Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43 * xhci_handshake - spin reading hc until handshake completes or fails
44 * @ptr: address of hc register to be read
45 * @mask: bits to look at in result of read
46 * @done: value of those bits when handshake succeeds
47 * @usec: timeout in microseconds
48 *
49 * Returns negative errno, or zero on success
50 *
51 * Success happens when the "mask" bits have the specified value (hardware
52 * handshake done). There are two failure modes: "usec" have passed (major
53 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 u32 mask, u32 done, int usec)
57 {
58 u32 result;
59
60 do {
61 result = xhci_readl(xhci, ptr);
62 if (result == ~(u32)0) /* card removed */
63 return -ENODEV;
64 result &= mask;
65 if (result == done)
66 return 0;
67 udelay(1);
68 usec--;
69 } while (usec > 0);
70 return -ETIMEDOUT;
71 }
72
73 /*
74 * Disable interrupts and begin the xHCI halting process.
75 */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 u32 halted;
79 u32 cmd;
80 u32 mask;
81
82 mask = ~(XHCI_IRQS);
83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 if (!halted)
85 mask &= ~CMD_RUN;
86
87 cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 cmd &= mask;
89 xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93 * Force HC into halt state.
94 *
95 * Disable any IRQs and clear the run/stop bit.
96 * HC will complete any current and actively pipelined transactions, and
97 * should halt within 16 ms of the run/stop bit being cleared.
98 * Read HC Halted bit in the status register to see when the HC is finished.
99 */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 int ret;
103 xhci_dbg(xhci, "// Halt the HC\n");
104 xhci_quiesce(xhci);
105
106 ret = xhci_handshake(xhci, &xhci->op_regs->status,
107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 if (!ret) {
109 xhci->xhc_state |= XHCI_STATE_HALTED;
110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 } else
112 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 XHCI_MAX_HALT_USEC);
114 return ret;
115 }
116
117 /*
118 * Set the run bit and wait for the host to be running.
119 */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 u32 temp;
123 int ret;
124
125 temp = xhci_readl(xhci, &xhci->op_regs->command);
126 temp |= (CMD_RUN);
127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 temp);
129 xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131 /*
132 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 * running.
134 */
135 ret = xhci_handshake(xhci, &xhci->op_regs->status,
136 STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 if (ret == -ETIMEDOUT)
138 xhci_err(xhci, "Host took too long to start, "
139 "waited %u microseconds.\n",
140 XHCI_MAX_HALT_USEC);
141 if (!ret)
142 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 return ret;
144 }
145
146 /*
147 * Reset a halted HC.
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 u32 command;
156 u32 state;
157 int ret, i;
158
159 state = xhci_readl(xhci, &xhci->op_regs->status);
160 if ((state & STS_HALT) == 0) {
161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 return 0;
163 }
164
165 xhci_dbg(xhci, "// Reset the HC\n");
166 command = xhci_readl(xhci, &xhci->op_regs->command);
167 command |= CMD_RESET;
168 xhci_writel(xhci, command, &xhci->op_regs->command);
169
170 ret = xhci_handshake(xhci, &xhci->op_regs->command,
171 CMD_RESET, 0, 10 * 1000 * 1000);
172 if (ret)
173 return ret;
174
175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 /*
177 * xHCI cannot write to any doorbells or operational registers other
178 * than status until the "Controller Not Ready" flag is cleared.
179 */
180 ret = xhci_handshake(xhci, &xhci->op_regs->status,
181 STS_CNR, 0, 10 * 1000 * 1000);
182
183 for (i = 0; i < 2; ++i) {
184 xhci->bus_state[i].port_c_suspend = 0;
185 xhci->bus_state[i].suspended_ports = 0;
186 xhci->bus_state[i].resuming_ports = 0;
187 }
188
189 return ret;
190 }
191
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 int i;
196
197 if (!xhci->msix_entries)
198 return -EINVAL;
199
200 for (i = 0; i < xhci->msix_count; i++)
201 if (xhci->msix_entries[i].vector)
202 free_irq(xhci->msix_entries[i].vector,
203 xhci_to_hcd(xhci));
204 return 0;
205 }
206
207 /*
208 * Set up MSI
209 */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 int ret;
213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215 ret = pci_enable_msi(pdev);
216 if (ret) {
217 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 return ret;
219 }
220
221 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 0, "xhci_hcd", xhci_to_hcd(xhci));
223 if (ret) {
224 xhci_dbg(xhci, "disable MSI interrupt\n");
225 pci_disable_msi(pdev);
226 }
227
228 return ret;
229 }
230
231 /*
232 * Free IRQs
233 * free all IRQs request
234 */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 int ret;
239
240 /* return if using legacy interrupt */
241 if (xhci_to_hcd(xhci)->irq > 0)
242 return;
243
244 ret = xhci_free_msi(xhci);
245 if (!ret)
246 return;
247 if (pdev->irq > 0)
248 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250 return;
251 }
252
253 /*
254 * Set up MSI-X
255 */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 int i, ret = 0;
259 struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262 /*
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
268 */
269 xhci->msix_count = min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci->hcs_params1));
271
272 xhci->msix_entries =
273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 GFP_KERNEL);
275 if (!xhci->msix_entries) {
276 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 return -ENOMEM;
278 }
279
280 for (i = 0; i < xhci->msix_count; i++) {
281 xhci->msix_entries[i].entry = i;
282 xhci->msix_entries[i].vector = 0;
283 }
284
285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 if (ret) {
287 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 goto free_entries;
289 }
290
291 for (i = 0; i < xhci->msix_count; i++) {
292 ret = request_irq(xhci->msix_entries[i].vector,
293 (irq_handler_t)xhci_msi_irq,
294 0, "xhci_hcd", xhci_to_hcd(xhci));
295 if (ret)
296 goto disable_msix;
297 }
298
299 hcd->msix_enabled = 1;
300 return ret;
301
302 disable_msix:
303 xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 xhci_free_irq(xhci);
305 pci_disable_msix(pdev);
306 free_entries:
307 kfree(xhci->msix_entries);
308 xhci->msix_entries = NULL;
309 return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318 xhci_free_irq(xhci);
319
320 if (xhci->msix_entries) {
321 pci_disable_msix(pdev);
322 kfree(xhci->msix_entries);
323 xhci->msix_entries = NULL;
324 } else {
325 pci_disable_msi(pdev);
326 }
327
328 hcd->msix_enabled = 0;
329 return;
330 }
331
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334 int i;
335
336 if (xhci->msix_entries) {
337 for (i = 0; i < xhci->msix_count; i++)
338 synchronize_irq(xhci->msix_entries[i].vector);
339 }
340 }
341
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 int ret;
347
348 /*
349 * Some Fresco Logic host controllers advertise MSI, but fail to
350 * generate interrupts. Don't even try to enable MSI.
351 */
352 if (xhci->quirks & XHCI_BROKEN_MSI)
353 goto legacy_irq;
354
355 /* unregister the legacy interrupt */
356 if (hcd->irq)
357 free_irq(hcd->irq, hcd);
358 hcd->irq = 0;
359
360 ret = xhci_setup_msix(xhci);
361 if (ret)
362 /* fall back to msi*/
363 ret = xhci_setup_msi(xhci);
364
365 if (!ret)
366 /* hcd->irq is 0, we have MSI */
367 return 0;
368
369 if (!pdev->irq) {
370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 return -EINVAL;
372 }
373
374 legacy_irq:
375 /* fall back to legacy interrupt*/
376 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
377 hcd->irq_descr, hcd);
378 if (ret) {
379 xhci_err(xhci, "request interrupt %d failed\n",
380 pdev->irq);
381 return ret;
382 }
383 hcd->irq = pdev->irq;
384 return 0;
385 }
386
387 #else
388
389 static int xhci_try_enable_msi(struct usb_hcd *hcd)
390 {
391 return 0;
392 }
393
394 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
395 {
396 }
397
398 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
399 {
400 }
401
402 #endif
403
404 static void compliance_mode_recovery(unsigned long arg)
405 {
406 struct xhci_hcd *xhci;
407 struct usb_hcd *hcd;
408 u32 temp;
409 int i;
410
411 xhci = (struct xhci_hcd *)arg;
412
413 for (i = 0; i < xhci->num_usb3_ports; i++) {
414 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
415 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
416 /*
417 * Compliance Mode Detected. Letting USB Core
418 * handle the Warm Reset
419 */
420 xhci_dbg(xhci, "Compliance mode detected->port %d\n",
421 i + 1);
422 xhci_dbg(xhci, "Attempting compliance mode recovery\n");
423 hcd = xhci->shared_hcd;
424
425 if (hcd->state == HC_STATE_SUSPENDED)
426 usb_hcd_resume_root_hub(hcd);
427
428 usb_hcd_poll_rh_status(hcd);
429 }
430 }
431
432 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
433 mod_timer(&xhci->comp_mode_recovery_timer,
434 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
435 }
436
437 /*
438 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
439 * that causes ports behind that hardware to enter compliance mode sometimes.
440 * The quirk creates a timer that polls every 2 seconds the link state of
441 * each host controller's port and recovers it by issuing a Warm reset
442 * if Compliance mode is detected, otherwise the port will become "dead" (no
443 * device connections or disconnections will be detected anymore). Becasue no
444 * status event is generated when entering compliance mode (per xhci spec),
445 * this quirk is needed on systems that have the failing hardware installed.
446 */
447 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
448 {
449 xhci->port_status_u0 = 0;
450 init_timer(&xhci->comp_mode_recovery_timer);
451
452 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
453 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
454 xhci->comp_mode_recovery_timer.expires = jiffies +
455 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
456
457 set_timer_slack(&xhci->comp_mode_recovery_timer,
458 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 add_timer(&xhci->comp_mode_recovery_timer);
460 xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
461 }
462
463 /*
464 * This function identifies the systems that have installed the SN65LVPE502CP
465 * USB3.0 re-driver and that need the Compliance Mode Quirk.
466 * Systems:
467 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
468 */
469 static bool compliance_mode_recovery_timer_quirk_check(void)
470 {
471 const char *dmi_product_name, *dmi_sys_vendor;
472
473 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
474 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
475 if (!dmi_product_name || !dmi_sys_vendor)
476 return false;
477
478 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
479 return false;
480
481 if (strstr(dmi_product_name, "Z420") ||
482 strstr(dmi_product_name, "Z620") ||
483 strstr(dmi_product_name, "Z820") ||
484 strstr(dmi_product_name, "Z1 Workstation"))
485 return true;
486
487 return false;
488 }
489
490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
491 {
492 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
493 }
494
495
496 /*
497 * Initialize memory for HCD and xHC (one-time init).
498 *
499 * Program the PAGESIZE register, initialize the device context array, create
500 * device contexts (?), set up a command ring segment (or two?), create event
501 * ring (one for now).
502 */
503 int xhci_init(struct usb_hcd *hcd)
504 {
505 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506 int retval = 0;
507
508 xhci_dbg(xhci, "xhci_init\n");
509 spin_lock_init(&xhci->lock);
510 if (xhci->hci_version == 0x95 && link_quirk) {
511 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
512 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
513 } else {
514 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
515 }
516 retval = xhci_mem_init(xhci, GFP_KERNEL);
517 xhci_dbg(xhci, "Finished xhci_init\n");
518
519 /* Initializing Compliance Mode Recovery Data If Needed */
520 if (compliance_mode_recovery_timer_quirk_check()) {
521 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
522 compliance_mode_recovery_timer_init(xhci);
523 }
524
525 return retval;
526 }
527
528 /*-------------------------------------------------------------------------*/
529
530
531 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
532 static void xhci_event_ring_work(unsigned long arg)
533 {
534 unsigned long flags;
535 int temp;
536 u64 temp_64;
537 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
538 int i, j;
539
540 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
541
542 spin_lock_irqsave(&xhci->lock, flags);
543 temp = xhci_readl(xhci, &xhci->op_regs->status);
544 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
545 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
546 (xhci->xhc_state & XHCI_STATE_HALTED)) {
547 xhci_dbg(xhci, "HW died, polling stopped.\n");
548 spin_unlock_irqrestore(&xhci->lock, flags);
549 return;
550 }
551
552 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
553 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
554 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
555 xhci->error_bitmask = 0;
556 xhci_dbg(xhci, "Event ring:\n");
557 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
558 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
559 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
560 temp_64 &= ~ERST_PTR_MASK;
561 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
562 xhci_dbg(xhci, "Command ring:\n");
563 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
564 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
565 xhci_dbg_cmd_ptrs(xhci);
566 for (i = 0; i < MAX_HC_SLOTS; ++i) {
567 if (!xhci->devs[i])
568 continue;
569 for (j = 0; j < 31; ++j) {
570 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
571 }
572 }
573 spin_unlock_irqrestore(&xhci->lock, flags);
574
575 if (!xhci->zombie)
576 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
577 else
578 xhci_dbg(xhci, "Quit polling the event ring.\n");
579 }
580 #endif
581
582 static int xhci_run_finished(struct xhci_hcd *xhci)
583 {
584 if (xhci_start(xhci)) {
585 xhci_halt(xhci);
586 return -ENODEV;
587 }
588 xhci->shared_hcd->state = HC_STATE_RUNNING;
589 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
590
591 if (xhci->quirks & XHCI_NEC_HOST)
592 xhci_ring_cmd_db(xhci);
593
594 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
595 return 0;
596 }
597
598 /*
599 * Start the HC after it was halted.
600 *
601 * This function is called by the USB core when the HC driver is added.
602 * Its opposite is xhci_stop().
603 *
604 * xhci_init() must be called once before this function can be called.
605 * Reset the HC, enable device slot contexts, program DCBAAP, and
606 * set command ring pointer and event ring pointer.
607 *
608 * Setup MSI-X vectors and enable interrupts.
609 */
610 int xhci_run(struct usb_hcd *hcd)
611 {
612 u32 temp;
613 u64 temp_64;
614 int ret;
615 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
616
617 /* Start the xHCI host controller running only after the USB 2.0 roothub
618 * is setup.
619 */
620
621 hcd->uses_new_polling = 1;
622 if (!usb_hcd_is_primary_hcd(hcd))
623 return xhci_run_finished(xhci);
624
625 xhci_dbg(xhci, "xhci_run\n");
626
627 ret = xhci_try_enable_msi(hcd);
628 if (ret)
629 return ret;
630
631 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
632 init_timer(&xhci->event_ring_timer);
633 xhci->event_ring_timer.data = (unsigned long) xhci;
634 xhci->event_ring_timer.function = xhci_event_ring_work;
635 /* Poll the event ring */
636 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
637 xhci->zombie = 0;
638 xhci_dbg(xhci, "Setting event ring polling timer\n");
639 add_timer(&xhci->event_ring_timer);
640 #endif
641
642 xhci_dbg(xhci, "Command ring memory map follows:\n");
643 xhci_debug_ring(xhci, xhci->cmd_ring);
644 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
645 xhci_dbg_cmd_ptrs(xhci);
646
647 xhci_dbg(xhci, "ERST memory map follows:\n");
648 xhci_dbg_erst(xhci, &xhci->erst);
649 xhci_dbg(xhci, "Event ring:\n");
650 xhci_debug_ring(xhci, xhci->event_ring);
651 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
652 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
653 temp_64 &= ~ERST_PTR_MASK;
654 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
655
656 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
657 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
658 temp &= ~ER_IRQ_INTERVAL_MASK;
659 temp |= (u32) 160;
660 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
661
662 /* Set the HCD state before we enable the irqs */
663 temp = xhci_readl(xhci, &xhci->op_regs->command);
664 temp |= (CMD_EIE);
665 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
666 temp);
667 xhci_writel(xhci, temp, &xhci->op_regs->command);
668
669 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
670 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
671 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
672 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
673 &xhci->ir_set->irq_pending);
674 xhci_print_ir_set(xhci, 0);
675
676 if (xhci->quirks & XHCI_NEC_HOST)
677 xhci_queue_vendor_command(xhci, 0, 0, 0,
678 TRB_TYPE(TRB_NEC_GET_FW));
679
680 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
681 return 0;
682 }
683
684 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
685 {
686 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687
688 spin_lock_irq(&xhci->lock);
689 xhci_halt(xhci);
690
691 /* The shared_hcd is going to be deallocated shortly (the USB core only
692 * calls this function when allocation fails in usb_add_hcd(), or
693 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
694 */
695 xhci->shared_hcd = NULL;
696 spin_unlock_irq(&xhci->lock);
697 }
698
699 /*
700 * Stop xHCI driver.
701 *
702 * This function is called by the USB core when the HC driver is removed.
703 * Its opposite is xhci_run().
704 *
705 * Disable device contexts, disable IRQs, and quiesce the HC.
706 * Reset the HC, finish any completed transactions, and cleanup memory.
707 */
708 void xhci_stop(struct usb_hcd *hcd)
709 {
710 u32 temp;
711 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
712
713 if (!usb_hcd_is_primary_hcd(hcd)) {
714 xhci_only_stop_hcd(xhci->shared_hcd);
715 return;
716 }
717
718 spin_lock_irq(&xhci->lock);
719 /* Make sure the xHC is halted for a USB3 roothub
720 * (xhci_stop() could be called as part of failed init).
