include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / video / omap / dispc.c
1 /*
2 * OMAP2 display controller support
3 *
4 * Copyright (C) 2005 Nokia Corporation
5 * Author: Imre Deak <imre.deak@nokia.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21 #include <linux/kernel.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/clk.h>
26 #include <linux/io.h>
27 #include <linux/platform_device.h>
28 #include <linux/slab.h>
29
30 #include <plat/sram.h>
31 #include <plat/board.h>
32
33 #include "omapfb.h"
34 #include "dispc.h"
35
36 #define MODULE_NAME "dispc"
37
38 #define DSS_BASE 0x48050000
39 #define DSS_SYSCONFIG 0x0010
40
41 #define DISPC_BASE 0x48050400
42
43 /* DISPC common */
44 #define DISPC_REVISION 0x0000
45 #define DISPC_SYSCONFIG 0x0010
46 #define DISPC_SYSSTATUS 0x0014
47 #define DISPC_IRQSTATUS 0x0018
48 #define DISPC_IRQENABLE 0x001C
49 #define DISPC_CONTROL 0x0040
50 #define DISPC_CONFIG 0x0044
51 #define DISPC_CAPABLE 0x0048
52 #define DISPC_DEFAULT_COLOR0 0x004C
53 #define DISPC_DEFAULT_COLOR1 0x0050
54 #define DISPC_TRANS_COLOR0 0x0054
55 #define DISPC_TRANS_COLOR1 0x0058
56 #define DISPC_LINE_STATUS 0x005C
57 #define DISPC_LINE_NUMBER 0x0060
58 #define DISPC_TIMING_H 0x0064
59 #define DISPC_TIMING_V 0x0068
60 #define DISPC_POL_FREQ 0x006C
61 #define DISPC_DIVISOR 0x0070
62 #define DISPC_SIZE_DIG 0x0078
63 #define DISPC_SIZE_LCD 0x007C
64
65 #define DISPC_DATA_CYCLE1 0x01D4
66 #define DISPC_DATA_CYCLE2 0x01D8
67 #define DISPC_DATA_CYCLE3 0x01DC
68
69 /* DISPC GFX plane */
70 #define DISPC_GFX_BA0 0x0080
71 #define DISPC_GFX_BA1 0x0084
72 #define DISPC_GFX_POSITION 0x0088
73 #define DISPC_GFX_SIZE 0x008C
74 #define DISPC_GFX_ATTRIBUTES 0x00A0
75 #define DISPC_GFX_FIFO_THRESHOLD 0x00A4
76 #define DISPC_GFX_FIFO_SIZE_STATUS 0x00A8
77 #define DISPC_GFX_ROW_INC 0x00AC
78 #define DISPC_GFX_PIXEL_INC 0x00B0
79 #define DISPC_GFX_WINDOW_SKIP 0x00B4
80 #define DISPC_GFX_TABLE_BA 0x00B8
81
82 /* DISPC Video plane 1/2 */
83 #define DISPC_VID1_BASE 0x00BC
84 #define DISPC_VID2_BASE 0x014C
85
86 /* Offsets into DISPC_VID1/2_BASE */
87 #define DISPC_VID_BA0 0x0000
88 #define DISPC_VID_BA1 0x0004
89 #define DISPC_VID_POSITION 0x0008
90 #define DISPC_VID_SIZE 0x000C
91 #define DISPC_VID_ATTRIBUTES 0x0010
92 #define DISPC_VID_FIFO_THRESHOLD 0x0014
93 #define DISPC_VID_FIFO_SIZE_STATUS 0x0018
94 #define DISPC_VID_ROW_INC 0x001C
95 #define DISPC_VID_PIXEL_INC 0x0020
96 #define DISPC_VID_FIR 0x0024
97 #define DISPC_VID_PICTURE_SIZE 0x0028
98 #define DISPC_VID_ACCU0 0x002C
99 #define DISPC_VID_ACCU1 0x0030
100
101 /* 8 elements in 8 byte increments */
102 #define DISPC_VID_FIR_COEF_H0 0x0034
103 /* 8 elements in 8 byte increments */
104 #define DISPC_VID_FIR_COEF_HV0 0x0038
105 /* 5 elements in 4 byte increments */
106 #define DISPC_VID_CONV_COEF0 0x0074
107
108 #define DISPC_IRQ_FRAMEMASK 0x0001
109 #define DISPC_IRQ_VSYNC 0x0002
110 #define DISPC_IRQ_EVSYNC_EVEN 0x0004
111 #define DISPC_IRQ_EVSYNC_ODD 0x0008
112 #define DISPC_IRQ_ACBIAS_COUNT_STAT 0x0010
113 #define DISPC_IRQ_PROG_LINE_NUM 0x0020
114 #define DISPC_IRQ_GFX_FIFO_UNDERFLOW 0x0040
115 #define DISPC_IRQ_GFX_END_WIN 0x0080
116 #define DISPC_IRQ_PAL_GAMMA_MASK 0x0100
117 #define DISPC_IRQ_OCP_ERR 0x0200
118 #define DISPC_IRQ_VID1_FIFO_UNDERFLOW 0x0400
119 #define DISPC_IRQ_VID1_END_WIN 0x0800
120 #define DISPC_IRQ_VID2_FIFO_UNDERFLOW 0x1000
121 #define DISPC_IRQ_VID2_END_WIN 0x2000
122 #define DISPC_IRQ_SYNC_LOST 0x4000
123
124 #define DISPC_IRQ_MASK_ALL 0x7fff
125
126 #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
127 DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
128 DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
129 DISPC_IRQ_SYNC_LOST)
130
131 #define RFBI_CONTROL 0x48050040
132
133 #define MAX_PALETTE_SIZE (256 * 16)
134
135 #define FLD_MASK(pos, len) (((1 << len) - 1) << pos)
136
137 #define MOD_REG_FLD(reg, mask, val) \
138 dispc_write_reg((reg), (dispc_read_reg(reg) & ~(mask)) | (val));
139
140 #define OMAP2_SRAM_START 0x40200000
141 /* Maximum size, in reality this is smaller if SRAM is partially locked. */
142 #define OMAP2_SRAM_SIZE 0xa0000 /* 640k */
143
144 /* We support the SDRAM / SRAM types. See OMAPFB_PLANE_MEMTYPE_* in omapfb.h */
145 #define DISPC_MEMTYPE_NUM 2
146
147 #define RESMAP_SIZE(_page_cnt) \
148 ((_page_cnt + (sizeof(unsigned long) * 8) - 1) / 8)
149 #define RESMAP_PTR(_res_map, _page_nr) \
150 (((_res_map)->map) + (_page_nr) / (sizeof(unsigned long) * 8))
151 #define RESMAP_MASK(_page_nr) \
152 (1 << ((_page_nr) & (sizeof(unsigned long) * 8 - 1)))
153
154 struct resmap {
155 unsigned long start;
156 unsigned page_cnt;
157 unsigned long *map;
158 };
159
160 #define MAX_IRQ_HANDLERS 4
161
162 static struct {
163 void __iomem *base;
164
165 struct omapfb_mem_desc mem_desc;
166 struct resmap *res_map[DISPC_MEMTYPE_NUM];
167 atomic_t map_count[OMAPFB_PLANE_NUM];
168
169 dma_addr_t palette_paddr;
