Merge tag 'v3.10.61' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75 /*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81 {
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91 }
92
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
123 }
124
125 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring)
126 {
127 /* Enqueue pointer can be left pointing to the link TRB,
128 * we must handle that
129 */
130 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control))
131 return ring->enq_seg->next->trbs;
132 return ring->enqueue;
133 }
134
135 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
136 * TRB is in a new segment. This does not skip over link TRBs, and it does not
137 * effect the ring dequeue or enqueue pointers.
138 */
139 static void next_trb(struct xhci_hcd *xhci,
140 struct xhci_ring *ring,
141 struct xhci_segment **seg,
142 union xhci_trb **trb)
143 {
144 if (last_trb(xhci, ring, *seg, *trb)) {
145 *seg = (*seg)->next;
146 *trb = ((*seg)->trbs);
147 } else {
148 (*trb)++;
149 }
150 }
151
152 /*
153 * See Cycle bit rules. SW is the consumer for the event ring only.
154 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
155 */
156 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
157 {
158 unsigned long long addr;
159
160 ring->deq_updates++;
161
162 /*
163 * If this is not event ring, and the dequeue pointer
164 * is not on a link TRB, there is one more usable TRB
165 */
166 if (ring->type != TYPE_EVENT &&
167 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
168 ring->num_trbs_free++;
169
170 do {
171 /*
172 * Update the dequeue pointer further if that was a link TRB or
173 * we're at the end of an event ring segment (which doesn't have
174 * link TRBS)
175 */
176 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
177 if (ring->type == TYPE_EVENT &&
178 last_trb_on_last_seg(xhci, ring,
179 ring->deq_seg, ring->dequeue)) {
180 ring->cycle_state = (ring->cycle_state ? 0 : 1);
181 }
182 ring->deq_seg = ring->deq_seg->next;
183 ring->dequeue = ring->deq_seg->trbs;
184 } else {
185 ring->dequeue++;
186 }
187 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
188
189 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
190 }
191
192 /*
193 * See Cycle bit rules. SW is the consumer for the event ring only.
194 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
195 *
196 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
197 * chain bit is set), then set the chain bit in all the following link TRBs.
198 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
199 * have their chain bit cleared (so that each Link TRB is a separate TD).
200 *
201 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
202 * set, but other sections talk about dealing with the chain bit set. This was
203 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
204 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
205 *
206 * @more_trbs_coming: Will you enqueue more TRBs before calling
207 * prepare_transfer()?
208 */
209 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
210 bool more_trbs_coming)
211 {
212 u32 chain;
213 union xhci_trb *next;
214 unsigned long long addr;
215
216 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
217 /* If this is not event ring, there is one less usable TRB */
218 if (ring->type != TYPE_EVENT &&
219 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
220 ring->num_trbs_free--;
221 next = ++(ring->enqueue);
222
223 ring->enq_updates++;
224 /* Update the dequeue pointer further if that was a link TRB or we're at
225 * the end of an event ring segment (which doesn't have link TRBS)
226 */
227 while (last_trb(xhci, ring, ring->enq_seg, next)) {
228 if (ring->type != TYPE_EVENT) {
229 /*
230 * If the caller doesn't plan on enqueueing more
231 * TDs before ringing the doorbell, then we
232 * don't want to give the link TRB to the
233 * hardware just yet. We'll give the link TRB
234 * back in prepare_ring() just before we enqueue
235 * the TD at the top of the ring.
236 */
237 if (!chain && !more_trbs_coming)
238 break;
239
240 /* If we're not dealing with 0.95 hardware or
241 * isoc rings on AMD 0.96 host,
242 * carry over the chain bit of the previous TRB
243 * (which may mean the chain bit is cleared).
244 */
245 #ifdef CONFIG_MTK_XHCI
246 if (!xhci_link_trb_quirk(xhci)) {
247 #else
248 if (!(ring->type == TYPE_ISOC &&
249 (xhci->quirks & XHCI_AMD_0x96_HOST))
250 && !xhci_link_trb_quirk(xhci)) {
251 #endif
252 next->link.control &=
253 cpu_to_le32(~TRB_CHAIN);
254 next->link.control |=
255 cpu_to_le32(chain);
256 }
257 /* Give this link TRB to the hardware */
258 wmb();
259 next->link.control ^= cpu_to_le32(TRB_CYCLE);
260
261 /* Toggle the cycle bit after the last ring segment. */
262 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
263 ring->cycle_state = (ring->cycle_state ? 0 : 1);
264 }
265 }
266 ring->enq_seg = ring->enq_seg->next;
267 ring->enqueue = ring->enq_seg->trbs;
268 next = ring->enqueue;
269 }
270 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
271 }
272
273 /*
274 * Check to see if there's room to enqueue num_trbs on the ring and make sure
275 * enqueue pointer will not advance into dequeue segment. See rules above.
276 */
277 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
278 unsigned int num_trbs)
279 {
280 #ifndef CONFIG_MTK_XHCI
281 int num_trbs_in_deq_seg;
282 #endif
283
284 if (ring->num_trbs_free < num_trbs)
285 return 0;
286
287 #ifndef CONFIG_MTK_XHCI
288 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
289 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
290 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
291 return 0;
292 }
293 #endif
294
295 return 1;
296 }
297
298 /* Ring the host controller doorbell after placing a command on the ring */
299 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
300 {
301 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
302 return;
303
304 xhci_dbg(xhci, "// Ding dong!\n");
305 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
306 /* Flush PCI posted writes */
307 xhci_readl(xhci, &xhci->dba->doorbell[0]);
308 }
309
310 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
311 {
312 u64 temp_64;
313 int ret;
314
315 xhci_dbg(xhci, "Abort command ring\n");
316
317 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
318 xhci_dbg(xhci, "The command ring isn't running, "
319 "Have the command ring been stopped?\n");
320 return 0;
321 }
322
323 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
324 if (!(temp_64 & CMD_RING_RUNNING)) {
325 xhci_dbg(xhci, "Command ring had been stopped\n");
326 return 0;
327 }
328 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
329 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
330 &xhci->op_regs->cmd_ring);
331
332 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
333 * time the completion od all xHCI commands, including
334 * the Command Abort operation. If software doesn't see
335 * CRR negated in a timely manner (e.g. longer than 5
336 * seconds), then it should assume that the there are
337 * larger problems with the xHC and assert HCRST.
338 */
339 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
340 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
341 if (ret < 0) {
342 xhci_err(xhci, "Stopped the command ring failed, "
343 "maybe the host is dead\n");
344 xhci->xhc_state |= XHCI_STATE_DYING;
345 xhci_quiesce(xhci);
346 xhci_halt(xhci);
347 return -ESHUTDOWN;
348 }
349
350 return 0;
351 }
352
353 static int xhci_queue_cd(struct xhci_hcd *xhci,
354 struct xhci_command *command,
355 union xhci_trb *cmd_trb)
356 {
357 struct xhci_cd *cd;
358 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
359 if (!cd)
360 return -ENOMEM;
361 INIT_LIST_HEAD(&cd->cancel_cmd_list);
362
363 cd->command = command;
364 cd->cmd_trb = cmd_trb;
365 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
366
367 return 0;
368 }
369
370 /*
371 * Cancel the command which has issue.
372 *
373 * Some commands may hang due to waiting for acknowledgement from
374 * usb device. It is outside of the xHC's ability to control and
375 * will cause the command ring is blocked. When it occurs software
376 * should intervene to recover the command ring.
377 * See Section 4.6.1.1 and 4.6.1.2
378 */
379 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
380 union xhci_trb *cmd_trb)
381 {
382 int retval = 0;
383 unsigned long flags;
384
385 spin_lock_irqsave(&xhci->lock, flags);
386
387 if (xhci->xhc_state & XHCI_STATE_DYING) {
388 xhci_warn(xhci, "Abort the command ring,"
389 " but the xHCI is dead.\n");
390 retval = -ESHUTDOWN;
391 goto fail;
392 }
393
394 /* queue the cmd desriptor to cancel_cmd_list */
395 retval = xhci_queue_cd(xhci, command, cmd_trb);
396 if (retval) {
397 xhci_warn(xhci, "Queuing command descriptor failed.\n");
398 goto fail;
399 }
400
401 /* abort command ring */
402 retval = xhci_abort_cmd_ring(xhci);
403 if (retval) {
404 xhci_err(xhci, "Abort command ring failed\n");
405 if (unlikely(retval == -ESHUTDOWN)) {
406 spin_unlock_irqrestore(&xhci->lock, flags);
407 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
408 xhci_dbg(xhci, "xHCI host controller is dead.\n");
409 return retval;
410 }
411 }
412
413 fail:
414 spin_unlock_irqrestore(&xhci->lock, flags);
415 return retval;
416 }
417
418 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
419 unsigned int slot_id,
420 unsigned int ep_index,
421 unsigned int stream_id)
422 {
423 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
424 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
425 unsigned int ep_state = ep->ep_state;
426
427 /* Don't ring the doorbell for this endpoint if there are pending
428 * cancellations because we don't want to interrupt processing.
429 * We don't want to restart any stream rings if there's a set dequeue
430 * pointer command pending because the device can choose to start any
431 * stream once the endpoint is on the HW schedule.
432 * FIXME - check all the stream rings for pending cancellations.
433 */
434 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
435 (ep_state & EP_HALTED))
436 return;
437 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
438 /* The CPU has better things to do at this point than wait for a
439 * write-posting flush. It'll get there soon enough.
440 */
441 }
442
443 /* Ring the doorbell for any rings with pending URBs */
444 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
445 unsigned int slot_id,
446 unsigned int ep_index)
447 {
448 unsigned int stream_id;
449 struct xhci_virt_ep *ep;
450
451 ep = &xhci->devs[slot_id]->eps[ep_index];
452
453 /* A ring has pending URBs if its TD list is not empty */
454 if (!(ep->ep_state & EP_HAS_STREAMS)) {
455 if (ep->ring && !(list_empty(&ep->ring->td_list)))
456 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
457 return;
458 }
459
460 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
461 stream_id++) {
462 struct xhci_stream_info *stream_info = ep->stream_info;
463 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
464 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
465 stream_id);
466 }
467 }
468
469 /*
470 * Find the segment that trb is in. Start searching in start_seg.
471 * If we must move past a segment that has a link TRB with a toggle cycle state
472 * bit set, then we will toggle the value pointed at by cycle_state.
473 */
474 static struct xhci_segment *find_trb_seg(
475 struct xhci_segment *start_seg,
476 union xhci_trb *trb, int *cycle_state)
477 {
478 struct xhci_segment *cur_seg = start_seg;
479 struct xhci_generic_trb *generic_trb;
480
481 while (cur_seg->trbs > trb ||
482 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
483 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
484 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
485 *cycle_state ^= 0x1;
486 cur_seg = cur_seg->next;
487 if (cur_seg == start_seg)
488 /* Looped over the entire list. Oops! */
489 return NULL;
490 }
491 return cur_seg;
492 }
493
494
495 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
496 unsigned int slot_id, unsigned int ep_index,
497 unsigned int stream_id)
498 {
499 struct xhci_virt_ep *ep;
500
501 ep = &xhci->devs[slot_id]->eps[ep_index];
502 /* Common case: no streams */
503 if (!(ep->ep_state & EP_HAS_STREAMS))
504 return ep->ring;
505
506 if (stream_id == 0) {
507 xhci_warn(xhci,
508 "WARN: Slot ID %u, ep index %u has streams, "
509 "but URB has no stream ID.\n",
510 slot_id, ep_index);
511 return NULL;
512 }
513
514 if (stream_id < ep->stream_info->num_streams)
515 return ep->stream_info->stream_rings[stream_id];
516
517 xhci_warn(xhci,
518 "WARN: Slot ID %u, ep index %u has "
519 "stream IDs 1 to %u allocated, "
520 "but stream ID %u is requested.\n",
521 slot_id, ep_index,
522 ep->stream_info->num_streams - 1,
523 stream_id);
524 return NULL;
525 }
526
527 /* Get the right ring for the given URB.
528 * If the endpoint supports streams, boundary check the URB's stream ID.
529 * If the endpoint doesn't support streams, return the singular endpoint ring.
530 */
531 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
532 struct urb *urb)
533 {
534 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
535 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
536 }
537
538 /*
539 * Move the xHC's endpoint ring dequeue pointer past cur_td.
540 * Record the new state of the xHC's endpoint ring dequeue segment,
541 * dequeue pointer, and new consumer cycle state in state.
542 * Update our internal representation of the ring's dequeue pointer.
543 *
544 * We do this in three jumps:
545 * - First we update our new ring state to be the same as when the xHC stopped.
546 * - Then we traverse the ring to find the segment that contains
547 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
548 * any link TRBs with the toggle cycle bit set.
549 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
550 * if we've moved it past a link TRB with the toggle cycle bit set.
551 *
552 * Some of the uses of xhci_generic_trb are grotty, but if they're done
553 * with correct __le32 accesses they should work fine. Only users of this are
554 * in here.
555 */
556 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
557 unsigned int slot_id, unsigned int ep_index,
558 unsigned int stream_id, struct xhci_td *cur_td,
559 struct xhci_dequeue_state *state)
560 {
561 struct xhci_virt_device *dev = xhci->devs[slot_id];
562 struct xhci_ring *ep_ring;
563 struct xhci_generic_trb *trb;
564 struct xhci_ep_ctx *ep_ctx;
565 dma_addr_t addr;
566
567 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
568 ep_index, stream_id);
569 if (!ep_ring) {
570 xhci_warn(xhci, "WARN can't find new dequeue state "
571 "for invalid stream ID %u.\n",
572 stream_id);
573 return;
574 }
575 state->new_cycle_state = 0;
576 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
577 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
578 dev->eps[ep_index].stopped_trb,
579 &state->new_cycle_state);
580 if (!state->new_deq_seg) {
581 WARN_ON(1);
582 return;
583 }
584
585 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
586 xhci_dbg(xhci, "Finding endpoint context\n");
587 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
588 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
589
590 state->new_deq_ptr = cur_td->last_trb;
591 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
592 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
593 state->new_deq_ptr,
594 &state->new_cycle_state);
595 if (!state->new_deq_seg) {
596 WARN_ON(1);
597 return;
598 }
599
600 trb = &state->new_deq_ptr->generic;
601 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
602 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
603 state->new_cycle_state ^= 0x1;
604 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
605
606 /*
607 * If there is only one segment in a ring, find_trb_seg()'s while loop
608 * will not run, and it will return before it has a chance to see if it
609 * needs to toggle the cycle bit. It can't tell if the stalled transfer
610 * ended just before the link TRB on a one-segment ring, or if the TD
611 * wrapped around the top of the ring, because it doesn't have the TD in
612 * question. Look for the one-segment case where stalled TRB's address
613 * is greater than the new dequeue pointer address.
614 */
615 if (ep_ring->first_seg == ep_ring->first_seg->next &&
616 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
617 state->new_cycle_state ^= 0x1;
618 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
619
620 /* Don't update the ring cycle state for the producer (us). */
621 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
622 state->new_deq_seg);
623 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
624 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
625 (unsigned long long) addr);
626 }
627
628 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
629 * (The last TRB actually points to the ring enqueue pointer, which is not part
630 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
631 */
632 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
633 struct xhci_td *cur_td, bool flip_cycle)
634 {
635 struct xhci_segment *cur_seg;
636 union xhci_trb *cur_trb;
637
638 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
639 true;
640 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
641 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
642 /* Unchain any chained Link TRBs, but
643 * leave the pointers intact.
644 */
645 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
646 /* Flip the cycle bit (link TRBs can't be the first
647 * or last TRB).
