Merge branch 'next' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / vme / vme.c
1 /*
2 * VME Bridge Framework
3 *
4 * Author: Martyn Welch <martyn.welch@ge.com>
5 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6 *
7 * Based on work by Tom Armistead and Ajit Prem
8 * Copyright 2004 Motorola Inc.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
34
35 #include "vme_bridge.h"
36
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
41
42 static void __exit vme_exit(void);
43 static int __init vme_init(void);
44
45 static struct vme_dev *dev_to_vme_dev(struct device *dev)
46 {
47 return container_of(dev, struct vme_dev, dev);
48 }
49
50 /*
51 * Find the bridge that the resource is associated with.
52 */
53 static struct vme_bridge *find_bridge(struct vme_resource *resource)
54 {
55 /* Get list to search */
56 switch (resource->type) {
57 case VME_MASTER:
58 return list_entry(resource->entry, struct vme_master_resource,
59 list)->parent;
60 break;
61 case VME_SLAVE:
62 return list_entry(resource->entry, struct vme_slave_resource,
63 list)->parent;
64 break;
65 case VME_DMA:
66 return list_entry(resource->entry, struct vme_dma_resource,
67 list)->parent;
68 break;
69 case VME_LM:
70 return list_entry(resource->entry, struct vme_lm_resource,
71 list)->parent;
72 break;
73 default:
74 printk(KERN_ERR "Unknown resource type\n");
75 return NULL;
76 break;
77 }
78 }
79
80 /*
81 * Allocate a contiguous block of memory for use by the driver. This is used to
82 * create the buffers for the slave windows.
83 */
84 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
85 dma_addr_t *dma)
86 {
87 struct vme_bridge *bridge;
88
89 if (resource == NULL) {
90 printk(KERN_ERR "No resource\n");
91 return NULL;
92 }
93
94 bridge = find_bridge(resource);
95 if (bridge == NULL) {
96 printk(KERN_ERR "Can't find bridge\n");
97 return NULL;
98 }
99
100 if (bridge->parent == NULL) {
101 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
102 return NULL;
103 }
104
105 if (bridge->alloc_consistent == NULL) {
106 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
107 bridge->name);
108 return NULL;
109 }
110
111 return bridge->alloc_consistent(bridge->parent, size, dma);
112 }
113 EXPORT_SYMBOL(vme_alloc_consistent);
114
115 /*
116 * Free previously allocated contiguous block of memory.
117 */
118 void vme_free_consistent(struct vme_resource *resource, size_t size,
119 void *vaddr, dma_addr_t dma)
120 {
121 struct vme_bridge *bridge;
122
123 if (resource == NULL) {
124 printk(KERN_ERR "No resource\n");
125 return;
126 }
127
128 bridge = find_bridge(resource);
129 if (bridge == NULL) {
130 printk(KERN_ERR "Can't find bridge\n");
131 return;
132 }
133
134 if (bridge->parent == NULL) {
135 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
136 return;
137 }
138
139 if (bridge->free_consistent == NULL) {
140 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
141 bridge->name);
142 return;
143 }
144
145 bridge->free_consistent(bridge->parent, size, vaddr, dma);
146 }
147 EXPORT_SYMBOL(vme_free_consistent);
148
149 size_t vme_get_size(struct vme_resource *resource)
150 {
151 int enabled, retval;
152 unsigned long long base, size;
153 dma_addr_t buf_base;
154 u32 aspace, cycle, dwidth;
155
156 switch (resource->type) {
157 case VME_MASTER:
158 retval = vme_master_get(resource, &enabled, &base, &size,
159 &aspace, &cycle, &dwidth);
160
161 return size;
162 break;
163 case VME_SLAVE:
164 retval = vme_slave_get(resource, &enabled, &base, &size,
165 &buf_base, &aspace, &cycle);
166
167 return size;
168 break;
169 case VME_DMA:
170 return 0;
171 break;
172 default:
173 printk(KERN_ERR "Unknown resource type\n");
174 return 0;
175 break;
176 }
177 }
178 EXPORT_SYMBOL(vme_get_size);
179
180 static int vme_check_window(u32 aspace, unsigned long long vme_base,
181 unsigned long long size)
182 {
183 int retval = 0;
184
185 switch (aspace) {
186 case VME_A16:
187 if (((vme_base + size) > VME_A16_MAX) ||
188 (vme_base > VME_A16_MAX))
189 retval = -EFAULT;
190 break;
191 case VME_A24:
192 if (((vme_base + size) > VME_A24_MAX) ||
193 (vme_base > VME_A24_MAX))
194 retval = -EFAULT;
195 break;
196 case VME_A32:
197 if (((vme_base + size) > VME_A32_MAX) ||
198 (vme_base > VME_A32_MAX))
199 retval = -EFAULT;
200 break;
201 case VME_A64:
202 /*
203 * Any value held in an unsigned long long can be used as the
204 * base
205 */
206 break;
207 case VME_CRCSR:
208 if (((vme_base + size) > VME_CRCSR_MAX) ||
209 (vme_base > VME_CRCSR_MAX))
210 retval = -EFAULT;
211 break;
212 case VME_USER1:
213 case VME_USER2:
214 case VME_USER3:
215 case VME_USER4:
216 /* User Defined */
217 break;
218 default:
219 printk(KERN_ERR "Invalid address space\n");
220 retval = -EINVAL;
221 break;
222 }
223
224 return retval;
225 }
226
227 /*
228 * Request a slave image with specific attributes, return some unique
229 * identifier.