170 void *palette_vaddr;
171
172 int ext_mode;
173
174 struct {
175 u32 irq_mask;
176 void (*callback)(void *);
177 void *data;
178 } irq_handlers[MAX_IRQ_HANDLERS];
179 struct completion frame_done;
180
181 int fir_hinc[OMAPFB_PLANE_NUM];
182 int fir_vinc[OMAPFB_PLANE_NUM];
183
184 struct clk *dss_ick, *dss1_fck;
185 struct clk *dss_54m_fck;
186
187 enum omapfb_update_mode update_mode;
188 struct omapfb_device *fbdev;
189
190 struct omapfb_color_key color_key;
191 } dispc;
192
193 static void enable_lcd_clocks(int enable);
194
195 static void inline dispc_write_reg(int idx, u32 val)
196 {
197 __raw_writel(val, dispc.base + idx);
198 }
199
200 static u32 inline dispc_read_reg(int idx)
201 {
202 u32 l = __raw_readl(dispc.base + idx);
203 return l;
204 }
205
206 /* Select RFBI or bypass mode */
207 static void enable_rfbi_mode(int enable)
208 {
209 void __iomem *rfbi_control;
210 u32 l;
211
212 l = dispc_read_reg(DISPC_CONTROL);
213 /* Enable RFBI, GPIO0/1 */
214 l &= ~((1 << 11) | (1 << 15) | (1 << 16));
215 l |= enable ? (1 << 11) : 0;
216 /* RFBI En: GPIO0/1=10 RFBI Dis: GPIO0/1=11 */
217 l |= 1 << 15;
218 l |= enable ? 0 : (1 << 16);
219 dispc_write_reg(DISPC_CONTROL, l);
220
221 /* Set bypass mode in RFBI module */
222 rfbi_control = ioremap(RFBI_CONTROL, SZ_1K);
223 if (!rfbi_control) {
224 pr_err("Unable to ioremap rfbi_control\n");
225 return;
226 }
227 l = __raw_readl(rfbi_control);
228 l |= enable ? 0 : (1 << 1);
229 __raw_writel(l, rfbi_control);
230 iounmap(rfbi_control);
231 }
232
233 static void set_lcd_data_lines(int data_lines)
234 {
235 u32 l;
236 int code = 0;
237
238 switch (data_lines) {
239 case 12:
240 code = 0;
241 break;
242 case 16:
243 code = 1;
244 break;
245 case 18:
246 code = 2;
247 break;
248 case 24:
249 code = 3;
250 break;
251 default:
252 BUG();
253 }
254
255 l = dispc_read_reg(DISPC_CONTROL);
256 l &= ~(0x03 << 8);
257 l |= code << 8;
258 dispc_write_reg(DISPC_CONTROL, l);
259 }
260
261 static void set_load_mode(int mode)
262 {
263 BUG_ON(mode & ~(DISPC_LOAD_CLUT_ONLY | DISPC_LOAD_FRAME_ONLY |
264 DISPC_LOAD_CLUT_ONCE_FRAME));
265 MOD_REG_FLD(DISPC_CONFIG, 0x03 << 1, mode << 1);
266 }
267
268 void omap_dispc_set_lcd_size(int x, int y)
269 {
270 BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
271 enable_lcd_clocks(1);
272 MOD_REG_FLD(DISPC_SIZE_LCD, FLD_MASK(16, 11) | FLD_MASK(0, 11),
273 ((y - 1) << 16) | (x - 1));
274 enable_lcd_clocks(0);
275 }
276 EXPORT_SYMBOL(omap_dispc_set_lcd_size);
277
278 void omap_dispc_set_digit_size(int x, int y)
279 {
280 BUG_ON((x > (1 << 11)) || (y > (1 << 11)));
281 enable_lcd_clocks(1);
282 MOD_REG_FLD(DISPC_SIZE_DIG, FLD_MASK(16, 11) | FLD_MASK(0, 11),
283 ((y - 1) << 16) | (x - 1));
284 enable_lcd_clocks(0);
285 }
286 EXPORT_SYMBOL(omap_dispc_set_digit_size);
287
288 static void setup_plane_fifo(int plane, int ext_mode)
289 {
290 const u32 ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
291 DISPC_VID1_BASE + DISPC_VID_FIFO_THRESHOLD,
292 DISPC_VID2_BASE + DISPC_VID_FIFO_THRESHOLD };
293 const u32 fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
294 DISPC_VID1_BASE + DISPC_VID_FIFO_SIZE_STATUS,
295 DISPC_VID2_BASE + DISPC_VID_FIFO_SIZE_STATUS };
296 int low, high;
297 u32 l;
298
299 BUG_ON(plane > 2);
300
301 l = dispc_read_reg(fsz_reg[plane]);
302 l &= FLD_MASK(0, 11);
303 if (ext_mode) {
304 low = l * 3 / 4;
305 high = l;
306 } else {
307 low = l / 4;
308 high = l * 3 / 4;
309 }
310 MOD_REG_FLD(ftrs_reg[plane], FLD_MASK(16, 12) | FLD_MASK(0, 12),
311 (high << 16) | low);
312 }
313
314 void omap_dispc_enable_lcd_out(int enable)
315 {
316 enable_lcd_clocks(1);
317 MOD_REG_FLD(DISPC_CONTROL, 1, enable ? 1 : 0);
318 enable_lcd_clocks(0);
319 }
320 EXPORT_SYMBOL(omap_dispc_enable_lcd_out);
321
322 void omap_dispc_enable_digit_out(int enable)
323 {
324 enable_lcd_clocks(1);
325 MOD_REG_FLD(DISPC_CONTROL, 1 << 1, enable ? 1 << 1 : 0);
326 enable_lcd_clocks(0);
327 }
328 EXPORT_SYMBOL(omap_dispc_enable_digit_out);
329
330 static inline int _setup_plane(int plane, int channel_out,
331 u32 paddr, int screen_width,
332 int pos_x, int pos_y, int width, int height,
333 int color_mode)
334 {
335 const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
336 DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
337 DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
338 const u32 ba_reg[] = { DISPC_GFX_BA0, DISPC_VID1_BASE + DISPC_VID_BA0,
339 DISPC_VID2_BASE + DISPC_VID_BA0 };
340 const u32 ps_reg[] = { DISPC_GFX_POSITION,
341 DISPC_VID1_BASE + DISPC_VID_POSITION,
342 DISPC_VID2_BASE + DISPC_VID_POSITION };
343 const u32 sz_reg[] = { DISPC_GFX_SIZE,
344 DISPC_VID1_BASE + DISPC_VID_PICTURE_SIZE,
345 DISPC_VID2_BASE + DISPC_VID_PICTURE_SIZE };
346 const u32 ri_reg[] = { DISPC_GFX_ROW_INC,
347 DISPC_VID1_BASE + DISPC_VID_ROW_INC,
348 DISPC_VID2_BASE + DISPC_VID_ROW_INC };
349 const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
