Merge tag 'spi-v3.10-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43 * xhci_handshake - spin reading hc until handshake completes or fails
44 * @ptr: address of hc register to be read
45 * @mask: bits to look at in result of read
46 * @done: value of those bits when handshake succeeds
47 * @usec: timeout in microseconds
48 *
49 * Returns negative errno, or zero on success
50 *
51 * Success happens when the "mask" bits have the specified value (hardware
52 * handshake done). There are two failure modes: "usec" have passed (major
53 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 u32 mask, u32 done, int usec)
57 {
58 u32 result;
59
60 do {
61 result = xhci_readl(xhci, ptr);
62 if (result == ~(u32)0) /* card removed */
63 return -ENODEV;
64 result &= mask;
65 if (result == done)
66 return 0;
67 udelay(1);
68 usec--;
69 } while (usec > 0);
70 return -ETIMEDOUT;
71 }
72
73 /*
74 * Disable interrupts and begin the xHCI halting process.
75 */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 u32 halted;
79 u32 cmd;
80 u32 mask;
81
82 mask = ~(XHCI_IRQS);
83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 if (!halted)
85 mask &= ~CMD_RUN;
86
87 cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 cmd &= mask;
89 xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93 * Force HC into halt state.
94 *
95 * Disable any IRQs and clear the run/stop bit.
96 * HC will complete any current and actively pipelined transactions, and
97 * should halt within 16 ms of the run/stop bit being cleared.
98 * Read HC Halted bit in the status register to see when the HC is finished.
99 */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 int ret;
103 xhci_dbg(xhci, "// Halt the HC\n");
104 xhci_quiesce(xhci);
105
106 ret = xhci_handshake(xhci, &xhci->op_regs->status,
107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 if (!ret) {
109 xhci->xhc_state |= XHCI_STATE_HALTED;
110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 } else
112 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 XHCI_MAX_HALT_USEC);
114 return ret;
115 }
116
117 /*
118 * Set the run bit and wait for the host to be running.
119 */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 u32 temp;
123 int ret;
124
125 temp = xhci_readl(xhci, &xhci->op_regs->command);
126 temp |= (CMD_RUN);
127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 temp);
129 xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131 /*
132 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 * running.
134 */
135 ret = xhci_handshake(xhci, &xhci->op_regs->status,
136 STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 if (ret == -ETIMEDOUT)
138 xhci_err(xhci, "Host took too long to start, "
139 "waited %u microseconds.\n",
140 XHCI_MAX_HALT_USEC);
141 if (!ret)
142 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 return ret;
144 }
145
146 /*
147 * Reset a halted HC.
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 u32 command;
156 u32 state;
157 int ret, i;
158
159 state = xhci_readl(xhci, &xhci->op_regs->status);
160 if ((state & STS_HALT) == 0) {
161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 return 0;
163 }
164
165 xhci_dbg(xhci, "// Reset the HC\n");
166 command = xhci_readl(xhci, &xhci->op_regs->command);
167 command |= CMD_RESET;
168 xhci_writel(xhci, command, &xhci->op_regs->command);
169
170 ret = xhci_handshake(xhci, &xhci->op_regs->command,
171 CMD_RESET, 0, 10 * 1000 * 1000);
172 if (ret)
173 return ret;
174
175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 /*
177 * xHCI cannot write to any doorbells or operational registers other
178 * than status until the "Controller Not Ready" flag is cleared.
179 */
180 ret = xhci_handshake(xhci, &xhci->op_regs->status,
181 STS_CNR, 0, 10 * 1000 * 1000);
182
183 for (i = 0; i < 2; ++i) {
184 xhci->bus_state[i].port_c_suspend = 0;
185 xhci->bus_state[i].suspended_ports = 0;
186 xhci->bus_state[i].resuming_ports = 0;
187 }
188
189 return ret;
190 }
191
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 int i;
196
197 if (!xhci->msix_entries)
198 return -EINVAL;
199
200 for (i = 0; i < xhci->msix_count; i++)
201 if (xhci->msix_entries[i].vector)
202 free_irq(xhci->msix_entries[i].vector,
203 xhci_to_hcd(xhci));
204 return 0;
205 }
206
207 /*
208 * Set up MSI
209 */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 int ret;
213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215 ret = pci_enable_msi(pdev);
216 if (ret) {
217 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 return ret;
219 }
220
221 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 0, "xhci_hcd", xhci_to_hcd(xhci));
223 if (ret) {
224 xhci_dbg(xhci, "disable MSI interrupt\n");
225 pci_disable_msi(pdev);
226 }
227
228 return ret;
229 }
230
231 /*
232 * Free IRQs
233 * free all IRQs request
234 */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 int ret;
239
240 /* return if using legacy interrupt */
241 if (xhci_to_hcd(xhci)->irq > 0)
242 return;
243
244 ret = xhci_free_msi(xhci);
245 if (!ret)
246 return;
247 if (pdev->irq > 0)
248 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250 return;
251 }
252
253 /*
254 * Set up MSI-X
255 */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 int i, ret = 0;
259 struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262 /*
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
268 */
269 xhci->msix_count = min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci->hcs_params1));
271
272 xhci->msix_entries =
273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 GFP_KERNEL);
275 if (!xhci->msix_entries) {
276 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 return -ENOMEM;
278 }
279
280 for (i = 0; i < xhci->msix_count; i++) {
281 xhci->msix_entries[i].entry = i;
282 xhci->msix_entries[i].vector = 0;
283 }
284
285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 if (ret) {
287 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 goto free_entries;
289 }
290
291 for (i = 0; i < xhci->msix_count; i++) {
292 ret = request_irq(xhci->msix_entries[i].vector,
293 (irq_handler_t)xhci_msi_irq,
294 0, "xhci_hcd", xhci_to_hcd(xhci));
295 if (ret)
296 goto disable_msix;
297 }
298
299 hcd->msix_enabled = 1;
300 return ret;
301
302 disable_msix:
303 xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 xhci_free_irq(xhci);
305 pci_disable_msix(pdev);
306 free_entries:
307 kfree(xhci->msix_entries);
308 xhci->msix_entries = NULL;
309 return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318 xhci_free_irq(xhci);
319
320 if (xhci->msix_entries) {
321 pci_disable_msix(pdev);
322 kfree(xhci->msix_entries);
323 xhci->msix_entries = NULL;
324 } else {
325 pci_disable_msi(pdev);
326 }
327
328 hcd->msix_enabled = 0;
329 return;
330 }
331
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334 int i;
335
336 if (xhci->msix_entries) {
337 for (i = 0; i < xhci->msix_count; i++)
338 synchronize_irq(xhci->msix_entries[i].vector);
339 }
340 }
341
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 int ret;
347
348 /*
349 * Some Fresco Logic host controllers advertise MSI, but fail to
350 * generate interrupts. Don't even try to enable MSI.
351 */
352 if (xhci->quirks & XHCI_BROKEN_MSI)
353 goto legacy_irq;
354
355 /* unregister the legacy interrupt */
356 if (hcd->irq)
357 free_irq(hcd->irq, hcd);
358 hcd->irq = 0;
359
360 ret = xhci_setup_msix(xhci);
361 if (ret)
362 /* fall back to msi*/
363 ret = xhci_setup_msi(xhci);
364
365 if (!ret)
366 /* hcd->irq is 0, we have MSI */
367 return 0;
368
369 if (!pdev->irq) {
370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 return -EINVAL;
372 }
373
374 legacy_irq:
375 /* fall back to legacy interrupt*/
376 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
377 hcd->irq_descr, hcd);
378 if (ret) {
379 xhci_err(xhci, "request interrupt %d failed\n",
380 pdev->irq);
381 return ret;
382 }
383 hcd->irq = pdev->irq;
384 return 0;
385 }
386
387 #else
388
389 static int xhci_try_enable_msi(struct usb_hcd *hcd)
390 {
391 return 0;
392 }
393
394 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
395 {
396 }
397
398 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
399 {
400 }
401
402 #endif
403
404 static void compliance_mode_recovery(unsigned long arg)
405 {
406 struct xhci_hcd *xhci;
407 struct usb_hcd *hcd;
408 u32 temp;
409 int i;
410
411 xhci = (struct xhci_hcd *)arg;
412
413 for (i = 0; i < xhci->num_usb3_ports; i++) {
414 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
415 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
416 /*
417 * Compliance Mode Detected. Letting USB Core
418 * handle the Warm Reset
419 */
420 xhci_dbg(xhci, "Compliance mode detected->port %d\n",
421 i + 1);
422 xhci_dbg(xhci, "Attempting compliance mode recovery\n");
423 hcd = xhci->shared_hcd;
424
425 if (hcd->state == HC_STATE_SUSPENDED)
426 usb_hcd_resume_root_hub(hcd);
427
428 usb_hcd_poll_rh_status(hcd);
429 }
430 }
431
432 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
433 mod_timer(&xhci->comp_mode_recovery_timer,
434 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
435 }
436
437 /*
438 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
439 * that causes ports behind that hardware to enter compliance mode sometimes.
440 * The quirk creates a timer that polls every 2 seconds the link state of
441 * each host controller's port and recovers it by issuing a Warm reset
442 * if Compliance mode is detected, otherwise the port will become "dead" (no
443 * device connections or disconnections will be detected anymore). Becasue no
444 * status event is generated when entering compliance mode (per xhci spec),
445 * this quirk is needed on systems that have the failing hardware installed.
446 */
447 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
448 {
449 xhci->port_status_u0 = 0;
450 init_timer(&xhci->comp_mode_recovery_timer);
451
452 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
453 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
454 xhci->comp_mode_recovery_timer.expires = jiffies +
455 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
456
457 set_timer_slack(&xhci->comp_mode_recovery_timer,
458 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 add_timer(&xhci->comp_mode_recovery_timer);
460 xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
461 }
462
463 /*
464 * This function identifies the systems that have installed the SN65LVPE502CP
465 * USB3.0 re-driver and that need the Compliance Mode Quirk.
466 * Systems:
467 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
468 */
469 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
470 {
471 const char *dmi_product_name, *dmi_sys_vendor;
472
473 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
474 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
475 if (!dmi_product_name || !dmi_sys_vendor)
476 return false;
477
478 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
479 return false;
480
481 if (strstr(dmi_product_name, "Z420") ||
482 strstr(dmi_product_name, "Z620") ||
483 strstr(dmi_product_name, "Z820") ||
484 strstr(dmi_product_name, "Z1 Workstation"))
485 return true;
486
487 return false;
488 }
489
490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
491 {
492 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
493 }
494
495
496 /*
497 * Initialize memory for HCD and xHC (one-time init).
498 *
499 * Program the PAGESIZE register, initialize the device context array, create
500 * device contexts (?), set up a command ring segment (or two?), create event
501 * ring (one for now).
502 */
503 int xhci_init(struct usb_hcd *hcd)
504 {
505 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506 int retval = 0;
507
508 xhci_dbg(xhci, "xhci_init\n");
509 spin_lock_init(&xhci->lock);
510 if (xhci->hci_version == 0x95 && link_quirk) {
511 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
512 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
513 } else {
514 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
515 }
516 retval = xhci_mem_init(xhci, GFP_KERNEL);
517 xhci_dbg(xhci, "Finished xhci_init\n");
518
519 /* Initializing Compliance Mode Recovery Data If Needed */
520 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
521 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
522 compliance_mode_recovery_timer_init(xhci);
523 }
524
525 return retval;
526 }
527
528 /*-------------------------------------------------------------------------*/
529
530
531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
532 static void xhci_event_ring_work(unsigned long arg)
533 {
534 unsigned long flags;
535 int temp;
536 u64 temp_64;
537 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
538 int i, j;
539
540 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
541
542 spin_lock_irqsave(&xhci->lock, flags);
543 temp = xhci_readl(xhci, &xhci->op_regs->status);
544 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
545 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
546 (xhci->xhc_state & XHCI_STATE_HALTED)) {
547 xhci_dbg(xhci, "HW died, polling stopped.\n");
548 spin_unlock_irqrestore(&xhci->lock, flags);
549 return;
550 }
551
552 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
553 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
554 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
555 xhci->error_bitmask = 0;
556 xhci_dbg(xhci, "Event ring:\n");
557 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
558 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
559 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
560 temp_64 &= ~ERST_PTR_MASK;
561 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
562 xhci_dbg(xhci, "Command ring:\n");
563 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
564 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
565 xhci_dbg_cmd_ptrs(xhci);
566 for (i = 0; i < MAX_HC_SLOTS; ++i) {
567 if (!xhci->devs[i])
568 continue;
569 for (j = 0; j < 31; ++j) {
570 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
571 }
572 }
573 spin_unlock_irqrestore(&xhci->lock, flags);
574
575 if (!xhci->zombie)
576 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
577 else
578 xhci_dbg(xhci, "Quit polling the event ring.\n");
579 }
580 #endif
581
582 static int xhci_run_finished(struct xhci_hcd *xhci)
583 {
584 if (xhci_start(xhci)) {
585 xhci_halt(xhci);
586 return -ENODEV;
587 }
588 xhci->shared_hcd->state = HC_STATE_RUNNING;
589 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
590
591 if (xhci->quirks & XHCI_NEC_HOST)
592 xhci_ring_cmd_db(xhci);
593
594 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
595 return 0;
596 }
597
598 /*
599 * Start the HC after it was halted.
600 *
601 * This function is called by the USB core when the HC driver is added.
602 * Its opposite is xhci_stop().
603 *
604 * xhci_init() must be called once before this function can be called.
605 * Reset the HC, enable device slot contexts, program DCBAAP, and
606 * set command ring pointer and event ring pointer.
607 *
608 * Setup MSI-X vectors and enable interrupts.
609 */
610 int xhci_run(struct usb_hcd *hcd)
611 {
612 u32 temp;
613 u64 temp_64;
614 int ret;
615 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
616
617 /* Start the xHCI host controller running only after the USB 2.0 roothub
618 * is setup.
619 */
620
621 hcd->uses_new_polling = 1;
622 if (!usb_hcd_is_primary_hcd(hcd))
623 return xhci_run_finished(xhci);
624
625 xhci_dbg(xhci, "xhci_run\n");
626
627 ret = xhci_try_enable_msi(hcd);
628 if (ret)
629 return ret;
630
631 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
632 init_timer(&xhci->event_ring_timer);
633 xhci->event_ring_timer.data = (unsigned long) xhci;
634 xhci->event_ring_timer.function = xhci_event_ring_work;
635 /* Poll the event ring */
636 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
637 xhci->zombie = 0;
638 xhci_dbg(xhci, "Setting event ring polling timer\n");
639 add_timer(&xhci->event_ring_timer);
640 #endif
641
642 xhci_dbg(xhci, "Command ring memory map follows:\n");
643 xhci_debug_ring(xhci, xhci->cmd_ring);
644 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
645 xhci_dbg_cmd_ptrs(xhci);
646
647 xhci_dbg(xhci, "ERST memory map follows:\n");
648 xhci_dbg_erst(xhci, &xhci->erst);
649 xhci_dbg(xhci, "Event ring:\n");
650 xhci_debug_ring(xhci, xhci->event_ring);
651 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
652 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
653 temp_64 &= ~ERST_PTR_MASK;
654 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
655
656 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
657 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
658 temp &= ~ER_IRQ_INTERVAL_MASK;
659 temp |= (u32) 160;
660 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
661
662 /* Set the HCD state before we enable the irqs */
663 temp = xhci_readl(xhci, &xhci->op_regs->command);
664 temp |= (CMD_EIE);
665 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
666 temp);
667 xhci_writel(xhci, temp, &xhci->op_regs->command);
668
669 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
670 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
671 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
672 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
673 &xhci->ir_set->irq_pending);
674 xhci_print_ir_set(xhci, 0);
675
676 if (xhci->quirks & XHCI_NEC_HOST)
677 xhci_queue_vendor_command(xhci, 0, 0, 0,
678 TRB_TYPE(TRB_NEC_GET_FW));
679
680 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
681 return 0;
682 }
683
684 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
685 {
686 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687
688 spin_lock_irq(&xhci->lock);
689 xhci_halt(xhci);
690
691 /* The shared_hcd is going to be deallocated shortly (the USB core only
692 * calls this function when allocation fails in usb_add_hcd(), or
693 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
694 */
695 xhci->shared_hcd = NULL;
696 spin_unlock_irq(&xhci->lock);
697 }
698
699 /*
700 * Stop xHCI driver.
701 *
702 * This function is called by the USB core when the HC driver is removed.
703 * Its opposite is xhci_run().
704 *
705 * Disable device contexts, disable IRQs, and quiesce the HC.
706 * Reset the HC, finish any completed transactions, and cleanup memory.
707 */
708 void xhci_stop(struct usb_hcd *hcd)
709 {
710 u32 temp;
711 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
712
713 if (!usb_hcd_is_primary_hcd(hcd)) {
714 xhci_only_stop_hcd(xhci->shared_hcd);
715 return;
716 }
717
718 spin_lock_irq(&xhci->lock);
719 /* Make sure the xHC is halted for a USB3 roothub
720 * (xhci_stop() could be called as part of failed init).
721 */
722 xhci_halt(xhci);
723 xhci_reset(xhci);
724 spin_unlock_irq(&xhci->lock);
725
726 xhci_cleanup_msix(xhci);
727
728 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
729 /* Tell the event ring poll function not to reschedule */
730 xhci->zombie = 1;
731 del_timer_sync(&xhci->event_ring_timer);
732 #endif
733
734 /* Deleting Compliance Mode Recovery Timer */
735 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
736 (!(xhci_all_ports_seen_u0(xhci)))) {
737 del_timer_sync(&xhci->comp_mode_recovery_timer);
738 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
739 __func__);
740 }
741
742 if (xhci->quirks & XHCI_AMD_PLL_FIX)
743 usb_amd_dev_put();
744
745 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
746 temp = xhci_readl(xhci, &xhci->op_regs->status);
747 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
748 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
749 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
750 &xhci->ir_set->irq_pending);
751 xhci_print_ir_set(xhci, 0);
752
753 xhci_dbg(xhci, "cleaning up memory\n");
754 xhci_mem_cleanup(xhci);
755 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
756 xhci_readl(xhci, &xhci->op_regs->status));
757 }
758
759 /*
760 * Shutdown HC (not bus-specific)
761 *
762 * This is called when the machine is rebooting or halting. We assume that the
763 * machine will be powered off, and the HC's internal state will be reset.
