xhci: fix isoc endpoint dequeue from advancing too far on transaction error
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75 /*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81 {
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91 }
92
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
123 }
124
125 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring)
126 {
127 /* Enqueue pointer can be left pointing to the link TRB,
128 * we must handle that
129 */
130 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control))
131 return ring->enq_seg->next->trbs;
132 return ring->enqueue;
133 }
134
135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
136 * TRB is in a new segment. This does not skip over link TRBs, and it does not
137 * effect the ring dequeue or enqueue pointers.
138 */
139 static void next_trb(struct xhci_hcd *xhci,
140 struct xhci_ring *ring,
141 struct xhci_segment **seg,
142 union xhci_trb **trb)
143 {
144 if (last_trb(xhci, ring, *seg, *trb)) {
145 *seg = (*seg)->next;
146 *trb = ((*seg)->trbs);
147 } else {
148 (*trb)++;
149 }
150 }
151
152 /*
153 * See Cycle bit rules. SW is the consumer for the event ring only.
154 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
155 */
156 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
157 {
158 unsigned long long addr;
159
160 ring->deq_updates++;
161
162 /*
163 * If this is not event ring, and the dequeue pointer
164 * is not on a link TRB, there is one more usable TRB
165 */
166 if (ring->type != TYPE_EVENT &&
167 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
168 ring->num_trbs_free++;
169
170 do {
171 /*
172 * Update the dequeue pointer further if that was a link TRB or
173 * we're at the end of an event ring segment (which doesn't have
174 * link TRBS)
175 */
176 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
177 if (ring->type == TYPE_EVENT &&
178 last_trb_on_last_seg(xhci, ring,
179 ring->deq_seg, ring->dequeue)) {
180 ring->cycle_state = (ring->cycle_state ? 0 : 1);
181 }
182 ring->deq_seg = ring->deq_seg->next;
183 ring->dequeue = ring->deq_seg->trbs;
184 } else {
185 ring->dequeue++;
186 }
187 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
188
189 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
190 }
191
192 /*
193 * See Cycle bit rules. SW is the consumer for the event ring only.
194 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
195 *
196 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
197 * chain bit is set), then set the chain bit in all the following link TRBs.
198 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
199 * have their chain bit cleared (so that each Link TRB is a separate TD).
200 *
201 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
202 * set, but other sections talk about dealing with the chain bit set. This was
203 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
204 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
205 *
206 * @more_trbs_coming: Will you enqueue more TRBs before calling
207 * prepare_transfer()?
208 */
209 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
210 bool more_trbs_coming)
211 {
212 u32 chain;
213 union xhci_trb *next;
214 unsigned long long addr;
215
216 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
217 /* If this is not event ring, there is one less usable TRB */
218 if (ring->type != TYPE_EVENT &&
219 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
220 ring->num_trbs_free--;
221 next = ++(ring->enqueue);
222
223 ring->enq_updates++;
224 /* Update the dequeue pointer further if that was a link TRB or we're at
225 * the end of an event ring segment (which doesn't have link TRBS)
226 */
227 while (last_trb(xhci, ring, ring->enq_seg, next)) {
228 if (ring->type != TYPE_EVENT) {
229 /*
230 * If the caller doesn't plan on enqueueing more
231 * TDs before ringing the doorbell, then we
232 * don't want to give the link TRB to the
233 * hardware just yet. We'll give the link TRB
234 * back in prepare_ring() just before we enqueue
235 * the TD at the top of the ring.
236 */
237 if (!chain && !more_trbs_coming)
238 break;
239
240 /* If we're not dealing with 0.95 hardware or
241 * isoc rings on AMD 0.96 host,
242 * carry over the chain bit of the previous TRB
243 * (which may mean the chain bit is cleared).
244 */
245 if (!(ring->type == TYPE_ISOC &&
246 (xhci->quirks & XHCI_AMD_0x96_HOST))
247 && !xhci_link_trb_quirk(xhci)) {
248 next->link.control &=
249 cpu_to_le32(~TRB_CHAIN);
250 next->link.control |=
251 cpu_to_le32(chain);
252 }
253 /* Give this link TRB to the hardware */
254 wmb();
255 next->link.control ^= cpu_to_le32(TRB_CYCLE);
256
257 /* Toggle the cycle bit after the last ring segment. */
258 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
259 ring->cycle_state = (ring->cycle_state ? 0 : 1);
260 }
261 }
262 ring->enq_seg = ring->enq_seg->next;
263 ring->enqueue = ring->enq_seg->trbs;
264 next = ring->enqueue;
265 }
266 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
267 }
268
269 /*
270 * Check to see if there's room to enqueue num_trbs on the ring and make sure
271 * enqueue pointer will not advance into dequeue segment. See rules above.
272 */
273 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
274 unsigned int num_trbs)
275 {
276 int num_trbs_in_deq_seg;
277
278 if (ring->num_trbs_free < num_trbs)
279 return 0;
280
281 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
282 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
283 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
284 return 0;
285 }
286
287 return 1;
288 }
289
290 /* Ring the host controller doorbell after placing a command on the ring */
291 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
292 {
293 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
294 return;
295
296 xhci_dbg(xhci, "// Ding dong!\n");
297 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
298 /* Flush PCI posted writes */
299 xhci_readl(xhci, &xhci->dba->doorbell[0]);
300 }
301
302 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
303 {
304 u64 temp_64;
305 int ret;
306
307 xhci_dbg(xhci, "Abort command ring\n");
308
309 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
310 xhci_dbg(xhci, "The command ring isn't running, "
311 "Have the command ring been stopped?\n");
312 return 0;
313 }
314
315 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
316 if (!(temp_64 & CMD_RING_RUNNING)) {
317 xhci_dbg(xhci, "Command ring had been stopped\n");
318 return 0;
319 }
320 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
321 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
322 &xhci->op_regs->cmd_ring);
323
324 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
325 * time the completion od all xHCI commands, including
326 * the Command Abort operation. If software doesn't see
327 * CRR negated in a timely manner (e.g. longer than 5
328 * seconds), then it should assume that the there are
329 * larger problems with the xHC and assert HCRST.
330 */
331 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
332 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
333 if (ret < 0) {
334 xhci_err(xhci, "Stopped the command ring failed, "
335 "maybe the host is dead\n");
336 xhci->xhc_state |= XHCI_STATE_DYING;
337 xhci_quiesce(xhci);
338 xhci_halt(xhci);
339 return -ESHUTDOWN;
340 }
341
342 return 0;
343 }
344
345 static int xhci_queue_cd(struct xhci_hcd *xhci,
346 struct xhci_command *command,
347 union xhci_trb *cmd_trb)
348 {
349 struct xhci_cd *cd;
350 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
351 if (!cd)
352 return -ENOMEM;
353 INIT_LIST_HEAD(&cd->cancel_cmd_list);
354
355 cd->command = command;
356 cd->cmd_trb = cmd_trb;
357 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
358
359 return 0;
360 }
361
362 /*
363 * Cancel the command which has issue.
364 *
365 * Some commands may hang due to waiting for acknowledgement from
366 * usb device. It is outside of the xHC's ability to control and
367 * will cause the command ring is blocked. When it occurs software
368 * should intervene to recover the command ring.
369 * See Section 4.6.1.1 and 4.6.1.2
370 */
371 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
372 union xhci_trb *cmd_trb)
373 {
374 int retval = 0;
375 unsigned long flags;
376
377 spin_lock_irqsave(&xhci->lock, flags);
378
379 if (xhci->xhc_state & XHCI_STATE_DYING) {
380 xhci_warn(xhci, "Abort the command ring,"
381 " but the xHCI is dead.\n");
382 retval = -ESHUTDOWN;
383 goto fail;
384 }
385
386 /* queue the cmd desriptor to cancel_cmd_list */
387 retval = xhci_queue_cd(xhci, command, cmd_trb);
388 if (retval) {
389 xhci_warn(xhci, "Queuing command descriptor failed.\n");
390 goto fail;
391 }
392
393 /* abort command ring */
394 retval = xhci_abort_cmd_ring(xhci);
395 if (retval) {
396 xhci_err(xhci, "Abort command ring failed\n");
397 if (unlikely(retval == -ESHUTDOWN)) {
398 spin_unlock_irqrestore(&xhci->lock, flags);
399 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
400 xhci_dbg(xhci, "xHCI host controller is dead.\n");
401 return retval;
402 }
403 }
404
405 fail:
406 spin_unlock_irqrestore(&xhci->lock, flags);
407 return retval;
408 }
409
410 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
411 unsigned int slot_id,
412 unsigned int ep_index,
413 unsigned int stream_id)
414 {
415 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
416 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
417 unsigned int ep_state = ep->ep_state;
418
419 /* Don't ring the doorbell for this endpoint if there are pending
420 * cancellations because we don't want to interrupt processing.
421 * We don't want to restart any stream rings if there's a set dequeue
422 * pointer command pending because the device can choose to start any
423 * stream once the endpoint is on the HW schedule.
424 * FIXME - check all the stream rings for pending cancellations.
425 */
426 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
427 (ep_state & EP_HALTED))
428 return;
429 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
430 /* The CPU has better things to do at this point than wait for a
431 * write-posting flush. It'll get there soon enough.
432 */
433 }
434
435 /* Ring the doorbell for any rings with pending URBs */
436 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
437 unsigned int slot_id,
438 unsigned int ep_index)
439 {
440 unsigned int stream_id;
441 struct xhci_virt_ep *ep;
442
443 ep = &xhci->devs[slot_id]->eps[ep_index];
444
445 /* A ring has pending URBs if its TD list is not empty */
446 if (!(ep->ep_state & EP_HAS_STREAMS)) {
447 if (ep->ring && !(list_empty(&ep->ring->td_list)))
448 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
449 return;
450 }
451
452 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
453 stream_id++) {
454 struct xhci_stream_info *stream_info = ep->stream_info;
455 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
456 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
457 stream_id);
458 }
459 }
460
461 /*
462 * Find the segment that trb is in. Start searching in start_seg.
463 * If we must move past a segment that has a link TRB with a toggle cycle state
464 * bit set, then we will toggle the value pointed at by cycle_state.
465 */
466 static struct xhci_segment *find_trb_seg(
467 struct xhci_segment *start_seg,
468 union xhci_trb *trb, int *cycle_state)
469 {
470 struct xhci_segment *cur_seg = start_seg;
471 struct xhci_generic_trb *generic_trb;
472
473 while (cur_seg->trbs > trb ||
474 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
475 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
476 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
477 *cycle_state ^= 0x1;
478 cur_seg = cur_seg->next;
479 if (cur_seg == start_seg)
480 /* Looped over the entire list. Oops! */
481 return NULL;
482 }
483 return cur_seg;
484 }
485
486
487 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
488 unsigned int slot_id, unsigned int ep_index,
489 unsigned int stream_id)
490 {
491 struct xhci_virt_ep *ep;
492
493 ep = &xhci->devs[slot_id]->eps[ep_index];
494 /* Common case: no streams */
495 if (!(ep->ep_state & EP_HAS_STREAMS))
496 return ep->ring;
497
498 if (stream_id == 0) {
499 xhci_warn(xhci,
500 "WARN: Slot ID %u, ep index %u has streams, "
501 "but URB has no stream ID.\n",
502 slot_id, ep_index);
503 return NULL;
504 }
505
506 if (stream_id < ep->stream_info->num_streams)
507 return ep->stream_info->stream_rings[stream_id];
508
509 xhci_warn(xhci,
510 "WARN: Slot ID %u, ep index %u has "
511 "stream IDs 1 to %u allocated, "
512 "but stream ID %u is requested.\n",
513 slot_id, ep_index,
514 ep->stream_info->num_streams - 1,
515 stream_id);
516 return NULL;
517 }
518
519 /* Get the right ring for the given URB.
520 * If the endpoint supports streams, boundary check the URB's stream ID.
521 * If the endpoint doesn't support streams, return the singular endpoint ring.
522 */
523 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
524 struct urb *urb)
525 {
526 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
527 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
528 }
529
530 /*
531 * Move the xHC's endpoint ring dequeue pointer past cur_td.
532 * Record the new state of the xHC's endpoint ring dequeue segment,
533 * dequeue pointer, and new consumer cycle state in state.
534 * Update our internal representation of the ring's dequeue pointer.
535 *
536 * We do this in three jumps:
537 * - First we update our new ring state to be the same as when the xHC stopped.
538 * - Then we traverse the ring to find the segment that contains
539 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
540 * any link TRBs with the toggle cycle bit set.
541 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
542 * if we've moved it past a link TRB with the toggle cycle bit set.
543 *
544 * Some of the uses of xhci_generic_trb are grotty, but if they're done
545 * with correct __le32 accesses they should work fine. Only users of this are
546 * in here.
547 */
548 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
549 unsigned int slot_id, unsigned int ep_index,
550 unsigned int stream_id, struct xhci_td *cur_td,
551 struct xhci_dequeue_state *state)
552 {
553 struct xhci_virt_device *dev = xhci->devs[slot_id];
554 struct xhci_ring *ep_ring;
555 struct xhci_generic_trb *trb;
556 struct xhci_ep_ctx *ep_ctx;
557 dma_addr_t addr;
558
559 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
560 ep_index, stream_id);
561 if (!ep_ring) {
562 xhci_warn(xhci, "WARN can't find new dequeue state "
563 "for invalid stream ID %u.\n",
564 stream_id);
565 return;
566 }
567 state->new_cycle_state = 0;
568 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
569 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
570 dev->eps[ep_index].stopped_trb,
571 &state->new_cycle_state);
572 if (!state->new_deq_seg) {
573 WARN_ON(1);
574 return;
575 }
576
577 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
578 xhci_dbg(xhci, "Finding endpoint context\n");
579 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
580 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
581
582 state->new_deq_ptr = cur_td->last_trb;
583 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
584 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
585 state->new_deq_ptr,
586 &state->new_cycle_state);
587 if (!state->new_deq_seg) {
588 WARN_ON(1);
589 return;
590 }
591
592 trb = &state->new_deq_ptr->generic;
593 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
594 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
595 state->new_cycle_state ^= 0x1;
596 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
597
598 /*
599 * If there is only one segment in a ring, find_trb_seg()'s while loop
600 * will not run, and it will return before it has a chance to see if it
601 * needs to toggle the cycle bit. It can't tell if the stalled transfer
602 * ended just before the link TRB on a one-segment ring, or if the TD
603 * wrapped around the top of the ring, because it doesn't have the TD in
604 * question. Look for the one-segment case where stalled TRB's address
605 * is greater than the new dequeue pointer address.
606 */
607 if (ep_ring->first_seg == ep_ring->first_seg->next &&
608 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
609 state->new_cycle_state ^= 0x1;
610 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
611
612 /* Don't update the ring cycle state for the producer (us). */
613 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
614 state->new_deq_seg);
615 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
616 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
617 (unsigned long long) addr);
618 }
619
620 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
621 * (The last TRB actually points to the ring enqueue pointer, which is not part
622 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
623 */
624 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
625 struct xhci_td *cur_td, bool flip_cycle)
626 {
627 struct xhci_segment *cur_seg;
628 union xhci_trb *cur_trb;
629
630 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
631 true;
632 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
633 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
634 /* Unchain any chained Link TRBs, but
635 * leave the pointers intact.
636 */
637 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
638 /* Flip the cycle bit (link TRBs can't be the first
639 * or last TRB).