230 */
231 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
232 u32 cycle)
233 {
234 struct vme_bridge *bridge;
235 struct list_head *slave_pos = NULL;
236 struct vme_slave_resource *allocated_image = NULL;
237 struct vme_slave_resource *slave_image = NULL;
238 struct vme_resource *resource = NULL;
239
240 bridge = vdev->bridge;
241 if (bridge == NULL) {
242 printk(KERN_ERR "Can't find VME bus\n");
243 goto err_bus;
244 }
245
246 /* Loop through slave resources */
247 list_for_each(slave_pos, &bridge->slave_resources) {
248 slave_image = list_entry(slave_pos,
249 struct vme_slave_resource, list);
250
251 if (slave_image == NULL) {
252 printk(KERN_ERR "Registered NULL Slave resource\n");
253 continue;
254 }
255
256 /* Find an unlocked and compatible image */
257 mutex_lock(&slave_image->mtx);
258 if (((slave_image->address_attr & address) == address) &&
259 ((slave_image->cycle_attr & cycle) == cycle) &&
260 (slave_image->locked == 0)) {
261
262 slave_image->locked = 1;
263 mutex_unlock(&slave_image->mtx);
264 allocated_image = slave_image;
265 break;
266 }
267 mutex_unlock(&slave_image->mtx);
268 }
269
270 /* No free image */
271 if (allocated_image == NULL)
272 goto err_image;
273
274 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
275 if (resource == NULL) {
276 printk(KERN_WARNING "Unable to allocate resource structure\n");
277 goto err_alloc;
278 }
279 resource->type = VME_SLAVE;
280 resource->entry = &allocated_image->list;
281
282 return resource;
283
284 err_alloc:
285 /* Unlock image */
286 mutex_lock(&slave_image->mtx);
287 slave_image->locked = 0;
288 mutex_unlock(&slave_image->mtx);
289 err_image:
290 err_bus:
291 return NULL;
292 }
293 EXPORT_SYMBOL(vme_slave_request);
294
295 int vme_slave_set(struct vme_resource *resource, int enabled,
296 unsigned long long vme_base, unsigned long long size,
297 dma_addr_t buf_base, u32 aspace, u32 cycle)
298 {
299 struct vme_bridge *bridge = find_bridge(resource);
300 struct vme_slave_resource *image;
301 int retval;
302
303 if (resource->type != VME_SLAVE) {
304 printk(KERN_ERR "Not a slave resource\n");
305 return -EINVAL;
306 }
307
308 image = list_entry(resource->entry, struct vme_slave_resource, list);
309
310 if (bridge->slave_set == NULL) {
311 printk(KERN_ERR "Function not supported\n");
312 return -ENOSYS;
313 }
314
315 if (!(((image->address_attr & aspace) == aspace) &&
316 ((image->cycle_attr & cycle) == cycle))) {
317 printk(KERN_ERR "Invalid attributes\n");
318 return -EINVAL;
319 }
320
321 retval = vme_check_window(aspace, vme_base, size);
322 if (retval)
323 return retval;
324
325 return bridge->slave_set(image, enabled, vme_base, size, buf_base,
326 aspace, cycle);
327 }
328 EXPORT_SYMBOL(vme_slave_set);
329
330 int vme_slave_get(struct vme_resource *resource, int *enabled,
331 unsigned long long *vme_base, unsigned long long *size,
332 dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
333 {
334 struct vme_bridge *bridge = find_bridge(resource);
335 struct vme_slave_resource *image;
336
337 if (resource->type != VME_SLAVE) {
338 printk(KERN_ERR "Not a slave resource\n");
339 return -EINVAL;
340 }
341
342 image = list_entry(resource->entry, struct vme_slave_resource, list);
343
344 if (bridge->slave_get == NULL) {
345 printk(KERN_ERR "vme_slave_get not supported\n");
346 return -EINVAL;
347 }
348
349 return bridge->slave_get(image, enabled, vme_base, size, buf_base,
350 aspace, cycle);
351 }
352 EXPORT_SYMBOL(vme_slave_get);
353
354 void vme_slave_free(struct vme_resource *resource)
355 {
356 struct vme_slave_resource *slave_image;
357
358 if (resource->type != VME_SLAVE) {
359 printk(KERN_ERR "Not a slave resource\n");
360 return;
361 }
362
363 slave_image = list_entry(resource->entry, struct vme_slave_resource,
364 list);
365 if (slave_image == NULL) {
366 printk(KERN_ERR "Can't find slave resource\n");
367 return;
368 }
369
370 /* Unlock image */
371 mutex_lock(&slave_image->mtx);
372 if (slave_image->locked == 0)
373 printk(KERN_ERR "Image is already free\n");
374
375 slave_image->locked = 0;
376 mutex_unlock(&slave_image->mtx);
377
378 /* Free up resource memory */
379 kfree(resource);
380 }
381 EXPORT_SYMBOL(vme_slave_free);
382
383 /*
384 * Request a master image with specific attributes, return some unique
385 * identifier.