721 */
722 xhci_halt(xhci);
723 xhci_reset(xhci);
724 spin_unlock_irq(&xhci->lock);
725
726 xhci_cleanup_msix(xhci);
727
728 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
729 /* Tell the event ring poll function not to reschedule */
730 xhci->zombie = 1;
731 del_timer_sync(&xhci->event_ring_timer);
732 #endif
733
734 /* Deleting Compliance Mode Recovery Timer */
735 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
736 (!(xhci_all_ports_seen_u0(xhci)))) {
737 del_timer_sync(&xhci->comp_mode_recovery_timer);
738 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
739 __func__);
740 }
741
742 if (xhci->quirks & XHCI_AMD_PLL_FIX)
743 usb_amd_dev_put();
744
745 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
746 temp = xhci_readl(xhci, &xhci->op_regs->status);
747 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
748 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
749 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
750 &xhci->ir_set->irq_pending);
751 xhci_print_ir_set(xhci, 0);
752
753 xhci_dbg(xhci, "cleaning up memory\n");
754 xhci_mem_cleanup(xhci);
755 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
756 xhci_readl(xhci, &xhci->op_regs->status));
757 }
758
759 /*
760 * Shutdown HC (not bus-specific)
761 *
762 * This is called when the machine is rebooting or halting. We assume that the
763 * machine will be powered off, and the HC's internal state will be reset.
764 * Don't bother to free memory.
765 *
766 * This will only ever be called with the main usb_hcd (the USB3 roothub).
767 */
768 void xhci_shutdown(struct usb_hcd *hcd)
769 {
770 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
771
772 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
773 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
774
775 spin_lock_irq(&xhci->lock);
776 xhci_halt(xhci);
777 spin_unlock_irq(&xhci->lock);
778
779 xhci_cleanup_msix(xhci);
780
781 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
782 xhci_readl(xhci, &xhci->op_regs->status));
783 }
784
785 #ifdef CONFIG_PM
786 static void xhci_save_registers(struct xhci_hcd *xhci)
787 {
788 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
789 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
790 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
791 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
792 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
793 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
794 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
795 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
796 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
797 }
798
799 static void xhci_restore_registers(struct xhci_hcd *xhci)
800 {
801 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
802 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
803 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
804 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
805 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
806 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
807 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
808 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
809 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
810 }
811
812 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
813 {
814 u64 val_64;
815
816 /* step 2: initialize command ring buffer */
817 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
818 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
819 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
820 xhci->cmd_ring->dequeue) &
821 (u64) ~CMD_RING_RSVD_BITS) |
822 xhci->cmd_ring->cycle_state;
823 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
824 (long unsigned long) val_64);
825 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
826 }
827
828 /*
829 * The whole command ring must be cleared to zero when we suspend the host.
830 *
831 * The host doesn't save the command ring pointer in the suspend well, so we
832 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
833 * aligned, because of the reserved bits in the command ring dequeue pointer
834 * register. Therefore, we can't just set the dequeue pointer back in the
835 * middle of the ring (TRBs are 16-byte aligned).
836 */
837 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
838 {
839 struct xhci_ring *ring;
840 struct xhci_segment *seg;
841
842 ring = xhci->cmd_ring;
843 seg = ring->deq_seg;
844 do {
845 memset(seg->trbs, 0,
846 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
847 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
848 cpu_to_le32(~TRB_CYCLE);
849 seg = seg->next;
850 } while (seg != ring->deq_seg);
851
852 /* Reset the software enqueue and dequeue pointers */
853 ring->deq_seg = ring->first_seg;
854 ring->dequeue = ring->first_seg->trbs;
855 ring->enq_seg = ring->deq_seg;
856 ring->enqueue = ring->dequeue;
857
858 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
859 /*
860 * Ring is now zeroed, so the HW should look for change of ownership
861 * when the cycle bit is set to 1.
862 */
863 ring->cycle_state = 1;
864
865 /*
866 * Reset the hardware dequeue pointer.
867 * Yes, this will need to be re-written after resume, but we're paranoid
868 * and want to make sure the hardware doesn't access bogus memory
869 * because, say, the BIOS or an SMI started the host without changing
870 * the command ring pointers.
871 */
872 xhci_set_cmd_ring_deq(xhci);
873 }
874
875 /*
876 * Stop HC (not bus-specific)
877 *
878 * This is called when the machine transition into S3/S4 mode.
879 *
880 */
881 int xhci_suspend(struct xhci_hcd *xhci)
882 {
883 int rc = 0;
884 struct usb_hcd *hcd = xhci_to_hcd(xhci);
885 u32 command;
886
887 if (hcd->state != HC_STATE_SUSPENDED ||
888 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
889 return -EINVAL;
890
891 /* Don't poll the roothubs on bus suspend. */
892 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
893 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
894 del_timer_sync(&hcd->rh_timer);
895
896 spin_lock_irq(&xhci->lock);
897 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
898 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
899 /* step 1: stop endpoint */
900 /* skipped assuming that port suspend has done */
901
902 /* step 2: clear Run/Stop bit */
903 command = xhci_readl(xhci, &xhci->op_regs->command);
904 command &= ~CMD_RUN;
905 xhci_writel(xhci, command, &xhci->op_regs->command);
906 if (xhci_handshake(xhci, &xhci->op_regs->status,
907 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
908 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
909 spin_unlock_irq(&xhci->lock);
910 return -ETIMEDOUT;
911 }
912 xhci_clear_command_ring(xhci);
913
914 /* step 3: save registers */
915 xhci_save_registers(xhci);
916
917 /* step 4: set CSS flag */
918 command = xhci_readl(xhci, &xhci->op_regs->command);
919 command |= CMD_CSS;
920 xhci_writel(xhci, command, &xhci->op_regs->command);
921 if (xhci_handshake(xhci, &xhci->op_regs->status,
922 STS_SAVE, 0, 10 * 1000)) {
923 xhci_warn(xhci, "WARN: xHC save state timeout\n");
924 spin_unlock_irq(&xhci->lock);
925 return -ETIMEDOUT;
926 }
927 spin_unlock_irq(&xhci->lock);
928
929 /*
930 * Deleting Compliance Mode Recovery Timer because the xHCI Host
931 * is about to be suspended.
932 */
933 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
934 (!(xhci_all_ports_seen_u0(xhci)))) {
935 del_timer_sync(&xhci->comp_mode_recovery_timer);
936 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
937 __func__);
938 }
939
940 /* step 5: remove core well power */
941 /* synchronize irq when using MSI-X */
942 xhci_msix_sync_irqs(xhci);
943
944 return rc;
945 }
946
947 /*
948 * start xHC (not bus-specific)
949 *
950 * This is called when the machine transition from S3/S4 mode.
951 *
952 */
953 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
954 {
955 u32 command, temp = 0;
956 struct usb_hcd *hcd = xhci_to_hcd(xhci);
957 struct usb_hcd *secondary_hcd;
958 int retval = 0;
959
960 /* Wait a bit if either of the roothubs need to settle from the
961 * transition into bus suspend.
962 */
963 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
964 time_before(jiffies,
965 xhci->bus_state[1].next_statechange))
966 msleep(100);
967
968 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
969 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
970
971 spin_lock_irq(&xhci->lock);
972 if (xhci->quirks & XHCI_RESET_ON_RESUME)
973 hibernated = true;
974
975 if (!hibernated) {
976 /* step 1: restore register */
977 xhci_restore_registers(xhci);
978 /* step 2: initialize command ring buffer */
979 xhci_set_cmd_ring_deq(xhci);
980 /* step 3: restore state and start state*/
981 /* step 3: set CRS flag */
982 command = xhci_readl(xhci, &xhci->op_regs->command);
983 command |= CMD_CRS;
984 xhci_writel(xhci, command, &xhci->op_regs->command);
985 if (xhci_handshake(xhci, &xhci->op_regs->status,
986 STS_RESTORE, 0, 10 * 1000)) {
987 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
988 spin_unlock_irq(&xhci->lock);
989 return -ETIMEDOUT;
990 }
991 temp = xhci_readl(xhci, &xhci->op_regs->status);
992 }
993
994 /* If restore operation fails, re-initialize the HC during resume */
995 if ((temp & STS_SRE) || hibernated) {
996 /* Let the USB core know _both_ roothubs lost power. */
997 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
998 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
999
1000 xhci_dbg(xhci, "Stop HCD\n");
1001 xhci_halt(xhci);
1002 xhci_reset(xhci);
1003 spin_unlock_irq(&xhci->lock);
1004 xhci_cleanup_msix(xhci);
1005
1006 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1007 /* Tell the event ring poll function not to reschedule */
1008 xhci->zombie = 1;
1009 del_timer_sync(&xhci->event_ring_timer);
1010 #endif
1011
1012 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1013 temp = xhci_readl(xhci, &xhci->op_regs->status);
1014 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1015 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1016 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1017 &xhci->ir_set->irq_pending);
1018 xhci_print_ir_set(xhci, 0);
1019
1020 xhci_dbg(xhci, "cleaning up memory\n");
1021 xhci_mem_cleanup(xhci);
1022 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1023 xhci_readl(xhci, &xhci->op_regs->status));
1024
1025 /* USB core calls the PCI reinit and start functions twice:
1026 * first with the primary HCD, and then with the secondary HCD.
1027 * If we don't do the same, the host will never be started.
1028 */
1029 if (!usb_hcd_is_primary_hcd(hcd))
1030 secondary_hcd = hcd;
1031 else
1032 secondary_hcd = xhci->shared_hcd;
1033
1034 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1035 retval = xhci_init(hcd->primary_hcd);
1036 if (retval)
1037 return retval;
1038 xhci_dbg(xhci, "Start the primary HCD\n");
1039 retval = xhci_run(hcd->primary_hcd);
1040 if (!retval) {
1041 xhci_dbg(xhci, "Start the secondary HCD\n");
1042 retval = xhci_run(secondary_hcd);
1043 }
1044 hcd->state = HC_STATE_SUSPENDED;
1045 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1046 goto done;
1047 }
1048
1049 /* step 4: set Run/Stop bit */
1050 command = xhci_readl(xhci, &xhci->op_regs->command);
1051 command |= CMD_RUN;
1052 xhci_writel(xhci, command, &xhci->op_regs->command);
1053 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1054 0, 250 * 1000);
1055
1056 /* step 5: walk topology and initialize portsc,
1057 * portpmsc and portli
1058 */
1059 /* this is done in bus_resume */
1060
1061 /* step 6: restart each of the previously
1062 * Running endpoints by ringing their doorbells
1063 */
1064
1065 spin_unlock_irq(&xhci->lock);
1066
1067 done:
1068 if (retval == 0) {
1069 usb_hcd_resume_root_hub(hcd);
1070 usb_hcd_resume_root_hub(xhci->shared_hcd);
1071 }
1072
1073 /*
1074 * If system is subject to the Quirk, Compliance Mode Timer needs to
1075 * be re-initialized Always after a system resume. Ports are subject
1076 * to suffer the Compliance Mode issue again. It doesn't matter if
1077 * ports have entered previously to U0 before system's suspension.
1078 */
1079 if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1080 compliance_mode_recovery_timer_init(xhci);
1081
1082 /* Re-enable port polling. */
1083 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1084 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1085 usb_hcd_poll_rh_status(hcd);
1086
1087 return retval;
1088 }
1089 #endif /* CONFIG_PM */
1090
1091 /*-------------------------------------------------------------------------*/
1092
1093 /**
1094 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1095 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1096 * value to right shift 1 for the bitmask.
1097 *
1098 * Index = (epnum * 2) + direction - 1,
1099 * where direction = 0 for OUT, 1 for IN.
1100 * For control endpoints, the IN index is used (OUT index is unused), so
1101 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1102 */
1103 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1104 {
1105 unsigned int index;
1106 if (usb_endpoint_xfer_control(desc))
1107 index = (unsigned int) (usb_endpoint_num(desc)*2);
1108 else
1109 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1110 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1111 return index;
1112 }
1113
1114 /* Find the flag for this endpoint (for use in the control context). Use the
1115 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1116 * bit 1, etc.
1117 */
1118 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1119 {
1120 return 1 << (xhci_get_endpoint_index(desc) + 1);
1121 }
1122
1123 /* Find the flag for this endpoint (for use in the control context). Use the
1124 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1125 * bit 1, etc.
1126 */
1127 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1128 {
1129 return 1 << (ep_index + 1);
1130 }
1131
1132 /* Compute the last valid endpoint context index. Basically, this is the
1133 * endpoint index plus one. For slot contexts with more than valid endpoint,
1134 * we find the most significant bit set in the added contexts flags.
1135 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1136 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1137 */
1138 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1139 {
1140 return fls(added_ctxs) - 1;
1141 }
1142
1143 /* Returns 1 if the arguments are OK;
1144 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1145 */
1146 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1147 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1148 const char *func) {
1149 struct xhci_hcd *xhci;
1150 struct xhci_virt_device *virt_dev;
1151
1152 if (!hcd || (check_ep && !ep) || !udev) {
1153 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1154 func);
1155 return -EINVAL;
1156 }
1157 if (!udev->parent) {
1158 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1159 func);
1160 return 0;
1161 }
1162
1163 xhci = hcd_to_xhci(hcd);
1164 if (xhci->xhc_state & XHCI_STATE_HALTED)
1165 return -ENODEV;
1166
1167 if (check_virt_dev) {
1168 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1169 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1170 "device\n", func);
1171 return -EINVAL;
1172 }
1173
1174 virt_dev = xhci->devs[udev->slot_id];
1175 if (virt_dev->udev != udev) {
1176 printk(KERN_DEBUG "xHCI %s called with udev and "
1177 "virt_dev does not match\n", func);
1178 return -EINVAL;
1179 }
1180 }
1181
1182 return 1;
1183 }
1184
1185 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1186 struct usb_device *udev, struct xhci_command *command,
1187 bool ctx_change, bool must_succeed);
1188
1189 /*
1190 * Full speed devices may have a max packet size greater than 8 bytes, but the
1191 * USB core doesn't know that until it reads the first 8 bytes of the
1192 * descriptor. If the usb_device's max packet size changes after that point,
1193 * we need to issue an evaluate context command and wait on it.
1194 */
1195 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1196 unsigned int ep_index, struct urb *urb)
1197 {
1198 struct xhci_container_ctx *in_ctx;
1199 struct xhci_container_ctx *out_ctx;
1200 struct xhci_input_control_ctx *ctrl_ctx;
1201 struct xhci_ep_ctx *ep_ctx;
1202 int max_packet_size;
1203 int hw_max_packet_size;
1204 int ret = 0;
1205
1206 out_ctx = xhci->devs[slot_id]->out_ctx;
1207 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1208 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1209 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1210 if (hw_max_packet_size != max_packet_size) {
1211 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1212 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1213 max_packet_size);
1214 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1215 hw_max_packet_size);
1216 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1217
1218 /* Set up the modified control endpoint 0 */
1219 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1220 xhci->devs[slot_id]->out_ctx, ep_index);
1221 in_ctx = xhci->devs[slot_id]->in_ctx;
1222 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1223 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1224 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1225
1226 /* Set up the input context flags for the command */
1227 /* FIXME: This won't work if a non-default control endpoint
1228 * changes max packet sizes.
1229 */
1230 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1231 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1232 ctrl_ctx->drop_flags = 0;
1233
1234 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1235 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1236 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1237 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1238
1239 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1240 true, false);
1241
1242 /* Clean up the input context for later use by bandwidth
1243 * functions.
1244 */
1245 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1246 }
1247 return ret;
1248 }
1249
1250 /*
1251 * non-error returns are a promise to giveback() the urb later
1252 * we drop ownership so next owner (or urb unlink) can get it
1253 */
1254 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1255 {
1256 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1257 struct xhci_td *buffer;
1258 unsigned long flags;
1259 int ret = 0;
1260 unsigned int slot_id, ep_index;
1261 struct urb_priv *urb_priv;
1262 int size, i;
1263
1264 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1265 true, true, __func__) <= 0)
1266 return -EINVAL;
1267
1268 slot_id = urb->dev->slot_id;
1269 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1270
1271 if (!HCD_HW_ACCESSIBLE(hcd)) {
1272 if (!in_interrupt())
1273 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1274 ret = -ESHUTDOWN;
1275 goto exit;
1276 }
1277
1278 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1279 size = urb->number_of_packets;
1280 else
1281 size = 1;
1282
1283 urb_priv = kzalloc(sizeof(struct urb_priv) +
1284 size * sizeof(struct xhci_td *), mem_flags);
1285 if (!urb_priv)
1286 return -ENOMEM;
1287
1288 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1289 if (!buffer) {
1290 kfree(urb_priv);
1291 return -ENOMEM;
1292 }
1293
1294 for (i = 0; i < size; i++) {
1295 urb_priv->td[i] = buffer;
1296 buffer++;
1297 }
1298
1299 urb_priv->length = size;
1300 urb_priv->td_cnt = 0;
1301 urb->hcpriv = urb_priv;
1302
1303 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1304 /* Check to see if the max packet size for the default control
1305 * endpoint changed during FS device enumeration
1306 */
1307 if (urb->dev->speed == USB_SPEED_FULL) {
1308 ret = xhci_check_maxpacket(xhci, slot_id,
1309 ep_index, urb);
1310 if (ret < 0) {
1311 xhci_urb_free_priv(xhci, urb_priv);
1312 urb->hcpriv = NULL;
1313 return ret;
1314 }
1315 }
1316
1317 /* We have a spinlock and interrupts disabled, so we must pass
1318 * atomic context to this function, which may allocate memory.