640 */
641 if (flip_cycle)
642 cur_trb->generic.field[3] ^=
643 cpu_to_le32(TRB_CYCLE);
644 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
645 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
646 "in seg %p (0x%llx dma)\n",
647 cur_trb,
648 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
649 cur_seg,
650 (unsigned long long)cur_seg->dma);
651 } else {
652 cur_trb->generic.field[0] = 0;
653 cur_trb->generic.field[1] = 0;
654 cur_trb->generic.field[2] = 0;
655 /* Preserve only the cycle bit of this TRB */
656 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
657 /* Flip the cycle bit except on the first or last TRB */
658 if (flip_cycle && cur_trb != cur_td->first_trb &&
659 cur_trb != cur_td->last_trb)
660 cur_trb->generic.field[3] ^=
661 cpu_to_le32(TRB_CYCLE);
662 cur_trb->generic.field[3] |= cpu_to_le32(
663 TRB_TYPE(TRB_TR_NOOP));
664 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n",
665 (unsigned long long)
666 xhci_trb_virt_to_dma(cur_seg, cur_trb));
667 }
668 if (cur_trb == cur_td->last_trb)
669 break;
670 }
671 }
672
673 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
674 unsigned int ep_index, unsigned int stream_id,
675 struct xhci_segment *deq_seg,
676 union xhci_trb *deq_ptr, u32 cycle_state);
677
678 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
679 unsigned int slot_id, unsigned int ep_index,
680 unsigned int stream_id,
681 struct xhci_dequeue_state *deq_state)
682 {
683 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
684
685 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
686 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
687 deq_state->new_deq_seg,
688 (unsigned long long)deq_state->new_deq_seg->dma,
689 deq_state->new_deq_ptr,
690 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
691 deq_state->new_cycle_state);
692 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
693 deq_state->new_deq_seg,
694 deq_state->new_deq_ptr,
695 (u32) deq_state->new_cycle_state);
696 /* Stop the TD queueing code from ringing the doorbell until
697 * this command completes. The HC won't set the dequeue pointer
698 * if the ring is running, and ringing the doorbell starts the
699 * ring running.
700 */
701 ep->ep_state |= SET_DEQ_PENDING;
702 }
703
704 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
705 struct xhci_virt_ep *ep)
706 {
707 ep->ep_state &= ~EP_HALT_PENDING;
708 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
709 * timer is running on another CPU, we don't decrement stop_cmds_pending
710 * (since we didn't successfully stop the watchdog timer).
711 */
712 if (del_timer(&ep->stop_cmd_timer))
713 ep->stop_cmds_pending--;
714 }
715
716 /* Must be called with xhci->lock held in interrupt context */
717 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
718 struct xhci_td *cur_td, int status, char *adjective)
719 {
720 struct usb_hcd *hcd;
721 struct urb *urb;
722 struct urb_priv *urb_priv;
723
724 urb = cur_td->urb;
725 urb_priv = urb->hcpriv;
726 urb_priv->td_cnt++;
727 hcd = bus_to_hcd(urb->dev->bus);
728
729 /* Only giveback urb when this is the last td in urb */
730 if (urb_priv->td_cnt == urb_priv->length) {
731 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
732 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
733 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
734 if (xhci->quirks & XHCI_AMD_PLL_FIX)
735 usb_amd_quirk_pll_enable();
736 }
737 }
738 usb_hcd_unlink_urb_from_ep(hcd, urb);
739
740 spin_unlock(&xhci->lock);
741 usb_hcd_giveback_urb(hcd, urb, status);
742 xhci_urb_free_priv(xhci, urb_priv);
743 spin_lock(&xhci->lock);
744 }
745 }
746
747 /*
748 * When we get a command completion for a Stop Endpoint Command, we need to
749 * unlink any cancelled TDs from the ring. There are two ways to do that:
750 *
751 * 1. If the HW was in the middle of processing the TD that needs to be
752 * cancelled, then we must move the ring's dequeue pointer past the last TRB
753 * in the TD with a Set Dequeue Pointer Command.
754 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
755 * bit cleared) so that the HW will skip over them.
756 */
757 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
758 union xhci_trb *trb, struct xhci_event_cmd *event)
759 {
760 unsigned int slot_id;
761 unsigned int ep_index;
762 struct xhci_virt_device *virt_dev;
763 struct xhci_ring *ep_ring;
764 struct xhci_virt_ep *ep;
765 struct list_head *entry;
766 struct xhci_td *cur_td = NULL;
767 struct xhci_td *last_unlinked_td;
768
769 struct xhci_dequeue_state deq_state;
770
771 if (unlikely(TRB_TO_SUSPEND_PORT(
772 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
773 slot_id = TRB_TO_SLOT_ID(
774 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
775 virt_dev = xhci->devs[slot_id];
776 if (virt_dev)
777 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
778 event);
779 else
780 xhci_warn(xhci, "Stop endpoint command "
781 "completion for disabled slot %u\n",
782 slot_id);
783 return;
784 }
785
786 memset(&deq_state, 0, sizeof(deq_state));
787 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
788 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
789 ep = &xhci->devs[slot_id]->eps[ep_index];
790
791 if (list_empty(&ep->cancelled_td_list)) {
792 xhci_stop_watchdog_timer_in_irq(xhci, ep);
793 ep->stopped_td = NULL;
794 ep->stopped_trb = NULL;
795 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
796 return;
797 }
798
799 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
800 * We have the xHCI lock, so nothing can modify this list until we drop
801 * it. We're also in the event handler, so we can't get re-interrupted
802 * if another Stop Endpoint command completes
803 */
804 list_for_each(entry, &ep->cancelled_td_list) {
805 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
806 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n",
807 (unsigned long long)xhci_trb_virt_to_dma(
808 cur_td->start_seg, cur_td->first_trb));
809 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
810 if (!ep_ring) {
811 /* This shouldn't happen unless a driver is mucking
812 * with the stream ID after submission. This will
813 * leave the TD on the hardware ring, and the hardware
814 * will try to execute it, and may access a buffer
815 * that has already been freed. In the best case, the
816 * hardware will execute it, and the event handler will
817 * ignore the completion event for that TD, since it was
818 * removed from the td_list for that endpoint. In
819 * short, don't muck with the stream ID after
820 * submission.
821 */
822 xhci_warn(xhci, "WARN Cancelled URB %p "
823 "has invalid stream ID %u.\n",
824 cur_td->urb,
825 cur_td->urb->stream_id);
826 goto remove_finished_td;
827 }
828 /*
829 * If we stopped on the TD we need to cancel, then we have to
830 * move the xHC endpoint ring dequeue pointer past this TD.
831 */
832 if (cur_td == ep->stopped_td)
833 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
834 cur_td->urb->stream_id,
835 cur_td, &deq_state);
836 else
837 td_to_noop(xhci, ep_ring, cur_td, false);
838 remove_finished_td:
839 /*
840 * The event handler won't see a completion for this TD anymore,
841 * so remove it from the endpoint ring's TD list. Keep it in
842 * the cancelled TD list for URB completion later.
843 */
844 list_del_init(&cur_td->td_list);
845 }
846 last_unlinked_td = cur_td;
847 xhci_stop_watchdog_timer_in_irq(xhci, ep);
848
849 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
850 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
851 xhci_queue_new_dequeue_state(xhci,
852 slot_id, ep_index,
853 ep->stopped_td->urb->stream_id,
854 &deq_state);
855 xhci_ring_cmd_db(xhci);
856 } else {
857 /* Otherwise ring the doorbell(s) to restart queued transfers */
858 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
859 }
860
861 /* Clear stopped_td and stopped_trb if endpoint is not halted */
862 if (!(ep->ep_state & EP_HALTED)) {
863 ep->stopped_td = NULL;
864 ep->stopped_trb = NULL;
865 }
866
867 /*
868 * Drop the lock and complete the URBs in the cancelled TD list.
869 * New TDs to be cancelled might be added to the end of the list before
870 * we can complete all the URBs for the TDs we already unlinked.
871 * So stop when we've completed the URB for the last TD we unlinked.
872 */
873 do {
874 cur_td = list_entry(ep->cancelled_td_list.next,
875 struct xhci_td, cancelled_td_list);
876 list_del_init(&cur_td->cancelled_td_list);
877
878 /* Clean up the cancelled URB */
879 /* Doesn't matter what we pass for status, since the core will
880 * just overwrite it (because the URB has been unlinked).
881 */
882 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
883
884 /* Stop processing the cancelled list if the watchdog timer is
885 * running.
886 */
887 if (xhci->xhc_state & XHCI_STATE_DYING)
888 return;
889 } while (cur_td != last_unlinked_td);
890
891 /* Return to the event handler with xhci->lock re-acquired */
892 }
893
894 /* Watchdog timer function for when a stop endpoint command fails to complete.
895 * In this case, we assume the host controller is broken or dying or dead. The
896 * host may still be completing some other events, so we have to be careful to
897 * let the event ring handler and the URB dequeueing/enqueueing functions know
898 * through xhci->state.
899 *
900 * The timer may also fire if the host takes a very long time to respond to the
901 * command, and the stop endpoint command completion handler cannot delete the
902 * timer before the timer function is called. Another endpoint cancellation may
903 * sneak in before the timer function can grab the lock, and that may queue
904 * another stop endpoint command and add the timer back. So we cannot use a
905 * simple flag to say whether there is a pending stop endpoint command for a
906 * particular endpoint.
907 *
908 * Instead we use a combination of that flag and a counter for the number of
909 * pending stop endpoint commands. If the timer is the tail end of the last
910 * stop endpoint command, and the endpoint's command is still pending, we assume
911 * the host is dying.
912 */
913 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
914 {
915 struct xhci_hcd *xhci;
916 struct xhci_virt_ep *ep;
917 struct xhci_virt_ep *temp_ep;
918 struct xhci_ring *ring;
919 struct xhci_td *cur_td;
920 int ret, i, j;
921 unsigned long flags;
922
923 ep = (struct xhci_virt_ep *) arg;
924 xhci = ep->xhci;
925
926 spin_lock_irqsave(&xhci->lock, flags);
927
928 ep->stop_cmds_pending--;
929 if (xhci->xhc_state & XHCI_STATE_DYING) {
930 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
931 "xHCI as DYING, exiting.\n");
932 spin_unlock_irqrestore(&xhci->lock, flags);
933 return;
934 }
935 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
936 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
937 "exiting.\n");
938 spin_unlock_irqrestore(&xhci->lock, flags);
939 return;
940 }
941
942 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
943 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
944 /* Oops, HC is dead or dying or at least not responding to the stop
945 * endpoint command.
946 */
947 xhci->xhc_state |= XHCI_STATE_DYING;
948 /* Disable interrupts from the host controller and start halting it */
949 xhci_quiesce(xhci);
950 spin_unlock_irqrestore(&xhci->lock, flags);
951
952 ret = xhci_halt(xhci);
953
954 spin_lock_irqsave(&xhci->lock, flags);
955 if (ret < 0) {
956 /* This is bad; the host is not responding to commands and it's
957 * not allowing itself to be halted. At least interrupts are
958 * disabled. If we call usb_hc_died(), it will attempt to
959 * disconnect all device drivers under this host. Those
960 * disconnect() methods will wait for all URBs to be unlinked,
961 * so we must complete them.
962 */
963 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
964 xhci_warn(xhci, "Completing active URBs anyway.\n");
965 /* We could turn all TDs on the rings to no-ops. This won't
966 * help if the host has cached part of the ring, and is slow if
967 * we want to preserve the cycle bit. Skip it and hope the host
968 * doesn't touch the memory.
969 */
970 }
971 for (i = 0; i < MAX_HC_SLOTS; i++) {
972 if (!xhci->devs[i])
973 continue;
974 for (j = 0; j < 31; j++) {
975 temp_ep = &xhci->devs[i]->eps[j];
976 ring = temp_ep->ring;
977 if (!ring)
978 continue;
979 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
980 "ep index %u\n", i, j);
981 while (!list_empty(&ring->td_list)) {
982 cur_td = list_first_entry(&ring->td_list,
983 struct xhci_td,
984 td_list);
985 list_del_init(&cur_td->td_list);
986 if (!list_empty(&cur_td->cancelled_td_list))
987 list_del_init(&cur_td->cancelled_td_list);
988 xhci_giveback_urb_in_irq(xhci, cur_td,
989 -ESHUTDOWN, "killed");
990 }
991 while (!list_empty(&temp_ep->cancelled_td_list)) {
992 cur_td = list_first_entry(
993 &temp_ep->cancelled_td_list,
994 struct xhci_td,
995 cancelled_td_list);
996 list_del_init(&cur_td->cancelled_td_list);
997 xhci_giveback_urb_in_irq(xhci, cur_td,
998 -ESHUTDOWN, "killed");
999 }
1000 }
1001 }
1002 spin_unlock_irqrestore(&xhci->lock, flags);
1003 xhci_dbg(xhci, "Calling usb_hc_died()\n");
1004 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1005 xhci_dbg(xhci, "xHCI host controller is dead.\n");
1006 }
1007
1008
1009 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1010 struct xhci_virt_device *dev,
1011 struct xhci_ring *ep_ring,
1012 unsigned int ep_index)
1013 {
1014 union xhci_trb *dequeue_temp;
1015 int num_trbs_free_temp;
1016 bool revert = false;
1017
1018 num_trbs_free_temp = ep_ring->num_trbs_free;
1019 dequeue_temp = ep_ring->dequeue;
1020
1021 /* If we get two back-to-back stalls, and the first stalled transfer
1022 * ends just before a link TRB, the dequeue pointer will be left on
1023 * the link TRB by the code in the while loop. So we have to update
1024 * the dequeue pointer one segment further, or we'll jump off
1025 * the segment into la-la-land.
1026 */
1027 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1028 ep_ring->deq_seg = ep_ring->deq_seg->next;
1029 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1030 }
1031
1032 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1033 /* We have more usable TRBs */
1034 ep_ring->num_trbs_free++;
1035 ep_ring->dequeue++;
1036 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1037 ep_ring->dequeue)) {
1038 if (ep_ring->dequeue ==
1039 dev->eps[ep_index].queued_deq_ptr)
1040 break;
1041 ep_ring->deq_seg = ep_ring->deq_seg->next;
1042 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1043 }
1044 if (ep_ring->dequeue == dequeue_temp) {
1045 revert = true;
1046 break;
1047 }
1048 }
1049
1050 if (revert) {
1051 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1052 ep_ring->num_trbs_free = num_trbs_free_temp;
1053 }
1054 }
1055
1056 /*
1057 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1058 * we need to clear the set deq pending flag in the endpoint ring state, so that
1059 * the TD queueing code can ring the doorbell again. We also need to ring the
1060 * endpoint doorbell to restart the ring, but only if there aren't more
1061 * cancellations pending.
