include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 /*
72 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
73 * address of the TRB.
74 */
75 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
76 union xhci_trb *trb)
77 {
78 unsigned long segment_offset;
79
80 if (!seg || !trb || trb < seg->trbs)
81 return 0;
82 /* offset in TRBs */
83 segment_offset = trb - seg->trbs;
84 if (segment_offset > TRBS_PER_SEGMENT)
85 return 0;
86 return seg->dma + (segment_offset * sizeof(*trb));
87 }
88
89 /* Does this link TRB point to the first segment in a ring,
90 * or was the previous TRB the last TRB on the last segment in the ERST?
91 */
92 static inline bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
93 struct xhci_segment *seg, union xhci_trb *trb)
94 {
95 if (ring == xhci->event_ring)
96 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
97 (seg->next == xhci->event_ring->first_seg);
98 else
99 return trb->link.control & LINK_TOGGLE;
100 }
101
102 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
103 * segment? I.e. would the updated event TRB pointer step off the end of the
104 * event seg?
105 */
106 static inline int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
107 struct xhci_segment *seg, union xhci_trb *trb)
108 {
109 if (ring == xhci->event_ring)
110 return trb == &seg->trbs[TRBS_PER_SEGMENT];
111 else
112 return (trb->link.control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK);
113 }
114
115 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
116 * TRB is in a new segment. This does not skip over link TRBs, and it does not
117 * effect the ring dequeue or enqueue pointers.
118 */
119 static void next_trb(struct xhci_hcd *xhci,
120 struct xhci_ring *ring,
121 struct xhci_segment **seg,
122 union xhci_trb **trb)
123 {
124 if (last_trb(xhci, ring, *seg, *trb)) {
125 *seg = (*seg)->next;
126 *trb = ((*seg)->trbs);
127 } else {
128 *trb = (*trb)++;
129 }
130 }
131
132 /*
133 * See Cycle bit rules. SW is the consumer for the event ring only.
134 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
135 */
136 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
137 {
138 union xhci_trb *next = ++(ring->dequeue);
139 unsigned long long addr;
140
141 ring->deq_updates++;
142 /* Update the dequeue pointer further if that was a link TRB or we're at
143 * the end of an event ring segment (which doesn't have link TRBS)
144 */
145 while (last_trb(xhci, ring, ring->deq_seg, next)) {
146 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
147 ring->cycle_state = (ring->cycle_state ? 0 : 1);
148 if (!in_interrupt())
149 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
150 ring,
151 (unsigned int) ring->cycle_state);
152 }
153 ring->deq_seg = ring->deq_seg->next;
154 ring->dequeue = ring->deq_seg->trbs;
155 next = ring->dequeue;
156 }
157 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
158 if (ring == xhci->event_ring)
159 xhci_dbg(xhci, "Event ring deq = 0x%llx (DMA)\n", addr);
160 else if (ring == xhci->cmd_ring)
161 xhci_dbg(xhci, "Command ring deq = 0x%llx (DMA)\n", addr);
162 else
163 xhci_dbg(xhci, "Ring deq = 0x%llx (DMA)\n", addr);
164 }
165
166 /*
167 * See Cycle bit rules. SW is the consumer for the event ring only.
168 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
169 *
170 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
171 * chain bit is set), then set the chain bit in all the following link TRBs.
172 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
173 * have their chain bit cleared (so that each Link TRB is a separate TD).
174 *
175 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
176 * set, but other sections talk about dealing with the chain bit set. This was
177 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
178 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
179 */
180 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
181 {
182 u32 chain;
183 union xhci_trb *next;
184 unsigned long long addr;
185
186 chain = ring->enqueue->generic.field[3] & TRB_CHAIN;
187 next = ++(ring->enqueue);
188
189 ring->enq_updates++;
190 /* Update the dequeue pointer further if that was a link TRB or we're at
191 * the end of an event ring segment (which doesn't have link TRBS)
192 */
193 while (last_trb(xhci, ring, ring->enq_seg, next)) {
194 if (!consumer) {
195 if (ring != xhci->event_ring) {
196 /* If we're not dealing with 0.95 hardware,
197 * carry over the chain bit of the previous TRB
198 * (which may mean the chain bit is cleared).
199 */
200 if (!xhci_link_trb_quirk(xhci)) {
201 next->link.control &= ~TRB_CHAIN;
202 next->link.control |= chain;
203 }
204 /* Give this link TRB to the hardware */
205 wmb();
206 if (next->link.control & TRB_CYCLE)
207 next->link.control &= (u32) ~TRB_CYCLE;
208 else
209 next->link.control |= (u32) TRB_CYCLE;
210 }
211 /* Toggle the cycle bit after the last ring segment. */
212 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
213 ring->cycle_state = (ring->cycle_state ? 0 : 1);
214 if (!in_interrupt())
215 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
216 ring,
217 (unsigned int) ring->cycle_state);
218 }
219 }
220 ring->enq_seg = ring->enq_seg->next;
221 ring->enqueue = ring->enq_seg->trbs;
222 next = ring->enqueue;
223 }
224 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
225 if (ring == xhci->event_ring)
226 xhci_dbg(xhci, "Event ring enq = 0x%llx (DMA)\n", addr);
227 else if (ring == xhci->cmd_ring)
228 xhci_dbg(xhci, "Command ring enq = 0x%llx (DMA)\n", addr);
229 else
230 xhci_dbg(xhci, "Ring enq = 0x%llx (DMA)\n", addr);
231 }
232
233 /*
234 * Check to see if there's room to enqueue num_trbs on the ring. See rules
235 * above.
236 * FIXME: this would be simpler and faster if we just kept track of the number
237 * of free TRBs in a ring.
238 */
239 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
240 unsigned int num_trbs)
241 {
242 int i;
243 union xhci_trb *enq = ring->enqueue;
244 struct xhci_segment *enq_seg = ring->enq_seg;
245
246 /* Check if ring is empty */
247 if (enq == ring->dequeue)
248 return 1;
249 /* Make sure there's an extra empty TRB available */
250 for (i = 0; i <= num_trbs; ++i) {
251 if (enq == ring->dequeue)
252 return 0;
253 enq++;
254 while (last_trb(xhci, ring, enq_seg, enq)) {
255 enq_seg = enq_seg->next;
256 enq = enq_seg->trbs;
257 }
258 }
259 return 1;
260 }
261
262 void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
263 {
264 u64 temp;
265 dma_addr_t deq;
266
267 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
268 xhci->event_ring->dequeue);
269 if (deq == 0 && !in_interrupt())
270 xhci_warn(xhci, "WARN something wrong with SW event ring "
271 "dequeue ptr.\n");
272 /* Update HC event ring dequeue pointer */
273 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
274 temp &= ERST_PTR_MASK;
275 /* Don't clear the EHB bit (which is RW1C) because
276 * there might be more events to service.
277 */
278 temp &= ~ERST_EHB;
279 xhci_dbg(xhci, "// Write event ring dequeue pointer, preserving EHB bit\n");
280 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
281 &xhci->ir_set->erst_dequeue);
282 }
283
284 /* Ring the host controller doorbell after placing a command on the ring */
285 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
286 {
287 u32 temp;
288
289 xhci_dbg(xhci, "// Ding dong!\n");
290 temp = xhci_readl(xhci, &xhci->dba->doorbell[0]) & DB_MASK;
291 xhci_writel(xhci, temp | DB_TARGET_HOST, &xhci->dba->doorbell[0]);
292 /* Flush PCI posted writes */
293 xhci_readl(xhci, &xhci->dba->doorbell[0]);
294 }
295
296 static void ring_ep_doorbell(struct xhci_hcd *xhci,
297 unsigned int slot_id,
298 unsigned int ep_index)
299 {
300 struct xhci_virt_ep *ep;
301 unsigned int ep_state;
302 u32 field;
303 __u32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
304
305 ep = &xhci->devs[slot_id]->eps[ep_index];
306 ep_state = ep->ep_state;
307 /* Don't ring the doorbell for this endpoint if there are pending
308 * cancellations because the we don't want to interrupt processing.
309 */
310 if (!(ep_state & EP_HALT_PENDING) && !(ep_state & SET_DEQ_PENDING)
311 && !(ep_state & EP_HALTED)) {
312 field = xhci_readl(xhci, db_addr) & DB_MASK;
313 xhci_writel(xhci, field | EPI_TO_DB(ep_index), db_addr);
314 /* Flush PCI posted writes - FIXME Matthew Wilcox says this
315 * isn't time-critical and we shouldn't make the CPU wait for
316 * the flush.
317 */
318 xhci_readl(xhci, db_addr);
319 }
320 }
321
322 /*
323 * Find the segment that trb is in. Start searching in start_seg.
324 * If we must move past a segment that has a link TRB with a toggle cycle state
325 * bit set, then we will toggle the value pointed at by cycle_state.
326 */
327 static struct xhci_segment *find_trb_seg(
328 struct xhci_segment *start_seg,
329 union xhci_trb *trb, int *cycle_state)
330 {
331 struct xhci_segment *cur_seg = start_seg;
332 struct xhci_generic_trb *generic_trb;
333
334 while (cur_seg->trbs > trb ||
335 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
336 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
337 if (TRB_TYPE(generic_trb->field[3]) == TRB_LINK &&
338 (generic_trb->field[3] & LINK_TOGGLE))
339 *cycle_state = ~(*cycle_state) & 0x1;
340 cur_seg = cur_seg->next;
341 if (cur_seg == start_seg)
342 /* Looped over the entire list. Oops! */
343 return 0;
344 }
345 return cur_seg;
346 }
347
348 /*
349 * Move the xHC's endpoint ring dequeue pointer past cur_td.
350 * Record the new state of the xHC's endpoint ring dequeue segment,
351 * dequeue pointer, and new consumer cycle state in state.
352 * Update our internal representation of the ring's dequeue pointer.