764 * Don't bother to free memory.
765 *
766 * This will only ever be called with the main usb_hcd (the USB3 roothub).
767 */
768 void xhci_shutdown(struct usb_hcd *hcd)
769 {
770 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
771
772 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
773 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
774
775 spin_lock_irq(&xhci->lock);
776 xhci_halt(xhci);
777 spin_unlock_irq(&xhci->lock);
778
779 xhci_cleanup_msix(xhci);
780
781 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
782 xhci_readl(xhci, &xhci->op_regs->status));
783 }
784
785 #ifdef CONFIG_PM
786 static void xhci_save_registers(struct xhci_hcd *xhci)
787 {
788 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
789 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
790 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
791 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
792 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
793 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
794 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
795 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
796 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
797 }
798
799 static void xhci_restore_registers(struct xhci_hcd *xhci)
800 {
801 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
802 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
803 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
804 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
805 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
806 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
807 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
808 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
809 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
810 }
811
812 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
813 {
814 u64 val_64;
815
816 /* step 2: initialize command ring buffer */
817 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
818 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
819 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
820 xhci->cmd_ring->dequeue) &
821 (u64) ~CMD_RING_RSVD_BITS) |
822 xhci->cmd_ring->cycle_state;
823 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
824 (long unsigned long) val_64);
825 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
826 }
827
828 /*
829 * The whole command ring must be cleared to zero when we suspend the host.
830 *
831 * The host doesn't save the command ring pointer in the suspend well, so we
832 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
833 * aligned, because of the reserved bits in the command ring dequeue pointer
834 * register. Therefore, we can't just set the dequeue pointer back in the
835 * middle of the ring (TRBs are 16-byte aligned).
836 */
837 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
838 {
839 struct xhci_ring *ring;
840 struct xhci_segment *seg;
841
842 ring = xhci->cmd_ring;
843 seg = ring->deq_seg;
844 do {
845 memset(seg->trbs, 0,
846 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
847 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
848 cpu_to_le32(~TRB_CYCLE);
849 seg = seg->next;
850 } while (seg != ring->deq_seg);
851
852 /* Reset the software enqueue and dequeue pointers */
853 ring->deq_seg = ring->first_seg;
854 ring->dequeue = ring->first_seg->trbs;
855 ring->enq_seg = ring->deq_seg;
856 ring->enqueue = ring->dequeue;
857
858 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
859 /*
860 * Ring is now zeroed, so the HW should look for change of ownership
861 * when the cycle bit is set to 1.
862 */
863 ring->cycle_state = 1;
864
865 /*
866 * Reset the hardware dequeue pointer.
867 * Yes, this will need to be re-written after resume, but we're paranoid
868 * and want to make sure the hardware doesn't access bogus memory
869 * because, say, the BIOS or an SMI started the host without changing
870 * the command ring pointers.
871 */
872 xhci_set_cmd_ring_deq(xhci);
873 }
874
875 /*
876 * Stop HC (not bus-specific)
877 *
878 * This is called when the machine transition into S3/S4 mode.
879 *
880 */
881 int xhci_suspend(struct xhci_hcd *xhci)
882 {
883 int rc = 0;
884 struct usb_hcd *hcd = xhci_to_hcd(xhci);
885 u32 command;
886
887 if (hcd->state != HC_STATE_SUSPENDED ||
888 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
889 return -EINVAL;
890
891 /* Don't poll the roothubs on bus suspend. */
892 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
893 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
894 del_timer_sync(&hcd->rh_timer);
895
896 spin_lock_irq(&xhci->lock);
897 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
898 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
899 /* step 1: stop endpoint */
900 /* skipped assuming that port suspend has done */
901
902 /* step 2: clear Run/Stop bit */
903 command = xhci_readl(xhci, &xhci->op_regs->command);
904 command &= ~CMD_RUN;
905 xhci_writel(xhci, command, &xhci->op_regs->command);
906 if (xhci_handshake(xhci, &xhci->op_regs->status,
907 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
908 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
909 spin_unlock_irq(&xhci->lock);
910 return -ETIMEDOUT;
911 }
912 xhci_clear_command_ring(xhci);
913
914 /* step 3: save registers */
915 xhci_save_registers(xhci);
916
917 /* step 4: set CSS flag */
918 command = xhci_readl(xhci, &xhci->op_regs->command);
919 command |= CMD_CSS;
920 xhci_writel(xhci, command, &xhci->op_regs->command);
921 if (xhci_handshake(xhci, &xhci->op_regs->status,
922 STS_SAVE, 0, 10 * 1000)) {
923 xhci_warn(xhci, "WARN: xHC save state timeout\n");
924 spin_unlock_irq(&xhci->lock);
925 return -ETIMEDOUT;
926 }
927 spin_unlock_irq(&xhci->lock);
928
929 /*
930 * Deleting Compliance Mode Recovery Timer because the xHCI Host
931 * is about to be suspended.
932 */
933 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
934 (!(xhci_all_ports_seen_u0(xhci)))) {
935 del_timer_sync(&xhci->comp_mode_recovery_timer);
936 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
937 __func__);
938 }
939
940 /* step 5: remove core well power */
941 /* synchronize irq when using MSI-X */
942 xhci_msix_sync_irqs(xhci);
943
944 return rc;
945 }
946
947 /*
948 * start xHC (not bus-specific)
949 *
950 * This is called when the machine transition from S3/S4 mode.
951 *
952 */
953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
954 {
955 u32 command, temp = 0;
956 struct usb_hcd *hcd = xhci_to_hcd(xhci);
957 struct usb_hcd *secondary_hcd;
958 int retval = 0;
959 bool comp_timer_running = false;
960
961 /* Wait a bit if either of the roothubs need to settle from the
962 * transition into bus suspend.
963 */
964 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
965 time_before(jiffies,
966 xhci->bus_state[1].next_statechange))
967 msleep(100);
968
969 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
970 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
971
972 spin_lock_irq(&xhci->lock);
973 if (xhci->quirks & XHCI_RESET_ON_RESUME)
974 hibernated = true;
975
976 if (!hibernated) {
977 /* step 1: restore register */
978 xhci_restore_registers(xhci);
979 /* step 2: initialize command ring buffer */
980 xhci_set_cmd_ring_deq(xhci);
981 /* step 3: restore state and start state*/
982 /* step 3: set CRS flag */
983 command = xhci_readl(xhci, &xhci->op_regs->command);
984 command |= CMD_CRS;
985 xhci_writel(xhci, command, &xhci->op_regs->command);
986 if (xhci_handshake(xhci, &xhci->op_regs->status,
987 STS_RESTORE, 0, 10 * 1000)) {
988 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
989 spin_unlock_irq(&xhci->lock);
990 return -ETIMEDOUT;
991 }
992 temp = xhci_readl(xhci, &xhci->op_regs->status);
993 }
994
995 /* If restore operation fails, re-initialize the HC during resume */
996 if ((temp & STS_SRE) || hibernated) {
997
998 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
999 !(xhci_all_ports_seen_u0(xhci))) {
1000 del_timer_sync(&xhci->comp_mode_recovery_timer);
1001 xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1002 }
1003
1004 /* Let the USB core know _both_ roothubs lost power. */
1005 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1006 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1007
1008 xhci_dbg(xhci, "Stop HCD\n");
1009 xhci_halt(xhci);
1010 xhci_reset(xhci);
1011 spin_unlock_irq(&xhci->lock);
1012 xhci_cleanup_msix(xhci);
1013
1014 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1015 /* Tell the event ring poll function not to reschedule */
1016 xhci->zombie = 1;
1017 del_timer_sync(&xhci->event_ring_timer);
1018 #endif
1019
1020 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1021 temp = xhci_readl(xhci, &xhci->op_regs->status);
1022 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1023 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1024 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1025 &xhci->ir_set->irq_pending);
1026 xhci_print_ir_set(xhci, 0);
1027
1028 xhci_dbg(xhci, "cleaning up memory\n");
1029 xhci_mem_cleanup(xhci);
1030 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1031 xhci_readl(xhci, &xhci->op_regs->status));
1032
1033 /* USB core calls the PCI reinit and start functions twice:
1034 * first with the primary HCD, and then with the secondary HCD.
1035 * If we don't do the same, the host will never be started.
1036 */
1037 if (!usb_hcd_is_primary_hcd(hcd))
1038 secondary_hcd = hcd;
1039 else
1040 secondary_hcd = xhci->shared_hcd;
1041
1042 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1043 retval = xhci_init(hcd->primary_hcd);
1044 if (retval)
1045 return retval;
1046 comp_timer_running = true;
1047
1048 xhci_dbg(xhci, "Start the primary HCD\n");
1049 retval = xhci_run(hcd->primary_hcd);
1050 if (!retval) {
1051 xhci_dbg(xhci, "Start the secondary HCD\n");
1052 retval = xhci_run(secondary_hcd);
1053 }
1054 hcd->state = HC_STATE_SUSPENDED;
1055 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1056 goto done;
1057 }
1058
1059 /* step 4: set Run/Stop bit */
1060 command = xhci_readl(xhci, &xhci->op_regs->command);
1061 command |= CMD_RUN;
1062 xhci_writel(xhci, command, &xhci->op_regs->command);
1063 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1064 0, 250 * 1000);
1065
1066 /* step 5: walk topology and initialize portsc,
1067 * portpmsc and portli
1068 */
1069 /* this is done in bus_resume */
1070
1071 /* step 6: restart each of the previously
1072 * Running endpoints by ringing their doorbells
1073 */
1074
1075 spin_unlock_irq(&xhci->lock);
1076
1077 done:
1078 if (retval == 0) {
1079 usb_hcd_resume_root_hub(hcd);
1080 usb_hcd_resume_root_hub(xhci->shared_hcd);
1081 }
1082
1083 /*
1084 * If system is subject to the Quirk, Compliance Mode Timer needs to
1085 * be re-initialized Always after a system resume. Ports are subject
1086 * to suffer the Compliance Mode issue again. It doesn't matter if
1087 * ports have entered previously to U0 before system's suspension.
1088 */
1089 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1090 compliance_mode_recovery_timer_init(xhci);
1091
1092 /* Re-enable port polling. */
1093 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1094 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1095 usb_hcd_poll_rh_status(hcd);
1096
1097 return retval;
1098 }
1099 #endif /* CONFIG_PM */
1100
1101 /*-------------------------------------------------------------------------*/
1102
1103 /**
1104 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1105 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1106 * value to right shift 1 for the bitmask.
1107 *
1108 * Index = (epnum * 2) + direction - 1,
1109 * where direction = 0 for OUT, 1 for IN.
1110 * For control endpoints, the IN index is used (OUT index is unused), so
1111 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1112 */
1113 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1114 {
1115 unsigned int index;
1116 if (usb_endpoint_xfer_control(desc))
1117 index = (unsigned int) (usb_endpoint_num(desc)*2);
1118 else
1119 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1120 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1121 return index;
1122 }
1123
1124 /* Find the flag for this endpoint (for use in the control context). Use the
1125 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1126 * bit 1, etc.
1127 */
1128 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1129 {
1130 return 1 << (xhci_get_endpoint_index(desc) + 1);
1131 }
1132
1133 /* Find the flag for this endpoint (for use in the control context). Use the
1134 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1135 * bit 1, etc.
1136 */
1137 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1138 {
1139 return 1 << (ep_index + 1);
1140 }
1141
1142 /* Compute the last valid endpoint context index. Basically, this is the
1143 * endpoint index plus one. For slot contexts with more than valid endpoint,
1144 * we find the most significant bit set in the added contexts flags.
1145 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1146 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1147 */
1148 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1149 {
1150 return fls(added_ctxs) - 1;
1151 }
1152
1153 /* Returns 1 if the arguments are OK;
1154 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1155 */
1156 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1157 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1158 const char *func) {
1159 struct xhci_hcd *xhci;
1160 struct xhci_virt_device *virt_dev;
1161
1162 if (!hcd || (check_ep && !ep) || !udev) {
1163 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1164 func);
1165 return -EINVAL;
1166 }
1167 if (!udev->parent) {
1168 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1169 func);
1170 return 0;
1171 }
1172
1173 xhci = hcd_to_xhci(hcd);
1174 if (xhci->xhc_state & XHCI_STATE_HALTED)
1175 return -ENODEV;
1176
1177 if (check_virt_dev) {
1178 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1179 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1180 "device\n", func);
1181 return -EINVAL;
1182 }
1183
1184 virt_dev = xhci->devs[udev->slot_id];
1185 if (virt_dev->udev != udev) {
1186 printk(KERN_DEBUG "xHCI %s called with udev and "
1187 "virt_dev does not match\n", func);
1188 return -EINVAL;
1189 }
1190 }
1191
1192 return 1;
1193 }
1194
1195 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1196 struct usb_device *udev, struct xhci_command *command,
1197 bool ctx_change, bool must_succeed);
1198
1199 /*
1200 * Full speed devices may have a max packet size greater than 8 bytes, but the
1201 * USB core doesn't know that until it reads the first 8 bytes of the
1202 * descriptor. If the usb_device's max packet size changes after that point,
1203 * we need to issue an evaluate context command and wait on it.
1204 */
1205 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1206 unsigned int ep_index, struct urb *urb)
1207 {
1208 struct xhci_container_ctx *in_ctx;
1209 struct xhci_container_ctx *out_ctx;
1210 struct xhci_input_control_ctx *ctrl_ctx;
1211 struct xhci_ep_ctx *ep_ctx;
1212 int max_packet_size;
1213 int hw_max_packet_size;
1214 int ret = 0;
1215
1216 out_ctx = xhci->devs[slot_id]->out_ctx;
1217 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1218 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1219 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1220 if (hw_max_packet_size != max_packet_size) {
1221 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1222 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1223 max_packet_size);
1224 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1225 hw_max_packet_size);
1226 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1227
1228 /* Set up the modified control endpoint 0 */
1229 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1230 xhci->devs[slot_id]->out_ctx, ep_index);
1231 in_ctx = xhci->devs[slot_id]->in_ctx;
1232 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1233 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1234 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1235
1236 /* Set up the input context flags for the command */
1237 /* FIXME: This won't work if a non-default control endpoint
1238 * changes max packet sizes.
1239 */
1240 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1241 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1242 ctrl_ctx->drop_flags = 0;
1243
1244 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1245 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1246 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1247 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1248
1249 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1250 true, false);
1251
1252 /* Clean up the input context for later use by bandwidth
1253 * functions.
1254 */
1255 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1256 }
1257 return ret;
1258 }
1259
1260 /*
1261 * non-error returns are a promise to giveback() the urb later
1262 * we drop ownership so next owner (or urb unlink) can get it
1263 */
1264 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1265 {
1266 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1267 struct xhci_td *buffer;
1268 unsigned long flags;
1269 int ret = 0;
1270 unsigned int slot_id, ep_index;
1271 struct urb_priv *urb_priv;
1272 int size, i;
1273
1274 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1275 true, true, __func__) <= 0)
1276 return -EINVAL;
1277
1278 slot_id = urb->dev->slot_id;
1279 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1280
1281 if (!HCD_HW_ACCESSIBLE(hcd)) {
1282 if (!in_interrupt())
1283 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1284 ret = -ESHUTDOWN;
1285 goto exit;
1286 }
1287
1288 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1289 size = urb->number_of_packets;
1290 else
1291 size = 1;
1292
1293 urb_priv = kzalloc(sizeof(struct urb_priv) +
1294 size * sizeof(struct xhci_td *), mem_flags);
1295 if (!urb_priv)
1296 return -ENOMEM;
1297
1298 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1299 if (!buffer) {
1300 kfree(urb_priv);
1301 return -ENOMEM;
1302 }
1303
1304 for (i = 0; i < size; i++) {
1305 urb_priv->td[i] = buffer;
1306 buffer++;
1307 }
1308
1309 urb_priv->length = size;
1310 urb_priv->td_cnt = 0;
1311 urb->hcpriv = urb_priv;
1312
1313 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1314 /* Check to see if the max packet size for the default control
1315 * endpoint changed during FS device enumeration
1316 */
1317 if (urb->dev->speed == USB_SPEED_FULL) {
1318 ret = xhci_check_maxpacket(xhci, slot_id,
1319 ep_index, urb);
1320 if (ret < 0) {
1321 xhci_urb_free_priv(xhci, urb_priv);
1322 urb->hcpriv = NULL;
1323 return ret;
1324 }
1325 }
1326
1327 /* We have a spinlock and interrupts disabled, so we must pass
1328 * atomic context to this function, which may allocate memory.