1319 */
1320 spin_lock_irqsave(&xhci->lock, flags);
1321 if (xhci->xhc_state & XHCI_STATE_DYING)
1322 goto dying;
1323 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1324 slot_id, ep_index);
1325 if (ret)
1326 goto free_priv;
1327 spin_unlock_irqrestore(&xhci->lock, flags);
1328 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1329 spin_lock_irqsave(&xhci->lock, flags);
1330 if (xhci->xhc_state & XHCI_STATE_DYING)
1331 goto dying;
1332 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1333 EP_GETTING_STREAMS) {
1334 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1335 "is transitioning to using streams.\n");
1336 ret = -EINVAL;
1337 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1338 EP_GETTING_NO_STREAMS) {
1339 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1340 "is transitioning to "
1341 "not having streams.\n");
1342 ret = -EINVAL;
1343 } else {
1344 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1345 slot_id, ep_index);
1346 }
1347 if (ret)
1348 goto free_priv;
1349 spin_unlock_irqrestore(&xhci->lock, flags);
1350 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1351 spin_lock_irqsave(&xhci->lock, flags);
1352 if (xhci->xhc_state & XHCI_STATE_DYING)
1353 goto dying;
1354 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1355 slot_id, ep_index);
1356 if (ret)
1357 goto free_priv;
1358 spin_unlock_irqrestore(&xhci->lock, flags);
1359 } else {
1360 spin_lock_irqsave(&xhci->lock, flags);
1361 if (xhci->xhc_state & XHCI_STATE_DYING)
1362 goto dying;
1363 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1364 slot_id, ep_index);
1365 if (ret)
1366 goto free_priv;
1367 spin_unlock_irqrestore(&xhci->lock, flags);
1368 }
1369 exit:
1370 return ret;
1371 dying:
1372 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1373 "non-responsive xHCI host.\n",
1374 urb->ep->desc.bEndpointAddress, urb);
1375 ret = -ESHUTDOWN;
1376 free_priv:
1377 xhci_urb_free_priv(xhci, urb_priv);
1378 urb->hcpriv = NULL;
1379 spin_unlock_irqrestore(&xhci->lock, flags);
1380 return ret;
1381 }
1382
1383 /* Get the right ring for the given URB.
1384 * If the endpoint supports streams, boundary check the URB's stream ID.
1385 * If the endpoint doesn't support streams, return the singular endpoint ring.
1386 */
1387 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1388 struct urb *urb)
1389 {
1390 unsigned int slot_id;
1391 unsigned int ep_index;
1392 unsigned int stream_id;
1393 struct xhci_virt_ep *ep;
1394
1395 slot_id = urb->dev->slot_id;
1396 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1397 stream_id = urb->stream_id;
1398 ep = &xhci->devs[slot_id]->eps[ep_index];
1399 /* Common case: no streams */
1400 if (!(ep->ep_state & EP_HAS_STREAMS))
1401 return ep->ring;
1402
1403 if (stream_id == 0) {
1404 xhci_warn(xhci,
1405 "WARN: Slot ID %u, ep index %u has streams, "
1406 "but URB has no stream ID.\n",
1407 slot_id, ep_index);
1408 return NULL;
1409 }
1410
1411 if (stream_id < ep->stream_info->num_streams)
1412 return ep->stream_info->stream_rings[stream_id];
1413
1414 xhci_warn(xhci,
1415 "WARN: Slot ID %u, ep index %u has "
1416 "stream IDs 1 to %u allocated, "
1417 "but stream ID %u is requested.\n",
1418 slot_id, ep_index,
1419 ep->stream_info->num_streams - 1,
1420 stream_id);
1421 return NULL;
1422 }
1423
1424 /*
1425 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1426 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1427 * should pick up where it left off in the TD, unless a Set Transfer Ring
1428 * Dequeue Pointer is issued.
1429 *
1430 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1431 * the ring. Since the ring is a contiguous structure, they can't be physically
1432 * removed. Instead, there are two options:
1433 *
1434 * 1) If the HC is in the middle of processing the URB to be canceled, we
1435 * simply move the ring's dequeue pointer past those TRBs using the Set
1436 * Transfer Ring Dequeue Pointer command. This will be the common case,
1437 * when drivers timeout on the last submitted URB and attempt to cancel.
1438 *
1439 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1440 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1441 * HC will need to invalidate the any TRBs it has cached after the stop
1442 * endpoint command, as noted in the xHCI 0.95 errata.
1443 *
1444 * 3) The TD may have completed by the time the Stop Endpoint Command
1445 * completes, so software needs to handle that case too.
1446 *
1447 * This function should protect against the TD enqueueing code ringing the
1448 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1449 * It also needs to account for multiple cancellations on happening at the same
1450 * time for the same endpoint.
1451 *
1452 * Note that this function can be called in any context, or so says
1453 * usb_hcd_unlink_urb()
1454 */
1455 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1456 {
1457 unsigned long flags;
1458 int ret, i;
1459 u32 temp;
1460 struct xhci_hcd *xhci;
1461 struct urb_priv *urb_priv;
1462 struct xhci_td *td;
1463 unsigned int ep_index;
1464 struct xhci_ring *ep_ring;
1465 struct xhci_virt_ep *ep;
1466
1467 xhci = hcd_to_xhci(hcd);
1468 spin_lock_irqsave(&xhci->lock, flags);
1469 /* Make sure the URB hasn't completed or been unlinked already */
1470 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1471 if (ret || !urb->hcpriv)
1472 goto done;
1473 temp = xhci_readl(xhci, &xhci->op_regs->status);
1474 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1475 xhci_dbg(xhci, "HW died, freeing TD.\n");
1476 urb_priv = urb->hcpriv;
1477 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1478 td = urb_priv->td[i];
1479 if (!list_empty(&td->td_list))
1480 list_del_init(&td->td_list);
1481 if (!list_empty(&td->cancelled_td_list))
1482 list_del_init(&td->cancelled_td_list);
1483 }
1484
1485 usb_hcd_unlink_urb_from_ep(hcd, urb);
1486 spin_unlock_irqrestore(&xhci->lock, flags);
1487 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1488 xhci_urb_free_priv(xhci, urb_priv);
1489 return ret;
1490 }
1491 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1492 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1493 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1494 "non-responsive xHCI host.\n",
1495 urb->ep->desc.bEndpointAddress, urb);
1496 /* Let the stop endpoint command watchdog timer (which set this
1497 * state) finish cleaning up the endpoint TD lists. We must
1498 * have caught it in the middle of dropping a lock and giving
1499 * back an URB.
1500 */
1501 goto done;
1502 }
1503
1504 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1505 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1506 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1507 if (!ep_ring) {
1508 ret = -EINVAL;
1509 goto done;
1510 }
1511
1512 urb_priv = urb->hcpriv;
1513 i = urb_priv->td_cnt;
1514 if (i < urb_priv->length)
1515 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1516 "starting at offset 0x%llx\n",
1517 urb, urb->dev->devpath,
1518 urb->ep->desc.bEndpointAddress,
1519 (unsigned long long) xhci_trb_virt_to_dma(
1520 urb_priv->td[i]->start_seg,
1521 urb_priv->td[i]->first_trb));
1522
1523 for (; i < urb_priv->length; i++) {
1524 td = urb_priv->td[i];
1525 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1526 }
1527
1528 /* Queue a stop endpoint command, but only if this is
1529 * the first cancellation to be handled.
1530 */
1531 if (!(ep->ep_state & EP_HALT_PENDING)) {
1532 ep->ep_state |= EP_HALT_PENDING;
1533 ep->stop_cmds_pending++;
1534 ep->stop_cmd_timer.expires = jiffies +
1535 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1536 add_timer(&ep->stop_cmd_timer);
1537 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1538 xhci_ring_cmd_db(xhci);
1539 }
1540 done:
1541 spin_unlock_irqrestore(&xhci->lock, flags);
1542 return ret;
1543 }
1544
1545 /* Drop an endpoint from a new bandwidth configuration for this device.
1546 * Only one call to this function is allowed per endpoint before
1547 * check_bandwidth() or reset_bandwidth() must be called.
1548 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1549 * add the endpoint to the schedule with possibly new parameters denoted by a
1550 * different endpoint descriptor in usb_host_endpoint.
1551 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1552 * not allowed.
1553 *
1554 * The USB core will not allow URBs to be queued to an endpoint that is being
1555 * disabled, so there's no need for mutual exclusion to protect
1556 * the xhci->devs[slot_id] structure.
1557 */
1558 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1559 struct usb_host_endpoint *ep)
1560 {
1561 struct xhci_hcd *xhci;
1562 struct xhci_container_ctx *in_ctx, *out_ctx;
1563 struct xhci_input_control_ctx *ctrl_ctx;
1564 struct xhci_slot_ctx *slot_ctx;
1565 unsigned int last_ctx;
1566 unsigned int ep_index;
1567 struct xhci_ep_ctx *ep_ctx;
1568 u32 drop_flag;
1569 u32 new_add_flags, new_drop_flags, new_slot_info;
1570 int ret;
1571
1572 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1573 if (ret <= 0)
1574 return ret;
1575 xhci = hcd_to_xhci(hcd);
1576 if (xhci->xhc_state & XHCI_STATE_DYING)
1577 return -ENODEV;
1578
1579 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1580 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1581 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1582 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1583 __func__, drop_flag);
1584 return 0;
1585 }
1586
1587 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1588 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1589 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1590 ep_index = xhci_get_endpoint_index(&ep->desc);
1591 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1592 /* If the HC already knows the endpoint is disabled,
1593 * or the HCD has noted it is disabled, ignore this request
1594 */
1595 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1596 cpu_to_le32(EP_STATE_DISABLED)) ||
1597 le32_to_cpu(ctrl_ctx->drop_flags) &
1598 xhci_get_endpoint_flag(&ep->desc)) {
1599 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1600 __func__, ep);
1601 return 0;
1602 }
1603
1604 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1605 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1606
1607 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1608 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1609
1610 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1611 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1612 /* Update the last valid endpoint context, if we deleted the last one */
1613 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1614 LAST_CTX(last_ctx)) {
1615 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1616 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1617 }
1618 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1619
1620 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1621
1622 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1623 (unsigned int) ep->desc.bEndpointAddress,
1624 udev->slot_id,
1625 (unsigned int) new_drop_flags,
1626 (unsigned int) new_add_flags,
1627 (unsigned int) new_slot_info);
1628 return 0;
1629 }
1630
1631 /* Add an endpoint to a new possible bandwidth configuration for this device.
1632 * Only one call to this function is allowed per endpoint before
1633 * check_bandwidth() or reset_bandwidth() must be called.
1634 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1635 * add the endpoint to the schedule with possibly new parameters denoted by a
1636 * different endpoint descriptor in usb_host_endpoint.
1637 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1638 * not allowed.
1639 *
1640 * The USB core will not allow URBs to be queued to an endpoint until the
1641 * configuration or alt setting is installed in the device, so there's no need
1642 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1643 */
1644 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1645 struct usb_host_endpoint *ep)
1646 {
1647 struct xhci_hcd *xhci;
1648 struct xhci_container_ctx *in_ctx, *out_ctx;
1649 unsigned int ep_index;
1650 struct xhci_slot_ctx *slot_ctx;
1651 struct xhci_input_control_ctx *ctrl_ctx;
1652 u32 added_ctxs;
1653 unsigned int last_ctx;
1654 u32 new_add_flags, new_drop_flags, new_slot_info;
1655 struct xhci_virt_device *virt_dev;
1656 int ret = 0;
1657
1658 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1659 if (ret <= 0) {
1660 /* So we won't queue a reset ep command for a root hub */
1661 ep->hcpriv = NULL;
1662 return ret;
1663 }
1664 xhci = hcd_to_xhci(hcd);
1665 if (xhci->xhc_state & XHCI_STATE_DYING)
1666 return -ENODEV;
1667
1668 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1669 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1670 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1671 /* FIXME when we have to issue an evaluate endpoint command to
1672 * deal with ep0 max packet size changing once we get the
1673 * descriptors
1674 */
1675 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1676 __func__, added_ctxs);
1677 return 0;
1678 }
1679
1680 virt_dev = xhci->devs[udev->slot_id];
1681 in_ctx = virt_dev->in_ctx;
1682 out_ctx = virt_dev->out_ctx;
1683 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1684 ep_index = xhci_get_endpoint_index(&ep->desc);
1685
1686 /* If this endpoint is already in use, and the upper layers are trying
1687 * to add it again without dropping it, reject the addition.
1688 */
1689 if (virt_dev->eps[ep_index].ring &&
1690 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1691 xhci_get_endpoint_flag(&ep->desc))) {
1692 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1693 "without dropping it.\n",
1694 (unsigned int) ep->desc.bEndpointAddress);
1695 return -EINVAL;
1696 }
1697
1698 /* If the HCD has already noted the endpoint is enabled,
1699 * ignore this request.
1700 */
1701 if (le32_to_cpu(ctrl_ctx->add_flags) &
1702 xhci_get_endpoint_flag(&ep->desc)) {
1703 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1704 __func__, ep);
1705 return 0;
1706 }
1707
1708 /*
1709 * Configuration and alternate setting changes must be done in
1710 * process context, not interrupt context (or so documenation
1711 * for usb_set_interface() and usb_set_configuration() claim).
1712 */
1713 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1714 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1715 __func__, ep->desc.bEndpointAddress);
1716 return -ENOMEM;
1717 }
1718
1719 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1720 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1721
1722 /* If xhci_endpoint_disable() was called for this endpoint, but the
1723 * xHC hasn't been notified yet through the check_bandwidth() call,
1724 * this re-adds a new state for the endpoint from the new endpoint
1725 * descriptors. We must drop and re-add this endpoint, so we leave the
1726 * drop flags alone.
1727 */
1728 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1729
1730 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1731 /* Update the last valid endpoint context, if we just added one past */
1732 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1733 LAST_CTX(last_ctx)) {
1734 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1735 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1736 }
1737 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1738
1739 /* Store the usb_device pointer for later use */
1740 ep->hcpriv = udev;
1741
1742 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1743 (unsigned int) ep->desc.bEndpointAddress,
1744 udev->slot_id,
1745 (unsigned int) new_drop_flags,
1746 (unsigned int) new_add_flags,
1747 (unsigned int) new_slot_info);
1748 return 0;
1749 }
1750
1751 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1752 {
1753 struct xhci_input_control_ctx *ctrl_ctx;
1754 struct xhci_ep_ctx *ep_ctx;
1755 struct xhci_slot_ctx *slot_ctx;
1756 int i;
1757
1758 /* When a device's add flag and drop flag are zero, any subsequent
1759 * configure endpoint command will leave that endpoint's state
1760 * untouched. Make sure we don't leave any old state in the input
1761 * endpoint contexts.
1762 */
1763 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1764 ctrl_ctx->drop_flags = 0;
1765 ctrl_ctx->add_flags = 0;
1766 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1767 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1768 /* Endpoint 0 is always valid */
1769 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1770 for (i = 1; i < 31; ++i) {
1771 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1772 ep_ctx->ep_info = 0;
1773 ep_ctx->ep_info2 = 0;
1774 ep_ctx->deq = 0;
1775 ep_ctx->tx_info = 0;
1776 }
1777 }
1778
1779 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1780 struct usb_device *udev, u32 *cmd_status)
1781 {
1782 int ret;
1783
1784 switch (*cmd_status) {
1785 case COMP_ENOMEM:
1786 dev_warn(&udev->dev, "Not enough host controller resources "
1787 "for new device state.\n");
1788 ret = -ENOMEM;
1789 /* FIXME: can we allocate more resources for the HC? */
1790 break;
1791 case COMP_BW_ERR:
1792 case COMP_2ND_BW_ERR:
1793 dev_warn(&udev->dev, "Not enough bandwidth "
1794 "for new device state.\n");
1795 ret = -ENOSPC;
1796 /* FIXME: can we go back to the old state? */
1797 break;
1798 case COMP_TRB_ERR:
1799 /* the HCD set up something wrong */
1800 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1801 "add flag = 1, "
1802 "and endpoint is not disabled.\n");
1803 ret = -EINVAL;
1804 break;
1805 case COMP_DEV_ERR:
1806 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1807 "configure command.\n");
1808 ret = -ENODEV;
1809 break;
1810 case COMP_SUCCESS:
1811 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1812 ret = 0;
1813 break;
1814 default:
1815 xhci_err(xhci, "ERROR: unexpected command completion "
1816 "code 0x%x.\n", *cmd_status);
1817 ret = -EINVAL;
1818 break;
1819 }
1820 return ret;
1821 }
1822
1823 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1824 struct usb_device *udev, u32 *cmd_status)
1825 {
1826 int ret;
1827 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1828
1829 switch (*cmd_status) {
1830 case COMP_EINVAL:
1831 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1832 "context command.\n");
1833 ret = -EINVAL;
1834 break;
1835 case COMP_EBADSLT:
1836 dev_warn(&udev->dev, "WARN: slot not enabled for"
1837 "evaluate context command.\n");
1838 ret = -EINVAL;
1839 break;
1840 case COMP_CTX_STATE:
1841 dev_warn(&udev->dev, "WARN: invalid context state for "
1842 "evaluate context command.\n");
1843 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1844 ret = -EINVAL;
1845 break;
1846 case COMP_DEV_ERR:
1847 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1848 "context command.\n");
1849 ret = -ENODEV;
1850 break;
1851 case COMP_MEL_ERR:
1852 /* Max Exit Latency too large error */
1853 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1854 ret = -EINVAL;
1855 break;
1856 case COMP_SUCCESS:
1857 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1858 ret = 0;
1859 break;
1860 default:
1861 xhci_err(xhci, "ERROR: unexpected command completion "
1862 "code 0x%x.\n", *cmd_status);
1863 ret = -EINVAL;
1864 break;
1865 }
1866 return ret;
1867 }
1868
1869 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1870 struct xhci_container_ctx *in_ctx)
1871 {
1872 struct xhci_input_control_ctx *ctrl_ctx;
1873 u32 valid_add_flags;
1874 u32 valid_drop_flags;
1875
1876 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1877 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1878 * (bit 1). The default control endpoint is added during the Address
1879 * Device command and is never removed until the slot is disabled.
1880 */
1881 valid_add_flags = ctrl_ctx->add_flags >> 2;
1882 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1883
1884 /* Use hweight32 to count the number of ones in the add flags, or
1885 * number of endpoints added. Don't count endpoints that are changed
1886 * (both added and dropped).