1062 */
1063 static void handle_set_deq_completion(struct xhci_hcd *xhci,
1064 struct xhci_event_cmd *event,
1065 union xhci_trb *trb)
1066 {
1067 unsigned int slot_id;
1068 unsigned int ep_index;
1069 unsigned int stream_id;
1070 struct xhci_ring *ep_ring;
1071 struct xhci_virt_device *dev;
1072 struct xhci_ep_ctx *ep_ctx;
1073 struct xhci_slot_ctx *slot_ctx;
1074
1075 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1076 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1077 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1078 dev = xhci->devs[slot_id];
1079
1080 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1081 if (!ep_ring) {
1082 xhci_warn(xhci, "WARN Set TR deq ptr command for "
1083 "freed stream ID %u\n",
1084 stream_id);
1085 /* XXX: Harmless??? */
1086 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1087 return;
1088 }
1089
1090 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1091 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1092
1093 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
1094 unsigned int ep_state;
1095 unsigned int slot_state;
1096
1097 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
1098 case COMP_TRB_ERR:
1099 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1100 "of stream ID configuration\n");
1101 break;
1102 case COMP_CTX_STATE:
1103 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1104 "to incorrect slot or ep state.\n");
1105 ep_state = le32_to_cpu(ep_ctx->ep_info);
1106 ep_state &= EP_STATE_MASK;
1107 slot_state = le32_to_cpu(slot_ctx->dev_state);
1108 slot_state = GET_SLOT_STATE(slot_state);
1109 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
1110 slot_state, ep_state);
1111 break;
1112 case COMP_EBADSLT:
1113 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1114 "slot %u was not enabled.\n", slot_id);
1115 break;
1116 default:
1117 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1118 "completion code of %u.\n",
1119 GET_COMP_CODE(le32_to_cpu(event->status)));
1120 break;
1121 }
1122 /* OK what do we do now? The endpoint state is hosed, and we
1123 * should never get to this point if the synchronization between
1124 * queueing, and endpoint state are correct. This might happen
1125 * if the device gets disconnected after we've finished
1126 * cancelling URBs, which might not be an error...
1127 */
1128 } else {
1129 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
1130 le64_to_cpu(ep_ctx->deq));
1131 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1132 dev->eps[ep_index].queued_deq_ptr) ==
1133 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1134 /* Update the ring's dequeue segment and dequeue pointer
1135 * to reflect the new position.
1136 */
1137 update_ring_for_set_deq_completion(xhci, dev,
1138 ep_ring, ep_index);
1139 } else {
1140 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1141 "Ptr command & xHCI internal state.\n");
1142 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1143 dev->eps[ep_index].queued_deq_seg,
1144 dev->eps[ep_index].queued_deq_ptr);
1145 }
1146 }
1147
1148 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1149 dev->eps[ep_index].queued_deq_seg = NULL;
1150 dev->eps[ep_index].queued_deq_ptr = NULL;
1151 /* Restart any rings with pending URBs */
1152 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1153 }
1154
1155 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1156 struct xhci_event_cmd *event,
1157 union xhci_trb *trb)
1158 {
1159 int slot_id;
1160 unsigned int ep_index;
1161
1162 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1163 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1164 /* This command will only fail if the endpoint wasn't halted,
1165 * but we don't care.
1166 */
1167 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1168 GET_COMP_CODE(le32_to_cpu(event->status)));
1169
1170 /* HW with the reset endpoint quirk needs to have a configure endpoint
1171 * command complete before the endpoint can be used. Queue that here
1172 * because the HW can't handle two commands being queued in a row.
1173 */
1174 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1175 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1176 xhci_queue_configure_endpoint(xhci,
1177 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1178 false);
1179 xhci_ring_cmd_db(xhci);
1180 } else {
1181 /* Clear our internal halted state */
1182 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1183 }
1184 }
1185
1186 /* Complete the command and detele it from the devcie's command queue.
1187 */
1188 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1189 struct xhci_command *command, u32 status)
1190 {
1191 command->status = status;
1192 list_del(&command->cmd_list);
1193 if (command->completion)
1194 complete(command->completion);
1195 else
1196 xhci_free_command(xhci, command);
1197 }
1198
1199
1200 /* Check to see if a command in the device's command queue matches this one.
1201 * Signal the completion or free the command, and return 1. Return 0 if the
1202 * completed command isn't at the head of the command list.
1203 */
1204 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1205 struct xhci_virt_device *virt_dev,
1206 struct xhci_event_cmd *event)
1207 {
1208 struct xhci_command *command;
1209
1210 if (list_empty(&virt_dev->cmd_list))
1211 return 0;
1212
1213 command = list_entry(virt_dev->cmd_list.next,
1214 struct xhci_command, cmd_list);
1215 if (xhci->cmd_ring->dequeue != command->command_trb)
1216 return 0;
1217
1218 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1219 GET_COMP_CODE(le32_to_cpu(event->status)));
1220 return 1;
1221 }
1222
1223 /*
1224 * Finding the command trb need to be cancelled and modifying it to
1225 * NO OP command. And if the command is in device's command wait
1226 * list, finishing and freeing it.
1227 *
1228 * If we can't find the command trb, we think it had already been
1229 * executed.
1230 */
1231 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1232 {
1233 struct xhci_segment *cur_seg;
1234 union xhci_trb *cmd_trb;
1235 u32 cycle_state;
1236
1237 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1238 return;
1239
1240 /* find the current segment of command ring */
1241 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1242 xhci->cmd_ring->dequeue, &cycle_state);
1243
1244 if (!cur_seg) {
1245 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1246 xhci->cmd_ring->dequeue,
1247 (unsigned long long)
1248 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1249 xhci->cmd_ring->dequeue));
1250 xhci_debug_ring(xhci, xhci->cmd_ring);
1251 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1252 return;
1253 }
1254
1255 /* find the command trb matched by cd from command ring */
1256 for (cmd_trb = xhci->cmd_ring->dequeue;
1257 cmd_trb != xhci->cmd_ring->enqueue;
1258 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1259 /* If the trb is link trb, continue */
1260 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1261 continue;
1262
1263 if (cur_cd->cmd_trb == cmd_trb) {
1264
1265 /* If the command in device's command list, we should
1266 * finish it and free the command structure.
1267 */
1268 if (cur_cd->command)
1269 xhci_complete_cmd_in_cmd_wait_list(xhci,
1270 cur_cd->command, COMP_CMD_STOP);
1271
1272 /* get cycle state from the origin command trb */
1273 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1274 & TRB_CYCLE;
1275
1276 /* modify the command trb to NO OP command */
1277 cmd_trb->generic.field[0] = 0;
1278 cmd_trb->generic.field[1] = 0;
1279 cmd_trb->generic.field[2] = 0;
1280 cmd_trb->generic.field[3] = cpu_to_le32(
1281 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1282 break;
1283 }
1284 }
1285 }
1286
1287 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1288 {
1289 struct xhci_cd *cur_cd, *next_cd;
1290
1291 if (list_empty(&xhci->cancel_cmd_list))
1292 return;
1293
1294 list_for_each_entry_safe(cur_cd, next_cd,
1295 &xhci->cancel_cmd_list, cancel_cmd_list) {
1296 xhci_cmd_to_noop(xhci, cur_cd);
1297 list_del(&cur_cd->cancel_cmd_list);
1298 kfree(cur_cd);
1299 }
1300 }
1301
1302 /*
1303 * traversing the cancel_cmd_list. If the command descriptor according
1304 * to cmd_trb is found, the function free it and return 1, otherwise
1305 * return 0.
1306 */
1307 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1308 union xhci_trb *cmd_trb)
1309 {
1310 struct xhci_cd *cur_cd, *next_cd;
1311
1312 if (list_empty(&xhci->cancel_cmd_list))
1313 return 0;
1314
1315 list_for_each_entry_safe(cur_cd, next_cd,
1316 &xhci->cancel_cmd_list, cancel_cmd_list) {
1317 if (cur_cd->cmd_trb == cmd_trb) {
1318 if (cur_cd->command)
1319 xhci_complete_cmd_in_cmd_wait_list(xhci,
1320 cur_cd->command, COMP_CMD_STOP);
1321 list_del(&cur_cd->cancel_cmd_list);
1322 kfree(cur_cd);
1323 return 1;
1324 }
1325 }
1326
1327 return 0;
1328 }
1329
1330 /*
1331 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1332 * trb pointed by the command ring dequeue pointer is the trb we want to
1333 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1334 * traverse the cancel_cmd_list to trun the all of the commands according
1335 * to command descriptor to NO-OP trb.
1336 */
1337 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1338 int cmd_trb_comp_code)
1339 {
1340 int cur_trb_is_good = 0;
1341
1342 /* Searching the cmd trb pointed by the command ring dequeue
1343 * pointer in command descriptor list. If it is found, free it.
1344 */
1345 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1346 xhci->cmd_ring->dequeue);
1347
1348 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1349 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1350 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1351 /* traversing the cancel_cmd_list and canceling
1352 * the command according to command descriptor
1353 */
1354 xhci_cancel_cmd_in_cd_list(xhci);
1355
1356 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1357 /*
1358 * ring command ring doorbell again to restart the
1359 * command ring
1360 */
1361 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1362 xhci_ring_cmd_db(xhci);
1363 }
1364 return cur_trb_is_good;
1365 }
1366
1367 static void handle_cmd_completion(struct xhci_hcd *xhci,
1368 struct xhci_event_cmd *event)
1369 {
1370 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1371 u64 cmd_dma;
1372 dma_addr_t cmd_dequeue_dma;
1373 struct xhci_input_control_ctx *ctrl_ctx;
1374 struct xhci_virt_device *virt_dev;
1375 unsigned int ep_index;
1376 struct xhci_ring *ep_ring;
1377 unsigned int ep_state;
1378
1379 cmd_dma = le64_to_cpu(event->cmd_trb);
1380 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1381 xhci->cmd_ring->dequeue);
1382 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1383 if (cmd_dequeue_dma == 0) {
1384 xhci->error_bitmask |= 1 << 4;
1385 return;
1386 }
1387 /* Does the DMA address match our internal dequeue pointer address? */
1388 if (cmd_dma != (u64) cmd_dequeue_dma) {
1389 xhci->error_bitmask |= 1 << 5;
1390 return;
1391 }
1392
1393 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) ||
1394 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) {
1395 /* If the return value is 0, we think the trb pointed by
1396 * command ring dequeue pointer is a good trb. The good
1397 * trb means we don't want to cancel the trb, but it have
1398 * been stopped by host. So we should handle it normally.
1399 * Otherwise, driver should invoke inc_deq() and return.
1400 */
1401 if (handle_stopped_cmd_ring(xhci,
1402 GET_COMP_CODE(le32_to_cpu(event->status)))) {
1403 inc_deq(xhci, xhci->cmd_ring);
1404 return;
1405 }
1406 /* There is no command to handle if we get a stop event when the
1407 * command ring is empty, event->cmd_trb points to the next
1408 * unset command
1409 */
1410 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1411 return;
1412 }
1413
1414 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1415 & TRB_TYPE_BITMASK) {
1416 case TRB_TYPE(TRB_ENABLE_SLOT):
1417 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1418 xhci->slot_id = slot_id;
1419 else
1420 xhci->slot_id = 0;
1421 complete(&xhci->addr_dev);
1422 break;
1423 case TRB_TYPE(TRB_DISABLE_SLOT):
1424 if (xhci->devs[slot_id]) {
1425 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1426 /* Delete default control endpoint resources */
1427 xhci_free_device_endpoint_resources(xhci,
1428 xhci->devs[slot_id], true);
1429 xhci_free_virt_device(xhci, slot_id);
1430 }
1431 break;
1432 case TRB_TYPE(TRB_CONFIG_EP):
1433 virt_dev = xhci->devs[slot_id];
1434 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1435 break;
1436 /*
1437 * Configure endpoint commands can come from the USB core
1438 * configuration or alt setting changes, or because the HW
1439 * needed an extra configure endpoint command after a reset
1440 * endpoint command or streams were being configured.
1441 * If the command was for a halted endpoint, the xHCI driver
1442 * is not waiting on the configure endpoint command.
1443 */
1444 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1445 virt_dev->in_ctx);
1446 /* Input ctx add_flags are the endpoint index plus one */
1447 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1448 /* A usb_set_interface() call directly after clearing a halted
1449 * condition may race on this quirky hardware. Not worth
1450 * worrying about, since this is prototype hardware. Not sure
1451 * if this will work for streams, but streams support was
1452 * untested on this prototype.
1453 */
1454 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1455 ep_index != (unsigned int) -1 &&
1456 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1457 le32_to_cpu(ctrl_ctx->drop_flags)) {
1458 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1459 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1460 if (!(ep_state & EP_HALTED))
1461 goto bandwidth_change;
1462 xhci_dbg(xhci, "Completed config ep cmd - "
1463 "last ep index = %d, state = %d\n",
1464 ep_index, ep_state);
1465 /* Clear internal halted state and restart ring(s) */
1466 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1467 ~EP_HALTED;
1468 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1469 break;
1470 }
1471 bandwidth_change:
1472 xhci_dbg(xhci, "Completed config ep cmd\n");
1473 xhci->devs[slot_id]->cmd_status =
1474 GET_COMP_CODE(le32_to_cpu(event->status));
1475 complete(&xhci->devs[slot_id]->cmd_completion);
1476 break;
1477 case TRB_TYPE(TRB_EVAL_CONTEXT):
1478 virt_dev = xhci->devs[slot_id];
1479 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1480 break;
1481 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1482 complete(&xhci->devs[slot_id]->cmd_completion);
1483 break;
1484 case TRB_TYPE(TRB_ADDR_DEV):
1485 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1486 complete(&xhci->addr_dev);
1487 break;
1488 case TRB_TYPE(TRB_STOP_RING):
1489 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1490 break;
1491 case TRB_TYPE(TRB_SET_DEQ):
1492 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1493 break;
1494 case TRB_TYPE(TRB_CMD_NOOP):
1495 break;
1496 case TRB_TYPE(TRB_RESET_EP):
1497 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1498 break;
1499 case TRB_TYPE(TRB_RESET_DEV):
1500 xhci_dbg(xhci, "Completed reset device command.\n");
1501 slot_id = TRB_TO_SLOT_ID(
1502 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1503 virt_dev = xhci->devs[slot_id];
1504 if (virt_dev)
1505 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1506 else
1507 xhci_warn(xhci, "Reset device command completion "
1508 "for disabled slot %u\n", slot_id);
1509 break;
1510 case TRB_TYPE(TRB_NEC_GET_FW):
1511 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1512 xhci->error_bitmask |= 1 << 6;
1513 break;
1514 }
1515 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1516 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1517 NEC_FW_MINOR(le32_to_cpu(event->status)));
1518 break;
1519 default:
1520 /* Skip over unknown commands on the event ring */
1521 xhci->error_bitmask |= 1 << 6;
1522 break;
1523 }
1524 inc_deq(xhci, xhci->cmd_ring);
1525 }
1526
1527 static void handle_vendor_event(struct xhci_hcd *xhci,
1528 union xhci_trb *event)
1529 {
1530 u32 trb_type;
1531
1532 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1533 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1534 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1535 handle_cmd_completion(xhci, &event->event_cmd);
1536 }
1537
1538 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1539 * port registers -- USB 3.0 and USB 2.0).
1540 *
1541 * Returns a zero-based port number, which is suitable for indexing into each of
1542 * the split roothubs' port arrays and bus state arrays.
1543 * Add one to it in order to call xhci_find_slot_id_by_port.
1544 */
1545 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1546 struct xhci_hcd *xhci, u32 port_id)
1547 {
1548 unsigned int i;
1549 unsigned int num_similar_speed_ports = 0;
1550
1551 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1552 * and usb2_ports are 0-based indexes. Count the number of similar
1553 * speed ports, up to 1 port before this port.
1554 */
1555 for (i = 0; i < (port_id - 1); i++) {
1556 u8 port_speed = xhci->port_array[i];
1557
1558 /*
1559 * Skip ports that don't have known speeds, or have duplicate
1560 * Extended Capabilities port speed entries.
1561 */
1562 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1563 continue;
1564
1565 /*
1566 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1567 * 1.1 ports are under the USB 2.0 hub. If the port speed
1568 * matches the device speed, it's a similar speed port.