648 */
649 if (flip_cycle)
650 cur_trb->generic.field[3] ^=
651 cpu_to_le32(TRB_CYCLE);
652 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
653 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
654 "in seg %p (0x%llx dma)\n",
655 cur_trb,
656 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
657 cur_seg,
658 (unsigned long long)cur_seg->dma);
659 } else {
660 cur_trb->generic.field[0] = 0;
661 cur_trb->generic.field[1] = 0;
662 cur_trb->generic.field[2] = 0;
663 /* Preserve only the cycle bit of this TRB */
664 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
665 /* Flip the cycle bit except on the first or last TRB */
666 if (flip_cycle && cur_trb != cur_td->first_trb &&
667 cur_trb != cur_td->last_trb)
668 cur_trb->generic.field[3] ^=
669 cpu_to_le32(TRB_CYCLE);
670 cur_trb->generic.field[3] |= cpu_to_le32(
671 TRB_TYPE(TRB_TR_NOOP));
672 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n",
673 (unsigned long long)
674 xhci_trb_virt_to_dma(cur_seg, cur_trb));
675 }
676 if (cur_trb == cur_td->last_trb)
677 break;
678 }
679 }
680
681 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
682 unsigned int ep_index, unsigned int stream_id,
683 struct xhci_segment *deq_seg,
684 union xhci_trb *deq_ptr, u32 cycle_state);
685
686 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
687 unsigned int slot_id, unsigned int ep_index,
688 unsigned int stream_id,
689 struct xhci_dequeue_state *deq_state)
690 {
691 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
692
693 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
694 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
695 deq_state->new_deq_seg,
696 (unsigned long long)deq_state->new_deq_seg->dma,
697 deq_state->new_deq_ptr,
698 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
699 deq_state->new_cycle_state);
700 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
701 deq_state->new_deq_seg,
702 deq_state->new_deq_ptr,
703 (u32) deq_state->new_cycle_state);
704 /* Stop the TD queueing code from ringing the doorbell until
705 * this command completes. The HC won't set the dequeue pointer
706 * if the ring is running, and ringing the doorbell starts the
707 * ring running.
708 */
709 ep->ep_state |= SET_DEQ_PENDING;
710 }
711
712 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
713 struct xhci_virt_ep *ep)
714 {
715 ep->ep_state &= ~EP_HALT_PENDING;
716 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
717 * timer is running on another CPU, we don't decrement stop_cmds_pending
718 * (since we didn't successfully stop the watchdog timer).
719 */
720 if (del_timer(&ep->stop_cmd_timer))
721 ep->stop_cmds_pending--;
722 }
723
724 /* Must be called with xhci->lock held in interrupt context */
725 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
726 struct xhci_td *cur_td, int status, char *adjective)
727 {
728 struct usb_hcd *hcd;
729 struct urb *urb;
730 struct urb_priv *urb_priv;
731
732 urb = cur_td->urb;
733 urb_priv = urb->hcpriv;
734 urb_priv->td_cnt++;
735 hcd = bus_to_hcd(urb->dev->bus);
736
737 /* Only giveback urb when this is the last td in urb */
738 if (urb_priv->td_cnt == urb_priv->length) {
739 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
740 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
741 #ifndef CONFIG_MTK_XHCI
742 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
743 if (xhci->quirks & XHCI_AMD_PLL_FIX)
744 usb_amd_quirk_pll_enable();
745 }
746 #endif
747 }
748 usb_hcd_unlink_urb_from_ep(hcd, urb);
749
750 spin_unlock(&xhci->lock);
751 usb_hcd_giveback_urb(hcd, urb, status);
752 xhci_urb_free_priv(xhci, urb_priv);
753 spin_lock(&xhci->lock);
754 }
755 }
756
757 /*
758 * When we get a command completion for a Stop Endpoint Command, we need to
759 * unlink any cancelled TDs from the ring. There are two ways to do that:
760 *
761 * 1. If the HW was in the middle of processing the TD that needs to be
762 * cancelled, then we must move the ring's dequeue pointer past the last TRB
763 * in the TD with a Set Dequeue Pointer Command.
764 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
765 * bit cleared) so that the HW will skip over them.
766 */
767 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
768 union xhci_trb *trb, struct xhci_event_cmd *event)
769 {
770 unsigned int slot_id;
771 unsigned int ep_index;
772 struct xhci_virt_device *virt_dev;
773 struct xhci_ring *ep_ring;
774 struct xhci_virt_ep *ep;
775 struct list_head *entry;
776 struct xhci_td *cur_td = NULL;
777 struct xhci_td *last_unlinked_td;
778
779 struct xhci_dequeue_state deq_state;
780
781 if (unlikely(TRB_TO_SUSPEND_PORT(
782 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
783 slot_id = TRB_TO_SLOT_ID(
784 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
785 virt_dev = xhci->devs[slot_id];
786 if (virt_dev)
787 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
788 event);
789 else
790 xhci_warn(xhci, "Stop endpoint command "
791 "completion for disabled slot %u\n",
792 slot_id);
793 return;
794 }
795
796 memset(&deq_state, 0, sizeof(deq_state));
797 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
798 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
799 ep = &xhci->devs[slot_id]->eps[ep_index];
800
801 if (list_empty(&ep->cancelled_td_list)) {
802 xhci_stop_watchdog_timer_in_irq(xhci, ep);
803 ep->stopped_td = NULL;
804 ep->stopped_trb = NULL;
805 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
806 return;
807 }
808
809 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
810 * We have the xHCI lock, so nothing can modify this list until we drop
811 * it. We're also in the event handler, so we can't get re-interrupted
812 * if another Stop Endpoint command completes
813 */
814 list_for_each(entry, &ep->cancelled_td_list) {
815 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
816 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n",
817 (unsigned long long)xhci_trb_virt_to_dma(
818 cur_td->start_seg, cur_td->first_trb));
819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
820 if (!ep_ring) {
821 /* This shouldn't happen unless a driver is mucking
822 * with the stream ID after submission. This will
823 * leave the TD on the hardware ring, and the hardware
824 * will try to execute it, and may access a buffer
825 * that has already been freed. In the best case, the
826 * hardware will execute it, and the event handler will
827 * ignore the completion event for that TD, since it was
828 * removed from the td_list for that endpoint. In
829 * short, don't muck with the stream ID after
830 * submission.
831 */
832 xhci_warn(xhci, "WARN Cancelled URB %p "
833 "has invalid stream ID %u.\n",
834 cur_td->urb,
835 cur_td->urb->stream_id);
836 goto remove_finished_td;
837 }
838 /*
839 * If we stopped on the TD we need to cancel, then we have to
840 * move the xHC endpoint ring dequeue pointer past this TD.
841 */
842 if (cur_td == ep->stopped_td)
843 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
844 cur_td->urb->stream_id,
845 cur_td, &deq_state);
846 else
847 td_to_noop(xhci, ep_ring, cur_td, false);
848 remove_finished_td:
849 /*
850 * The event handler won't see a completion for this TD anymore,
851 * so remove it from the endpoint ring's TD list. Keep it in
852 * the cancelled TD list for URB completion later.
853 */
854 list_del_init(&cur_td->td_list);
855 }
856 last_unlinked_td = cur_td;
857 xhci_stop_watchdog_timer_in_irq(xhci, ep);
858
859 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
860 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
861 xhci_queue_new_dequeue_state(xhci,
862 slot_id, ep_index,
863 ep->stopped_td->urb->stream_id,
864 &deq_state);
865 xhci_ring_cmd_db(xhci);
866 } else {
867 /* Otherwise ring the doorbell(s) to restart queued transfers */
868 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
869 }
870
871 /* Clear stopped_td and stopped_trb if endpoint is not halted */
872 if (!(ep->ep_state & EP_HALTED)) {
873 ep->stopped_td = NULL;
874 ep->stopped_trb = NULL;
875 }
876
877 /*
878 * Drop the lock and complete the URBs in the cancelled TD list.
879 * New TDs to be cancelled might be added to the end of the list before
880 * we can complete all the URBs for the TDs we already unlinked.
881 * So stop when we've completed the URB for the last TD we unlinked.
882 */
883 do {
884 cur_td = list_entry(ep->cancelled_td_list.next,
885 struct xhci_td, cancelled_td_list);
886 list_del_init(&cur_td->cancelled_td_list);
887
888 /* Clean up the cancelled URB */
889 /* Doesn't matter what we pass for status, since the core will
890 * just overwrite it (because the URB has been unlinked).
891 */
892 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
893
894 /* Stop processing the cancelled list if the watchdog timer is
895 * running.
896 */
897 if (xhci->xhc_state & XHCI_STATE_DYING)
898 return;
899 } while (cur_td != last_unlinked_td);
900
901 /* Return to the event handler with xhci->lock re-acquired */
902 }
903
904 /* Watchdog timer function for when a stop endpoint command fails to complete.
905 * In this case, we assume the host controller is broken or dying or dead. The
906 * host may still be completing some other events, so we have to be careful to
907 * let the event ring handler and the URB dequeueing/enqueueing functions know
908 * through xhci->state.
909 *
910 * The timer may also fire if the host takes a very long time to respond to the
911 * command, and the stop endpoint command completion handler cannot delete the
912 * timer before the timer function is called. Another endpoint cancellation may
913 * sneak in before the timer function can grab the lock, and that may queue
914 * another stop endpoint command and add the timer back. So we cannot use a
915 * simple flag to say whether there is a pending stop endpoint command for a
916 * particular endpoint.
917 *
918 * Instead we use a combination of that flag and a counter for the number of
919 * pending stop endpoint commands. If the timer is the tail end of the last
920 * stop endpoint command, and the endpoint's command is still pending, we assume
921 * the host is dying.
922 */
923 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
924 {
925 struct xhci_hcd *xhci;
926 struct xhci_virt_ep *ep;
927 struct xhci_virt_ep *temp_ep;
928 struct xhci_ring *ring;
929 struct xhci_td *cur_td;
930 int ret, i, j;
931 unsigned long flags;
932
933 ep = (struct xhci_virt_ep *) arg;
934 xhci = ep->xhci;
935
936 spin_lock_irqsave(&xhci->lock, flags);
937
938 ep->stop_cmds_pending--;
939 if (xhci->xhc_state & XHCI_STATE_DYING) {
940 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
941 "xHCI as DYING, exiting.\n");
942 spin_unlock_irqrestore(&xhci->lock, flags);
943 return;
944 }
945 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
946 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
947 "exiting.\n");
948 spin_unlock_irqrestore(&xhci->lock, flags);
949 return;
950 }
951
952 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
953 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
954 /* Oops, HC is dead or dying or at least not responding to the stop
955 * endpoint command.
956 */
957 xhci->xhc_state |= XHCI_STATE_DYING;
958 /* Disable interrupts from the host controller and start halting it */
959 xhci_quiesce(xhci);
960 spin_unlock_irqrestore(&xhci->lock, flags);
961
962 ret = xhci_halt(xhci);
963
964 spin_lock_irqsave(&xhci->lock, flags);
965 if (ret < 0) {
966 /* This is bad; the host is not responding to commands and it's
967 * not allowing itself to be halted. At least interrupts are
968 * disabled. If we call usb_hc_died(), it will attempt to
969 * disconnect all device drivers under this host. Those
970 * disconnect() methods will wait for all URBs to be unlinked,
971 * so we must complete them.
972 */
973 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
974 xhci_warn(xhci, "Completing active URBs anyway.\n");
975 /* We could turn all TDs on the rings to no-ops. This won't
976 * help if the host has cached part of the ring, and is slow if
977 * we want to preserve the cycle bit. Skip it and hope the host
978 * doesn't touch the memory.
979 */
980 }
981 for (i = 0; i < MAX_HC_SLOTS; i++) {
982 if (!xhci->devs[i])
983 continue;
984 for (j = 0; j < 31; j++) {
985 temp_ep = &xhci->devs[i]->eps[j];
986 ring = temp_ep->ring;
987 if (!ring)
988 continue;
989 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
990 "ep index %u\n", i, j);
991 while (!list_empty(&ring->td_list)) {
992 cur_td = list_first_entry(&ring->td_list,
993 struct xhci_td,
994 td_list);
995 list_del_init(&cur_td->td_list);
996 if (!list_empty(&cur_td->cancelled_td_list))
997 list_del_init(&cur_td->cancelled_td_list);
998 xhci_giveback_urb_in_irq(xhci, cur_td,
999 -ESHUTDOWN, "killed");
1000 }
1001 while (!list_empty(&temp_ep->cancelled_td_list)) {
1002 cur_td = list_first_entry(
1003 &temp_ep->cancelled_td_list,
1004 struct xhci_td,
1005 cancelled_td_list);
1006 list_del_init(&cur_td->cancelled_td_list);
1007 xhci_giveback_urb_in_irq(xhci, cur_td,
1008 -ESHUTDOWN, "killed");
1009 }
1010 }
1011 }
1012 spin_unlock_irqrestore(&xhci->lock, flags);
1013 xhci_dbg(xhci, "Calling usb_hc_died()\n");
1014 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1015 xhci_dbg(xhci, "xHCI host controller is dead.\n");
1016 }
1017
1018
1019 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1020 struct xhci_virt_device *dev,
1021 struct xhci_ring *ep_ring,
1022 unsigned int ep_index)
1023 {
1024 union xhci_trb *dequeue_temp;
1025 int num_trbs_free_temp;
1026 bool revert = false;
1027
1028 num_trbs_free_temp = ep_ring->num_trbs_free;
1029 dequeue_temp = ep_ring->dequeue;
1030
1031 /* If we get two back-to-back stalls, and the first stalled transfer
1032 * ends just before a link TRB, the dequeue pointer will be left on
1033 * the link TRB by the code in the while loop. So we have to update
1034 * the dequeue pointer one segment further, or we'll jump off
1035 * the segment into la-la-land.
1036 */
1037 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1038 ep_ring->deq_seg = ep_ring->deq_seg->next;
1039 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1040 }
1041
1042 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1043 /* We have more usable TRBs */
1044 ep_ring->num_trbs_free++;
1045 ep_ring->dequeue++;
1046 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1047 ep_ring->dequeue)) {
1048 if (ep_ring->dequeue ==
1049 dev->eps[ep_index].queued_deq_ptr)
1050 break;
1051 ep_ring->deq_seg = ep_ring->deq_seg->next;
1052 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1053 }
1054 if (ep_ring->dequeue == dequeue_temp) {
1055 revert = true;
1056 break;
1057 }
1058 }
1059
1060 if (revert) {
1061 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1062 ep_ring->num_trbs_free = num_trbs_free_temp;
1063 }
1064 }
1065
1066 /*
1067 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1068 * we need to clear the set deq pending flag in the endpoint ring state, so that
1069 * the TD queueing code can ring the doorbell again. We also need to ring the
1070 * endpoint doorbell to restart the ring, but only if there aren't more
1071 * cancellations pending.
1072 */
1073 static void handle_set_deq_completion(struct xhci_hcd *xhci,
1074 struct xhci_event_cmd *event,
1075 union xhci_trb *trb)
1076 {
1077 unsigned int slot_id;
1078 unsigned int ep_index;
1079 unsigned int stream_id;
1080 struct xhci_ring *ep_ring;
1081 struct xhci_virt_device *dev;
1082 struct xhci_ep_ctx *ep_ctx;
1083 struct xhci_slot_ctx *slot_ctx;
1084
1085 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1086 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1087 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1088 dev = xhci->devs[slot_id];
1089
1090 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1091 if (!ep_ring) {
1092 xhci_warn(xhci, "WARN Set TR deq ptr command for "
1093 "freed stream ID %u\n",
1094 stream_id);
1095 /* XXX: Harmless??? */
1096 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1097 return;
1098 }
1099
1100 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1101 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1102
1103 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
1104 unsigned int ep_state;
1105 unsigned int slot_state;
1106
1107 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
1108 case COMP_TRB_ERR:
1109 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1110 "of stream ID configuration\n");
1111 break;
1112 case COMP_CTX_STATE:
1113 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1114 "to incorrect slot or ep state.\n");
1115 ep_state = le32_to_cpu(ep_ctx->ep_info);
1116 ep_state &= EP_STATE_MASK;
1117 slot_state = le32_to_cpu(slot_ctx->dev_state);
1118 slot_state = GET_SLOT_STATE(slot_state);
1119 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
1120 slot_state, ep_state);
1121 break;
1122 case COMP_EBADSLT:
1123 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1124 "slot %u was not enabled.\n", slot_id);
1125 break;
1126 default:
1127 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1128 "completion code of %u.\n",
1129 GET_COMP_CODE(le32_to_cpu(event->status)));
1130 break;
1131 }
1132 /* OK what do we do now? The endpoint state is hosed, and we
1133 * should never get to this point if the synchronization between
1134 * queueing, and endpoint state are correct. This might happen
1135 * if the device gets disconnected after we've finished
1136 * cancelling URBs, which might not be an error...