386 */
387 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
388 u32 cycle, u32 dwidth)
389 {
390 struct vme_bridge *bridge;
391 struct list_head *master_pos = NULL;
392 struct vme_master_resource *allocated_image = NULL;
393 struct vme_master_resource *master_image = NULL;
394 struct vme_resource *resource = NULL;
395
396 bridge = vdev->bridge;
397 if (bridge == NULL) {
398 printk(KERN_ERR "Can't find VME bus\n");
399 goto err_bus;
400 }
401
402 /* Loop through master resources */
403 list_for_each(master_pos, &bridge->master_resources) {
404 master_image = list_entry(master_pos,
405 struct vme_master_resource, list);
406
407 if (master_image == NULL) {
408 printk(KERN_WARNING "Registered NULL master resource\n");
409 continue;
410 }
411
412 /* Find an unlocked and compatible image */
413 spin_lock(&master_image->lock);
414 if (((master_image->address_attr & address) == address) &&
415 ((master_image->cycle_attr & cycle) == cycle) &&
416 ((master_image->width_attr & dwidth) == dwidth) &&
417 (master_image->locked == 0)) {
418
419 master_image->locked = 1;
420 spin_unlock(&master_image->lock);
421 allocated_image = master_image;
422 break;
423 }
424 spin_unlock(&master_image->lock);
425 }
426
427 /* Check to see if we found a resource */
428 if (allocated_image == NULL) {
429 printk(KERN_ERR "Can't find a suitable resource\n");
430 goto err_image;
431 }
432
433 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
434 if (resource == NULL) {
435 printk(KERN_ERR "Unable to allocate resource structure\n");
436 goto err_alloc;
437 }
438 resource->type = VME_MASTER;
439 resource->entry = &allocated_image->list;
440
441 return resource;
442
443 err_alloc:
444 /* Unlock image */
445 spin_lock(&master_image->lock);
446 master_image->locked = 0;
447 spin_unlock(&master_image->lock);
448 err_image:
449 err_bus:
450 return NULL;
451 }
452 EXPORT_SYMBOL(vme_master_request);
453
454 int vme_master_set(struct vme_resource *resource, int enabled,
455 unsigned long long vme_base, unsigned long long size, u32 aspace,
456 u32 cycle, u32 dwidth)
457 {
458 struct vme_bridge *bridge = find_bridge(resource);
459 struct vme_master_resource *image;
460 int retval;
461
462 if (resource->type != VME_MASTER) {
463 printk(KERN_ERR "Not a master resource\n");
464 return -EINVAL;
465 }
466
467 image = list_entry(resource->entry, struct vme_master_resource, list);
468
469 if (bridge->master_set == NULL) {
470 printk(KERN_WARNING "vme_master_set not supported\n");
471 return -EINVAL;
472 }
473
474 if (!(((image->address_attr & aspace) == aspace) &&
475 ((image->cycle_attr & cycle) == cycle) &&
476 ((image->width_attr & dwidth) == dwidth))) {
477 printk(KERN_WARNING "Invalid attributes\n");
478 return -EINVAL;
479 }
480
481 retval = vme_check_window(aspace, vme_base, size);
482 if (retval)
483 return retval;
484
485 return bridge->master_set(image, enabled, vme_base, size, aspace,
486 cycle, dwidth);
487 }
488 EXPORT_SYMBOL(vme_master_set);
489
490 int vme_master_get(struct vme_resource *resource, int *enabled,
491 unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
492 u32 *cycle, u32 *dwidth)
493 {
494 struct vme_bridge *bridge = find_bridge(resource);
495 struct vme_master_resource *image;
496
497 if (resource->type != VME_MASTER) {
498 printk(KERN_ERR "Not a master resource\n");
499 return -EINVAL;
500 }
501
502 image = list_entry(resource->entry, struct vme_master_resource, list);
503
504 if (bridge->master_get == NULL) {
505 printk(KERN_WARNING "vme_master_set not supported\n");
506 return -EINVAL;
507 }
508
509 return bridge->master_get(image, enabled, vme_base, size, aspace,
510 cycle, dwidth);
511 }
512 EXPORT_SYMBOL(vme_master_get);
513
514 /*
515 * Read data out of VME space into a buffer.
516 */
517 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
518 loff_t offset)
519 {
520 struct vme_bridge *bridge = find_bridge(resource);
521 struct vme_master_resource *image;
522 size_t length;
523
524 if (bridge->master_read == NULL) {
525 printk(KERN_WARNING "Reading from resource not supported\n");
526 return -EINVAL;
527 }
528
529 if (resource->type != VME_MASTER) {
530 printk(KERN_ERR "Not a master resource\n");
531 return -EINVAL;
532 }
533
534 image = list_entry(resource->entry, struct vme_master_resource, list);
535
536 length = vme_get_size(resource);
537
538 if (offset > length) {
539 printk(KERN_WARNING "Invalid Offset\n");
540 return -EFAULT;
541 }
542
543 if ((offset + count) > length)
544 count = length - offset;
545
546 return bridge->master_read(image, buf, count, offset);
547
548 }
549 EXPORT_SYMBOL(vme_master_read);
550
551 /*
552 * Write data out to VME space from a buffer.
553 */
554 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
555 size_t count, loff_t offset)
556 {
557 struct vme_bridge *bridge = find_bridge(resource);
558 struct vme_master_resource *image;
559 size_t length;
560
561 if (bridge->master_write == NULL) {
562 printk(KERN_WARNING "Writing to resource not supported\n");
563 return -EINVAL;
564 }
565
566 if (resource->type != VME_MASTER) {
567 printk(KERN_ERR "Not a master resource\n");
568 return -EINVAL;
569 }
570
571 image = list_entry(resource->entry, struct vme_master_resource, list);
572
573 length = vme_get_size(resource);
574
575 if (offset > length) {
576 printk(KERN_WARNING "Invalid Offset\n");
577 return -EFAULT;
578 }
579
580 if ((offset + count) > length)
581 count = length - offset;
582
583 return bridge->master_write(image, buf, count, offset);
584 }
585 EXPORT_SYMBOL(vme_master_write);
586
587 /*
588 * Perform RMW cycle to provided location.