1569 */
1570 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1571 num_similar_speed_ports++;
1572 }
1573 return num_similar_speed_ports;
1574 }
1575
1576 static void handle_device_notification(struct xhci_hcd *xhci,
1577 union xhci_trb *event)
1578 {
1579 u32 slot_id;
1580 struct usb_device *udev;
1581
1582 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1583 if (!xhci->devs[slot_id]) {
1584 xhci_warn(xhci, "Device Notification event for "
1585 "unused slot %u\n", slot_id);
1586 return;
1587 }
1588
1589 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1590 slot_id);
1591 udev = xhci->devs[slot_id]->udev;
1592 if (udev && udev->parent)
1593 usb_wakeup_notification(udev->parent, udev->portnum);
1594 }
1595
1596 static void handle_port_status(struct xhci_hcd *xhci,
1597 union xhci_trb *event)
1598 {
1599 struct usb_hcd *hcd;
1600 u32 port_id;
1601 u32 temp, temp1;
1602 int max_ports;
1603 int slot_id;
1604 unsigned int faked_port_index;
1605 u8 major_revision;
1606 struct xhci_bus_state *bus_state;
1607 __le32 __iomem **port_array;
1608 bool bogus_port_status = false;
1609
1610 /* Port status change events always have a successful completion code */
1611 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1612 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1613 xhci->error_bitmask |= 1 << 8;
1614 }
1615 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1616 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1617
1618 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1619 if ((port_id <= 0) || (port_id > max_ports)) {
1620 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1621 inc_deq(xhci, xhci->event_ring);
1622 return;
1623 }
1624
1625 /* Figure out which usb_hcd this port is attached to:
1626 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1627 */
1628 major_revision = xhci->port_array[port_id - 1];
1629
1630 /* Find the right roothub. */
1631 hcd = xhci_to_hcd(xhci);
1632 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1633 hcd = xhci->shared_hcd;
1634
1635 if (major_revision == 0) {
1636 xhci_warn(xhci, "Event for port %u not in "
1637 "Extended Capabilities, ignoring.\n",
1638 port_id);
1639 bogus_port_status = true;
1640 goto cleanup;
1641 }
1642 if (major_revision == DUPLICATE_ENTRY) {
1643 xhci_warn(xhci, "Event for port %u duplicated in"
1644 "Extended Capabilities, ignoring.\n",
1645 port_id);
1646 bogus_port_status = true;
1647 goto cleanup;
1648 }
1649
1650 /*
1651 * Hardware port IDs reported by a Port Status Change Event include USB
1652 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1653 * resume event, but we first need to translate the hardware port ID
1654 * into the index into the ports on the correct split roothub, and the
1655 * correct bus_state structure.
1656 */
1657 bus_state = &xhci->bus_state[hcd_index(hcd)];
1658 if (hcd->speed == HCD_USB3)
1659 port_array = xhci->usb3_ports;
1660 else
1661 port_array = xhci->usb2_ports;
1662 /* Find the faked port hub number */
1663 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1664 port_id);
1665
1666 temp = xhci_readl(xhci, port_array[faked_port_index]);
1667 if (hcd->state == HC_STATE_SUSPENDED) {
1668 xhci_dbg(xhci, "resume root hub\n");
1669 usb_hcd_resume_root_hub(hcd);
1670 }
1671
1672 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1673 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1674
1675 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1676 if (!(temp1 & CMD_RUN)) {
1677 xhci_warn(xhci, "xHC is not running.\n");
1678 goto cleanup;
1679 }
1680
1681 if (DEV_SUPERSPEED(temp)) {
1682 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1683 /* Set a flag to say the port signaled remote wakeup,
1684 * so we can tell the difference between the end of
1685 * device and host initiated resume.
1686 */
1687 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1688 xhci_test_and_clear_bit(xhci, port_array,
1689 faked_port_index, PORT_PLC);
1690 xhci_set_link_state(xhci, port_array, faked_port_index,
1691 XDEV_U0);
1692 /* Need to wait until the next link state change
1693 * indicates the device is actually in U0.
1694 */
1695 bogus_port_status = true;
1696 goto cleanup;
1697 } else {
1698 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1699 bus_state->resume_done[faked_port_index] = jiffies +
1700 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1701 set_bit(faked_port_index, &bus_state->resuming_ports);
1702 mod_timer(&hcd->rh_timer,
1703 bus_state->resume_done[faked_port_index]);
1704 /* Do the rest in GetPortStatus */
1705 }
1706 }
1707
1708 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1709 DEV_SUPERSPEED(temp)) {
1710 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1711 /* We've just brought the device into U0 through either the
1712 * Resume state after a device remote wakeup, or through the
1713 * U3Exit state after a host-initiated resume. If it's a device
1714 * initiated remote wake, don't pass up the link state change,
1715 * so the roothub behavior is consistent with external
1716 * USB 3.0 hub behavior.
1717 */
1718 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1719 faked_port_index + 1);
1720 if (slot_id && xhci->devs[slot_id])
1721 xhci_ring_device(xhci, slot_id);
1722 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1723 bus_state->port_remote_wakeup &=
1724 ~(1 << faked_port_index);
1725 xhci_test_and_clear_bit(xhci, port_array,
1726 faked_port_index, PORT_PLC);
1727 usb_wakeup_notification(hcd->self.root_hub,
1728 faked_port_index + 1);
1729 bogus_port_status = true;
1730 goto cleanup;
1731 }
1732 }
1733
1734 if (hcd->speed != HCD_USB3)
1735 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1736 PORT_PLC);
1737
1738 cleanup:
1739 /* Update event ring dequeue pointer before dropping the lock */
1740 inc_deq(xhci, xhci->event_ring);
1741
1742 /* Don't make the USB core poll the roothub if we got a bad port status
1743 * change event. Besides, at that point we can't tell which roothub
1744 * (USB 2.0 or USB 3.0) to kick.
1745 */
1746 if (bogus_port_status)
1747 return;
1748
1749 /*
1750 * xHCI port-status-change events occur when the "or" of all the
1751 * status-change bits in the portsc register changes from 0 to 1.
1752 * New status changes won't cause an event if any other change
1753 * bits are still set. When an event occurs, switch over to
1754 * polling to avoid losing status changes.
1755 */
1756 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1757 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1758 spin_unlock(&xhci->lock);
1759 /* Pass this up to the core */
1760 usb_hcd_poll_rh_status(hcd);
1761 spin_lock(&xhci->lock);
1762 }
1763
1764 /*
1765 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1766 * at end_trb, which may be in another segment. If the suspect DMA address is a
1767 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1768 * returns 0.
1769 */
1770 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1771 union xhci_trb *start_trb,
1772 union xhci_trb *end_trb,
1773 dma_addr_t suspect_dma)
1774 {
1775 dma_addr_t start_dma;
1776 dma_addr_t end_seg_dma;
1777 dma_addr_t end_trb_dma;
1778 struct xhci_segment *cur_seg;
1779
1780 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1781 cur_seg = start_seg;
1782
1783 do {
1784 if (start_dma == 0)
1785 return NULL;
1786 /* We may get an event for a Link TRB in the middle of a TD */
1787 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1788 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1789 /* If the end TRB isn't in this segment, this is set to 0 */
1790 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1791
1792 if (end_trb_dma > 0) {
1793 /* The end TRB is in this segment, so suspect should be here */
1794 if (start_dma <= end_trb_dma) {
1795 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1796 return cur_seg;
1797 } else {
1798 /* Case for one segment with
1799 * a TD wrapped around to the top
1800 */
1801 if ((suspect_dma >= start_dma &&
1802 suspect_dma <= end_seg_dma) ||
1803 (suspect_dma >= cur_seg->dma &&
1804 suspect_dma <= end_trb_dma))
1805 return cur_seg;
1806 }
1807 return NULL;
1808 } else {
1809 /* Might still be somewhere in this segment */
1810 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1811 return cur_seg;
1812 }
1813 cur_seg = cur_seg->next;
1814 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1815 } while (cur_seg != start_seg);
1816
1817 return NULL;
1818 }
1819
1820 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1821 unsigned int slot_id, unsigned int ep_index,
1822 unsigned int stream_id,
1823 struct xhci_td *td, union xhci_trb *event_trb)
1824 {
1825 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1826 ep->ep_state |= EP_HALTED;
1827 ep->stopped_td = td;
1828 ep->stopped_trb = event_trb;
1829 ep->stopped_stream = stream_id;
1830
1831 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1832 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1833
1834 ep->stopped_td = NULL;
1835 ep->stopped_trb = NULL;
1836 ep->stopped_stream = 0;
1837
1838 xhci_ring_cmd_db(xhci);
1839 }
1840
1841 /* Check if an error has halted the endpoint ring. The class driver will
1842 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1843 * However, a babble and other errors also halt the endpoint ring, and the class
1844 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1845 * Ring Dequeue Pointer command manually.
1846 */
1847 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1848 struct xhci_ep_ctx *ep_ctx,
1849 unsigned int trb_comp_code)
1850 {
1851 /* TRB completion codes that may require a manual halt cleanup */
1852 if (trb_comp_code == COMP_TX_ERR ||
1853 trb_comp_code == COMP_BABBLE ||
1854 trb_comp_code == COMP_SPLIT_ERR)
1855 /* The 0.96 spec says a babbling control endpoint
1856 * is not halted. The 0.96 spec says it is. Some HW
1857 * claims to be 0.95 compliant, but it halts the control
1858 * endpoint anyway. Check if a babble halted the
1859 * endpoint.
1860 */
1861 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1862 cpu_to_le32(EP_STATE_HALTED))
1863 return 1;
1864
1865 return 0;
1866 }
1867
1868 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1869 {
1870 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1871 /* Vendor defined "informational" completion code,
1872 * treat as not-an-error.
1873 */
1874 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1875 trb_comp_code);
1876 xhci_dbg(xhci, "Treating code as success.\n");
1877 return 1;
1878 }
1879 return 0;
1880 }
1881
1882 /*
1883 * Finish the td processing, remove the td from td list;
1884 * Return 1 if the urb can be given back.
1885 */
1886 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1887 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1888 struct xhci_virt_ep *ep, int *status, bool skip)
1889 {
1890 struct xhci_virt_device *xdev;
1891 struct xhci_ring *ep_ring;
1892 unsigned int slot_id;
1893 int ep_index;
1894 struct urb *urb = NULL;
1895 struct xhci_ep_ctx *ep_ctx;
1896 int ret = 0;
1897 struct urb_priv *urb_priv;
1898 u32 trb_comp_code;
1899
1900 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1901 xdev = xhci->devs[slot_id];
1902 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1903 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1904 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1905 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1906
1907 if (skip)
1908 goto td_cleanup;
1909
1910 if (trb_comp_code == COMP_STOP_INVAL ||
1911 trb_comp_code == COMP_STOP) {
1912 /* The Endpoint Stop Command completion will take care of any
1913 * stopped TDs. A stopped TD may be restarted, so don't update
1914 * the ring dequeue pointer or take this TD off any lists yet.
1915 */
1916 ep->stopped_td = td;
1917 ep->stopped_trb = event_trb;
1918 return 0;
1919 } else {
1920 if (trb_comp_code == COMP_STALL) {
1921 /* The transfer is completed from the driver's
1922 * perspective, but we need to issue a set dequeue
1923 * command for this stalled endpoint to move the dequeue
1924 * pointer past the TD. We can't do that here because
1925 * the halt condition must be cleared first. Let the
1926 * USB class driver clear the stall later.
1927 */
1928 ep->stopped_td = td;
1929 ep->stopped_trb = event_trb;
1930 ep->stopped_stream = ep_ring->stream_id;
1931 } else if (xhci_requires_manual_halt_cleanup(xhci,
1932 ep_ctx, trb_comp_code)) {
1933 /* Other types of errors halt the endpoint, but the
1934 * class driver doesn't call usb_reset_endpoint() unless
1935 * the error is -EPIPE. Clear the halted status in the
1936 * xHCI hardware manually.
1937 */
1938 xhci_cleanup_halted_endpoint(xhci,
1939 slot_id, ep_index, ep_ring->stream_id,
1940 td, event_trb);
1941 } else {
1942 /* Update ring dequeue pointer */
1943 while (ep_ring->dequeue != td->last_trb)
1944 inc_deq(xhci, ep_ring);
1945 inc_deq(xhci, ep_ring);
1946 }
1947
1948 td_cleanup:
1949 /* Clean up the endpoint's TD list */
1950 urb = td->urb;
1951 urb_priv = urb->hcpriv;
1952
1953 /* Do one last check of the actual transfer length.
1954 * If the host controller said we transferred more data than
1955 * the buffer length, urb->actual_length will be a very big
1956 * number (since it's unsigned). Play it safe and say we didn't
1957 * transfer anything.
1958 */
1959 if (urb->actual_length > urb->transfer_buffer_length) {
1960 xhci_warn(xhci, "URB transfer length is wrong, "
1961 "xHC issue? req. len = %u, "
1962 "act. len = %u\n",
1963 urb->transfer_buffer_length,
1964 urb->actual_length);
1965 urb->actual_length = 0;
1966 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1967 *status = -EREMOTEIO;
1968 else
1969 *status = 0;
1970 }
1971 list_del_init(&td->td_list);
1972 /* Was this TD slated to be cancelled but completed anyway? */
1973 if (!list_empty(&td->cancelled_td_list))
1974 list_del_init(&td->cancelled_td_list);
1975
1976 urb_priv->td_cnt++;
1977 /* Giveback the urb when all the tds are completed */
1978 if (urb_priv->td_cnt == urb_priv->length) {
1979 ret = 1;
1980 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1981 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1982 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1983 == 0) {
1984 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1985 usb_amd_quirk_pll_enable();
1986 }
1987 }
1988 }
1989 }
1990
1991 return ret;
1992 }
1993
1994 /*
1995 * Process control tds, update urb status and actual_length.
1996 */
1997 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1998 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1999 struct xhci_virt_ep *ep, int *status)
2000 {
2001 struct xhci_virt_device *xdev;
2002 struct xhci_ring *ep_ring;
2003 unsigned int slot_id;
2004 int ep_index;
2005 struct xhci_ep_ctx *ep_ctx;
2006 u32 trb_comp_code;
2007
2008 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2009 xdev = xhci->devs[slot_id];
2010 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2011 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2012 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2013 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2014
2015 switch (trb_comp_code) {
2016 case COMP_SUCCESS:
2017 if (event_trb == ep_ring->dequeue) {
2018 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2019 "without IOC set??\n");
2020 *status = -ESHUTDOWN;
2021 } else if (event_trb != td->last_trb) {
2022 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2023 "without IOC set??\n");
2024 *status = -ESHUTDOWN;
2025 } else {
2026 *status = 0;
2027 }
2028 break;
2029 case COMP_SHORT_TX:
2030 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2031 *status = -EREMOTEIO;
2032 else
2033 *status = 0;
2034 break;
2035 case COMP_STOP_INVAL:
2036 case COMP_STOP:
2037 return finish_td(xhci, td, event_trb, event, ep, status, false);
2038 default:
2039 if (!xhci_requires_manual_halt_cleanup(xhci,
2040 ep_ctx, trb_comp_code))
2041 break;
2042 xhci_dbg(xhci, "TRB error code %u, "
2043 "halted endpoint index = %u\n",
2044 trb_comp_code, ep_index);
2045 /* else fall through */
2046 case COMP_STALL:
2047 /* Did we transfer part of the data (middle) phase? */
2048 if (event_trb != ep_ring->dequeue &&
2049 event_trb != td->last_trb)
2050 td->urb->actual_length =
2051 td->urb->transfer_buffer_length -
2052 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2053 else
2054 td->urb->actual_length = 0;
2055
2056 xhci_cleanup_halted_endpoint(xhci,
2057 slot_id, ep_index, 0, td, event_trb);
2058 return finish_td(xhci, td, event_trb, event, ep, status, true);
2059 }
2060 /*
2061 * Did we transfer any data, despite the errors that might have
2062 * happened? I.e. did we get past the setup stage?
