
544 /**
545 * octeon_wdt_ioctl:
546 * @file: file handle to the device
547 * @cmd: watchdog command
548 * @arg: argument pointer
549 *
550 * The watchdog API defines a common set of functions for all
551 * watchdogs according to their available features. We only
552 * actually usefully support querying capabilities and setting
553 * the timeout.
554 */
555
556 static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
557 unsigned long arg)
558 {
559 void __user *argp = (void __user *)arg;
560 int __user *p = argp;
561 int new_heartbeat;
562
563 static struct watchdog_info ident = {
564 .options = WDIOF_SETTIMEOUT|
565 WDIOF_MAGICCLOSE|
566 WDIOF_KEEPALIVEPING,
567 .firmware_version = 1,
568 .identity = "OCTEON",
569 };
570
571 switch (cmd) {
572 case WDIOC_GETSUPPORT:
573 return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
574 case WDIOC_GETSTATUS:
575 case WDIOC_GETBOOTSTATUS:
576 return put_user(0, p);
577 case WDIOC_KEEPALIVE:
578 octeon_wdt_ping();
579 return 0;
580 case WDIOC_SETTIMEOUT:
581 if (get_user(new_heartbeat, p))
582 return -EFAULT;
583 if (octeon_wdt_set_heartbeat(new_heartbeat))
584 return -EINVAL;
585 /* Fall through. */
586 case WDIOC_GETTIMEOUT:
587 return put_user(heartbeat, p);
588 default:
589 return -ENOTTY;
590 }
591 }
592
593 /**
594 * octeon_wdt_open:
595 * @inode: inode of device
596 * @file: file handle to device
597 *
598 * The watchdog device has been opened. The watchdog device is single
599 * open and on opening we do a ping to reset the counters.
600 */
601
602 static int octeon_wdt_open(struct inode *inode, struct file *file)
603 {
604 if (test_and_set_bit(0, &octeon_wdt_is_open))
605 return -EBUSY;
606 /*
607 * Activate
608 */
609 octeon_wdt_ping();
610 do_coundown = 1;
611 return nonseekable_open(inode, file);
612 }
613
614 /**
615 * octeon_wdt_release:
616 * @inode: inode to board
617 * @file: file handle to board
618 *
619 * The watchdog has a configurable API. There is a religious dispute
620 * between people who want their watchdog to be able to shut down and
621 * those who want to be sure if the watchdog manager dies the machine
622 * reboots. In the former case we disable the counters, in the latter
623 * case you have to open it again very soon.
624 */
625
626 static int octeon_wdt_release(struct inode *inode, struct file *file)
627 {
628 if (expect_close) {
629 do_coundown = 0;
630 octeon_wdt_ping();
631 } else {
632 pr_crit("WDT device closed unexpectedly. WDT will not stop!\n");
633 }
634 clear_bit(0, &octeon_wdt_is_open);
635 expect_close = 0;
636 return 0;
637 }
638
639 static const struct file_operations octeon_wdt_fops = {
640 .owner = THIS_MODULE,
641 .llseek = no_llseek,
642 .write = octeon_wdt_write,
643 .unlocked_ioctl = octeon_wdt_ioctl,
644 .open = octeon_wdt_open,
645 .release = octeon_wdt_release,
646 };
647
648 static struct miscdevice octeon_wdt_miscdev = {
649 .minor = WATCHDOG_MINOR,
650 .name = "watchdog",
651 .fops = &octeon_wdt_fops,
652 };
653
654 static struct notifier_block octeon_wdt_cpu_notifier = {
655 .notifier_call = octeon_wdt_cpu_callback,
656 };
657
658
659 /**
660 * Module/ driver initialization.
661 *
662 * Returns Zero on success
663 */
664 static int __init octeon_wdt_init(void)
665 {
666 int i;
667 int ret;
668 int cpu;
669 u64 *ptr;
670
671 /*
672 * Watchdog time expiration length = The 16 bits of LEN
673 * represent the most significant bits of a 24 bit decrementer
674 * that decrements every 256 cycles.
675 *
676 * Try for a timeout of 5 sec, if that fails a smaller number
677 * of even seconds,
678 */
679 max_timeout_sec = 6;
680 do {
681 max_timeout_sec--;
682 timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
683 } while (timeout_cnt > 65535);
684
685 BUG_ON(timeout_cnt == 0);
686
687 octeon_wdt_calc_parameters(heartbeat);
688
689 pr_info("Initial granularity %d Sec\n", timeout_sec);
690
691 ret = misc_register(&octeon_wdt_miscdev);
692 if (ret) {
693 pr_err("cannot register miscdev on minor=%d (err=%d)\n",
694 WATCHDOG_MINOR, ret);
695 goto out;
696 }
697
698 /* Build the NMI handler ... */
699 octeon_wdt_build_stage1();
700
701 /* ... and install it. */
702 ptr = (u64 *) nmi_stage1_insns;
703 for (i = 0; i < 16; i++) {
704 cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
705 cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
706 }
707 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
708
709 cpumask_clear(&irq_enabled_cpus);
710
711 for_each_online_cpu(cpu)
712 octeon_wdt_setup_interrupt(cpu);
713
714 register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
715 out:
716 return ret;
717 }
718
719 /**
720 * Module / driver shutdown
721 */
722 static void __exit octeon_wdt_cleanup(void)
723 {
724 int cpu;
725
726 misc_deregister(&octeon_wdt_miscdev);
727
728 unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
729
730 for_each_online_cpu(cpu) {
731 int core = cpu2core(cpu);
732 /* Disable the watchdog */
733 cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
734 /* Free the interrupt handler */
735 free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
736 }
737 /*
738 * Disable the boot-bus memory, the code it points to is soon
739 * to go missing.
740 */
741 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
742 }
743
744 MODULE_LICENSE("GPL");
745 MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
746 MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
747 module_init(octeon_wdt_init);
748 module_exit(octeon_wdt_cleanup);