1137 */
1138 } else {
1139 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
1140 le64_to_cpu(ep_ctx->deq));
1141 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1142 dev->eps[ep_index].queued_deq_ptr) ==
1143 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1144 /* Update the ring's dequeue segment and dequeue pointer
1145 * to reflect the new position.
1146 */
1147 update_ring_for_set_deq_completion(xhci, dev,
1148 ep_ring, ep_index);
1149 } else {
1150 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1151 "Ptr command & xHCI internal state.\n");
1152 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1153 dev->eps[ep_index].queued_deq_seg,
1154 dev->eps[ep_index].queued_deq_ptr);
1155 }
1156 }
1157
1158 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1159 dev->eps[ep_index].queued_deq_seg = NULL;
1160 dev->eps[ep_index].queued_deq_ptr = NULL;
1161 /* Restart any rings with pending URBs */
1162 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1163 }
1164
1165 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1166 struct xhci_event_cmd *event,
1167 union xhci_trb *trb)
1168 {
1169 int slot_id;
1170 unsigned int ep_index;
1171
1172 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1173 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1174 /* This command will only fail if the endpoint wasn't halted,
1175 * but we don't care.
1176 */
1177 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1178 GET_COMP_CODE(le32_to_cpu(event->status)));
1179
1180 /* HW with the reset endpoint quirk needs to have a configure endpoint
1181 * command complete before the endpoint can be used. Queue that here
1182 * because the HW can't handle two commands being queued in a row.
1183 */
1184 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1185 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1186 xhci_queue_configure_endpoint(xhci,
1187 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1188 false);
1189 xhci_ring_cmd_db(xhci);
1190 } else {
1191 /* Clear our internal halted state and restart the ring(s) */
1192 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1193 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1194 }
1195 }
1196
1197 /* Complete the command and detele it from the devcie's command queue.
1198 */
1199 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1200 struct xhci_command *command, u32 status)
1201 {
1202 command->status = status;
1203 list_del(&command->cmd_list);
1204 if (command->completion)
1205 complete(command->completion);
1206 else
1207 xhci_free_command(xhci, command);
1208 }
1209
1210
1211 /* Check to see if a command in the device's command queue matches this one.
1212 * Signal the completion or free the command, and return 1. Return 0 if the
1213 * completed command isn't at the head of the command list.
1214 */
1215 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1216 struct xhci_virt_device *virt_dev,
1217 struct xhci_event_cmd *event)
1218 {
1219 struct xhci_command *command;
1220
1221 if (list_empty(&virt_dev->cmd_list))
1222 return 0;
1223
1224 command = list_entry(virt_dev->cmd_list.next,
1225 struct xhci_command, cmd_list);
1226 if (xhci->cmd_ring->dequeue != command->command_trb)
1227 return 0;
1228
1229 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1230 GET_COMP_CODE(le32_to_cpu(event->status)));
1231 return 1;
1232 }
1233
1234 /*
1235 * Finding the command trb need to be cancelled and modifying it to
1236 * NO OP command. And if the command is in device's command wait
1237 * list, finishing and freeing it.
1238 *
1239 * If we can't find the command trb, we think it had already been
1240 * executed.
1241 */
1242 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1243 {
1244 struct xhci_segment *cur_seg;
1245 union xhci_trb *cmd_trb;
1246 u32 cycle_state;
1247
1248 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1249 return;
1250
1251 /* find the current segment of command ring */
1252 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1253 xhci->cmd_ring->dequeue, &cycle_state);
1254
1255 if (!cur_seg) {
1256 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1257 xhci->cmd_ring->dequeue,
1258 (unsigned long long)
1259 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1260 xhci->cmd_ring->dequeue));
1261 xhci_debug_ring(xhci, xhci->cmd_ring);
1262 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1263 return;
1264 }
1265
1266 /* find the command trb matched by cd from command ring */
1267 for (cmd_trb = xhci->cmd_ring->dequeue;
1268 cmd_trb != xhci->cmd_ring->enqueue;
1269 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1270 /* If the trb is link trb, continue */
1271 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1272 continue;
1273
1274 if (cur_cd->cmd_trb == cmd_trb) {
1275
1276 /* If the command in device's command list, we should
1277 * finish it and free the command structure.
1278 */
1279 if (cur_cd->command)
1280 xhci_complete_cmd_in_cmd_wait_list(xhci,
1281 cur_cd->command, COMP_CMD_STOP);
1282
1283 /* get cycle state from the origin command trb */
1284 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1285 & TRB_CYCLE;
1286
1287 /* modify the command trb to NO OP command */
1288 cmd_trb->generic.field[0] = 0;
1289 cmd_trb->generic.field[1] = 0;
1290 cmd_trb->generic.field[2] = 0;
1291 cmd_trb->generic.field[3] = cpu_to_le32(
1292 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1293 break;
1294 }
1295 }
1296 }
1297
1298 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1299 {
1300 struct xhci_cd *cur_cd, *next_cd;
1301
1302 if (list_empty(&xhci->cancel_cmd_list))
1303 return;
1304
1305 list_for_each_entry_safe(cur_cd, next_cd,
1306 &xhci->cancel_cmd_list, cancel_cmd_list) {
1307 xhci_cmd_to_noop(xhci, cur_cd);
1308 list_del(&cur_cd->cancel_cmd_list);
1309 kfree(cur_cd);
1310 }
1311 }
1312
1313 /*
1314 * traversing the cancel_cmd_list. If the command descriptor according
1315 * to cmd_trb is found, the function free it and return 1, otherwise
1316 * return 0.
1317 */
1318 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1319 union xhci_trb *cmd_trb)
1320 {
1321 struct xhci_cd *cur_cd, *next_cd;
1322
1323 if (list_empty(&xhci->cancel_cmd_list))
1324 return 0;
1325
1326 list_for_each_entry_safe(cur_cd, next_cd,
1327 &xhci->cancel_cmd_list, cancel_cmd_list) {
1328 if (cur_cd->cmd_trb == cmd_trb) {
1329 if (cur_cd->command)
1330 xhci_complete_cmd_in_cmd_wait_list(xhci,
1331 cur_cd->command, COMP_CMD_STOP);
1332 list_del(&cur_cd->cancel_cmd_list);
1333 kfree(cur_cd);
1334 return 1;
1335 }
1336 }
1337
1338 return 0;
1339 }
1340
1341 /*
1342 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1343 * trb pointed by the command ring dequeue pointer is the trb we want to
1344 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1345 * traverse the cancel_cmd_list to trun the all of the commands according
1346 * to command descriptor to NO-OP trb.
1347 */
1348 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1349 int cmd_trb_comp_code)
1350 {
1351 int cur_trb_is_good = 0;
1352
1353 /* Searching the cmd trb pointed by the command ring dequeue
1354 * pointer in command descriptor list. If it is found, free it.
1355 */
1356 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1357 xhci->cmd_ring->dequeue);
1358
1359 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1360 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1361 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1362 /* traversing the cancel_cmd_list and canceling
1363 * the command according to command descriptor
1364 */
1365 xhci_cancel_cmd_in_cd_list(xhci);
1366
1367 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1368 /*
1369 * ring command ring doorbell again to restart the
1370 * command ring
1371 */
1372 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1373 xhci_ring_cmd_db(xhci);
1374 }
1375 return cur_trb_is_good;
1376 }
1377
1378 static void handle_cmd_completion(struct xhci_hcd *xhci,
1379 struct xhci_event_cmd *event)
1380 {
1381 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1382 u64 cmd_dma;
1383 dma_addr_t cmd_dequeue_dma;
1384 struct xhci_input_control_ctx *ctrl_ctx;
1385 struct xhci_virt_device *virt_dev;
1386 unsigned int ep_index;
1387 struct xhci_ring *ep_ring;
1388 unsigned int ep_state;
1389
1390 cmd_dma = le64_to_cpu(event->cmd_trb);
1391 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1392 xhci->cmd_ring->dequeue);
1393 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1394 if (cmd_dequeue_dma == 0) {
1395 xhci->error_bitmask |= 1 << 4;
1396 return;
1397 }
1398 /* Does the DMA address match our internal dequeue pointer address? */
1399 if (cmd_dma != (u64) cmd_dequeue_dma) {
1400 xhci->error_bitmask |= 1 << 5;
1401 return;
1402 }
1403
1404 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) ||
1405 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) {
1406 /* If the return value is 0, we think the trb pointed by
1407 * command ring dequeue pointer is a good trb. The good
1408 * trb means we don't want to cancel the trb, but it have
1409 * been stopped by host. So we should handle it normally.
1410 * Otherwise, driver should invoke inc_deq() and return.
1411 */
1412 if (handle_stopped_cmd_ring(xhci,
1413 GET_COMP_CODE(le32_to_cpu(event->status)))) {
1414 inc_deq(xhci, xhci->cmd_ring);
1415 return;
1416 }
1417 /* There is no command to handle if we get a stop event when the
1418 * command ring is empty, event->cmd_trb points to the next
1419 * unset command
1420 */
1421 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1422 return;
1423 }
1424
1425 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1426 & TRB_TYPE_BITMASK) {
1427 case TRB_TYPE(TRB_ENABLE_SLOT):
1428 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1429 xhci->slot_id = slot_id;
1430 else
1431 xhci->slot_id = 0;
1432 complete(&xhci->addr_dev);
1433 break;
1434 case TRB_TYPE(TRB_DISABLE_SLOT):
1435 if (xhci->devs[slot_id]) {
1436 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1437 /* Delete default control endpoint resources */
1438 xhci_free_device_endpoint_resources(xhci,
1439 xhci->devs[slot_id], true);
1440 xhci_free_virt_device(xhci, slot_id);
1441 }
1442 break;
1443 case TRB_TYPE(TRB_CONFIG_EP):
1444 virt_dev = xhci->devs[slot_id];
1445 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1446 break;
1447 /*
1448 * Configure endpoint commands can come from the USB core
1449 * configuration or alt setting changes, or because the HW
1450 * needed an extra configure endpoint command after a reset
1451 * endpoint command or streams were being configured.
1452 * If the command was for a halted endpoint, the xHCI driver
1453 * is not waiting on the configure endpoint command.
1454 */
1455 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1456 virt_dev->in_ctx);
1457 /* Input ctx add_flags are the endpoint index plus one */
1458 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1459 /* A usb_set_interface() call directly after clearing a halted
1460 * condition may race on this quirky hardware. Not worth
1461 * worrying about, since this is prototype hardware. Not sure
1462 * if this will work for streams, but streams support was
1463 * untested on this prototype.
1464 */
1465 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1466 ep_index != (unsigned int) -1 &&
1467 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1468 le32_to_cpu(ctrl_ctx->drop_flags)) {
1469 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1470 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1471 if (!(ep_state & EP_HALTED))
1472 goto bandwidth_change;
1473 xhci_dbg(xhci, "Completed config ep cmd - "
1474 "last ep index = %d, state = %d\n",
1475 ep_index, ep_state);
1476 /* Clear internal halted state and restart ring(s) */
1477 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1478 ~EP_HALTED;
1479 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1480 break;
1481 }
1482 bandwidth_change:
1483 xhci_dbg(xhci, "Completed config ep cmd\n");
1484 xhci->devs[slot_id]->cmd_status =
1485 GET_COMP_CODE(le32_to_cpu(event->status));
1486 complete(&xhci->devs[slot_id]->cmd_completion);
1487 break;
1488 case TRB_TYPE(TRB_EVAL_CONTEXT):
1489 virt_dev = xhci->devs[slot_id];
1490 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1491 break;
1492 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1493 complete(&xhci->devs[slot_id]->cmd_completion);
1494 break;
1495 case TRB_TYPE(TRB_ADDR_DEV):
1496 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1497 complete(&xhci->addr_dev);
1498 break;
1499 case TRB_TYPE(TRB_STOP_RING):
1500 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1501 break;
1502 case TRB_TYPE(TRB_SET_DEQ):
1503 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1504 break;
1505 case TRB_TYPE(TRB_CMD_NOOP):
1506 break;
1507 case TRB_TYPE(TRB_RESET_EP):
1508 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1509 break;
1510 case TRB_TYPE(TRB_RESET_DEV):
1511 xhci_dbg(xhci, "Completed reset device command.\n");
1512 slot_id = TRB_TO_SLOT_ID(
1513 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1514 virt_dev = xhci->devs[slot_id];
1515 if (virt_dev)
1516 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1517 else
1518 xhci_warn(xhci, "Reset device command completion "
1519 "for disabled slot %u\n", slot_id);
1520 break;
1521 case TRB_TYPE(TRB_NEC_GET_FW):
1522 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1523 xhci->error_bitmask |= 1 << 6;
1524 break;
1525 }
1526 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1527 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1528 NEC_FW_MINOR(le32_to_cpu(event->status)));
1529 break;
1530 default:
1531 /* Skip over unknown commands on the event ring */
1532 xhci->error_bitmask |= 1 << 6;
1533 break;
1534 }
1535 inc_deq(xhci, xhci->cmd_ring);
1536 }
1537
1538 static void handle_vendor_event(struct xhci_hcd *xhci,
1539 union xhci_trb *event)
1540 {
1541 u32 trb_type;
1542
1543 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1544 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1545 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1546 handle_cmd_completion(xhci, &event->event_cmd);
1547 }
1548
1549 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1550 * port registers -- USB 3.0 and USB 2.0).
1551 *
1552 * Returns a zero-based port number, which is suitable for indexing into each of
1553 * the split roothubs' port arrays and bus state arrays.
1554 * Add one to it in order to call xhci_find_slot_id_by_port.
1555 */
1556 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1557 struct xhci_hcd *xhci, u32 port_id)
1558 {
1559 unsigned int i;
1560 unsigned int num_similar_speed_ports = 0;
1561
1562 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1563 * and usb2_ports are 0-based indexes. Count the number of similar
1564 * speed ports, up to 1 port before this port.
1565 */
1566 for (i = 0; i < (port_id - 1); i++) {
1567 u8 port_speed = xhci->port_array[i];
1568
1569 /*
1570 * Skip ports that don't have known speeds, or have duplicate
1571 * Extended Capabilities port speed entries.
1572 */
1573 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1574 continue;
1575
1576 /*
1577 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1578 * 1.1 ports are under the USB 2.0 hub. If the port speed
1579 * matches the device speed, it's a similar speed port.
1580 */
1581 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1582 num_similar_speed_ports++;
1583 }
1584 return num_similar_speed_ports;
1585 }
1586
1587 static void handle_device_notification(struct xhci_hcd *xhci,
1588 union xhci_trb *event)
1589 {
1590 u32 slot_id;
1591 struct usb_device *udev;
1592
1593 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1594 if (!xhci->devs[slot_id]) {
1595 xhci_warn(xhci, "Device Notification event for "
1596 "unused slot %u\n", slot_id);
1597 return;
1598 }
1599
1600 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1601 slot_id);
1602 udev = xhci->devs[slot_id]->udev;
1603 if (udev && udev->parent)
1604 usb_wakeup_notification(udev->parent, udev->portnum);
1605 }
1606
1607 static void handle_port_status(struct xhci_hcd *xhci,
1608 union xhci_trb *event)
1609 {
1610 struct usb_hcd *hcd;
1611 u32 port_id;
1612 u32 temp, temp1;
1613 int max_ports;
1614 int slot_id;
1615 unsigned int faked_port_index;
1616 u8 major_revision;
1617 struct xhci_bus_state *bus_state;
1618 __le32 __iomem **port_array;
1619 bool bogus_port_status = false;
1620
1621 /* Port status change events always have a successful completion code */
1622 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1623 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1624 xhci->error_bitmask |= 1 << 8;
1625 }
1626 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1627 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1628
1629 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1630 if ((port_id <= 0) || (port_id > max_ports)) {
1631 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1632 inc_deq(xhci, xhci->event_ring);
1633 return;
1634 }
1635
1636 /* Figure out which usb_hcd this port is attached to:
1637 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1638 */
1639 major_revision = xhci->port_array[port_id - 1];
1640
1641 /* Find the right roothub. */
1642 hcd = xhci_to_hcd(xhci);
1643 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1644 hcd = xhci->shared_hcd;
1645
1646 if (major_revision == 0) {
1647 xhci_warn(xhci, "Event for port %u not in "
1648 "Extended Capabilities, ignoring.\n",
1649 port_id);
1650 bogus_port_status = true;
1651 goto cleanup;
1652 }
1653 if (major_revision == DUPLICATE_ENTRY) {
1654 xhci_warn(xhci, "Event for port %u duplicated in"
1655 "Extended Capabilities, ignoring.\n",
1656 port_id);
1657 bogus_port_status = true;
1658 goto cleanup;
1659 }
1660
1661 /*
1662 * Hardware port IDs reported by a Port Status Change Event include USB
1663 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1664 * resume event, but we first need to translate the hardware port ID
1665 * into the index into the ports on the correct split roothub, and the
1666 * correct bus_state structure.