353 *
354 * We do this in three jumps:
355 * - First we update our new ring state to be the same as when the xHC stopped.
356 * - Then we traverse the ring to find the segment that contains
357 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
358 * any link TRBs with the toggle cycle bit set.
359 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
360 * if we've moved it past a link TRB with the toggle cycle bit set.
361 */
362 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
363 unsigned int slot_id, unsigned int ep_index,
364 struct xhci_td *cur_td, struct xhci_dequeue_state *state)
365 {
366 struct xhci_virt_device *dev = xhci->devs[slot_id];
367 struct xhci_ring *ep_ring = dev->eps[ep_index].ring;
368 struct xhci_generic_trb *trb;
369 struct xhci_ep_ctx *ep_ctx;
370 dma_addr_t addr;
371
372 state->new_cycle_state = 0;
373 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
374 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
375 dev->eps[ep_index].stopped_trb,
376 &state->new_cycle_state);
377 if (!state->new_deq_seg)
378 BUG();
379 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
380 xhci_dbg(xhci, "Finding endpoint context\n");
381 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
382 state->new_cycle_state = 0x1 & ep_ctx->deq;
383
384 state->new_deq_ptr = cur_td->last_trb;
385 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
386 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
387 state->new_deq_ptr,
388 &state->new_cycle_state);
389 if (!state->new_deq_seg)
390 BUG();
391
392 trb = &state->new_deq_ptr->generic;
393 if (TRB_TYPE(trb->field[3]) == TRB_LINK &&
394 (trb->field[3] & LINK_TOGGLE))
395 state->new_cycle_state = ~(state->new_cycle_state) & 0x1;
396 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
397
398 /* Don't update the ring cycle state for the producer (us). */
399 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
400 state->new_deq_seg);
401 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
402 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
403 (unsigned long long) addr);
404 xhci_dbg(xhci, "Setting dequeue pointer in internal ring state.\n");
405 ep_ring->dequeue = state->new_deq_ptr;
406 ep_ring->deq_seg = state->new_deq_seg;
407 }
408
409 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
410 struct xhci_td *cur_td)
411 {
412 struct xhci_segment *cur_seg;
413 union xhci_trb *cur_trb;
414
415 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
416 true;
417 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
418 if ((cur_trb->generic.field[3] & TRB_TYPE_BITMASK) ==
419 TRB_TYPE(TRB_LINK)) {
420 /* Unchain any chained Link TRBs, but
421 * leave the pointers intact.
422 */
423 cur_trb->generic.field[3] &= ~TRB_CHAIN;
424 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
425 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
426 "in seg %p (0x%llx dma)\n",
427 cur_trb,
428 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
429 cur_seg,
430 (unsigned long long)cur_seg->dma);
431 } else {
432 cur_trb->generic.field[0] = 0;
433 cur_trb->generic.field[1] = 0;
434 cur_trb->generic.field[2] = 0;
435 /* Preserve only the cycle bit of this TRB */
436 cur_trb->generic.field[3] &= TRB_CYCLE;
437 cur_trb->generic.field[3] |= TRB_TYPE(TRB_TR_NOOP);
438 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
439 "in seg %p (0x%llx dma)\n",
440 cur_trb,
441 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
442 cur_seg,
443 (unsigned long long)cur_seg->dma);
444 }
445 if (cur_trb == cur_td->last_trb)
446 break;
447 }
448 }
449
450 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
451 unsigned int ep_index, struct xhci_segment *deq_seg,
452 union xhci_trb *deq_ptr, u32 cycle_state);
453
454 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
455 unsigned int slot_id, unsigned int ep_index,
456 struct xhci_dequeue_state *deq_state)
457 {
458 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
459
460 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
461 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
462 deq_state->new_deq_seg,
463 (unsigned long long)deq_state->new_deq_seg->dma,
464 deq_state->new_deq_ptr,
465 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
466 deq_state->new_cycle_state);
467 queue_set_tr_deq(xhci, slot_id, ep_index,
468 deq_state->new_deq_seg,
469 deq_state->new_deq_ptr,
470 (u32) deq_state->new_cycle_state);
471 /* Stop the TD queueing code from ringing the doorbell until
472 * this command completes. The HC won't set the dequeue pointer
473 * if the ring is running, and ringing the doorbell starts the
474 * ring running.
475 */
476 ep->ep_state |= SET_DEQ_PENDING;
477 }
478
479 static inline void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
480 struct xhci_virt_ep *ep)
481 {
482 ep->ep_state &= ~EP_HALT_PENDING;
483 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
484 * timer is running on another CPU, we don't decrement stop_cmds_pending
485 * (since we didn't successfully stop the watchdog timer).
486 */
487 if (del_timer(&ep->stop_cmd_timer))
488 ep->stop_cmds_pending--;
489 }
490
491 /* Must be called with xhci->lock held in interrupt context */
492 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
493 struct xhci_td *cur_td, int status, char *adjective)
494 {
495 struct usb_hcd *hcd = xhci_to_hcd(xhci);
496
497 cur_td->urb->hcpriv = NULL;
498 usb_hcd_unlink_urb_from_ep(hcd, cur_td->urb);
499 xhci_dbg(xhci, "Giveback %s URB %p\n", adjective, cur_td->urb);
500
501 spin_unlock(&xhci->lock);
502 usb_hcd_giveback_urb(hcd, cur_td->urb, status);
503 kfree(cur_td);
504 spin_lock(&xhci->lock);
505 xhci_dbg(xhci, "%s URB given back\n", adjective);
506 }
507
508 /*
509 * When we get a command completion for a Stop Endpoint Command, we need to
510 * unlink any cancelled TDs from the ring. There are two ways to do that:
511 *
512 * 1. If the HW was in the middle of processing the TD that needs to be
513 * cancelled, then we must move the ring's dequeue pointer past the last TRB
514 * in the TD with a Set Dequeue Pointer Command.
515 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
516 * bit cleared) so that the HW will skip over them.
517 */
518 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
519 union xhci_trb *trb)
520 {
521 unsigned int slot_id;
522 unsigned int ep_index;
523 struct xhci_ring *ep_ring;
524 struct xhci_virt_ep *ep;
525 struct list_head *entry;
526 struct xhci_td *cur_td = 0;
527 struct xhci_td *last_unlinked_td;
528
529 struct xhci_dequeue_state deq_state;
530
531 memset(&deq_state, 0, sizeof(deq_state));
532 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
533 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
534 ep = &xhci->devs[slot_id]->eps[ep_index];
535 ep_ring = ep->ring;
536
537 if (list_empty(&ep->cancelled_td_list)) {
538 xhci_stop_watchdog_timer_in_irq(xhci, ep);
539 ring_ep_doorbell(xhci, slot_id, ep_index);
540 return;
541 }
542
543 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
544 * We have the xHCI lock, so nothing can modify this list until we drop
545 * it. We're also in the event handler, so we can't get re-interrupted
546 * if another Stop Endpoint command completes
547 */
548 list_for_each(entry, &ep->cancelled_td_list) {
549 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
550 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
551 cur_td->first_trb,
552 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
553 /*
554 * If we stopped on the TD we need to cancel, then we have to
555 * move the xHC endpoint ring dequeue pointer past this TD.
556 */
557 if (cur_td == ep->stopped_td)
558 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, cur_td,
559 &deq_state);
560 else
561 td_to_noop(xhci, ep_ring, cur_td);
562 /*
563 * The event handler won't see a completion for this TD anymore,
564 * so remove it from the endpoint ring's TD list. Keep it in
565 * the cancelled TD list for URB completion later.
566 */
567 list_del(&cur_td->td_list);
568 }
569 last_unlinked_td = cur_td;
570 xhci_stop_watchdog_timer_in_irq(xhci, ep);
571
572 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
573 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
574 xhci_queue_new_dequeue_state(xhci,
575 slot_id, ep_index, &deq_state);
576 xhci_ring_cmd_db(xhci);
577 } else {
578 /* Otherwise just ring the doorbell to restart the ring */
579 ring_ep_doorbell(xhci, slot_id, ep_index);
580 }
581
582 /*
583 * Drop the lock and complete the URBs in the cancelled TD list.
584 * New TDs to be cancelled might be added to the end of the list before
585 * we can complete all the URBs for the TDs we already unlinked.
586 * So stop when we've completed the URB for the last TD we unlinked.
587 */
588 do {
589 cur_td = list_entry(ep->cancelled_td_list.next,
590 struct xhci_td, cancelled_td_list);
591 list_del(&cur_td->cancelled_td_list);
592
593 /* Clean up the cancelled URB */
594 /* Doesn't matter what we pass for status, since the core will
595 * just overwrite it (because the URB has been unlinked).
596 */
597 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
598
599 /* Stop processing the cancelled list if the watchdog timer is
600 * running.
601 */
602 if (xhci->xhc_state & XHCI_STATE_DYING)
603 return;
604 } while (cur_td != last_unlinked_td);
605
606 /* Return to the event handler with xhci->lock re-acquired */
607 }
608
609 /* Watchdog timer function for when a stop endpoint command fails to complete.
610 * In this case, we assume the host controller is broken or dying or dead. The
611 * host may still be completing some other events, so we have to be careful to
612 * let the event ring handler and the URB dequeueing/enqueueing functions know
613 * through xhci->state.
614 *
615 * The timer may also fire if the host takes a very long time to respond to the
616 * command, and the stop endpoint command completion handler cannot delete the
617 * timer before the timer function is called. Another endpoint cancellation may
618 * sneak in before the timer function can grab the lock, and that may queue
619 * another stop endpoint command and add the timer back. So we cannot use a
620 * simple flag to say whether there is a pending stop endpoint command for a
621 * particular endpoint.
622 *
623 * Instead we use a combination of that flag and a counter for the number of
624 * pending stop endpoint commands. If the timer is the tail end of the last
625 * stop endpoint command, and the endpoint's command is still pending, we assume
626 * the host is dying.