589 */
590 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
591 unsigned int compare, unsigned int swap, loff_t offset)
592 {
593 struct vme_bridge *bridge = find_bridge(resource);
594 struct vme_master_resource *image;
595
596 if (bridge->master_rmw == NULL) {
597 printk(KERN_WARNING "Writing to resource not supported\n");
598 return -EINVAL;
599 }
600
601 if (resource->type != VME_MASTER) {
602 printk(KERN_ERR "Not a master resource\n");
603 return -EINVAL;
604 }
605
606 image = list_entry(resource->entry, struct vme_master_resource, list);
607
608 return bridge->master_rmw(image, mask, compare, swap, offset);
609 }
610 EXPORT_SYMBOL(vme_master_rmw);
611
612 void vme_master_free(struct vme_resource *resource)
613 {
614 struct vme_master_resource *master_image;
615
616 if (resource->type != VME_MASTER) {
617 printk(KERN_ERR "Not a master resource\n");
618 return;
619 }
620
621 master_image = list_entry(resource->entry, struct vme_master_resource,
622 list);
623 if (master_image == NULL) {
624 printk(KERN_ERR "Can't find master resource\n");
625 return;
626 }
627
628 /* Unlock image */
629 spin_lock(&master_image->lock);
630 if (master_image->locked == 0)
631 printk(KERN_ERR "Image is already free\n");
632
633 master_image->locked = 0;
634 spin_unlock(&master_image->lock);
635
636 /* Free up resource memory */
637 kfree(resource);
638 }
639 EXPORT_SYMBOL(vme_master_free);
640
641 /*
642 * Request a DMA controller with specific attributes, return some unique
643 * identifier.
644 */
645 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
646 {
647 struct vme_bridge *bridge;
648 struct list_head *dma_pos = NULL;
649 struct vme_dma_resource *allocated_ctrlr = NULL;
650 struct vme_dma_resource *dma_ctrlr = NULL;
651 struct vme_resource *resource = NULL;
652
653 /* XXX Not checking resource attributes */
654 printk(KERN_ERR "No VME resource Attribute tests done\n");
655
656 bridge = vdev->bridge;
657 if (bridge == NULL) {
658 printk(KERN_ERR "Can't find VME bus\n");
659 goto err_bus;
660 }
661
662 /* Loop through DMA resources */
663 list_for_each(dma_pos, &bridge->dma_resources) {
664 dma_ctrlr = list_entry(dma_pos,
665 struct vme_dma_resource, list);
666
667 if (dma_ctrlr == NULL) {
668 printk(KERN_ERR "Registered NULL DMA resource\n");
669 continue;
670 }
671
672 /* Find an unlocked and compatible controller */
673 mutex_lock(&dma_ctrlr->mtx);
674 if (((dma_ctrlr->route_attr & route) == route) &&
675 (dma_ctrlr->locked == 0)) {
676
677 dma_ctrlr->locked = 1;
678 mutex_unlock(&dma_ctrlr->mtx);
679 allocated_ctrlr = dma_ctrlr;
680 break;
681 }
682 mutex_unlock(&dma_ctrlr->mtx);
683 }
684
685 /* Check to see if we found a resource */
686 if (allocated_ctrlr == NULL)
687 goto err_ctrlr;
688
689 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
690 if (resource == NULL) {
691 printk(KERN_WARNING "Unable to allocate resource structure\n");
692 goto err_alloc;
693 }
694 resource->type = VME_DMA;
695 resource->entry = &allocated_ctrlr->list;
696
697 return resource;
698
699 err_alloc:
700 /* Unlock image */
701 mutex_lock(&dma_ctrlr->mtx);
702 dma_ctrlr->locked = 0;
703 mutex_unlock(&dma_ctrlr->mtx);
704 err_ctrlr:
705 err_bus:
706 return NULL;
707 }
708 EXPORT_SYMBOL(vme_dma_request);
709
710 /*
711 * Start new list
712 */
713 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
714 {
715 struct vme_dma_resource *ctrlr;
716 struct vme_dma_list *dma_list;
717
718 if (resource->type != VME_DMA) {
719 printk(KERN_ERR "Not a DMA resource\n");
720 return NULL;
721 }
722
723 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
724
725 dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
726 if (dma_list == NULL) {
727 printk(KERN_ERR "Unable to allocate memory for new dma list\n");
728 return NULL;
729 }
730 INIT_LIST_HEAD(&dma_list->entries);
731 dma_list->parent = ctrlr;
732 mutex_init(&dma_list->mtx);
733
734 return dma_list;
735 }
736 EXPORT_SYMBOL(vme_new_dma_list);
737
738 /*
739 * Create "Pattern" type attributes
740 */
741 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
742 {
743 struct vme_dma_attr *attributes;
744 struct vme_dma_pattern *pattern_attr;
745
746 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
747 if (attributes == NULL) {
748 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
749 goto err_attr;
750 }
751
752 pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
753 if (pattern_attr == NULL) {
754 printk(KERN_ERR "Unable to allocate memory for pattern attributes\n");
755 goto err_pat;
756 }
757
758 attributes->type = VME_DMA_PATTERN;
759 attributes->private = (void *)pattern_attr;
760
761 pattern_attr->pattern = pattern;
762 pattern_attr->type = type;
763
764 return attributes;
765
766 err_pat:
767 kfree(attributes);