1667 */
1668 bus_state = &xhci->bus_state[hcd_index(hcd)];
1669 if (hcd->speed == HCD_USB3)
1670 port_array = xhci->usb3_ports;
1671 else
1672 port_array = xhci->usb2_ports;
1673 /* Find the faked port hub number */
1674 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1675 port_id);
1676
1677 temp = xhci_readl(xhci, port_array[faked_port_index]);
1678 if (hcd->state == HC_STATE_SUSPENDED) {
1679 xhci_dbg(xhci, "resume root hub\n");
1680 usb_hcd_resume_root_hub(hcd);
1681 }
1682
1683 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1684 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1685
1686 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1687 if (!(temp1 & CMD_RUN)) {
1688 xhci_warn(xhci, "xHC is not running.\n");
1689 goto cleanup;
1690 }
1691
1692 if (DEV_SUPERSPEED(temp)) {
1693 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1694 /* Set a flag to say the port signaled remote wakeup,
1695 * so we can tell the difference between the end of
1696 * device and host initiated resume.
1697 */
1698 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1699 xhci_test_and_clear_bit(xhci, port_array,
1700 faked_port_index, PORT_PLC);
1701 xhci_set_link_state(xhci, port_array, faked_port_index,
1702 XDEV_U0);
1703 /* Need to wait until the next link state change
1704 * indicates the device is actually in U0.
1705 */
1706 bogus_port_status = true;
1707 goto cleanup;
1708 } else {
1709 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1710 bus_state->resume_done[faked_port_index] = jiffies +
1711 msecs_to_jiffies(20);
1712 set_bit(faked_port_index, &bus_state->resuming_ports);
1713 mod_timer(&hcd->rh_timer,
1714 bus_state->resume_done[faked_port_index]);
1715 /* Do the rest in GetPortStatus */
1716 }
1717 }
1718
1719 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1720 DEV_SUPERSPEED(temp)) {
1721 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1722 /* We've just brought the device into U0 through either the
1723 * Resume state after a device remote wakeup, or through the
1724 * U3Exit state after a host-initiated resume. If it's a device
1725 * initiated remote wake, don't pass up the link state change,
1726 * so the roothub behavior is consistent with external
1727 * USB 3.0 hub behavior.
1728 */
1729 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1730 faked_port_index + 1);
1731 if (slot_id && xhci->devs[slot_id])
1732 xhci_ring_device(xhci, slot_id);
1733 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1734 bus_state->port_remote_wakeup &=
1735 ~(1 << faked_port_index);
1736 xhci_test_and_clear_bit(xhci, port_array,
1737 faked_port_index, PORT_PLC);
1738 usb_wakeup_notification(hcd->self.root_hub,
1739 faked_port_index + 1);
1740 bogus_port_status = true;
1741 goto cleanup;
1742 }
1743 }
1744
1745 if (hcd->speed != HCD_USB3)
1746 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1747 PORT_PLC);
1748
1749 cleanup:
1750 /* Update event ring dequeue pointer before dropping the lock */
1751 inc_deq(xhci, xhci->event_ring);
1752
1753 /* Don't make the USB core poll the roothub if we got a bad port status
1754 * change event. Besides, at that point we can't tell which roothub
1755 * (USB 2.0 or USB 3.0) to kick.
1756 */
1757 if (bogus_port_status)
1758 return;
1759
1760 /*
1761 * xHCI port-status-change events occur when the "or" of all the
1762 * status-change bits in the portsc register changes from 0 to 1.
1763 * New status changes won't cause an event if any other change
1764 * bits are still set. When an event occurs, switch over to
1765 * polling to avoid losing status changes.
1766 */
1767 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1768 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1769 spin_unlock(&xhci->lock);
1770 /* Pass this up to the core */
1771 usb_hcd_poll_rh_status(hcd);
1772 spin_lock(&xhci->lock);
1773 }
1774
1775 /*
1776 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1777 * at end_trb, which may be in another segment. If the suspect DMA address is a
1778 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1779 * returns 0.
1780 */
1781 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1782 union xhci_trb *start_trb,
1783 union xhci_trb *end_trb,
1784 dma_addr_t suspect_dma)
1785 {
1786 dma_addr_t start_dma;
1787 dma_addr_t end_seg_dma;
1788 dma_addr_t end_trb_dma;
1789 struct xhci_segment *cur_seg;
1790
1791 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1792 cur_seg = start_seg;
1793
1794 do {
1795 if (start_dma == 0)
1796 return NULL;
1797 /* We may get an event for a Link TRB in the middle of a TD */
1798 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1799 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1800 /* If the end TRB isn't in this segment, this is set to 0 */
1801 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1802
1803 if (end_trb_dma > 0) {
1804 /* The end TRB is in this segment, so suspect should be here */
1805 if (start_dma <= end_trb_dma) {
1806 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1807 return cur_seg;
1808 } else {
1809 /* Case for one segment with
1810 * a TD wrapped around to the top
1811 */
1812 if ((suspect_dma >= start_dma &&
1813 suspect_dma <= end_seg_dma) ||
1814 (suspect_dma >= cur_seg->dma &&
1815 suspect_dma <= end_trb_dma))
1816 return cur_seg;
1817 }
1818 return NULL;
1819 } else {
1820 /* Might still be somewhere in this segment */
1821 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1822 return cur_seg;
1823 }
1824 cur_seg = cur_seg->next;
1825 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1826 } while (cur_seg != start_seg);
1827
1828 return NULL;
1829 }
1830
1831 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1832 unsigned int slot_id, unsigned int ep_index,
1833 unsigned int stream_id,
1834 struct xhci_td *td, union xhci_trb *event_trb)
1835 {
1836 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1837 ep->ep_state |= EP_HALTED;
1838 ep->stopped_td = td;
1839 ep->stopped_trb = event_trb;
1840 ep->stopped_stream = stream_id;
1841
1842 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1843 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1844
1845 ep->stopped_td = NULL;
1846 ep->stopped_trb = NULL;
1847 ep->stopped_stream = 0;
1848
1849 xhci_ring_cmd_db(xhci);
1850 }
1851
1852 /* Check if an error has halted the endpoint ring. The class driver will
1853 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1854 * However, a babble and other errors also halt the endpoint ring, and the class
1855 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1856 * Ring Dequeue Pointer command manually.
1857 */
1858 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1859 struct xhci_ep_ctx *ep_ctx,
1860 unsigned int trb_comp_code)
1861 {
1862 /* TRB completion codes that may require a manual halt cleanup */
1863 if (trb_comp_code == COMP_TX_ERR ||
1864 trb_comp_code == COMP_BABBLE ||
1865 trb_comp_code == COMP_SPLIT_ERR)
1866 /* The 0.96 spec says a babbling control endpoint
1867 * is not halted. The 0.96 spec says it is. Some HW
1868 * claims to be 0.95 compliant, but it halts the control
1869 * endpoint anyway. Check if a babble halted the
1870 * endpoint.
1871 */
1872 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1873 cpu_to_le32(EP_STATE_HALTED))
1874 return 1;
1875
1876 return 0;
1877 }
1878
1879 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1880 {
1881 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1882 /* Vendor defined "informational" completion code,
1883 * treat as not-an-error.
1884 */
1885 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1886 trb_comp_code);
1887 xhci_dbg(xhci, "Treating code as success.\n");
1888 return 1;
1889 }
1890 return 0;
1891 }
1892
1893 /*
1894 * Finish the td processing, remove the td from td list;
1895 * Return 1 if the urb can be given back.
1896 */
1897 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1898 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1899 struct xhci_virt_ep *ep, int *status, bool skip)
1900 {
1901 struct xhci_virt_device *xdev;
1902 struct xhci_ring *ep_ring;
1903 unsigned int slot_id;
1904 int ep_index;
1905 struct urb *urb = NULL;
1906 struct xhci_ep_ctx *ep_ctx;
1907 int ret = 0;
1908 struct urb_priv *urb_priv;
1909 u32 trb_comp_code;
1910
1911 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1912 xdev = xhci->devs[slot_id];
1913 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1914 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1915 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1916 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1917
1918 if (skip)
1919 goto td_cleanup;
1920
1921 if (trb_comp_code == COMP_STOP_INVAL ||
1922 trb_comp_code == COMP_STOP) {
1923 /* The Endpoint Stop Command completion will take care of any
1924 * stopped TDs. A stopped TD may be restarted, so don't update
1925 * the ring dequeue pointer or take this TD off any lists yet.
1926 */
1927 ep->stopped_td = td;
1928 ep->stopped_trb = event_trb;
1929 return 0;
1930 } else {
1931 if (trb_comp_code == COMP_STALL) {
1932 /* The transfer is completed from the driver's
1933 * perspective, but we need to issue a set dequeue
1934 * command for this stalled endpoint to move the dequeue
1935 * pointer past the TD. We can't do that here because
1936 * the halt condition must be cleared first. Let the
1937 * USB class driver clear the stall later.
1938 */
1939 ep->stopped_td = td;
1940 ep->stopped_trb = event_trb;
1941 ep->stopped_stream = ep_ring->stream_id;
1942 } else if (xhci_requires_manual_halt_cleanup(xhci,
1943 ep_ctx, trb_comp_code)) {
1944 /* Other types of errors halt the endpoint, but the
1945 * class driver doesn't call usb_reset_endpoint() unless
1946 * the error is -EPIPE. Clear the halted status in the
1947 * xHCI hardware manually.
1948 */
1949 xhci_cleanup_halted_endpoint(xhci,
1950 slot_id, ep_index, ep_ring->stream_id,
1951 td, event_trb);
1952 } else {
1953 /* Update ring dequeue pointer */
1954 while (ep_ring->dequeue != td->last_trb)
1955 inc_deq(xhci, ep_ring);
1956 inc_deq(xhci, ep_ring);
1957 }
1958
1959 td_cleanup:
1960 /* Clean up the endpoint's TD list */
1961 urb = td->urb;
1962 urb_priv = urb->hcpriv;
1963
1964 /* Do one last check of the actual transfer length.
1965 * If the host controller said we transferred more data than
1966 * the buffer length, urb->actual_length will be a very big
1967 * number (since it's unsigned). Play it safe and say we didn't
1968 * transfer anything.
1969 */
1970 if (urb->actual_length > urb->transfer_buffer_length) {
1971 xhci_warn(xhci, "URB transfer length is wrong, "
1972 "xHC issue? req. len = %u, "
1973 "act. len = %u\n",
1974 urb->transfer_buffer_length,
1975 urb->actual_length);
1976 urb->actual_length = 0;
1977 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1978 *status = -EREMOTEIO;
1979 else
1980 *status = 0;
1981 }
1982 list_del_init(&td->td_list);
1983 /* Was this TD slated to be cancelled but completed anyway? */
1984 if (!list_empty(&td->cancelled_td_list))
1985 list_del_init(&td->cancelled_td_list);
1986
1987 urb_priv->td_cnt++;
1988 /* Giveback the urb when all the tds are completed */
1989 if (urb_priv->td_cnt == urb_priv->length) {
1990 ret = 1;
1991 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1992 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1993 #ifndef CONFIG_MTK_XHCI
1994 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1995 == 0) {
1996 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1997 usb_amd_quirk_pll_enable();
1998 }
1999 #endif
2000 }
2001 }
2002 }
2003
2004 return ret;
2005 }
2006
2007 /*
2008 * Process control tds, update urb status and actual_length.
2009 */
2010 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2011 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2012 struct xhci_virt_ep *ep, int *status)
2013 {
2014 struct xhci_virt_device *xdev;
2015 struct xhci_ring *ep_ring;
2016 unsigned int slot_id;
2017 int ep_index;
2018 struct xhci_ep_ctx *ep_ctx;
2019 u32 trb_comp_code;
2020
2021 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2022 xdev = xhci->devs[slot_id];
2023 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2024 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2025 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2026 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2027
2028 switch (trb_comp_code) {
2029 case COMP_SUCCESS:
2030 if (event_trb == ep_ring->dequeue) {
2031 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2032 "without IOC set??\n");
2033 *status = -ESHUTDOWN;
2034 } else if (event_trb != td->last_trb) {
2035 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2036 "without IOC set??\n");
2037 *status = -ESHUTDOWN;
2038 } else {
2039 *status = 0;
2040 }
2041 break;
2042 case COMP_SHORT_TX:
2043 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2044 *status = -EREMOTEIO;
2045 else
2046 *status = 0;
2047 break;
2048 case COMP_STOP_INVAL:
2049 case COMP_STOP:
2050 return finish_td(xhci, td, event_trb, event, ep, status, false);
2051 default:
2052 if (!xhci_requires_manual_halt_cleanup(xhci,
2053 ep_ctx, trb_comp_code))
2054 break;
2055 xhci_dbg(xhci, "TRB error code %u, "
2056 "halted endpoint index = %u\n",
2057 trb_comp_code, ep_index);
2058 /* else fall through */
2059 case COMP_STALL:
2060 /* Did we transfer part of the data (middle) phase? */
2061 if (event_trb != ep_ring->dequeue &&
2062 event_trb != td->last_trb)
2063 td->urb->actual_length =
2064 td->urb->transfer_buffer_length -
2065 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2066 else
2067 td->urb->actual_length = 0;
2068
2069 xhci_cleanup_halted_endpoint(xhci,
2070 slot_id, ep_index, 0, td, event_trb);
2071 return finish_td(xhci, td, event_trb, event, ep, status, true);
2072 }
2073 /*
2074 * Did we transfer any data, despite the errors that might have
2075 * happened? I.e. did we get past the setup stage?
2076 */
2077 if (event_trb != ep_ring->dequeue) {
2078 /* The event was for the status stage */
2079 if (event_trb == td->last_trb) {
2080 if (td->urb->actual_length != 0) {
2081 /* Don't overwrite a previously set error code
2082 */
2083 if ((*status == -EINPROGRESS || *status == 0) &&
2084 (td->urb->transfer_flags
2085 & URB_SHORT_NOT_OK))
2086 /* Did we already see a short data
2087 * stage? */
2088 *status = -EREMOTEIO;
2089 } else {
2090 td->urb->actual_length =
2091 td->urb->transfer_buffer_length;
2092 }
2093 } else {
2094 /* Maybe the event was for the data stage? */
2095 td->urb->actual_length =
2096 td->urb->transfer_buffer_length -
2097 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2098 xhci_dbg(xhci, "Waiting for status "
2099 "stage event\n");
2100 return 0;
2101 }
2102 }
2103
2104 return finish_td(xhci, td, event_trb, event, ep, status, false);
2105 }
2106
2107 /*
2108 * Process isochronous tds, update urb packet status and actual_length.