627 */
628 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
629 {
630 struct xhci_hcd *xhci;
631 struct xhci_virt_ep *ep;
632 struct xhci_virt_ep *temp_ep;
633 struct xhci_ring *ring;
634 struct xhci_td *cur_td;
635 int ret, i, j;
636
637 ep = (struct xhci_virt_ep *) arg;
638 xhci = ep->xhci;
639
640 spin_lock(&xhci->lock);
641
642 ep->stop_cmds_pending--;
643 if (xhci->xhc_state & XHCI_STATE_DYING) {
644 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
645 "xHCI as DYING, exiting.\n");
646 spin_unlock(&xhci->lock);
647 return;
648 }
649 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
650 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
651 "exiting.\n");
652 spin_unlock(&xhci->lock);
653 return;
654 }
655
656 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
657 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
658 /* Oops, HC is dead or dying or at least not responding to the stop
659 * endpoint command.
660 */
661 xhci->xhc_state |= XHCI_STATE_DYING;
662 /* Disable interrupts from the host controller and start halting it */
663 xhci_quiesce(xhci);
664 spin_unlock(&xhci->lock);
665
666 ret = xhci_halt(xhci);
667
668 spin_lock(&xhci->lock);
669 if (ret < 0) {
670 /* This is bad; the host is not responding to commands and it's
671 * not allowing itself to be halted. At least interrupts are
672 * disabled, so we can set HC_STATE_HALT and notify the
673 * USB core. But if we call usb_hc_died(), it will attempt to
674 * disconnect all device drivers under this host. Those
675 * disconnect() methods will wait for all URBs to be unlinked,
676 * so we must complete them.
677 */
678 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
679 xhci_warn(xhci, "Completing active URBs anyway.\n");
680 /* We could turn all TDs on the rings to no-ops. This won't
681 * help if the host has cached part of the ring, and is slow if
682 * we want to preserve the cycle bit. Skip it and hope the host
683 * doesn't touch the memory.
684 */
685 }
686 for (i = 0; i < MAX_HC_SLOTS; i++) {
687 if (!xhci->devs[i])
688 continue;
689 for (j = 0; j < 31; j++) {
690 temp_ep = &xhci->devs[i]->eps[j];
691 ring = temp_ep->ring;
692 if (!ring)
693 continue;
694 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
695 "ep index %u\n", i, j);
696 while (!list_empty(&ring->td_list)) {
697 cur_td = list_first_entry(&ring->td_list,
698 struct xhci_td,
699 td_list);
700 list_del(&cur_td->td_list);
701 if (!list_empty(&cur_td->cancelled_td_list))
702 list_del(&cur_td->cancelled_td_list);
703 xhci_giveback_urb_in_irq(xhci, cur_td,
704 -ESHUTDOWN, "killed");
705 }
706 while (!list_empty(&temp_ep->cancelled_td_list)) {
707 cur_td = list_first_entry(
708 &temp_ep->cancelled_td_list,
709 struct xhci_td,
710 cancelled_td_list);
711 list_del(&cur_td->cancelled_td_list);
712 xhci_giveback_urb_in_irq(xhci, cur_td,
713 -ESHUTDOWN, "killed");
714 }
715 }
716 }
717 spin_unlock(&xhci->lock);
718 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
719 xhci_dbg(xhci, "Calling usb_hc_died()\n");
720 usb_hc_died(xhci_to_hcd(xhci));
721 xhci_dbg(xhci, "xHCI host controller is dead.\n");
722 }
723
724 /*
725 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
726 * we need to clear the set deq pending flag in the endpoint ring state, so that
727 * the TD queueing code can ring the doorbell again. We also need to ring the
728 * endpoint doorbell to restart the ring, but only if there aren't more
729 * cancellations pending.
730 */
731 static void handle_set_deq_completion(struct xhci_hcd *xhci,
732 struct xhci_event_cmd *event,
733 union xhci_trb *trb)
734 {
735 unsigned int slot_id;
736 unsigned int ep_index;
737 struct xhci_ring *ep_ring;
738 struct xhci_virt_device *dev;
739 struct xhci_ep_ctx *ep_ctx;
740 struct xhci_slot_ctx *slot_ctx;
741
742 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
743 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
744 dev = xhci->devs[slot_id];
745 ep_ring = dev->eps[ep_index].ring;
746 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
747 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
748
749 if (GET_COMP_CODE(event->status) != COMP_SUCCESS) {
750 unsigned int ep_state;
751 unsigned int slot_state;
752
753 switch (GET_COMP_CODE(event->status)) {
754 case COMP_TRB_ERR:
755 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
756 "of stream ID configuration\n");
757 break;
758 case COMP_CTX_STATE:
759 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
760 "to incorrect slot or ep state.\n");
761 ep_state = ep_ctx->ep_info;
762 ep_state &= EP_STATE_MASK;
763 slot_state = slot_ctx->dev_state;
764 slot_state = GET_SLOT_STATE(slot_state);
765 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
766 slot_state, ep_state);
767 break;
768 case COMP_EBADSLT:
769 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
770 "slot %u was not enabled.\n", slot_id);
771 break;
772 default:
773 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
774 "completion code of %u.\n",
775 GET_COMP_CODE(event->status));
776 break;
777 }
778 /* OK what do we do now? The endpoint state is hosed, and we
779 * should never get to this point if the synchronization between
780 * queueing, and endpoint state are correct. This might happen
781 * if the device gets disconnected after we've finished
782 * cancelling URBs, which might not be an error...
783 */
784 } else {
785 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
786 ep_ctx->deq);
787 }
788
789 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
790 ring_ep_doorbell(xhci, slot_id, ep_index);
791 }
792
793 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
794 struct xhci_event_cmd *event,
795 union xhci_trb *trb)
796 {
797 int slot_id;
798 unsigned int ep_index;
799 struct xhci_ring *ep_ring;
800
801 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
802 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
803 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
804 /* This command will only fail if the endpoint wasn't halted,
805 * but we don't care.
806 */
807 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
808 (unsigned int) GET_COMP_CODE(event->status));
809
810 /* HW with the reset endpoint quirk needs to have a configure endpoint
811 * command complete before the endpoint can be used. Queue that here
812 * because the HW can't handle two commands being queued in a row.
813 */
814 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
815 xhci_dbg(xhci, "Queueing configure endpoint command\n");
816 xhci_queue_configure_endpoint(xhci,
817 xhci->devs[slot_id]->in_ctx->dma, slot_id,
818 false);
819 xhci_ring_cmd_db(xhci);
820 } else {
821 /* Clear our internal halted state and restart the ring */
822 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
823 ring_ep_doorbell(xhci, slot_id, ep_index);
824 }
825 }
826
827 /* Check to see if a command in the device's command queue matches this one.
828 * Signal the completion or free the command, and return 1. Return 0 if the
829 * completed command isn't at the head of the command list.
830 */
831 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
832 struct xhci_virt_device *virt_dev,
833 struct xhci_event_cmd *event)
834 {
835 struct xhci_command *command;
836
837 if (list_empty(&virt_dev->cmd_list))
838 return 0;
839
840 command = list_entry(virt_dev->cmd_list.next,
841 struct xhci_command, cmd_list);
842 if (xhci->cmd_ring->dequeue != command->command_trb)
843 return 0;
844
845 command->status =
846 GET_COMP_CODE(event->status);
847 list_del(&command->cmd_list);
848 if (command->completion)
849 complete(command->completion);
850 else
851 xhci_free_command(xhci, command);
852 return 1;
853 }
854
855 static void handle_cmd_completion(struct xhci_hcd *xhci,
856 struct xhci_event_cmd *event)
857 {
858 int slot_id = TRB_TO_SLOT_ID(event->flags);
859 u64 cmd_dma;
860 dma_addr_t cmd_dequeue_dma;
861 struct xhci_input_control_ctx *ctrl_ctx;
862 struct xhci_virt_device *virt_dev;
863 unsigned int ep_index;
864 struct xhci_ring *ep_ring;
865 unsigned int ep_state;
866
867 cmd_dma = event->cmd_trb;
868 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
869 xhci->cmd_ring->dequeue);
870 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
871 if (cmd_dequeue_dma == 0) {
872 xhci->error_bitmask |= 1 << 4;
873 return;
874 }
875 /* Does the DMA address match our internal dequeue pointer address? */
876 if (cmd_dma != (u64) cmd_dequeue_dma) {
877 xhci->error_bitmask |= 1 << 5;
878 return;
879 }
880 switch (xhci->cmd_ring->dequeue->generic.field[3] & TRB_TYPE_BITMASK) {
881 case TRB_TYPE(TRB_ENABLE_SLOT):
882 if (GET_COMP_CODE(event->status) == COMP_SUCCESS)
883 xhci->slot_id = slot_id;
884 else
885 xhci->slot_id = 0;
886 complete(&xhci->addr_dev);
887 break;
888 case TRB_TYPE(TRB_DISABLE_SLOT):
889 if (xhci->devs[slot_id])
890 xhci_free_virt_device(xhci, slot_id);
891 break;
892 case TRB_TYPE(TRB_CONFIG_EP):
893 virt_dev = xhci->devs[slot_id];
894 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
895 break;
896 /*
897 * Configure endpoint commands can come from the USB core
898 * configuration or alt setting changes, or because the HW
899 * needed an extra configure endpoint command after a reset
900 * endpoint command. In the latter case, the xHCI driver is
901 * not waiting on the configure endpoint command.
902 */
903 ctrl_ctx = xhci_get_input_control_ctx(xhci,
904 virt_dev->in_ctx);
905 /* Input ctx add_flags are the endpoint index plus one */
906 ep_index = xhci_last_valid_endpoint(ctrl_ctx->add_flags) - 1;
907 /* A usb_set_interface() call directly after clearing a halted
908 * condition may race on this quirky hardware.
909 * Not worth worrying about, since this is prototype hardware.