1887 */
1888 return hweight32(valid_add_flags) -
1889 hweight32(valid_add_flags & valid_drop_flags);
1890 }
1891
1892 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1893 struct xhci_container_ctx *in_ctx)
1894 {
1895 struct xhci_input_control_ctx *ctrl_ctx;
1896 u32 valid_add_flags;
1897 u32 valid_drop_flags;
1898
1899 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1900 valid_add_flags = ctrl_ctx->add_flags >> 2;
1901 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1902
1903 return hweight32(valid_drop_flags) -
1904 hweight32(valid_add_flags & valid_drop_flags);
1905 }
1906
1907 /*
1908 * We need to reserve the new number of endpoints before the configure endpoint
1909 * command completes. We can't subtract the dropped endpoints from the number
1910 * of active endpoints until the command completes because we can oversubscribe
1911 * the host in this case:
1912 *
1913 * - the first configure endpoint command drops more endpoints than it adds
1914 * - a second configure endpoint command that adds more endpoints is queued
1915 * - the first configure endpoint command fails, so the config is unchanged
1916 * - the second command may succeed, even though there isn't enough resources
1917 *
1918 * Must be called with xhci->lock held.
1919 */
1920 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1921 struct xhci_container_ctx *in_ctx)
1922 {
1923 u32 added_eps;
1924
1925 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1926 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1927 xhci_dbg(xhci, "Not enough ep ctxs: "
1928 "%u active, need to add %u, limit is %u.\n",
1929 xhci->num_active_eps, added_eps,
1930 xhci->limit_active_eps);
1931 return -ENOMEM;
1932 }
1933 xhci->num_active_eps += added_eps;
1934 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1935 xhci->num_active_eps);
1936 return 0;
1937 }
1938
1939 /*
1940 * The configure endpoint was failed by the xHC for some other reason, so we
1941 * need to revert the resources that failed configuration would have used.
1942 *
1943 * Must be called with xhci->lock held.
1944 */
1945 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1946 struct xhci_container_ctx *in_ctx)
1947 {
1948 u32 num_failed_eps;
1949
1950 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1951 xhci->num_active_eps -= num_failed_eps;
1952 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1953 num_failed_eps,
1954 xhci->num_active_eps);
1955 }
1956
1957 /*
1958 * Now that the command has completed, clean up the active endpoint count by
1959 * subtracting out the endpoints that were dropped (but not changed).
1960 *
1961 * Must be called with xhci->lock held.
1962 */
1963 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1964 struct xhci_container_ctx *in_ctx)
1965 {
1966 u32 num_dropped_eps;
1967
1968 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1969 xhci->num_active_eps -= num_dropped_eps;
1970 if (num_dropped_eps)
1971 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1972 num_dropped_eps,
1973 xhci->num_active_eps);
1974 }
1975
1976 static unsigned int xhci_get_block_size(struct usb_device *udev)
1977 {
1978 switch (udev->speed) {
1979 case USB_SPEED_LOW:
1980 case USB_SPEED_FULL:
1981 return FS_BLOCK;
1982 case USB_SPEED_HIGH:
1983 return HS_BLOCK;
1984 case USB_SPEED_SUPER:
1985 return SS_BLOCK;
1986 case USB_SPEED_UNKNOWN:
1987 case USB_SPEED_WIRELESS:
1988 default:
1989 /* Should never happen */
1990 return 1;
1991 }
1992 }
1993
1994 static unsigned int
1995 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1996 {
1997 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1998 return LS_OVERHEAD;
1999 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2000 return FS_OVERHEAD;
2001 return HS_OVERHEAD;
2002 }
2003
2004 /* If we are changing a LS/FS device under a HS hub,
2005 * make sure (if we are activating a new TT) that the HS bus has enough
2006 * bandwidth for this new TT.
2007 */
2008 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2009 struct xhci_virt_device *virt_dev,
2010 int old_active_eps)
2011 {
2012 struct xhci_interval_bw_table *bw_table;
2013 struct xhci_tt_bw_info *tt_info;
2014
2015 /* Find the bandwidth table for the root port this TT is attached to. */
2016 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2017 tt_info = virt_dev->tt_info;
2018 /* If this TT already had active endpoints, the bandwidth for this TT
2019 * has already been added. Removing all periodic endpoints (and thus
2020 * making the TT enactive) will only decrease the bandwidth used.
2021 */
2022 if (old_active_eps)
2023 return 0;
2024 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2025 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2026 return -ENOMEM;
2027 return 0;
2028 }
2029 /* Not sure why we would have no new active endpoints...
2030 *
2031 * Maybe because of an Evaluate Context change for a hub update or a
2032 * control endpoint 0 max packet size change?
2033 * FIXME: skip the bandwidth calculation in that case.
2034 */
2035 return 0;
2036 }
2037
2038 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2039 struct xhci_virt_device *virt_dev)
2040 {
2041 unsigned int bw_reserved;
2042
2043 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2044 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2045 return -ENOMEM;
2046
2047 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2048 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2049 return -ENOMEM;
2050
2051 return 0;
2052 }
2053
2054 /*
2055 * This algorithm is a very conservative estimate of the worst-case scheduling
2056 * scenario for any one interval. The hardware dynamically schedules the
2057 * packets, so we can't tell which microframe could be the limiting factor in
2058 * the bandwidth scheduling. This only takes into account periodic endpoints.
2059 *
2060 * Obviously, we can't solve an NP complete problem to find the minimum worst
2061 * case scenario. Instead, we come up with an estimate that is no less than
2062 * the worst case bandwidth used for any one microframe, but may be an
2063 * over-estimate.
2064 *
2065 * We walk the requirements for each endpoint by interval, starting with the
2066 * smallest interval, and place packets in the schedule where there is only one
2067 * possible way to schedule packets for that interval. In order to simplify
2068 * this algorithm, we record the largest max packet size for each interval, and
2069 * assume all packets will be that size.
2070 *
2071 * For interval 0, we obviously must schedule all packets for each interval.
2072 * The bandwidth for interval 0 is just the amount of data to be transmitted
2073 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2074 * the number of packets).
2075 *
2076 * For interval 1, we have two possible microframes to schedule those packets
2077 * in. For this algorithm, if we can schedule the same number of packets for
2078 * each possible scheduling opportunity (each microframe), we will do so. The
2079 * remaining number of packets will be saved to be transmitted in the gaps in
2080 * the next interval's scheduling sequence.
2081 *
2082 * As we move those remaining packets to be scheduled with interval 2 packets,
2083 * we have to double the number of remaining packets to transmit. This is
2084 * because the intervals are actually powers of 2, and we would be transmitting
2085 * the previous interval's packets twice in this interval. We also have to be
2086 * sure that when we look at the largest max packet size for this interval, we
2087 * also look at the largest max packet size for the remaining packets and take
2088 * the greater of the two.
2089 *
2090 * The algorithm continues to evenly distribute packets in each scheduling
2091 * opportunity, and push the remaining packets out, until we get to the last
2092 * interval. Then those packets and their associated overhead are just added
2093 * to the bandwidth used.
2094 */
2095 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2096 struct xhci_virt_device *virt_dev,
2097 int old_active_eps)
2098 {
2099 unsigned int bw_reserved;
2100 unsigned int max_bandwidth;
2101 unsigned int bw_used;
2102 unsigned int block_size;
2103 struct xhci_interval_bw_table *bw_table;
2104 unsigned int packet_size = 0;
2105 unsigned int overhead = 0;
2106 unsigned int packets_transmitted = 0;
2107 unsigned int packets_remaining = 0;
2108 unsigned int i;
2109
2110 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2111 return xhci_check_ss_bw(xhci, virt_dev);
2112
2113 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2114 max_bandwidth = HS_BW_LIMIT;
2115 /* Convert percent of bus BW reserved to blocks reserved */
2116 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2117 } else {
2118 max_bandwidth = FS_BW_LIMIT;
2119 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2120 }
2121
2122 bw_table = virt_dev->bw_table;
2123 /* We need to translate the max packet size and max ESIT payloads into
2124 * the units the hardware uses.
2125 */
2126 block_size = xhci_get_block_size(virt_dev->udev);
2127
2128 /* If we are manipulating a LS/FS device under a HS hub, double check
2129 * that the HS bus has enough bandwidth if we are activing a new TT.
2130 */
2131 if (virt_dev->tt_info) {
2132 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2133 virt_dev->real_port);
2134 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2135 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2136 "newly activated TT.\n");
2137 return -ENOMEM;
2138 }
2139 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2140 virt_dev->tt_info->slot_id,
2141 virt_dev->tt_info->ttport);
2142 } else {
2143 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2144 virt_dev->real_port);
2145 }
2146
2147 /* Add in how much bandwidth will be used for interval zero, or the
2148 * rounded max ESIT payload + number of packets * largest overhead.
2149 */
2150 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2151 bw_table->interval_bw[0].num_packets *
2152 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2153
2154 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2155 unsigned int bw_added;
2156 unsigned int largest_mps;
2157 unsigned int interval_overhead;
2158
2159 /*
2160 * How many packets could we transmit in this interval?
2161 * If packets didn't fit in the previous interval, we will need
2162 * to transmit that many packets twice within this interval.
2163 */
2164 packets_remaining = 2 * packets_remaining +
2165 bw_table->interval_bw[i].num_packets;
2166
2167 /* Find the largest max packet size of this or the previous
2168 * interval.
2169 */
2170 if (list_empty(&bw_table->interval_bw[i].endpoints))
2171 largest_mps = 0;
2172 else {
2173 struct xhci_virt_ep *virt_ep;
2174 struct list_head *ep_entry;
2175
2176 ep_entry = bw_table->interval_bw[i].endpoints.next;
2177 virt_ep = list_entry(ep_entry,
2178 struct xhci_virt_ep, bw_endpoint_list);
2179 /* Convert to blocks, rounding up */
2180 largest_mps = DIV_ROUND_UP(
2181 virt_ep->bw_info.max_packet_size,
2182 block_size);
2183 }
2184 if (largest_mps > packet_size)
2185 packet_size = largest_mps;
2186
2187 /* Use the larger overhead of this or the previous interval. */
2188 interval_overhead = xhci_get_largest_overhead(
2189 &bw_table->interval_bw[i]);
2190 if (interval_overhead > overhead)
2191 overhead = interval_overhead;
2192
2193 /* How many packets can we evenly distribute across
2194 * (1 << (i + 1)) possible scheduling opportunities?
2195 */
2196 packets_transmitted = packets_remaining >> (i + 1);
2197
2198 /* Add in the bandwidth used for those scheduled packets */
2199 bw_added = packets_transmitted * (overhead + packet_size);
2200
2201 /* How many packets do we have remaining to transmit? */
2202 packets_remaining = packets_remaining % (1 << (i + 1));
2203
2204 /* What largest max packet size should those packets have? */
2205 /* If we've transmitted all packets, don't carry over the
2206 * largest packet size.
2207 */
2208 if (packets_remaining == 0) {
2209 packet_size = 0;
2210 overhead = 0;
2211 } else if (packets_transmitted > 0) {
2212 /* Otherwise if we do have remaining packets, and we've
2213 * scheduled some packets in this interval, take the
2214 * largest max packet size from endpoints with this
2215 * interval.
2216 */
2217 packet_size = largest_mps;
2218 overhead = interval_overhead;
2219 }
2220 /* Otherwise carry over packet_size and overhead from the last
2221 * time we had a remainder.
2222 */
2223 bw_used += bw_added;
2224 if (bw_used > max_bandwidth) {
2225 xhci_warn(xhci, "Not enough bandwidth. "
2226 "Proposed: %u, Max: %u\n",
2227 bw_used, max_bandwidth);
2228 return -ENOMEM;
2229 }
2230 }
2231 /*
2232 * Ok, we know we have some packets left over after even-handedly
2233 * scheduling interval 15. We don't know which microframes they will
2234 * fit into, so we over-schedule and say they will be scheduled every
2235 * microframe.
2236 */
2237 if (packets_remaining > 0)
2238 bw_used += overhead + packet_size;
2239
2240 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2241 unsigned int port_index = virt_dev->real_port - 1;
2242
2243 /* OK, we're manipulating a HS device attached to a
2244 * root port bandwidth domain. Include the number of active TTs
2245 * in the bandwidth used.
2246 */
2247 bw_used += TT_HS_OVERHEAD *
2248 xhci->rh_bw[port_index].num_active_tts;
2249 }
2250
2251 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2252 "Available: %u " "percent\n",
2253 bw_used, max_bandwidth, bw_reserved,
2254 (max_bandwidth - bw_used - bw_reserved) * 100 /
2255 max_bandwidth);
2256
2257 bw_used += bw_reserved;
2258 if (bw_used > max_bandwidth) {
2259 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2260 bw_used, max_bandwidth);
2261 return -ENOMEM;
2262 }
2263
2264 bw_table->bw_used = bw_used;
2265 return 0;
2266 }
2267
2268 static bool xhci_is_async_ep(unsigned int ep_type)
2269 {
2270 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2271 ep_type != ISOC_IN_EP &&
2272 ep_type != INT_IN_EP);
2273 }
2274
2275 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2276 {
2277 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2278 }
2279
2280 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2281 {
2282 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2283
2284 if (ep_bw->ep_interval == 0)
2285 return SS_OVERHEAD_BURST +
2286 (ep_bw->mult * ep_bw->num_packets *
2287 (SS_OVERHEAD + mps));
2288 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2289 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2290 1 << ep_bw->ep_interval);
2291
2292 }
2293
2294 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2295 struct xhci_bw_info *ep_bw,
2296 struct xhci_interval_bw_table *bw_table,
2297 struct usb_device *udev,
2298 struct xhci_virt_ep *virt_ep,
2299 struct xhci_tt_bw_info *tt_info)
2300 {
2301 struct xhci_interval_bw *interval_bw;
2302 int normalized_interval;
2303
2304 if (xhci_is_async_ep(ep_bw->type))
2305 return;
2306
2307 if (udev->speed == USB_SPEED_SUPER) {
2308 if (xhci_is_sync_in_ep(ep_bw->type))
2309 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2310 xhci_get_ss_bw_consumed(ep_bw);
2311 else
2312 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2313 xhci_get_ss_bw_consumed(ep_bw);
2314 return;
2315 }
2316
2317 /* SuperSpeed endpoints never get added to intervals in the table, so
2318 * this check is only valid for HS/FS/LS devices.
2319 */
2320 if (list_empty(&virt_ep->bw_endpoint_list))
2321 return;
2322 /* For LS/FS devices, we need to translate the interval expressed in
2323 * microframes to frames.
2324 */
2325 if (udev->speed == USB_SPEED_HIGH)
2326 normalized_interval = ep_bw->ep_interval;
2327 else
2328 normalized_interval = ep_bw->ep_interval - 3;
2329
2330 if (normalized_interval == 0)
2331 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2332 interval_bw = &bw_table->interval_bw[normalized_interval];
2333 interval_bw->num_packets -= ep_bw->num_packets;
2334 switch (udev->speed) {
2335 case USB_SPEED_LOW:
2336 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2337 break;
2338 case USB_SPEED_FULL:
2339 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2340 break;
2341 case USB_SPEED_HIGH:
2342 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2343 break;
2344 case USB_SPEED_SUPER:
2345 case USB_SPEED_UNKNOWN:
2346 case USB_SPEED_WIRELESS:
2347 /* Should never happen because only LS/FS/HS endpoints will get
2348 * added to the endpoint list.
2349 */
2350 return;
2351 }
2352 if (tt_info)
2353 tt_info->active_eps -= 1;
2354 list_del_init(&virt_ep->bw_endpoint_list);
2355 }
2356
2357 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2358 struct xhci_bw_info *ep_bw,
2359 struct xhci_interval_bw_table *bw_table,
2360 struct usb_device *udev,
2361 struct xhci_virt_ep *virt_ep,
2362 struct xhci_tt_bw_info *tt_info)
2363 {
2364 struct xhci_interval_bw *interval_bw;
2365 struct xhci_virt_ep *smaller_ep;
2366 int normalized_interval;
2367
2368 if (xhci_is_async_ep(ep_bw->type))
2369 return;
2370
2371 if (udev->speed == USB_SPEED_SUPER) {
2372 if (xhci_is_sync_in_ep(ep_bw->type))
2373 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2374 xhci_get_ss_bw_consumed(ep_bw);
2375 else
2376 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2377 xhci_get_ss_bw_consumed(ep_bw);
2378 return;
2379 }
2380
2381 /* For LS/FS devices, we need to translate the interval expressed in
2382 * microframes to frames.
2383 */
2384 if (udev->speed == USB_SPEED_HIGH)
2385 normalized_interval = ep_bw->ep_interval;
2386 else
2387 normalized_interval = ep_bw->ep_interval - 3;
2388
2389 if (normalized_interval == 0)
2390 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2391 interval_bw = &bw_table->interval_bw[normalized_interval];
2392 interval_bw->num_packets += ep_bw->num_packets;
2393 switch (udev->speed) {
2394 case USB_SPEED_LOW:
2395 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2396 break;
2397 case USB_SPEED_FULL:
2398 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2399 break;
2400 case USB_SPEED_HIGH:
2401 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2402 break;
2403 case USB_SPEED_SUPER:
2404 case USB_SPEED_UNKNOWN:
2405 case USB_SPEED_WIRELESS:
2406 /* Should never happen because only LS/FS/HS endpoints will get
2407 * added to the endpoint list.