768 err_attr:
769 return NULL;
770 }
771 EXPORT_SYMBOL(vme_dma_pattern_attribute);
772
773 /*
774 * Create "PCI" type attributes
775 */
776 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
777 {
778 struct vme_dma_attr *attributes;
779 struct vme_dma_pci *pci_attr;
780
781 /* XXX Run some sanity checks here */
782
783 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
784 if (attributes == NULL) {
785 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
786 goto err_attr;
787 }
788
789 pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
790 if (pci_attr == NULL) {
791 printk(KERN_ERR "Unable to allocate memory for pci attributes\n");
792 goto err_pci;
793 }
794
795
796
797 attributes->type = VME_DMA_PCI;
798 attributes->private = (void *)pci_attr;
799
800 pci_attr->address = address;
801
802 return attributes;
803
804 err_pci:
805 kfree(attributes);
806 err_attr:
807 return NULL;
808 }
809 EXPORT_SYMBOL(vme_dma_pci_attribute);
810
811 /*
812 * Create "VME" type attributes
813 */
814 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
815 u32 aspace, u32 cycle, u32 dwidth)
816 {
817 struct vme_dma_attr *attributes;
818 struct vme_dma_vme *vme_attr;
819
820 attributes = kmalloc(
821 sizeof(struct vme_dma_attr), GFP_KERNEL);
822 if (attributes == NULL) {
823 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
824 goto err_attr;
825 }
826
827 vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
828 if (vme_attr == NULL) {
829 printk(KERN_ERR "Unable to allocate memory for vme attributes\n");
830 goto err_vme;
831 }
832
833 attributes->type = VME_DMA_VME;
834 attributes->private = (void *)vme_attr;
835
836 vme_attr->address = address;
837 vme_attr->aspace = aspace;
838 vme_attr->cycle = cycle;
839 vme_attr->dwidth = dwidth;
840
841 return attributes;
842
843 err_vme:
844 kfree(attributes);
845 err_attr:
846 return NULL;
847 }
848 EXPORT_SYMBOL(vme_dma_vme_attribute);
849
850 /*
851 * Free attribute
852 */
853 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
854 {
855 kfree(attributes->private);
856 kfree(attributes);
857 }
858 EXPORT_SYMBOL(vme_dma_free_attribute);
859
860 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
861 struct vme_dma_attr *dest, size_t count)
862 {
863 struct vme_bridge *bridge = list->parent->parent;
864 int retval;
865
866 if (bridge->dma_list_add == NULL) {
867 printk(KERN_WARNING "Link List DMA generation not supported\n");
868 return -EINVAL;
869 }
870
871 if (!mutex_trylock(&list->mtx)) {
872 printk(KERN_ERR "Link List already submitted\n");
873 return -EINVAL;
874 }
875
876 retval = bridge->dma_list_add(list, src, dest, count);
877
878 mutex_unlock(&list->mtx);
879
880 return retval;
881 }
882 EXPORT_SYMBOL(vme_dma_list_add);
883
884 int vme_dma_list_exec(struct vme_dma_list *list)
885 {
886 struct vme_bridge *bridge = list->parent->parent;
887 int retval;
888
889 if (bridge->dma_list_exec == NULL) {
890 printk(KERN_ERR "Link List DMA execution not supported\n");
891 return -EINVAL;
892 }
893
894 mutex_lock(&list->mtx);
895
896 retval = bridge->dma_list_exec(list);
897
898 mutex_unlock(&list->mtx);
899
900 return retval;
901 }
902 EXPORT_SYMBOL(vme_dma_list_exec);
903
904 int vme_dma_list_free(struct vme_dma_list *list)
905 {
906 struct vme_bridge *bridge = list->parent->parent;
907 int retval;
908
909 if (bridge->dma_list_empty == NULL) {
910 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
911 return -EINVAL;
912 }
913
914 if (!mutex_trylock(&list->mtx)) {
915 printk(KERN_ERR "Link List in use\n");
916 return -EINVAL;
917 }
918
919 /*
920 * Empty out all of the entries from the dma list. We need to go to the
921 * low level driver as dma entries are driver specific.
922 */
923 retval = bridge->dma_list_empty(list);
924 if (retval) {
925 printk(KERN_ERR "Unable to empty link-list entries\n");
926 mutex_unlock(&list->mtx);
927 return retval;
928 }
929 mutex_unlock(&list->mtx);
930 kfree(list);
931
932 return retval;
933 }
934 EXPORT_SYMBOL(vme_dma_list_free);
935
936 int vme_dma_free(struct vme_resource *resource)
937 {
938 struct vme_dma_resource *ctrlr;
939
940 if (resource->type != VME_DMA) {
941 printk(KERN_ERR "Not a DMA resource\n");
942 return -EINVAL;
943 }
944
945 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
946
947 if (!mutex_trylock(&ctrlr->mtx)) {
948 printk(KERN_ERR "Resource busy, can't free\n");
949 return -EBUSY;
950 }
951
952 if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
953 printk(KERN_WARNING "Resource still processing transfers\n");
954 mutex_unlock(&ctrlr->mtx);
955 return -EBUSY;
956 }
957
958 ctrlr->locked = 0;
959
960 mutex_unlock(&ctrlr->mtx);
961
962 return 0;
963 }
964 EXPORT_SYMBOL(vme_dma_free);
965
966 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
967 {