2109 */
2110 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2111 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2112 struct xhci_virt_ep *ep, int *status)
2113 {
2114 struct xhci_ring *ep_ring;
2115 struct urb_priv *urb_priv;
2116 int idx;
2117 int len = 0;
2118 union xhci_trb *cur_trb;
2119 struct xhci_segment *cur_seg;
2120 struct usb_iso_packet_descriptor *frame;
2121 u32 trb_comp_code;
2122 bool skip_td = false;
2123
2124 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2125 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2126 urb_priv = td->urb->hcpriv;
2127 idx = urb_priv->td_cnt;
2128 frame = &td->urb->iso_frame_desc[idx];
2129
2130 /* handle completion code */
2131 switch (trb_comp_code) {
2132 case COMP_SUCCESS:
2133 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2134 frame->status = 0;
2135 break;
2136 }
2137 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2138 trb_comp_code = COMP_SHORT_TX;
2139 case COMP_SHORT_TX:
2140 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2141 -EREMOTEIO : 0;
2142 break;
2143 case COMP_BW_OVER:
2144 frame->status = -ECOMM;
2145 skip_td = true;
2146 break;
2147 case COMP_BUFF_OVER:
2148 case COMP_BABBLE:
2149 frame->status = -EOVERFLOW;
2150 skip_td = true;
2151 break;
2152 case COMP_DEV_ERR:
2153 case COMP_STALL:
2154 case COMP_TX_ERR:
2155 frame->status = -EPROTO;
2156 skip_td = true;
2157 break;
2158 case COMP_STOP:
2159 case COMP_STOP_INVAL:
2160 break;
2161 default:
2162 frame->status = -1;
2163 break;
2164 }
2165
2166 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2167 frame->actual_length = frame->length;
2168 td->urb->actual_length += frame->length;
2169 } else {
2170 for (cur_trb = ep_ring->dequeue,
2171 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2172 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2173 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2174 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2175 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2176 }
2177 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2178 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2179
2180 if (trb_comp_code != COMP_STOP_INVAL) {
2181 frame->actual_length = len;
2182 td->urb->actual_length += len;
2183 }
2184 }
2185
2186 return finish_td(xhci, td, event_trb, event, ep, status, false);
2187 }
2188
2189 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2190 struct xhci_transfer_event *event,
2191 struct xhci_virt_ep *ep, int *status)
2192 {
2193 struct xhci_ring *ep_ring;
2194 struct urb_priv *urb_priv;
2195 struct usb_iso_packet_descriptor *frame;
2196 int idx;
2197
2198 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2199 urb_priv = td->urb->hcpriv;
2200 idx = urb_priv->td_cnt;
2201 frame = &td->urb->iso_frame_desc[idx];
2202
2203 /* The transfer is partly done. */
2204 frame->status = -EXDEV;
2205
2206 /* calc actual length */
2207 frame->actual_length = 0;
2208
2209 /* Update ring dequeue pointer */
2210 while (ep_ring->dequeue != td->last_trb)
2211 inc_deq(xhci, ep_ring);
2212 inc_deq(xhci, ep_ring);
2213
2214 return finish_td(xhci, td, NULL, event, ep, status, true);
2215 }
2216
2217 /*
2218 * Process bulk and interrupt tds, update urb status and actual_length.
2219 */
2220 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2221 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2222 struct xhci_virt_ep *ep, int *status)
2223 {
2224 struct xhci_ring *ep_ring;
2225 union xhci_trb *cur_trb;
2226 struct xhci_segment *cur_seg;
2227 u32 trb_comp_code;
2228
2229 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2230 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2231
2232 switch (trb_comp_code) {
2233 case COMP_SUCCESS:
2234 /* Double check that the HW transferred everything. */
2235 if (event_trb != td->last_trb ||
2236 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2237 xhci_warn(xhci, "WARN Successful completion "
2238 "on short TX\n");
2239 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2240 *status = -EREMOTEIO;
2241 else
2242 *status = 0;
2243 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2244 trb_comp_code = COMP_SHORT_TX;
2245 } else {
2246 *status = 0;
2247 }
2248 break;
2249 case COMP_SHORT_TX:
2250 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2251 *status = -EREMOTEIO;
2252 else
2253 *status = 0;
2254 break;
2255 default:
2256 /* Others already handled above */
2257 break;
2258 }
2259 if (trb_comp_code == COMP_SHORT_TX)
2260 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2261 "%d bytes untransferred\n",
2262 td->urb->ep->desc.bEndpointAddress,
2263 td->urb->transfer_buffer_length,
2264 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2265 /* Fast path - was this the last TRB in the TD for this URB? */
2266 if (event_trb == td->last_trb) {
2267 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2268 td->urb->actual_length =
2269 td->urb->transfer_buffer_length -
2270 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2271 if (td->urb->transfer_buffer_length <
2272 td->urb->actual_length) {
2273 xhci_warn(xhci, "HC gave bad length "
2274 "of %d bytes left\n",
2275 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2276 td->urb->actual_length = 0;
2277 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2278 *status = -EREMOTEIO;
2279 else
2280 *status = 0;
2281 }
2282 /* Don't overwrite a previously set error code */
2283 if (*status == -EINPROGRESS) {
2284 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2285 *status = -EREMOTEIO;
2286 else
2287 *status = 0;
2288 }
2289 } else {
2290 td->urb->actual_length =
2291 td->urb->transfer_buffer_length;
2292 /* Ignore a short packet completion if the
2293 * untransferred length was zero.
2294 */
2295 if (*status == -EREMOTEIO)
2296 *status = 0;
2297 }
2298 } else {
2299 /* Slow path - walk the list, starting from the dequeue
2300 * pointer, to get the actual length transferred.
2301 */
2302 td->urb->actual_length = 0;
2303 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2304 cur_trb != event_trb;
2305 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2306 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2307 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2308 td->urb->actual_length +=
2309 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2310 }
2311 /* If the ring didn't stop on a Link or No-op TRB, add
2312 * in the actual bytes transferred from the Normal TRB
2313 */
2314 if (trb_comp_code != COMP_STOP_INVAL)
2315 td->urb->actual_length +=
2316 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2317 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2318 }
2319
2320 return finish_td(xhci, td, event_trb, event, ep, status, false);
2321 }
2322
2323 /*
2324 * If this function returns an error condition, it means it got a Transfer
2325 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2326 * At this point, the host controller is probably hosed and should be reset.
2327 */
2328 static int handle_tx_event(struct xhci_hcd *xhci,
2329 struct xhci_transfer_event *event)
2330 __releases(&xhci->lock)
2331 __acquires(&xhci->lock)
2332 {
2333 struct xhci_virt_device *xdev;
2334 struct xhci_virt_ep *ep;
2335 struct xhci_ring *ep_ring;
2336 unsigned int slot_id;
2337 int ep_index;
2338 struct xhci_td *td = NULL;
2339 dma_addr_t event_dma;
2340 struct xhci_segment *event_seg;
2341 union xhci_trb *event_trb;
2342 struct urb *urb = NULL;
2343 int status = -EINPROGRESS;
2344 struct urb_priv *urb_priv;
2345 struct xhci_ep_ctx *ep_ctx;
2346 struct list_head *tmp;
2347 u32 trb_comp_code;
2348 int ret = 0;
2349 int td_num = 0;
2350
2351 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2352 xdev = xhci->devs[slot_id];
2353 if (!xdev) {
2354 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2355 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2356 (unsigned long long) xhci_trb_virt_to_dma(
2357 xhci->event_ring->deq_seg,
2358 xhci->event_ring->dequeue),
2359 lower_32_bits(le64_to_cpu(event->buffer)),
2360 upper_32_bits(le64_to_cpu(event->buffer)),
2361 le32_to_cpu(event->transfer_len),
2362 le32_to_cpu(event->flags));
2363 xhci_dbg(xhci, "Event ring:\n");
2364 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2365 return -ENODEV;
2366 }
2367
2368 /* Endpoint ID is 1 based, our index is zero based */
2369 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2370 ep = &xdev->eps[ep_index];
2371 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2372 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2373 if (!ep_ring ||
2374 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2375 EP_STATE_DISABLED) {
2376 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2377 "or incorrect stream ring\n");
2378 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2379 (unsigned long long) xhci_trb_virt_to_dma(
2380 xhci->event_ring->deq_seg,
2381 xhci->event_ring->dequeue),
2382 lower_32_bits(le64_to_cpu(event->buffer)),
2383 upper_32_bits(le64_to_cpu(event->buffer)),
2384 le32_to_cpu(event->transfer_len),
2385 le32_to_cpu(event->flags));
2386 xhci_dbg(xhci, "Event ring:\n");
2387 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2388 return -ENODEV;
2389 }
2390
2391 /* Count current td numbers if ep->skip is set */
2392 if (ep->skip) {
2393 list_for_each(tmp, &ep_ring->td_list)
2394 td_num++;
2395 }
2396
2397 event_dma = le64_to_cpu(event->buffer);
2398 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2399 /* Look for common error cases */
2400 switch (trb_comp_code) {
2401 /* Skip codes that require special handling depending on
2402 * transfer type
2403 */
2404 case COMP_SUCCESS:
2405 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2406 break;
2407 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2408 trb_comp_code = COMP_SHORT_TX;
2409 else
2410 xhci_warn_ratelimited(xhci,
2411 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2412 case COMP_SHORT_TX:
2413 break;
2414 case COMP_STOP:
2415 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2416 break;
2417 case COMP_STOP_INVAL:
2418 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2419 break;
2420 case COMP_STALL:
2421 xhci_dbg(xhci, "Stalled endpoint\n");
2422 ep->ep_state |= EP_HALTED;
2423 status = -EPIPE;
2424 break;
2425 case COMP_TRB_ERR:
2426 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2427 status = -EILSEQ;
2428 break;
2429 case COMP_SPLIT_ERR:
2430 case COMP_TX_ERR:
2431 xhci_dbg(xhci, "Transfer error on endpoint\n");
2432 status = -EPROTO;
2433 break;
2434 case COMP_BABBLE:
2435 xhci_dbg(xhci, "Babble error on endpoint\n");
2436 status = -EOVERFLOW;
2437 break;
2438 case COMP_DB_ERR:
2439 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2440 status = -ENOSR;
2441 break;
2442 case COMP_BW_OVER:
2443 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2444 break;
2445 case COMP_BUFF_OVER:
2446 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2447 break;
2448 case COMP_UNDERRUN:
2449 /*
2450 * When the Isoch ring is empty, the xHC will generate
2451 * a Ring Overrun Event for IN Isoch endpoint or Ring
2452 * Underrun Event for OUT Isoch endpoint.
2453 */
2454 xhci_dbg(xhci, "underrun event on endpoint\n");
2455 if (!list_empty(&ep_ring->td_list))
2456 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2457 "still with TDs queued?\n",
2458 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2459 ep_index);
2460 goto cleanup;
2461 case COMP_OVERRUN:
2462 xhci_dbg(xhci, "overrun event on endpoint\n");
2463 if (!list_empty(&ep_ring->td_list))
2464 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2465 "still with TDs queued?\n",
2466 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2467 ep_index);
2468 goto cleanup;
2469 case COMP_DEV_ERR:
2470 xhci_warn(xhci, "WARN: detect an incompatible device");
2471 status = -EPROTO;
2472 break;
2473 case COMP_MISSED_INT:
2474 /*
2475 * When encounter missed service error, one or more isoc tds
2476 * may be missed by xHC.
2477 * Set skip flag of the ep_ring; Complete the missed tds as
2478 * short transfer when process the ep_ring next time.
2479 */
2480 ep->skip = true;
2481 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2482 goto cleanup;
2483 default:
2484 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2485 status = 0;
2486 break;
2487 }
2488 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2489 "busted\n");
2490 goto cleanup;
2491 }
2492
2493 do {
2494 /* This TRB should be in the TD at the head of this ring's
2495 * TD list.
2496 */
2497 if (list_empty(&ep_ring->td_list)) {
2498 /*
2499 * A stopped endpoint may generate an extra completion
2500 * event if the device was suspended. Don't print
2501 * warnings.
2502 */
2503 if (!(trb_comp_code == COMP_STOP ||
2504 trb_comp_code == COMP_STOP_INVAL)) {
2505 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2506 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2507 ep_index);
2508 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2509 (le32_to_cpu(event->flags) &
2510 TRB_TYPE_BITMASK)>>10);
2511 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2512 }
2513 if (ep->skip) {
2514 ep->skip = false;
2515 xhci_dbg(xhci, "td_list is empty while skip "
2516 "flag set. Clear skip flag.\n");
2517 }
2518 ret = 0;
2519 goto cleanup;
2520 }
2521
2522 /* We've skipped all the TDs on the ep ring when ep->skip set */
2523 if (ep->skip && td_num == 0) {
2524 ep->skip = false;
2525 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2526 "Clear skip flag.\n");
2527 ret = 0;
2528 goto cleanup;
2529 }
2530
2531 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2532 if (ep->skip)
2533 td_num--;
2534
2535 /* Is this a TRB in the currently executing TD? */
2536 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2537 td->last_trb, event_dma);
2538
2539 /*
2540 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2541 * is not in the current TD pointed by ep_ring->dequeue because
2542 * that the hardware dequeue pointer still at the previous TRB
2543 * of the current TD. The previous TRB maybe a Link TD or the
2544 * last TRB of the previous TD. The command completion handle
2545 * will take care the rest.
2546 */
2547 if (!event_seg && (trb_comp_code == COMP_STOP ||
2548 trb_comp_code == COMP_STOP_INVAL)) {
2549 ret = 0;
2550 goto cleanup;
2551 }
2552
2553 if (!event_seg) {
2554 if (!ep->skip ||
2555 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2556 /* Some host controllers give a spurious
2557 * successful event after a short transfer.
2558 * Ignore it.
2559 */
2560 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2561 ep_ring->last_td_was_short) {
2562 ep_ring->last_td_was_short = false;
2563 ret = 0;
2564 goto cleanup;
2565 }
2566 /* HC is busted, give up! */
2567 xhci_err(xhci,
2568 "ERROR Transfer event TRB DMA ptr not "
2569 "part of current TD\n");
2570 return -ESHUTDOWN;
2571 }
2572
2573 ret = skip_isoc_td(xhci, td, event, ep, &status);
2574 goto cleanup;
2575 }
2576 if (trb_comp_code == COMP_SHORT_TX)
2577 ep_ring->last_td_was_short = true;
2578 else
2579 ep_ring->last_td_was_short = false;
2580
2581 if (ep->skip) {
2582 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2583 ep->skip = false;
2584 }
2585
2586 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2587 sizeof(*event_trb)];
2588 /*
2589 * No-op TRB should not trigger interrupts.
2590 * If event_trb is a no-op TRB, it means the
2591 * corresponding TD has been cancelled. Just ignore
2592 * the TD.
2593 */
2594 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2595 xhci_dbg(xhci,
2596 "event_trb is a no-op TRB. Skip it\n");
2597 goto cleanup;
2598 }
2599
2600 /* Now update the urb's actual_length and give back to
2601 * the core
2602 */
2603 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2604 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2605 &status);
2606 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2607 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2608 &status);
2609 else
2610 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2611 ep, &status);
2612
2613 cleanup:
2614 /*
2615 * Do not update event ring dequeue pointer if ep->skip is set.
2616 * Will roll back to continue process missed tds.
2617 */
2618 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2619 inc_deq(xhci, xhci->event_ring);
2620 }
2621
2622 if (ret) {
2623 urb = td->urb;
2624 urb_priv = urb->hcpriv;
2625 /* Leave the TD around for the reset endpoint function
2626 * to use(but only if it's not a control endpoint,
2627 * since we already queued the Set TR dequeue pointer
2628 * command for stalled control endpoints).
2629 */
2630 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2631 (trb_comp_code != COMP_STALL &&
2632 trb_comp_code != COMP_BABBLE))
2633 xhci_urb_free_priv(xhci, urb_priv);
2634 else
2635 kfree(urb_priv);
2636
2637 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2638 if ((urb->actual_length != urb->transfer_buffer_length &&
2639 (urb->transfer_flags &
2640 URB_SHORT_NOT_OK)) ||
2641 (status != 0 &&
2642 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2643 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2644 "expected = %d, status = %d\n",
2645 urb, urb->actual_length,
2646 urb->transfer_buffer_length,
2647 status);
2648 spin_unlock(&xhci->lock);
2649 /* EHCI, UHCI, and OHCI always unconditionally set the
2650 * urb->status of an isochronous endpoint to 0.