2408 */
2409 return;
2410 }
2411
2412 if (tt_info)
2413 tt_info->active_eps += 1;
2414 /* Insert the endpoint into the list, largest max packet size first. */
2415 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2416 bw_endpoint_list) {
2417 if (ep_bw->max_packet_size >=
2418 smaller_ep->bw_info.max_packet_size) {
2419 /* Add the new ep before the smaller endpoint */
2420 list_add_tail(&virt_ep->bw_endpoint_list,
2421 &smaller_ep->bw_endpoint_list);
2422 return;
2423 }
2424 }
2425 /* Add the new endpoint at the end of the list. */
2426 list_add_tail(&virt_ep->bw_endpoint_list,
2427 &interval_bw->endpoints);
2428 }
2429
2430 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2431 struct xhci_virt_device *virt_dev,
2432 int old_active_eps)
2433 {
2434 struct xhci_root_port_bw_info *rh_bw_info;
2435 if (!virt_dev->tt_info)
2436 return;
2437
2438 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2439 if (old_active_eps == 0 &&
2440 virt_dev->tt_info->active_eps != 0) {
2441 rh_bw_info->num_active_tts += 1;
2442 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2443 } else if (old_active_eps != 0 &&
2444 virt_dev->tt_info->active_eps == 0) {
2445 rh_bw_info->num_active_tts -= 1;
2446 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2447 }
2448 }
2449
2450 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2451 struct xhci_virt_device *virt_dev,
2452 struct xhci_container_ctx *in_ctx)
2453 {
2454 struct xhci_bw_info ep_bw_info[31];
2455 int i;
2456 struct xhci_input_control_ctx *ctrl_ctx;
2457 int old_active_eps = 0;
2458
2459 if (virt_dev->tt_info)
2460 old_active_eps = virt_dev->tt_info->active_eps;
2461
2462 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2463
2464 for (i = 0; i < 31; i++) {
2465 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2466 continue;
2467
2468 /* Make a copy of the BW info in case we need to revert this */
2469 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2470 sizeof(ep_bw_info[i]));
2471 /* Drop the endpoint from the interval table if the endpoint is
2472 * being dropped or changed.
2473 */
2474 if (EP_IS_DROPPED(ctrl_ctx, i))
2475 xhci_drop_ep_from_interval_table(xhci,
2476 &virt_dev->eps[i].bw_info,
2477 virt_dev->bw_table,
2478 virt_dev->udev,
2479 &virt_dev->eps[i],
2480 virt_dev->tt_info);
2481 }
2482 /* Overwrite the information stored in the endpoints' bw_info */
2483 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2484 for (i = 0; i < 31; i++) {
2485 /* Add any changed or added endpoints to the interval table */
2486 if (EP_IS_ADDED(ctrl_ctx, i))
2487 xhci_add_ep_to_interval_table(xhci,
2488 &virt_dev->eps[i].bw_info,
2489 virt_dev->bw_table,
2490 virt_dev->udev,
2491 &virt_dev->eps[i],
2492 virt_dev->tt_info);
2493 }
2494
2495 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2496 /* Ok, this fits in the bandwidth we have.
2497 * Update the number of active TTs.
2498 */
2499 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2500 return 0;
2501 }
2502
2503 /* We don't have enough bandwidth for this, revert the stored info. */
2504 for (i = 0; i < 31; i++) {
2505 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2506 continue;
2507
2508 /* Drop the new copies of any added or changed endpoints from
2509 * the interval table.
2510 */
2511 if (EP_IS_ADDED(ctrl_ctx, i)) {
2512 xhci_drop_ep_from_interval_table(xhci,
2513 &virt_dev->eps[i].bw_info,
2514 virt_dev->bw_table,
2515 virt_dev->udev,
2516 &virt_dev->eps[i],
2517 virt_dev->tt_info);
2518 }
2519 /* Revert the endpoint back to its old information */
2520 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2521 sizeof(ep_bw_info[i]));
2522 /* Add any changed or dropped endpoints back into the table */
2523 if (EP_IS_DROPPED(ctrl_ctx, i))
2524 xhci_add_ep_to_interval_table(xhci,
2525 &virt_dev->eps[i].bw_info,
2526 virt_dev->bw_table,
2527 virt_dev->udev,
2528 &virt_dev->eps[i],
2529 virt_dev->tt_info);
2530 }
2531 return -ENOMEM;
2532 }
2533
2534
2535 /* Issue a configure endpoint command or evaluate context command
2536 * and wait for it to finish.
2537 */
2538 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2539 struct usb_device *udev,
2540 struct xhci_command *command,
2541 bool ctx_change, bool must_succeed)
2542 {
2543 int ret;
2544 int timeleft;
2545 unsigned long flags;
2546 struct xhci_container_ctx *in_ctx;
2547 struct completion *cmd_completion;
2548 u32 *cmd_status;
2549 struct xhci_virt_device *virt_dev;
2550 union xhci_trb *cmd_trb;
2551
2552 spin_lock_irqsave(&xhci->lock, flags);
2553 virt_dev = xhci->devs[udev->slot_id];
2554
2555 if (command)
2556 in_ctx = command->in_ctx;
2557 else
2558 in_ctx = virt_dev->in_ctx;
2559
2560 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2561 xhci_reserve_host_resources(xhci, in_ctx)) {
2562 spin_unlock_irqrestore(&xhci->lock, flags);
2563 xhci_warn(xhci, "Not enough host resources, "
2564 "active endpoint contexts = %u\n",
2565 xhci->num_active_eps);
2566 return -ENOMEM;
2567 }
2568 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2569 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2570 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2571 xhci_free_host_resources(xhci, in_ctx);
2572 spin_unlock_irqrestore(&xhci->lock, flags);
2573 xhci_warn(xhci, "Not enough bandwidth\n");
2574 return -ENOMEM;
2575 }
2576
2577 if (command) {
2578 cmd_completion = command->completion;
2579 cmd_status = &command->status;
2580 command->command_trb = xhci->cmd_ring->enqueue;
2581
2582 /* Enqueue pointer can be left pointing to the link TRB,
2583 * we must handle that
2584 */
2585 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2586 command->command_trb =
2587 xhci->cmd_ring->enq_seg->next->trbs;
2588
2589 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2590 } else {
2591 cmd_completion = &virt_dev->cmd_completion;
2592 cmd_status = &virt_dev->cmd_status;
2593 }
2594 init_completion(cmd_completion);
2595
2596 cmd_trb = xhci->cmd_ring->dequeue;
2597 if (!ctx_change)
2598 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2599 udev->slot_id, must_succeed);
2600 else
2601 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2602 udev->slot_id, must_succeed);
2603 if (ret < 0) {
2604 if (command)
2605 list_del(&command->cmd_list);
2606 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2607 xhci_free_host_resources(xhci, in_ctx);
2608 spin_unlock_irqrestore(&xhci->lock, flags);
2609 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2610 return -ENOMEM;
2611 }
2612 xhci_ring_cmd_db(xhci);
2613 spin_unlock_irqrestore(&xhci->lock, flags);
2614
2615 /* Wait for the configure endpoint command to complete */
2616 timeleft = wait_for_completion_interruptible_timeout(
2617 cmd_completion,
2618 XHCI_CMD_DEFAULT_TIMEOUT);
2619 if (timeleft <= 0) {
2620 xhci_warn(xhci, "%s while waiting for %s command\n",
2621 timeleft == 0 ? "Timeout" : "Signal",
2622 ctx_change == 0 ?
2623 "configure endpoint" :
2624 "evaluate context");
2625 /* cancel the configure endpoint command */
2626 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2627 if (ret < 0)
2628 return ret;
2629 return -ETIME;
2630 }
2631
2632 if (!ctx_change)
2633 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2634 else
2635 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2636
2637 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2638 spin_lock_irqsave(&xhci->lock, flags);
2639 /* If the command failed, remove the reserved resources.
2640 * Otherwise, clean up the estimate to include dropped eps.
2641 */
2642 if (ret)
2643 xhci_free_host_resources(xhci, in_ctx);
2644 else
2645 xhci_finish_resource_reservation(xhci, in_ctx);
2646 spin_unlock_irqrestore(&xhci->lock, flags);
2647 }
2648 return ret;
2649 }
2650
2651 /* Called after one or more calls to xhci_add_endpoint() or
2652 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2653 * to call xhci_reset_bandwidth().
2654 *
2655 * Since we are in the middle of changing either configuration or
2656 * installing a new alt setting, the USB core won't allow URBs to be
2657 * enqueued for any endpoint on the old config or interface. Nothing
2658 * else should be touching the xhci->devs[slot_id] structure, so we
2659 * don't need to take the xhci->lock for manipulating that.
2660 */
2661 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2662 {
2663 int i;
2664 int ret = 0;
2665 struct xhci_hcd *xhci;
2666 struct xhci_virt_device *virt_dev;
2667 struct xhci_input_control_ctx *ctrl_ctx;
2668 struct xhci_slot_ctx *slot_ctx;
2669
2670 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2671 if (ret <= 0)
2672 return ret;
2673 xhci = hcd_to_xhci(hcd);
2674 if (xhci->xhc_state & XHCI_STATE_DYING)
2675 return -ENODEV;
2676
2677 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2678 virt_dev = xhci->devs[udev->slot_id];
2679
2680 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2681 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2682 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2683 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2684 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2685
2686 /* Don't issue the command if there's no endpoints to update. */
2687 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2688 ctrl_ctx->drop_flags == 0)
2689 return 0;
2690
2691 xhci_dbg(xhci, "New Input Control Context:\n");
2692 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2693 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2694 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2695
2696 ret = xhci_configure_endpoint(xhci, udev, NULL,
2697 false, false);
2698 if (ret) {
2699 /* Callee should call reset_bandwidth() */
2700 return ret;
2701 }
2702
2703 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2704 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2705 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2706
2707 /* Free any rings that were dropped, but not changed. */
2708 for (i = 1; i < 31; ++i) {
2709 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2710 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2711 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2712 }
2713 xhci_zero_in_ctx(xhci, virt_dev);
2714 /*
2715 * Install any rings for completely new endpoints or changed endpoints,
2716 * and free or cache any old rings from changed endpoints.
2717 */
2718 for (i = 1; i < 31; ++i) {
2719 if (!virt_dev->eps[i].new_ring)
2720 continue;
2721 /* Only cache or free the old ring if it exists.
2722 * It may not if this is the first add of an endpoint.
2723 */
2724 if (virt_dev->eps[i].ring) {
2725 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2726 }
2727 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2728 virt_dev->eps[i].new_ring = NULL;
2729 }
2730
2731 return ret;
2732 }
2733
2734 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2735 {
2736 struct xhci_hcd *xhci;
2737 struct xhci_virt_device *virt_dev;
2738 int i, ret;
2739
2740 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2741 if (ret <= 0)
2742 return;
2743 xhci = hcd_to_xhci(hcd);
2744
2745 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2746 virt_dev = xhci->devs[udev->slot_id];
2747 /* Free any rings allocated for added endpoints */
2748 for (i = 0; i < 31; ++i) {
2749 if (virt_dev->eps[i].new_ring) {
2750 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2751 virt_dev->eps[i].new_ring = NULL;
2752 }
2753 }
2754 xhci_zero_in_ctx(xhci, virt_dev);
2755 }
2756
2757 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2758 struct xhci_container_ctx *in_ctx,
2759 struct xhci_container_ctx *out_ctx,
2760 u32 add_flags, u32 drop_flags)
2761 {
2762 struct xhci_input_control_ctx *ctrl_ctx;
2763 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2764 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2765 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2766 xhci_slot_copy(xhci, in_ctx, out_ctx);
2767 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2768
2769 xhci_dbg(xhci, "Input Context:\n");
2770 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2771 }
2772
2773 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2774 unsigned int slot_id, unsigned int ep_index,
2775 struct xhci_dequeue_state *deq_state)
2776 {
2777 struct xhci_container_ctx *in_ctx;
2778 struct xhci_ep_ctx *ep_ctx;
2779 u32 added_ctxs;
2780 dma_addr_t addr;
2781
2782 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2783 xhci->devs[slot_id]->out_ctx, ep_index);
2784 in_ctx = xhci->devs[slot_id]->in_ctx;
2785 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2786 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2787 deq_state->new_deq_ptr);
2788 if (addr == 0) {
2789 xhci_warn(xhci, "WARN Cannot submit config ep after "
2790 "reset ep command\n");
2791 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2792 deq_state->new_deq_seg,
2793 deq_state->new_deq_ptr);
2794 return;
2795 }
2796 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2797
2798 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2799 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2800 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2801 }
2802
2803 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2804 struct usb_device *udev, unsigned int ep_index)
2805 {
2806 struct xhci_dequeue_state deq_state;
2807 struct xhci_virt_ep *ep;
2808
2809 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2810 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2811 /* We need to move the HW's dequeue pointer past this TD,
2812 * or it will attempt to resend it on the next doorbell ring.
2813 */
2814 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2815 ep_index, ep->stopped_stream, ep->stopped_td,
2816 &deq_state);
2817
2818 /* HW with the reset endpoint quirk will use the saved dequeue state to
2819 * issue a configure endpoint command later.
2820 */
2821 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2822 xhci_dbg(xhci, "Queueing new dequeue state\n");
2823 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2824 ep_index, ep->stopped_stream, &deq_state);
2825 } else {
2826 /* Better hope no one uses the input context between now and the
2827 * reset endpoint completion!
2828 * XXX: No idea how this hardware will react when stream rings
2829 * are enabled.
2830 */
2831 xhci_dbg(xhci, "Setting up input context for "
2832 "configure endpoint command\n");
2833 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2834 ep_index, &deq_state);
2835 }
2836 }
2837
2838 /* Deal with stalled endpoints. The core should have sent the control message
2839 * to clear the halt condition. However, we need to make the xHCI hardware
2840 * reset its sequence number, since a device will expect a sequence number of
2841 * zero after the halt condition is cleared.
2842 * Context: in_interrupt
2843 */
2844 void xhci_endpoint_reset(struct usb_hcd *hcd,
2845 struct usb_host_endpoint *ep)
2846 {
2847 struct xhci_hcd *xhci;
2848 struct usb_device *udev;
2849 unsigned int ep_index;
2850 unsigned long flags;
2851 int ret;
2852 struct xhci_virt_ep *virt_ep;
2853
2854 xhci = hcd_to_xhci(hcd);
2855 udev = (struct usb_device *) ep->hcpriv;
2856 /* Called with a root hub endpoint (or an endpoint that wasn't added
2857 * with xhci_add_endpoint()
2858 */
2859 if (!ep->hcpriv)
2860 return;
2861 ep_index = xhci_get_endpoint_index(&ep->desc);
2862 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2863 if (!virt_ep->stopped_td) {
2864 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2865 ep->desc.bEndpointAddress);
2866 return;
2867 }
2868 if (usb_endpoint_xfer_control(&ep->desc)) {
2869 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2870 return;
2871 }
2872
2873 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2874 spin_lock_irqsave(&xhci->lock, flags);
2875 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2876 /*
2877 * Can't change the ring dequeue pointer until it's transitioned to the
2878 * stopped state, which is only upon a successful reset endpoint
2879 * command. Better hope that last command worked!
2880 */
2881 if (!ret) {
2882 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2883 kfree(virt_ep->stopped_td);
2884 xhci_ring_cmd_db(xhci);
2885 }
2886 virt_ep->stopped_td = NULL;
2887 virt_ep->stopped_trb = NULL;
2888 virt_ep->stopped_stream = 0;
2889 spin_unlock_irqrestore(&xhci->lock, flags);
2890
2891 if (ret)
2892 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2893 }
2894
2895 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2896 struct usb_device *udev, struct usb_host_endpoint *ep,
2897 unsigned int slot_id)
2898 {
2899 int ret;
2900 unsigned int ep_index;
2901 unsigned int ep_state;
2902
2903 if (!ep)
2904 return -EINVAL;
2905 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2906 if (ret <= 0)
2907 return -EINVAL;
2908 if (ep->ss_ep_comp.bmAttributes == 0) {
2909 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2910 " descriptor for ep 0x%x does not support streams\n",
2911 ep->desc.bEndpointAddress);
2912 return -EINVAL;
2913 }
2914
2915 ep_index = xhci_get_endpoint_index(&ep->desc);
2916 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2917 if (ep_state & EP_HAS_STREAMS ||
2918 ep_state & EP_GETTING_STREAMS) {
2919 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2920 "already has streams set up.\n",
2921 ep->desc.bEndpointAddress);
2922 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2923 "dynamic stream context array reallocation.\n");
2924 return -EINVAL;
2925 }
2926 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2927 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2928 "endpoint 0x%x; URBs are pending.\n",
2929 ep->desc.bEndpointAddress);
2930 return -EINVAL;
2931 }
2932 return 0;
2933 }
2934
2935 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2936 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2937 {
2938 unsigned int max_streams;
2939
2940 /* The stream context array size must be a power of two */
2941 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2942 /*
2943 * Find out how many primary stream array entries the host controller
2944 * supports. Later we may use secondary stream arrays (similar to 2nd
2945 * level page entries), but that's an optional feature for xHCI host
2946 * controllers. xHCs must support at least 4 stream IDs.
2947 */
2948 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2949 if (*num_stream_ctxs > max_streams) {
2950 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2951 max_streams);
2952 *num_stream_ctxs = max_streams;
2953 *num_streams = max_streams;
2954 }
2955 }
2956
2957 /* Returns an error code if one of the endpoint already has streams.
2958 * This does not change any data structures, it only checks and gathers
2959 * information.