968 void (*call)(int, int, void *);
969 void *priv_data;
970
971 call = bridge->irq[level - 1].callback[statid].func;
972 priv_data = bridge->irq[level - 1].callback[statid].priv_data;
973
974 if (call != NULL)
975 call(level, statid, priv_data);
976 else
977 printk(KERN_WARNING "Spurilous VME interrupt, level:%x, vector:%x\n",
978 level, statid);
979 }
980 EXPORT_SYMBOL(vme_irq_handler);
981
982 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
983 void (*callback)(int, int, void *),
984 void *priv_data)
985 {
986 struct vme_bridge *bridge;
987
988 bridge = vdev->bridge;
989 if (bridge == NULL) {
990 printk(KERN_ERR "Can't find VME bus\n");
991 return -EINVAL;
992 }
993
994 if ((level < 1) || (level > 7)) {
995 printk(KERN_ERR "Invalid interrupt level\n");
996 return -EINVAL;
997 }
998
999 if (bridge->irq_set == NULL) {
1000 printk(KERN_ERR "Configuring interrupts not supported\n");
1001 return -EINVAL;
1002 }
1003
1004 mutex_lock(&bridge->irq_mtx);
1005
1006 if (bridge->irq[level - 1].callback[statid].func) {
1007 mutex_unlock(&bridge->irq_mtx);
1008 printk(KERN_WARNING "VME Interrupt already taken\n");
1009 return -EBUSY;
1010 }
1011
1012 bridge->irq[level - 1].count++;
1013 bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1014 bridge->irq[level - 1].callback[statid].func = callback;
1015
1016 /* Enable IRQ level */
1017 bridge->irq_set(bridge, level, 1, 1);
1018
1019 mutex_unlock(&bridge->irq_mtx);
1020
1021 return 0;
1022 }
1023 EXPORT_SYMBOL(vme_irq_request);
1024
1025 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1026 {
1027 struct vme_bridge *bridge;
1028
1029 bridge = vdev->bridge;
1030 if (bridge == NULL) {
1031 printk(KERN_ERR "Can't find VME bus\n");
1032 return;
1033 }
1034
1035 if ((level < 1) || (level > 7)) {
1036 printk(KERN_ERR "Invalid interrupt level\n");
1037 return;
1038 }
1039
1040 if (bridge->irq_set == NULL) {
1041 printk(KERN_ERR "Configuring interrupts not supported\n");
1042 return;
1043 }
1044
1045 mutex_lock(&bridge->irq_mtx);
1046
1047 bridge->irq[level - 1].count--;
1048
1049 /* Disable IRQ level if no more interrupts attached at this level*/
1050 if (bridge->irq[level - 1].count == 0)
1051 bridge->irq_set(bridge, level, 0, 1);
1052
1053 bridge->irq[level - 1].callback[statid].func = NULL;
1054 bridge->irq[level - 1].callback[statid].priv_data = NULL;
1055
1056 mutex_unlock(&bridge->irq_mtx);
1057 }
1058 EXPORT_SYMBOL(vme_irq_free);
1059
1060 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1061 {
1062 struct vme_bridge *bridge;
1063
1064 bridge = vdev->bridge;
1065 if (bridge == NULL) {
1066 printk(KERN_ERR "Can't find VME bus\n");
1067 return -EINVAL;
1068 }
1069
1070 if ((level < 1) || (level > 7)) {
1071 printk(KERN_WARNING "Invalid interrupt level\n");
1072 return -EINVAL;
1073 }
1074
1075 if (bridge->irq_generate == NULL) {
1076 printk(KERN_WARNING "Interrupt generation not supported\n");
1077 return -EINVAL;
1078 }
1079
1080 return bridge->irq_generate(bridge, level, statid);
1081 }
1082 EXPORT_SYMBOL(vme_irq_generate);
1083
1084 /*
1085 * Request the location monitor, return resource or NULL
1086 */
1087 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1088 {
1089 struct vme_bridge *bridge;
1090 struct list_head *lm_pos = NULL;
1091 struct vme_lm_resource *allocated_lm = NULL;
1092 struct vme_lm_resource *lm = NULL;
1093 struct vme_resource *resource = NULL;
1094
1095 bridge = vdev->bridge;
1096 if (bridge == NULL) {
1097 printk(KERN_ERR "Can't find VME bus\n");
1098 goto err_bus;
1099 }
1100
1101 /* Loop through DMA resources */
1102 list_for_each(lm_pos, &bridge->lm_resources) {
1103 lm = list_entry(lm_pos,
1104 struct vme_lm_resource, list);
1105
1106 if (lm == NULL) {
1107 printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1108 continue;
1109 }
1110
1111 /* Find an unlocked controller */
1112 mutex_lock(&lm->mtx);
1113 if (lm->locked == 0) {
1114 lm->locked = 1;
1115 mutex_unlock(&lm->mtx);
1116 allocated_lm = lm;
1117 break;
1118 }
1119 mutex_unlock(&lm->mtx);
1120 }
1121
1122 /* Check to see if we found a resource */
1123 if (allocated_lm == NULL)
1124 goto err_lm;
1125
1126 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1127 if (resource == NULL) {
1128 printk(KERN_ERR "Unable to allocate resource structure\n");
1129 goto err_alloc;
1130 }
1131 resource->type = VME_LM;
1132 resource->entry = &allocated_lm->list;
1133
1134 return resource;
1135
1136 err_alloc:
1137 /* Unlock image */
1138 mutex_lock(&lm->mtx);
1139 lm->locked = 0;
1140 mutex_unlock(&lm->mtx);
1141 err_lm:
1142 err_bus:
1143 return NULL;
1144 }
1145 EXPORT_SYMBOL(vme_lm_request);
1146
1147 int vme_lm_count(struct vme_resource *resource)
1148 {
1149 struct vme_lm_resource *lm;
1150
1151 if (resource->type != VME_LM) {