2651 */
2652 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2653 status = 0;
2654 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2655 spin_lock(&xhci->lock);
2656 }
2657
2658 /*
2659 * If ep->skip is set, it means there are missed tds on the
2660 * endpoint ring need to take care of.
2661 * Process them as short transfer until reach the td pointed by
2662 * the event.
2663 */
2664 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2665
2666 return 0;
2667 }
2668
2669 /*
2670 * This function handles all OS-owned events on the event ring. It may drop
2671 * xhci->lock between event processing (e.g. to pass up port status changes).
2672 * Returns >0 for "possibly more events to process" (caller should call again),
2673 * otherwise 0 if done. In future, <0 returns should indicate error code.
2674 */
2675 static int xhci_handle_event(struct xhci_hcd *xhci)
2676 {
2677 union xhci_trb *event;
2678 int update_ptrs = 1;
2679 int ret;
2680
2681 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2682 xhci->error_bitmask |= 1 << 1;
2683 return 0;
2684 }
2685
2686 event = xhci->event_ring->dequeue;
2687 /* Does the HC or OS own the TRB? */
2688 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2689 xhci->event_ring->cycle_state) {
2690 xhci->error_bitmask |= 1 << 2;
2691 return 0;
2692 }
2693
2694 /*
2695 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2696 * speculative reads of the event's flags/data below.
2697 */
2698 rmb();
2699 /* FIXME: Handle more event types. */
2700 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2701 case TRB_TYPE(TRB_COMPLETION):
2702 handle_cmd_completion(xhci, &event->event_cmd);
2703 break;
2704 case TRB_TYPE(TRB_PORT_STATUS):
2705 handle_port_status(xhci, event);
2706 update_ptrs = 0;
2707 break;
2708 case TRB_TYPE(TRB_TRANSFER):
2709 ret = handle_tx_event(xhci, &event->trans_event);
2710 if (ret < 0)
2711 xhci->error_bitmask |= 1 << 9;
2712 else
2713 update_ptrs = 0;
2714 break;
2715 case TRB_TYPE(TRB_DEV_NOTE):
2716 handle_device_notification(xhci, event);
2717 break;
2718 default:
2719 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2720 TRB_TYPE(48))
2721 handle_vendor_event(xhci, event);
2722 else
2723 xhci->error_bitmask |= 1 << 3;
2724 }
2725 /* Any of the above functions may drop and re-acquire the lock, so check
2726 * to make sure a watchdog timer didn't mark the host as non-responsive.
2727 */
2728 if (xhci->xhc_state & XHCI_STATE_DYING) {
2729 xhci_dbg(xhci, "xHCI host dying, returning from "
2730 "event handler.\n");
2731 return 0;
2732 }
2733
2734 if (update_ptrs)
2735 /* Update SW event ring dequeue pointer */
2736 inc_deq(xhci, xhci->event_ring);
2737
2738 /* Are there more items on the event ring? Caller will call us again to
2739 * check.
2740 */
2741 return 1;
2742 }
2743
2744 /*
2745 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2746 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2747 * indicators of an event TRB error, but we check the status *first* to be safe.
2748 */
2749 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2750 {
2751 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2752 u32 status;
2753 u64 temp_64;
2754 union xhci_trb *event_ring_deq;
2755 dma_addr_t deq;
2756
2757 spin_lock(&xhci->lock);
2758 /* Check if the xHC generated the interrupt, or the irq is shared */
2759 status = xhci_readl(xhci, &xhci->op_regs->status);
2760 if (status == 0xffffffff)
2761 goto hw_died;
2762
2763 if (!(status & STS_EINT)) {
2764 spin_unlock(&xhci->lock);
2765 return IRQ_NONE;
2766 }
2767 if (status & STS_FATAL) {
2768 xhci_warn(xhci, "WARNING: Host System Error\n");
2769 xhci_halt(xhci);
2770 hw_died:
2771 spin_unlock(&xhci->lock);
2772 return -ESHUTDOWN;
2773 }
2774
2775 /*
2776 * Clear the op reg interrupt status first,
2777 * so we can receive interrupts from other MSI-X interrupters.
2778 * Write 1 to clear the interrupt status.
2779 */
2780 status |= STS_EINT;
2781 xhci_writel(xhci, status, &xhci->op_regs->status);
2782 /* FIXME when MSI-X is supported and there are multiple vectors */
2783 /* Clear the MSI-X event interrupt status */
2784
2785 if (hcd->irq) {
2786 u32 irq_pending;
2787 /* Acknowledge the PCI interrupt */
2788 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2789 irq_pending |= IMAN_IP;
2790 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2791 }
2792
2793 if (xhci->xhc_state & XHCI_STATE_DYING) {
2794 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2795 "Shouldn't IRQs be disabled?\n");
2796 /* Clear the event handler busy flag (RW1C);
2797 * the event ring should be empty.
2798 */
2799 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2800 xhci_write_64(xhci, temp_64 | ERST_EHB,
2801 &xhci->ir_set->erst_dequeue);
2802 spin_unlock(&xhci->lock);
2803
2804 return IRQ_HANDLED;
2805 }
2806
2807 event_ring_deq = xhci->event_ring->dequeue;
2808 /* FIXME this should be a delayed service routine
2809 * that clears the EHB.
2810 */
2811 while (xhci_handle_event(xhci) > 0) {}
2812
2813 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2814 /* If necessary, update the HW's version of the event ring deq ptr. */
2815 if (event_ring_deq != xhci->event_ring->dequeue) {
2816 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2817 xhci->event_ring->dequeue);
2818 if (deq == 0)
2819 xhci_warn(xhci, "WARN something wrong with SW event "
2820 "ring dequeue ptr.\n");
2821 /* Update HC event ring dequeue pointer */
2822 temp_64 &= ERST_PTR_MASK;
2823 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2824 }
2825
2826 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2827 temp_64 |= ERST_EHB;
2828 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2829
2830 spin_unlock(&xhci->lock);
2831
2832 return IRQ_HANDLED;
2833 }
2834
2835 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2836 {
2837 return xhci_irq(hcd);
2838 }
2839
2840 /**** Endpoint Ring Operations ****/
2841
2842 /*
2843 * Generic function for queueing a TRB on a ring.
2844 * The caller must have checked to make sure there's room on the ring.
2845 *
2846 * @more_trbs_coming: Will you enqueue more TRBs before calling
2847 * prepare_transfer()?
2848 */
2849 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2850 bool more_trbs_coming,
2851 u32 field1, u32 field2, u32 field3, u32 field4)
2852 {
2853 struct xhci_generic_trb *trb;
2854
2855 trb = &ring->enqueue->generic;
2856 trb->field[0] = cpu_to_le32(field1);
2857 trb->field[1] = cpu_to_le32(field2);
2858 trb->field[2] = cpu_to_le32(field3);
2859 trb->field[3] = cpu_to_le32(field4);
2860 inc_enq(xhci, ring, more_trbs_coming);
2861 }
2862
2863 /*
2864 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2865 * FIXME allocate segments if the ring is full.
2866 */
2867 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2868 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2869 {
2870 unsigned int num_trbs_needed;
2871
2872 /* Make sure the endpoint has been added to xHC schedule */
2873 switch (ep_state) {
2874 case EP_STATE_DISABLED:
2875 /*
2876 * USB core changed config/interfaces without notifying us,
2877 * or hardware is reporting the wrong state.
2878 */
2879 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2880 return -ENOENT;
2881 case EP_STATE_ERROR:
2882 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2883 /* FIXME event handling code for error needs to clear it */
2884 /* XXX not sure if this should be -ENOENT or not */
2885 return -EINVAL;
2886 case EP_STATE_HALTED:
2887 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2888 case EP_STATE_STOPPED:
2889 case EP_STATE_RUNNING:
2890 break;
2891 default:
2892 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2893 /*
2894 * FIXME issue Configure Endpoint command to try to get the HC
2895 * back into a known state.
2896 */
2897 return -EINVAL;
2898 }
2899
2900 while (1) {
2901 if (room_on_ring(xhci, ep_ring, num_trbs))
2902 break;
2903
2904 if (ep_ring == xhci->cmd_ring) {
2905 xhci_err(xhci, "Do not support expand command ring\n");
2906 return -ENOMEM;
2907 }
2908
2909 xhci_dbg(xhci, "ERROR no room on ep ring, "
2910 "try ring expansion\n");
2911 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2912 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2913 mem_flags)) {
2914 xhci_err(xhci, "Ring expansion failed\n");
2915 return -ENOMEM;
2916 }
2917 }
2918
2919 if (enqueue_is_link_trb(ep_ring)) {
2920 struct xhci_ring *ring = ep_ring;
2921 union xhci_trb *next;
2922
2923 next = ring->enqueue;
2924
2925 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2926 /* If we're not dealing with 0.95 hardware or isoc rings
2927 * on AMD 0.96 host, clear the chain bit.
2928 */
2929 #ifndef CONFIG_MTK_XHCI
2930 if (!xhci_link_trb_quirk(xhci) &&
2931 !(ring->type == TYPE_ISOC &&
2932 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2933 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2934 else
2935 next->link.control |= cpu_to_le32(TRB_CHAIN);
2936 #else
2937 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2938 #endif
2939 wmb();
2940 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2941
2942 /* Toggle the cycle bit after the last ring segment. */
2943 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2944 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2945 }
2946 ring->enq_seg = ring->enq_seg->next;
2947 ring->enqueue = ring->enq_seg->trbs;
2948 next = ring->enqueue;
2949 }
2950 }
2951
2952 return 0;
2953 }
2954
2955 static int prepare_transfer(struct xhci_hcd *xhci,
2956 struct xhci_virt_device *xdev,
2957 unsigned int ep_index,
2958 unsigned int stream_id,
2959 unsigned int num_trbs,
2960 struct urb *urb,
2961 unsigned int td_index,
2962 gfp_t mem_flags)
2963 {
2964 int ret;
2965 struct urb_priv *urb_priv;
2966 struct xhci_td *td;
2967 struct xhci_ring *ep_ring;
2968 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2969
2970 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2971 if (!ep_ring) {
2972 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2973 stream_id);
2974 return -EINVAL;
2975 }
2976
2977 ret = prepare_ring(xhci, ep_ring,
2978 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2979 num_trbs, mem_flags);
2980 if (ret)
2981 return ret;
2982
2983 urb_priv = urb->hcpriv;
2984 td = urb_priv->td[td_index];
2985
2986 INIT_LIST_HEAD(&td->td_list);
2987 INIT_LIST_HEAD(&td->cancelled_td_list);
2988
2989 if (td_index == 0) {
2990 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2991 if (unlikely(ret))
2992 return ret;
2993 }
2994
2995 td->urb = urb;
2996 /* Add this TD to the tail of the endpoint ring's TD list */
2997 list_add_tail(&td->td_list, &ep_ring->td_list);
2998 td->start_seg = ep_ring->enq_seg;
2999 td->first_trb = ep_ring->enqueue;
3000
3001 urb_priv->td[td_index] = td;
3002
3003 return 0;
3004 }
3005
3006 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
3007 {
3008 int num_sgs, num_trbs, running_total, temp, i;
3009 struct scatterlist *sg;
3010
3011 sg = NULL;
3012 num_sgs = urb->num_mapped_sgs;
3013 temp = urb->transfer_buffer_length;
3014
3015 num_trbs = 0;
3016 for_each_sg(urb->sg, sg, num_sgs, i) {
3017 unsigned int len = sg_dma_len(sg);
3018
3019 /* Scatter gather list entries may cross 64KB boundaries */
3020 running_total = TRB_MAX_BUFF_SIZE -
3021 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
3022 running_total &= TRB_MAX_BUFF_SIZE - 1;
3023 if (running_total != 0)
3024 num_trbs++;
3025
3026 /* How many more 64KB chunks to transfer, how many more TRBs? */
3027 while (running_total < sg_dma_len(sg) && running_total < temp) {
3028 num_trbs++;
3029 running_total += TRB_MAX_BUFF_SIZE;
3030 }
3031 len = min_t(int, len, temp);
3032 temp -= len;
3033 if (temp == 0)
3034 break;
3035 }
3036 return num_trbs;
3037 }
3038
3039 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3040 {
3041 if (num_trbs != 0)
3042 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3043 "TRBs, %d left\n", __func__,
3044 urb->ep->desc.bEndpointAddress, num_trbs);
3045 if (running_total != urb->transfer_buffer_length)
3046 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3047 "queued %#x (%d), asked for %#x (%d)\n",
3048 __func__,
3049 urb->ep->desc.bEndpointAddress,
3050 running_total, running_total,
3051 urb->transfer_buffer_length,
3052 urb->transfer_buffer_length);
3053 }
3054
3055 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3056 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3057 struct xhci_generic_trb *start_trb)
3058 {
3059 /*
3060 * Pass all the TRBs to the hardware at once and make sure this write
3061 * isn't reordered.
3062 */
3063 wmb();
3064 if (start_cycle)
3065 start_trb->field[3] |= cpu_to_le32(start_cycle);
3066 else
3067 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3068 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3069 }
3070
3071 /*
3072 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3073 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3074 * (comprised of sg list entries) can take several service intervals to
3075 * transmit.
3076 */
3077 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3078 struct urb *urb, int slot_id, unsigned int ep_index)
3079 {
3080 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3081 xhci->devs[slot_id]->out_ctx, ep_index);
3082 int xhci_interval;
3083 int ep_interval;
3084
3085 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3086 ep_interval = urb->interval;
3087 /* Convert to microframes */
3088 if (urb->dev->speed == USB_SPEED_LOW ||
3089 urb->dev->speed == USB_SPEED_FULL)
3090 ep_interval *= 8;
3091 /* FIXME change this to a warning and a suggestion to use the new API
3092 * to set the polling interval (once the API is added).
3093 */
3094 if (xhci_interval != ep_interval) {
3095 if (printk_ratelimit())
3096 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3097 " (%d microframe%s) than xHCI "
3098 "(%d microframe%s)\n",
3099 ep_interval,
3100 ep_interval == 1 ? "" : "s",
3101 xhci_interval,
3102 xhci_interval == 1 ? "" : "s");
3103 urb->interval = xhci_interval;
3104 /* Convert back to frames for LS/FS devices */
3105 if (urb->dev->speed == USB_SPEED_LOW ||
3106 urb->dev->speed == USB_SPEED_FULL)
3107 urb->interval /= 8;
3108 }
3109 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3110 }
3111
3112 /*
3113 * The TD size is the number of bytes remaining in the TD (including this TRB),
3114 * right shifted by 10.
3115 * It must fit in bits 21:17, so it can't be bigger than 31.
3116 */
3117 #ifdef CONFIG_MTK_XHCI
3118 static u32 xhci_td_remainder(unsigned int td_transfer_size, unsigned int td_running_total
3119 , unsigned int maxp, unsigned trb_buffer_length)
3120 {
3121 u32 max = 31;
3122 int remainder, td_packet_count, packet_transferred;
3123
3124 //0 for the last TRB
3125 //FIXME: need to workaround if there is ZLP in this TD
3126 if (td_running_total + trb_buffer_length == td_transfer_size)
3127 return 0;
3128
3129 //FIXME: need to take care of high-bandwidth (MAX_ESIT)
3130 packet_transferred = (td_running_total /*+ trb_buffer_length*/) / maxp;
3131 td_packet_count = DIV_ROUND_UP(td_transfer_size, maxp);
3132 remainder = td_packet_count - packet_transferred;
3133
3134 if (remainder > max)
3135 return max << 17;
3136 else
3137 return remainder << 17;
3138 }
3139 #else
3140 static u32 xhci_td_remainder(unsigned int remainder)
3141 {
3142 u32 max = (1 << (21 - 17 + 1)) - 1;
3143
3144 if ((remainder >> 10) >= max)
3145 return max << 17;
3146 else
3147 return (remainder >> 10) << 17;
3148 }
3149 #endif
3150
3151
3152 #ifndef CONFIG_MTK_XHCI
3153 /*
3154 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3155 * packets remaining in the TD (*not* including this TRB).