350 DISPC_VID2_BASE + DISPC_VID_SIZE };
351
352 int chout_shift, burst_shift;
353 int chout_val;
354 int color_code;
355 int bpp;
356 int cconv_en;
357 int set_vsize;
358 u32 l;
359
360 #ifdef VERBOSE
361 dev_dbg(dispc.fbdev->dev, "plane %d channel %d paddr %#08x scr_width %d"
362 " pos_x %d pos_y %d width %d height %d color_mode %d\n",
363 plane, channel_out, paddr, screen_width, pos_x, pos_y,
364 width, height, color_mode);
365 #endif
366
367 set_vsize = 0;
368 switch (plane) {
369 case OMAPFB_PLANE_GFX:
370 burst_shift = 6;
371 chout_shift = 8;
372 break;
373 case OMAPFB_PLANE_VID1:
374 case OMAPFB_PLANE_VID2:
375 burst_shift = 14;
376 chout_shift = 16;
377 set_vsize = 1;
378 break;
379 default:
380 return -EINVAL;
381 }
382
383 switch (channel_out) {
384 case OMAPFB_CHANNEL_OUT_LCD:
385 chout_val = 0;
386 break;
387 case OMAPFB_CHANNEL_OUT_DIGIT:
388 chout_val = 1;
389 break;
390 default:
391 return -EINVAL;
392 }
393
394 cconv_en = 0;
395 switch (color_mode) {
396 case OMAPFB_COLOR_RGB565:
397 color_code = DISPC_RGB_16_BPP;
398 bpp = 16;
399 break;
400 case OMAPFB_COLOR_YUV422:
401 if (plane == 0)
402 return -EINVAL;
403 color_code = DISPC_UYVY_422;
404 cconv_en = 1;
405 bpp = 16;
406 break;
407 case OMAPFB_COLOR_YUY422:
408 if (plane == 0)
409 return -EINVAL;
410 color_code = DISPC_YUV2_422;
411 cconv_en = 1;
412 bpp = 16;
413 break;
414 default:
415 return -EINVAL;
416 }
417
418 l = dispc_read_reg(at_reg[plane]);
419
420 l &= ~(0x0f << 1);
421 l |= color_code << 1;
422 l &= ~(1 << 9);
423 l |= cconv_en << 9;
424
425 l &= ~(0x03 << burst_shift);
426 l |= DISPC_BURST_8x32 << burst_shift;
427
428 l &= ~(1 << chout_shift);
429 l |= chout_val << chout_shift;
430
431 dispc_write_reg(at_reg[plane], l);
432
433 dispc_write_reg(ba_reg[plane], paddr);
434 MOD_REG_FLD(ps_reg[plane],
435 FLD_MASK(16, 11) | FLD_MASK(0, 11), (pos_y << 16) | pos_x);
436
437 MOD_REG_FLD(sz_reg[plane], FLD_MASK(16, 11) | FLD_MASK(0, 11),
438 ((height - 1) << 16) | (width - 1));
439
440 if (set_vsize) {
441 /* Set video size if set_scale hasn't set it */
442 if (!dispc.fir_vinc[plane])
443 MOD_REG_FLD(vs_reg[plane],
444 FLD_MASK(16, 11), (height - 1) << 16);
445 if (!dispc.fir_hinc[plane])
446 MOD_REG_FLD(vs_reg[plane],
447 FLD_MASK(0, 11), width - 1);
448 }
449
450 dispc_write_reg(ri_reg[plane], (screen_width - width) * bpp / 8 + 1);
451
452 return height * screen_width * bpp / 8;
453 }
454
455 static int omap_dispc_setup_plane(int plane, int channel_out,
456 unsigned long offset,
457 int screen_width,
458 int pos_x, int pos_y, int width, int height,
459 int color_mode)
460 {
461 u32 paddr;
462 int r;
463
464 if ((unsigned)plane > dispc.mem_desc.region_cnt)
465 return -EINVAL;
466 paddr = dispc.mem_desc.region[plane].paddr + offset;
467 enable_lcd_clocks(1);
468 r = _setup_plane(plane, channel_out, paddr,
469 screen_width,
470 pos_x, pos_y, width, height, color_mode);
471 enable_lcd_clocks(0);
472 return r;
473 }
474
475 static void write_firh_reg(int plane, int reg, u32 value)
476 {
477 u32 base;
478
479 if (plane == 1)
480 base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_H0;
481 else
482 base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_H0;
483 dispc_write_reg(base + reg * 8, value);
484 }
485
486 static void write_firhv_reg(int plane, int reg, u32 value)
487 {
488 u32 base;
489
490 if (plane == 1)
491 base = DISPC_VID1_BASE + DISPC_VID_FIR_COEF_HV0;
492 else
493 base = DISPC_VID2_BASE + DISPC_VID_FIR_COEF_HV0;
494 dispc_write_reg(base + reg * 8, value);
495 }
496
497 static void set_upsampling_coef_table(int plane)
498 {
499 const u32 coef[][2] = {
500 { 0x00800000, 0x00800000 },
501 { 0x0D7CF800, 0x037B02FF },
502 { 0x1E70F5FF, 0x0C6F05FE },
503 { 0x335FF5FE, 0x205907FB },
504 { 0xF74949F7, 0x00404000 },
505 { 0xF55F33FB, 0x075920FE },
506 { 0xF5701EFE, 0x056F0CFF },
507 { 0xF87C0DFF, 0x027B0300 },
508 };
509 int i;
510
511 for (i = 0; i < 8; i++) {
512 write_firh_reg(plane, i, coef[i][0]);
513 write_firhv_reg(plane, i, coef[i][1]);
514 }
515 }
516
517 static int omap_dispc_set_scale(int plane,
518 int orig_width, int orig_height,
519 int out_width, int out_height)
520 {
521 const u32 at_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
522 DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
523 const u32 vs_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_SIZE,
524 DISPC_VID2_BASE + DISPC_VID_SIZE };
525 const u32 fir_reg[] = { 0, DISPC_VID1_BASE + DISPC_VID_FIR,
526 DISPC_VID2_BASE + DISPC_VID_FIR };
527
528 u32 l;
529 int fir_hinc;
530 int fir_vinc;
531
532 if ((unsigned)plane > OMAPFB_PLANE_NUM)
533 return -ENODEV;
534
535 if (plane == OMAPFB_PLANE_GFX &&
536 (out_width != orig_width || out_height != orig_height))
537 return -EINVAL;
538
539 enable_lcd_clocks(1);
540 if (orig_width < out_width) {
541 /*
542 * Upsampling.
543 * Currently you can only scale both dimensions in one way.