2063 */
2064 if (event_trb != ep_ring->dequeue) {
2065 /* The event was for the status stage */
2066 if (event_trb == td->last_trb) {
2067 if (td->urb_length_set) {
2068 /* Don't overwrite a previously set error code
2069 */
2070 if ((*status == -EINPROGRESS || *status == 0) &&
2071 (td->urb->transfer_flags
2072 & URB_SHORT_NOT_OK))
2073 /* Did we already see a short data
2074 * stage? */
2075 *status = -EREMOTEIO;
2076 } else {
2077 td->urb->actual_length =
2078 td->urb->transfer_buffer_length;
2079 }
2080 } else {
2081 /*
2082 * Maybe the event was for the data stage? If so, update
2083 * already the actual_length of the URB and flag it as
2084 * set, so that it is not overwritten in the event for
2085 * the last TRB.
2086 */
2087 td->urb_length_set = true;
2088 td->urb->actual_length =
2089 td->urb->transfer_buffer_length -
2090 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2091 xhci_dbg(xhci, "Waiting for status "
2092 "stage event\n");
2093 return 0;
2094 }
2095 }
2096
2097 return finish_td(xhci, td, event_trb, event, ep, status, false);
2098 }
2099
2100 /*
2101 * Process isochronous tds, update urb packet status and actual_length.
2102 */
2103 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2104 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2105 struct xhci_virt_ep *ep, int *status)
2106 {
2107 struct xhci_ring *ep_ring;
2108 struct urb_priv *urb_priv;
2109 int idx;
2110 int len = 0;
2111 union xhci_trb *cur_trb;
2112 struct xhci_segment *cur_seg;
2113 struct usb_iso_packet_descriptor *frame;
2114 u32 trb_comp_code;
2115 bool skip_td = false;
2116
2117 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2118 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2119 urb_priv = td->urb->hcpriv;
2120 idx = urb_priv->td_cnt;
2121 frame = &td->urb->iso_frame_desc[idx];
2122
2123 /* handle completion code */
2124 switch (trb_comp_code) {
2125 case COMP_SUCCESS:
2126 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2127 frame->status = 0;
2128 break;
2129 }
2130 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2131 trb_comp_code = COMP_SHORT_TX;
2132 case COMP_SHORT_TX:
2133 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2134 -EREMOTEIO : 0;
2135 break;
2136 case COMP_BW_OVER:
2137 frame->status = -ECOMM;
2138 skip_td = true;
2139 break;
2140 case COMP_BUFF_OVER:
2141 case COMP_BABBLE:
2142 frame->status = -EOVERFLOW;
2143 skip_td = true;
2144 break;
2145 case COMP_DEV_ERR:
2146 case COMP_STALL:
2147 frame->status = -EPROTO;
2148 skip_td = true;
2149 break;
2150 case COMP_TX_ERR:
2151 frame->status = -EPROTO;
2152 if (event_trb != td->last_trb)
2153 return 0;
2154 skip_td = true;
2155 break;
2156 case COMP_STOP:
2157 case COMP_STOP_INVAL:
2158 break;
2159 default:
2160 frame->status = -1;
2161 break;
2162 }
2163
2164 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2165 frame->actual_length = frame->length;
2166 td->urb->actual_length += frame->length;
2167 } else {
2168 for (cur_trb = ep_ring->dequeue,
2169 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2170 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2171 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2172 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2173 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2174 }
2175 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2176 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2177
2178 if (trb_comp_code != COMP_STOP_INVAL) {
2179 frame->actual_length = len;
2180 td->urb->actual_length += len;
2181 }
2182 }
2183
2184 return finish_td(xhci, td, event_trb, event, ep, status, false);
2185 }
2186
2187 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2188 struct xhci_transfer_event *event,
2189 struct xhci_virt_ep *ep, int *status)
2190 {
2191 struct xhci_ring *ep_ring;
2192 struct urb_priv *urb_priv;
2193 struct usb_iso_packet_descriptor *frame;
2194 int idx;
2195
2196 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2197 urb_priv = td->urb->hcpriv;
2198 idx = urb_priv->td_cnt;
2199 frame = &td->urb->iso_frame_desc[idx];
2200
2201 /* The transfer is partly done. */
2202 frame->status = -EXDEV;
2203
2204 /* calc actual length */
2205 frame->actual_length = 0;
2206
2207 /* Update ring dequeue pointer */
2208 while (ep_ring->dequeue != td->last_trb)
2209 inc_deq(xhci, ep_ring);
2210 inc_deq(xhci, ep_ring);
2211
2212 return finish_td(xhci, td, NULL, event, ep, status, true);
2213 }
2214
2215 /*
2216 * Process bulk and interrupt tds, update urb status and actual_length.
2217 */
2218 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2219 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2220 struct xhci_virt_ep *ep, int *status)
2221 {
2222 struct xhci_ring *ep_ring;
2223 union xhci_trb *cur_trb;
2224 struct xhci_segment *cur_seg;
2225 u32 trb_comp_code;
2226
2227 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2228 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2229
2230 switch (trb_comp_code) {
2231 case COMP_SUCCESS:
2232 /* Double check that the HW transferred everything. */
2233 if (event_trb != td->last_trb ||
2234 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2235 xhci_warn(xhci, "WARN Successful completion "
2236 "on short TX\n");
2237 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2238 *status = -EREMOTEIO;
2239 else
2240 *status = 0;
2241 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2242 trb_comp_code = COMP_SHORT_TX;
2243 } else {
2244 *status = 0;
2245 }
2246 break;
2247 case COMP_SHORT_TX:
2248 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2249 *status = -EREMOTEIO;
2250 else
2251 *status = 0;
2252 break;
2253 default:
2254 /* Others already handled above */
2255 break;
2256 }
2257 if (trb_comp_code == COMP_SHORT_TX)
2258 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2259 "%d bytes untransferred\n",
2260 td->urb->ep->desc.bEndpointAddress,
2261 td->urb->transfer_buffer_length,
2262 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2263 /* Fast path - was this the last TRB in the TD for this URB? */
2264 if (event_trb == td->last_trb) {
2265 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2266 td->urb->actual_length =
2267 td->urb->transfer_buffer_length -
2268 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2269 if (td->urb->transfer_buffer_length <
2270 td->urb->actual_length) {
2271 xhci_warn(xhci, "HC gave bad length "
2272 "of %d bytes left\n",
2273 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2274 td->urb->actual_length = 0;
2275 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2276 *status = -EREMOTEIO;
2277 else
2278 *status = 0;
2279 }
2280 /* Don't overwrite a previously set error code */
2281 if (*status == -EINPROGRESS) {
2282 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2283 *status = -EREMOTEIO;
2284 else
2285 *status = 0;
2286 }
2287 } else {
2288 td->urb->actual_length =
2289 td->urb->transfer_buffer_length;
2290 /* Ignore a short packet completion if the
2291 * untransferred length was zero.
2292 */
2293 if (*status == -EREMOTEIO)
2294 *status = 0;
2295 }
2296 } else {
2297 /* Slow path - walk the list, starting from the dequeue
2298 * pointer, to get the actual length transferred.
2299 */
2300 td->urb->actual_length = 0;
2301 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2302 cur_trb != event_trb;
2303 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2304 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2305 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2306 td->urb->actual_length +=
2307 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2308 }
2309 /* If the ring didn't stop on a Link or No-op TRB, add
2310 * in the actual bytes transferred from the Normal TRB
2311 */
2312 if (trb_comp_code != COMP_STOP_INVAL)
2313 td->urb->actual_length +=
2314 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2315 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2316 }
2317
2318 return finish_td(xhci, td, event_trb, event, ep, status, false);
2319 }
2320
2321 /*
2322 * If this function returns an error condition, it means it got a Transfer
2323 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2324 * At this point, the host controller is probably hosed and should be reset.
2325 */
2326 static int handle_tx_event(struct xhci_hcd *xhci,
2327 struct xhci_transfer_event *event)
2328 __releases(&xhci->lock)
2329 __acquires(&xhci->lock)
2330 {
2331 struct xhci_virt_device *xdev;
2332 struct xhci_virt_ep *ep;
2333 struct xhci_ring *ep_ring;
2334 unsigned int slot_id;
2335 int ep_index;
2336 struct xhci_td *td = NULL;
2337 dma_addr_t event_dma;
2338 struct xhci_segment *event_seg;
2339 union xhci_trb *event_trb;
2340 struct urb *urb = NULL;
2341 int status = -EINPROGRESS;
2342 struct urb_priv *urb_priv;
2343 struct xhci_ep_ctx *ep_ctx;
2344 struct list_head *tmp;
2345 u32 trb_comp_code;
2346 int ret = 0;
2347 int td_num = 0;
2348
2349 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2350 xdev = xhci->devs[slot_id];
2351 if (!xdev) {
2352 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2353 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2354 (unsigned long long) xhci_trb_virt_to_dma(
2355 xhci->event_ring->deq_seg,
2356 xhci->event_ring->dequeue),
2357 lower_32_bits(le64_to_cpu(event->buffer)),
2358 upper_32_bits(le64_to_cpu(event->buffer)),
2359 le32_to_cpu(event->transfer_len),
2360 le32_to_cpu(event->flags));
2361 xhci_dbg(xhci, "Event ring:\n");
2362 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2363 return -ENODEV;
2364 }
2365
2366 /* Endpoint ID is 1 based, our index is zero based */
2367 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2368 ep = &xdev->eps[ep_index];
2369 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2370 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2371 if (!ep_ring ||
2372 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2373 EP_STATE_DISABLED) {
2374 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2375 "or incorrect stream ring\n");
2376 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2377 (unsigned long long) xhci_trb_virt_to_dma(
2378 xhci->event_ring->deq_seg,
2379 xhci->event_ring->dequeue),
2380 lower_32_bits(le64_to_cpu(event->buffer)),
2381 upper_32_bits(le64_to_cpu(event->buffer)),
2382 le32_to_cpu(event->transfer_len),
2383 le32_to_cpu(event->flags));
2384 xhci_dbg(xhci, "Event ring:\n");
2385 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2386 return -ENODEV;
2387 }
2388
2389 /* Count current td numbers if ep->skip is set */
2390 if (ep->skip) {
2391 list_for_each(tmp, &ep_ring->td_list)
2392 td_num++;
2393 }
2394
2395 event_dma = le64_to_cpu(event->buffer);
2396 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2397 /* Look for common error cases */
2398 switch (trb_comp_code) {
2399 /* Skip codes that require special handling depending on
2400 * transfer type
2401 */
2402 case COMP_SUCCESS:
2403 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2404 break;
2405 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2406 trb_comp_code = COMP_SHORT_TX;
2407 else
2408 xhci_warn_ratelimited(xhci,
2409 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2410 case COMP_SHORT_TX:
2411 break;
2412 case COMP_STOP:
2413 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2414 break;
2415 case COMP_STOP_INVAL:
2416 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2417 break;
2418 case COMP_STALL:
2419 xhci_dbg(xhci, "Stalled endpoint\n");
2420 ep->ep_state |= EP_HALTED;
2421 status = -EPIPE;
2422 break;
2423 case COMP_TRB_ERR:
2424 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2425 status = -EILSEQ;
2426 break;
2427 case COMP_SPLIT_ERR:
2428 case COMP_TX_ERR:
2429 xhci_dbg(xhci, "Transfer error on endpoint\n");
2430 status = -EPROTO;
2431 break;
2432 case COMP_BABBLE:
2433 xhci_dbg(xhci, "Babble error on endpoint\n");
2434 status = -EOVERFLOW;
2435 break;
2436 case COMP_DB_ERR:
2437 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2438 status = -ENOSR;
2439 break;
2440 case COMP_BW_OVER:
2441 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2442 break;
2443 case COMP_BUFF_OVER:
2444 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2445 break;
2446 case COMP_UNDERRUN:
2447 /*
2448 * When the Isoch ring is empty, the xHC will generate
2449 * a Ring Overrun Event for IN Isoch endpoint or Ring
2450 * Underrun Event for OUT Isoch endpoint.
2451 */
2452 xhci_dbg(xhci, "underrun event on endpoint\n");
2453 if (!list_empty(&ep_ring->td_list))
2454 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2455 "still with TDs queued?\n",
2456 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2457 ep_index);
2458 goto cleanup;
2459 case COMP_OVERRUN:
2460 xhci_dbg(xhci, "overrun event on endpoint\n");
2461 if (!list_empty(&ep_ring->td_list))
2462 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2463 "still with TDs queued?\n",
2464 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2465 ep_index);
2466 goto cleanup;
2467 case COMP_DEV_ERR:
2468 xhci_warn(xhci, "WARN: detect an incompatible device");
2469 status = -EPROTO;
2470 break;
2471 case COMP_MISSED_INT:
2472 /*
2473 * When encounter missed service error, one or more isoc tds
2474 * may be missed by xHC.
2475 * Set skip flag of the ep_ring; Complete the missed tds as
2476 * short transfer when process the ep_ring next time.
2477 */
2478 ep->skip = true;
2479 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2480 goto cleanup;
2481 default:
2482 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2483 status = 0;
2484 break;
2485 }
2486 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2487 "busted\n");
2488 goto cleanup;
2489 }
2490
2491 do {
2492 /* This TRB should be in the TD at the head of this ring's
2493 * TD list.
2494 */
2495 if (list_empty(&ep_ring->td_list)) {
2496 /*
2497 * A stopped endpoint may generate an extra completion
2498 * event if the device was suspended. Don't print
2499 * warnings.
2500 */
2501 if (!(trb_comp_code == COMP_STOP ||
2502 trb_comp_code == COMP_STOP_INVAL)) {
2503 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2504 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2505 ep_index);
2506 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2507 (le32_to_cpu(event->flags) &
2508 TRB_TYPE_BITMASK)>>10);
2509 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2510 }
2511 if (ep->skip) {
2512 ep->skip = false;
2513 xhci_dbg(xhci, "td_list is empty while skip "
2514 "flag set. Clear skip flag.\n");
2515 }
2516 ret = 0;
2517 goto cleanup;
2518 }
2519
2520 /* We've skipped all the TDs on the ep ring when ep->skip set */
2521 if (ep->skip && td_num == 0) {
2522 ep->skip = false;
2523 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2524 "Clear skip flag.\n");
2525 ret = 0;
2526 goto cleanup;
2527 }
2528
2529 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2530 if (ep->skip)
2531 td_num--;
2532
2533 /* Is this a TRB in the currently executing TD? */
2534 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2535 td->last_trb, event_dma);
2536
2537 /*
2538 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2539 * is not in the current TD pointed by ep_ring->dequeue because
2540 * that the hardware dequeue pointer still at the previous TRB
2541 * of the current TD. The previous TRB maybe a Link TD or the
2542 * last TRB of the previous TD. The command completion handle
2543 * will take care the rest.
2544 */
2545 if (!event_seg && (trb_comp_code == COMP_STOP ||
2546 trb_comp_code == COMP_STOP_INVAL)) {
2547 ret = 0;
2548 goto cleanup;
2549 }
2550
2551 if (!event_seg) {
2552 if (!ep->skip ||
2553 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2554 /* Some host controllers give a spurious
2555 * successful event after a short transfer.
2556 * Ignore it.
