xHCI: add cmd_ring_state
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75 /*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81 {
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91 }
92
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
123 }
124
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
128 */
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
133 {
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
139 }
140 }
141
142 /*
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145 */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
147 {
148 unsigned long long addr;
149
150 ring->deq_updates++;
151
152 /*
153 * If this is not event ring, and the dequeue pointer
154 * is not on a link TRB, there is one more usable TRB
155 */
156 if (ring->type != TYPE_EVENT &&
157 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
158 ring->num_trbs_free++;
159
160 do {
161 /*
162 * Update the dequeue pointer further if that was a link TRB or
163 * we're at the end of an event ring segment (which doesn't have
164 * link TRBS)
165 */
166 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
167 if (ring->type == TYPE_EVENT &&
168 last_trb_on_last_seg(xhci, ring,
169 ring->deq_seg, ring->dequeue)) {
170 ring->cycle_state = (ring->cycle_state ? 0 : 1);
171 }
172 ring->deq_seg = ring->deq_seg->next;
173 ring->dequeue = ring->deq_seg->trbs;
174 } else {
175 ring->dequeue++;
176 }
177 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
178
179 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
180 }
181
182 /*
183 * See Cycle bit rules. SW is the consumer for the event ring only.
184 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
185 *
186 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
187 * chain bit is set), then set the chain bit in all the following link TRBs.
188 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
189 * have their chain bit cleared (so that each Link TRB is a separate TD).
190 *
191 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
192 * set, but other sections talk about dealing with the chain bit set. This was
193 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
194 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
195 *
196 * @more_trbs_coming: Will you enqueue more TRBs before calling
197 * prepare_transfer()?
198 */
199 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
200 bool more_trbs_coming)
201 {
202 u32 chain;
203 union xhci_trb *next;
204 unsigned long long addr;
205
206 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
207 /* If this is not event ring, there is one less usable TRB */
208 if (ring->type != TYPE_EVENT &&
209 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
210 ring->num_trbs_free--;
211 next = ++(ring->enqueue);
212
213 ring->enq_updates++;
214 /* Update the dequeue pointer further if that was a link TRB or we're at
215 * the end of an event ring segment (which doesn't have link TRBS)
216 */
217 while (last_trb(xhci, ring, ring->enq_seg, next)) {
218 if (ring->type != TYPE_EVENT) {
219 /*
220 * If the caller doesn't plan on enqueueing more
221 * TDs before ringing the doorbell, then we
222 * don't want to give the link TRB to the
223 * hardware just yet. We'll give the link TRB
224 * back in prepare_ring() just before we enqueue
225 * the TD at the top of the ring.
226 */
227 if (!chain && !more_trbs_coming)
228 break;
229
230 /* If we're not dealing with 0.95 hardware or
231 * isoc rings on AMD 0.96 host,
232 * carry over the chain bit of the previous TRB
233 * (which may mean the chain bit is cleared).
234 */
235 if (!(ring->type == TYPE_ISOC &&
236 (xhci->quirks & XHCI_AMD_0x96_HOST))
237 && !xhci_link_trb_quirk(xhci)) {
238 next->link.control &=
239 cpu_to_le32(~TRB_CHAIN);
240 next->link.control |=
241 cpu_to_le32(chain);
242 }
243 /* Give this link TRB to the hardware */
244 wmb();
245 next->link.control ^= cpu_to_le32(TRB_CYCLE);
246
247 /* Toggle the cycle bit after the last ring segment. */
248 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
249 ring->cycle_state = (ring->cycle_state ? 0 : 1);
250 }
251 }
252 ring->enq_seg = ring->enq_seg->next;
253 ring->enqueue = ring->enq_seg->trbs;
254 next = ring->enqueue;
255 }
256 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
257 }
258
259 /*
260 * Check to see if there's room to enqueue num_trbs on the ring and make sure
261 * enqueue pointer will not advance into dequeue segment. See rules above.
262 */
263 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
264 unsigned int num_trbs)
265 {
266 int num_trbs_in_deq_seg;
267
268 if (ring->num_trbs_free < num_trbs)
269 return 0;
270
271 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
272 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
273 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
274 return 0;
275 }
276
277 return 1;
278 }
279
280 /* Ring the host controller doorbell after placing a command on the ring */
281 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
282 {
283 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
284 return;
285
286 xhci_dbg(xhci, "// Ding dong!\n");
287 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
288 /* Flush PCI posted writes */
289 xhci_readl(xhci, &xhci->dba->doorbell[0]);
290 }
291
292 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
293 unsigned int slot_id,
294 unsigned int ep_index,
295 unsigned int stream_id)
296 {
297 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
298 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
299 unsigned int ep_state = ep->ep_state;
300
301 /* Don't ring the doorbell for this endpoint if there are pending
302 * cancellations because we don't want to interrupt processing.