544 */
545 if (orig_height > out_height ||
546 orig_width * 8 < out_width ||
547 orig_height * 8 < out_height) {
548 enable_lcd_clocks(0);
549 return -EINVAL;
550 }
551 set_upsampling_coef_table(plane);
552 } else if (orig_width > out_width) {
553 /* Downsampling not yet supported
554 */
555
556 enable_lcd_clocks(0);
557 return -EINVAL;
558 }
559 if (!orig_width || orig_width == out_width)
560 fir_hinc = 0;
561 else
562 fir_hinc = 1024 * orig_width / out_width;
563 if (!orig_height || orig_height == out_height)
564 fir_vinc = 0;
565 else
566 fir_vinc = 1024 * orig_height / out_height;
567 dispc.fir_hinc[plane] = fir_hinc;
568 dispc.fir_vinc[plane] = fir_vinc;
569
570 MOD_REG_FLD(fir_reg[plane],
571 FLD_MASK(16, 12) | FLD_MASK(0, 12),
572 ((fir_vinc & 4095) << 16) |
573 (fir_hinc & 4095));
574
575 dev_dbg(dispc.fbdev->dev, "out_width %d out_height %d orig_width %d "
576 "orig_height %d fir_hinc %d fir_vinc %d\n",
577 out_width, out_height, orig_width, orig_height,
578 fir_hinc, fir_vinc);
579
580 MOD_REG_FLD(vs_reg[plane],
581 FLD_MASK(16, 11) | FLD_MASK(0, 11),
582 ((out_height - 1) << 16) | (out_width - 1));
583
584 l = dispc_read_reg(at_reg[plane]);
585 l &= ~(0x03 << 5);
586 l |= fir_hinc ? (1 << 5) : 0;
587 l |= fir_vinc ? (1 << 6) : 0;
588 dispc_write_reg(at_reg[plane], l);
589
590 enable_lcd_clocks(0);
591 return 0;
592 }
593
594 static int omap_dispc_enable_plane(int plane, int enable)
595 {
596 const u32 at_reg[] = { DISPC_GFX_ATTRIBUTES,
597 DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES,
598 DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES };
599 if ((unsigned int)plane > dispc.mem_desc.region_cnt)
600 return -EINVAL;
601
602 enable_lcd_clocks(1);
603 MOD_REG_FLD(at_reg[plane], 1, enable ? 1 : 0);
604 enable_lcd_clocks(0);
605
606 return 0;
607 }
608
609 static int omap_dispc_set_color_key(struct omapfb_color_key *ck)
610 {
611 u32 df_reg, tr_reg;
612 int shift, val;
613
614 switch (ck->channel_out) {
615 case OMAPFB_CHANNEL_OUT_LCD:
616 df_reg = DISPC_DEFAULT_COLOR0;
617 tr_reg = DISPC_TRANS_COLOR0;
618 shift = 10;
619 break;
620 case OMAPFB_CHANNEL_OUT_DIGIT:
621 df_reg = DISPC_DEFAULT_COLOR1;
622 tr_reg = DISPC_TRANS_COLOR1;
623 shift = 12;
624 break;
625 default:
626 return -EINVAL;
627 }
628 switch (ck->key_type) {
629 case OMAPFB_COLOR_KEY_DISABLED:
630 val = 0;
631 break;
632 case OMAPFB_COLOR_KEY_GFX_DST:
633 val = 1;
634 break;
635 case OMAPFB_COLOR_KEY_VID_SRC:
636 val = 3;
637 break;
638 default:
639 return -EINVAL;
640 }
641 enable_lcd_clocks(1);
642 MOD_REG_FLD(DISPC_CONFIG, FLD_MASK(shift, 2), val << shift);
643
644 if (val != 0)
645 dispc_write_reg(tr_reg, ck->trans_key);
646 dispc_write_reg(df_reg, ck->background);
647 enable_lcd_clocks(0);
648
649 dispc.color_key = *ck;
650
651 return 0;
652 }
653
654 static int omap_dispc_get_color_key(struct omapfb_color_key *ck)
655 {
656 *ck = dispc.color_key;
657 return 0;
658 }
659
660 static void load_palette(void)
661 {
662 }
663
664 static int omap_dispc_set_update_mode(enum omapfb_update_mode mode)
665 {
666 int r = 0;
667
668 if (mode != dispc.update_mode) {
669 switch (mode) {
670 case OMAPFB_AUTO_UPDATE:
671 case OMAPFB_MANUAL_UPDATE:
672 enable_lcd_clocks(1);
673 omap_dispc_enable_lcd_out(1);
674 dispc.update_mode = mode;
675 break;
676 case OMAPFB_UPDATE_DISABLED:
677 init_completion(&dispc.frame_done);
678 omap_dispc_enable_lcd_out(0);
679 if (!wait_for_completion_timeout(&dispc.frame_done,
680 msecs_to_jiffies(500))) {
681 dev_err(dispc.fbdev->dev,
682 "timeout waiting for FRAME DONE\n");
683 }
684 dispc.update_mode = mode;
685 enable_lcd_clocks(0);
686 break;
687 default:
688 r = -EINVAL;
689 }
690 }
691
692 return r;
693 }
694
695 static void omap_dispc_get_caps(int plane, struct omapfb_caps *caps)
696 {
697 caps->ctrl |= OMAPFB_CAPS_PLANE_RELOCATE_MEM;
698 if (plane > 0)
699 caps->ctrl |= OMAPFB_CAPS_PLANE_SCALE;
700 caps->plane_color |= (1 << OMAPFB_COLOR_RGB565) |
701 (1 << OMAPFB_COLOR_YUV422) |
702 (1 << OMAPFB_COLOR_YUY422);
703 if (plane == 0)
704 caps->plane_color |= (1 << OMAPFB_COLOR_CLUT_8BPP) |
705 (1 << OMAPFB_COLOR_CLUT_4BPP) |
706 (1 << OMAPFB_COLOR_CLUT_2BPP) |
707 (1 << OMAPFB_COLOR_CLUT_1BPP) |
708 (1 << OMAPFB_COLOR_RGB444);
709 }
710
711 static enum omapfb_update_mode omap_dispc_get_update_mode(void)
712 {
713 return dispc.update_mode;
714 }
715
716 static void setup_color_conv_coef(void)
717 {
718 u32 mask = FLD_MASK(16, 11) | FLD_MASK(0, 11);
719 int cf1_reg = DISPC_VID1_BASE + DISPC_VID_CONV_COEF0;
720 int cf2_reg = DISPC_VID2_BASE + DISPC_VID_CONV_COEF0;
721 int at1_reg = DISPC_VID1_BASE + DISPC_VID_ATTRIBUTES;
722 int at2_reg = DISPC_VID2_BASE + DISPC_VID_ATTRIBUTES;
723 const struct color_conv_coef {
724 int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
725 int full_range;
726 } ctbl_bt601_5 = {
727 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
728 };
729 const struct color_conv_coef *ct;
730 #define CVAL(x, y) (((x & 2047) << 16) | (y & 2047))
731
732 ct = &ctbl_bt601_5;
733
734 MOD_REG_FLD(cf1_reg, mask, CVAL(ct->rcr, ct->ry));
735 MOD_REG_FLD(cf1_reg + 4, mask, CVAL(ct->gy, ct->rcb));
736 MOD_REG_FLD(cf1_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
737 MOD_REG_FLD(cf1_reg + 12, mask, CVAL(ct->bcr, ct->by));
738 MOD_REG_FLD(cf1_reg + 16, mask, CVAL(0, ct->bcb));
739
740 MOD_REG_FLD(cf2_reg, mask, CVAL(ct->rcr, ct->ry));
741 MOD_REG_FLD(cf2_reg + 4, mask, CVAL(ct->gy, ct->rcb));
742 MOD_REG_FLD(cf2_reg + 8, mask, CVAL(ct->gcb, ct->gcr));