910 */
911 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
912 ep_index != (unsigned int) -1 &&
913 ctrl_ctx->add_flags - SLOT_FLAG ==
914 ctrl_ctx->drop_flags) {
915 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
916 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
917 if (!(ep_state & EP_HALTED))
918 goto bandwidth_change;
919 xhci_dbg(xhci, "Completed config ep cmd - "
920 "last ep index = %d, state = %d\n",
921 ep_index, ep_state);
922 /* Clear our internal halted state and restart ring */
923 xhci->devs[slot_id]->eps[ep_index].ep_state &=
924 ~EP_HALTED;
925 ring_ep_doorbell(xhci, slot_id, ep_index);
926 break;
927 }
928 bandwidth_change:
929 xhci_dbg(xhci, "Completed config ep cmd\n");
930 xhci->devs[slot_id]->cmd_status =
931 GET_COMP_CODE(event->status);
932 complete(&xhci->devs[slot_id]->cmd_completion);
933 break;
934 case TRB_TYPE(TRB_EVAL_CONTEXT):
935 virt_dev = xhci->devs[slot_id];
936 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
937 break;
938 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status);
939 complete(&xhci->devs[slot_id]->cmd_completion);
940 break;
941 case TRB_TYPE(TRB_ADDR_DEV):
942 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status);
943 complete(&xhci->addr_dev);
944 break;
945 case TRB_TYPE(TRB_STOP_RING):
946 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue);
947 break;
948 case TRB_TYPE(TRB_SET_DEQ):
949 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
950 break;
951 case TRB_TYPE(TRB_CMD_NOOP):
952 ++xhci->noops_handled;
953 break;
954 case TRB_TYPE(TRB_RESET_EP):
955 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
956 break;
957 case TRB_TYPE(TRB_RESET_DEV):
958 xhci_dbg(xhci, "Completed reset device command.\n");
959 slot_id = TRB_TO_SLOT_ID(
960 xhci->cmd_ring->dequeue->generic.field[3]);
961 virt_dev = xhci->devs[slot_id];
962 if (virt_dev)
963 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
964 else
965 xhci_warn(xhci, "Reset device command completion "
966 "for disabled slot %u\n", slot_id);
967 break;
968 default:
969 /* Skip over unknown commands on the event ring */
970 xhci->error_bitmask |= 1 << 6;
971 break;
972 }
973 inc_deq(xhci, xhci->cmd_ring, false);
974 }
975
976 static void handle_port_status(struct xhci_hcd *xhci,
977 union xhci_trb *event)
978 {
979 u32 port_id;
980
981 /* Port status change events always have a successful completion code */
982 if (GET_COMP_CODE(event->generic.field[2]) != COMP_SUCCESS) {
983 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
984 xhci->error_bitmask |= 1 << 8;
985 }
986 /* FIXME: core doesn't care about all port link state changes yet */
987 port_id = GET_PORT_ID(event->generic.field[0]);
988 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
989
990 /* Update event ring dequeue pointer before dropping the lock */
991 inc_deq(xhci, xhci->event_ring, true);
992 xhci_set_hc_event_deq(xhci);
993
994 spin_unlock(&xhci->lock);
995 /* Pass this up to the core */
996 usb_hcd_poll_rh_status(xhci_to_hcd(xhci));
997 spin_lock(&xhci->lock);
998 }
999
1000 /*
1001 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1002 * at end_trb, which may be in another segment. If the suspect DMA address is a
1003 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1004 * returns 0.
1005 */
1006 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1007 union xhci_trb *start_trb,
1008 union xhci_trb *end_trb,
1009 dma_addr_t suspect_dma)
1010 {
1011 dma_addr_t start_dma;
1012 dma_addr_t end_seg_dma;
1013 dma_addr_t end_trb_dma;
1014 struct xhci_segment *cur_seg;
1015
1016 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1017 cur_seg = start_seg;
1018
1019 do {
1020 if (start_dma == 0)
1021 return 0;
1022 /* We may get an event for a Link TRB in the middle of a TD */
1023 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1024 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1025 /* If the end TRB isn't in this segment, this is set to 0 */
1026 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1027
1028 if (end_trb_dma > 0) {
1029 /* The end TRB is in this segment, so suspect should be here */
1030 if (start_dma <= end_trb_dma) {
1031 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1032 return cur_seg;
1033 } else {
1034 /* Case for one segment with
1035 * a TD wrapped around to the top
1036 */
1037 if ((suspect_dma >= start_dma &&
1038 suspect_dma <= end_seg_dma) ||
1039 (suspect_dma >= cur_seg->dma &&
1040 suspect_dma <= end_trb_dma))
1041 return cur_seg;
1042 }
1043 return 0;
1044 } else {
1045 /* Might still be somewhere in this segment */
1046 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1047 return cur_seg;
1048 }
1049 cur_seg = cur_seg->next;
1050 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1051 } while (cur_seg != start_seg);
1052
1053 return 0;
1054 }
1055
1056 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1057 unsigned int slot_id, unsigned int ep_index,
1058 struct xhci_td *td, union xhci_trb *event_trb)
1059 {
1060 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1061 ep->ep_state |= EP_HALTED;
1062 ep->stopped_td = td;
1063 ep->stopped_trb = event_trb;
1064 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1065 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1066 xhci_ring_cmd_db(xhci);
1067 }
1068
1069 /* Check if an error has halted the endpoint ring. The class driver will
1070 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1071 * However, a babble and other errors also halt the endpoint ring, and the class
1072 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1073 * Ring Dequeue Pointer command manually.
1074 */
1075 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1076 struct xhci_ep_ctx *ep_ctx,
1077 unsigned int trb_comp_code)
1078 {
1079 /* TRB completion codes that may require a manual halt cleanup */
1080 if (trb_comp_code == COMP_TX_ERR ||
1081 trb_comp_code == COMP_BABBLE ||
1082 trb_comp_code == COMP_SPLIT_ERR)
1083 /* The 0.96 spec says a babbling control endpoint
1084 * is not halted. The 0.96 spec says it is. Some HW
1085 * claims to be 0.95 compliant, but it halts the control
1086 * endpoint anyway. Check if a babble halted the
1087 * endpoint.
1088 */
1089 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_HALTED)
1090 return 1;
1091
1092 return 0;
1093 }
1094
1095 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1096 {
1097 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1098 /* Vendor defined "informational" completion code,
1099 * treat as not-an-error.
1100 */
1101 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1102 trb_comp_code);
1103 xhci_dbg(xhci, "Treating code as success.\n");
1104 return 1;
1105 }
1106 return 0;
1107 }
1108
1109 /*
1110 * If this function returns an error condition, it means it got a Transfer
1111 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1112 * At this point, the host controller is probably hosed and should be reset.
1113 */
1114 static int handle_tx_event(struct xhci_hcd *xhci,
1115 struct xhci_transfer_event *event)
1116 {
1117 struct xhci_virt_device *xdev;
1118 struct xhci_virt_ep *ep;
1119 struct xhci_ring *ep_ring;
1120 unsigned int slot_id;
1121 int ep_index;
1122 struct xhci_td *td = 0;
1123 dma_addr_t event_dma;
1124 struct xhci_segment *event_seg;
1125 union xhci_trb *event_trb;
1126 struct urb *urb = 0;
1127 int status = -EINPROGRESS;
1128 struct xhci_ep_ctx *ep_ctx;
1129 u32 trb_comp_code;
1130
1131 xhci_dbg(xhci, "In %s\n", __func__);
1132 slot_id = TRB_TO_SLOT_ID(event->flags);
1133 xdev = xhci->devs[slot_id];
1134 if (!xdev) {
1135 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1136 return -ENODEV;
1137 }
1138
1139 /* Endpoint ID is 1 based, our index is zero based */
1140 ep_index = TRB_TO_EP_ID(event->flags) - 1;
1141 xhci_dbg(xhci, "%s - ep index = %d\n", __func__, ep_index);
1142 ep = &xdev->eps[ep_index];
1143 ep_ring = ep->ring;
1144 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1145 if (!ep_ring || (ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED) {
1146 xhci_err(xhci, "ERROR Transfer event pointed to disabled endpoint\n");
1147 return -ENODEV;
1148 }
1149
1150 event_dma = event->buffer;
1151 /* This TRB should be in the TD at the head of this ring's TD list */
1152 xhci_dbg(xhci, "%s - checking for list empty\n", __func__);
1153 if (list_empty(&ep_ring->td_list)) {
1154 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
1155 TRB_TO_SLOT_ID(event->flags), ep_index);
1156 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
1157 (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10);
1158 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
1159 urb = NULL;
1160 goto cleanup;
1161 }
1162 xhci_dbg(xhci, "%s - getting list entry\n", __func__);
1163 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
1164
1165 /* Is this a TRB in the currently executing TD? */
1166 xhci_dbg(xhci, "%s - looking for TD\n", __func__);
1167 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
1168 td->last_trb, event_dma);
1169 xhci_dbg(xhci, "%s - found event_seg = %p\n", __func__, event_seg);
1170 if (!event_seg) {
1171 /* HC is busted, give up! */
1172 xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not part of current TD\n");