303 * We don't want to restart any stream rings if there's a set dequeue
304 * pointer command pending because the device can choose to start any
305 * stream once the endpoint is on the HW schedule.
306 * FIXME - check all the stream rings for pending cancellations.
307 */
308 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
309 (ep_state & EP_HALTED))
310 return;
311 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
312 /* The CPU has better things to do at this point than wait for a
313 * write-posting flush. It'll get there soon enough.
314 */
315 }
316
317 /* Ring the doorbell for any rings with pending URBs */
318 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
319 unsigned int slot_id,
320 unsigned int ep_index)
321 {
322 unsigned int stream_id;
323 struct xhci_virt_ep *ep;
324
325 ep = &xhci->devs[slot_id]->eps[ep_index];
326
327 /* A ring has pending URBs if its TD list is not empty */
328 if (!(ep->ep_state & EP_HAS_STREAMS)) {
329 if (!(list_empty(&ep->ring->td_list)))
330 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
331 return;
332 }
333
334 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
335 stream_id++) {
336 struct xhci_stream_info *stream_info = ep->stream_info;
337 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
338 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
339 stream_id);
340 }
341 }
342
343 /*
344 * Find the segment that trb is in. Start searching in start_seg.
345 * If we must move past a segment that has a link TRB with a toggle cycle state
346 * bit set, then we will toggle the value pointed at by cycle_state.
347 */
348 static struct xhci_segment *find_trb_seg(
349 struct xhci_segment *start_seg,
350 union xhci_trb *trb, int *cycle_state)
351 {
352 struct xhci_segment *cur_seg = start_seg;
353 struct xhci_generic_trb *generic_trb;
354
355 while (cur_seg->trbs > trb ||
356 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
357 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
358 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
359 *cycle_state ^= 0x1;
360 cur_seg = cur_seg->next;
361 if (cur_seg == start_seg)
362 /* Looped over the entire list. Oops! */
363 return NULL;
364 }
365 return cur_seg;
366 }
367
368
369 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
370 unsigned int slot_id, unsigned int ep_index,
371 unsigned int stream_id)
372 {
373 struct xhci_virt_ep *ep;
374
375 ep = &xhci->devs[slot_id]->eps[ep_index];
376 /* Common case: no streams */
377 if (!(ep->ep_state & EP_HAS_STREAMS))
378 return ep->ring;
379
380 if (stream_id == 0) {
381 xhci_warn(xhci,
382 "WARN: Slot ID %u, ep index %u has streams, "
383 "but URB has no stream ID.\n",
384 slot_id, ep_index);
385 return NULL;
386 }
387
388 if (stream_id < ep->stream_info->num_streams)
389 return ep->stream_info->stream_rings[stream_id];
390
391 xhci_warn(xhci,
392 "WARN: Slot ID %u, ep index %u has "
393 "stream IDs 1 to %u allocated, "
394 "but stream ID %u is requested.\n",
395 slot_id, ep_index,
396 ep->stream_info->num_streams - 1,
397 stream_id);
398 return NULL;
399 }
400
401 /* Get the right ring for the given URB.
402 * If the endpoint supports streams, boundary check the URB's stream ID.
403 * If the endpoint doesn't support streams, return the singular endpoint ring.
404 */
405 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
406 struct urb *urb)
407 {
408 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
409 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
410 }
411
412 /*
413 * Move the xHC's endpoint ring dequeue pointer past cur_td.
414 * Record the new state of the xHC's endpoint ring dequeue segment,
415 * dequeue pointer, and new consumer cycle state in state.
416 * Update our internal representation of the ring's dequeue pointer.
417 *
418 * We do this in three jumps:
419 * - First we update our new ring state to be the same as when the xHC stopped.
420 * - Then we traverse the ring to find the segment that contains
421 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
422 * any link TRBs with the toggle cycle bit set.
423 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
424 * if we've moved it past a link TRB with the toggle cycle bit set.