743 MOD_REG_FLD(cf2_reg + 12, mask, CVAL(ct->bcr, ct->by));
744 MOD_REG_FLD(cf2_reg + 16, mask, CVAL(0, ct->bcb));
745 #undef CVAL
746
747 MOD_REG_FLD(at1_reg, (1 << 11), ct->full_range);
748 MOD_REG_FLD(at2_reg, (1 << 11), ct->full_range);
749 }
750
751 static void calc_ck_div(int is_tft, int pck, int *lck_div, int *pck_div)
752 {
753 unsigned long fck, lck;
754
755 *lck_div = 1;
756 pck = max(1, pck);
757 fck = clk_get_rate(dispc.dss1_fck);
758 lck = fck;
759 *pck_div = (lck + pck - 1) / pck;
760 if (is_tft)
761 *pck_div = max(2, *pck_div);
762 else
763 *pck_div = max(3, *pck_div);
764 if (*pck_div > 255) {
765 *pck_div = 255;
766 lck = pck * *pck_div;
767 *lck_div = fck / lck;
768 BUG_ON(*lck_div < 1);
769 if (*lck_div > 255) {
770 *lck_div = 255;
771 dev_warn(dispc.fbdev->dev, "pixclock %d kHz too low.\n",
772 pck / 1000);
773 }
774 }
775 }
776
777 static void set_lcd_tft_mode(int enable)
778 {
779 u32 mask;
780
781 mask = 1 << 3;
782 MOD_REG_FLD(DISPC_CONTROL, mask, enable ? mask : 0);
783 }
784
785 static void set_lcd_timings(void)
786 {
787 u32 l;
788 int lck_div, pck_div;
789 struct lcd_panel *panel = dispc.fbdev->panel;
790 int is_tft = panel->config & OMAP_LCDC_PANEL_TFT;
791 unsigned long fck;
792
793 l = dispc_read_reg(DISPC_TIMING_H);
794 l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
795 l |= ( max(1, (min(64, panel->hsw))) - 1 ) << 0;
796 l |= ( max(1, (min(256, panel->hfp))) - 1 ) << 8;
797 l |= ( max(1, (min(256, panel->hbp))) - 1 ) << 20;
798 dispc_write_reg(DISPC_TIMING_H, l);
799
800 l = dispc_read_reg(DISPC_TIMING_V);
801 l &= ~(FLD_MASK(0, 6) | FLD_MASK(8, 8) | FLD_MASK(20, 8));
802 l |= ( max(1, (min(64, panel->vsw))) - 1 ) << 0;
803 l |= ( max(0, (min(255, panel->vfp))) - 0 ) << 8;
804 l |= ( max(0, (min(255, panel->vbp))) - 0 ) << 20;
805 dispc_write_reg(DISPC_TIMING_V, l);
806
807 l = dispc_read_reg(DISPC_POL_FREQ);
808 l &= ~FLD_MASK(12, 6);
809 l |= (panel->config & OMAP_LCDC_SIGNAL_MASK) << 12;
810 l |= panel->acb & 0xff;
811 dispc_write_reg(DISPC_POL_FREQ, l);
812
813 calc_ck_div(is_tft, panel->pixel_clock * 1000, &lck_div, &pck_div);
814
815 l = dispc_read_reg(DISPC_DIVISOR);
816 l &= ~(FLD_MASK(16, 8) | FLD_MASK(0, 8));
817 l |= (lck_div << 16) | (pck_div << 0);
818 dispc_write_reg(DISPC_DIVISOR, l);
819
820 /* update panel info with the exact clock */
821 fck = clk_get_rate(dispc.dss1_fck);
822 panel->pixel_clock = fck / lck_div / pck_div / 1000;
823 }
824
825 static void recalc_irq_mask(void)
826 {
827 int i;
828 unsigned long irq_mask = DISPC_IRQ_MASK_ERROR;
829
830 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
831 if (!dispc.irq_handlers[i].callback)
832 continue;
833
834 irq_mask |= dispc.irq_handlers[i].irq_mask;
835 }
836
837 enable_lcd_clocks(1);
838 MOD_REG_FLD(DISPC_IRQENABLE, 0x7fff, irq_mask);
839 enable_lcd_clocks(0);
840 }
841
842 int omap_dispc_request_irq(unsigned long irq_mask, void (*callback)(void *data),
843 void *data)
844 {
845 int i;
846
847 BUG_ON(callback == NULL);
848
849 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
850 if (dispc.irq_handlers[i].callback)
851 continue;
852
853 dispc.irq_handlers[i].irq_mask = irq_mask;
854 dispc.irq_handlers[i].callback = callback;
855 dispc.irq_handlers[i].data = data;
856 recalc_irq_mask();
857
858 return 0;
859 }
860
861 return -EBUSY;
862 }
863 EXPORT_SYMBOL(omap_dispc_request_irq);
864
865 void omap_dispc_free_irq(unsigned long irq_mask, void (*callback)(void *data),
866 void *data)
867 {
868 int i;
869
870 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
871 if (dispc.irq_handlers[i].callback == callback &&
872 dispc.irq_handlers[i].data == data) {
873 dispc.irq_handlers[i].irq_mask = 0;
874 dispc.irq_handlers[i].callback = NULL;
875 dispc.irq_handlers[i].data = NULL;
876 recalc_irq_mask();
877 return;
878 }
879 }
880
881 BUG();
882 }
883 EXPORT_SYMBOL(omap_dispc_free_irq);
884
885 static irqreturn_t omap_dispc_irq_handler(int irq, void *dev)
886 {
887 u32 stat;
888 int i = 0;
889
890 enable_lcd_clocks(1);
891
892 stat = dispc_read_reg(DISPC_IRQSTATUS);
893 if (stat & DISPC_IRQ_FRAMEMASK)
894 complete(&dispc.frame_done);
895
896 if (stat & DISPC_IRQ_MASK_ERROR) {
897 if (printk_ratelimit()) {
898 dev_err(dispc.fbdev->dev, "irq error status %04x\n",
899 stat & 0x7fff);
900 }
901 }
902
903 for (i = 0; i < MAX_IRQ_HANDLERS; i++) {
904 if (unlikely(dispc.irq_handlers[i].callback &&
905 (stat & dispc.irq_handlers[i].irq_mask)))
906 dispc.irq_handlers[i].callback(
907 dispc.irq_handlers[i].data);
908 }
909
910 dispc_write_reg(DISPC_IRQSTATUS, stat);
911
912 enable_lcd_clocks(0);
913
914 return IRQ_HANDLED;
915 }
916
917 static int get_dss_clocks(void)
918 {
919 dispc.dss_ick = clk_get(&dispc.fbdev->dssdev->dev, "ick");
920 if (IS_ERR(dispc.dss_ick)) {
921 dev_err(dispc.fbdev->dev, "can't get ick\n");
922 return PTR_ERR(dispc.dss_ick);
923 }
924
925 dispc.dss1_fck = clk_get(&dispc.fbdev->dssdev->dev, "dss1_fck");
926 if (IS_ERR(dispc.dss1_fck)) {
927 dev_err(dispc.fbdev->dev, "can't get dss1_fck\n");
928 clk_put(dispc.dss_ick);
929 return PTR_ERR(dispc.dss1_fck);
930 }
931
932 dispc.dss_54m_fck = clk_get(&dispc.fbdev->dssdev->dev, "tv_fck");
933 if (IS_ERR(dispc.dss_54m_fck)) {
934 dev_err(dispc.fbdev->dev, "can't get tv_fck\n");
935 clk_put(dispc.dss_ick);
936 clk_put(dispc.dss1_fck);
937 return PTR_ERR(dispc.dss_54m_fck);
938 }
939
940 return 0;
941 }
942
943 static void put_dss_clocks(void)
944 {
945 clk_put(dispc.dss_54m_fck);