1329 */
1330 spin_lock_irqsave(&xhci->lock, flags);
1331 if (xhci->xhc_state & XHCI_STATE_DYING)
1332 goto dying;
1333 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1334 slot_id, ep_index);
1335 if (ret)
1336 goto free_priv;
1337 spin_unlock_irqrestore(&xhci->lock, flags);
1338 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1339 spin_lock_irqsave(&xhci->lock, flags);
1340 if (xhci->xhc_state & XHCI_STATE_DYING)
1341 goto dying;
1342 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1343 EP_GETTING_STREAMS) {
1344 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1345 "is transitioning to using streams.\n");
1346 ret = -EINVAL;
1347 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1348 EP_GETTING_NO_STREAMS) {
1349 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1350 "is transitioning to "
1351 "not having streams.\n");
1352 ret = -EINVAL;
1353 } else {
1354 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1355 slot_id, ep_index);
1356 }
1357 if (ret)
1358 goto free_priv;
1359 spin_unlock_irqrestore(&xhci->lock, flags);
1360 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1361 spin_lock_irqsave(&xhci->lock, flags);
1362 if (xhci->xhc_state & XHCI_STATE_DYING)
1363 goto dying;
1364 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1365 slot_id, ep_index);
1366 if (ret)
1367 goto free_priv;
1368 spin_unlock_irqrestore(&xhci->lock, flags);
1369 } else {
1370 spin_lock_irqsave(&xhci->lock, flags);
1371 if (xhci->xhc_state & XHCI_STATE_DYING)
1372 goto dying;
1373 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1374 slot_id, ep_index);
1375 if (ret)
1376 goto free_priv;
1377 spin_unlock_irqrestore(&xhci->lock, flags);
1378 }
1379 exit:
1380 return ret;
1381 dying:
1382 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1383 "non-responsive xHCI host.\n",
1384 urb->ep->desc.bEndpointAddress, urb);
1385 ret = -ESHUTDOWN;
1386 free_priv:
1387 xhci_urb_free_priv(xhci, urb_priv);
1388 urb->hcpriv = NULL;
1389 spin_unlock_irqrestore(&xhci->lock, flags);
1390 return ret;
1391 }
1392
1393 /* Get the right ring for the given URB.
1394 * If the endpoint supports streams, boundary check the URB's stream ID.
1395 * If the endpoint doesn't support streams, return the singular endpoint ring.
1396 */
1397 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1398 struct urb *urb)
1399 {
1400 unsigned int slot_id;
1401 unsigned int ep_index;
1402 unsigned int stream_id;
1403 struct xhci_virt_ep *ep;
1404
1405 slot_id = urb->dev->slot_id;
1406 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1407 stream_id = urb->stream_id;
1408 ep = &xhci->devs[slot_id]->eps[ep_index];
1409 /* Common case: no streams */
1410 if (!(ep->ep_state & EP_HAS_STREAMS))
1411 return ep->ring;
1412
1413 if (stream_id == 0) {
1414 xhci_warn(xhci,
1415 "WARN: Slot ID %u, ep index %u has streams, "
1416 "but URB has no stream ID.\n",
1417 slot_id, ep_index);
1418 return NULL;
1419 }
1420
1421 if (stream_id < ep->stream_info->num_streams)
1422 return ep->stream_info->stream_rings[stream_id];
1423
1424 xhci_warn(xhci,
1425 "WARN: Slot ID %u, ep index %u has "
1426 "stream IDs 1 to %u allocated, "
1427 "but stream ID %u is requested.\n",
1428 slot_id, ep_index,
1429 ep->stream_info->num_streams - 1,
1430 stream_id);
1431 return NULL;
1432 }
1433
1434 /*
1435 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1436 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1437 * should pick up where it left off in the TD, unless a Set Transfer Ring
1438 * Dequeue Pointer is issued.
1439 *
1440 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1441 * the ring. Since the ring is a contiguous structure, they can't be physically
1442 * removed. Instead, there are two options:
1443 *
1444 * 1) If the HC is in the middle of processing the URB to be canceled, we
1445 * simply move the ring's dequeue pointer past those TRBs using the Set
1446 * Transfer Ring Dequeue Pointer command. This will be the common case,
1447 * when drivers timeout on the last submitted URB and attempt to cancel.
1448 *
1449 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1450 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1451 * HC will need to invalidate the any TRBs it has cached after the stop
1452 * endpoint command, as noted in the xHCI 0.95 errata.
1453 *
1454 * 3) The TD may have completed by the time the Stop Endpoint Command
1455 * completes, so software needs to handle that case too.
1456 *
1457 * This function should protect against the TD enqueueing code ringing the
1458 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1459 * It also needs to account for multiple cancellations on happening at the same
1460 * time for the same endpoint.
1461 *
1462 * Note that this function can be called in any context, or so says
1463 * usb_hcd_unlink_urb()
1464 */
1465 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1466 {
1467 unsigned long flags;
1468 int ret, i;
1469 u32 temp;
1470 struct xhci_hcd *xhci;
1471 struct urb_priv *urb_priv;
1472 struct xhci_td *td;
1473 unsigned int ep_index;
1474 struct xhci_ring *ep_ring;
1475 struct xhci_virt_ep *ep;
1476
1477 xhci = hcd_to_xhci(hcd);
1478 spin_lock_irqsave(&xhci->lock, flags);
1479 /* Make sure the URB hasn't completed or been unlinked already */
1480 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1481 if (ret || !urb->hcpriv)
1482 goto done;
1483 temp = xhci_readl(xhci, &xhci->op_regs->status);
1484 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1485 xhci_dbg(xhci, "HW died, freeing TD.\n");
1486 urb_priv = urb->hcpriv;
1487 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1488 td = urb_priv->td[i];
1489 if (!list_empty(&td->td_list))
1490 list_del_init(&td->td_list);
1491 if (!list_empty(&td->cancelled_td_list))
1492 list_del_init(&td->cancelled_td_list);
1493 }
1494
1495 usb_hcd_unlink_urb_from_ep(hcd, urb);
1496 spin_unlock_irqrestore(&xhci->lock, flags);
1497 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1498 xhci_urb_free_priv(xhci, urb_priv);
1499 return ret;
1500 }
1501 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1502 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1503 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1504 "non-responsive xHCI host.\n",
1505 urb->ep->desc.bEndpointAddress, urb);
1506 /* Let the stop endpoint command watchdog timer (which set this
1507 * state) finish cleaning up the endpoint TD lists. We must
1508 * have caught it in the middle of dropping a lock and giving
1509 * back an URB.
1510 */
1511 goto done;
1512 }
1513
1514 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1515 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1516 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1517 if (!ep_ring) {
1518 ret = -EINVAL;
1519 goto done;
1520 }
1521
1522 urb_priv = urb->hcpriv;
1523 i = urb_priv->td_cnt;
1524 if (i < urb_priv->length)
1525 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1526 "starting at offset 0x%llx\n",
1527 urb, urb->dev->devpath,
1528 urb->ep->desc.bEndpointAddress,
1529 (unsigned long long) xhci_trb_virt_to_dma(
1530 urb_priv->td[i]->start_seg,
1531 urb_priv->td[i]->first_trb));
1532
1533 for (; i < urb_priv->length; i++) {
1534 td = urb_priv->td[i];
1535 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1536 }
1537
1538 /* Queue a stop endpoint command, but only if this is
1539 * the first cancellation to be handled.
1540 */
1541 if (!(ep->ep_state & EP_HALT_PENDING)) {
1542 ep->ep_state |= EP_HALT_PENDING;
1543 ep->stop_cmds_pending++;
1544 ep->stop_cmd_timer.expires = jiffies +
1545 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1546 add_timer(&ep->stop_cmd_timer);
1547 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1548 xhci_ring_cmd_db(xhci);
1549 }
1550 done:
1551 spin_unlock_irqrestore(&xhci->lock, flags);
1552 return ret;
1553 }
1554
1555 /* Drop an endpoint from a new bandwidth configuration for this device.
1556 * Only one call to this function is allowed per endpoint before
1557 * check_bandwidth() or reset_bandwidth() must be called.
1558 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1559 * add the endpoint to the schedule with possibly new parameters denoted by a
1560 * different endpoint descriptor in usb_host_endpoint.
1561 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1562 * not allowed.
1563 *
1564 * The USB core will not allow URBs to be queued to an endpoint that is being
1565 * disabled, so there's no need for mutual exclusion to protect
1566 * the xhci->devs[slot_id] structure.
1567 */
1568 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1569 struct usb_host_endpoint *ep)
1570 {
1571 struct xhci_hcd *xhci;
1572 struct xhci_container_ctx *in_ctx, *out_ctx;
1573 struct xhci_input_control_ctx *ctrl_ctx;
1574 struct xhci_slot_ctx *slot_ctx;
1575 unsigned int last_ctx;
1576 unsigned int ep_index;
1577 struct xhci_ep_ctx *ep_ctx;
1578 u32 drop_flag;
1579 u32 new_add_flags, new_drop_flags, new_slot_info;
1580 int ret;
1581
1582 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1583 if (ret <= 0)
1584 return ret;
1585 xhci = hcd_to_xhci(hcd);
1586 if (xhci->xhc_state & XHCI_STATE_DYING)
1587 return -ENODEV;
1588
1589 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1590 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1591 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1592 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1593 __func__, drop_flag);
1594 return 0;
1595 }
1596
1597 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1598 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1599 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1600 ep_index = xhci_get_endpoint_index(&ep->desc);
1601 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1602 /* If the HC already knows the endpoint is disabled,
1603 * or the HCD has noted it is disabled, ignore this request
1604 */
1605 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1606 cpu_to_le32(EP_STATE_DISABLED)) ||
1607 le32_to_cpu(ctrl_ctx->drop_flags) &
1608 xhci_get_endpoint_flag(&ep->desc)) {
1609 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1610 __func__, ep);
1611 return 0;
1612 }
1613
1614 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1615 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1616
1617 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1618 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1619
1620 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1621 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1622 /* Update the last valid endpoint context, if we deleted the last one */
1623 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1624 LAST_CTX(last_ctx)) {
1625 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1626 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1627 }
1628 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1629
1630 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1631
1632 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1633 (unsigned int) ep->desc.bEndpointAddress,
1634 udev->slot_id,
1635 (unsigned int) new_drop_flags,
1636 (unsigned int) new_add_flags,
1637 (unsigned int) new_slot_info);
1638 return 0;
1639 }
1640
1641 /* Add an endpoint to a new possible bandwidth configuration for this device.
1642 * Only one call to this function is allowed per endpoint before
1643 * check_bandwidth() or reset_bandwidth() must be called.
1644 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1645 * add the endpoint to the schedule with possibly new parameters denoted by a
1646 * different endpoint descriptor in usb_host_endpoint.
1647 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1648 * not allowed.
1649 *
1650 * The USB core will not allow URBs to be queued to an endpoint until the
1651 * configuration or alt setting is installed in the device, so there's no need
1652 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1653 */
1654 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1655 struct usb_host_endpoint *ep)
1656 {
1657 struct xhci_hcd *xhci;
1658 struct xhci_container_ctx *in_ctx, *out_ctx;
1659 unsigned int ep_index;
1660 struct xhci_slot_ctx *slot_ctx;
1661 struct xhci_input_control_ctx *ctrl_ctx;
1662 u32 added_ctxs;
1663 unsigned int last_ctx;
1664 u32 new_add_flags, new_drop_flags, new_slot_info;
1665 struct xhci_virt_device *virt_dev;
1666 int ret = 0;
1667
1668 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1669 if (ret <= 0) {
1670 /* So we won't queue a reset ep command for a root hub */
1671 ep->hcpriv = NULL;
1672 return ret;
1673 }
1674 xhci = hcd_to_xhci(hcd);
1675 if (xhci->xhc_state & XHCI_STATE_DYING)
1676 return -ENODEV;
1677
1678 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1679 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1680 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1681 /* FIXME when we have to issue an evaluate endpoint command to
1682 * deal with ep0 max packet size changing once we get the
1683 * descriptors
1684 */
1685 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1686 __func__, added_ctxs);
1687 return 0;
1688 }
1689
1690 virt_dev = xhci->devs[udev->slot_id];
1691 in_ctx = virt_dev->in_ctx;
1692 out_ctx = virt_dev->out_ctx;
1693 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1694 ep_index = xhci_get_endpoint_index(&ep->desc);
1695
1696 /* If this endpoint is already in use, and the upper layers are trying
1697 * to add it again without dropping it, reject the addition.
1698 */
1699 if (virt_dev->eps[ep_index].ring &&
1700 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1701 xhci_get_endpoint_flag(&ep->desc))) {
1702 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1703 "without dropping it.\n",
1704 (unsigned int) ep->desc.bEndpointAddress);
1705 return -EINVAL;
1706 }
1707
1708 /* If the HCD has already noted the endpoint is enabled,
1709 * ignore this request.
1710 */
1711 if (le32_to_cpu(ctrl_ctx->add_flags) &
1712 xhci_get_endpoint_flag(&ep->desc)) {
1713 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1714 __func__, ep);
1715 return 0;
1716 }
1717
1718 /*
1719 * Configuration and alternate setting changes must be done in
1720 * process context, not interrupt context (or so documenation
1721 * for usb_set_interface() and usb_set_configuration() claim).
1722 */
1723 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1724 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1725 __func__, ep->desc.bEndpointAddress);
1726 return -ENOMEM;
1727 }
1728
1729 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1730 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1731
1732 /* If xhci_endpoint_disable() was called for this endpoint, but the
1733 * xHC hasn't been notified yet through the check_bandwidth() call,
1734 * this re-adds a new state for the endpoint from the new endpoint
1735 * descriptors. We must drop and re-add this endpoint, so we leave the
1736 * drop flags alone.
1737 */
1738 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1739
1740 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1741 /* Update the last valid endpoint context, if we just added one past */
1742 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1743 LAST_CTX(last_ctx)) {
1744 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1745 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1746 }
1747 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1748
1749 /* Store the usb_device pointer for later use */
1750 ep->hcpriv = udev;
1751
1752 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1753 (unsigned int) ep->desc.bEndpointAddress,
1754 udev->slot_id,
1755 (unsigned int) new_drop_flags,
1756 (unsigned int) new_add_flags,
1757 (unsigned int) new_slot_info);
1758 return 0;
1759 }
1760
1761 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1762 {
1763 struct xhci_input_control_ctx *ctrl_ctx;
1764 struct xhci_ep_ctx *ep_ctx;
1765 struct xhci_slot_ctx *slot_ctx;
1766 int i;
1767
1768 /* When a device's add flag and drop flag are zero, any subsequent
1769 * configure endpoint command will leave that endpoint's state
1770 * untouched. Make sure we don't leave any old state in the input
1771 * endpoint contexts.
1772 */
1773 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1774 ctrl_ctx->drop_flags = 0;
1775 ctrl_ctx->add_flags = 0;
1776 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1777 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1778 /* Endpoint 0 is always valid */
1779 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1780 for (i = 1; i < 31; ++i) {
1781 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1782 ep_ctx->ep_info = 0;
1783 ep_ctx->ep_info2 = 0;
1784 ep_ctx->deq = 0;
1785 ep_ctx->tx_info = 0;
1786 }
1787 }
1788
1789 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1790 struct usb_device *udev, u32 *cmd_status)
1791 {
1792 int ret;
1793
1794 switch (*cmd_status) {
1795 case COMP_ENOMEM:
1796 dev_warn(&udev->dev, "Not enough host controller resources "
1797 "for new device state.\n");
1798 ret = -ENOMEM;
1799 /* FIXME: can we allocate more resources for the HC? */
1800 break;
1801 case COMP_BW_ERR:
1802 case COMP_2ND_BW_ERR:
1803 dev_warn(&udev->dev, "Not enough bandwidth "
1804 "for new device state.\n");
1805 ret = -ENOSPC;
1806 /* FIXME: can we go back to the old state? */
1807 break;
1808 case COMP_TRB_ERR:
1809 /* the HCD set up something wrong */
1810 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1811 "add flag = 1, "
1812 "and endpoint is not disabled.\n");
1813 ret = -EINVAL;
1814 break;
1815 case COMP_DEV_ERR:
1816 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1817 "configure command.\n");
1818 ret = -ENODEV;
1819 break;
1820 case COMP_SUCCESS:
1821 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1822 ret = 0;
1823 break;
1824 default:
1825 xhci_err(xhci, "ERROR: unexpected command completion "
1826 "code 0x%x.\n", *cmd_status);
1827 ret = -EINVAL;
1828 break;
1829 }
1830 return ret;
1831 }
1832
1833 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1834 struct usb_device *udev, u32 *cmd_status)
1835 {
1836 int ret;
1837 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1838
1839 switch (*cmd_status) {
1840 case COMP_EINVAL:
1841 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1842 "context command.\n");
1843 ret = -EINVAL;
1844 break;
1845 case COMP_EBADSLT:
1846 dev_warn(&udev->dev, "WARN: slot not enabled for"
1847 "evaluate context command.\n");
1848 ret = -EINVAL;
1849 break;
1850 case COMP_CTX_STATE:
1851 dev_warn(&udev->dev, "WARN: invalid context state for "
1852 "evaluate context command.\n");
1853 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1854 ret = -EINVAL;
1855 break;
1856 case COMP_DEV_ERR:
1857 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1858 "context command.\n");
1859 ret = -ENODEV;
1860 break;
1861 case COMP_MEL_ERR:
1862 /* Max Exit Latency too large error */
1863 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1864 ret = -EINVAL;
1865 break;
1866 case COMP_SUCCESS:
1867 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1868 ret = 0;
1869 break;
1870 default:
1871 xhci_err(xhci, "ERROR: unexpected command completion "
1872 "code 0x%x.\n", *cmd_status);
1873 ret = -EINVAL;
1874 break;
1875 }
1876 return ret;
1877 }
1878
1879 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1880 struct xhci_container_ctx *in_ctx)
1881 {
1882 struct xhci_input_control_ctx *ctrl_ctx;
1883 u32 valid_add_flags;
1884 u32 valid_drop_flags;
1885
1886 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1887 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1888 * (bit 1). The default control endpoint is added during the Address
1889 * Device command and is never removed until the slot is disabled.
1890 */
1891 valid_add_flags = ctrl_ctx->add_flags >> 2;
1892 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1893
1894 /* Use hweight32 to count the number of ones in the add flags, or
1895 * number of endpoints added. Don't count endpoints that are changed
1896 * (both added and dropped).