2960 */
2961 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2962 struct usb_device *udev,
2963 struct usb_host_endpoint **eps, unsigned int num_eps,
2964 unsigned int *num_streams, u32 *changed_ep_bitmask)
2965 {
2966 unsigned int max_streams;
2967 unsigned int endpoint_flag;
2968 int i;
2969 int ret;
2970
2971 for (i = 0; i < num_eps; i++) {
2972 ret = xhci_check_streams_endpoint(xhci, udev,
2973 eps[i], udev->slot_id);
2974 if (ret < 0)
2975 return ret;
2976
2977 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2978 if (max_streams < (*num_streams - 1)) {
2979 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2980 eps[i]->desc.bEndpointAddress,
2981 max_streams);
2982 *num_streams = max_streams+1;
2983 }
2984
2985 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2986 if (*changed_ep_bitmask & endpoint_flag)
2987 return -EINVAL;
2988 *changed_ep_bitmask |= endpoint_flag;
2989 }
2990 return 0;
2991 }
2992
2993 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2994 struct usb_device *udev,
2995 struct usb_host_endpoint **eps, unsigned int num_eps)
2996 {
2997 u32 changed_ep_bitmask = 0;
2998 unsigned int slot_id;
2999 unsigned int ep_index;
3000 unsigned int ep_state;
3001 int i;
3002
3003 slot_id = udev->slot_id;
3004 if (!xhci->devs[slot_id])
3005 return 0;
3006
3007 for (i = 0; i < num_eps; i++) {
3008 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3009 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3010 /* Are streams already being freed for the endpoint? */
3011 if (ep_state & EP_GETTING_NO_STREAMS) {
3012 xhci_warn(xhci, "WARN Can't disable streams for "
3013 "endpoint 0x%x\n, "
3014 "streams are being disabled already.",
3015 eps[i]->desc.bEndpointAddress);
3016 return 0;
3017 }
3018 /* Are there actually any streams to free? */
3019 if (!(ep_state & EP_HAS_STREAMS) &&
3020 !(ep_state & EP_GETTING_STREAMS)) {
3021 xhci_warn(xhci, "WARN Can't disable streams for "
3022 "endpoint 0x%x\n, "
3023 "streams are already disabled!",
3024 eps[i]->desc.bEndpointAddress);
3025 xhci_warn(xhci, "WARN xhci_free_streams() called "
3026 "with non-streams endpoint\n");
3027 return 0;
3028 }
3029 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3030 }
3031 return changed_ep_bitmask;
3032 }
3033
3034 /*
3035 * The USB device drivers use this function (though the HCD interface in USB
3036 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3037 * coordinate mass storage command queueing across multiple endpoints (basically
3038 * a stream ID == a task ID).
3039 *
3040 * Setting up streams involves allocating the same size stream context array
3041 * for each endpoint and issuing a configure endpoint command for all endpoints.
3042 *
3043 * Don't allow the call to succeed if one endpoint only supports one stream
3044 * (which means it doesn't support streams at all).
3045 *
3046 * Drivers may get less stream IDs than they asked for, if the host controller
3047 * hardware or endpoints claim they can't support the number of requested
3048 * stream IDs.
3049 */
3050 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3051 struct usb_host_endpoint **eps, unsigned int num_eps,
3052 unsigned int num_streams, gfp_t mem_flags)
3053 {
3054 int i, ret;
3055 struct xhci_hcd *xhci;
3056 struct xhci_virt_device *vdev;
3057 struct xhci_command *config_cmd;
3058 unsigned int ep_index;
3059 unsigned int num_stream_ctxs;
3060 unsigned long flags;
3061 u32 changed_ep_bitmask = 0;
3062
3063 if (!eps)
3064 return -EINVAL;
3065
3066 /* Add one to the number of streams requested to account for
3067 * stream 0 that is reserved for xHCI usage.
3068 */
3069 num_streams += 1;
3070 xhci = hcd_to_xhci(hcd);
3071 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3072 num_streams);
3073
3074 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3075 if (!config_cmd) {
3076 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3077 return -ENOMEM;
3078 }
3079
3080 /* Check to make sure all endpoints are not already configured for
3081 * streams. While we're at it, find the maximum number of streams that
3082 * all the endpoints will support and check for duplicate endpoints.
3083 */
3084 spin_lock_irqsave(&xhci->lock, flags);
3085 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3086 num_eps, &num_streams, &changed_ep_bitmask);
3087 if (ret < 0) {
3088 xhci_free_command(xhci, config_cmd);
3089 spin_unlock_irqrestore(&xhci->lock, flags);
3090 return ret;
3091 }
3092 if (num_streams <= 1) {
3093 xhci_warn(xhci, "WARN: endpoints can't handle "
3094 "more than one stream.\n");
3095 xhci_free_command(xhci, config_cmd);
3096 spin_unlock_irqrestore(&xhci->lock, flags);
3097 return -EINVAL;
3098 }
3099 vdev = xhci->devs[udev->slot_id];
3100 /* Mark each endpoint as being in transition, so
3101 * xhci_urb_enqueue() will reject all URBs.
3102 */
3103 for (i = 0; i < num_eps; i++) {
3104 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3105 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3106 }
3107 spin_unlock_irqrestore(&xhci->lock, flags);
3108
3109 /* Setup internal data structures and allocate HW data structures for
3110 * streams (but don't install the HW structures in the input context
3111 * until we're sure all memory allocation succeeded).
3112 */
3113 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3114 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3115 num_stream_ctxs, num_streams);
3116
3117 for (i = 0; i < num_eps; i++) {
3118 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3119 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3120 num_stream_ctxs,
3121 num_streams, mem_flags);
3122 if (!vdev->eps[ep_index].stream_info)
3123 goto cleanup;
3124 /* Set maxPstreams in endpoint context and update deq ptr to
3125 * point to stream context array. FIXME
3126 */
3127 }
3128
3129 /* Set up the input context for a configure endpoint command. */
3130 for (i = 0; i < num_eps; i++) {
3131 struct xhci_ep_ctx *ep_ctx;
3132
3133 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3134 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3135
3136 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3137 vdev->out_ctx, ep_index);
3138 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3139 vdev->eps[ep_index].stream_info);
3140 }
3141 /* Tell the HW to drop its old copy of the endpoint context info
3142 * and add the updated copy from the input context.
3143 */
3144 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3145 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3146
3147 /* Issue and wait for the configure endpoint command */
3148 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3149 false, false);
3150
3151 /* xHC rejected the configure endpoint command for some reason, so we
3152 * leave the old ring intact and free our internal streams data
3153 * structure.
3154 */
3155 if (ret < 0)
3156 goto cleanup;
3157
3158 spin_lock_irqsave(&xhci->lock, flags);
3159 for (i = 0; i < num_eps; i++) {
3160 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3161 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3162 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3163 udev->slot_id, ep_index);
3164 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3165 }
3166 xhci_free_command(xhci, config_cmd);
3167 spin_unlock_irqrestore(&xhci->lock, flags);
3168
3169 /* Subtract 1 for stream 0, which drivers can't use */
3170 return num_streams - 1;
3171
3172 cleanup:
3173 /* If it didn't work, free the streams! */
3174 for (i = 0; i < num_eps; i++) {
3175 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3176 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3177 vdev->eps[ep_index].stream_info = NULL;
3178 /* FIXME Unset maxPstreams in endpoint context and
3179 * update deq ptr to point to normal string ring.
3180 */
3181 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3182 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3183 xhci_endpoint_zero(xhci, vdev, eps[i]);
3184 }
3185 xhci_free_command(xhci, config_cmd);
3186 return -ENOMEM;
3187 }
3188
3189 /* Transition the endpoint from using streams to being a "normal" endpoint
3190 * without streams.
3191 *
3192 * Modify the endpoint context state, submit a configure endpoint command,
3193 * and free all endpoint rings for streams if that completes successfully.
3194 */
3195 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3196 struct usb_host_endpoint **eps, unsigned int num_eps,
3197 gfp_t mem_flags)
3198 {
3199 int i, ret;
3200 struct xhci_hcd *xhci;
3201 struct xhci_virt_device *vdev;
3202 struct xhci_command *command;
3203 unsigned int ep_index;
3204 unsigned long flags;
3205 u32 changed_ep_bitmask;
3206
3207 xhci = hcd_to_xhci(hcd);
3208 vdev = xhci->devs[udev->slot_id];
3209
3210 /* Set up a configure endpoint command to remove the streams rings */
3211 spin_lock_irqsave(&xhci->lock, flags);
3212 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3213 udev, eps, num_eps);
3214 if (changed_ep_bitmask == 0) {
3215 spin_unlock_irqrestore(&xhci->lock, flags);
3216 return -EINVAL;
3217 }
3218
3219 /* Use the xhci_command structure from the first endpoint. We may have
3220 * allocated too many, but the driver may call xhci_free_streams() for
3221 * each endpoint it grouped into one call to xhci_alloc_streams().
3222 */
3223 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3224 command = vdev->eps[ep_index].stream_info->free_streams_command;
3225 for (i = 0; i < num_eps; i++) {
3226 struct xhci_ep_ctx *ep_ctx;
3227
3228 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3229 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3230 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3231 EP_GETTING_NO_STREAMS;
3232
3233 xhci_endpoint_copy(xhci, command->in_ctx,
3234 vdev->out_ctx, ep_index);
3235 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3236 &vdev->eps[ep_index]);
3237 }
3238 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3239 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3240 spin_unlock_irqrestore(&xhci->lock, flags);
3241
3242 /* Issue and wait for the configure endpoint command,
3243 * which must succeed.
3244 */
3245 ret = xhci_configure_endpoint(xhci, udev, command,
3246 false, true);
3247
3248 /* xHC rejected the configure endpoint command for some reason, so we
3249 * leave the streams rings intact.
3250 */
3251 if (ret < 0)
3252 return ret;
3253
3254 spin_lock_irqsave(&xhci->lock, flags);
3255 for (i = 0; i < num_eps; i++) {
3256 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3257 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3258 vdev->eps[ep_index].stream_info = NULL;
3259 /* FIXME Unset maxPstreams in endpoint context and
3260 * update deq ptr to point to normal string ring.
3261 */
3262 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3263 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3264 }
3265 spin_unlock_irqrestore(&xhci->lock, flags);
3266
3267 return 0;
3268 }
3269
3270 /*
3271 * Deletes endpoint resources for endpoints that were active before a Reset
3272 * Device command, or a Disable Slot command. The Reset Device command leaves
3273 * the control endpoint intact, whereas the Disable Slot command deletes it.
3274 *
3275 * Must be called with xhci->lock held.
3276 */
3277 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3278 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3279 {
3280 int i;
3281 unsigned int num_dropped_eps = 0;
3282 unsigned int drop_flags = 0;
3283
3284 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3285 if (virt_dev->eps[i].ring) {
3286 drop_flags |= 1 << i;
3287 num_dropped_eps++;
3288 }
3289 }
3290 xhci->num_active_eps -= num_dropped_eps;
3291 if (num_dropped_eps)
3292 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3293 "%u now active.\n",
3294 num_dropped_eps, drop_flags,
3295 xhci->num_active_eps);
3296 }
3297
3298 /*
3299 * This submits a Reset Device Command, which will set the device state to 0,
3300 * set the device address to 0, and disable all the endpoints except the default
3301 * control endpoint. The USB core should come back and call
3302 * xhci_address_device(), and then re-set up the configuration. If this is
3303 * called because of a usb_reset_and_verify_device(), then the old alternate
3304 * settings will be re-installed through the normal bandwidth allocation
3305 * functions.
3306 *
3307 * Wait for the Reset Device command to finish. Remove all structures
3308 * associated with the endpoints that were disabled. Clear the input device
3309 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3310 *
3311 * If the virt_dev to be reset does not exist or does not match the udev,
3312 * it means the device is lost, possibly due to the xHC restore error and
3313 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3314 * re-allocate the device.
3315 */
3316 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3317 {
3318 int ret, i;
3319 unsigned long flags;
3320 struct xhci_hcd *xhci;
3321 unsigned int slot_id;
3322 struct xhci_virt_device *virt_dev;
3323 struct xhci_command *reset_device_cmd;
3324 int timeleft;
3325 int last_freed_endpoint;
3326 struct xhci_slot_ctx *slot_ctx;
3327 int old_active_eps = 0;
3328
3329 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3330 if (ret <= 0)
3331 return ret;
3332 xhci = hcd_to_xhci(hcd);
3333 slot_id = udev->slot_id;
3334 virt_dev = xhci->devs[slot_id];
3335 if (!virt_dev) {
3336 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3337 "not exist. Re-allocate the device\n", slot_id);
3338 ret = xhci_alloc_dev(hcd, udev);
3339 if (ret == 1)
3340 return 0;
3341 else
3342 return -EINVAL;
3343 }
3344
3345 if (virt_dev->udev != udev) {
3346 /* If the virt_dev and the udev does not match, this virt_dev
3347 * may belong to another udev.
3348 * Re-allocate the device.
3349 */
3350 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3351 "not match the udev. Re-allocate the device\n",
3352 slot_id);
3353 ret = xhci_alloc_dev(hcd, udev);
3354 if (ret == 1)
3355 return 0;
3356 else
3357 return -EINVAL;
3358 }
3359
3360 /* If device is not setup, there is no point in resetting it */
3361 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3362 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3363 SLOT_STATE_DISABLED)
3364 return 0;
3365
3366 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3367 /* Allocate the command structure that holds the struct completion.
3368 * Assume we're in process context, since the normal device reset
3369 * process has to wait for the device anyway. Storage devices are
3370 * reset as part of error handling, so use GFP_NOIO instead of
3371 * GFP_KERNEL.
3372 */
3373 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3374 if (!reset_device_cmd) {
3375 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3376 return -ENOMEM;
3377 }
3378
3379 /* Attempt to submit the Reset Device command to the command ring */
3380 spin_lock_irqsave(&xhci->lock, flags);
3381 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3382
3383 /* Enqueue pointer can be left pointing to the link TRB,
3384 * we must handle that
3385 */
3386 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3387 reset_device_cmd->command_trb =
3388 xhci->cmd_ring->enq_seg->next->trbs;
3389
3390 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3391 ret = xhci_queue_reset_device(xhci, slot_id);
3392 if (ret) {
3393 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3394 list_del(&reset_device_cmd->cmd_list);
3395 spin_unlock_irqrestore(&xhci->lock, flags);
3396 goto command_cleanup;
3397 }
3398 xhci_ring_cmd_db(xhci);
3399 spin_unlock_irqrestore(&xhci->lock, flags);
3400
3401 /* Wait for the Reset Device command to finish */
3402 timeleft = wait_for_completion_interruptible_timeout(
3403 reset_device_cmd->completion,
3404 USB_CTRL_SET_TIMEOUT);
3405 if (timeleft <= 0) {
3406 xhci_warn(xhci, "%s while waiting for reset device command\n",
3407 timeleft == 0 ? "Timeout" : "Signal");
3408 spin_lock_irqsave(&xhci->lock, flags);
3409 /* The timeout might have raced with the event ring handler, so
3410 * only delete from the list if the item isn't poisoned.
3411 */
3412 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3413 list_del(&reset_device_cmd->cmd_list);
3414 spin_unlock_irqrestore(&xhci->lock, flags);
3415 ret = -ETIME;
3416 goto command_cleanup;
3417 }
3418
3419 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3420 * unless we tried to reset a slot ID that wasn't enabled,
3421 * or the device wasn't in the addressed or configured state.
3422 */
3423 ret = reset_device_cmd->status;
3424 switch (ret) {
3425 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3426 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3427 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3428 slot_id,
3429 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3430 xhci_info(xhci, "Not freeing device rings.\n");
3431 /* Don't treat this as an error. May change my mind later. */
3432 ret = 0;
3433 goto command_cleanup;
3434 case COMP_SUCCESS:
3435 xhci_dbg(xhci, "Successful reset device command.\n");
3436 break;
3437 default:
3438 if (xhci_is_vendor_info_code(xhci, ret))
3439 break;
3440 xhci_warn(xhci, "Unknown completion code %u for "
3441 "reset device command.\n", ret);
3442 ret = -EINVAL;
3443 goto command_cleanup;
3444 }
3445
3446 /* Free up host controller endpoint resources */
3447 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3448 spin_lock_irqsave(&xhci->lock, flags);
3449 /* Don't delete the default control endpoint resources */
3450 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3451 spin_unlock_irqrestore(&xhci->lock, flags);
3452 }
3453
3454 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3455 last_freed_endpoint = 1;
3456 for (i = 1; i < 31; ++i) {
3457 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3458
3459 if (ep->ep_state & EP_HAS_STREAMS) {
3460 xhci_free_stream_info(xhci, ep->stream_info);
3461 ep->stream_info = NULL;
3462 ep->ep_state &= ~EP_HAS_STREAMS;
3463 }
3464
3465 if (ep->ring) {
3466 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3467 last_freed_endpoint = i;
3468 }
3469 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3470 xhci_drop_ep_from_interval_table(xhci,
3471 &virt_dev->eps[i].bw_info,
3472 virt_dev->bw_table,
3473 udev,
3474 &virt_dev->eps[i],
3475 virt_dev->tt_info);
3476 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3477 }
3478 /* If necessary, update the number of active TTs on this root port */
3479 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3480
3481 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3482 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3483 ret = 0;
3484
3485 command_cleanup:
3486 xhci_free_command(xhci, reset_device_cmd);
3487 return ret;
3488 }
3489
3490 /*
3491 * At this point, the struct usb_device is about to go away, the device has
3492 * disconnected, and all traffic has been stopped and the endpoints have been
3493 * disabled. Free any HC data structures associated with that device.
3494 */
3495 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3496 {
3497 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3498 struct xhci_virt_device *virt_dev;
3499 unsigned long flags;
3500 u32 state;
3501 int i, ret;
3502
3503 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3504 /* If the host is halted due to driver unload, we still need to free the
3505 * device.
3506 */
3507 if (ret <= 0 && ret != -ENODEV)
3508 return;
3509
3510 virt_dev = xhci->devs[udev->slot_id];
3511
3512 /* Stop any wayward timer functions (which may grab the lock) */
3513 for (i = 0; i < 31; ++i) {
3514 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3515 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3516 }
3517
3518 if (udev->usb2_hw_lpm_enabled) {
3519 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3520 udev->usb2_hw_lpm_enabled = 0;
3521 }
3522
3523 spin_lock_irqsave(&xhci->lock, flags);
3524 /* Don't disable the slot if the host controller is dead. */
3525 state = xhci_readl(xhci, &xhci->op_regs->status);
3526 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3527 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3528 xhci_free_virt_device(xhci, udev->slot_id);
3529 spin_unlock_irqrestore(&xhci->lock, flags);
3530 return;
3531 }
3532
3533 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3534 spin_unlock_irqrestore(&xhci->lock, flags);
3535 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3536 return;
3537 }
3538 xhci_ring_cmd_db(xhci);
3539 spin_unlock_irqrestore(&xhci->lock, flags);
3540 /*
3541 * Event command completion handler will free any data structures
3542 * associated with the slot. XXX Can free sleep?