946 clk_put(dispc.dss1_fck);
947 clk_put(dispc.dss_ick);
948 }
949
950 static void enable_lcd_clocks(int enable)
951 {
952 if (enable) {
953 clk_enable(dispc.dss_ick);
954 clk_enable(dispc.dss1_fck);
955 } else {
956 clk_disable(dispc.dss1_fck);
957 clk_disable(dispc.dss_ick);
958 }
959 }
960
961 static void enable_digit_clocks(int enable)
962 {
963 if (enable)
964 clk_enable(dispc.dss_54m_fck);
965 else
966 clk_disable(dispc.dss_54m_fck);
967 }
968
969 static void omap_dispc_suspend(void)
970 {
971 if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
972 init_completion(&dispc.frame_done);
973 omap_dispc_enable_lcd_out(0);
974 if (!wait_for_completion_timeout(&dispc.frame_done,
975 msecs_to_jiffies(500))) {
976 dev_err(dispc.fbdev->dev,
977 "timeout waiting for FRAME DONE\n");
978 }
979 enable_lcd_clocks(0);
980 }
981 }
982
983 static void omap_dispc_resume(void)
984 {
985 if (dispc.update_mode == OMAPFB_AUTO_UPDATE) {
986 enable_lcd_clocks(1);
987 if (!dispc.ext_mode) {
988 set_lcd_timings();
989 load_palette();
990 }
991 omap_dispc_enable_lcd_out(1);
992 }
993 }
994
995
996 static int omap_dispc_update_window(struct fb_info *fbi,
997 struct omapfb_update_window *win,
998 void (*complete_callback)(void *arg),
999 void *complete_callback_data)
1000 {
1001 return dispc.update_mode == OMAPFB_UPDATE_DISABLED ? -ENODEV : 0;
1002 }
1003
1004 static int mmap_kern(struct omapfb_mem_region *region)
1005 {
1006 struct vm_struct *kvma;
1007 struct vm_area_struct vma;
1008 pgprot_t pgprot;
1009 unsigned long vaddr;
1010
1011 kvma = get_vm_area(region->size, VM_IOREMAP);
1012 if (kvma == NULL) {
1013 dev_err(dispc.fbdev->dev, "can't get kernel vm area\n");
1014 return -ENOMEM;
1015 }
1016 vma.vm_mm = &init_mm;
1017
1018 vaddr = (unsigned long)kvma->addr;
1019
1020 pgprot = pgprot_writecombine(pgprot_kernel);
1021 vma.vm_start = vaddr;
1022 vma.vm_end = vaddr + region->size;
1023 if (io_remap_pfn_range(&vma, vaddr, region->paddr >> PAGE_SHIFT,
1024 region->size, pgprot) < 0) {
1025 dev_err(dispc.fbdev->dev, "kernel mmap for FBMEM failed\n");
1026 return -EAGAIN;
1027 }
1028 region->vaddr = (void *)vaddr;
1029
1030 return 0;
1031 }
1032
1033 static void mmap_user_open(struct vm_area_struct *vma)
1034 {
1035 int plane = (int)vma->vm_private_data;
1036
1037 atomic_inc(&dispc.map_count[plane]);
1038 }
1039
1040 static void mmap_user_close(struct vm_area_struct *vma)
1041 {
1042 int plane = (int)vma->vm_private_data;
1043
1044 atomic_dec(&dispc.map_count[plane]);
1045 }
1046
1047 static const struct vm_operations_struct mmap_user_ops = {
1048 .open = mmap_user_open,
1049 .close = mmap_user_close,
1050 };
1051
1052 static int omap_dispc_mmap_user(struct fb_info *info,
1053 struct vm_area_struct *vma)
1054 {
1055 struct omapfb_plane_struct *plane = info->par;
1056 unsigned long off;
1057 unsigned long start;
1058 u32 len;
1059
1060 if (vma->vm_end - vma->vm_start == 0)
1061 return 0;
1062 if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
1063 return -EINVAL;
1064 off = vma->vm_pgoff << PAGE_SHIFT;
1065
1066 start = info->fix.smem_start;
1067 len = info->fix.smem_len;
1068 if (off >= len)
1069 return -EINVAL;
1070 if ((vma->vm_end - vma->vm_start + off) > len)
1071 return -EINVAL;
1072 off += start;
1073 vma->vm_pgoff = off >> PAGE_SHIFT;
1074 vma->vm_flags |= VM_IO | VM_RESERVED;
1075 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
1076 vma->vm_ops = &mmap_user_ops;
1077 vma->vm_private_data = (void *)plane->idx;
1078 if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
1079 vma->vm_end - vma->vm_start, vma->vm_page_prot))
1080 return -EAGAIN;
1081 /* vm_ops.open won't be called for mmap itself. */
1082 atomic_inc(&dispc.map_count[plane->idx]);
1083 return 0;
1084 }
1085
1086 static void unmap_kern(struct omapfb_mem_region *region)
1087 {
1088 vunmap(region->vaddr);
1089 }
1090
1091 static int alloc_palette_ram(void)
1092 {
1093 dispc.palette_vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
1094 MAX_PALETTE_SIZE, &dispc.palette_paddr, GFP_KERNEL);
1095 if (dispc.palette_vaddr == NULL) {
1096 dev_err(dispc.fbdev->dev, "failed to alloc palette memory\n");
1097 return -ENOMEM;
1098 }
1099
1100 return 0;
1101 }
1102
1103 static void free_palette_ram(void)
1104 {
1105 dma_free_writecombine(dispc.fbdev->dev, MAX_PALETTE_SIZE,
1106 dispc.palette_vaddr, dispc.palette_paddr);
1107 }
1108
1109 static int alloc_fbmem(struct omapfb_mem_region *region)
1110 {
1111 region->vaddr = dma_alloc_writecombine(dispc.fbdev->dev,
1112 region->size, &region->paddr, GFP_KERNEL);
1113
1114 if (region->vaddr == NULL) {
1115 dev_err(dispc.fbdev->dev, "unable to allocate FB DMA memory\n");
1116 return -ENOMEM;
1117 }
1118
1119 return 0;
1120 }
1121
1122 static void free_fbmem(struct omapfb_mem_region *region)
1123 {
1124 dma_free_writecombine(dispc.fbdev->dev, region->size,
1125 region->vaddr, region->paddr);
1126 }
1127
1128 static struct resmap *init_resmap(unsigned long start, size_t size)
1129 {
1130 unsigned page_cnt;
1131 struct resmap *res_map;
1132
1133 page_cnt = PAGE_ALIGN(size) / PAGE_SIZE;
1134 res_map =
1135 kzalloc(sizeof(struct resmap) + RESMAP_SIZE(page_cnt), GFP_KERNEL);
1136 if (res_map == NULL)
1137 return NULL;
1138 res_map->start = start;
1139 res_map->page_cnt = page_cnt;
1140 res_map->map = (unsigned long *)(res_map + 1);
1141 return res_map;
1142 }
1143
1144 static void cleanup_resmap(struct resmap *res_map)
1145 {
1146 kfree(res_map);
1147 }
1148