1897 */
1898 return hweight32(valid_add_flags) -
1899 hweight32(valid_add_flags & valid_drop_flags);
1900 }
1901
1902 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1903 struct xhci_container_ctx *in_ctx)
1904 {
1905 struct xhci_input_control_ctx *ctrl_ctx;
1906 u32 valid_add_flags;
1907 u32 valid_drop_flags;
1908
1909 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1910 valid_add_flags = ctrl_ctx->add_flags >> 2;
1911 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1912
1913 return hweight32(valid_drop_flags) -
1914 hweight32(valid_add_flags & valid_drop_flags);
1915 }
1916
1917 /*
1918 * We need to reserve the new number of endpoints before the configure endpoint
1919 * command completes. We can't subtract the dropped endpoints from the number
1920 * of active endpoints until the command completes because we can oversubscribe
1921 * the host in this case:
1922 *
1923 * - the first configure endpoint command drops more endpoints than it adds
1924 * - a second configure endpoint command that adds more endpoints is queued
1925 * - the first configure endpoint command fails, so the config is unchanged
1926 * - the second command may succeed, even though there isn't enough resources
1927 *
1928 * Must be called with xhci->lock held.
1929 */
1930 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1931 struct xhci_container_ctx *in_ctx)
1932 {
1933 u32 added_eps;
1934
1935 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1936 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1937 xhci_dbg(xhci, "Not enough ep ctxs: "
1938 "%u active, need to add %u, limit is %u.\n",
1939 xhci->num_active_eps, added_eps,
1940 xhci->limit_active_eps);
1941 return -ENOMEM;
1942 }
1943 xhci->num_active_eps += added_eps;
1944 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1945 xhci->num_active_eps);
1946 return 0;
1947 }
1948
1949 /*
1950 * The configure endpoint was failed by the xHC for some other reason, so we
1951 * need to revert the resources that failed configuration would have used.
1952 *
1953 * Must be called with xhci->lock held.
1954 */
1955 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1956 struct xhci_container_ctx *in_ctx)
1957 {
1958 u32 num_failed_eps;
1959
1960 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1961 xhci->num_active_eps -= num_failed_eps;
1962 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1963 num_failed_eps,
1964 xhci->num_active_eps);
1965 }
1966
1967 /*
1968 * Now that the command has completed, clean up the active endpoint count by
1969 * subtracting out the endpoints that were dropped (but not changed).
1970 *
1971 * Must be called with xhci->lock held.
1972 */
1973 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1974 struct xhci_container_ctx *in_ctx)
1975 {
1976 u32 num_dropped_eps;
1977
1978 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1979 xhci->num_active_eps -= num_dropped_eps;
1980 if (num_dropped_eps)
1981 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1982 num_dropped_eps,
1983 xhci->num_active_eps);
1984 }
1985
1986 static unsigned int xhci_get_block_size(struct usb_device *udev)
1987 {
1988 switch (udev->speed) {
1989 case USB_SPEED_LOW:
1990 case USB_SPEED_FULL:
1991 return FS_BLOCK;
1992 case USB_SPEED_HIGH:
1993 return HS_BLOCK;
1994 case USB_SPEED_SUPER:
1995 return SS_BLOCK;
1996 case USB_SPEED_UNKNOWN:
1997 case USB_SPEED_WIRELESS:
1998 default:
1999 /* Should never happen */
2000 return 1;
2001 }
2002 }
2003
2004 static unsigned int
2005 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2006 {
2007 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2008 return LS_OVERHEAD;
2009 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2010 return FS_OVERHEAD;
2011 return HS_OVERHEAD;
2012 }
2013
2014 /* If we are changing a LS/FS device under a HS hub,
2015 * make sure (if we are activating a new TT) that the HS bus has enough
2016 * bandwidth for this new TT.
2017 */
2018 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2019 struct xhci_virt_device *virt_dev,
2020 int old_active_eps)
2021 {
2022 struct xhci_interval_bw_table *bw_table;
2023 struct xhci_tt_bw_info *tt_info;
2024
2025 /* Find the bandwidth table for the root port this TT is attached to. */
2026 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2027 tt_info = virt_dev->tt_info;
2028 /* If this TT already had active endpoints, the bandwidth for this TT
2029 * has already been added. Removing all periodic endpoints (and thus
2030 * making the TT enactive) will only decrease the bandwidth used.
2031 */
2032 if (old_active_eps)
2033 return 0;
2034 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2035 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2036 return -ENOMEM;
2037 return 0;
2038 }
2039 /* Not sure why we would have no new active endpoints...
2040 *
2041 * Maybe because of an Evaluate Context change for a hub update or a
2042 * control endpoint 0 max packet size change?
2043 * FIXME: skip the bandwidth calculation in that case.
2044 */
2045 return 0;
2046 }
2047
2048 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2049 struct xhci_virt_device *virt_dev)
2050 {
2051 unsigned int bw_reserved;
2052
2053 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2054 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2055 return -ENOMEM;
2056
2057 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2058 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2059 return -ENOMEM;
2060
2061 return 0;
2062 }
2063
2064 /*
2065 * This algorithm is a very conservative estimate of the worst-case scheduling
2066 * scenario for any one interval. The hardware dynamically schedules the
2067 * packets, so we can't tell which microframe could be the limiting factor in
2068 * the bandwidth scheduling. This only takes into account periodic endpoints.
2069 *
2070 * Obviously, we can't solve an NP complete problem to find the minimum worst
2071 * case scenario. Instead, we come up with an estimate that is no less than
2072 * the worst case bandwidth used for any one microframe, but may be an
2073 * over-estimate.
2074 *
2075 * We walk the requirements for each endpoint by interval, starting with the
2076 * smallest interval, and place packets in the schedule where there is only one
2077 * possible way to schedule packets for that interval. In order to simplify
2078 * this algorithm, we record the largest max packet size for each interval, and
2079 * assume all packets will be that size.
2080 *
2081 * For interval 0, we obviously must schedule all packets for each interval.
2082 * The bandwidth for interval 0 is just the amount of data to be transmitted
2083 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2084 * the number of packets).
2085 *
2086 * For interval 1, we have two possible microframes to schedule those packets
2087 * in. For this algorithm, if we can schedule the same number of packets for
2088 * each possible scheduling opportunity (each microframe), we will do so. The
2089 * remaining number of packets will be saved to be transmitted in the gaps in
2090 * the next interval's scheduling sequence.
2091 *
2092 * As we move those remaining packets to be scheduled with interval 2 packets,
2093 * we have to double the number of remaining packets to transmit. This is
2094 * because the intervals are actually powers of 2, and we would be transmitting
2095 * the previous interval's packets twice in this interval. We also have to be
2096 * sure that when we look at the largest max packet size for this interval, we
2097 * also look at the largest max packet size for the remaining packets and take
2098 * the greater of the two.
2099 *
2100 * The algorithm continues to evenly distribute packets in each scheduling
2101 * opportunity, and push the remaining packets out, until we get to the last
2102 * interval. Then those packets and their associated overhead are just added
2103 * to the bandwidth used.
2104 */
2105 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2106 struct xhci_virt_device *virt_dev,
2107 int old_active_eps)
2108 {
2109 unsigned int bw_reserved;
2110 unsigned int max_bandwidth;
2111 unsigned int bw_used;
2112 unsigned int block_size;
2113 struct xhci_interval_bw_table *bw_table;
2114 unsigned int packet_size = 0;
2115 unsigned int overhead = 0;
2116 unsigned int packets_transmitted = 0;
2117 unsigned int packets_remaining = 0;
2118 unsigned int i;
2119
2120 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2121 return xhci_check_ss_bw(xhci, virt_dev);
2122
2123 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2124 max_bandwidth = HS_BW_LIMIT;
2125 /* Convert percent of bus BW reserved to blocks reserved */
2126 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2127 } else {
2128 max_bandwidth = FS_BW_LIMIT;
2129 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2130 }
2131
2132 bw_table = virt_dev->bw_table;
2133 /* We need to translate the max packet size and max ESIT payloads into
2134 * the units the hardware uses.
2135 */
2136 block_size = xhci_get_block_size(virt_dev->udev);
2137
2138 /* If we are manipulating a LS/FS device under a HS hub, double check
2139 * that the HS bus has enough bandwidth if we are activing a new TT.
2140 */
2141 if (virt_dev->tt_info) {
2142 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2143 virt_dev->real_port);
2144 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2145 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2146 "newly activated TT.\n");
2147 return -ENOMEM;
2148 }
2149 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2150 virt_dev->tt_info->slot_id,
2151 virt_dev->tt_info->ttport);
2152 } else {
2153 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2154 virt_dev->real_port);
2155 }
2156
2157 /* Add in how much bandwidth will be used for interval zero, or the
2158 * rounded max ESIT payload + number of packets * largest overhead.
2159 */
2160 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2161 bw_table->interval_bw[0].num_packets *
2162 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2163
2164 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2165 unsigned int bw_added;
2166 unsigned int largest_mps;
2167 unsigned int interval_overhead;
2168
2169 /*
2170 * How many packets could we transmit in this interval?
2171 * If packets didn't fit in the previous interval, we will need
2172 * to transmit that many packets twice within this interval.
2173 */
2174 packets_remaining = 2 * packets_remaining +
2175 bw_table->interval_bw[i].num_packets;
2176
2177 /* Find the largest max packet size of this or the previous
2178 * interval.
2179 */
2180 if (list_empty(&bw_table->interval_bw[i].endpoints))
2181 largest_mps = 0;
2182 else {
2183 struct xhci_virt_ep *virt_ep;
2184 struct list_head *ep_entry;
2185
2186 ep_entry = bw_table->interval_bw[i].endpoints.next;
2187 virt_ep = list_entry(ep_entry,
2188 struct xhci_virt_ep, bw_endpoint_list);
2189 /* Convert to blocks, rounding up */
2190 largest_mps = DIV_ROUND_UP(
2191 virt_ep->bw_info.max_packet_size,
2192 block_size);
2193 }
2194 if (largest_mps > packet_size)
2195 packet_size = largest_mps;
2196
2197 /* Use the larger overhead of this or the previous interval. */
2198 interval_overhead = xhci_get_largest_overhead(
2199 &bw_table->interval_bw[i]);
2200 if (interval_overhead > overhead)
2201 overhead = interval_overhead;
2202
2203 /* How many packets can we evenly distribute across
2204 * (1 << (i + 1)) possible scheduling opportunities?
2205 */
2206 packets_transmitted = packets_remaining >> (i + 1);
2207
2208 /* Add in the bandwidth used for those scheduled packets */
2209 bw_added = packets_transmitted * (overhead + packet_size);
2210
2211 /* How many packets do we have remaining to transmit? */
2212 packets_remaining = packets_remaining % (1 << (i + 1));
2213
2214 /* What largest max packet size should those packets have? */
2215 /* If we've transmitted all packets, don't carry over the
2216 * largest packet size.
2217 */
2218 if (packets_remaining == 0) {
2219 packet_size = 0;
2220 overhead = 0;
2221 } else if (packets_transmitted > 0) {
2222 /* Otherwise if we do have remaining packets, and we've
2223 * scheduled some packets in this interval, take the
2224 * largest max packet size from endpoints with this
2225 * interval.
2226 */
2227 packet_size = largest_mps;
2228 overhead = interval_overhead;
2229 }
2230 /* Otherwise carry over packet_size and overhead from the last
2231 * time we had a remainder.
2232 */
2233 bw_used += bw_added;
2234 if (bw_used > max_bandwidth) {
2235 xhci_warn(xhci, "Not enough bandwidth. "
2236 "Proposed: %u, Max: %u\n",
2237 bw_used, max_bandwidth);
2238 return -ENOMEM;
2239 }
2240 }
2241 /*
2242 * Ok, we know we have some packets left over after even-handedly
2243 * scheduling interval 15. We don't know which microframes they will
2244 * fit into, so we over-schedule and say they will be scheduled every
2245 * microframe.
2246 */
2247 if (packets_remaining > 0)
2248 bw_used += overhead + packet_size;
2249
2250 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2251 unsigned int port_index = virt_dev->real_port - 1;
2252
2253 /* OK, we're manipulating a HS device attached to a
2254 * root port bandwidth domain. Include the number of active TTs
2255 * in the bandwidth used.
2256 */
2257 bw_used += TT_HS_OVERHEAD *
2258 xhci->rh_bw[port_index].num_active_tts;
2259 }
2260
2261 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2262 "Available: %u " "percent\n",
2263 bw_used, max_bandwidth, bw_reserved,
2264 (max_bandwidth - bw_used - bw_reserved) * 100 /
2265 max_bandwidth);
2266
2267 bw_used += bw_reserved;
2268 if (bw_used > max_bandwidth) {
2269 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2270 bw_used, max_bandwidth);
2271 return -ENOMEM;
2272 }
2273
2274 bw_table->bw_used = bw_used;
2275 return 0;
2276 }
2277
2278 static bool xhci_is_async_ep(unsigned int ep_type)
2279 {
2280 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2281 ep_type != ISOC_IN_EP &&
2282 ep_type != INT_IN_EP);
2283 }
2284
2285 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2286 {
2287 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2288 }
2289
2290 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2291 {
2292 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2293
2294 if (ep_bw->ep_interval == 0)
2295 return SS_OVERHEAD_BURST +
2296 (ep_bw->mult * ep_bw->num_packets *
2297 (SS_OVERHEAD + mps));
2298 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2299 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2300 1 << ep_bw->ep_interval);
2301
2302 }
2303
2304 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2305 struct xhci_bw_info *ep_bw,
2306 struct xhci_interval_bw_table *bw_table,
2307 struct usb_device *udev,
2308 struct xhci_virt_ep *virt_ep,
2309 struct xhci_tt_bw_info *tt_info)
2310 {
2311 struct xhci_interval_bw *interval_bw;
2312 int normalized_interval;
2313
2314 if (xhci_is_async_ep(ep_bw->type))
2315 return;
2316
2317 if (udev->speed == USB_SPEED_SUPER) {
2318 if (xhci_is_sync_in_ep(ep_bw->type))
2319 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2320 xhci_get_ss_bw_consumed(ep_bw);
2321 else
2322 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2323 xhci_get_ss_bw_consumed(ep_bw);
2324 return;
2325 }
2326
2327 /* SuperSpeed endpoints never get added to intervals in the table, so
2328 * this check is only valid for HS/FS/LS devices.
2329 */
2330 if (list_empty(&virt_ep->bw_endpoint_list))
2331 return;
2332 /* For LS/FS devices, we need to translate the interval expressed in
2333 * microframes to frames.
2334 */
2335 if (udev->speed == USB_SPEED_HIGH)
2336 normalized_interval = ep_bw->ep_interval;
2337 else
2338 normalized_interval = ep_bw->ep_interval - 3;
2339
2340 if (normalized_interval == 0)
2341 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2342 interval_bw = &bw_table->interval_bw[normalized_interval];
2343 interval_bw->num_packets -= ep_bw->num_packets;
2344 switch (udev->speed) {
2345 case USB_SPEED_LOW:
2346 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2347 break;
2348 case USB_SPEED_FULL:
2349 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2350 break;
2351 case USB_SPEED_HIGH:
2352 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2353 break;
2354 case USB_SPEED_SUPER:
2355 case USB_SPEED_UNKNOWN:
2356 case USB_SPEED_WIRELESS:
2357 /* Should never happen because only LS/FS/HS endpoints will get
2358 * added to the endpoint list.
2359 */
2360 return;
2361 }
2362 if (tt_info)
2363 tt_info->active_eps -= 1;
2364 list_del_init(&virt_ep->bw_endpoint_list);
2365 }
2366
2367 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2368 struct xhci_bw_info *ep_bw,
2369 struct xhci_interval_bw_table *bw_table,
2370 struct usb_device *udev,
2371 struct xhci_virt_ep *virt_ep,
2372 struct xhci_tt_bw_info *tt_info)
2373 {
2374 struct xhci_interval_bw *interval_bw;
2375 struct xhci_virt_ep *smaller_ep;
2376 int normalized_interval;
2377
2378 if (xhci_is_async_ep(ep_bw->type))
2379 return;
2380
2381 if (udev->speed == USB_SPEED_SUPER) {
2382 if (xhci_is_sync_in_ep(ep_bw->type))
2383 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2384 xhci_get_ss_bw_consumed(ep_bw);
2385 else
2386 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2387 xhci_get_ss_bw_consumed(ep_bw);
2388 return;
2389 }
2390
2391 /* For LS/FS devices, we need to translate the interval expressed in
2392 * microframes to frames.
2393 */
2394 if (udev->speed == USB_SPEED_HIGH)
2395 normalized_interval = ep_bw->ep_interval;
2396 else
2397 normalized_interval = ep_bw->ep_interval - 3;
2398
2399 if (normalized_interval == 0)
2400 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2401 interval_bw = &bw_table->interval_bw[normalized_interval];
2402 interval_bw->num_packets += ep_bw->num_packets;
2403 switch (udev->speed) {
2404 case USB_SPEED_LOW:
2405 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2406 break;
2407 case USB_SPEED_FULL:
2408 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2409 break;
2410 case USB_SPEED_HIGH:
2411 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2412 break;
2413 case USB_SPEED_SUPER:
2414 case USB_SPEED_UNKNOWN:
2415 case USB_SPEED_WIRELESS:
2416 /* Should never happen because only LS/FS/HS endpoints will get
2417 * added to the endpoint list.