1173 return -ESHUTDOWN;
1174 }
1175 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / sizeof(*event_trb)];
1176 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
1177 (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10);
1178 xhci_dbg(xhci, "Offset 0x00 (buffer lo) = 0x%x\n",
1179 lower_32_bits(event->buffer));
1180 xhci_dbg(xhci, "Offset 0x04 (buffer hi) = 0x%x\n",
1181 upper_32_bits(event->buffer));
1182 xhci_dbg(xhci, "Offset 0x08 (transfer length) = 0x%x\n",
1183 (unsigned int) event->transfer_len);
1184 xhci_dbg(xhci, "Offset 0x0C (flags) = 0x%x\n",
1185 (unsigned int) event->flags);
1186
1187 /* Look for common error cases */
1188 trb_comp_code = GET_COMP_CODE(event->transfer_len);
1189 switch (trb_comp_code) {
1190 /* Skip codes that require special handling depending on
1191 * transfer type
1192 */
1193 case COMP_SUCCESS:
1194 case COMP_SHORT_TX:
1195 break;
1196 case COMP_STOP:
1197 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1198 break;
1199 case COMP_STOP_INVAL:
1200 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1201 break;
1202 case COMP_STALL:
1203 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1204 ep->ep_state |= EP_HALTED;
1205 status = -EPIPE;
1206 break;
1207 case COMP_TRB_ERR:
1208 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1209 status = -EILSEQ;
1210 break;
1211 case COMP_SPLIT_ERR:
1212 case COMP_TX_ERR:
1213 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1214 status = -EPROTO;
1215 break;
1216 case COMP_BABBLE:
1217 xhci_warn(xhci, "WARN: babble error on endpoint\n");
1218 status = -EOVERFLOW;
1219 break;
1220 case COMP_DB_ERR:
1221 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
1222 status = -ENOSR;
1223 break;
1224 default:
1225 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
1226 status = 0;
1227 break;
1228 }
1229 xhci_warn(xhci, "ERROR Unknown event condition, HC probably busted\n");
1230 urb = NULL;
1231 goto cleanup;
1232 }
1233 /* Now update the urb's actual_length and give back to the core */
1234 /* Was this a control transfer? */
1235 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) {
1236 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1237 switch (trb_comp_code) {
1238 case COMP_SUCCESS:
1239 if (event_trb == ep_ring->dequeue) {
1240 xhci_warn(xhci, "WARN: Success on ctrl setup TRB without IOC set??\n");
1241 status = -ESHUTDOWN;
1242 } else if (event_trb != td->last_trb) {
1243 xhci_warn(xhci, "WARN: Success on ctrl data TRB without IOC set??\n");
1244 status = -ESHUTDOWN;
1245 } else {
1246 xhci_dbg(xhci, "Successful control transfer!\n");
1247 status = 0;
1248 }
1249 break;
1250 case COMP_SHORT_TX:
1251 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1252 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1253 status = -EREMOTEIO;
1254 else
1255 status = 0;
1256 break;
1257
1258 default:
1259 if (!xhci_requires_manual_halt_cleanup(xhci,
1260 ep_ctx, trb_comp_code))
1261 break;
1262 xhci_dbg(xhci, "TRB error code %u, "
1263 "halted endpoint index = %u\n",
1264 trb_comp_code, ep_index);
1265 /* else fall through */
1266 case COMP_STALL:
1267 /* Did we transfer part of the data (middle) phase? */
1268 if (event_trb != ep_ring->dequeue &&
1269 event_trb != td->last_trb)
1270 td->urb->actual_length =
1271 td->urb->transfer_buffer_length
1272 - TRB_LEN(event->transfer_len);
1273 else
1274 td->urb->actual_length = 0;
1275
1276 xhci_cleanup_halted_endpoint(xhci,
1277 slot_id, ep_index, td, event_trb);
1278 goto td_cleanup;
1279 }
1280 /*
1281 * Did we transfer any data, despite the errors that might have
1282 * happened? I.e. did we get past the setup stage?
1283 */
1284 if (event_trb != ep_ring->dequeue) {
1285 /* The event was for the status stage */
1286 if (event_trb == td->last_trb) {
1287 if (td->urb->actual_length != 0) {
1288 /* Don't overwrite a previously set error code */
1289 if ((status == -EINPROGRESS ||
1290 status == 0) &&
1291 (td->urb->transfer_flags
1292 & URB_SHORT_NOT_OK))
1293 /* Did we already see a short data stage? */
1294 status = -EREMOTEIO;
1295 } else {
1296 td->urb->actual_length =
1297 td->urb->transfer_buffer_length;
1298 }
1299 } else {
1300 /* Maybe the event was for the data stage? */
1301 if (trb_comp_code != COMP_STOP_INVAL) {
1302 /* We didn't stop on a link TRB in the middle */
1303 td->urb->actual_length =
1304 td->urb->transfer_buffer_length -
1305 TRB_LEN(event->transfer_len);
1306 xhci_dbg(xhci, "Waiting for status stage event\n");
1307 urb = NULL;
1308 goto cleanup;
1309 }
1310 }
1311 }
1312 } else {
1313 switch (trb_comp_code) {
1314 case COMP_SUCCESS:
1315 /* Double check that the HW transferred everything. */
1316 if (event_trb != td->last_trb) {
1317 xhci_warn(xhci, "WARN Successful completion "
1318 "on short TX\n");
1319 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1320 status = -EREMOTEIO;
1321 else
1322 status = 0;
1323 } else {
1324 if (usb_endpoint_xfer_bulk(&td->urb->ep->desc))
1325 xhci_dbg(xhci, "Successful bulk "
1326 "transfer!\n");
1327 else
1328 xhci_dbg(xhci, "Successful interrupt "
1329 "transfer!\n");
1330 status = 0;
1331 }
1332 break;
1333 case COMP_SHORT_TX:
1334 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1335 status = -EREMOTEIO;
1336 else
1337 status = 0;
1338 break;
1339 default:
1340 /* Others already handled above */
1341 break;
1342 }
1343 dev_dbg(&td->urb->dev->dev,
1344 "ep %#x - asked for %d bytes, "
1345 "%d bytes untransferred\n",
1346 td->urb->ep->desc.bEndpointAddress,
1347 td->urb->transfer_buffer_length,
1348 TRB_LEN(event->transfer_len));
1349 /* Fast path - was this the last TRB in the TD for this URB? */
1350 if (event_trb == td->last_trb) {
1351 if (TRB_LEN(event->transfer_len) != 0) {
1352 td->urb->actual_length =
1353 td->urb->transfer_buffer_length -
1354 TRB_LEN(event->transfer_len);
1355 if (td->urb->transfer_buffer_length <
1356 td->urb->actual_length) {
1357 xhci_warn(xhci, "HC gave bad length "
1358 "of %d bytes left\n",
1359 TRB_LEN(event->transfer_len));
1360 td->urb->actual_length = 0;
1361 if (td->urb->transfer_flags &
1362 URB_SHORT_NOT_OK)
1363 status = -EREMOTEIO;
1364 else
1365 status = 0;
1366 }
1367 /* Don't overwrite a previously set error code */
1368 if (status == -EINPROGRESS) {
1369 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1370 status = -EREMOTEIO;
1371 else
1372 status = 0;
1373 }
1374 } else {
1375 td->urb->actual_length = td->urb->transfer_buffer_length;
1376 /* Ignore a short packet completion if the
1377 * untransferred length was zero.
1378 */
1379 if (status == -EREMOTEIO)
1380 status = 0;
1381 }
1382 } else {
1383 /* Slow path - walk the list, starting from the dequeue
1384 * pointer, to get the actual length transferred.
1385 */
1386 union xhci_trb *cur_trb;
1387 struct xhci_segment *cur_seg;
1388
1389 td->urb->actual_length = 0;
1390 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1391 cur_trb != event_trb;
1392 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1393 if (TRB_TYPE(cur_trb->generic.field[3]) != TRB_TR_NOOP &&
1394 TRB_TYPE(cur_trb->generic.field[3]) != TRB_LINK)
1395 td->urb->actual_length +=
1396 TRB_LEN(cur_trb->generic.field[2]);
1397 }
1398 /* If the ring didn't stop on a Link or No-op TRB, add
1399 * in the actual bytes transferred from the Normal TRB
1400 */
1401 if (trb_comp_code != COMP_STOP_INVAL)
1402 td->urb->actual_length +=
1403 TRB_LEN(cur_trb->generic.field[2]) -
1404 TRB_LEN(event->transfer_len);
1405 }
1406 }
1407 if (trb_comp_code == COMP_STOP_INVAL ||
1408 trb_comp_code == COMP_STOP) {
1409 /* The Endpoint Stop Command completion will take care of any
1410 * stopped TDs. A stopped TD may be restarted, so don't update
1411 * the ring dequeue pointer or take this TD off any lists yet.
1412 */
1413 ep->stopped_td = td;
1414 ep->stopped_trb = event_trb;
1415 } else {
1416 if (trb_comp_code == COMP_STALL) {
1417 /* The transfer is completed from the driver's
1418 * perspective, but we need to issue a set dequeue
1419 * command for this stalled endpoint to move the dequeue
1420 * pointer past the TD. We can't do that here because
1421 * the halt condition must be cleared first. Let the
1422 * USB class driver clear the stall later.
1423 */
1424 ep->stopped_td = td;
1425 ep->stopped_trb = event_trb;
1426 } else if (xhci_requires_manual_halt_cleanup(xhci,
1427 ep_ctx, trb_comp_code)) {
1428 /* Other types of errors halt the endpoint, but the
1429 * class driver doesn't call usb_reset_endpoint() unless
1430 * the error is -EPIPE. Clear the halted status in the
1431 * xHCI hardware manually.
1432 */
1433 xhci_cleanup_halted_endpoint(xhci,
1434 slot_id, ep_index, td, event_trb);
1435 } else {
1436 /* Update ring dequeue pointer */
1437 while (ep_ring->dequeue != td->last_trb)
1438 inc_deq(xhci, ep_ring, false);
1439 inc_deq(xhci, ep_ring, false);
1440 }
1441
1442 td_cleanup:
1443 /* Clean up the endpoint's TD list */
1444 urb = td->urb;
1445 /* Do one last check of the actual transfer length.
1446 * If the host controller said we transferred more data than
1447 * the buffer length, urb->actual_length will be a very big
1448 * number (since it's unsigned). Play it safe and say we didn't
1449 * transfer anything.