3543 */
3544 }
3545
3546 /*
3547 * Checks if we have enough host controller resources for the default control
3548 * endpoint.
3549 *
3550 * Must be called with xhci->lock held.
3551 */
3552 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3553 {
3554 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3555 xhci_dbg(xhci, "Not enough ep ctxs: "
3556 "%u active, need to add 1, limit is %u.\n",
3557 xhci->num_active_eps, xhci->limit_active_eps);
3558 return -ENOMEM;
3559 }
3560 xhci->num_active_eps += 1;
3561 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3562 xhci->num_active_eps);
3563 return 0;
3564 }
3565
3566
3567 /*
3568 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3569 * timed out, or allocating memory failed. Returns 1 on success.
3570 */
3571 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3572 {
3573 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3574 unsigned long flags;
3575 int timeleft;
3576 int ret;
3577 union xhci_trb *cmd_trb;
3578
3579 spin_lock_irqsave(&xhci->lock, flags);
3580 cmd_trb = xhci->cmd_ring->dequeue;
3581 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3582 if (ret) {
3583 spin_unlock_irqrestore(&xhci->lock, flags);
3584 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3585 return 0;
3586 }
3587 xhci_ring_cmd_db(xhci);
3588 spin_unlock_irqrestore(&xhci->lock, flags);
3589
3590 /* XXX: how much time for xHC slot assignment? */
3591 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3592 XHCI_CMD_DEFAULT_TIMEOUT);
3593 if (timeleft <= 0) {
3594 xhci_warn(xhci, "%s while waiting for a slot\n",
3595 timeleft == 0 ? "Timeout" : "Signal");
3596 /* cancel the enable slot request */
3597 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3598 }
3599
3600 if (!xhci->slot_id) {
3601 xhci_err(xhci, "Error while assigning device slot ID\n");
3602 return 0;
3603 }
3604
3605 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3606 spin_lock_irqsave(&xhci->lock, flags);
3607 ret = xhci_reserve_host_control_ep_resources(xhci);
3608 if (ret) {
3609 spin_unlock_irqrestore(&xhci->lock, flags);
3610 xhci_warn(xhci, "Not enough host resources, "
3611 "active endpoint contexts = %u\n",
3612 xhci->num_active_eps);
3613 goto disable_slot;
3614 }
3615 spin_unlock_irqrestore(&xhci->lock, flags);
3616 }
3617 /* Use GFP_NOIO, since this function can be called from
3618 * xhci_discover_or_reset_device(), which may be called as part of
3619 * mass storage driver error handling.
3620 */
3621 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3622 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3623 goto disable_slot;
3624 }
3625 udev->slot_id = xhci->slot_id;
3626 /* Is this a LS or FS device under a HS hub? */
3627 /* Hub or peripherial? */
3628 return 1;
3629
3630 disable_slot:
3631 /* Disable slot, if we can do it without mem alloc */
3632 spin_lock_irqsave(&xhci->lock, flags);
3633 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3634 xhci_ring_cmd_db(xhci);
3635 spin_unlock_irqrestore(&xhci->lock, flags);
3636 return 0;
3637 }
3638
3639 /*
3640 * Issue an Address Device command (which will issue a SetAddress request to
3641 * the device).
3642 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3643 * we should only issue and wait on one address command at the same time.
3644 *
3645 * We add one to the device address issued by the hardware because the USB core
3646 * uses address 1 for the root hubs (even though they're not really devices).
3647 */
3648 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3649 {
3650 unsigned long flags;
3651 int timeleft;
3652 struct xhci_virt_device *virt_dev;
3653 int ret = 0;
3654 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3655 struct xhci_slot_ctx *slot_ctx;
3656 struct xhci_input_control_ctx *ctrl_ctx;
3657 u64 temp_64;
3658 union xhci_trb *cmd_trb;
3659
3660 if (!udev->slot_id) {
3661 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3662 return -EINVAL;
3663 }
3664
3665 virt_dev = xhci->devs[udev->slot_id];
3666
3667 if (WARN_ON(!virt_dev)) {
3668 /*
3669 * In plug/unplug torture test with an NEC controller,
3670 * a zero-dereference was observed once due to virt_dev = 0.
3671 * Print useful debug rather than crash if it is observed again!
3672 */
3673 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3674 udev->slot_id);
3675 return -EINVAL;
3676 }
3677
3678 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3679 /*
3680 * If this is the first Set Address since device plug-in or
3681 * virt_device realloaction after a resume with an xHCI power loss,
3682 * then set up the slot context.
3683 */
3684 if (!slot_ctx->dev_info)
3685 xhci_setup_addressable_virt_dev(xhci, udev);
3686 /* Otherwise, update the control endpoint ring enqueue pointer. */
3687 else
3688 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3689 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3690 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3691 ctrl_ctx->drop_flags = 0;
3692
3693 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3694 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3695
3696 spin_lock_irqsave(&xhci->lock, flags);
3697 cmd_trb = xhci->cmd_ring->dequeue;
3698 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3699 udev->slot_id);
3700 if (ret) {
3701 spin_unlock_irqrestore(&xhci->lock, flags);
3702 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3703 return ret;
3704 }
3705 xhci_ring_cmd_db(xhci);
3706 spin_unlock_irqrestore(&xhci->lock, flags);
3707
3708 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3709 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3710 XHCI_CMD_DEFAULT_TIMEOUT);
3711 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3712 * the SetAddress() "recovery interval" required by USB and aborting the
3713 * command on a timeout.
3714 */
3715 if (timeleft <= 0) {
3716 xhci_warn(xhci, "%s while waiting for address device command\n",
3717 timeleft == 0 ? "Timeout" : "Signal");
3718 /* cancel the address device command */
3719 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3720 if (ret < 0)
3721 return ret;
3722 return -ETIME;
3723 }
3724
3725 switch (virt_dev->cmd_status) {
3726 case COMP_CTX_STATE:
3727 case COMP_EBADSLT:
3728 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3729 udev->slot_id);
3730 ret = -EINVAL;
3731 break;
3732 case COMP_TX_ERR:
3733 dev_warn(&udev->dev, "Device not responding to set address.\n");
3734 ret = -EPROTO;
3735 break;
3736 case COMP_DEV_ERR:
3737 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3738 "device command.\n");
3739 ret = -ENODEV;
3740 break;
3741 case COMP_SUCCESS:
3742 xhci_dbg(xhci, "Successful Address Device command\n");
3743 break;
3744 default:
3745 xhci_err(xhci, "ERROR: unexpected command completion "
3746 "code 0x%x.\n", virt_dev->cmd_status);
3747 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3748 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3749 ret = -EINVAL;
3750 break;
3751 }
3752 if (ret) {
3753 return ret;
3754 }
3755 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3756 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3757 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3758 udev->slot_id,
3759 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3760 (unsigned long long)
3761 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3762 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3763 (unsigned long long)virt_dev->out_ctx->dma);
3764 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3765 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3766 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3767 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3768 /*
3769 * USB core uses address 1 for the roothubs, so we add one to the
3770 * address given back to us by the HC.
3771 */
3772 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3773 /* Use kernel assigned address for devices; store xHC assigned
3774 * address locally. */
3775 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3776 + 1;
3777 /* Zero the input context control for later use */
3778 ctrl_ctx->add_flags = 0;
3779 ctrl_ctx->drop_flags = 0;
3780
3781 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3782
3783 return 0;
3784 }
3785
3786 /*
3787 * Transfer the port index into real index in the HW port status
3788 * registers. Caculate offset between the port's PORTSC register
3789 * and port status base. Divide the number of per port register
3790 * to get the real index. The raw port number bases 1.
3791 */
3792 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3793 {
3794 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3795 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3796 __le32 __iomem *addr;
3797 int raw_port;
3798
3799 if (hcd->speed != HCD_USB3)
3800 addr = xhci->usb2_ports[port1 - 1];
3801 else
3802 addr = xhci->usb3_ports[port1 - 1];
3803
3804 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3805 return raw_port;
3806 }
3807
3808 #ifdef CONFIG_PM_RUNTIME
3809
3810 /* BESL to HIRD Encoding array for USB2 LPM */
3811 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3812 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3813
3814 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3815 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3816 struct usb_device *udev)
3817 {
3818 int u2del, besl, besl_host;
3819 int besl_device = 0;
3820 u32 field;
3821
3822 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3823 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3824
3825 if (field & USB_BESL_SUPPORT) {
3826 for (besl_host = 0; besl_host < 16; besl_host++) {
3827 if (xhci_besl_encoding[besl_host] >= u2del)
3828 break;
3829 }
3830 /* Use baseline BESL value as default */
3831 if (field & USB_BESL_BASELINE_VALID)
3832 besl_device = USB_GET_BESL_BASELINE(field);
3833 else if (field & USB_BESL_DEEP_VALID)
3834 besl_device = USB_GET_BESL_DEEP(field);
3835 } else {
3836 if (u2del <= 50)
3837 besl_host = 0;
3838 else
3839 besl_host = (u2del - 51) / 75 + 1;
3840 }
3841
3842 besl = besl_host + besl_device;
3843 if (besl > 15)
3844 besl = 15;
3845
3846 return besl;
3847 }
3848
3849 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3850 struct usb_device *udev)
3851 {
3852 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3853 struct dev_info *dev_info;
3854 __le32 __iomem **port_array;
3855 __le32 __iomem *addr, *pm_addr;
3856 u32 temp, dev_id;
3857 unsigned int port_num;
3858 unsigned long flags;
3859 int hird;
3860 int ret;
3861
3862 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3863 !udev->lpm_capable)
3864 return -EINVAL;
3865
3866 /* we only support lpm for non-hub device connected to root hub yet */
3867 if (!udev->parent || udev->parent->parent ||
3868 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3869 return -EINVAL;
3870
3871 spin_lock_irqsave(&xhci->lock, flags);
3872
3873 /* Look for devices in lpm_failed_devs list */
3874 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3875 le16_to_cpu(udev->descriptor.idProduct);
3876 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3877 if (dev_info->dev_id == dev_id) {
3878 ret = -EINVAL;
3879 goto finish;
3880 }
3881 }
3882
3883 port_array = xhci->usb2_ports;
3884 port_num = udev->portnum - 1;
3885
3886 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3887 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3888 ret = -EINVAL;
3889 goto finish;
3890 }
3891
3892 /*
3893 * Test USB 2.0 software LPM.
3894 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3895 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3896 * in the June 2011 errata release.
3897 */
3898 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3899 /*
3900 * Set L1 Device Slot and HIRD/BESL.
3901 * Check device's USB 2.0 extension descriptor to determine whether
3902 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3903 */
3904 pm_addr = port_array[port_num] + 1;
3905 hird = xhci_calculate_hird_besl(xhci, udev);
3906 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3907 xhci_writel(xhci, temp, pm_addr);
3908
3909 /* Set port link state to U2(L1) */
3910 addr = port_array[port_num];
3911 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3912
3913 /* wait for ACK */
3914 spin_unlock_irqrestore(&xhci->lock, flags);
3915 msleep(10);
3916 spin_lock_irqsave(&xhci->lock, flags);
3917
3918 /* Check L1 Status */
3919 ret = xhci_handshake(xhci, pm_addr,
3920 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3921 if (ret != -ETIMEDOUT) {
3922 /* enter L1 successfully */
3923 temp = xhci_readl(xhci, addr);
3924 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3925 port_num, temp);
3926 ret = 0;
3927 } else {
3928 temp = xhci_readl(xhci, pm_addr);
3929 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3930 port_num, temp & PORT_L1S_MASK);
3931 ret = -EINVAL;
3932 }
3933
3934 /* Resume the port */
3935 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3936
3937 spin_unlock_irqrestore(&xhci->lock, flags);
3938 msleep(10);
3939 spin_lock_irqsave(&xhci->lock, flags);
3940
3941 /* Clear PLC */
3942 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3943
3944 /* Check PORTSC to make sure the device is in the right state */
3945 if (!ret) {
3946 temp = xhci_readl(xhci, addr);
3947 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3948 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3949 (temp & PORT_PLS_MASK) != XDEV_U0) {
3950 xhci_dbg(xhci, "port L1 resume fail\n");
3951 ret = -EINVAL;
3952 }
3953 }
3954
3955 if (ret) {
3956 /* Insert dev to lpm_failed_devs list */
3957 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3958 "re-enumerate\n");
3959 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3960 if (!dev_info) {
3961 ret = -ENOMEM;
3962 goto finish;
3963 }
3964 dev_info->dev_id = dev_id;
3965 INIT_LIST_HEAD(&dev_info->list);
3966 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3967 } else {
3968 xhci_ring_device(xhci, udev->slot_id);
3969 }
3970
3971 finish:
3972 spin_unlock_irqrestore(&xhci->lock, flags);
3973 return ret;
3974 }
3975
3976 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3977 struct usb_device *udev, int enable)
3978 {
3979 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3980 __le32 __iomem **port_array;
3981 __le32 __iomem *pm_addr;
3982 u32 temp;
3983 unsigned int port_num;
3984 unsigned long flags;
3985 int hird;
3986
3987 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3988 !udev->lpm_capable)
3989 return -EPERM;
3990
3991 if (!udev->parent || udev->parent->parent ||
3992 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3993 return -EPERM;
3994
3995 if (udev->usb2_hw_lpm_capable != 1)
3996 return -EPERM;
3997
3998 spin_lock_irqsave(&xhci->lock, flags);
3999
4000 port_array = xhci->usb2_ports;
4001 port_num = udev->portnum - 1;
4002 pm_addr = port_array[port_num] + 1;
4003 temp = xhci_readl(xhci, pm_addr);
4004
4005 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4006 enable ? "enable" : "disable", port_num);
4007
4008 hird = xhci_calculate_hird_besl(xhci, udev);
4009
4010 if (enable) {
4011 temp &= ~PORT_HIRD_MASK;
4012 temp |= PORT_HIRD(hird) | PORT_RWE;
4013 xhci_writel(xhci, temp, pm_addr);
4014 temp = xhci_readl(xhci, pm_addr);
4015 temp |= PORT_HLE;
4016 xhci_writel(xhci, temp, pm_addr);
4017 } else {
4018 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4019 xhci_writel(xhci, temp, pm_addr);
4020 }
4021
4022 spin_unlock_irqrestore(&xhci->lock, flags);
4023 return 0;
4024 }
4025
4026 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4027 {
4028 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4029 int ret;
4030
4031 ret = xhci_usb2_software_lpm_test(hcd, udev);
4032 if (!ret) {
4033 xhci_dbg(xhci, "software LPM test succeed\n");
4034 if (xhci->hw_lpm_support == 1) {
4035 udev->usb2_hw_lpm_capable = 1;
4036 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4037 if (!ret)
4038 udev->usb2_hw_lpm_enabled = 1;
4039 }
4040 }
4041
4042 return 0;
4043 }
4044
4045 #else
4046
4047 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4048 struct usb_device *udev, int enable)
4049 {
4050 return 0;
4051 }
4052
4053 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4054 {
4055 return 0;
4056 }
4057
4058 #endif /* CONFIG_PM_RUNTIME */
4059
4060 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4061
4062 #ifdef CONFIG_PM
4063 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4064 static unsigned long long xhci_service_interval_to_ns(
4065 struct usb_endpoint_descriptor *desc)
4066 {
4067 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4068 }
4069
4070 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4071 enum usb3_link_state state)
4072 {
4073 unsigned long long sel;
4074 unsigned long long pel;
4075 unsigned int max_sel_pel;
4076 char *state_name;
4077
4078 switch (state) {
4079 case USB3_LPM_U1:
4080 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4081 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4082 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4083 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4084 state_name = "U1";
4085 break;
4086 case USB3_LPM_U2:
4087 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4088 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4089 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4090 state_name = "U2";
4091 break;
4092 default:
4093 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4094 __func__);
4095 return USB3_LPM_DISABLED;
4096 }
4097
4098 if (sel <= max_sel_pel && pel <= max_sel_pel)
4099 return USB3_LPM_DEVICE_INITIATED;
4100
4101 if (sel > max_sel_pel)
4102 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4103 "due to long SEL %llu ms\n",
4104 state_name, sel);
4105 else
4106 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4107 "due to long PEL %llu\n ms",
4108 state_name, pel);
4109 return USB3_LPM_DISABLED;
4110 }
4111
4112 /* Returns the hub-encoded U1 timeout value.
4113 * The U1 timeout should be the maximum of the following values:
4114 * - For control endpoints, U1 system exit latency (SEL) * 3
4115 * - For bulk endpoints, U1 SEL * 5
4116 * - For interrupt endpoints:
4117 * - Notification EPs, U1 SEL * 3
4118 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4119 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4120 */
4121 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4122 struct usb_endpoint_descriptor *desc)
4123 {
4124 unsigned long long timeout_ns;
4125 int ep_type;
4126 int intr_type;
4127
4128 ep_type = usb_endpoint_type(desc);
4129 switch (ep_type) {
4130 case USB_ENDPOINT_XFER_CONTROL:
4131 timeout_ns = udev->u1_params.sel * 3;
4132 break;
4133 case USB_ENDPOINT_XFER_BULK:
4134 timeout_ns = udev->u1_params.sel * 5;
4135 break;
4136 case USB_ENDPOINT_XFER_INT:
4137 intr_type = usb_endpoint_interrupt_type(desc);
4138 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4139 timeout_ns = udev->u1_params.sel * 3;
4140 break;
4141 }
4142 /* Otherwise the calculation is the same as isoc eps */
4143 case USB_ENDPOINT_XFER_ISOC:
4144 timeout_ns = xhci_service_interval_to_ns(desc);
4145 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4146 if (timeout_ns < udev->u1_params.sel * 2)
4147 timeout_ns = udev->u1_params.sel * 2;
4148 break;
4149 default:
4150 return 0;
4151 }
4152
4153 /* The U1 timeout is encoded in 1us intervals. */
4154 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4155 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4156 if (timeout_ns == USB3_LPM_DISABLED)
4157 timeout_ns++;
4158
4159 /* If the necessary timeout value is bigger than what we can set in the
4160 * USB 3.0 hub, we have to disable hub-initiated U1.