2557 */
2558 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2559 ep_ring->last_td_was_short) {
2560 ep_ring->last_td_was_short = false;
2561 ret = 0;
2562 goto cleanup;
2563 }
2564 /* HC is busted, give up! */
2565 xhci_err(xhci,
2566 "ERROR Transfer event TRB DMA ptr not "
2567 "part of current TD\n");
2568 return -ESHUTDOWN;
2569 }
2570
2571 ret = skip_isoc_td(xhci, td, event, ep, &status);
2572 goto cleanup;
2573 }
2574 if (trb_comp_code == COMP_SHORT_TX)
2575 ep_ring->last_td_was_short = true;
2576 else
2577 ep_ring->last_td_was_short = false;
2578
2579 if (ep->skip) {
2580 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2581 ep->skip = false;
2582 }
2583
2584 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2585 sizeof(*event_trb)];
2586 /*
2587 * No-op TRB should not trigger interrupts.
2588 * If event_trb is a no-op TRB, it means the
2589 * corresponding TD has been cancelled. Just ignore
2590 * the TD.
2591 */
2592 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2593 xhci_dbg(xhci,
2594 "event_trb is a no-op TRB. Skip it\n");
2595 goto cleanup;
2596 }
2597
2598 /* Now update the urb's actual_length and give back to
2599 * the core
2600 */
2601 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2602 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2603 &status);
2604 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2605 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2606 &status);
2607 else
2608 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2609 ep, &status);
2610
2611 cleanup:
2612 /*
2613 * Do not update event ring dequeue pointer if ep->skip is set.
2614 * Will roll back to continue process missed tds.
2615 */
2616 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2617 inc_deq(xhci, xhci->event_ring);
2618 }
2619
2620 if (ret) {
2621 urb = td->urb;
2622 urb_priv = urb->hcpriv;
2623 /* Leave the TD around for the reset endpoint function
2624 * to use(but only if it's not a control endpoint,
2625 * since we already queued the Set TR dequeue pointer
2626 * command for stalled control endpoints).
2627 */
2628 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2629 (trb_comp_code != COMP_STALL &&
2630 trb_comp_code != COMP_BABBLE))
2631 xhci_urb_free_priv(xhci, urb_priv);
2632 else
2633 kfree(urb_priv);
2634
2635 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2636 if ((urb->actual_length != urb->transfer_buffer_length &&
2637 (urb->transfer_flags &
2638 URB_SHORT_NOT_OK)) ||
2639 (status != 0 &&
2640 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2641 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2642 "expected = %d, status = %d\n",
2643 urb, urb->actual_length,
2644 urb->transfer_buffer_length,
2645 status);
2646 spin_unlock(&xhci->lock);
2647 /* EHCI, UHCI, and OHCI always unconditionally set the
2648 * urb->status of an isochronous endpoint to 0.
2649 */
2650 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2651 status = 0;
2652 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2653 spin_lock(&xhci->lock);
2654 }
2655
2656 /*
2657 * If ep->skip is set, it means there are missed tds on the
2658 * endpoint ring need to take care of.
2659 * Process them as short transfer until reach the td pointed by
2660 * the event.
2661 */
2662 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2663
2664 return 0;
2665 }
2666
2667 /*
2668 * This function handles all OS-owned events on the event ring. It may drop
2669 * xhci->lock between event processing (e.g. to pass up port status changes).
2670 * Returns >0 for "possibly more events to process" (caller should call again),
2671 * otherwise 0 if done. In future, <0 returns should indicate error code.
2672 */
2673 static int xhci_handle_event(struct xhci_hcd *xhci)
2674 {
2675 union xhci_trb *event;
2676 int update_ptrs = 1;
2677 int ret;
2678
2679 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2680 xhci->error_bitmask |= 1 << 1;
2681 return 0;
2682 }
2683
2684 event = xhci->event_ring->dequeue;
2685 /* Does the HC or OS own the TRB? */
2686 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2687 xhci->event_ring->cycle_state) {
2688 xhci->error_bitmask |= 1 << 2;
2689 return 0;
2690 }
2691
2692 /*
2693 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2694 * speculative reads of the event's flags/data below.
2695 */
2696 rmb();
2697 /* FIXME: Handle more event types. */
2698 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2699 case TRB_TYPE(TRB_COMPLETION):
2700 handle_cmd_completion(xhci, &event->event_cmd);
2701 break;
2702 case TRB_TYPE(TRB_PORT_STATUS):
2703 handle_port_status(xhci, event);
2704 update_ptrs = 0;
2705 break;
2706 case TRB_TYPE(TRB_TRANSFER):
2707 ret = handle_tx_event(xhci, &event->trans_event);
2708 if (ret < 0)
2709 xhci->error_bitmask |= 1 << 9;
2710 else
2711 update_ptrs = 0;
2712 break;
2713 case TRB_TYPE(TRB_DEV_NOTE):
2714 handle_device_notification(xhci, event);
2715 break;
2716 default:
2717 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2718 TRB_TYPE(48))
2719 handle_vendor_event(xhci, event);
2720 else
2721 xhci->error_bitmask |= 1 << 3;
2722 }
2723 /* Any of the above functions may drop and re-acquire the lock, so check
2724 * to make sure a watchdog timer didn't mark the host as non-responsive.
2725 */
2726 if (xhci->xhc_state & XHCI_STATE_DYING) {
2727 xhci_dbg(xhci, "xHCI host dying, returning from "
2728 "event handler.\n");
2729 return 0;
2730 }
2731
2732 if (update_ptrs)
2733 /* Update SW event ring dequeue pointer */
2734 inc_deq(xhci, xhci->event_ring);
2735
2736 /* Are there more items on the event ring? Caller will call us again to
2737 * check.
2738 */
2739 return 1;
2740 }
2741
2742 /*
2743 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2744 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2745 * indicators of an event TRB error, but we check the status *first* to be safe.
2746 */
2747 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2748 {
2749 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2750 u32 status;
2751 u64 temp_64;
2752 union xhci_trb *event_ring_deq;
2753 dma_addr_t deq;
2754
2755 spin_lock(&xhci->lock);
2756 /* Check if the xHC generated the interrupt, or the irq is shared */
2757 status = xhci_readl(xhci, &xhci->op_regs->status);
2758 if (status == 0xffffffff)
2759 goto hw_died;
2760
2761 if (!(status & STS_EINT)) {
2762 spin_unlock(&xhci->lock);
2763 return IRQ_NONE;
2764 }
2765 if (status & STS_FATAL) {
2766 xhci_warn(xhci, "WARNING: Host System Error\n");
2767 xhci_halt(xhci);
2768 hw_died:
2769 spin_unlock(&xhci->lock);
2770 return -ESHUTDOWN;
2771 }
2772
2773 /*
2774 * Clear the op reg interrupt status first,
2775 * so we can receive interrupts from other MSI-X interrupters.
2776 * Write 1 to clear the interrupt status.
2777 */
2778 status |= STS_EINT;
2779 xhci_writel(xhci, status, &xhci->op_regs->status);
2780 /* FIXME when MSI-X is supported and there are multiple vectors */
2781 /* Clear the MSI-X event interrupt status */
2782
2783 if (hcd->irq) {
2784 u32 irq_pending;
2785 /* Acknowledge the PCI interrupt */
2786 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2787 irq_pending |= IMAN_IP;
2788 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2789 }
2790
2791 if (xhci->xhc_state & XHCI_STATE_DYING) {
2792 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2793 "Shouldn't IRQs be disabled?\n");
2794 /* Clear the event handler busy flag (RW1C);
2795 * the event ring should be empty.
2796 */
2797 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2798 xhci_write_64(xhci, temp_64 | ERST_EHB,
2799 &xhci->ir_set->erst_dequeue);
2800 spin_unlock(&xhci->lock);
2801
2802 return IRQ_HANDLED;
2803 }
2804
2805 event_ring_deq = xhci->event_ring->dequeue;
2806 /* FIXME this should be a delayed service routine
2807 * that clears the EHB.
2808 */
2809 while (xhci_handle_event(xhci) > 0) {}
2810
2811 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2812 /* If necessary, update the HW's version of the event ring deq ptr. */
2813 if (event_ring_deq != xhci->event_ring->dequeue) {
2814 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2815 xhci->event_ring->dequeue);
2816 if (deq == 0)
2817 xhci_warn(xhci, "WARN something wrong with SW event "
2818 "ring dequeue ptr.\n");
2819 /* Update HC event ring dequeue pointer */
2820 temp_64 &= ERST_PTR_MASK;
2821 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2822 }
2823
2824 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2825 temp_64 |= ERST_EHB;
2826 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2827
2828 spin_unlock(&xhci->lock);
2829
2830 return IRQ_HANDLED;
2831 }
2832
2833 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2834 {
2835 return xhci_irq(hcd);
2836 }
2837
2838 /**** Endpoint Ring Operations ****/
2839
2840 /*
2841 * Generic function for queueing a TRB on a ring.
2842 * The caller must have checked to make sure there's room on the ring.
2843 *
2844 * @more_trbs_coming: Will you enqueue more TRBs before calling
2845 * prepare_transfer()?
2846 */
2847 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2848 bool more_trbs_coming,
2849 u32 field1, u32 field2, u32 field3, u32 field4)
2850 {
2851 struct xhci_generic_trb *trb;
2852
2853 trb = &ring->enqueue->generic;
2854 trb->field[0] = cpu_to_le32(field1);
2855 trb->field[1] = cpu_to_le32(field2);
2856 trb->field[2] = cpu_to_le32(field3);
2857 trb->field[3] = cpu_to_le32(field4);
2858 inc_enq(xhci, ring, more_trbs_coming);
2859 }
2860
2861 /*
2862 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2863 * FIXME allocate segments if the ring is full.
2864 */
2865 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2866 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2867 {
2868 unsigned int num_trbs_needed;
2869
2870 /* Make sure the endpoint has been added to xHC schedule */
2871 switch (ep_state) {
2872 case EP_STATE_DISABLED:
2873 /*
2874 * USB core changed config/interfaces without notifying us,
2875 * or hardware is reporting the wrong state.
2876 */
2877 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2878 return -ENOENT;
2879 case EP_STATE_ERROR:
2880 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2881 /* FIXME event handling code for error needs to clear it */
2882 /* XXX not sure if this should be -ENOENT or not */
2883 return -EINVAL;
2884 case EP_STATE_HALTED:
2885 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2886 case EP_STATE_STOPPED:
2887 case EP_STATE_RUNNING:
2888 break;
2889 default:
2890 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2891 /*
2892 * FIXME issue Configure Endpoint command to try to get the HC
2893 * back into a known state.
2894 */
2895 return -EINVAL;
2896 }
2897
2898 while (1) {
2899 if (room_on_ring(xhci, ep_ring, num_trbs))
2900 break;
2901
2902 if (ep_ring == xhci->cmd_ring) {
2903 xhci_err(xhci, "Do not support expand command ring\n");
2904 return -ENOMEM;
2905 }
2906
2907 xhci_dbg(xhci, "ERROR no room on ep ring, "
2908 "try ring expansion\n");
2909 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2910 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2911 mem_flags)) {
2912 xhci_err(xhci, "Ring expansion failed\n");
2913 return -ENOMEM;
2914 }
2915 }
2916
2917 if (enqueue_is_link_trb(ep_ring)) {
2918 struct xhci_ring *ring = ep_ring;
2919 union xhci_trb *next;
2920
2921 next = ring->enqueue;
2922
2923 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2924 /* If we're not dealing with 0.95 hardware or isoc rings
2925 * on AMD 0.96 host, clear the chain bit.
2926 */
2927 if (!xhci_link_trb_quirk(xhci) &&
2928 !(ring->type == TYPE_ISOC &&
2929 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2930 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2931 else
2932 next->link.control |= cpu_to_le32(TRB_CHAIN);
2933
2934 wmb();
2935 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2936
2937 /* Toggle the cycle bit after the last ring segment. */
2938 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2939 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2940 }
2941 ring->enq_seg = ring->enq_seg->next;
2942 ring->enqueue = ring->enq_seg->trbs;
2943 next = ring->enqueue;
2944 }
2945 }
2946
2947 return 0;
2948 }
2949
2950 static int prepare_transfer(struct xhci_hcd *xhci,
2951 struct xhci_virt_device *xdev,
2952 unsigned int ep_index,
2953 unsigned int stream_id,
2954 unsigned int num_trbs,
2955 struct urb *urb,
2956 unsigned int td_index,
2957 gfp_t mem_flags)
2958 {
2959 int ret;
2960 struct urb_priv *urb_priv;
2961 struct xhci_td *td;
2962 struct xhci_ring *ep_ring;
2963 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2964
2965 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2966 if (!ep_ring) {
2967 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2968 stream_id);
2969 return -EINVAL;
2970 }
2971
2972 ret = prepare_ring(xhci, ep_ring,
2973 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2974 num_trbs, mem_flags);
2975 if (ret)
2976 return ret;
2977
2978 urb_priv = urb->hcpriv;
2979 td = urb_priv->td[td_index];
2980
2981 INIT_LIST_HEAD(&td->td_list);
2982 INIT_LIST_HEAD(&td->cancelled_td_list);
2983
2984 if (td_index == 0) {
2985 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2986 if (unlikely(ret))
2987 return ret;
2988 }
2989
2990 td->urb = urb;
2991 /* Add this TD to the tail of the endpoint ring's TD list */
2992 list_add_tail(&td->td_list, &ep_ring->td_list);
2993 td->start_seg = ep_ring->enq_seg;
2994 td->first_trb = ep_ring->enqueue;
2995
2996 urb_priv->td[td_index] = td;
2997
2998 return 0;
2999 }
3000
3001 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
3002 {
3003 int num_sgs, num_trbs, running_total, temp, i;
3004 struct scatterlist *sg;
3005
3006 sg = NULL;
3007 num_sgs = urb->num_mapped_sgs;
3008 temp = urb->transfer_buffer_length;
3009
3010 num_trbs = 0;
3011 for_each_sg(urb->sg, sg, num_sgs, i) {
3012 unsigned int len = sg_dma_len(sg);
3013
3014 /* Scatter gather list entries may cross 64KB boundaries */
3015 running_total = TRB_MAX_BUFF_SIZE -
3016 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
3017 running_total &= TRB_MAX_BUFF_SIZE - 1;
3018 if (running_total != 0)
3019 num_trbs++;
3020
3021 /* How many more 64KB chunks to transfer, how many more TRBs? */
3022 while (running_total < sg_dma_len(sg) && running_total < temp) {
3023 num_trbs++;
3024 running_total += TRB_MAX_BUFF_SIZE;
3025 }
3026 len = min_t(int, len, temp);
3027 temp -= len;
3028 if (temp == 0)
3029 break;
3030 }
3031 return num_trbs;
3032 }
3033
3034 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3035 {
3036 if (num_trbs != 0)
3037 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3038 "TRBs, %d left\n", __func__,
3039 urb->ep->desc.bEndpointAddress, num_trbs);
3040 if (running_total != urb->transfer_buffer_length)
3041 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3042 "queued %#x (%d), asked for %#x (%d)\n",
3043 __func__,
3044 urb->ep->desc.bEndpointAddress,
3045 running_total, running_total,
3046 urb->transfer_buffer_length,
3047 urb->transfer_buffer_length);
3048 }
3049
3050 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3051 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3052 struct xhci_generic_trb *start_trb)
3053 {
3054 /*
3055 * Pass all the TRBs to the hardware at once and make sure this write
3056 * isn't reordered.
3057 */
3058 wmb();
3059 if (start_cycle)
3060 start_trb->field[3] |= cpu_to_le32(start_cycle);
3061 else
3062 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3063 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3064 }
3065
3066 /*
3067 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3068 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3069 * (comprised of sg list entries) can take several service intervals to
3070 * transmit.