2418 */
2419 return;
2420 }
2421
2422 if (tt_info)
2423 tt_info->active_eps += 1;
2424 /* Insert the endpoint into the list, largest max packet size first. */
2425 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2426 bw_endpoint_list) {
2427 if (ep_bw->max_packet_size >=
2428 smaller_ep->bw_info.max_packet_size) {
2429 /* Add the new ep before the smaller endpoint */
2430 list_add_tail(&virt_ep->bw_endpoint_list,
2431 &smaller_ep->bw_endpoint_list);
2432 return;
2433 }
2434 }
2435 /* Add the new endpoint at the end of the list. */
2436 list_add_tail(&virt_ep->bw_endpoint_list,
2437 &interval_bw->endpoints);
2438 }
2439
2440 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2441 struct xhci_virt_device *virt_dev,
2442 int old_active_eps)
2443 {
2444 struct xhci_root_port_bw_info *rh_bw_info;
2445 if (!virt_dev->tt_info)
2446 return;
2447
2448 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2449 if (old_active_eps == 0 &&
2450 virt_dev->tt_info->active_eps != 0) {
2451 rh_bw_info->num_active_tts += 1;
2452 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2453 } else if (old_active_eps != 0 &&
2454 virt_dev->tt_info->active_eps == 0) {
2455 rh_bw_info->num_active_tts -= 1;
2456 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2457 }
2458 }
2459
2460 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2461 struct xhci_virt_device *virt_dev,
2462 struct xhci_container_ctx *in_ctx)
2463 {
2464 struct xhci_bw_info ep_bw_info[31];
2465 int i;
2466 struct xhci_input_control_ctx *ctrl_ctx;
2467 int old_active_eps = 0;
2468
2469 if (virt_dev->tt_info)
2470 old_active_eps = virt_dev->tt_info->active_eps;
2471
2472 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2473
2474 for (i = 0; i < 31; i++) {
2475 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2476 continue;
2477
2478 /* Make a copy of the BW info in case we need to revert this */
2479 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2480 sizeof(ep_bw_info[i]));
2481 /* Drop the endpoint from the interval table if the endpoint is
2482 * being dropped or changed.
2483 */
2484 if (EP_IS_DROPPED(ctrl_ctx, i))
2485 xhci_drop_ep_from_interval_table(xhci,
2486 &virt_dev->eps[i].bw_info,
2487 virt_dev->bw_table,
2488 virt_dev->udev,
2489 &virt_dev->eps[i],
2490 virt_dev->tt_info);
2491 }
2492 /* Overwrite the information stored in the endpoints' bw_info */
2493 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2494 for (i = 0; i < 31; i++) {
2495 /* Add any changed or added endpoints to the interval table */
2496 if (EP_IS_ADDED(ctrl_ctx, i))
2497 xhci_add_ep_to_interval_table(xhci,
2498 &virt_dev->eps[i].bw_info,
2499 virt_dev->bw_table,
2500 virt_dev->udev,
2501 &virt_dev->eps[i],
2502 virt_dev->tt_info);
2503 }
2504
2505 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2506 /* Ok, this fits in the bandwidth we have.
2507 * Update the number of active TTs.
2508 */
2509 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2510 return 0;
2511 }
2512
2513 /* We don't have enough bandwidth for this, revert the stored info. */
2514 for (i = 0; i < 31; i++) {
2515 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2516 continue;
2517
2518 /* Drop the new copies of any added or changed endpoints from
2519 * the interval table.
2520 */
2521 if (EP_IS_ADDED(ctrl_ctx, i)) {
2522 xhci_drop_ep_from_interval_table(xhci,
2523 &virt_dev->eps[i].bw_info,
2524 virt_dev->bw_table,
2525 virt_dev->udev,
2526 &virt_dev->eps[i],
2527 virt_dev->tt_info);
2528 }
2529 /* Revert the endpoint back to its old information */
2530 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2531 sizeof(ep_bw_info[i]));
2532 /* Add any changed or dropped endpoints back into the table */
2533 if (EP_IS_DROPPED(ctrl_ctx, i))
2534 xhci_add_ep_to_interval_table(xhci,
2535 &virt_dev->eps[i].bw_info,
2536 virt_dev->bw_table,
2537 virt_dev->udev,
2538 &virt_dev->eps[i],
2539 virt_dev->tt_info);
2540 }
2541 return -ENOMEM;
2542 }
2543
2544
2545 /* Issue a configure endpoint command or evaluate context command
2546 * and wait for it to finish.
2547 */
2548 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2549 struct usb_device *udev,
2550 struct xhci_command *command,
2551 bool ctx_change, bool must_succeed)
2552 {
2553 int ret;
2554 int timeleft;
2555 unsigned long flags;
2556 struct xhci_container_ctx *in_ctx;
2557 struct completion *cmd_completion;
2558 u32 *cmd_status;
2559 struct xhci_virt_device *virt_dev;
2560 union xhci_trb *cmd_trb;
2561
2562 spin_lock_irqsave(&xhci->lock, flags);
2563 virt_dev = xhci->devs[udev->slot_id];
2564
2565 if (command)
2566 in_ctx = command->in_ctx;
2567 else
2568 in_ctx = virt_dev->in_ctx;
2569
2570 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2571 xhci_reserve_host_resources(xhci, in_ctx)) {
2572 spin_unlock_irqrestore(&xhci->lock, flags);
2573 xhci_warn(xhci, "Not enough host resources, "
2574 "active endpoint contexts = %u\n",
2575 xhci->num_active_eps);
2576 return -ENOMEM;
2577 }
2578 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2579 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2580 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2581 xhci_free_host_resources(xhci, in_ctx);
2582 spin_unlock_irqrestore(&xhci->lock, flags);
2583 xhci_warn(xhci, "Not enough bandwidth\n");
2584 return -ENOMEM;
2585 }
2586
2587 if (command) {
2588 cmd_completion = command->completion;
2589 cmd_status = &command->status;
2590 command->command_trb = xhci->cmd_ring->enqueue;
2591
2592 /* Enqueue pointer can be left pointing to the link TRB,
2593 * we must handle that
2594 */
2595 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2596 command->command_trb =
2597 xhci->cmd_ring->enq_seg->next->trbs;
2598
2599 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2600 } else {
2601 cmd_completion = &virt_dev->cmd_completion;
2602 cmd_status = &virt_dev->cmd_status;
2603 }
2604 init_completion(cmd_completion);
2605
2606 cmd_trb = xhci->cmd_ring->dequeue;
2607 if (!ctx_change)
2608 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2609 udev->slot_id, must_succeed);
2610 else
2611 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2612 udev->slot_id, must_succeed);
2613 if (ret < 0) {
2614 if (command)
2615 list_del(&command->cmd_list);
2616 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2617 xhci_free_host_resources(xhci, in_ctx);
2618 spin_unlock_irqrestore(&xhci->lock, flags);
2619 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2620 return -ENOMEM;
2621 }
2622 xhci_ring_cmd_db(xhci);
2623 spin_unlock_irqrestore(&xhci->lock, flags);
2624
2625 /* Wait for the configure endpoint command to complete */
2626 timeleft = wait_for_completion_interruptible_timeout(
2627 cmd_completion,
2628 XHCI_CMD_DEFAULT_TIMEOUT);
2629 if (timeleft <= 0) {
2630 xhci_warn(xhci, "%s while waiting for %s command\n",
2631 timeleft == 0 ? "Timeout" : "Signal",
2632 ctx_change == 0 ?
2633 "configure endpoint" :
2634 "evaluate context");
2635 /* cancel the configure endpoint command */
2636 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2637 if (ret < 0)
2638 return ret;
2639 return -ETIME;
2640 }
2641
2642 if (!ctx_change)
2643 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2644 else
2645 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2646
2647 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648 spin_lock_irqsave(&xhci->lock, flags);
2649 /* If the command failed, remove the reserved resources.
2650 * Otherwise, clean up the estimate to include dropped eps.
2651 */
2652 if (ret)
2653 xhci_free_host_resources(xhci, in_ctx);
2654 else
2655 xhci_finish_resource_reservation(xhci, in_ctx);
2656 spin_unlock_irqrestore(&xhci->lock, flags);
2657 }
2658 return ret;
2659 }
2660
2661 /* Called after one or more calls to xhci_add_endpoint() or
2662 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2663 * to call xhci_reset_bandwidth().
2664 *
2665 * Since we are in the middle of changing either configuration or
2666 * installing a new alt setting, the USB core won't allow URBs to be
2667 * enqueued for any endpoint on the old config or interface. Nothing
2668 * else should be touching the xhci->devs[slot_id] structure, so we
2669 * don't need to take the xhci->lock for manipulating that.
2670 */
2671 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2672 {
2673 int i;
2674 int ret = 0;
2675 struct xhci_hcd *xhci;
2676 struct xhci_virt_device *virt_dev;
2677 struct xhci_input_control_ctx *ctrl_ctx;
2678 struct xhci_slot_ctx *slot_ctx;
2679
2680 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2681 if (ret <= 0)
2682 return ret;
2683 xhci = hcd_to_xhci(hcd);
2684 if (xhci->xhc_state & XHCI_STATE_DYING)
2685 return -ENODEV;
2686
2687 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2688 virt_dev = xhci->devs[udev->slot_id];
2689
2690 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2691 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2692 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2693 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2694 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2695
2696 /* Don't issue the command if there's no endpoints to update. */
2697 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2698 ctrl_ctx->drop_flags == 0)
2699 return 0;
2700
2701 xhci_dbg(xhci, "New Input Control Context:\n");
2702 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2703 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2704 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2705
2706 ret = xhci_configure_endpoint(xhci, udev, NULL,
2707 false, false);
2708 if (ret) {
2709 /* Callee should call reset_bandwidth() */
2710 return ret;
2711 }
2712
2713 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2714 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2715 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2716
2717 /* Free any rings that were dropped, but not changed. */
2718 for (i = 1; i < 31; ++i) {
2719 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2720 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2721 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2722 }
2723 xhci_zero_in_ctx(xhci, virt_dev);
2724 /*
2725 * Install any rings for completely new endpoints or changed endpoints,
2726 * and free or cache any old rings from changed endpoints.
2727 */
2728 for (i = 1; i < 31; ++i) {
2729 if (!virt_dev->eps[i].new_ring)
2730 continue;
2731 /* Only cache or free the old ring if it exists.
2732 * It may not if this is the first add of an endpoint.
2733 */
2734 if (virt_dev->eps[i].ring) {
2735 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2736 }
2737 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2738 virt_dev->eps[i].new_ring = NULL;
2739 }
2740
2741 return ret;
2742 }
2743
2744 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2745 {
2746 struct xhci_hcd *xhci;
2747 struct xhci_virt_device *virt_dev;
2748 int i, ret;
2749
2750 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2751 if (ret <= 0)
2752 return;
2753 xhci = hcd_to_xhci(hcd);
2754
2755 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2756 virt_dev = xhci->devs[udev->slot_id];
2757 /* Free any rings allocated for added endpoints */
2758 for (i = 0; i < 31; ++i) {
2759 if (virt_dev->eps[i].new_ring) {
2760 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2761 virt_dev->eps[i].new_ring = NULL;
2762 }
2763 }
2764 xhci_zero_in_ctx(xhci, virt_dev);
2765 }
2766
2767 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2768 struct xhci_container_ctx *in_ctx,
2769 struct xhci_container_ctx *out_ctx,
2770 u32 add_flags, u32 drop_flags)
2771 {
2772 struct xhci_input_control_ctx *ctrl_ctx;
2773 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2774 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2775 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2776 xhci_slot_copy(xhci, in_ctx, out_ctx);
2777 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2778
2779 xhci_dbg(xhci, "Input Context:\n");
2780 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2781 }
2782
2783 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2784 unsigned int slot_id, unsigned int ep_index,
2785 struct xhci_dequeue_state *deq_state)
2786 {
2787 struct xhci_container_ctx *in_ctx;
2788 struct xhci_ep_ctx *ep_ctx;
2789 u32 added_ctxs;
2790 dma_addr_t addr;
2791
2792 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2793 xhci->devs[slot_id]->out_ctx, ep_index);
2794 in_ctx = xhci->devs[slot_id]->in_ctx;
2795 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2796 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2797 deq_state->new_deq_ptr);
2798 if (addr == 0) {
2799 xhci_warn(xhci, "WARN Cannot submit config ep after "
2800 "reset ep command\n");
2801 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2802 deq_state->new_deq_seg,
2803 deq_state->new_deq_ptr);
2804 return;
2805 }
2806 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2807
2808 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2809 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2810 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2811 }
2812
2813 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2814 struct usb_device *udev, unsigned int ep_index)
2815 {
2816 struct xhci_dequeue_state deq_state;
2817 struct xhci_virt_ep *ep;
2818
2819 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2820 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2821 /* We need to move the HW's dequeue pointer past this TD,
2822 * or it will attempt to resend it on the next doorbell ring.
2823 */
2824 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2825 ep_index, ep->stopped_stream, ep->stopped_td,
2826 &deq_state);
2827
2828 /* HW with the reset endpoint quirk will use the saved dequeue state to
2829 * issue a configure endpoint command later.
2830 */
2831 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2832 xhci_dbg(xhci, "Queueing new dequeue state\n");
2833 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2834 ep_index, ep->stopped_stream, &deq_state);
2835 } else {
2836 /* Better hope no one uses the input context between now and the
2837 * reset endpoint completion!
2838 * XXX: No idea how this hardware will react when stream rings
2839 * are enabled.
2840 */
2841 xhci_dbg(xhci, "Setting up input context for "
2842 "configure endpoint command\n");
2843 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2844 ep_index, &deq_state);
2845 }
2846 }
2847
2848 /* Deal with stalled endpoints. The core should have sent the control message
2849 * to clear the halt condition. However, we need to make the xHCI hardware
2850 * reset its sequence number, since a device will expect a sequence number of
2851 * zero after the halt condition is cleared.
2852 * Context: in_interrupt
2853 */
2854 void xhci_endpoint_reset(struct usb_hcd *hcd,
2855 struct usb_host_endpoint *ep)
2856 {
2857 struct xhci_hcd *xhci;
2858 struct usb_device *udev;
2859 unsigned int ep_index;
2860 unsigned long flags;
2861 int ret;
2862 struct xhci_virt_ep *virt_ep;
2863
2864 xhci = hcd_to_xhci(hcd);
2865 udev = (struct usb_device *) ep->hcpriv;
2866 /* Called with a root hub endpoint (or an endpoint that wasn't added
2867 * with xhci_add_endpoint()
2868 */
2869 if (!ep->hcpriv)
2870 return;
2871 ep_index = xhci_get_endpoint_index(&ep->desc);
2872 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2873 if (!virt_ep->stopped_td) {
2874 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2875 ep->desc.bEndpointAddress);
2876 return;
2877 }
2878 if (usb_endpoint_xfer_control(&ep->desc)) {
2879 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2880 return;
2881 }
2882
2883 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2884 spin_lock_irqsave(&xhci->lock, flags);
2885 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2886 /*
2887 * Can't change the ring dequeue pointer until it's transitioned to the
2888 * stopped state, which is only upon a successful reset endpoint
2889 * command. Better hope that last command worked!
2890 */
2891 if (!ret) {
2892 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2893 kfree(virt_ep->stopped_td);
2894 xhci_ring_cmd_db(xhci);
2895 }
2896 virt_ep->stopped_td = NULL;
2897 virt_ep->stopped_trb = NULL;
2898 virt_ep->stopped_stream = 0;
2899 spin_unlock_irqrestore(&xhci->lock, flags);
2900
2901 if (ret)
2902 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2903 }
2904
2905 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2906 struct usb_device *udev, struct usb_host_endpoint *ep,
2907 unsigned int slot_id)
2908 {
2909 int ret;
2910 unsigned int ep_index;
2911 unsigned int ep_state;
2912
2913 if (!ep)
2914 return -EINVAL;
2915 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2916 if (ret <= 0)
2917 return -EINVAL;
2918 if (ep->ss_ep_comp.bmAttributes == 0) {
2919 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2920 " descriptor for ep 0x%x does not support streams\n",
2921 ep->desc.bEndpointAddress);
2922 return -EINVAL;
2923 }
2924
2925 ep_index = xhci_get_endpoint_index(&ep->desc);
2926 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2927 if (ep_state & EP_HAS_STREAMS ||
2928 ep_state & EP_GETTING_STREAMS) {
2929 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2930 "already has streams set up.\n",
2931 ep->desc.bEndpointAddress);
2932 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2933 "dynamic stream context array reallocation.\n");
2934 return -EINVAL;
2935 }
2936 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2937 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2938 "endpoint 0x%x; URBs are pending.\n",
2939 ep->desc.bEndpointAddress);
2940 return -EINVAL;
2941 }
2942 return 0;
2943 }
2944
2945 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2946 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2947 {
2948 unsigned int max_streams;
2949
2950 /* The stream context array size must be a power of two */
2951 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2952 /*
2953 * Find out how many primary stream array entries the host controller
2954 * supports. Later we may use secondary stream arrays (similar to 2nd
2955 * level page entries), but that's an optional feature for xHCI host
2956 * controllers. xHCs must support at least 4 stream IDs.
2957 */
2958 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2959 if (*num_stream_ctxs > max_streams) {
2960 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2961 max_streams);
2962 *num_stream_ctxs = max_streams;
2963 *num_streams = max_streams;
2964 }
2965 }
2966
2967 /* Returns an error code if one of the endpoint already has streams.
2968 * This does not change any data structures, it only checks and gathers
2969 * information.