1149 static inline int resmap_mem_type(unsigned long start)
1150 {
1151 if (start >= OMAP2_SRAM_START &&
1152 start < OMAP2_SRAM_START + OMAP2_SRAM_SIZE)
1153 return OMAPFB_MEMTYPE_SRAM;
1154 else
1155 return OMAPFB_MEMTYPE_SDRAM;
1156 }
1157
1158 static inline int resmap_page_reserved(struct resmap *res_map, unsigned page_nr)
1159 {
1160 return *RESMAP_PTR(res_map, page_nr) & RESMAP_MASK(page_nr) ? 1 : 0;
1161 }
1162
1163 static inline void resmap_reserve_page(struct resmap *res_map, unsigned page_nr)
1164 {
1165 BUG_ON(resmap_page_reserved(res_map, page_nr));
1166 *RESMAP_PTR(res_map, page_nr) |= RESMAP_MASK(page_nr);
1167 }
1168
1169 static inline void resmap_free_page(struct resmap *res_map, unsigned page_nr)
1170 {
1171 BUG_ON(!resmap_page_reserved(res_map, page_nr));
1172 *RESMAP_PTR(res_map, page_nr) &= ~RESMAP_MASK(page_nr);
1173 }
1174
1175 static void resmap_reserve_region(unsigned long start, size_t size)
1176 {
1177
1178 struct resmap *res_map;
1179 unsigned start_page;
1180 unsigned end_page;
1181 int mtype;
1182 unsigned i;
1183
1184 mtype = resmap_mem_type(start);
1185 res_map = dispc.res_map[mtype];
1186 dev_dbg(dispc.fbdev->dev, "reserve mem type %d start %08lx size %d\n",
1187 mtype, start, size);
1188 start_page = (start - res_map->start) / PAGE_SIZE;
1189 end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
1190 for (i = start_page; i < end_page; i++)
1191 resmap_reserve_page(res_map, i);
1192 }
1193
1194 static void resmap_free_region(unsigned long start, size_t size)
1195 {
1196 struct resmap *res_map;
1197 unsigned start_page;
1198 unsigned end_page;
1199 unsigned i;
1200 int mtype;
1201
1202 mtype = resmap_mem_type(start);
1203 res_map = dispc.res_map[mtype];
1204 dev_dbg(dispc.fbdev->dev, "free mem type %d start %08lx size %d\n",
1205 mtype, start, size);
1206 start_page = (start - res_map->start) / PAGE_SIZE;
1207 end_page = start_page + PAGE_ALIGN(size) / PAGE_SIZE;
1208 for (i = start_page; i < end_page; i++)
1209 resmap_free_page(res_map, i);
1210 }
1211
1212 static unsigned long resmap_alloc_region(int mtype, size_t size)
1213 {
1214 unsigned i;
1215 unsigned total;
1216 unsigned start_page;
1217 unsigned long start;
1218 struct resmap *res_map = dispc.res_map[mtype];
1219
1220 BUG_ON(mtype >= DISPC_MEMTYPE_NUM || res_map == NULL || !size);
1221
1222 size = PAGE_ALIGN(size) / PAGE_SIZE;
1223 start_page = 0;
1224 total = 0;
1225 for (i = 0; i < res_map->page_cnt; i++) {
1226 if (resmap_page_reserved(res_map, i)) {
1227 start_page = i + 1;
1228 total = 0;
1229 } else if (++total == size)
1230 break;
1231 }
1232 if (total < size)
1233 return 0;
1234
1235 start = res_map->start + start_page * PAGE_SIZE;
1236 resmap_reserve_region(start, size * PAGE_SIZE);
1237
1238 return start;
1239 }
1240
1241 /* Note that this will only work for user mappings, we don't deal with
1242 * kernel mappings here, so fbcon will keep using the old region.
1243 */
1244 static int omap_dispc_setup_mem(int plane, size_t size, int mem_type,
1245 unsigned long *paddr)
1246 {
1247 struct omapfb_mem_region *rg;
1248 unsigned long new_addr = 0;
1249
1250 if ((unsigned)plane > dispc.mem_desc.region_cnt)
1251 return -EINVAL;
1252 if (mem_type >= DISPC_MEMTYPE_NUM)
1253 return -EINVAL;
1254 if (dispc.res_map[mem_type] == NULL)
1255 return -ENOMEM;
1256 rg = &dispc.mem_desc.region[plane];
1257 if (size == rg->size && mem_type == rg->type)
1258 return 0;
1259 if (atomic_read(&dispc.map_count[plane]))
1260 return -EBUSY;
1261 if (rg->size != 0)
1262 resmap_free_region(rg->paddr, rg->size);
1263 if (size != 0) {
1264 new_addr = resmap_alloc_region(mem_type, size);
1265 if (!new_addr) {
1266 /* Reallocate old region. */
1267 resmap_reserve_region(rg->paddr, rg->size);
1268 return -ENOMEM;
1269 }
1270 }
1271 rg->paddr = new_addr;
1272 rg->size = size;
1273 rg->type = mem_type;
1274
1275 *paddr = new_addr;
1276
1277 return 0;
1278 }
1279
1280 static int setup_fbmem(struct omapfb_mem_desc *req_md)
1281 {
1282 struct omapfb_mem_region *rg;
1283 int i;
1284 int r;
1285 unsigned long mem_start[DISPC_MEMTYPE_NUM];
1286 unsigned long mem_end[DISPC_MEMTYPE_NUM];
1287
1288 if (!req_md->region_cnt) {
1289 dev_err(dispc.fbdev->dev, "no memory regions defined\n");
1290 return -ENOENT;
1291 }
1292
1293 rg = &req_md->region[0];
1294 memset(mem_start, 0xff, sizeof(mem_start));
1295 memset(mem_end, 0, sizeof(mem_end));
1296
1297 for (i = 0; i < req_md->region_cnt; i++, rg++) {
1298 int mtype;
1299 if (rg->paddr) {
1300 rg->alloc = 0;
1301 if (rg->vaddr == NULL) {
1302 rg->map = 1;
1303 if ((r = mmap_kern(rg)) < 0)
1304 return r;
1305 }
1306 } else {
1307 if (rg->type != OMAPFB_MEMTYPE_SDRAM) {
1308 dev_err(dispc.fbdev->dev,
1309 "unsupported memory type\n");
1310 return -EINVAL;
1311 }
1312 rg->alloc = rg->map = 1;
1313 if ((r = alloc_fbmem(rg)) < 0)
1314 return r;
1315 }
1316 mtype = rg->type;
1317
1318 if (rg->paddr < mem_start[mtype])
1319 mem_start[mtype] = rg->paddr;
1320 if (rg->paddr + rg->size > mem_end[mtype])
1321 mem_end[mtype] = rg->paddr + rg->size;
1322 }
1323
1324 for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
1325 unsigned long start;
1326 size_t size;
1327 if (mem_end[i] == 0)
1328 continue;
1329 start = mem_start[i];
1330 size = mem_end[i] - start;
1331 dispc.res_map[i] = init_resmap(start, size);
1332 r = -ENOMEM;
1333 if (dispc.res_map[i] == NULL)
1334 goto fail;
1335 /* Initial state is that everything is reserved. This
1336 * includes possible holes as well, which will never be
1337 * freed.