1152 printk(KERN_ERR "Not a Location Monitor resource\n");
1153 return -EINVAL;
1154 }
1155
1156 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1157
1158 return lm->monitors;
1159 }
1160 EXPORT_SYMBOL(vme_lm_count);
1161
1162 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1163 u32 aspace, u32 cycle)
1164 {
1165 struct vme_bridge *bridge = find_bridge(resource);
1166 struct vme_lm_resource *lm;
1167
1168 if (resource->type != VME_LM) {
1169 printk(KERN_ERR "Not a Location Monitor resource\n");
1170 return -EINVAL;
1171 }
1172
1173 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1174
1175 if (bridge->lm_set == NULL) {
1176 printk(KERN_ERR "vme_lm_set not supported\n");
1177 return -EINVAL;
1178 }
1179
1180 return bridge->lm_set(lm, lm_base, aspace, cycle);
1181 }
1182 EXPORT_SYMBOL(vme_lm_set);
1183
1184 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1185 u32 *aspace, u32 *cycle)
1186 {
1187 struct vme_bridge *bridge = find_bridge(resource);
1188 struct vme_lm_resource *lm;
1189
1190 if (resource->type != VME_LM) {
1191 printk(KERN_ERR "Not a Location Monitor resource\n");
1192 return -EINVAL;
1193 }
1194
1195 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1196
1197 if (bridge->lm_get == NULL) {
1198 printk(KERN_ERR "vme_lm_get not supported\n");
1199 return -EINVAL;
1200 }
1201
1202 return bridge->lm_get(lm, lm_base, aspace, cycle);
1203 }
1204 EXPORT_SYMBOL(vme_lm_get);
1205
1206 int vme_lm_attach(struct vme_resource *resource, int monitor,
1207 void (*callback)(int))
1208 {
1209 struct vme_bridge *bridge = find_bridge(resource);
1210 struct vme_lm_resource *lm;
1211
1212 if (resource->type != VME_LM) {
1213 printk(KERN_ERR "Not a Location Monitor resource\n");
1214 return -EINVAL;
1215 }
1216
1217 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1218
1219 if (bridge->lm_attach == NULL) {
1220 printk(KERN_ERR "vme_lm_attach not supported\n");
1221 return -EINVAL;
1222 }
1223
1224 return bridge->lm_attach(lm, monitor, callback);
1225 }
1226 EXPORT_SYMBOL(vme_lm_attach);
1227
1228 int vme_lm_detach(struct vme_resource *resource, int monitor)
1229 {
1230 struct vme_bridge *bridge = find_bridge(resource);
1231 struct vme_lm_resource *lm;
1232
1233 if (resource->type != VME_LM) {
1234 printk(KERN_ERR "Not a Location Monitor resource\n");
1235 return -EINVAL;
1236 }
1237
1238 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1239
1240 if (bridge->lm_detach == NULL) {
1241 printk(KERN_ERR "vme_lm_detach not supported\n");
1242 return -EINVAL;
1243 }
1244
1245 return bridge->lm_detach(lm, monitor);
1246 }
1247 EXPORT_SYMBOL(vme_lm_detach);
1248
1249 void vme_lm_free(struct vme_resource *resource)
1250 {
1251 struct vme_lm_resource *lm;
1252
1253 if (resource->type != VME_LM) {
1254 printk(KERN_ERR "Not a Location Monitor resource\n");
1255 return;
1256 }
1257
1258 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1259
1260 mutex_lock(&lm->mtx);
1261
1262 /* XXX
1263 * Check to see that there aren't any callbacks still attached, if
1264 * there are we should probably be detaching them!
1265 */
1266
1267 lm->locked = 0;
1268
1269 mutex_unlock(&lm->mtx);
1270
1271 kfree(resource);
1272 }
1273 EXPORT_SYMBOL(vme_lm_free);
1274
1275 int vme_slot_get(struct vme_dev *vdev)
1276 {
1277 struct vme_bridge *bridge;
1278
1279 bridge = vdev->bridge;
1280 if (bridge == NULL) {
1281 printk(KERN_ERR "Can't find VME bus\n");
1282 return -EINVAL;
1283 }
1284
1285 if (bridge->slot_get == NULL) {
1286 printk(KERN_WARNING "vme_slot_get not supported\n");
1287 return -EINVAL;
1288 }
1289
1290 return bridge->slot_get(bridge);
1291 }
1292 EXPORT_SYMBOL(vme_slot_get);
1293
1294
1295 /* - Bridge Registration --------------------------------------------------- */
1296
1297 static void vme_dev_release(struct device *dev)
1298 {
1299 kfree(dev_to_vme_dev(dev));
1300 }
1301
1302 int vme_register_bridge(struct vme_bridge *bridge)
1303 {
1304 int i;
1305 int ret = -1;
1306
1307 mutex_lock(&vme_buses_lock);
1308 for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1309 if ((vme_bus_numbers & (1 << i)) == 0) {
1310 vme_bus_numbers |= (1 << i);
1311 bridge->num = i;
1312 INIT_LIST_HEAD(&bridge->devices);
1313 list_add_tail(&bridge->bus_list, &vme_bus_list);
1314 ret = 0;
1315 break;
1316 }
1317 }
1318 mutex_unlock(&vme_buses_lock);
1319
1320 return ret;
1321 }
1322 EXPORT_SYMBOL(vme_register_bridge);
1323
1324 void vme_unregister_bridge(struct vme_bridge *bridge)
1325 {
1326 struct vme_dev *vdev;
1327 struct vme_dev *tmp;
1328
1329 mutex_lock(&vme_buses_lock);
1330 vme_bus_numbers &= ~(1 << bridge->num);
1331 list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1332 list_del(&vdev->drv_list);
1333 list_del(&vdev->bridge_list);
1334 device_unregister(&vdev->dev);