4161 */
4162 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4163 return timeout_ns;
4164 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4165 "due to long timeout %llu ms\n", timeout_ns);
4166 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4167 }
4168
4169 /* Returns the hub-encoded U2 timeout value.
4170 * The U2 timeout should be the maximum of:
4171 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4172 * - largest bInterval of any active periodic endpoint (to avoid going
4173 * into lower power link states between intervals).
4174 * - the U2 Exit Latency of the device
4175 */
4176 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4177 struct usb_endpoint_descriptor *desc)
4178 {
4179 unsigned long long timeout_ns;
4180 unsigned long long u2_del_ns;
4181
4182 timeout_ns = 10 * 1000 * 1000;
4183
4184 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4185 (xhci_service_interval_to_ns(desc) > timeout_ns))
4186 timeout_ns = xhci_service_interval_to_ns(desc);
4187
4188 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4189 if (u2_del_ns > timeout_ns)
4190 timeout_ns = u2_del_ns;
4191
4192 /* The U2 timeout is encoded in 256us intervals */
4193 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4194 /* If the necessary timeout value is bigger than what we can set in the
4195 * USB 3.0 hub, we have to disable hub-initiated U2.
4196 */
4197 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4198 return timeout_ns;
4199 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4200 "due to long timeout %llu ms\n", timeout_ns);
4201 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4202 }
4203
4204 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4205 struct usb_device *udev,
4206 struct usb_endpoint_descriptor *desc,
4207 enum usb3_link_state state,
4208 u16 *timeout)
4209 {
4210 if (state == USB3_LPM_U1) {
4211 if (xhci->quirks & XHCI_INTEL_HOST)
4212 return xhci_calculate_intel_u1_timeout(udev, desc);
4213 } else {
4214 if (xhci->quirks & XHCI_INTEL_HOST)
4215 return xhci_calculate_intel_u2_timeout(udev, desc);
4216 }
4217
4218 return USB3_LPM_DISABLED;
4219 }
4220
4221 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4222 struct usb_device *udev,
4223 struct usb_endpoint_descriptor *desc,
4224 enum usb3_link_state state,
4225 u16 *timeout)
4226 {
4227 u16 alt_timeout;
4228
4229 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4230 desc, state, timeout);
4231
4232 /* If we found we can't enable hub-initiated LPM, or
4233 * the U1 or U2 exit latency was too high to allow
4234 * device-initiated LPM as well, just stop searching.
4235 */
4236 if (alt_timeout == USB3_LPM_DISABLED ||
4237 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4238 *timeout = alt_timeout;
4239 return -E2BIG;
4240 }
4241 if (alt_timeout > *timeout)
4242 *timeout = alt_timeout;
4243 return 0;
4244 }
4245
4246 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4247 struct usb_device *udev,
4248 struct usb_host_interface *alt,
4249 enum usb3_link_state state,
4250 u16 *timeout)
4251 {
4252 int j;
4253
4254 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4255 if (xhci_update_timeout_for_endpoint(xhci, udev,
4256 &alt->endpoint[j].desc, state, timeout))
4257 return -E2BIG;
4258 continue;
4259 }
4260 return 0;
4261 }
4262
4263 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4264 enum usb3_link_state state)
4265 {
4266 struct usb_device *parent;
4267 unsigned int num_hubs;
4268
4269 if (state == USB3_LPM_U2)
4270 return 0;
4271
4272 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4273 for (parent = udev->parent, num_hubs = 0; parent->parent;
4274 parent = parent->parent)
4275 num_hubs++;
4276
4277 if (num_hubs < 2)
4278 return 0;
4279
4280 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4281 " below second-tier hub.\n");
4282 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4283 "to decrease power consumption.\n");
4284 return -E2BIG;
4285 }
4286
4287 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4288 struct usb_device *udev,
4289 enum usb3_link_state state)
4290 {
4291 if (xhci->quirks & XHCI_INTEL_HOST)
4292 return xhci_check_intel_tier_policy(udev, state);
4293 return -EINVAL;
4294 }
4295
4296 /* Returns the U1 or U2 timeout that should be enabled.
4297 * If the tier check or timeout setting functions return with a non-zero exit
4298 * code, that means the timeout value has been finalized and we shouldn't look
4299 * at any more endpoints.
4300 */
4301 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4302 struct usb_device *udev, enum usb3_link_state state)
4303 {
4304 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4305 struct usb_host_config *config;
4306 char *state_name;
4307 int i;
4308 u16 timeout = USB3_LPM_DISABLED;
4309
4310 if (state == USB3_LPM_U1)
4311 state_name = "U1";
4312 else if (state == USB3_LPM_U2)
4313 state_name = "U2";
4314 else {
4315 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4316 state);
4317 return timeout;
4318 }
4319
4320 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4321 return timeout;
4322
4323 /* Gather some information about the currently installed configuration
4324 * and alternate interface settings.
4325 */
4326 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4327 state, &timeout))
4328 return timeout;
4329
4330 config = udev->actconfig;
4331 if (!config)
4332 return timeout;
4333
4334 for (i = 0; i < USB_MAXINTERFACES; i++) {
4335 struct usb_driver *driver;
4336 struct usb_interface *intf = config->interface[i];
4337
4338 if (!intf)
4339 continue;
4340
4341 /* Check if any currently bound drivers want hub-initiated LPM
4342 * disabled.
4343 */
4344 if (intf->dev.driver) {
4345 driver = to_usb_driver(intf->dev.driver);
4346 if (driver && driver->disable_hub_initiated_lpm) {
4347 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4348 "at request of driver %s\n",
4349 state_name, driver->name);
4350 return xhci_get_timeout_no_hub_lpm(udev, state);
4351 }
4352 }
4353
4354 /* Not sure how this could happen... */
4355 if (!intf->cur_altsetting)
4356 continue;
4357
4358 if (xhci_update_timeout_for_interface(xhci, udev,
4359 intf->cur_altsetting,
4360 state, &timeout))
4361 return timeout;
4362 }
4363 return timeout;
4364 }
4365
4366 /*
4367 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4368 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4369 */
4370 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4371 struct usb_device *udev, u16 max_exit_latency)
4372 {
4373 struct xhci_virt_device *virt_dev;
4374 struct xhci_command *command;
4375 struct xhci_input_control_ctx *ctrl_ctx;
4376 struct xhci_slot_ctx *slot_ctx;
4377 unsigned long flags;
4378 int ret;
4379
4380 spin_lock_irqsave(&xhci->lock, flags);
4381 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4382 spin_unlock_irqrestore(&xhci->lock, flags);
4383 return 0;
4384 }
4385
4386 /* Attempt to issue an Evaluate Context command to change the MEL. */
4387 virt_dev = xhci->devs[udev->slot_id];
4388 command = xhci->lpm_command;
4389 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4390 spin_unlock_irqrestore(&xhci->lock, flags);
4391
4392 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4393 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4394 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4395 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4396 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4397
4398 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4399 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4400 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4401
4402 /* Issue and wait for the evaluate context command. */
4403 ret = xhci_configure_endpoint(xhci, udev, command,
4404 true, true);
4405 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4406 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4407
4408 if (!ret) {
4409 spin_lock_irqsave(&xhci->lock, flags);
4410 virt_dev->current_mel = max_exit_latency;
4411 spin_unlock_irqrestore(&xhci->lock, flags);
4412 }
4413 return ret;
4414 }
4415
4416 static int calculate_max_exit_latency(struct usb_device *udev,
4417 enum usb3_link_state state_changed,
4418 u16 hub_encoded_timeout)
4419 {
4420 unsigned long long u1_mel_us = 0;
4421 unsigned long long u2_mel_us = 0;
4422 unsigned long long mel_us = 0;
4423 bool disabling_u1;
4424 bool disabling_u2;
4425 bool enabling_u1;
4426 bool enabling_u2;
4427
4428 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4429 hub_encoded_timeout == USB3_LPM_DISABLED);
4430 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4431 hub_encoded_timeout == USB3_LPM_DISABLED);
4432
4433 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4434 hub_encoded_timeout != USB3_LPM_DISABLED);
4435 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4436 hub_encoded_timeout != USB3_LPM_DISABLED);
4437
4438 /* If U1 was already enabled and we're not disabling it,
4439 * or we're going to enable U1, account for the U1 max exit latency.
4440 */
4441 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4442 enabling_u1)
4443 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4444 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4445 enabling_u2)
4446 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4447
4448 if (u1_mel_us > u2_mel_us)
4449 mel_us = u1_mel_us;
4450 else
4451 mel_us = u2_mel_us;
4452 /* xHCI host controller max exit latency field is only 16 bits wide. */
4453 if (mel_us > MAX_EXIT) {
4454 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4455 "is too big.\n", mel_us);
4456 return -E2BIG;
4457 }
4458 return mel_us;
4459 }
4460
4461 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4462 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4463 struct usb_device *udev, enum usb3_link_state state)
4464 {
4465 struct xhci_hcd *xhci;
4466 u16 hub_encoded_timeout;
4467 int mel;
4468 int ret;
4469
4470 xhci = hcd_to_xhci(hcd);
4471 /* The LPM timeout values are pretty host-controller specific, so don't
4472 * enable hub-initiated timeouts unless the vendor has provided
4473 * information about their timeout algorithm.
4474 */
4475 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4476 !xhci->devs[udev->slot_id])
4477 return USB3_LPM_DISABLED;
4478
4479 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4480 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4481 if (mel < 0) {
4482 /* Max Exit Latency is too big, disable LPM. */
4483 hub_encoded_timeout = USB3_LPM_DISABLED;
4484 mel = 0;
4485 }
4486
4487 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4488 if (ret)
4489 return ret;
4490 return hub_encoded_timeout;
4491 }
4492
4493 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4494 struct usb_device *udev, enum usb3_link_state state)
4495 {
4496 struct xhci_hcd *xhci;
4497 u16 mel;
4498 int ret;
4499
4500 xhci = hcd_to_xhci(hcd);
4501 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4502 !xhci->devs[udev->slot_id])
4503 return 0;
4504
4505 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4506 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4507 if (ret)
4508 return ret;
4509 return 0;
4510 }
4511 #else /* CONFIG_PM */
4512
4513 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4514 struct usb_device *udev, enum usb3_link_state state)
4515 {
4516 return USB3_LPM_DISABLED;
4517 }
4518
4519 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4520 struct usb_device *udev, enum usb3_link_state state)
4521 {
4522 return 0;
4523 }
4524 #endif /* CONFIG_PM */
4525
4526 /*-------------------------------------------------------------------------*/
4527
4528 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4529 * internal data structures for the device.
4530 */
4531 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4532 struct usb_tt *tt, gfp_t mem_flags)
4533 {
4534 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4535 struct xhci_virt_device *vdev;
4536 struct xhci_command *config_cmd;
4537 struct xhci_input_control_ctx *ctrl_ctx;
4538 struct xhci_slot_ctx *slot_ctx;
4539 unsigned long flags;
4540 unsigned think_time;
4541 int ret;
4542
4543 /* Ignore root hubs */
4544 if (!hdev->parent)
4545 return 0;
4546
4547 vdev = xhci->devs[hdev->slot_id];
4548 if (!vdev) {
4549 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4550 return -EINVAL;
4551 }
4552 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4553 if (!config_cmd) {
4554 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4555 return -ENOMEM;
4556 }
4557
4558 spin_lock_irqsave(&xhci->lock, flags);
4559 if (hdev->speed == USB_SPEED_HIGH &&
4560 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4561 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4562 xhci_free_command(xhci, config_cmd);
4563 spin_unlock_irqrestore(&xhci->lock, flags);
4564 return -ENOMEM;
4565 }
4566
4567 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4568 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4569 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4570 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4571 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4572 if (tt->multi)
4573 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4574 if (xhci->hci_version > 0x95) {
4575 xhci_dbg(xhci, "xHCI version %x needs hub "
4576 "TT think time and number of ports\n",
4577 (unsigned int) xhci->hci_version);
4578 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4579 /* Set TT think time - convert from ns to FS bit times.
4580 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4581 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4582 *
4583 * xHCI 1.0: this field shall be 0 if the device is not a
4584 * High-spped hub.
4585 */
4586 think_time = tt->think_time;
4587 if (think_time != 0)
4588 think_time = (think_time / 666) - 1;
4589 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4590 slot_ctx->tt_info |=
4591 cpu_to_le32(TT_THINK_TIME(think_time));
4592 } else {
4593 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4594 "TT think time or number of ports\n",
4595 (unsigned int) xhci->hci_version);
4596 }
4597 slot_ctx->dev_state = 0;
4598 spin_unlock_irqrestore(&xhci->lock, flags);
4599
4600 xhci_dbg(xhci, "Set up %s for hub device.\n",
4601 (xhci->hci_version > 0x95) ?
4602 "configure endpoint" : "evaluate context");
4603 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4604 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4605
4606 /* Issue and wait for the configure endpoint or
4607 * evaluate context command.
4608 */
4609 if (xhci->hci_version > 0x95)
4610 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4611 false, false);
4612 else
4613 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4614 true, false);
4615
4616 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4617 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4618
4619 xhci_free_command(xhci, config_cmd);
4620 return ret;
4621 }
4622
4623 int xhci_get_frame(struct usb_hcd *hcd)
4624 {
4625 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4626 /* EHCI mods by the periodic size. Why? */
4627 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4628 }
4629
4630 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4631 {
4632 struct xhci_hcd *xhci;
4633 struct device *dev = hcd->self.controller;
4634 int retval;
4635 u32 temp;
4636
4637 /* Accept arbitrarily long scatter-gather lists */
4638 hcd->self.sg_tablesize = ~0;
4639 /* XHCI controllers don't stop the ep queue on short packets :| */
4640 hcd->self.no_stop_on_short = 1;
4641
4642 if (usb_hcd_is_primary_hcd(hcd)) {
4643 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4644 if (!xhci)
4645 return -ENOMEM;
4646 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4647 xhci->main_hcd = hcd;
4648 /* Mark the first roothub as being USB 2.0.
4649 * The xHCI driver will register the USB 3.0 roothub.
4650 */
4651 hcd->speed = HCD_USB2;
4652 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4653 /*
4654 * USB 2.0 roothub under xHCI has an integrated TT,
4655 * (rate matching hub) as opposed to having an OHCI/UHCI
4656 * companion controller.
4657 */
4658 hcd->has_tt = 1;
4659 } else {
4660 /* xHCI private pointer was set in xhci_pci_probe for the second
4661 * registered roothub.
4662 */
4663 xhci = hcd_to_xhci(hcd);
4664 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4665 if (HCC_64BIT_ADDR(temp)) {
4666 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4667 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4668 } else {
4669 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4670 }
4671 return 0;
4672 }
4673
4674 xhci->cap_regs = hcd->regs;
4675 xhci->op_regs = hcd->regs +
4676 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4677 xhci->run_regs = hcd->regs +
4678 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4679 /* Cache read-only capability registers */
4680 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4681 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4682 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4683 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4684 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4685 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4686 xhci_print_registers(xhci);
4687
4688 get_quirks(dev, xhci);
4689
4690 /* Make sure the HC is halted. */
4691 retval = xhci_halt(xhci);
4692 if (retval)
4693 goto error;
4694
4695 xhci_dbg(xhci, "Resetting HCD\n");
4696 /* Reset the internal HC memory state and registers. */
4697 retval = xhci_reset(xhci);
4698 if (retval)
4699 goto error;
4700 xhci_dbg(xhci, "Reset complete\n");
4701
4702 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4703 if (HCC_64BIT_ADDR(temp)) {
4704 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4705 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4706 } else {
4707 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4708 }
4709
4710 xhci_dbg(xhci, "Calling HCD init\n");
4711 /* Initialize HCD and host controller data structures. */
4712 retval = xhci_init(hcd);
4713 if (retval)
4714 goto error;
4715 xhci_dbg(xhci, "Called HCD init\n");
4716 return 0;
4717 error:
4718 kfree(xhci);
4719 return retval;
4720 }
4721
4722 MODULE_DESCRIPTION(DRIVER_DESC);
4723 MODULE_AUTHOR(DRIVER_AUTHOR);
4724 MODULE_LICENSE("GPL");
4725
4726 static int __init xhci_hcd_init(void)
4727 {
4728 int retval;
4729
4730 retval = xhci_register_pci();
4731 if (retval < 0) {
4732 printk(KERN_DEBUG "Problem registering PCI driver.");
4733 return retval;
4734 }
4735 retval = xhci_register_plat();
4736 if (retval < 0) {
4737 printk(KERN_DEBUG "Problem registering platform driver.");
4738 goto unreg_pci;
4739 }
4740 /*
4741 * Check the compiler generated sizes of structures that must be laid
4742 * out in specific ways for hardware access.
4743 */
4744 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4745 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4746 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4747 /* xhci_device_control has eight fields, and also
4748 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4749 */
4750 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4751 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4752 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4753 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4754 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4755 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4756 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4757 return 0;
4758 unreg_pci:
4759 xhci_unregister_pci();
4760 return retval;
4761 }
4762 module_init(xhci_hcd_init);
4763
4764 static void __exit xhci_hcd_cleanup(void)
4765 {
4766 xhci_unregister_pci();
4767 xhci_unregister_plat();
4768 }
4769 module_exit(xhci_hcd_cleanup);