3156 *
3157 * Total TD packet count = total_packet_count =
3158 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3159 *
3160 * Packets transferred up to and including this TRB = packets_transferred =
3161 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3162 *
3163 * TD size = total_packet_count - packets_transferred
3164 *
3165 * It must fit in bits 21:17, so it can't be bigger than 31.
3166 * The last TRB in a TD must have the TD size set to zero.
3167 */
3168 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3169 unsigned int total_packet_count, struct urb *urb,
3170 unsigned int num_trbs_left)
3171 {
3172 int packets_transferred;
3173
3174 /* One TRB with a zero-length data packet. */
3175 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3176 return 0;
3177
3178 /* All the TRB queueing functions don't count the current TRB in
3179 * running_total.
3180 */
3181 packets_transferred = (running_total + trb_buff_len) /
3182 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3183
3184 if ((total_packet_count - packets_transferred) > 31)
3185 return 31 << 17;
3186 return (total_packet_count - packets_transferred) << 17;
3187 }
3188 #endif
3189
3190 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3191 struct urb *urb, int slot_id, unsigned int ep_index)
3192 {
3193 struct xhci_ring *ep_ring;
3194 unsigned int num_trbs;
3195 struct urb_priv *urb_priv;
3196 struct xhci_td *td;
3197 struct scatterlist *sg;
3198 int num_sgs;
3199 int trb_buff_len, this_sg_len, running_total;
3200 unsigned int total_packet_count;
3201 bool first_trb;
3202 u64 addr;
3203 bool more_trbs_coming;
3204
3205 struct xhci_generic_trb *start_trb;
3206 int start_cycle;
3207
3208 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3209 if (!ep_ring)
3210 return -EINVAL;
3211
3212 num_trbs = count_sg_trbs_needed(xhci, urb);
3213 num_sgs = urb->num_mapped_sgs;
3214 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3215 usb_endpoint_maxp(&urb->ep->desc));
3216
3217 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3218 ep_index, urb->stream_id,
3219 num_trbs, urb, 0, mem_flags);
3220 if (trb_buff_len < 0)
3221 return trb_buff_len;
3222
3223 urb_priv = urb->hcpriv;
3224 td = urb_priv->td[0];
3225
3226 /*
3227 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3228 * until we've finished creating all the other TRBs. The ring's cycle
3229 * state may change as we enqueue the other TRBs, so save it too.
3230 */
3231 start_trb = &ep_ring->enqueue->generic;
3232 start_cycle = ep_ring->cycle_state;
3233
3234 running_total = 0;
3235 /*
3236 * How much data is in the first TRB?
3237 *
3238 * There are three forces at work for TRB buffer pointers and lengths:
3239 * 1. We don't want to walk off the end of this sg-list entry buffer.
3240 * 2. The transfer length that the driver requested may be smaller than
3241 * the amount of memory allocated for this scatter-gather list.
3242 * 3. TRBs buffers can't cross 64KB boundaries.
3243 */
3244 sg = urb->sg;
3245 addr = (u64) sg_dma_address(sg);
3246 this_sg_len = sg_dma_len(sg);
3247 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3248 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3249 if (trb_buff_len > urb->transfer_buffer_length)
3250 trb_buff_len = urb->transfer_buffer_length;
3251
3252 first_trb = true;
3253 /* Queue the first TRB, even if it's zero-length */
3254 do {
3255 u32 field = 0;
3256 u32 length_field = 0;
3257 u32 remainder = 0;
3258
3259 /* Don't change the cycle bit of the first TRB until later */
3260 if (first_trb) {
3261 first_trb = false;
3262 if (start_cycle == 0)
3263 field |= 0x1;
3264 } else
3265 field |= ep_ring->cycle_state;
3266
3267 /* Chain all the TRBs together; clear the chain bit in the last
3268 * TRB to indicate it's the last TRB in the chain.
3269 */
3270 if (num_trbs > 1) {
3271 field |= TRB_CHAIN;
3272 } else {
3273 /* FIXME - add check for ZERO_PACKET flag before this */
3274 td->last_trb = ep_ring->enqueue;
3275 field |= TRB_IOC;
3276 }
3277
3278 /* Only set interrupt on short packet for IN endpoints */
3279 if (usb_urb_dir_in(urb))
3280 field |= TRB_ISP;
3281
3282 if (TRB_MAX_BUFF_SIZE -
3283 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3284 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3285 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3286 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3287 (unsigned int) addr + trb_buff_len);
3288 }
3289
3290 /* Set the TRB length, TD size, and interrupter fields. */
3291 #ifdef CONFIG_MTK_XHCI
3292 if(num_trbs >1){
3293 remainder = xhci_td_remainder(urb->transfer_buffer_length,
3294 running_total, urb->ep->desc.wMaxPacketSize, trb_buff_len);
3295 }
3296 #else
3297 /* Set the TRB length, TD size, and interrupter fields. */
3298 if (xhci->hci_version < 0x100) {
3299 remainder = xhci_td_remainder(
3300 urb->transfer_buffer_length -
3301 running_total);
3302 } else {
3303 remainder = xhci_v1_0_td_remainder(running_total,
3304 trb_buff_len, total_packet_count, urb,
3305 num_trbs - 1);
3306 }
3307 #endif
3308
3309 length_field = TRB_LEN(trb_buff_len) |
3310 remainder |
3311 TRB_INTR_TARGET(0);
3312
3313 if (num_trbs > 1)
3314 more_trbs_coming = true;
3315 else
3316 more_trbs_coming = false;
3317 queue_trb(xhci, ep_ring, more_trbs_coming,
3318 lower_32_bits(addr),
3319 upper_32_bits(addr),
3320 length_field,
3321 field | TRB_TYPE(TRB_NORMAL));
3322 --num_trbs;
3323 running_total += trb_buff_len;
3324
3325 /* Calculate length for next transfer --
3326 * Are we done queueing all the TRBs for this sg entry?
3327 */
3328 this_sg_len -= trb_buff_len;
3329 if (this_sg_len == 0) {
3330 --num_sgs;
3331 if (num_sgs == 0)
3332 break;
3333 sg = sg_next(sg);
3334 addr = (u64) sg_dma_address(sg);
3335 this_sg_len = sg_dma_len(sg);
3336 } else {
3337 addr += trb_buff_len;
3338 }
3339
3340 trb_buff_len = TRB_MAX_BUFF_SIZE -
3341 (addr & (TRB_MAX_BUFF_SIZE - 1));
3342 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3343 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3344 trb_buff_len =
3345 urb->transfer_buffer_length - running_total;
3346 } while (running_total < urb->transfer_buffer_length);
3347
3348 check_trb_math(urb, num_trbs, running_total);
3349 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3350 start_cycle, start_trb);
3351 return 0;
3352 }
3353
3354 /* This is very similar to what ehci-q.c qtd_fill() does */
3355 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3356 struct urb *urb, int slot_id, unsigned int ep_index)
3357 {
3358 struct xhci_ring *ep_ring;
3359 struct urb_priv *urb_priv;
3360 struct xhci_td *td;
3361 int num_trbs;
3362 struct xhci_generic_trb *start_trb;
3363 bool first_trb;
3364 bool more_trbs_coming;
3365 int start_cycle;
3366 u32 field, length_field;
3367 #ifdef CONFIG_MTK_XHCI
3368 int max_packet = USB_SPEED_HIGH;
3369 #endif
3370 int running_total, trb_buff_len, ret;
3371 unsigned int total_packet_count;
3372 u64 addr;
3373
3374 if (urb->num_sgs)
3375 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3376
3377 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3378 if (!ep_ring)
3379 return -EINVAL;
3380
3381 num_trbs = 0;
3382 /* How much data is (potentially) left before the 64KB boundary? */
3383 running_total = TRB_MAX_BUFF_SIZE -
3384 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3385 running_total &= TRB_MAX_BUFF_SIZE - 1;
3386
3387 /* If there's some data on this 64KB chunk, or we have to send a
3388 * zero-length transfer, we need at least one TRB
3389 */
3390 if (running_total != 0 || urb->transfer_buffer_length == 0)
3391 num_trbs++;
3392 /* How many more 64KB chunks to transfer, how many more TRBs? */
3393 while (running_total < urb->transfer_buffer_length) {
3394 num_trbs++;
3395 running_total += TRB_MAX_BUFF_SIZE;
3396 }
3397 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3398
3399 #ifdef CONFIG_MTK_XHCI
3400 switch(urb->dev->speed){
3401 case USB_SPEED_SUPER:
3402 max_packet = urb->ep->desc.wMaxPacketSize;
3403 break;
3404 case USB_SPEED_HIGH:
3405 case USB_SPEED_FULL:
3406 case USB_SPEED_LOW:
3407 default:
3408 max_packet = urb->ep->desc.wMaxPacketSize & 0x7ff;
3409 break;
3410 }
3411 if((urb->transfer_flags & URB_ZERO_PACKET)
3412 && ((urb->transfer_buffer_length % max_packet) == 0)){
3413 num_trbs++;
3414 }
3415 #endif
3416
3417 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3418 ep_index, urb->stream_id,
3419 num_trbs, urb, 0, mem_flags);
3420 if (ret < 0)
3421 return ret;
3422
3423 urb_priv = urb->hcpriv;
3424 td = urb_priv->td[0];
3425
3426 /*
3427 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3428 * until we've finished creating all the other TRBs. The ring's cycle
3429 * state may change as we enqueue the other TRBs, so save it too.
3430 */
3431 start_trb = &ep_ring->enqueue->generic;
3432 start_cycle = ep_ring->cycle_state;
3433
3434 running_total = 0;
3435 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3436 usb_endpoint_maxp(&urb->ep->desc));
3437 /* How much data is in the first TRB? */
3438 addr = (u64) urb->transfer_dma;
3439 trb_buff_len = TRB_MAX_BUFF_SIZE -
3440 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3441 if (trb_buff_len > urb->transfer_buffer_length)
3442 trb_buff_len = urb->transfer_buffer_length;
3443
3444 first_trb = true;
3445
3446 /* Queue the first TRB, even if it's zero-length */
3447 do {
3448 u32 remainder = 0;
3449 field = 0;
3450
3451 /* Don't change the cycle bit of the first TRB until later */
3452 if (first_trb) {
3453 first_trb = false;
3454 if (start_cycle == 0)
3455 field |= 0x1;
3456 } else
3457 field |= ep_ring->cycle_state;
3458
3459 /* Chain all the TRBs together; clear the chain bit in the last
3460 * TRB to indicate it's the last TRB in the chain.
3461 */
3462 if (num_trbs > 1) {
3463 field |= TRB_CHAIN;
3464 } else {
3465 /* FIXME - add check for ZERO_PACKET flag before this */
3466 td->last_trb = ep_ring->enqueue;
3467 field |= TRB_IOC;
3468 }
3469
3470 /* Only set interrupt on short packet for IN endpoints */
3471 if (usb_urb_dir_in(urb))
3472 field |= TRB_ISP;
3473 #ifdef CONFIG_MTK_XHCI
3474 remainder = xhci_td_remainder(urb->transfer_buffer_length, running_total, max_packet, trb_buff_len);
3475 #else
3476 /* Set the TRB length, TD size, and interrupter fields. */
3477 if (xhci->hci_version < 0x100) {
3478 remainder = xhci_td_remainder(
3479 urb->transfer_buffer_length -
3480 running_total);
3481 } else {
3482 remainder = xhci_v1_0_td_remainder(running_total,
3483 trb_buff_len, total_packet_count, urb,
3484 num_trbs - 1);
3485 }
3486 #endif
3487 length_field = TRB_LEN(trb_buff_len) |
3488 remainder |
3489 TRB_INTR_TARGET(0);
3490
3491 if (num_trbs > 1)
3492 more_trbs_coming = true;
3493 else
3494 more_trbs_coming = false;
3495 queue_trb(xhci, ep_ring, more_trbs_coming,
3496 lower_32_bits(addr),
3497 upper_32_bits(addr),
3498 length_field,
3499 field | TRB_TYPE(TRB_NORMAL));
3500 --num_trbs;
3501 running_total += trb_buff_len;
3502
3503 /* Calculate length for next transfer */
3504 addr += trb_buff_len;
3505 trb_buff_len = urb->transfer_buffer_length - running_total;
3506 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3507 trb_buff_len = TRB_MAX_BUFF_SIZE;
3508 } while (running_total < urb->transfer_buffer_length);
3509
3510 check_trb_math(urb, num_trbs, running_total);
3511 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3512 start_cycle, start_trb);
3513 return 0;
3514 }
3515
3516 /* Caller must have locked xhci->lock */
3517 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3518 struct urb *urb, int slot_id, unsigned int ep_index)
3519 {
3520 struct xhci_ring *ep_ring;
3521 int num_trbs;
3522 int ret;
3523 struct usb_ctrlrequest *setup;
3524 struct xhci_generic_trb *start_trb;
3525 int start_cycle;
3526 u32 field, length_field;
3527 struct urb_priv *urb_priv;
3528 struct xhci_td *td;
3529
3530 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3531 if (!ep_ring)
3532 return -EINVAL;
3533
3534 /*
3535 * Need to copy setup packet into setup TRB, so we can't use the setup
3536 * DMA address.
3537 */
3538 if (!urb->setup_packet)
3539 return -EINVAL;
3540
3541 /* 1 TRB for setup, 1 for status */
3542 num_trbs = 2;
3543 /*
3544 * Don't need to check if we need additional event data and normal TRBs,
3545 * since data in control transfers will never get bigger than 16MB
3546 * XXX: can we get a buffer that crosses 64KB boundaries?
3547 */
3548 if (urb->transfer_buffer_length > 0)
3549 num_trbs++;
3550 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3551 ep_index, urb->stream_id,
3552 num_trbs, urb, 0, mem_flags);
3553 if (ret < 0)
3554 return ret;
3555
3556 urb_priv = urb->hcpriv;
3557 td = urb_priv->td[0];
3558
3559 /*
3560 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3561 * until we've finished creating all the other TRBs. The ring's cycle
3562 * state may change as we enqueue the other TRBs, so save it too.
3563 */
3564 start_trb = &ep_ring->enqueue->generic;
3565 start_cycle = ep_ring->cycle_state;
3566
3567 /* Queue setup TRB - see section 6.4.1.2.1 */
3568 /* FIXME better way to translate setup_packet into two u32 fields? */
3569 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3570 field = 0;
3571 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3572 if (start_cycle == 0)
3573 field |= 0x1;
3574
3575 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3576 #ifdef CONFIG_MTK_XHCI
3577 if(1){
3578 #else
3579 if (xhci->hci_version == 0x100) {
3580 #endif
3581 if (urb->transfer_buffer_length > 0) {
3582 if (setup->bRequestType & USB_DIR_IN)
3583 field |= TRB_TX_TYPE(TRB_DATA_IN);
3584 else
3585 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3586 }
3587 }
3588
3589 queue_trb(xhci, ep_ring, true,
3590 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3591 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3592 TRB_LEN(8) | TRB_INTR_TARGET(0),
3593 /* Immediate data in pointer */
3594 field);
3595
3596 /* If there's data, queue data TRBs */
3597 /* Only set interrupt on short packet for IN endpoints */
3598 if (usb_urb_dir_in(urb))
3599 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3600 else
3601 field = TRB_TYPE(TRB_DATA);
3602
3603 length_field = TRB_LEN(urb->transfer_buffer_length) |
3604 #ifdef CONFIG_MTK_XHCI
3605 //CC: MTK style, no scatter-gather for control transfer
3606 0 |
3607 #else
3608 xhci_td_remainder(urb->transfer_buffer_length) |
3609 #endif
3610 TRB_INTR_TARGET(0);
3611 if (urb->transfer_buffer_length > 0) {
3612 if (setup->bRequestType & USB_DIR_IN)
3613 field |= TRB_DIR_IN;
3614 queue_trb(xhci, ep_ring, true,
3615 lower_32_bits(urb->transfer_dma),
3616 upper_32_bits(urb->transfer_dma),
3617 length_field,
3618 field | ep_ring->cycle_state);
3619 }
3620
3621 /* Save the DMA address of the last TRB in the TD */
3622 td->last_trb = ep_ring->enqueue;
3623
3624 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3625 /* If the device sent data, the status stage is an OUT transfer */
3626 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3627 field = 0;
3628 else
3629 field = TRB_DIR_IN;
3630 queue_trb(xhci, ep_ring, false,
3631 0,
3632 0,
3633 TRB_INTR_TARGET(0),
3634 /* Event on completion */
3635 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3636
3637 giveback_first_trb(xhci, slot_id, ep_index, 0,
3638 start_cycle, start_trb);
3639 return 0;
3640 }
3641
3642 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3643 struct urb *urb, int i)
3644 {
3645 int num_trbs = 0;
3646 u64 addr, td_len;
3647
3648 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3649 td_len = urb->iso_frame_desc[i].length;
3650
3651 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3652 TRB_MAX_BUFF_SIZE);
3653 if (num_trbs == 0)
3654 num_trbs++;
3655
3656 return num_trbs;
3657 }
3658
3659 /*
3660 * The transfer burst count field of the isochronous TRB defines the number of
3661 * bursts that are required to move all packets in this TD. Only SuperSpeed
3662 * devices can burst up to bMaxBurst number of packets per service interval.