1450 */
1451 if (urb->actual_length > urb->transfer_buffer_length) {
1452 xhci_warn(xhci, "URB transfer length is wrong, "
1453 "xHC issue? req. len = %u, "
1454 "act. len = %u\n",
1455 urb->transfer_buffer_length,
1456 urb->actual_length);
1457 urb->actual_length = 0;
1458 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1459 status = -EREMOTEIO;
1460 else
1461 status = 0;
1462 }
1463 list_del(&td->td_list);
1464 /* Was this TD slated to be cancelled but completed anyway? */
1465 if (!list_empty(&td->cancelled_td_list))
1466 list_del(&td->cancelled_td_list);
1467
1468 /* Leave the TD around for the reset endpoint function to use
1469 * (but only if it's not a control endpoint, since we already
1470 * queued the Set TR dequeue pointer command for stalled
1471 * control endpoints).
1472 */
1473 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
1474 (trb_comp_code != COMP_STALL &&
1475 trb_comp_code != COMP_BABBLE)) {
1476 kfree(td);
1477 }
1478 urb->hcpriv = NULL;
1479 }
1480 cleanup:
1481 inc_deq(xhci, xhci->event_ring, true);
1482 xhci_set_hc_event_deq(xhci);
1483
1484 /* FIXME for multi-TD URBs (who have buffers bigger than 64MB) */
1485 if (urb) {
1486 usb_hcd_unlink_urb_from_ep(xhci_to_hcd(xhci), urb);
1487 xhci_dbg(xhci, "Giveback URB %p, len = %d, status = %d\n",
1488 urb, urb->actual_length, status);
1489 spin_unlock(&xhci->lock);
1490 usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, status);
1491 spin_lock(&xhci->lock);
1492 }
1493 return 0;
1494 }
1495
1496 /*
1497 * This function handles all OS-owned events on the event ring. It may drop
1498 * xhci->lock between event processing (e.g. to pass up port status changes).
1499 */
1500 void xhci_handle_event(struct xhci_hcd *xhci)
1501 {
1502 union xhci_trb *event;
1503 int update_ptrs = 1;
1504 int ret;
1505
1506 xhci_dbg(xhci, "In %s\n", __func__);
1507 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
1508 xhci->error_bitmask |= 1 << 1;
1509 return;
1510 }
1511
1512 event = xhci->event_ring->dequeue;
1513 /* Does the HC or OS own the TRB? */
1514 if ((event->event_cmd.flags & TRB_CYCLE) !=
1515 xhci->event_ring->cycle_state) {
1516 xhci->error_bitmask |= 1 << 2;
1517 return;
1518 }
1519 xhci_dbg(xhci, "%s - OS owns TRB\n", __func__);
1520
1521 /* FIXME: Handle more event types. */
1522 switch ((event->event_cmd.flags & TRB_TYPE_BITMASK)) {
1523 case TRB_TYPE(TRB_COMPLETION):
1524 xhci_dbg(xhci, "%s - calling handle_cmd_completion\n", __func__);
1525 handle_cmd_completion(xhci, &event->event_cmd);
1526 xhci_dbg(xhci, "%s - returned from handle_cmd_completion\n", __func__);
1527 break;
1528 case TRB_TYPE(TRB_PORT_STATUS):
1529 xhci_dbg(xhci, "%s - calling handle_port_status\n", __func__);
1530 handle_port_status(xhci, event);
1531 xhci_dbg(xhci, "%s - returned from handle_port_status\n", __func__);
1532 update_ptrs = 0;
1533 break;
1534 case TRB_TYPE(TRB_TRANSFER):
1535 xhci_dbg(xhci, "%s - calling handle_tx_event\n", __func__);
1536 ret = handle_tx_event(xhci, &event->trans_event);
1537 xhci_dbg(xhci, "%s - returned from handle_tx_event\n", __func__);
1538 if (ret < 0)
1539 xhci->error_bitmask |= 1 << 9;
1540 else
1541 update_ptrs = 0;
1542 break;
1543 default:
1544 xhci->error_bitmask |= 1 << 3;
1545 }
1546 /* Any of the above functions may drop and re-acquire the lock, so check
1547 * to make sure a watchdog timer didn't mark the host as non-responsive.
1548 */
1549 if (xhci->xhc_state & XHCI_STATE_DYING) {
1550 xhci_dbg(xhci, "xHCI host dying, returning from "
1551 "event handler.\n");
1552 return;
1553 }
1554
1555 if (update_ptrs) {
1556 /* Update SW and HC event ring dequeue pointer */
1557 inc_deq(xhci, xhci->event_ring, true);
1558 xhci_set_hc_event_deq(xhci);
1559 }
1560 /* Are there more items on the event ring? */
1561 xhci_handle_event(xhci);
1562 }
1563
1564 /**** Endpoint Ring Operations ****/
1565
1566 /*
1567 * Generic function for queueing a TRB on a ring.
1568 * The caller must have checked to make sure there's room on the ring.
1569 */
1570 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
1571 bool consumer,
1572 u32 field1, u32 field2, u32 field3, u32 field4)
1573 {
1574 struct xhci_generic_trb *trb;
1575
1576 trb = &ring->enqueue->generic;
1577 trb->field[0] = field1;
1578 trb->field[1] = field2;
1579 trb->field[2] = field3;
1580 trb->field[3] = field4;
1581 inc_enq(xhci, ring, consumer);
1582 }
1583
1584 /*
1585 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
1586 * FIXME allocate segments if the ring is full.
1587 */
1588 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
1589 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
1590 {
1591 /* Make sure the endpoint has been added to xHC schedule */
1592 xhci_dbg(xhci, "Endpoint state = 0x%x\n", ep_state);
1593 switch (ep_state) {
1594 case EP_STATE_DISABLED:
1595 /*
1596 * USB core changed config/interfaces without notifying us,
1597 * or hardware is reporting the wrong state.
1598 */
1599 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
1600 return -ENOENT;
1601 case EP_STATE_ERROR:
1602 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
1603 /* FIXME event handling code for error needs to clear it */
1604 /* XXX not sure if this should be -ENOENT or not */
1605 return -EINVAL;
1606 case EP_STATE_HALTED:
1607 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
1608 case EP_STATE_STOPPED:
1609 case EP_STATE_RUNNING:
1610 break;
1611 default:
1612 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
1613 /*
1614 * FIXME issue Configure Endpoint command to try to get the HC
1615 * back into a known state.
1616 */
1617 return -EINVAL;
1618 }
1619 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
1620 /* FIXME allocate more room */
1621 xhci_err(xhci, "ERROR no room on ep ring\n");
1622 return -ENOMEM;
1623 }
1624 return 0;
1625 }
1626
1627 static int prepare_transfer(struct xhci_hcd *xhci,
1628 struct xhci_virt_device *xdev,
1629 unsigned int ep_index,
1630 unsigned int num_trbs,
1631 struct urb *urb,
1632 struct xhci_td **td,
1633 gfp_t mem_flags)
1634 {
1635 int ret;
1636 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1637 ret = prepare_ring(xhci, xdev->eps[ep_index].ring,
1638 ep_ctx->ep_info & EP_STATE_MASK,
1639 num_trbs, mem_flags);
1640 if (ret)
1641 return ret;
1642 *td = kzalloc(sizeof(struct xhci_td), mem_flags);
1643 if (!*td)
1644 return -ENOMEM;
1645 INIT_LIST_HEAD(&(*td)->td_list);
1646 INIT_LIST_HEAD(&(*td)->cancelled_td_list);
1647
1648 ret = usb_hcd_link_urb_to_ep(xhci_to_hcd(xhci), urb);
1649 if (unlikely(ret)) {
1650 kfree(*td);
1651 return ret;
1652 }
1653
1654 (*td)->urb = urb;
1655 urb->hcpriv = (void *) (*td);
1656 /* Add this TD to the tail of the endpoint ring's TD list */
1657 list_add_tail(&(*td)->td_list, &xdev->eps[ep_index].ring->td_list);
1658 (*td)->start_seg = xdev->eps[ep_index].ring->enq_seg;
1659 (*td)->first_trb = xdev->eps[ep_index].ring->enqueue;
1660
1661 return 0;
1662 }
1663
1664 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
1665 {
1666 int num_sgs, num_trbs, running_total, temp, i;
1667 struct scatterlist *sg;
1668
1669 sg = NULL;
1670 num_sgs = urb->num_sgs;
1671 temp = urb->transfer_buffer_length;
1672
1673 xhci_dbg(xhci, "count sg list trbs: \n");
1674 num_trbs = 0;
1675 for_each_sg(urb->sg->sg, sg, num_sgs, i) {
1676 unsigned int previous_total_trbs = num_trbs;
1677 unsigned int len = sg_dma_len(sg);
1678
1679 /* Scatter gather list entries may cross 64KB boundaries */
1680 running_total = TRB_MAX_BUFF_SIZE -
1681 (sg_dma_address(sg) & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
1682 if (running_total != 0)
1683 num_trbs++;
1684
1685 /* How many more 64KB chunks to transfer, how many more TRBs? */
1686 while (running_total < sg_dma_len(sg)) {
1687 num_trbs++;
1688 running_total += TRB_MAX_BUFF_SIZE;
1689 }
1690 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
1691 i, (unsigned long long)sg_dma_address(sg),
1692 len, len, num_trbs - previous_total_trbs);
1693
1694 len = min_t(int, len, temp);
1695 temp -= len;
1696 if (temp == 0)
1697 break;
1698 }
1699 xhci_dbg(xhci, "\n");
1700 if (!in_interrupt())
1701 dev_dbg(&urb->dev->dev, "ep %#x - urb len = %d, sglist used, num_trbs = %d\n",
1702 urb->ep->desc.bEndpointAddress,
1703 urb->transfer_buffer_length,
1704 num_trbs);
1705 return num_trbs;
1706 }
1707
1708 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
1709 {
1710 if (num_trbs != 0)
1711 dev_dbg(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
1712 "TRBs, %d left\n", __func__,
1713 urb->ep->desc.bEndpointAddress, num_trbs);
1714 if (running_total != urb->transfer_buffer_length)
1715 dev_dbg(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
1716 "queued %#x (%d), asked for %#x (%d)\n",
1717 __func__,
1718 urb->ep->desc.bEndpointAddress,
1719 running_total, running_total,
1720 urb->transfer_buffer_length,
1721 urb->transfer_buffer_length);
1722 }
1723
1724 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
1725 unsigned int ep_index, int start_cycle,
1726 struct xhci_generic_trb *start_trb, struct xhci_td *td)
1727 {
1728 /*
1729 * Pass all the TRBs to the hardware at once and make sure this write
1730 * isn't reordered.