2970 */
2971 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2972 struct usb_device *udev,
2973 struct usb_host_endpoint **eps, unsigned int num_eps,
2974 unsigned int *num_streams, u32 *changed_ep_bitmask)
2975 {
2976 unsigned int max_streams;
2977 unsigned int endpoint_flag;
2978 int i;
2979 int ret;
2980
2981 for (i = 0; i < num_eps; i++) {
2982 ret = xhci_check_streams_endpoint(xhci, udev,
2983 eps[i], udev->slot_id);
2984 if (ret < 0)
2985 return ret;
2986
2987 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2988 if (max_streams < (*num_streams - 1)) {
2989 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2990 eps[i]->desc.bEndpointAddress,
2991 max_streams);
2992 *num_streams = max_streams+1;
2993 }
2994
2995 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2996 if (*changed_ep_bitmask & endpoint_flag)
2997 return -EINVAL;
2998 *changed_ep_bitmask |= endpoint_flag;
2999 }
3000 return 0;
3001 }
3002
3003 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3004 struct usb_device *udev,
3005 struct usb_host_endpoint **eps, unsigned int num_eps)
3006 {
3007 u32 changed_ep_bitmask = 0;
3008 unsigned int slot_id;
3009 unsigned int ep_index;
3010 unsigned int ep_state;
3011 int i;
3012
3013 slot_id = udev->slot_id;
3014 if (!xhci->devs[slot_id])
3015 return 0;
3016
3017 for (i = 0; i < num_eps; i++) {
3018 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3019 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3020 /* Are streams already being freed for the endpoint? */
3021 if (ep_state & EP_GETTING_NO_STREAMS) {
3022 xhci_warn(xhci, "WARN Can't disable streams for "
3023 "endpoint 0x%x\n, "
3024 "streams are being disabled already.",
3025 eps[i]->desc.bEndpointAddress);
3026 return 0;
3027 }
3028 /* Are there actually any streams to free? */
3029 if (!(ep_state & EP_HAS_STREAMS) &&
3030 !(ep_state & EP_GETTING_STREAMS)) {
3031 xhci_warn(xhci, "WARN Can't disable streams for "
3032 "endpoint 0x%x\n, "
3033 "streams are already disabled!",
3034 eps[i]->desc.bEndpointAddress);
3035 xhci_warn(xhci, "WARN xhci_free_streams() called "
3036 "with non-streams endpoint\n");
3037 return 0;
3038 }
3039 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3040 }
3041 return changed_ep_bitmask;
3042 }
3043
3044 /*
3045 * The USB device drivers use this function (though the HCD interface in USB
3046 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3047 * coordinate mass storage command queueing across multiple endpoints (basically
3048 * a stream ID == a task ID).
3049 *
3050 * Setting up streams involves allocating the same size stream context array
3051 * for each endpoint and issuing a configure endpoint command for all endpoints.
3052 *
3053 * Don't allow the call to succeed if one endpoint only supports one stream
3054 * (which means it doesn't support streams at all).
3055 *
3056 * Drivers may get less stream IDs than they asked for, if the host controller
3057 * hardware or endpoints claim they can't support the number of requested
3058 * stream IDs.
3059 */
3060 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3061 struct usb_host_endpoint **eps, unsigned int num_eps,
3062 unsigned int num_streams, gfp_t mem_flags)
3063 {
3064 int i, ret;
3065 struct xhci_hcd *xhci;
3066 struct xhci_virt_device *vdev;
3067 struct xhci_command *config_cmd;
3068 unsigned int ep_index;
3069 unsigned int num_stream_ctxs;
3070 unsigned long flags;
3071 u32 changed_ep_bitmask = 0;
3072
3073 if (!eps)
3074 return -EINVAL;
3075
3076 /* Add one to the number of streams requested to account for
3077 * stream 0 that is reserved for xHCI usage.
3078 */
3079 num_streams += 1;
3080 xhci = hcd_to_xhci(hcd);
3081 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3082 num_streams);
3083
3084 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3085 if (!config_cmd) {
3086 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3087 return -ENOMEM;
3088 }
3089
3090 /* Check to make sure all endpoints are not already configured for
3091 * streams. While we're at it, find the maximum number of streams that
3092 * all the endpoints will support and check for duplicate endpoints.
3093 */
3094 spin_lock_irqsave(&xhci->lock, flags);
3095 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3096 num_eps, &num_streams, &changed_ep_bitmask);
3097 if (ret < 0) {
3098 xhci_free_command(xhci, config_cmd);
3099 spin_unlock_irqrestore(&xhci->lock, flags);
3100 return ret;
3101 }
3102 if (num_streams <= 1) {
3103 xhci_warn(xhci, "WARN: endpoints can't handle "
3104 "more than one stream.\n");
3105 xhci_free_command(xhci, config_cmd);
3106 spin_unlock_irqrestore(&xhci->lock, flags);
3107 return -EINVAL;
3108 }
3109 vdev = xhci->devs[udev->slot_id];
3110 /* Mark each endpoint as being in transition, so
3111 * xhci_urb_enqueue() will reject all URBs.
3112 */
3113 for (i = 0; i < num_eps; i++) {
3114 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3115 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3116 }
3117 spin_unlock_irqrestore(&xhci->lock, flags);
3118
3119 /* Setup internal data structures and allocate HW data structures for
3120 * streams (but don't install the HW structures in the input context
3121 * until we're sure all memory allocation succeeded).
3122 */
3123 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3124 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3125 num_stream_ctxs, num_streams);
3126
3127 for (i = 0; i < num_eps; i++) {
3128 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3129 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3130 num_stream_ctxs,
3131 num_streams, mem_flags);
3132 if (!vdev->eps[ep_index].stream_info)
3133 goto cleanup;
3134 /* Set maxPstreams in endpoint context and update deq ptr to
3135 * point to stream context array. FIXME
3136 */
3137 }
3138
3139 /* Set up the input context for a configure endpoint command. */
3140 for (i = 0; i < num_eps; i++) {
3141 struct xhci_ep_ctx *ep_ctx;
3142
3143 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3144 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3145
3146 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3147 vdev->out_ctx, ep_index);
3148 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3149 vdev->eps[ep_index].stream_info);
3150 }
3151 /* Tell the HW to drop its old copy of the endpoint context info
3152 * and add the updated copy from the input context.
3153 */
3154 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3155 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3156
3157 /* Issue and wait for the configure endpoint command */
3158 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3159 false, false);
3160
3161 /* xHC rejected the configure endpoint command for some reason, so we
3162 * leave the old ring intact and free our internal streams data
3163 * structure.
3164 */
3165 if (ret < 0)
3166 goto cleanup;
3167
3168 spin_lock_irqsave(&xhci->lock, flags);
3169 for (i = 0; i < num_eps; i++) {
3170 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3171 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3172 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3173 udev->slot_id, ep_index);
3174 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3175 }
3176 xhci_free_command(xhci, config_cmd);
3177 spin_unlock_irqrestore(&xhci->lock, flags);
3178
3179 /* Subtract 1 for stream 0, which drivers can't use */
3180 return num_streams - 1;
3181
3182 cleanup:
3183 /* If it didn't work, free the streams! */
3184 for (i = 0; i < num_eps; i++) {
3185 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3186 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3187 vdev->eps[ep_index].stream_info = NULL;
3188 /* FIXME Unset maxPstreams in endpoint context and
3189 * update deq ptr to point to normal string ring.
3190 */
3191 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3192 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3193 xhci_endpoint_zero(xhci, vdev, eps[i]);
3194 }
3195 xhci_free_command(xhci, config_cmd);
3196 return -ENOMEM;
3197 }
3198
3199 /* Transition the endpoint from using streams to being a "normal" endpoint
3200 * without streams.
3201 *
3202 * Modify the endpoint context state, submit a configure endpoint command,
3203 * and free all endpoint rings for streams if that completes successfully.
3204 */
3205 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3206 struct usb_host_endpoint **eps, unsigned int num_eps,
3207 gfp_t mem_flags)
3208 {
3209 int i, ret;
3210 struct xhci_hcd *xhci;
3211 struct xhci_virt_device *vdev;
3212 struct xhci_command *command;
3213 unsigned int ep_index;
3214 unsigned long flags;
3215 u32 changed_ep_bitmask;
3216
3217 xhci = hcd_to_xhci(hcd);
3218 vdev = xhci->devs[udev->slot_id];
3219
3220 /* Set up a configure endpoint command to remove the streams rings */
3221 spin_lock_irqsave(&xhci->lock, flags);
3222 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3223 udev, eps, num_eps);
3224 if (changed_ep_bitmask == 0) {
3225 spin_unlock_irqrestore(&xhci->lock, flags);
3226 return -EINVAL;
3227 }
3228
3229 /* Use the xhci_command structure from the first endpoint. We may have
3230 * allocated too many, but the driver may call xhci_free_streams() for
3231 * each endpoint it grouped into one call to xhci_alloc_streams().
3232 */
3233 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3234 command = vdev->eps[ep_index].stream_info->free_streams_command;
3235 for (i = 0; i < num_eps; i++) {
3236 struct xhci_ep_ctx *ep_ctx;
3237
3238 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3240 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3241 EP_GETTING_NO_STREAMS;
3242
3243 xhci_endpoint_copy(xhci, command->in_ctx,
3244 vdev->out_ctx, ep_index);
3245 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3246 &vdev->eps[ep_index]);
3247 }
3248 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3249 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3250 spin_unlock_irqrestore(&xhci->lock, flags);
3251
3252 /* Issue and wait for the configure endpoint command,
3253 * which must succeed.
3254 */
3255 ret = xhci_configure_endpoint(xhci, udev, command,
3256 false, true);
3257
3258 /* xHC rejected the configure endpoint command for some reason, so we
3259 * leave the streams rings intact.
3260 */
3261 if (ret < 0)
3262 return ret;
3263
3264 spin_lock_irqsave(&xhci->lock, flags);
3265 for (i = 0; i < num_eps; i++) {
3266 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3267 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3268 vdev->eps[ep_index].stream_info = NULL;
3269 /* FIXME Unset maxPstreams in endpoint context and
3270 * update deq ptr to point to normal string ring.
3271 */
3272 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3273 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3274 }
3275 spin_unlock_irqrestore(&xhci->lock, flags);
3276
3277 return 0;
3278 }
3279
3280 /*
3281 * Deletes endpoint resources for endpoints that were active before a Reset
3282 * Device command, or a Disable Slot command. The Reset Device command leaves
3283 * the control endpoint intact, whereas the Disable Slot command deletes it.
3284 *
3285 * Must be called with xhci->lock held.
3286 */
3287 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3288 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3289 {
3290 int i;
3291 unsigned int num_dropped_eps = 0;
3292 unsigned int drop_flags = 0;
3293
3294 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3295 if (virt_dev->eps[i].ring) {
3296 drop_flags |= 1 << i;
3297 num_dropped_eps++;
3298 }
3299 }
3300 xhci->num_active_eps -= num_dropped_eps;
3301 if (num_dropped_eps)
3302 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3303 "%u now active.\n",
3304 num_dropped_eps, drop_flags,
3305 xhci->num_active_eps);
3306 }
3307
3308 /*
3309 * This submits a Reset Device Command, which will set the device state to 0,
3310 * set the device address to 0, and disable all the endpoints except the default
3311 * control endpoint. The USB core should come back and call
3312 * xhci_address_device(), and then re-set up the configuration. If this is
3313 * called because of a usb_reset_and_verify_device(), then the old alternate
3314 * settings will be re-installed through the normal bandwidth allocation
3315 * functions.
3316 *
3317 * Wait for the Reset Device command to finish. Remove all structures
3318 * associated with the endpoints that were disabled. Clear the input device
3319 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3320 *
3321 * If the virt_dev to be reset does not exist or does not match the udev,
3322 * it means the device is lost, possibly due to the xHC restore error and
3323 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3324 * re-allocate the device.
3325 */
3326 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3327 {
3328 int ret, i;
3329 unsigned long flags;
3330 struct xhci_hcd *xhci;
3331 unsigned int slot_id;
3332 struct xhci_virt_device *virt_dev;
3333 struct xhci_command *reset_device_cmd;
3334 int timeleft;
3335 int last_freed_endpoint;
3336 struct xhci_slot_ctx *slot_ctx;
3337 int old_active_eps = 0;
3338
3339 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3340 if (ret <= 0)
3341 return ret;
3342 xhci = hcd_to_xhci(hcd);
3343 slot_id = udev->slot_id;
3344 virt_dev = xhci->devs[slot_id];
3345 if (!virt_dev) {
3346 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3347 "not exist. Re-allocate the device\n", slot_id);
3348 ret = xhci_alloc_dev(hcd, udev);
3349 if (ret == 1)
3350 return 0;
3351 else
3352 return -EINVAL;
3353 }
3354
3355 if (virt_dev->udev != udev) {
3356 /* If the virt_dev and the udev does not match, this virt_dev
3357 * may belong to another udev.
3358 * Re-allocate the device.
3359 */
3360 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3361 "not match the udev. Re-allocate the device\n",
3362 slot_id);
3363 ret = xhci_alloc_dev(hcd, udev);
3364 if (ret == 1)
3365 return 0;
3366 else
3367 return -EINVAL;
3368 }
3369
3370 /* If device is not setup, there is no point in resetting it */
3371 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3372 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3373 SLOT_STATE_DISABLED)
3374 return 0;
3375
3376 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3377 /* Allocate the command structure that holds the struct completion.
3378 * Assume we're in process context, since the normal device reset
3379 * process has to wait for the device anyway. Storage devices are
3380 * reset as part of error handling, so use GFP_NOIO instead of
3381 * GFP_KERNEL.
3382 */
3383 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3384 if (!reset_device_cmd) {
3385 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3386 return -ENOMEM;
3387 }
3388
3389 /* Attempt to submit the Reset Device command to the command ring */
3390 spin_lock_irqsave(&xhci->lock, flags);
3391 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3392
3393 /* Enqueue pointer can be left pointing to the link TRB,
3394 * we must handle that
3395 */
3396 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3397 reset_device_cmd->command_trb =
3398 xhci->cmd_ring->enq_seg->next->trbs;
3399
3400 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3401 ret = xhci_queue_reset_device(xhci, slot_id);
3402 if (ret) {
3403 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3404 list_del(&reset_device_cmd->cmd_list);
3405 spin_unlock_irqrestore(&xhci->lock, flags);
3406 goto command_cleanup;
3407 }
3408 xhci_ring_cmd_db(xhci);
3409 spin_unlock_irqrestore(&xhci->lock, flags);
3410
3411 /* Wait for the Reset Device command to finish */
3412 timeleft = wait_for_completion_interruptible_timeout(
3413 reset_device_cmd->completion,
3414 USB_CTRL_SET_TIMEOUT);
3415 if (timeleft <= 0) {
3416 xhci_warn(xhci, "%s while waiting for reset device command\n",
3417 timeleft == 0 ? "Timeout" : "Signal");
3418 spin_lock_irqsave(&xhci->lock, flags);
3419 /* The timeout might have raced with the event ring handler, so
3420 * only delete from the list if the item isn't poisoned.
3421 */
3422 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3423 list_del(&reset_device_cmd->cmd_list);
3424 spin_unlock_irqrestore(&xhci->lock, flags);
3425 ret = -ETIME;
3426 goto command_cleanup;
3427 }
3428
3429 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3430 * unless we tried to reset a slot ID that wasn't enabled,
3431 * or the device wasn't in the addressed or configured state.
3432 */
3433 ret = reset_device_cmd->status;
3434 switch (ret) {
3435 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3436 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3437 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3438 slot_id,
3439 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3440 xhci_info(xhci, "Not freeing device rings.\n");
3441 /* Don't treat this as an error. May change my mind later. */
3442 ret = 0;
3443 goto command_cleanup;
3444 case COMP_SUCCESS:
3445 xhci_dbg(xhci, "Successful reset device command.\n");
3446 break;
3447 default:
3448 if (xhci_is_vendor_info_code(xhci, ret))
3449 break;
3450 xhci_warn(xhci, "Unknown completion code %u for "
3451 "reset device command.\n", ret);
3452 ret = -EINVAL;
3453 goto command_cleanup;
3454 }
3455
3456 /* Free up host controller endpoint resources */
3457 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3458 spin_lock_irqsave(&xhci->lock, flags);
3459 /* Don't delete the default control endpoint resources */
3460 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3461 spin_unlock_irqrestore(&xhci->lock, flags);
3462 }
3463
3464 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3465 last_freed_endpoint = 1;
3466 for (i = 1; i < 31; ++i) {
3467 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3468
3469 if (ep->ep_state & EP_HAS_STREAMS) {
3470 xhci_free_stream_info(xhci, ep->stream_info);
3471 ep->stream_info = NULL;
3472 ep->ep_state &= ~EP_HAS_STREAMS;
3473 }
3474
3475 if (ep->ring) {
3476 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3477 last_freed_endpoint = i;
3478 }
3479 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3480 xhci_drop_ep_from_interval_table(xhci,
3481 &virt_dev->eps[i].bw_info,
3482 virt_dev->bw_table,
3483 udev,
3484 &virt_dev->eps[i],
3485 virt_dev->tt_info);
3486 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3487 }
3488 /* If necessary, update the number of active TTs on this root port */
3489 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3490
3491 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3492 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3493 ret = 0;
3494
3495 command_cleanup:
3496 xhci_free_command(xhci, reset_device_cmd);
3497 return ret;
3498 }
3499
3500 /*
3501 * At this point, the struct usb_device is about to go away, the device has
3502 * disconnected, and all traffic has been stopped and the endpoints have been
3503 * disabled. Free any HC data structures associated with that device.
3504 */
3505 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3506 {
3507 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3508 struct xhci_virt_device *virt_dev;
3509 unsigned long flags;
3510 u32 state;
3511 int i, ret;
3512
3513 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3514 /* If the host is halted due to driver unload, we still need to free the
3515 * device.
3516 */
3517 if (ret <= 0 && ret != -ENODEV)
3518 return;
3519
3520 virt_dev = xhci->devs[udev->slot_id];
3521
3522 /* Stop any wayward timer functions (which may grab the lock) */
3523 for (i = 0; i < 31; ++i) {
3524 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3525 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3526 }
3527
3528 if (udev->usb2_hw_lpm_enabled) {
3529 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3530 udev->usb2_hw_lpm_enabled = 0;
3531 }
3532
3533 spin_lock_irqsave(&xhci->lock, flags);
3534 /* Don't disable the slot if the host controller is dead. */
3535 state = xhci_readl(xhci, &xhci->op_regs->status);
3536 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3537 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3538 xhci_free_virt_device(xhci, udev->slot_id);
3539 spin_unlock_irqrestore(&xhci->lock, flags);
3540 return;
3541 }
3542
3543 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3544 spin_unlock_irqrestore(&xhci->lock, flags);
3545 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3546 return;
3547 }
3548 xhci_ring_cmd_db(xhci);
3549 spin_unlock_irqrestore(&xhci->lock, flags);
3550 /*
3551 * Event command completion handler will free any data structures
3552 * associated with the slot. XXX Can free sleep?