1338 */
1339 resmap_reserve_region(start, size);
1340 }
1341
1342 dispc.mem_desc = *req_md;
1343
1344 return 0;
1345 fail:
1346 for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
1347 if (dispc.res_map[i] != NULL)
1348 cleanup_resmap(dispc.res_map[i]);
1349 }
1350 return r;
1351 }
1352
1353 static void cleanup_fbmem(void)
1354 {
1355 struct omapfb_mem_region *rg;
1356 int i;
1357
1358 for (i = 0; i < DISPC_MEMTYPE_NUM; i++) {
1359 if (dispc.res_map[i] != NULL)
1360 cleanup_resmap(dispc.res_map[i]);
1361 }
1362 rg = &dispc.mem_desc.region[0];
1363 for (i = 0; i < dispc.mem_desc.region_cnt; i++, rg++) {
1364 if (rg->alloc)
1365 free_fbmem(rg);
1366 else {
1367 if (rg->map)
1368 unmap_kern(rg);
1369 }
1370 }
1371 }
1372
1373 static int omap_dispc_init(struct omapfb_device *fbdev, int ext_mode,
1374 struct omapfb_mem_desc *req_vram)
1375 {
1376 int r;
1377 u32 l;
1378 struct lcd_panel *panel = fbdev->panel;
1379 void __iomem *ram_fw_base;
1380 int tmo = 10000;
1381 int skip_init = 0;
1382 int i;
1383
1384 memset(&dispc, 0, sizeof(dispc));
1385
1386 dispc.base = ioremap(DISPC_BASE, SZ_1K);
1387 if (!dispc.base) {
1388 dev_err(fbdev->dev, "can't ioremap DISPC\n");
1389 return -ENOMEM;
1390 }
1391
1392 dispc.fbdev = fbdev;
1393 dispc.ext_mode = ext_mode;
1394
1395 init_completion(&dispc.frame_done);
1396
1397 if ((r = get_dss_clocks()) < 0)
1398 goto fail0;
1399
1400 enable_lcd_clocks(1);
1401
1402 #ifdef CONFIG_FB_OMAP_BOOTLOADER_INIT
1403 l = dispc_read_reg(DISPC_CONTROL);
1404 /* LCD enabled ? */
1405 if (l & 1) {
1406 pr_info("omapfb: skipping hardware initialization\n");
1407 skip_init = 1;
1408 }
1409 #endif
1410
1411 if (!skip_init) {
1412 /* Reset monitoring works only w/ the 54M clk */
1413 enable_digit_clocks(1);
1414
1415 /* Soft reset */
1416 MOD_REG_FLD(DISPC_SYSCONFIG, 1 << 1, 1 << 1);
1417
1418 while (!(dispc_read_reg(DISPC_SYSSTATUS) & 1)) {
1419 if (!--tmo) {
1420 dev_err(dispc.fbdev->dev, "soft reset failed\n");
1421 r = -ENODEV;
1422 enable_digit_clocks(0);
1423 goto fail1;
1424 }
1425 }
1426
1427 enable_digit_clocks(0);
1428 }
1429
1430 /* Enable smart standby/idle, autoidle and wakeup */
1431 l = dispc_read_reg(DISPC_SYSCONFIG);
1432 l &= ~((3 << 12) | (3 << 3));
1433 l |= (2 << 12) | (2 << 3) | (1 << 2) | (1 << 0);
1434 dispc_write_reg(DISPC_SYSCONFIG, l);
1435 omap_writel(1 << 0, DSS_BASE + DSS_SYSCONFIG);
1436
1437 /* Set functional clock autogating */
1438 l = dispc_read_reg(DISPC_CONFIG);
1439 l |= 1 << 9;
1440 dispc_write_reg(DISPC_CONFIG, l);
1441
1442 l = dispc_read_reg(DISPC_IRQSTATUS);
1443 dispc_write_reg(DISPC_IRQSTATUS, l);
1444
1445 recalc_irq_mask();
1446
1447 if ((r = request_irq(INT_24XX_DSS_IRQ, omap_dispc_irq_handler,
1448 0, MODULE_NAME, fbdev)) < 0) {
1449 dev_err(dispc.fbdev->dev, "can't get DSS IRQ\n");
1450 goto fail1;
1451 }
1452
1453 /* L3 firewall setting: enable access to OCM RAM */
1454 ram_fw_base = ioremap(0x68005000, SZ_1K);
1455 if (!ram_fw_base) {
1456 dev_err(dispc.fbdev->dev, "Cannot ioremap to enable OCM RAM\n");
1457 goto fail1;
1458 }
1459 __raw_writel(0x402000b0, ram_fw_base + 0xa0);
1460 iounmap(ram_fw_base);
1461
1462 if ((r = alloc_palette_ram()) < 0)
1463 goto fail2;
1464
1465 if ((r = setup_fbmem(req_vram)) < 0)
1466 goto fail3;
1467
1468 if (!skip_init) {
1469 for (i = 0; i < dispc.mem_desc.region_cnt; i++) {
1470 memset(dispc.mem_desc.region[i].vaddr, 0,
1471 dispc.mem_desc.region[i].size);
1472 }
1473
1474 /* Set logic clock to fck, pixel clock to fck/2 for now */
1475 MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(16, 8), 1 << 16);
1476 MOD_REG_FLD(DISPC_DIVISOR, FLD_MASK(0, 8), 2 << 0);
1477
1478 setup_plane_fifo(0, ext_mode);
1479 setup_plane_fifo(1, ext_mode);
1480 setup_plane_fifo(2, ext_mode);
1481
1482 setup_color_conv_coef();
1483
1484 set_lcd_tft_mode(panel->config & OMAP_LCDC_PANEL_TFT);
1485 set_load_mode(DISPC_LOAD_FRAME_ONLY);
1486
1487 if (!ext_mode) {
1488 set_lcd_data_lines(panel->data_lines);
1489 omap_dispc_set_lcd_size(panel->x_res, panel->y_res);
1490 set_lcd_timings();
1491 } else
1492 set_lcd_data_lines(panel->bpp);
1493 enable_rfbi_mode(ext_mode);
1494 }
1495
1496 l = dispc_read_reg(DISPC_REVISION);
1497 pr_info("omapfb: DISPC version %d.%d initialized\n",
1498 l >> 4 & 0x0f, l & 0x0f);
1499 enable_lcd_clocks(0);
1500
1501 return 0;
1502 fail3:
1503 free_palette_ram();
1504 fail2:
1505 free_irq(INT_24XX_DSS_IRQ, fbdev);
1506 fail1:
1507 enable_lcd_clocks(0);
1508 put_dss_clocks();
1509 fail0:
1510 iounmap(dispc.base);
1511 return r;
1512 }
1513
1514 static void omap_dispc_cleanup(void)
1515 {
1516 int i;
1517
1518 omap_dispc_set_update_mode(OMAPFB_UPDATE_DISABLED);
1519 /* This will also disable clocks that are on */
1520 for (i = 0; i < dispc.mem_desc.region_cnt; i++)
1521 omap_dispc_enable_plane(i, 0);
1522 cleanup_fbmem();
1523 free_palette_ram();
1524 free_irq(INT_24XX_DSS_IRQ, dispc.fbdev);
1525 put_dss_clocks();
1526 iounmap(dispc.base);
1527 }
1528
1529 const struct lcd_ctrl omap2_int_ctrl = {
1530 .name = "internal",
1531 .init = omap_dispc_init,
1532 .cleanup = omap_dispc_cleanup,
1533 .get_caps = omap_dispc_get_caps,
1534 .set_update_mode = omap_dispc_set_update_mode,
1535 .get_update_mode = omap_dispc_get_update_mode,
1536 .update_window = omap_dispc_update_window,
1537 .suspend = omap_dispc_suspend,
1538 .resume = omap_dispc_resume,
1539 .setup_plane = omap_dispc_setup_plane,
1540 .setup_mem = omap_dispc_setup_mem,
1541 .set_scale = omap_dispc_set_scale,
1542 .enable_plane = omap_dispc_enable_plane,
1543 .set_color_key = omap_dispc_set_color_key,
1544 .get_color_key = omap_dispc_get_color_key,
1545 .mmap = omap_dispc_mmap_user,
1546 };