1731 */
1732 wmb();
1733 start_trb->field[3] |= start_cycle;
1734 ring_ep_doorbell(xhci, slot_id, ep_index);
1735 }
1736
1737 /*
1738 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
1739 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
1740 * (comprised of sg list entries) can take several service intervals to
1741 * transmit.
1742 */
1743 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
1744 struct urb *urb, int slot_id, unsigned int ep_index)
1745 {
1746 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
1747 xhci->devs[slot_id]->out_ctx, ep_index);
1748 int xhci_interval;
1749 int ep_interval;
1750
1751 xhci_interval = EP_INTERVAL_TO_UFRAMES(ep_ctx->ep_info);
1752 ep_interval = urb->interval;
1753 /* Convert to microframes */
1754 if (urb->dev->speed == USB_SPEED_LOW ||
1755 urb->dev->speed == USB_SPEED_FULL)
1756 ep_interval *= 8;
1757 /* FIXME change this to a warning and a suggestion to use the new API
1758 * to set the polling interval (once the API is added).
1759 */
1760 if (xhci_interval != ep_interval) {
1761 if (!printk_ratelimit())
1762 dev_dbg(&urb->dev->dev, "Driver uses different interval"
1763 " (%d microframe%s) than xHCI "
1764 "(%d microframe%s)\n",
1765 ep_interval,
1766 ep_interval == 1 ? "" : "s",
1767 xhci_interval,
1768 xhci_interval == 1 ? "" : "s");
1769 urb->interval = xhci_interval;
1770 /* Convert back to frames for LS/FS devices */
1771 if (urb->dev->speed == USB_SPEED_LOW ||
1772 urb->dev->speed == USB_SPEED_FULL)
1773 urb->interval /= 8;
1774 }
1775 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
1776 }
1777
1778 /*
1779 * The TD size is the number of bytes remaining in the TD (including this TRB),
1780 * right shifted by 10.
1781 * It must fit in bits 21:17, so it can't be bigger than 31.
1782 */
1783 static u32 xhci_td_remainder(unsigned int remainder)
1784 {
1785 u32 max = (1 << (21 - 17 + 1)) - 1;
1786
1787 if ((remainder >> 10) >= max)
1788 return max << 17;
1789 else
1790 return (remainder >> 10) << 17;
1791 }
1792
1793 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
1794 struct urb *urb, int slot_id, unsigned int ep_index)
1795 {
1796 struct xhci_ring *ep_ring;
1797 unsigned int num_trbs;
1798 struct xhci_td *td;
1799 struct scatterlist *sg;
1800 int num_sgs;
1801 int trb_buff_len, this_sg_len, running_total;
1802 bool first_trb;
1803 u64 addr;
1804
1805 struct xhci_generic_trb *start_trb;
1806 int start_cycle;
1807
1808 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1809 num_trbs = count_sg_trbs_needed(xhci, urb);
1810 num_sgs = urb->num_sgs;
1811
1812 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
1813 ep_index, num_trbs, urb, &td, mem_flags);
1814 if (trb_buff_len < 0)
1815 return trb_buff_len;
1816 /*
1817 * Don't give the first TRB to the hardware (by toggling the cycle bit)
1818 * until we've finished creating all the other TRBs. The ring's cycle
1819 * state may change as we enqueue the other TRBs, so save it too.
1820 */
1821 start_trb = &ep_ring->enqueue->generic;
1822 start_cycle = ep_ring->cycle_state;
1823
1824 running_total = 0;
1825 /*
1826 * How much data is in the first TRB?
1827 *
1828 * There are three forces at work for TRB buffer pointers and lengths:
1829 * 1. We don't want to walk off the end of this sg-list entry buffer.
1830 * 2. The transfer length that the driver requested may be smaller than
1831 * the amount of memory allocated for this scatter-gather list.
1832 * 3. TRBs buffers can't cross 64KB boundaries.
1833 */
1834 sg = urb->sg->sg;
1835 addr = (u64) sg_dma_address(sg);
1836 this_sg_len = sg_dma_len(sg);
1837 trb_buff_len = TRB_MAX_BUFF_SIZE -
1838 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
1839 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
1840 if (trb_buff_len > urb->transfer_buffer_length)
1841 trb_buff_len = urb->transfer_buffer_length;
1842 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
1843 trb_buff_len);
1844
1845 first_trb = true;
1846 /* Queue the first TRB, even if it's zero-length */
1847 do {
1848 u32 field = 0;
1849 u32 length_field = 0;
1850 u32 remainder = 0;
1851
1852 /* Don't change the cycle bit of the first TRB until later */
1853 if (first_trb)
1854 first_trb = false;
1855 else
1856 field |= ep_ring->cycle_state;
1857
1858 /* Chain all the TRBs together; clear the chain bit in the last
1859 * TRB to indicate it's the last TRB in the chain.
1860 */
1861 if (num_trbs > 1) {
1862 field |= TRB_CHAIN;
1863 } else {
1864 /* FIXME - add check for ZERO_PACKET flag before this */
1865 td->last_trb = ep_ring->enqueue;
1866 field |= TRB_IOC;
1867 }
1868 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
1869 "64KB boundary at %#x, end dma = %#x\n",
1870 (unsigned int) addr, trb_buff_len, trb_buff_len,
1871 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
1872 (unsigned int) addr + trb_buff_len);
1873 if (TRB_MAX_BUFF_SIZE -
1874 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)) < trb_buff_len) {
1875 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
1876 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
1877 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
1878 (unsigned int) addr + trb_buff_len);
1879 }
1880 remainder = xhci_td_remainder(urb->transfer_buffer_length -
1881 running_total) ;
1882 length_field = TRB_LEN(trb_buff_len) |
1883 remainder |
1884 TRB_INTR_TARGET(0);
1885 queue_trb(xhci, ep_ring, false,
1886 lower_32_bits(addr),
1887 upper_32_bits(addr),
1888 length_field,
1889 /* We always want to know if the TRB was short,
1890 * or we won't get an event when it completes.
1891 * (Unless we use event data TRBs, which are a
1892 * waste of space and HC resources.)
1893 */
1894 field | TRB_ISP | TRB_TYPE(TRB_NORMAL));
1895 --num_trbs;
1896 running_total += trb_buff_len;
1897
1898 /* Calculate length for next transfer --
1899 * Are we done queueing all the TRBs for this sg entry?
1900 */
1901 this_sg_len -= trb_buff_len;
1902 if (this_sg_len == 0) {
1903 --num_sgs;
1904 if (num_sgs == 0)
1905 break;
1906 sg = sg_next(sg);
1907 addr = (u64) sg_dma_address(sg);
1908 this_sg_len = sg_dma_len(sg);
1909 } else {
1910 addr += trb_buff_len;
1911 }
1912
1913 trb_buff_len = TRB_MAX_BUFF_SIZE -
1914 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
1915 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
1916 if (running_total + trb_buff_len > urb->transfer_buffer_length)
1917 trb_buff_len =
1918 urb->transfer_buffer_length - running_total;
1919 } while (running_total < urb->transfer_buffer_length);
1920
1921 check_trb_math(urb, num_trbs, running_total);
1922 giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td);
1923 return 0;
1924 }
1925
1926 /* This is very similar to what ehci-q.c qtd_fill() does */
1927 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
1928 struct urb *urb, int slot_id, unsigned int ep_index)
1929 {
1930 struct xhci_ring *ep_ring;
1931 struct xhci_td *td;
1932 int num_trbs;
1933 struct xhci_generic_trb *start_trb;
1934 bool first_trb;
1935 int start_cycle;
1936 u32 field, length_field;
1937
1938 int running_total, trb_buff_len, ret;
1939 u64 addr;
1940
1941 if (urb->sg)
1942 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
1943
1944 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1945
1946 num_trbs = 0;
1947 /* How much data is (potentially) left before the 64KB boundary? */
1948 running_total = TRB_MAX_BUFF_SIZE -
1949 (urb->transfer_dma & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
1950
1951 /* If there's some data on this 64KB chunk, or we have to send a
1952 * zero-length transfer, we need at least one TRB
1953 */
1954 if (running_total != 0 || urb->transfer_buffer_length == 0)
1955 num_trbs++;
1956 /* How many more 64KB chunks to transfer, how many more TRBs? */
1957 while (running_total < urb->transfer_buffer_length) {
1958 num_trbs++;
1959 running_total += TRB_MAX_BUFF_SIZE;
1960 }
1961 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
1962
1963 if (!in_interrupt())
1964 dev_dbg(&urb->dev->dev, "ep %#x - urb len = %#x (%d), addr = %#llx, num_trbs = %d\n",
1965 urb->ep->desc.bEndpointAddress,
1966 urb->transfer_buffer_length,
1967 urb->transfer_buffer_length,
1968 (unsigned long long)urb->transfer_dma,
1969 num_trbs);
1970
1971 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
1972 num_trbs, urb, &td, mem_flags);
1973 if (ret < 0)
1974 return ret;
1975
1976 /*
1977 * Don't give the first TRB to the hardware (by toggling the cycle bit)
1978 * until we've finished creating all the other TRBs. The ring's cycle
1979 * state may change as we enqueue the other TRBs, so save it too.