3553 */
3554 }
3555
3556 /*
3557 * Checks if we have enough host controller resources for the default control
3558 * endpoint.
3559 *
3560 * Must be called with xhci->lock held.
3561 */
3562 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3563 {
3564 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3565 xhci_dbg(xhci, "Not enough ep ctxs: "
3566 "%u active, need to add 1, limit is %u.\n",
3567 xhci->num_active_eps, xhci->limit_active_eps);
3568 return -ENOMEM;
3569 }
3570 xhci->num_active_eps += 1;
3571 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3572 xhci->num_active_eps);
3573 return 0;
3574 }
3575
3576
3577 /*
3578 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3579 * timed out, or allocating memory failed. Returns 1 on success.
3580 */
3581 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3582 {
3583 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3584 unsigned long flags;
3585 int timeleft;
3586 int ret;
3587 union xhci_trb *cmd_trb;
3588
3589 spin_lock_irqsave(&xhci->lock, flags);
3590 cmd_trb = xhci->cmd_ring->dequeue;
3591 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3592 if (ret) {
3593 spin_unlock_irqrestore(&xhci->lock, flags);
3594 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3595 return 0;
3596 }
3597 xhci_ring_cmd_db(xhci);
3598 spin_unlock_irqrestore(&xhci->lock, flags);
3599
3600 /* XXX: how much time for xHC slot assignment? */
3601 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3602 XHCI_CMD_DEFAULT_TIMEOUT);
3603 if (timeleft <= 0) {
3604 xhci_warn(xhci, "%s while waiting for a slot\n",
3605 timeleft == 0 ? "Timeout" : "Signal");
3606 /* cancel the enable slot request */
3607 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3608 }
3609
3610 if (!xhci->slot_id) {
3611 xhci_err(xhci, "Error while assigning device slot ID\n");
3612 return 0;
3613 }
3614
3615 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3616 spin_lock_irqsave(&xhci->lock, flags);
3617 ret = xhci_reserve_host_control_ep_resources(xhci);
3618 if (ret) {
3619 spin_unlock_irqrestore(&xhci->lock, flags);
3620 xhci_warn(xhci, "Not enough host resources, "
3621 "active endpoint contexts = %u\n",
3622 xhci->num_active_eps);
3623 goto disable_slot;
3624 }
3625 spin_unlock_irqrestore(&xhci->lock, flags);
3626 }
3627 /* Use GFP_NOIO, since this function can be called from
3628 * xhci_discover_or_reset_device(), which may be called as part of
3629 * mass storage driver error handling.
3630 */
3631 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3632 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3633 goto disable_slot;
3634 }
3635 udev->slot_id = xhci->slot_id;
3636 /* Is this a LS or FS device under a HS hub? */
3637 /* Hub or peripherial? */
3638 return 1;
3639
3640 disable_slot:
3641 /* Disable slot, if we can do it without mem alloc */
3642 spin_lock_irqsave(&xhci->lock, flags);
3643 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3644 xhci_ring_cmd_db(xhci);
3645 spin_unlock_irqrestore(&xhci->lock, flags);
3646 return 0;
3647 }
3648
3649 /*
3650 * Issue an Address Device command (which will issue a SetAddress request to
3651 * the device).
3652 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3653 * we should only issue and wait on one address command at the same time.
3654 *
3655 * We add one to the device address issued by the hardware because the USB core
3656 * uses address 1 for the root hubs (even though they're not really devices).
3657 */
3658 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3659 {
3660 unsigned long flags;
3661 int timeleft;
3662 struct xhci_virt_device *virt_dev;
3663 int ret = 0;
3664 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3665 struct xhci_slot_ctx *slot_ctx;
3666 struct xhci_input_control_ctx *ctrl_ctx;
3667 u64 temp_64;
3668 union xhci_trb *cmd_trb;
3669
3670 if (!udev->slot_id) {
3671 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3672 return -EINVAL;
3673 }
3674
3675 virt_dev = xhci->devs[udev->slot_id];
3676
3677 if (WARN_ON(!virt_dev)) {
3678 /*
3679 * In plug/unplug torture test with an NEC controller,
3680 * a zero-dereference was observed once due to virt_dev = 0.
3681 * Print useful debug rather than crash if it is observed again!
3682 */
3683 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3684 udev->slot_id);
3685 return -EINVAL;
3686 }
3687
3688 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3689 /*
3690 * If this is the first Set Address since device plug-in or
3691 * virt_device realloaction after a resume with an xHCI power loss,
3692 * then set up the slot context.
3693 */
3694 if (!slot_ctx->dev_info)
3695 xhci_setup_addressable_virt_dev(xhci, udev);
3696 /* Otherwise, update the control endpoint ring enqueue pointer. */
3697 else
3698 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3699 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3700 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3701 ctrl_ctx->drop_flags = 0;
3702
3703 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3704 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3705
3706 spin_lock_irqsave(&xhci->lock, flags);
3707 cmd_trb = xhci->cmd_ring->dequeue;
3708 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3709 udev->slot_id);
3710 if (ret) {
3711 spin_unlock_irqrestore(&xhci->lock, flags);
3712 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3713 return ret;
3714 }
3715 xhci_ring_cmd_db(xhci);
3716 spin_unlock_irqrestore(&xhci->lock, flags);
3717
3718 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3719 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3720 XHCI_CMD_DEFAULT_TIMEOUT);
3721 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3722 * the SetAddress() "recovery interval" required by USB and aborting the
3723 * command on a timeout.
3724 */
3725 if (timeleft <= 0) {
3726 xhci_warn(xhci, "%s while waiting for address device command\n",
3727 timeleft == 0 ? "Timeout" : "Signal");
3728 /* cancel the address device command */
3729 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3730 if (ret < 0)
3731 return ret;
3732 return -ETIME;
3733 }
3734
3735 switch (virt_dev->cmd_status) {
3736 case COMP_CTX_STATE:
3737 case COMP_EBADSLT:
3738 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3739 udev->slot_id);
3740 ret = -EINVAL;
3741 break;
3742 case COMP_TX_ERR:
3743 dev_warn(&udev->dev, "Device not responding to set address.\n");
3744 ret = -EPROTO;
3745 break;
3746 case COMP_DEV_ERR:
3747 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3748 "device command.\n");
3749 ret = -ENODEV;
3750 break;
3751 case COMP_SUCCESS:
3752 xhci_dbg(xhci, "Successful Address Device command\n");
3753 break;
3754 default:
3755 xhci_err(xhci, "ERROR: unexpected command completion "
3756 "code 0x%x.\n", virt_dev->cmd_status);
3757 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3758 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3759 ret = -EINVAL;
3760 break;
3761 }
3762 if (ret) {
3763 return ret;
3764 }
3765 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3766 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3767 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3768 udev->slot_id,
3769 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3770 (unsigned long long)
3771 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3772 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3773 (unsigned long long)virt_dev->out_ctx->dma);
3774 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3775 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3776 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3777 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3778 /*
3779 * USB core uses address 1 for the roothubs, so we add one to the
3780 * address given back to us by the HC.
3781 */
3782 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3783 /* Use kernel assigned address for devices; store xHC assigned
3784 * address locally. */
3785 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3786 + 1;
3787 /* Zero the input context control for later use */
3788 ctrl_ctx->add_flags = 0;
3789 ctrl_ctx->drop_flags = 0;
3790
3791 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3792
3793 return 0;
3794 }
3795
3796 /*
3797 * Transfer the port index into real index in the HW port status
3798 * registers. Caculate offset between the port's PORTSC register
3799 * and port status base. Divide the number of per port register
3800 * to get the real index. The raw port number bases 1.
3801 */
3802 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3803 {
3804 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3805 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3806 __le32 __iomem *addr;
3807 int raw_port;
3808
3809 if (hcd->speed != HCD_USB3)
3810 addr = xhci->usb2_ports[port1 - 1];
3811 else
3812 addr = xhci->usb3_ports[port1 - 1];
3813
3814 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3815 return raw_port;
3816 }
3817
3818 #ifdef CONFIG_PM_RUNTIME
3819
3820 /* BESL to HIRD Encoding array for USB2 LPM */
3821 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3822 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3823
3824 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3825 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3826 struct usb_device *udev)
3827 {
3828 int u2del, besl, besl_host;
3829 int besl_device = 0;
3830 u32 field;
3831
3832 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3833 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3834
3835 if (field & USB_BESL_SUPPORT) {
3836 for (besl_host = 0; besl_host < 16; besl_host++) {
3837 if (xhci_besl_encoding[besl_host] >= u2del)
3838 break;
3839 }
3840 /* Use baseline BESL value as default */
3841 if (field & USB_BESL_BASELINE_VALID)
3842 besl_device = USB_GET_BESL_BASELINE(field);
3843 else if (field & USB_BESL_DEEP_VALID)
3844 besl_device = USB_GET_BESL_DEEP(field);
3845 } else {
3846 if (u2del <= 50)
3847 besl_host = 0;
3848 else
3849 besl_host = (u2del - 51) / 75 + 1;
3850 }
3851
3852 besl = besl_host + besl_device;
3853 if (besl > 15)
3854 besl = 15;
3855
3856 return besl;
3857 }
3858
3859 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3860 struct usb_device *udev)
3861 {
3862 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3863 struct dev_info *dev_info;
3864 __le32 __iomem **port_array;
3865 __le32 __iomem *addr, *pm_addr;
3866 u32 temp, dev_id;
3867 unsigned int port_num;
3868 unsigned long flags;
3869 int hird;
3870 int ret;
3871
3872 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3873 !udev->lpm_capable)
3874 return -EINVAL;
3875
3876 /* we only support lpm for non-hub device connected to root hub yet */
3877 if (!udev->parent || udev->parent->parent ||
3878 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3879 return -EINVAL;
3880
3881 spin_lock_irqsave(&xhci->lock, flags);
3882
3883 /* Look for devices in lpm_failed_devs list */
3884 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3885 le16_to_cpu(udev->descriptor.idProduct);
3886 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3887 if (dev_info->dev_id == dev_id) {
3888 ret = -EINVAL;
3889 goto finish;
3890 }
3891 }
3892
3893 port_array = xhci->usb2_ports;
3894 port_num = udev->portnum - 1;
3895
3896 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3897 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3898 ret = -EINVAL;
3899 goto finish;
3900 }
3901
3902 /*
3903 * Test USB 2.0 software LPM.
3904 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3905 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3906 * in the June 2011 errata release.
3907 */
3908 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3909 /*
3910 * Set L1 Device Slot and HIRD/BESL.
3911 * Check device's USB 2.0 extension descriptor to determine whether
3912 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3913 */
3914 pm_addr = port_array[port_num] + 1;
3915 hird = xhci_calculate_hird_besl(xhci, udev);
3916 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3917 xhci_writel(xhci, temp, pm_addr);
3918
3919 /* Set port link state to U2(L1) */
3920 addr = port_array[port_num];
3921 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3922
3923 /* wait for ACK */
3924 spin_unlock_irqrestore(&xhci->lock, flags);
3925 msleep(10);
3926 spin_lock_irqsave(&xhci->lock, flags);
3927
3928 /* Check L1 Status */
3929 ret = xhci_handshake(xhci, pm_addr,
3930 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3931 if (ret != -ETIMEDOUT) {
3932 /* enter L1 successfully */
3933 temp = xhci_readl(xhci, addr);
3934 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3935 port_num, temp);
3936 ret = 0;
3937 } else {
3938 temp = xhci_readl(xhci, pm_addr);
3939 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3940 port_num, temp & PORT_L1S_MASK);
3941 ret = -EINVAL;
3942 }
3943
3944 /* Resume the port */
3945 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3946
3947 spin_unlock_irqrestore(&xhci->lock, flags);
3948 msleep(10);
3949 spin_lock_irqsave(&xhci->lock, flags);
3950
3951 /* Clear PLC */
3952 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3953
3954 /* Check PORTSC to make sure the device is in the right state */
3955 if (!ret) {
3956 temp = xhci_readl(xhci, addr);
3957 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3958 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3959 (temp & PORT_PLS_MASK) != XDEV_U0) {
3960 xhci_dbg(xhci, "port L1 resume fail\n");
3961 ret = -EINVAL;
3962 }
3963 }
3964
3965 if (ret) {
3966 /* Insert dev to lpm_failed_devs list */
3967 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3968 "re-enumerate\n");
3969 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3970 if (!dev_info) {
3971 ret = -ENOMEM;
3972 goto finish;
3973 }
3974 dev_info->dev_id = dev_id;
3975 INIT_LIST_HEAD(&dev_info->list);
3976 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3977 } else {
3978 xhci_ring_device(xhci, udev->slot_id);
3979 }
3980
3981 finish:
3982 spin_unlock_irqrestore(&xhci->lock, flags);
3983 return ret;
3984 }
3985
3986 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3987 struct usb_device *udev, int enable)
3988 {
3989 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3990 __le32 __iomem **port_array;
3991 __le32 __iomem *pm_addr;
3992 u32 temp;
3993 unsigned int port_num;
3994 unsigned long flags;
3995 int hird;
3996
3997 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3998 !udev->lpm_capable)
3999 return -EPERM;
4000
4001 if (!udev->parent || udev->parent->parent ||
4002 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4003 return -EPERM;
4004
4005 if (udev->usb2_hw_lpm_capable != 1)
4006 return -EPERM;
4007
4008 spin_lock_irqsave(&xhci->lock, flags);
4009
4010 port_array = xhci->usb2_ports;
4011 port_num = udev->portnum - 1;
4012 pm_addr = port_array[port_num] + 1;
4013 temp = xhci_readl(xhci, pm_addr);
4014
4015 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4016 enable ? "enable" : "disable", port_num);
4017
4018 hird = xhci_calculate_hird_besl(xhci, udev);
4019
4020 if (enable) {
4021 temp &= ~PORT_HIRD_MASK;
4022 temp |= PORT_HIRD(hird) | PORT_RWE;
4023 xhci_writel(xhci, temp, pm_addr);
4024 temp = xhci_readl(xhci, pm_addr);
4025 temp |= PORT_HLE;
4026 xhci_writel(xhci, temp, pm_addr);
4027 } else {
4028 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4029 xhci_writel(xhci, temp, pm_addr);
4030 }
4031
4032 spin_unlock_irqrestore(&xhci->lock, flags);
4033 return 0;
4034 }
4035
4036 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4037 {
4038 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4039 int ret;
4040
4041 ret = xhci_usb2_software_lpm_test(hcd, udev);
4042 if (!ret) {
4043 xhci_dbg(xhci, "software LPM test succeed\n");
4044 if (xhci->hw_lpm_support == 1) {
4045 udev->usb2_hw_lpm_capable = 1;
4046 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4047 if (!ret)
4048 udev->usb2_hw_lpm_enabled = 1;
4049 }
4050 }
4051
4052 return 0;
4053 }
4054
4055 #else
4056
4057 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4058 struct usb_device *udev, int enable)
4059 {
4060 return 0;
4061 }
4062
4063 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4064 {
4065 return 0;
4066 }
4067
4068 #endif /* CONFIG_PM_RUNTIME */
4069
4070 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4071
4072 #ifdef CONFIG_PM
4073 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4074 static unsigned long long xhci_service_interval_to_ns(
4075 struct usb_endpoint_descriptor *desc)
4076 {
4077 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4078 }
4079
4080 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4081 enum usb3_link_state state)
4082 {
4083 unsigned long long sel;
4084 unsigned long long pel;
4085 unsigned int max_sel_pel;
4086 char *state_name;
4087
4088 switch (state) {
4089 case USB3_LPM_U1:
4090 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4091 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4092 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4093 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4094 state_name = "U1";
4095 break;
4096 case USB3_LPM_U2:
4097 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4098 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4099 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4100 state_name = "U2";
4101 break;
4102 default:
4103 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4104 __func__);
4105 return USB3_LPM_DISABLED;
4106 }
4107
4108 if (sel <= max_sel_pel && pel <= max_sel_pel)
4109 return USB3_LPM_DEVICE_INITIATED;
4110
4111 if (sel > max_sel_pel)
4112 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4113 "due to long SEL %llu ms\n",
4114 state_name, sel);
4115 else
4116 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4117 "due to long PEL %llu\n ms",
4118 state_name, pel);
4119 return USB3_LPM_DISABLED;
4120 }
4121
4122 /* Returns the hub-encoded U1 timeout value.
4123 * The U1 timeout should be the maximum of the following values:
4124 * - For control endpoints, U1 system exit latency (SEL) * 3
4125 * - For bulk endpoints, U1 SEL * 5
4126 * - For interrupt endpoints:
4127 * - Notification EPs, U1 SEL * 3
4128 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4129 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4130 */
4131 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4132 struct usb_endpoint_descriptor *desc)
4133 {
4134 unsigned long long timeout_ns;
4135 int ep_type;
4136 int intr_type;
4137
4138 ep_type = usb_endpoint_type(desc);
4139 switch (ep_type) {
4140 case USB_ENDPOINT_XFER_CONTROL:
4141 timeout_ns = udev->u1_params.sel * 3;
4142 break;
4143 case USB_ENDPOINT_XFER_BULK:
4144 timeout_ns = udev->u1_params.sel * 5;
4145 break;
4146 case USB_ENDPOINT_XFER_INT:
4147 intr_type = usb_endpoint_interrupt_type(desc);
4148 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4149 timeout_ns = udev->u1_params.sel * 3;
4150 break;
4151 }
4152 /* Otherwise the calculation is the same as isoc eps */
4153 case USB_ENDPOINT_XFER_ISOC:
4154 timeout_ns = xhci_service_interval_to_ns(desc);
4155 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4156 if (timeout_ns < udev->u1_params.sel * 2)
4157 timeout_ns = udev->u1_params.sel * 2;
4158 break;
4159 default:
4160 return 0;
4161 }
4162
4163 /* The U1 timeout is encoded in 1us intervals. */
4164 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4165 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4166 if (timeout_ns == USB3_LPM_DISABLED)
4167 timeout_ns++;
4168
4169 /* If the necessary timeout value is bigger than what we can set in the
4170 * USB 3.0 hub, we have to disable hub-initiated U1.