1335 }
1336 list_del(&bridge->bus_list);
1337 mutex_unlock(&vme_buses_lock);
1338 }
1339 EXPORT_SYMBOL(vme_unregister_bridge);
1340
1341 /* - Driver Registration --------------------------------------------------- */
1342
1343 static int __vme_register_driver_bus(struct vme_driver *drv,
1344 struct vme_bridge *bridge, unsigned int ndevs)
1345 {
1346 int err;
1347 unsigned int i;
1348 struct vme_dev *vdev;
1349 struct vme_dev *tmp;
1350
1351 for (i = 0; i < ndevs; i++) {
1352 vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL);
1353 if (!vdev) {
1354 err = -ENOMEM;
1355 goto err_devalloc;
1356 }
1357 vdev->num = i;
1358 vdev->bridge = bridge;
1359 vdev->dev.platform_data = drv;
1360 vdev->dev.release = vme_dev_release;
1361 vdev->dev.parent = bridge->parent;
1362 vdev->dev.bus = &vme_bus_type;
1363 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1364 vdev->num);
1365
1366 err = device_register(&vdev->dev);
1367 if (err)
1368 goto err_reg;
1369
1370 if (vdev->dev.platform_data) {
1371 list_add_tail(&vdev->drv_list, &drv->devices);
1372 list_add_tail(&vdev->bridge_list, &bridge->devices);
1373 } else
1374 device_unregister(&vdev->dev);
1375 }
1376 return 0;
1377
1378 err_reg:
1379 put_device(&vdev->dev);
1380 kfree(vdev);
1381 err_devalloc:
1382 list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1383 list_del(&vdev->drv_list);
1384 list_del(&vdev->bridge_list);
1385 device_unregister(&vdev->dev);
1386 }
1387 return err;
1388 }
1389
1390 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1391 {
1392 struct vme_bridge *bridge;
1393 int err = 0;
1394
1395 mutex_lock(&vme_buses_lock);
1396 list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1397 /*
1398 * This cannot cause trouble as we already have vme_buses_lock
1399 * and if the bridge is removed, it will have to go through
1400 * vme_unregister_bridge() to do it (which calls remove() on
1401 * the bridge which in turn tries to acquire vme_buses_lock and
1402 * will have to wait).
1403 */
1404 err = __vme_register_driver_bus(drv, bridge, ndevs);
1405 if (err)
1406 break;
1407 }
1408 mutex_unlock(&vme_buses_lock);
1409 return err;
1410 }
1411
1412 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1413 {
1414 int err;
1415
1416 drv->driver.name = drv->name;
1417 drv->driver.bus = &vme_bus_type;
1418 INIT_LIST_HEAD(&drv->devices);
1419
1420 err = driver_register(&drv->driver);
1421 if (err)
1422 return err;
1423
1424 err = __vme_register_driver(drv, ndevs);
1425 if (err)
1426 driver_unregister(&drv->driver);
1427
1428 return err;
1429 }
1430 EXPORT_SYMBOL(vme_register_driver);
1431
1432 void vme_unregister_driver(struct vme_driver *drv)
1433 {
1434 struct vme_dev *dev, *dev_tmp;
1435
1436 mutex_lock(&vme_buses_lock);
1437 list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1438 list_del(&dev->drv_list);
1439 list_del(&dev->bridge_list);
1440 device_unregister(&dev->dev);
1441 }
1442 mutex_unlock(&vme_buses_lock);
1443
1444 driver_unregister(&drv->driver);
1445 }
1446 EXPORT_SYMBOL(vme_unregister_driver);
1447
1448 /* - Bus Registration ------------------------------------------------------ */
1449
1450 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1451 {
1452 struct vme_driver *vme_drv;
1453
1454 vme_drv = container_of(drv, struct vme_driver, driver);
1455
1456 if (dev->platform_data == vme_drv) {
1457 struct vme_dev *vdev = dev_to_vme_dev(dev);
1458
1459 if (vme_drv->match && vme_drv->match(vdev))
1460 return 1;
1461
1462 dev->platform_data = NULL;
1463 }
1464 return 0;
1465 }
1466
1467 static int vme_bus_probe(struct device *dev)
1468 {
1469 int retval = -ENODEV;
1470 struct vme_driver *driver;
1471 struct vme_dev *vdev = dev_to_vme_dev(dev);
1472
1473 driver = dev->platform_data;
1474
1475 if (driver->probe != NULL)
1476 retval = driver->probe(vdev);
1477
1478 return retval;
1479 }
1480
1481 static int vme_bus_remove(struct device *dev)
1482 {
1483 int retval = -ENODEV;
1484 struct vme_driver *driver;
1485 struct vme_dev *vdev = dev_to_vme_dev(dev);
1486
1487 driver = dev->platform_data;
1488
1489 if (driver->remove != NULL)
1490 retval = driver->remove(vdev);
1491
1492 return retval;
1493 }
1494
1495 struct bus_type vme_bus_type = {
1496 .name = "vme",
1497 .match = vme_bus_match,
1498 .probe = vme_bus_probe,
1499 .remove = vme_bus_remove,
1500 };
1501 EXPORT_SYMBOL(vme_bus_type);
1502
1503 static int __init vme_init(void)
1504 {
1505 return bus_register(&vme_bus_type);
1506 }
1507
1508 static void __exit vme_exit(void)
1509 {
1510 bus_unregister(&vme_bus_type);
1511 }
1512
1513 MODULE_DESCRIPTION("VME bridge driver framework");
1514 MODULE_AUTHOR("Martyn Welch <martyn.welch@ge.com");
1515 MODULE_LICENSE("GPL");
1516
1517 module_init(vme_init);
1518 module_exit(vme_exit);