3663 * This field is zero based, meaning a value of zero in the field means one
3664 * burst. Basically, for everything but SuperSpeed devices, this field will be
3665 * zero. Only xHCI 1.0 host controllers support this field.
3666 */
3667 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3668 struct usb_device *udev,
3669 struct urb *urb, unsigned int total_packet_count)
3670 {
3671 unsigned int max_burst;
3672
3673 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3674 return 0;
3675
3676 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3677 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3678 }
3679
3680 /*
3681 * Returns the number of packets in the last "burst" of packets. This field is
3682 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3683 * the last burst packet count is equal to the total number of packets in the
3684 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3685 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3686 * contain 1 to (bMaxBurst + 1) packets.
3687 */
3688 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3689 struct usb_device *udev,
3690 struct urb *urb, unsigned int total_packet_count)
3691 {
3692 unsigned int max_burst;
3693 unsigned int residue;
3694
3695 if (xhci->hci_version < 0x100)
3696 return 0;
3697
3698 switch (udev->speed) {
3699 case USB_SPEED_SUPER:
3700 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3701 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3702 residue = total_packet_count % (max_burst + 1);
3703 /* If residue is zero, the last burst contains (max_burst + 1)
3704 * number of packets, but the TLBPC field is zero-based.
3705 */
3706 if (residue == 0)
3707 return max_burst;
3708 return residue - 1;
3709 default:
3710 if (total_packet_count == 0)
3711 return 0;
3712 return total_packet_count - 1;
3713 }
3714 }
3715
3716 /* This is for isoc transfer */
3717 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3718 struct urb *urb, int slot_id, unsigned int ep_index)
3719 {
3720 struct xhci_ring *ep_ring;
3721 struct urb_priv *urb_priv;
3722 struct xhci_td *td;
3723 int num_tds, trbs_per_td;
3724 struct xhci_generic_trb *start_trb;
3725 bool first_trb;
3726 int start_cycle;
3727 u32 field, length_field;
3728 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3729 u64 start_addr, addr;
3730 int i, j;
3731 bool more_trbs_coming;
3732 #ifdef CONFIG_MTK_XHCI
3733 int max_packet = USB_SPEED_HIGH;
3734 #endif
3735
3736 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3737
3738 num_tds = urb->number_of_packets;
3739 if (num_tds < 1) {
3740 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3741 return -EINVAL;
3742 }
3743
3744 start_addr = (u64) urb->transfer_dma;
3745 start_trb = &ep_ring->enqueue->generic;
3746 start_cycle = ep_ring->cycle_state;
3747
3748 #ifdef CONFIG_MTK_XHCI
3749 switch(urb->dev->speed){
3750 case USB_SPEED_SUPER:
3751 max_packet = urb->ep->desc.wMaxPacketSize;
3752 break;
3753 case USB_SPEED_HIGH:
3754 case USB_SPEED_FULL:
3755 case USB_SPEED_LOW:
3756 default:
3757 max_packet = urb->ep->desc.wMaxPacketSize & 0x7ff;
3758 break;
3759 }
3760 #endif
3761 urb_priv = urb->hcpriv;
3762 /* Queue the first TRB, even if it's zero-length */
3763 for (i = 0; i < num_tds; i++) {
3764 unsigned int total_packet_count;
3765 unsigned int burst_count;
3766 unsigned int residue;
3767
3768 first_trb = true;
3769 running_total = 0;
3770 addr = start_addr + urb->iso_frame_desc[i].offset;
3771 td_len = urb->iso_frame_desc[i].length;
3772 td_remain_len = td_len;
3773 total_packet_count = DIV_ROUND_UP(td_len,
3774 GET_MAX_PACKET(
3775 usb_endpoint_maxp(&urb->ep->desc)));
3776 /* A zero-length transfer still involves at least one packet. */
3777 if (total_packet_count == 0)
3778 total_packet_count++;
3779 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3780 total_packet_count);
3781 residue = xhci_get_last_burst_packet_count(xhci,
3782 urb->dev, urb, total_packet_count);
3783
3784 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3785
3786 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3787 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3788 if (ret < 0) {
3789 if (i == 0)
3790 return ret;
3791 goto cleanup;
3792 }
3793
3794 td = urb_priv->td[i];
3795 for (j = 0; j < trbs_per_td; j++) {
3796 u32 remainder = 0;
3797 field = 0;
3798
3799 if (first_trb) {
3800 field = TRB_TBC(burst_count) |
3801 TRB_TLBPC(residue);
3802 /* Queue the isoc TRB */
3803 field |= TRB_TYPE(TRB_ISOC);
3804 /* Assume URB_ISO_ASAP is set */
3805 field |= TRB_SIA;
3806 if (i == 0) {
3807 if (start_cycle == 0)
3808 field |= 0x1;
3809 } else
3810 field |= ep_ring->cycle_state;
3811 first_trb = false;
3812 } else {
3813 /* Queue other normal TRBs */
3814 field |= TRB_TYPE(TRB_NORMAL);
3815 field |= ep_ring->cycle_state;
3816 }
3817
3818 /* Only set interrupt on short packet for IN EPs */
3819 if (usb_urb_dir_in(urb))
3820 field |= TRB_ISP;
3821
3822 /* Chain all the TRBs together; clear the chain bit in
3823 * the last TRB to indicate it's the last TRB in the
3824 * chain.
3825 */
3826 if (j < trbs_per_td - 1) {
3827 field |= TRB_CHAIN;
3828 more_trbs_coming = true;
3829 } else {
3830 td->last_trb = ep_ring->enqueue;
3831 field |= TRB_IOC;
3832 if (xhci->hci_version == 0x100 &&
3833 !(xhci->quirks &
3834 XHCI_AVOID_BEI)) {
3835 /* Set BEI bit except for the last td */
3836 if (i < num_tds - 1)
3837 field |= TRB_BEI;
3838 }
3839 more_trbs_coming = false;
3840 }
3841
3842 /* Calculate TRB length */
3843 trb_buff_len = TRB_MAX_BUFF_SIZE -
3844 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3845 if (trb_buff_len > td_remain_len)
3846 trb_buff_len = td_remain_len;
3847
3848 /* Set the TRB length, TD size, & interrupter fields. */
3849 #ifdef CONFIG_MTK_XHCI
3850 remainder = xhci_td_remainder(urb->transfer_buffer_length, running_total, max_packet, trb_buff_len);
3851 #else
3852 if (xhci->hci_version < 0x100) {
3853 remainder = xhci_td_remainder(
3854 td_len - running_total);
3855 } else {
3856 remainder = xhci_v1_0_td_remainder(
3857 running_total, trb_buff_len,
3858 total_packet_count, urb,
3859 (trbs_per_td - j - 1));
3860 }
3861 #endif
3862 length_field = TRB_LEN(trb_buff_len) |
3863 remainder |
3864 TRB_INTR_TARGET(0);
3865
3866 queue_trb(xhci, ep_ring, more_trbs_coming,
3867 lower_32_bits(addr),
3868 upper_32_bits(addr),
3869 length_field,
3870 field);
3871 running_total += trb_buff_len;
3872
3873 addr += trb_buff_len;
3874 td_remain_len -= trb_buff_len;
3875 }
3876
3877 /* Check TD length */
3878 if (running_total != td_len) {
3879 xhci_err(xhci, "ISOC TD length unmatch\n");
3880 ret = -EINVAL;
3881 goto cleanup;
3882 }
3883 }
3884 #ifndef CONFIG_MTK_XHCI
3885 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3886 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3887 usb_amd_quirk_pll_disable();
3888 }
3889 #endif
3890 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3891
3892 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3893 start_cycle, start_trb);
3894 return 0;
3895 cleanup:
3896 /* Clean up a partially enqueued isoc transfer. */
3897
3898 for (i--; i >= 0; i--)
3899 list_del_init(&urb_priv->td[i]->td_list);
3900
3901 /* Use the first TD as a temporary variable to turn the TDs we've queued
3902 * into No-ops with a software-owned cycle bit. That way the hardware
3903 * won't accidentally start executing bogus TDs when we partially
3904 * overwrite them. td->first_trb and td->start_seg are already set.
3905 */
3906 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3907 /* Every TRB except the first & last will have its cycle bit flipped. */
3908 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3909
3910 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3911 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3912 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3913 ep_ring->cycle_state = start_cycle;
3914 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3915 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3916 return ret;
3917 }
3918
3919 /*
3920 * Check transfer ring to guarantee there is enough room for the urb.
3921 * Update ISO URB start_frame and interval.
3922 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3923 * update the urb->start_frame by now.
3924 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3925 */
3926 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3927 struct urb *urb, int slot_id, unsigned int ep_index)
3928 {
3929 struct xhci_virt_device *xdev;
3930 struct xhci_ring *ep_ring;
3931 struct xhci_ep_ctx *ep_ctx;
3932 int start_frame;
3933 int xhci_interval;
3934 int ep_interval;
3935 int num_tds, num_trbs, i;
3936 int ret;
3937
3938 xdev = xhci->devs[slot_id];
3939 ep_ring = xdev->eps[ep_index].ring;
3940 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3941
3942 num_trbs = 0;
3943 num_tds = urb->number_of_packets;
3944 for (i = 0; i < num_tds; i++)
3945 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3946
3947 /* Check the ring to guarantee there is enough room for the whole urb.
3948 * Do not insert any td of the urb to the ring if the check failed.
3949 */
3950 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3951 num_trbs, mem_flags);
3952 if (ret)
3953 return ret;
3954
3955 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3956 start_frame &= 0x3fff;
3957
3958 urb->start_frame = start_frame;
3959 if (urb->dev->speed == USB_SPEED_LOW ||
3960 urb->dev->speed == USB_SPEED_FULL)
3961 urb->start_frame >>= 3;
3962
3963 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3964 ep_interval = urb->interval;
3965 /* Convert to microframes */
3966 if (urb->dev->speed == USB_SPEED_LOW ||
3967 urb->dev->speed == USB_SPEED_FULL)
3968 ep_interval *= 8;
3969 /* FIXME change this to a warning and a suggestion to use the new API
3970 * to set the polling interval (once the API is added).
3971 */
3972 if (xhci_interval != ep_interval) {
3973 if (printk_ratelimit())
3974 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3975 " (%d microframe%s) than xHCI "
3976 "(%d microframe%s)\n",
3977 ep_interval,
3978 ep_interval == 1 ? "" : "s",
3979 xhci_interval,
3980 xhci_interval == 1 ? "" : "s");
3981 urb->interval = xhci_interval;
3982 /* Convert back to frames for LS/FS devices */
3983 if (urb->dev->speed == USB_SPEED_LOW ||
3984 urb->dev->speed == USB_SPEED_FULL)
3985 urb->interval /= 8;
3986 }
3987 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3988
3989 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3990 }
3991
3992 /**** Command Ring Operations ****/
3993
3994 /* Generic function for queueing a command TRB on the command ring.
3995 * Check to make sure there's room on the command ring for one command TRB.
3996 * Also check that there's room reserved for commands that must not fail.
3997 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3998 * then only check for the number of reserved spots.
3999 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
4000 * because the command event handler may want to resubmit a failed command.
4001 */
4002 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
4003 u32 field3, u32 field4, bool command_must_succeed)
4004 {
4005 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
4006 int ret;
4007
4008 if (!command_must_succeed)
4009 reserved_trbs++;
4010
4011 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
4012 reserved_trbs, GFP_ATOMIC);
4013 if (ret < 0) {
4014 xhci_err(xhci, "ERR: No room for command on command ring\n");
4015 if (command_must_succeed)
4016 xhci_err(xhci, "ERR: Reserved TRB counting for "
4017 "unfailable commands failed.\n");
4018 return ret;
4019 }
4020 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4021 field4 | xhci->cmd_ring->cycle_state);
4022 return 0;
4023 }
4024
4025 /* Queue a slot enable or disable request on the command ring */
4026 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
4027 {
4028 return queue_command(xhci, 0, 0, 0,
4029 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4030 }
4031
4032 /* Queue an address device command TRB */
4033 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4034 u32 slot_id)
4035 {
4036 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4037 upper_32_bits(in_ctx_ptr), 0,
4038 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
4039 false);
4040 }
4041
4042 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
4043 u32 field1, u32 field2, u32 field3, u32 field4)
4044 {
4045 return queue_command(xhci, field1, field2, field3, field4, false);
4046 }
4047
4048 /* Queue a reset device command TRB */
4049 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
4050 {
4051 return queue_command(xhci, 0, 0, 0,
4052 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4053 false);
4054 }
4055
4056 /* Queue a configure endpoint command TRB */
4057 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4058 u32 slot_id, bool command_must_succeed)
4059 {
4060 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4061 upper_32_bits(in_ctx_ptr), 0,
4062 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4063 command_must_succeed);
4064 }
4065
4066 /* Queue an evaluate context command TRB */
4067 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4068 u32 slot_id, bool command_must_succeed)
4069 {
4070 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4071 upper_32_bits(in_ctx_ptr), 0,
4072 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4073 command_must_succeed);
4074 }
4075
4076 /*
4077 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4078 * activity on an endpoint that is about to be suspended.
4079 */
4080 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
4081 unsigned int ep_index, int suspend)
4082 {
4083 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4084 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4085 u32 type = TRB_TYPE(TRB_STOP_RING);
4086 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4087
4088 return queue_command(xhci, 0, 0, 0,
4089 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4090 }
4091
4092 /* Set Transfer Ring Dequeue Pointer command.
4093 * This should not be used for endpoints that have streams enabled.
4094 */
4095 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
4096 unsigned int ep_index, unsigned int stream_id,
4097 struct xhci_segment *deq_seg,
4098 union xhci_trb *deq_ptr, u32 cycle_state)
4099 {
4100 dma_addr_t addr;
4101 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4102 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4103 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4104 u32 type = TRB_TYPE(TRB_SET_DEQ);
4105 struct xhci_virt_ep *ep;
4106
4107 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
4108 if (addr == 0) {
4109 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4110 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4111 deq_seg, deq_ptr);
4112 return 0;
4113 }
4114 ep = &xhci->devs[slot_id]->eps[ep_index];
4115 if ((ep->ep_state & SET_DEQ_PENDING)) {
4116 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4117 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4118 return 0;
4119 }
4120 ep->queued_deq_seg = deq_seg;
4121 ep->queued_deq_ptr = deq_ptr;
4122 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
4123 upper_32_bits(addr), trb_stream_id,
4124 trb_slot_id | trb_ep_index | type, false);
4125 }
4126
4127 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4128 unsigned int ep_index)
4129 {
4130 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4131 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4132 u32 type = TRB_TYPE(TRB_RESET_EP);
4133
4134 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4135 false);
4136 }