4171 */
4172 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4173 return timeout_ns;
4174 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4175 "due to long timeout %llu ms\n", timeout_ns);
4176 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4177 }
4178
4179 /* Returns the hub-encoded U2 timeout value.
4180 * The U2 timeout should be the maximum of:
4181 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4182 * - largest bInterval of any active periodic endpoint (to avoid going
4183 * into lower power link states between intervals).
4184 * - the U2 Exit Latency of the device
4185 */
4186 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4187 struct usb_endpoint_descriptor *desc)
4188 {
4189 unsigned long long timeout_ns;
4190 unsigned long long u2_del_ns;
4191
4192 timeout_ns = 10 * 1000 * 1000;
4193
4194 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4195 (xhci_service_interval_to_ns(desc) > timeout_ns))
4196 timeout_ns = xhci_service_interval_to_ns(desc);
4197
4198 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4199 if (u2_del_ns > timeout_ns)
4200 timeout_ns = u2_del_ns;
4201
4202 /* The U2 timeout is encoded in 256us intervals */
4203 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4204 /* If the necessary timeout value is bigger than what we can set in the
4205 * USB 3.0 hub, we have to disable hub-initiated U2.
4206 */
4207 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4208 return timeout_ns;
4209 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4210 "due to long timeout %llu ms\n", timeout_ns);
4211 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4212 }
4213
4214 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4215 struct usb_device *udev,
4216 struct usb_endpoint_descriptor *desc,
4217 enum usb3_link_state state,
4218 u16 *timeout)
4219 {
4220 if (state == USB3_LPM_U1) {
4221 if (xhci->quirks & XHCI_INTEL_HOST)
4222 return xhci_calculate_intel_u1_timeout(udev, desc);
4223 } else {
4224 if (xhci->quirks & XHCI_INTEL_HOST)
4225 return xhci_calculate_intel_u2_timeout(udev, desc);
4226 }
4227
4228 return USB3_LPM_DISABLED;
4229 }
4230
4231 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4232 struct usb_device *udev,
4233 struct usb_endpoint_descriptor *desc,
4234 enum usb3_link_state state,
4235 u16 *timeout)
4236 {
4237 u16 alt_timeout;
4238
4239 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4240 desc, state, timeout);
4241
4242 /* If we found we can't enable hub-initiated LPM, or
4243 * the U1 or U2 exit latency was too high to allow
4244 * device-initiated LPM as well, just stop searching.
4245 */
4246 if (alt_timeout == USB3_LPM_DISABLED ||
4247 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4248 *timeout = alt_timeout;
4249 return -E2BIG;
4250 }
4251 if (alt_timeout > *timeout)
4252 *timeout = alt_timeout;
4253 return 0;
4254 }
4255
4256 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4257 struct usb_device *udev,
4258 struct usb_host_interface *alt,
4259 enum usb3_link_state state,
4260 u16 *timeout)
4261 {
4262 int j;
4263
4264 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4265 if (xhci_update_timeout_for_endpoint(xhci, udev,
4266 &alt->endpoint[j].desc, state, timeout))
4267 return -E2BIG;
4268 continue;
4269 }
4270 return 0;
4271 }
4272
4273 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4274 enum usb3_link_state state)
4275 {
4276 struct usb_device *parent;
4277 unsigned int num_hubs;
4278
4279 if (state == USB3_LPM_U2)
4280 return 0;
4281
4282 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4283 for (parent = udev->parent, num_hubs = 0; parent->parent;
4284 parent = parent->parent)
4285 num_hubs++;
4286
4287 if (num_hubs < 2)
4288 return 0;
4289
4290 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4291 " below second-tier hub.\n");
4292 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4293 "to decrease power consumption.\n");
4294 return -E2BIG;
4295 }
4296
4297 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4298 struct usb_device *udev,
4299 enum usb3_link_state state)
4300 {
4301 if (xhci->quirks & XHCI_INTEL_HOST)
4302 return xhci_check_intel_tier_policy(udev, state);
4303 return -EINVAL;
4304 }
4305
4306 /* Returns the U1 or U2 timeout that should be enabled.
4307 * If the tier check or timeout setting functions return with a non-zero exit
4308 * code, that means the timeout value has been finalized and we shouldn't look
4309 * at any more endpoints.
4310 */
4311 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4312 struct usb_device *udev, enum usb3_link_state state)
4313 {
4314 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4315 struct usb_host_config *config;
4316 char *state_name;
4317 int i;
4318 u16 timeout = USB3_LPM_DISABLED;
4319
4320 if (state == USB3_LPM_U1)
4321 state_name = "U1";
4322 else if (state == USB3_LPM_U2)
4323 state_name = "U2";
4324 else {
4325 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4326 state);
4327 return timeout;
4328 }
4329
4330 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4331 return timeout;
4332
4333 /* Gather some information about the currently installed configuration
4334 * and alternate interface settings.
4335 */
4336 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4337 state, &timeout))
4338 return timeout;
4339
4340 config = udev->actconfig;
4341 if (!config)
4342 return timeout;
4343
4344 for (i = 0; i < USB_MAXINTERFACES; i++) {
4345 struct usb_driver *driver;
4346 struct usb_interface *intf = config->interface[i];
4347
4348 if (!intf)
4349 continue;
4350
4351 /* Check if any currently bound drivers want hub-initiated LPM
4352 * disabled.
4353 */
4354 if (intf->dev.driver) {
4355 driver = to_usb_driver(intf->dev.driver);
4356 if (driver && driver->disable_hub_initiated_lpm) {
4357 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4358 "at request of driver %s\n",
4359 state_name, driver->name);
4360 return xhci_get_timeout_no_hub_lpm(udev, state);
4361 }
4362 }
4363
4364 /* Not sure how this could happen... */
4365 if (!intf->cur_altsetting)
4366 continue;
4367
4368 if (xhci_update_timeout_for_interface(xhci, udev,
4369 intf->cur_altsetting,
4370 state, &timeout))
4371 return timeout;
4372 }
4373 return timeout;
4374 }
4375
4376 /*
4377 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4378 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4379 */
4380 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4381 struct usb_device *udev, u16 max_exit_latency)
4382 {
4383 struct xhci_virt_device *virt_dev;
4384 struct xhci_command *command;
4385 struct xhci_input_control_ctx *ctrl_ctx;
4386 struct xhci_slot_ctx *slot_ctx;
4387 unsigned long flags;
4388 int ret;
4389
4390 spin_lock_irqsave(&xhci->lock, flags);
4391 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4392 spin_unlock_irqrestore(&xhci->lock, flags);
4393 return 0;
4394 }
4395
4396 /* Attempt to issue an Evaluate Context command to change the MEL. */
4397 virt_dev = xhci->devs[udev->slot_id];
4398 command = xhci->lpm_command;
4399 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4400 spin_unlock_irqrestore(&xhci->lock, flags);
4401
4402 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4403 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4404 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4405 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4406 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4407
4408 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4409 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4410 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4411
4412 /* Issue and wait for the evaluate context command. */
4413 ret = xhci_configure_endpoint(xhci, udev, command,
4414 true, true);
4415 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4416 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4417
4418 if (!ret) {
4419 spin_lock_irqsave(&xhci->lock, flags);
4420 virt_dev->current_mel = max_exit_latency;
4421 spin_unlock_irqrestore(&xhci->lock, flags);
4422 }
4423 return ret;
4424 }
4425
4426 static int calculate_max_exit_latency(struct usb_device *udev,
4427 enum usb3_link_state state_changed,
4428 u16 hub_encoded_timeout)
4429 {
4430 unsigned long long u1_mel_us = 0;
4431 unsigned long long u2_mel_us = 0;
4432 unsigned long long mel_us = 0;
4433 bool disabling_u1;
4434 bool disabling_u2;
4435 bool enabling_u1;
4436 bool enabling_u2;
4437
4438 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4439 hub_encoded_timeout == USB3_LPM_DISABLED);
4440 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4441 hub_encoded_timeout == USB3_LPM_DISABLED);
4442
4443 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4444 hub_encoded_timeout != USB3_LPM_DISABLED);
4445 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4446 hub_encoded_timeout != USB3_LPM_DISABLED);
4447
4448 /* If U1 was already enabled and we're not disabling it,
4449 * or we're going to enable U1, account for the U1 max exit latency.
4450 */
4451 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4452 enabling_u1)
4453 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4454 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4455 enabling_u2)
4456 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4457
4458 if (u1_mel_us > u2_mel_us)
4459 mel_us = u1_mel_us;
4460 else
4461 mel_us = u2_mel_us;
4462 /* xHCI host controller max exit latency field is only 16 bits wide. */
4463 if (mel_us > MAX_EXIT) {
4464 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4465 "is too big.\n", mel_us);
4466 return -E2BIG;
4467 }
4468 return mel_us;
4469 }
4470
4471 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4472 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4473 struct usb_device *udev, enum usb3_link_state state)
4474 {
4475 struct xhci_hcd *xhci;
4476 u16 hub_encoded_timeout;
4477 int mel;
4478 int ret;
4479
4480 xhci = hcd_to_xhci(hcd);
4481 /* The LPM timeout values are pretty host-controller specific, so don't
4482 * enable hub-initiated timeouts unless the vendor has provided
4483 * information about their timeout algorithm.
4484 */
4485 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4486 !xhci->devs[udev->slot_id])
4487 return USB3_LPM_DISABLED;
4488
4489 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4490 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4491 if (mel < 0) {
4492 /* Max Exit Latency is too big, disable LPM. */
4493 hub_encoded_timeout = USB3_LPM_DISABLED;
4494 mel = 0;
4495 }
4496
4497 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4498 if (ret)
4499 return ret;
4500 return hub_encoded_timeout;
4501 }
4502
4503 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4504 struct usb_device *udev, enum usb3_link_state state)
4505 {
4506 struct xhci_hcd *xhci;
4507 u16 mel;
4508 int ret;
4509
4510 xhci = hcd_to_xhci(hcd);
4511 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4512 !xhci->devs[udev->slot_id])
4513 return 0;
4514
4515 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4516 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4517 if (ret)
4518 return ret;
4519 return 0;
4520 }
4521 #else /* CONFIG_PM */
4522
4523 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4524 struct usb_device *udev, enum usb3_link_state state)
4525 {
4526 return USB3_LPM_DISABLED;
4527 }
4528
4529 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4530 struct usb_device *udev, enum usb3_link_state state)
4531 {
4532 return 0;
4533 }
4534 #endif /* CONFIG_PM */
4535
4536 /*-------------------------------------------------------------------------*/
4537
4538 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4539 * internal data structures for the device.
4540 */
4541 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4542 struct usb_tt *tt, gfp_t mem_flags)
4543 {
4544 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4545 struct xhci_virt_device *vdev;
4546 struct xhci_command *config_cmd;
4547 struct xhci_input_control_ctx *ctrl_ctx;
4548 struct xhci_slot_ctx *slot_ctx;
4549 unsigned long flags;
4550 unsigned think_time;
4551 int ret;
4552
4553 /* Ignore root hubs */
4554 if (!hdev->parent)
4555 return 0;
4556
4557 vdev = xhci->devs[hdev->slot_id];
4558 if (!vdev) {
4559 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4560 return -EINVAL;
4561 }
4562 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4563 if (!config_cmd) {
4564 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4565 return -ENOMEM;
4566 }
4567
4568 spin_lock_irqsave(&xhci->lock, flags);
4569 if (hdev->speed == USB_SPEED_HIGH &&
4570 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4571 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4572 xhci_free_command(xhci, config_cmd);
4573 spin_unlock_irqrestore(&xhci->lock, flags);
4574 return -ENOMEM;
4575 }
4576
4577 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4578 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4579 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4580 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4581 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4582 if (tt->multi)
4583 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4584 if (xhci->hci_version > 0x95) {
4585 xhci_dbg(xhci, "xHCI version %x needs hub "
4586 "TT think time and number of ports\n",
4587 (unsigned int) xhci->hci_version);
4588 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4589 /* Set TT think time - convert from ns to FS bit times.
4590 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4591 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4592 *
4593 * xHCI 1.0: this field shall be 0 if the device is not a
4594 * High-spped hub.
4595 */
4596 think_time = tt->think_time;
4597 if (think_time != 0)
4598 think_time = (think_time / 666) - 1;
4599 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4600 slot_ctx->tt_info |=
4601 cpu_to_le32(TT_THINK_TIME(think_time));
4602 } else {
4603 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4604 "TT think time or number of ports\n",
4605 (unsigned int) xhci->hci_version);
4606 }
4607 slot_ctx->dev_state = 0;
4608 spin_unlock_irqrestore(&xhci->lock, flags);
4609
4610 xhci_dbg(xhci, "Set up %s for hub device.\n",
4611 (xhci->hci_version > 0x95) ?
4612 "configure endpoint" : "evaluate context");
4613 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4614 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4615
4616 /* Issue and wait for the configure endpoint or
4617 * evaluate context command.
4618 */
4619 if (xhci->hci_version > 0x95)
4620 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4621 false, false);
4622 else
4623 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4624 true, false);
4625
4626 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4627 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4628
4629 xhci_free_command(xhci, config_cmd);
4630 return ret;
4631 }
4632
4633 int xhci_get_frame(struct usb_hcd *hcd)
4634 {
4635 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4636 /* EHCI mods by the periodic size. Why? */
4637 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4638 }
4639
4640 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4641 {
4642 struct xhci_hcd *xhci;
4643 struct device *dev = hcd->self.controller;
4644 int retval;
4645 u32 temp;
4646
4647 /* Accept arbitrarily long scatter-gather lists */
4648 hcd->self.sg_tablesize = ~0;
4649 /* XHCI controllers don't stop the ep queue on short packets :| */
4650 hcd->self.no_stop_on_short = 1;
4651
4652 if (usb_hcd_is_primary_hcd(hcd)) {
4653 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4654 if (!xhci)
4655 return -ENOMEM;
4656 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4657 xhci->main_hcd = hcd;
4658 /* Mark the first roothub as being USB 2.0.
4659 * The xHCI driver will register the USB 3.0 roothub.
4660 */
4661 hcd->speed = HCD_USB2;
4662 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4663 /*
4664 * USB 2.0 roothub under xHCI has an integrated TT,
4665 * (rate matching hub) as opposed to having an OHCI/UHCI
4666 * companion controller.
4667 */
4668 hcd->has_tt = 1;
4669 } else {
4670 /* xHCI private pointer was set in xhci_pci_probe for the second
4671 * registered roothub.
4672 */
4673 xhci = hcd_to_xhci(hcd);
4674 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4675 if (HCC_64BIT_ADDR(temp)) {
4676 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4677 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4678 } else {
4679 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4680 }
4681 return 0;
4682 }
4683
4684 xhci->cap_regs = hcd->regs;
4685 xhci->op_regs = hcd->regs +
4686 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4687 xhci->run_regs = hcd->regs +
4688 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4689 /* Cache read-only capability registers */
4690 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4691 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4692 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4693 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4694 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4695 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4696 xhci_print_registers(xhci);
4697
4698 get_quirks(dev, xhci);
4699
4700 /* Make sure the HC is halted. */
4701 retval = xhci_halt(xhci);
4702 if (retval)
4703 goto error;
4704
4705 xhci_dbg(xhci, "Resetting HCD\n");
4706 /* Reset the internal HC memory state and registers. */
4707 retval = xhci_reset(xhci);
4708 if (retval)
4709 goto error;
4710 xhci_dbg(xhci, "Reset complete\n");
4711
4712 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4713 if (HCC_64BIT_ADDR(temp)) {
4714 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4715 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4716 } else {
4717 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4718 }
4719
4720 xhci_dbg(xhci, "Calling HCD init\n");
4721 /* Initialize HCD and host controller data structures. */
4722 retval = xhci_init(hcd);
4723 if (retval)
4724 goto error;
4725 xhci_dbg(xhci, "Called HCD init\n");
4726 return 0;
4727 error:
4728 kfree(xhci);
4729 return retval;
4730 }
4731
4732 MODULE_DESCRIPTION(DRIVER_DESC);
4733 MODULE_AUTHOR(DRIVER_AUTHOR);
4734 MODULE_LICENSE("GPL");
4735
4736 static int __init xhci_hcd_init(void)
4737 {
4738 int retval;
4739
4740 retval = xhci_register_pci();
4741 if (retval < 0) {
4742 printk(KERN_DEBUG "Problem registering PCI driver.");
4743 return retval;
4744 }
4745 retval = xhci_register_plat();
4746 if (retval < 0) {
4747 printk(KERN_DEBUG "Problem registering platform driver.");
4748 goto unreg_pci;
4749 }
4750 /*
4751 * Check the compiler generated sizes of structures that must be laid
4752 * out in specific ways for hardware access.
4753 */
4754 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4755 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4756 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4757 /* xhci_device_control has eight fields, and also
4758 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4759 */
4760 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4761 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4762 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4763 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4764 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4765 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4766 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4767 return 0;
4768 unreg_pci:
4769 xhci_unregister_pci();
4770 return retval;
4771 }
4772 module_init(xhci_hcd_init);
4773
4774 static void __exit xhci_hcd_cleanup(void)
4775 {
4776 xhci_unregister_pci();
4777 xhci_unregister_plat();
4778 }
4779 module_exit(xhci_hcd_cleanup);