3071 */
3072 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3073 struct urb *urb, int slot_id, unsigned int ep_index)
3074 {
3075 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3076 xhci->devs[slot_id]->out_ctx, ep_index);
3077 int xhci_interval;
3078 int ep_interval;
3079
3080 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3081 ep_interval = urb->interval;
3082 /* Convert to microframes */
3083 if (urb->dev->speed == USB_SPEED_LOW ||
3084 urb->dev->speed == USB_SPEED_FULL)
3085 ep_interval *= 8;
3086 /* FIXME change this to a warning and a suggestion to use the new API
3087 * to set the polling interval (once the API is added).
3088 */
3089 if (xhci_interval != ep_interval) {
3090 if (printk_ratelimit())
3091 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3092 " (%d microframe%s) than xHCI "
3093 "(%d microframe%s)\n",
3094 ep_interval,
3095 ep_interval == 1 ? "" : "s",
3096 xhci_interval,
3097 xhci_interval == 1 ? "" : "s");
3098 urb->interval = xhci_interval;
3099 /* Convert back to frames for LS/FS devices */
3100 if (urb->dev->speed == USB_SPEED_LOW ||
3101 urb->dev->speed == USB_SPEED_FULL)
3102 urb->interval /= 8;
3103 }
3104 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3105 }
3106
3107 /*
3108 * The TD size is the number of bytes remaining in the TD (including this TRB),
3109 * right shifted by 10.
3110 * It must fit in bits 21:17, so it can't be bigger than 31.
3111 */
3112 static u32 xhci_td_remainder(unsigned int remainder)
3113 {
3114 u32 max = (1 << (21 - 17 + 1)) - 1;
3115
3116 if ((remainder >> 10) >= max)
3117 return max << 17;
3118 else
3119 return (remainder >> 10) << 17;
3120 }
3121
3122 /*
3123 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3124 * packets remaining in the TD (*not* including this TRB).
3125 *
3126 * Total TD packet count = total_packet_count =
3127 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3128 *
3129 * Packets transferred up to and including this TRB = packets_transferred =
3130 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3131 *
3132 * TD size = total_packet_count - packets_transferred
3133 *
3134 * It must fit in bits 21:17, so it can't be bigger than 31.
3135 * The last TRB in a TD must have the TD size set to zero.
3136 */
3137 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3138 unsigned int total_packet_count, struct urb *urb,
3139 unsigned int num_trbs_left)
3140 {
3141 int packets_transferred;
3142
3143 /* One TRB with a zero-length data packet. */
3144 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3145 return 0;
3146
3147 /* All the TRB queueing functions don't count the current TRB in
3148 * running_total.
3149 */
3150 packets_transferred = (running_total + trb_buff_len) /
3151 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3152
3153 if ((total_packet_count - packets_transferred) > 31)
3154 return 31 << 17;
3155 return (total_packet_count - packets_transferred) << 17;
3156 }
3157
3158 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3159 struct urb *urb, int slot_id, unsigned int ep_index)
3160 {
3161 struct xhci_ring *ep_ring;
3162 unsigned int num_trbs;
3163 struct urb_priv *urb_priv;
3164 struct xhci_td *td;
3165 struct scatterlist *sg;
3166 int num_sgs;
3167 int trb_buff_len, this_sg_len, running_total;
3168 unsigned int total_packet_count;
3169 bool first_trb;
3170 u64 addr;
3171 bool more_trbs_coming;
3172
3173 struct xhci_generic_trb *start_trb;
3174 int start_cycle;
3175
3176 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3177 if (!ep_ring)
3178 return -EINVAL;
3179
3180 num_trbs = count_sg_trbs_needed(xhci, urb);
3181 num_sgs = urb->num_mapped_sgs;
3182 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3183 usb_endpoint_maxp(&urb->ep->desc));
3184
3185 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3186 ep_index, urb->stream_id,
3187 num_trbs, urb, 0, mem_flags);
3188 if (trb_buff_len < 0)
3189 return trb_buff_len;
3190
3191 urb_priv = urb->hcpriv;
3192 td = urb_priv->td[0];
3193
3194 /*
3195 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3196 * until we've finished creating all the other TRBs. The ring's cycle
3197 * state may change as we enqueue the other TRBs, so save it too.
3198 */
3199 start_trb = &ep_ring->enqueue->generic;
3200 start_cycle = ep_ring->cycle_state;
3201
3202 running_total = 0;
3203 /*
3204 * How much data is in the first TRB?
3205 *
3206 * There are three forces at work for TRB buffer pointers and lengths:
3207 * 1. We don't want to walk off the end of this sg-list entry buffer.
3208 * 2. The transfer length that the driver requested may be smaller than
3209 * the amount of memory allocated for this scatter-gather list.
3210 * 3. TRBs buffers can't cross 64KB boundaries.
3211 */
3212 sg = urb->sg;
3213 addr = (u64) sg_dma_address(sg);
3214 this_sg_len = sg_dma_len(sg);
3215 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3216 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3217 if (trb_buff_len > urb->transfer_buffer_length)
3218 trb_buff_len = urb->transfer_buffer_length;
3219
3220 first_trb = true;
3221 /* Queue the first TRB, even if it's zero-length */
3222 do {
3223 u32 field = 0;
3224 u32 length_field = 0;
3225 u32 remainder = 0;
3226
3227 /* Don't change the cycle bit of the first TRB until later */
3228 if (first_trb) {
3229 first_trb = false;
3230 if (start_cycle == 0)
3231 field |= 0x1;
3232 } else
3233 field |= ep_ring->cycle_state;
3234
3235 /* Chain all the TRBs together; clear the chain bit in the last
3236 * TRB to indicate it's the last TRB in the chain.
3237 */
3238 if (num_trbs > 1) {
3239 field |= TRB_CHAIN;
3240 } else {
3241 /* FIXME - add check for ZERO_PACKET flag before this */
3242 td->last_trb = ep_ring->enqueue;
3243 field |= TRB_IOC;
3244 }
3245
3246 /* Only set interrupt on short packet for IN endpoints */
3247 if (usb_urb_dir_in(urb))
3248 field |= TRB_ISP;
3249
3250 if (TRB_MAX_BUFF_SIZE -
3251 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3252 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3253 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3254 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3255 (unsigned int) addr + trb_buff_len);
3256 }
3257
3258 /* Set the TRB length, TD size, and interrupter fields. */
3259 if (xhci->hci_version < 0x100) {
3260 remainder = xhci_td_remainder(
3261 urb->transfer_buffer_length -
3262 running_total);
3263 } else {
3264 remainder = xhci_v1_0_td_remainder(running_total,
3265 trb_buff_len, total_packet_count, urb,
3266 num_trbs - 1);
3267 }
3268 length_field = TRB_LEN(trb_buff_len) |
3269 remainder |
3270 TRB_INTR_TARGET(0);
3271
3272 if (num_trbs > 1)
3273 more_trbs_coming = true;
3274 else
3275 more_trbs_coming = false;
3276 queue_trb(xhci, ep_ring, more_trbs_coming,
3277 lower_32_bits(addr),
3278 upper_32_bits(addr),
3279 length_field,
3280 field | TRB_TYPE(TRB_NORMAL));
3281 --num_trbs;
3282 running_total += trb_buff_len;
3283
3284 /* Calculate length for next transfer --
3285 * Are we done queueing all the TRBs for this sg entry?
3286 */
3287 this_sg_len -= trb_buff_len;
3288 if (this_sg_len == 0) {
3289 --num_sgs;
3290 if (num_sgs == 0)
3291 break;
3292 sg = sg_next(sg);
3293 addr = (u64) sg_dma_address(sg);
3294 this_sg_len = sg_dma_len(sg);
3295 } else {
3296 addr += trb_buff_len;
3297 }
3298
3299 trb_buff_len = TRB_MAX_BUFF_SIZE -
3300 (addr & (TRB_MAX_BUFF_SIZE - 1));
3301 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3302 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3303 trb_buff_len =
3304 urb->transfer_buffer_length - running_total;
3305 } while (running_total < urb->transfer_buffer_length);
3306
3307 check_trb_math(urb, num_trbs, running_total);
3308 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3309 start_cycle, start_trb);
3310 return 0;
3311 }
3312
3313 /* This is very similar to what ehci-q.c qtd_fill() does */
3314 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3315 struct urb *urb, int slot_id, unsigned int ep_index)
3316 {
3317 struct xhci_ring *ep_ring;
3318 struct urb_priv *urb_priv;
3319 struct xhci_td *td;
3320 int num_trbs;
3321 struct xhci_generic_trb *start_trb;
3322 bool first_trb;
3323 bool more_trbs_coming;
3324 int start_cycle;
3325 u32 field, length_field;
3326
3327 int running_total, trb_buff_len, ret;
3328 unsigned int total_packet_count;
3329 u64 addr;
3330
3331 if (urb->num_sgs)
3332 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3333
3334 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3335 if (!ep_ring)
3336 return -EINVAL;
3337
3338 num_trbs = 0;
3339 /* How much data is (potentially) left before the 64KB boundary? */
3340 running_total = TRB_MAX_BUFF_SIZE -
3341 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3342 running_total &= TRB_MAX_BUFF_SIZE - 1;
3343
3344 /* If there's some data on this 64KB chunk, or we have to send a
3345 * zero-length transfer, we need at least one TRB
3346 */
3347 if (running_total != 0 || urb->transfer_buffer_length == 0)
3348 num_trbs++;
3349 /* How many more 64KB chunks to transfer, how many more TRBs? */
3350 while (running_total < urb->transfer_buffer_length) {
3351 num_trbs++;
3352 running_total += TRB_MAX_BUFF_SIZE;
3353 }
3354 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3355
3356 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3357 ep_index, urb->stream_id,
3358 num_trbs, urb, 0, mem_flags);
3359 if (ret < 0)
3360 return ret;
3361
3362 urb_priv = urb->hcpriv;
3363 td = urb_priv->td[0];
3364
3365 /*
3366 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3367 * until we've finished creating all the other TRBs. The ring's cycle
3368 * state may change as we enqueue the other TRBs, so save it too.
3369 */
3370 start_trb = &ep_ring->enqueue->generic;
3371 start_cycle = ep_ring->cycle_state;
3372
3373 running_total = 0;
3374 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3375 usb_endpoint_maxp(&urb->ep->desc));
3376 /* How much data is in the first TRB? */
3377 addr = (u64) urb->transfer_dma;
3378 trb_buff_len = TRB_MAX_BUFF_SIZE -
3379 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3380 if (trb_buff_len > urb->transfer_buffer_length)
3381 trb_buff_len = urb->transfer_buffer_length;
3382
3383 first_trb = true;
3384
3385 /* Queue the first TRB, even if it's zero-length */
3386 do {
3387 u32 remainder = 0;
3388 field = 0;
3389
3390 /* Don't change the cycle bit of the first TRB until later */
3391 if (first_trb) {
3392 first_trb = false;
3393 if (start_cycle == 0)
3394 field |= 0x1;
3395 } else
3396 field |= ep_ring->cycle_state;
3397
3398 /* Chain all the TRBs together; clear the chain bit in the last
3399 * TRB to indicate it's the last TRB in the chain.
3400 */
3401 if (num_trbs > 1) {
3402 field |= TRB_CHAIN;
3403 } else {
3404 /* FIXME - add check for ZERO_PACKET flag before this */
3405 td->last_trb = ep_ring->enqueue;
3406 field |= TRB_IOC;
3407 }
3408
3409 /* Only set interrupt on short packet for IN endpoints */
3410 if (usb_urb_dir_in(urb))
3411 field |= TRB_ISP;
3412
3413 /* Set the TRB length, TD size, and interrupter fields. */
3414 if (xhci->hci_version < 0x100) {
3415 remainder = xhci_td_remainder(
3416 urb->transfer_buffer_length -
3417 running_total);
3418 } else {
3419 remainder = xhci_v1_0_td_remainder(running_total,
3420 trb_buff_len, total_packet_count, urb,
3421 num_trbs - 1);
3422 }
3423 length_field = TRB_LEN(trb_buff_len) |
3424 remainder |
3425 TRB_INTR_TARGET(0);
3426
3427 if (num_trbs > 1)
3428 more_trbs_coming = true;
3429 else
3430 more_trbs_coming = false;
3431 queue_trb(xhci, ep_ring, more_trbs_coming,
3432 lower_32_bits(addr),
3433 upper_32_bits(addr),
3434 length_field,
3435 field | TRB_TYPE(TRB_NORMAL));
3436 --num_trbs;
3437 running_total += trb_buff_len;
3438
3439 /* Calculate length for next transfer */
3440 addr += trb_buff_len;
3441 trb_buff_len = urb->transfer_buffer_length - running_total;
3442 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3443 trb_buff_len = TRB_MAX_BUFF_SIZE;
3444 } while (running_total < urb->transfer_buffer_length);
3445
3446 check_trb_math(urb, num_trbs, running_total);
3447 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3448 start_cycle, start_trb);
3449 return 0;
3450 }
3451
3452 /* Caller must have locked xhci->lock */
3453 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3454 struct urb *urb, int slot_id, unsigned int ep_index)
3455 {
3456 struct xhci_ring *ep_ring;
3457 int num_trbs;
3458 int ret;
3459 struct usb_ctrlrequest *setup;
3460 struct xhci_generic_trb *start_trb;
3461 int start_cycle;
3462 u32 field, length_field;
3463 struct urb_priv *urb_priv;
3464 struct xhci_td *td;
3465
3466 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3467 if (!ep_ring)
3468 return -EINVAL;
3469
3470 /*
3471 * Need to copy setup packet into setup TRB, so we can't use the setup
3472 * DMA address.
3473 */
3474 if (!urb->setup_packet)
3475 return -EINVAL;
3476
3477 /* 1 TRB for setup, 1 for status */
3478 num_trbs = 2;
3479 /*
3480 * Don't need to check if we need additional event data and normal TRBs,
3481 * since data in control transfers will never get bigger than 16MB
3482 * XXX: can we get a buffer that crosses 64KB boundaries?
3483 */
3484 if (urb->transfer_buffer_length > 0)
3485 num_trbs++;
3486 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3487 ep_index, urb->stream_id,
3488 num_trbs, urb, 0, mem_flags);
3489 if (ret < 0)
3490 return ret;
3491
3492 urb_priv = urb->hcpriv;
3493 td = urb_priv->td[0];
3494
3495 /*
3496 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3497 * until we've finished creating all the other TRBs. The ring's cycle
3498 * state may change as we enqueue the other TRBs, so save it too.