1980 */
1981 start_trb = &ep_ring->enqueue->generic;
1982 start_cycle = ep_ring->cycle_state;
1983
1984 running_total = 0;
1985 /* How much data is in the first TRB? */
1986 addr = (u64) urb->transfer_dma;
1987 trb_buff_len = TRB_MAX_BUFF_SIZE -
1988 (urb->transfer_dma & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
1989 if (urb->transfer_buffer_length < trb_buff_len)
1990 trb_buff_len = urb->transfer_buffer_length;
1991
1992 first_trb = true;
1993
1994 /* Queue the first TRB, even if it's zero-length */
1995 do {
1996 u32 remainder = 0;
1997 field = 0;
1998
1999 /* Don't change the cycle bit of the first TRB until later */
2000 if (first_trb)
2001 first_trb = false;
2002 else
2003 field |= ep_ring->cycle_state;
2004
2005 /* Chain all the TRBs together; clear the chain bit in the last
2006 * TRB to indicate it's the last TRB in the chain.
2007 */
2008 if (num_trbs > 1) {
2009 field |= TRB_CHAIN;
2010 } else {
2011 /* FIXME - add check for ZERO_PACKET flag before this */
2012 td->last_trb = ep_ring->enqueue;
2013 field |= TRB_IOC;
2014 }
2015 remainder = xhci_td_remainder(urb->transfer_buffer_length -
2016 running_total);
2017 length_field = TRB_LEN(trb_buff_len) |
2018 remainder |
2019 TRB_INTR_TARGET(0);
2020 queue_trb(xhci, ep_ring, false,
2021 lower_32_bits(addr),
2022 upper_32_bits(addr),
2023 length_field,
2024 /* We always want to know if the TRB was short,
2025 * or we won't get an event when it completes.
2026 * (Unless we use event data TRBs, which are a
2027 * waste of space and HC resources.)
2028 */
2029 field | TRB_ISP | TRB_TYPE(TRB_NORMAL));
2030 --num_trbs;
2031 running_total += trb_buff_len;
2032
2033 /* Calculate length for next transfer */
2034 addr += trb_buff_len;
2035 trb_buff_len = urb->transfer_buffer_length - running_total;
2036 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
2037 trb_buff_len = TRB_MAX_BUFF_SIZE;
2038 } while (running_total < urb->transfer_buffer_length);
2039
2040 check_trb_math(urb, num_trbs, running_total);
2041 giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td);
2042 return 0;
2043 }
2044
2045 /* Caller must have locked xhci->lock */
2046 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2047 struct urb *urb, int slot_id, unsigned int ep_index)
2048 {
2049 struct xhci_ring *ep_ring;
2050 int num_trbs;
2051 int ret;
2052 struct usb_ctrlrequest *setup;
2053 struct xhci_generic_trb *start_trb;
2054 int start_cycle;
2055 u32 field, length_field;
2056 struct xhci_td *td;
2057
2058 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
2059
2060 /*
2061 * Need to copy setup packet into setup TRB, so we can't use the setup
2062 * DMA address.
2063 */
2064 if (!urb->setup_packet)
2065 return -EINVAL;
2066
2067 if (!in_interrupt())
2068 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
2069 slot_id, ep_index);
2070 /* 1 TRB for setup, 1 for status */
2071 num_trbs = 2;
2072 /*
2073 * Don't need to check if we need additional event data and normal TRBs,
2074 * since data in control transfers will never get bigger than 16MB
2075 * XXX: can we get a buffer that crosses 64KB boundaries?
2076 */
2077 if (urb->transfer_buffer_length > 0)
2078 num_trbs++;
2079 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, num_trbs,
2080 urb, &td, mem_flags);
2081 if (ret < 0)
2082 return ret;
2083
2084 /*
2085 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2086 * until we've finished creating all the other TRBs. The ring's cycle
2087 * state may change as we enqueue the other TRBs, so save it too.
2088 */
2089 start_trb = &ep_ring->enqueue->generic;
2090 start_cycle = ep_ring->cycle_state;
2091
2092 /* Queue setup TRB - see section 6.4.1.2.1 */
2093 /* FIXME better way to translate setup_packet into two u32 fields? */
2094 setup = (struct usb_ctrlrequest *) urb->setup_packet;
2095 queue_trb(xhci, ep_ring, false,
2096 /* FIXME endianness is probably going to bite my ass here. */
2097 setup->bRequestType | setup->bRequest << 8 | setup->wValue << 16,
2098 setup->wIndex | setup->wLength << 16,
2099 TRB_LEN(8) | TRB_INTR_TARGET(0),
2100 /* Immediate data in pointer */
2101 TRB_IDT | TRB_TYPE(TRB_SETUP));
2102
2103 /* If there's data, queue data TRBs */
2104 field = 0;
2105 length_field = TRB_LEN(urb->transfer_buffer_length) |
2106 xhci_td_remainder(urb->transfer_buffer_length) |
2107 TRB_INTR_TARGET(0);
2108 if (urb->transfer_buffer_length > 0) {
2109 if (setup->bRequestType & USB_DIR_IN)
2110 field |= TRB_DIR_IN;
2111 queue_trb(xhci, ep_ring, false,
2112 lower_32_bits(urb->transfer_dma),
2113 upper_32_bits(urb->transfer_dma),
2114 length_field,
2115 /* Event on short tx */
2116 field | TRB_ISP | TRB_TYPE(TRB_DATA) | ep_ring->cycle_state);
2117 }
2118
2119 /* Save the DMA address of the last TRB in the TD */
2120 td->last_trb = ep_ring->enqueue;
2121
2122 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
2123 /* If the device sent data, the status stage is an OUT transfer */
2124 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
2125 field = 0;
2126 else
2127 field = TRB_DIR_IN;
2128 queue_trb(xhci, ep_ring, false,
2129 0,
2130 0,
2131 TRB_INTR_TARGET(0),
2132 /* Event on completion */
2133 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
2134
2135 giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td);
2136 return 0;
2137 }
2138
2139 /**** Command Ring Operations ****/
2140
2141 /* Generic function for queueing a command TRB on the command ring.
2142 * Check to make sure there's room on the command ring for one command TRB.
2143 * Also check that there's room reserved for commands that must not fail.
2144 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
2145 * then only check for the number of reserved spots.
2146 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
2147 * because the command event handler may want to resubmit a failed command.
2148 */
2149 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
2150 u32 field3, u32 field4, bool command_must_succeed)
2151 {
2152 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
2153 if (!command_must_succeed)
2154 reserved_trbs++;
2155
2156 if (!room_on_ring(xhci, xhci->cmd_ring, reserved_trbs)) {
2157 if (!in_interrupt())
2158 xhci_err(xhci, "ERR: No room for command on command ring\n");
2159 if (command_must_succeed)
2160 xhci_err(xhci, "ERR: Reserved TRB counting for "
2161 "unfailable commands failed.\n");
2162 return -ENOMEM;
2163 }
2164 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
2165 field4 | xhci->cmd_ring->cycle_state);
2166 return 0;
2167 }
2168
2169 /* Queue a no-op command on the command ring */
2170 static int queue_cmd_noop(struct xhci_hcd *xhci)
2171 {
2172 return queue_command(xhci, 0, 0, 0, TRB_TYPE(TRB_CMD_NOOP), false);
2173 }
2174
2175 /*
2176 * Place a no-op command on the command ring to test the command and
2177 * event ring.
2178 */
2179 void *xhci_setup_one_noop(struct xhci_hcd *xhci)
2180 {
2181 if (queue_cmd_noop(xhci) < 0)
2182 return NULL;
2183 xhci->noops_submitted++;
2184 return xhci_ring_cmd_db;
2185 }
2186
2187 /* Queue a slot enable or disable request on the command ring */
2188 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
2189 {
2190 return queue_command(xhci, 0, 0, 0,
2191 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
2192 }
2193
2194 /* Queue an address device command TRB */
2195 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
2196 u32 slot_id)
2197 {
2198 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
2199 upper_32_bits(in_ctx_ptr), 0,
2200 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
2201 false);
2202 }
2203
2204 /* Queue a reset device command TRB */
2205 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
2206 {
2207 return queue_command(xhci, 0, 0, 0,
2208 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
2209 false);
2210 }
2211
2212 /* Queue a configure endpoint command TRB */
2213 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
2214 u32 slot_id, bool command_must_succeed)
2215 {
2216 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
2217 upper_32_bits(in_ctx_ptr), 0,
2218 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
2219 command_must_succeed);
2220 }
2221
2222 /* Queue an evaluate context command TRB */
2223 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
2224 u32 slot_id)
2225 {
2226 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
2227 upper_32_bits(in_ctx_ptr), 0,
2228 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
2229 false);
2230 }
2231
2232 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
2233 unsigned int ep_index)
2234 {
2235 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
2236 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
2237 u32 type = TRB_TYPE(TRB_STOP_RING);
2238
2239 return queue_command(xhci, 0, 0, 0,
2240 trb_slot_id | trb_ep_index | type, false);
2241 }
2242
2243 /* Set Transfer Ring Dequeue Pointer command.
2244 * This should not be used for endpoints that have streams enabled.
2245 */
2246 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
2247 unsigned int ep_index, struct xhci_segment *deq_seg,
2248 union xhci_trb *deq_ptr, u32 cycle_state)
2249 {
2250 dma_addr_t addr;
2251 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
2252 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
2253 u32 type = TRB_TYPE(TRB_SET_DEQ);
2254
2255 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
2256 if (addr == 0) {
2257 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
2258 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
2259 deq_seg, deq_ptr);
2260 return 0;
2261 }
2262 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
2263 upper_32_bits(addr), 0,
2264 trb_slot_id | trb_ep_index | type, false);
2265 }
2266
2267 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
2268 unsigned int ep_index)
2269 {
2270 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
2271 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
2272 u32 type = TRB_TYPE(TRB_RESET_EP);
2273
2274 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
2275 false);
2276 }