3499 */
3500 start_trb = &ep_ring->enqueue->generic;
3501 start_cycle = ep_ring->cycle_state;
3502
3503 /* Queue setup TRB - see section 6.4.1.2.1 */
3504 /* FIXME better way to translate setup_packet into two u32 fields? */
3505 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3506 field = 0;
3507 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3508 if (start_cycle == 0)
3509 field |= 0x1;
3510
3511 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3512 if (xhci->hci_version == 0x100) {
3513 if (urb->transfer_buffer_length > 0) {
3514 if (setup->bRequestType & USB_DIR_IN)
3515 field |= TRB_TX_TYPE(TRB_DATA_IN);
3516 else
3517 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3518 }
3519 }
3520
3521 queue_trb(xhci, ep_ring, true,
3522 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3523 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3524 TRB_LEN(8) | TRB_INTR_TARGET(0),
3525 /* Immediate data in pointer */
3526 field);
3527
3528 /* If there's data, queue data TRBs */
3529 /* Only set interrupt on short packet for IN endpoints */
3530 if (usb_urb_dir_in(urb))
3531 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3532 else
3533 field = TRB_TYPE(TRB_DATA);
3534
3535 length_field = TRB_LEN(urb->transfer_buffer_length) |
3536 xhci_td_remainder(urb->transfer_buffer_length) |
3537 TRB_INTR_TARGET(0);
3538 if (urb->transfer_buffer_length > 0) {
3539 if (setup->bRequestType & USB_DIR_IN)
3540 field |= TRB_DIR_IN;
3541 queue_trb(xhci, ep_ring, true,
3542 lower_32_bits(urb->transfer_dma),
3543 upper_32_bits(urb->transfer_dma),
3544 length_field,
3545 field | ep_ring->cycle_state);
3546 }
3547
3548 /* Save the DMA address of the last TRB in the TD */
3549 td->last_trb = ep_ring->enqueue;
3550
3551 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3552 /* If the device sent data, the status stage is an OUT transfer */
3553 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3554 field = 0;
3555 else
3556 field = TRB_DIR_IN;
3557 queue_trb(xhci, ep_ring, false,
3558 0,
3559 0,
3560 TRB_INTR_TARGET(0),
3561 /* Event on completion */
3562 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3563
3564 giveback_first_trb(xhci, slot_id, ep_index, 0,
3565 start_cycle, start_trb);
3566 return 0;
3567 }
3568
3569 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3570 struct urb *urb, int i)
3571 {
3572 int num_trbs = 0;
3573 u64 addr, td_len;
3574
3575 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3576 td_len = urb->iso_frame_desc[i].length;
3577
3578 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3579 TRB_MAX_BUFF_SIZE);
3580 if (num_trbs == 0)
3581 num_trbs++;
3582
3583 return num_trbs;
3584 }
3585
3586 /*
3587 * The transfer burst count field of the isochronous TRB defines the number of
3588 * bursts that are required to move all packets in this TD. Only SuperSpeed
3589 * devices can burst up to bMaxBurst number of packets per service interval.
3590 * This field is zero based, meaning a value of zero in the field means one
3591 * burst. Basically, for everything but SuperSpeed devices, this field will be
3592 * zero. Only xHCI 1.0 host controllers support this field.
3593 */
3594 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3595 struct usb_device *udev,
3596 struct urb *urb, unsigned int total_packet_count)
3597 {
3598 unsigned int max_burst;
3599
3600 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3601 return 0;
3602
3603 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3604 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3605 }
3606
3607 /*
3608 * Returns the number of packets in the last "burst" of packets. This field is
3609 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3610 * the last burst packet count is equal to the total number of packets in the
3611 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3612 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3613 * contain 1 to (bMaxBurst + 1) packets.
3614 */
3615 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3616 struct usb_device *udev,
3617 struct urb *urb, unsigned int total_packet_count)
3618 {
3619 unsigned int max_burst;
3620 unsigned int residue;
3621
3622 if (xhci->hci_version < 0x100)
3623 return 0;
3624
3625 switch (udev->speed) {
3626 case USB_SPEED_SUPER:
3627 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3628 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3629 residue = total_packet_count % (max_burst + 1);
3630 /* If residue is zero, the last burst contains (max_burst + 1)
3631 * number of packets, but the TLBPC field is zero-based.
3632 */
3633 if (residue == 0)
3634 return max_burst;
3635 return residue - 1;
3636 default:
3637 if (total_packet_count == 0)
3638 return 0;
3639 return total_packet_count - 1;
3640 }
3641 }
3642
3643 /* This is for isoc transfer */
3644 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3645 struct urb *urb, int slot_id, unsigned int ep_index)
3646 {
3647 struct xhci_ring *ep_ring;
3648 struct urb_priv *urb_priv;
3649 struct xhci_td *td;
3650 int num_tds, trbs_per_td;
3651 struct xhci_generic_trb *start_trb;
3652 bool first_trb;
3653 int start_cycle;
3654 u32 field, length_field;
3655 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3656 u64 start_addr, addr;
3657 int i, j;
3658 bool more_trbs_coming;
3659
3660 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3661
3662 num_tds = urb->number_of_packets;
3663 if (num_tds < 1) {
3664 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3665 return -EINVAL;
3666 }
3667
3668 start_addr = (u64) urb->transfer_dma;
3669 start_trb = &ep_ring->enqueue->generic;
3670 start_cycle = ep_ring->cycle_state;
3671
3672 urb_priv = urb->hcpriv;
3673 /* Queue the first TRB, even if it's zero-length */
3674 for (i = 0; i < num_tds; i++) {
3675 unsigned int total_packet_count;
3676 unsigned int burst_count;
3677 unsigned int residue;
3678
3679 first_trb = true;
3680 running_total = 0;
3681 addr = start_addr + urb->iso_frame_desc[i].offset;
3682 td_len = urb->iso_frame_desc[i].length;
3683 td_remain_len = td_len;
3684 total_packet_count = DIV_ROUND_UP(td_len,
3685 GET_MAX_PACKET(
3686 usb_endpoint_maxp(&urb->ep->desc)));
3687 /* A zero-length transfer still involves at least one packet. */
3688 if (total_packet_count == 0)
3689 total_packet_count++;
3690 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3691 total_packet_count);
3692 residue = xhci_get_last_burst_packet_count(xhci,
3693 urb->dev, urb, total_packet_count);
3694
3695 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3696
3697 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3698 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3699 if (ret < 0) {
3700 if (i == 0)
3701 return ret;
3702 goto cleanup;
3703 }
3704
3705 td = urb_priv->td[i];
3706 for (j = 0; j < trbs_per_td; j++) {
3707 u32 remainder = 0;
3708 field = 0;
3709
3710 if (first_trb) {
3711 field = TRB_TBC(burst_count) |
3712 TRB_TLBPC(residue);
3713 /* Queue the isoc TRB */
3714 field |= TRB_TYPE(TRB_ISOC);
3715 /* Assume URB_ISO_ASAP is set */
3716 field |= TRB_SIA;
3717 if (i == 0) {
3718 if (start_cycle == 0)
3719 field |= 0x1;
3720 } else
3721 field |= ep_ring->cycle_state;
3722 first_trb = false;
3723 } else {
3724 /* Queue other normal TRBs */
3725 field |= TRB_TYPE(TRB_NORMAL);
3726 field |= ep_ring->cycle_state;
3727 }
3728
3729 /* Only set interrupt on short packet for IN EPs */
3730 if (usb_urb_dir_in(urb))
3731 field |= TRB_ISP;
3732
3733 /* Chain all the TRBs together; clear the chain bit in
3734 * the last TRB to indicate it's the last TRB in the
3735 * chain.
3736 */
3737 if (j < trbs_per_td - 1) {
3738 field |= TRB_CHAIN;
3739 more_trbs_coming = true;
3740 } else {
3741 td->last_trb = ep_ring->enqueue;
3742 field |= TRB_IOC;
3743 if (xhci->hci_version == 0x100 &&
3744 !(xhci->quirks &
3745 XHCI_AVOID_BEI)) {
3746 /* Set BEI bit except for the last td */
3747 if (i < num_tds - 1)
3748 field |= TRB_BEI;
3749 }
3750 more_trbs_coming = false;
3751 }
3752
3753 /* Calculate TRB length */
3754 trb_buff_len = TRB_MAX_BUFF_SIZE -
3755 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3756 if (trb_buff_len > td_remain_len)
3757 trb_buff_len = td_remain_len;
3758
3759 /* Set the TRB length, TD size, & interrupter fields. */
3760 if (xhci->hci_version < 0x100) {
3761 remainder = xhci_td_remainder(
3762 td_len - running_total);
3763 } else {
3764 remainder = xhci_v1_0_td_remainder(
3765 running_total, trb_buff_len,
3766 total_packet_count, urb,
3767 (trbs_per_td - j - 1));
3768 }
3769 length_field = TRB_LEN(trb_buff_len) |
3770 remainder |
3771 TRB_INTR_TARGET(0);
3772
3773 queue_trb(xhci, ep_ring, more_trbs_coming,
3774 lower_32_bits(addr),
3775 upper_32_bits(addr),
3776 length_field,
3777 field);
3778 running_total += trb_buff_len;
3779
3780 addr += trb_buff_len;
3781 td_remain_len -= trb_buff_len;
3782 }
3783
3784 /* Check TD length */
3785 if (running_total != td_len) {
3786 xhci_err(xhci, "ISOC TD length unmatch\n");
3787 ret = -EINVAL;
3788 goto cleanup;
3789 }
3790 }
3791
3792 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3793 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3794 usb_amd_quirk_pll_disable();
3795 }
3796 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3797
3798 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3799 start_cycle, start_trb);
3800 return 0;
3801 cleanup:
3802 /* Clean up a partially enqueued isoc transfer. */
3803
3804 for (i--; i >= 0; i--)
3805 list_del_init(&urb_priv->td[i]->td_list);
3806
3807 /* Use the first TD as a temporary variable to turn the TDs we've queued
3808 * into No-ops with a software-owned cycle bit. That way the hardware
3809 * won't accidentally start executing bogus TDs when we partially
3810 * overwrite them. td->first_trb and td->start_seg are already set.
3811 */
3812 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3813 /* Every TRB except the first & last will have its cycle bit flipped. */
3814 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3815
3816 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3817 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3818 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3819 ep_ring->cycle_state = start_cycle;
3820 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3821 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3822 return ret;
3823 }
3824
3825 /*
3826 * Check transfer ring to guarantee there is enough room for the urb.
3827 * Update ISO URB start_frame and interval.
3828 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3829 * update the urb->start_frame by now.
3830 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3831 */
3832 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3833 struct urb *urb, int slot_id, unsigned int ep_index)
3834 {
3835 struct xhci_virt_device *xdev;
3836 struct xhci_ring *ep_ring;
3837 struct xhci_ep_ctx *ep_ctx;
3838 int start_frame;
3839 int xhci_interval;
3840 int ep_interval;
3841 int num_tds, num_trbs, i;
3842 int ret;
3843
3844 xdev = xhci->devs[slot_id];
3845 ep_ring = xdev->eps[ep_index].ring;
3846 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3847
3848 num_trbs = 0;
3849 num_tds = urb->number_of_packets;
3850 for (i = 0; i < num_tds; i++)
3851 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3852
3853 /* Check the ring to guarantee there is enough room for the whole urb.
3854 * Do not insert any td of the urb to the ring if the check failed.
3855 */
3856 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3857 num_trbs, mem_flags);
3858 if (ret)
3859 return ret;
3860
3861 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3862 start_frame &= 0x3fff;
3863
3864 urb->start_frame = start_frame;
3865 if (urb->dev->speed == USB_SPEED_LOW ||
3866 urb->dev->speed == USB_SPEED_FULL)
3867 urb->start_frame >>= 3;
3868
3869 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3870 ep_interval = urb->interval;
3871 /* Convert to microframes */
3872 if (urb->dev->speed == USB_SPEED_LOW ||
3873 urb->dev->speed == USB_SPEED_FULL)
3874 ep_interval *= 8;
3875 /* FIXME change this to a warning and a suggestion to use the new API
3876 * to set the polling interval (once the API is added).
3877 */
3878 if (xhci_interval != ep_interval) {
3879 if (printk_ratelimit())
3880 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3881 " (%d microframe%s) than xHCI "
3882 "(%d microframe%s)\n",
3883 ep_interval,
3884 ep_interval == 1 ? "" : "s",
3885 xhci_interval,
3886 xhci_interval == 1 ? "" : "s");
3887 urb->interval = xhci_interval;
3888 /* Convert back to frames for LS/FS devices */
3889 if (urb->dev->speed == USB_SPEED_LOW ||
3890 urb->dev->speed == USB_SPEED_FULL)
3891 urb->interval /= 8;
3892 }
3893 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3894
3895 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3896 }
3897
3898 /**** Command Ring Operations ****/
3899
3900 /* Generic function for queueing a command TRB on the command ring.
3901 * Check to make sure there's room on the command ring for one command TRB.
3902 * Also check that there's room reserved for commands that must not fail.
3903 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3904 * then only check for the number of reserved spots.
3905 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3906 * because the command event handler may want to resubmit a failed command.
3907 */
3908 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3909 u32 field3, u32 field4, bool command_must_succeed)
3910 {
3911 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3912 int ret;
3913
3914 if (!command_must_succeed)
3915 reserved_trbs++;
3916
3917 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3918 reserved_trbs, GFP_ATOMIC);
3919 if (ret < 0) {
3920 xhci_err(xhci, "ERR: No room for command on command ring\n");
3921 if (command_must_succeed)
3922 xhci_err(xhci, "ERR: Reserved TRB counting for "
3923 "unfailable commands failed.\n");
3924 return ret;
3925 }
3926 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3927 field4 | xhci->cmd_ring->cycle_state);
3928 return 0;
3929 }
3930
3931 /* Queue a slot enable or disable request on the command ring */
3932 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3933 {
3934 return queue_command(xhci, 0, 0, 0,
3935 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3936 }
3937
3938 /* Queue an address device command TRB */
3939 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3940 u32 slot_id)
3941 {
3942 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3943 upper_32_bits(in_ctx_ptr), 0,
3944 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3945 false);
3946 }
3947
3948 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3949 u32 field1, u32 field2, u32 field3, u32 field4)
3950 {
3951 return queue_command(xhci, field1, field2, field3, field4, false);
3952 }
3953
3954 /* Queue a reset device command TRB */
3955 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3956 {
3957 return queue_command(xhci, 0, 0, 0,
3958 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3959 false);
3960 }
3961
3962 /* Queue a configure endpoint command TRB */
3963 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3964 u32 slot_id, bool command_must_succeed)
3965 {
3966 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3967 upper_32_bits(in_ctx_ptr), 0,
3968 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3969 command_must_succeed);
3970 }
3971
3972 /* Queue an evaluate context command TRB */
3973 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3974 u32 slot_id, bool command_must_succeed)
3975 {
3976 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3977 upper_32_bits(in_ctx_ptr), 0,
3978 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3979 command_must_succeed);
3980 }
3981
3982 /*
3983 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3984 * activity on an endpoint that is about to be suspended.
3985 */
3986 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3987 unsigned int ep_index, int suspend)
3988 {
3989 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3990 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3991 u32 type = TRB_TYPE(TRB_STOP_RING);
3992 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3993
3994 return queue_command(xhci, 0, 0, 0,
3995 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3996 }
3997
3998 /* Set Transfer Ring Dequeue Pointer command.
3999 * This should not be used for endpoints that have streams enabled.
4000 */
4001 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
4002 unsigned int ep_index, unsigned int stream_id,
4003 struct xhci_segment *deq_seg,
4004 union xhci_trb *deq_ptr, u32 cycle_state)
4005 {
4006 dma_addr_t addr;
4007 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4008 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4009 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4010 u32 type = TRB_TYPE(TRB_SET_DEQ);
4011 struct xhci_virt_ep *ep;
4012
4013 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
4014 if (addr == 0) {
4015 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4016 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4017 deq_seg, deq_ptr);
4018 return 0;
4019 }
4020 ep = &xhci->devs[slot_id]->eps[ep_index];
4021 if ((ep->ep_state & SET_DEQ_PENDING)) {
4022 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4023 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4024 return 0;
4025 }
4026 ep->queued_deq_seg = deq_seg;
4027 ep->queued_deq_ptr = deq_ptr;
4028 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
4029 upper_32_bits(addr), trb_stream_id,
4030 trb_slot_id | trb_ep_index | type, false);
4031 }
4032
4033 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4034 unsigned int ep_index)
4035 {
4036 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4037 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4038 u32 type = TRB_TYPE(TRB_RESET_EP);
4039
4040 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4041 false);
4042 }