425 *
426 * Some of the uses of xhci_generic_trb are grotty, but if they're done
427 * with correct __le32 accesses they should work fine. Only users of this are
428 * in here.
429 */
430 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
431 unsigned int slot_id, unsigned int ep_index,
432 unsigned int stream_id, struct xhci_td *cur_td,
433 struct xhci_dequeue_state *state)
434 {
435 struct xhci_virt_device *dev = xhci->devs[slot_id];
436 struct xhci_ring *ep_ring;
437 struct xhci_generic_trb *trb;
438 struct xhci_ep_ctx *ep_ctx;
439 dma_addr_t addr;
440
441 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
442 ep_index, stream_id);
443 if (!ep_ring) {
444 xhci_warn(xhci, "WARN can't find new dequeue state "
445 "for invalid stream ID %u.\n",
446 stream_id);
447 return;
448 }
449 state->new_cycle_state = 0;
450 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
451 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
452 dev->eps[ep_index].stopped_trb,
453 &state->new_cycle_state);
454 if (!state->new_deq_seg) {
455 WARN_ON(1);
456 return;
457 }
458
459 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
460 xhci_dbg(xhci, "Finding endpoint context\n");
461 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
462 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
463
464 state->new_deq_ptr = cur_td->last_trb;
465 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
466 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
467 state->new_deq_ptr,
468 &state->new_cycle_state);
469 if (!state->new_deq_seg) {
470 WARN_ON(1);
471 return;
472 }
473
474 trb = &state->new_deq_ptr->generic;
475 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
476 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
477 state->new_cycle_state ^= 0x1;
478 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
479
480 /*
481 * If there is only one segment in a ring, find_trb_seg()'s while loop
482 * will not run, and it will return before it has a chance to see if it
483 * needs to toggle the cycle bit. It can't tell if the stalled transfer
484 * ended just before the link TRB on a one-segment ring, or if the TD
485 * wrapped around the top of the ring, because it doesn't have the TD in
486 * question. Look for the one-segment case where stalled TRB's address
487 * is greater than the new dequeue pointer address.
488 */
489 if (ep_ring->first_seg == ep_ring->first_seg->next &&
490 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
491 state->new_cycle_state ^= 0x1;
492 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
493
494 /* Don't update the ring cycle state for the producer (us). */
495 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
496 state->new_deq_seg);
497 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
498 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
499 (unsigned long long) addr);
500 }
501
502 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
503 * (The last TRB actually points to the ring enqueue pointer, which is not part
504 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
505 */
506 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
507 struct xhci_td *cur_td, bool flip_cycle)
508 {
509 struct xhci_segment *cur_seg;
510 union xhci_trb *cur_trb;
511
512 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
513 true;
514 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
515 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
516 /* Unchain any chained Link TRBs, but
517 * leave the pointers intact.
518 */
519 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
520 /* Flip the cycle bit (link TRBs can't be the first
521 * or last TRB).
522 */
523 if (flip_cycle)
524 cur_trb->generic.field[3] ^=
525 cpu_to_le32(TRB_CYCLE);
526 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
527 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
528 "in seg %p (0x%llx dma)\n",
529 cur_trb,
530 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
531 cur_seg,
532 (unsigned long long)cur_seg->dma);
533 } else {
534 cur_trb->generic.field[0] = 0;
535 cur_trb->generic.field[1] = 0;
536 cur_trb->generic.field[2] = 0;
537 /* Preserve only the cycle bit of this TRB */
538 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
539 /* Flip the cycle bit except on the first or last TRB */
540 if (flip_cycle && cur_trb != cur_td->first_trb &&
541 cur_trb != cur_td->last_trb)
542 cur_trb->generic.field[3] ^=
543 cpu_to_le32(TRB_CYCLE);
544 cur_trb->generic.field[3] |= cpu_to_le32(
545 TRB_TYPE(TRB_TR_NOOP));
546 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n",
547 (unsigned long long)
548 xhci_trb_virt_to_dma(cur_seg, cur_trb));
549 }
550 if (cur_trb == cur_td->last_trb)
551 break;
552 }
553 }
554
555 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
556 unsigned int ep_index, unsigned int stream_id,
557 struct xhci_segment *deq_seg,
558 union xhci_trb *deq_ptr, u32 cycle_state);
559
560 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
561 unsigned int slot_id, unsigned int ep_index,
562 unsigned int stream_id,
563 struct xhci_dequeue_state *deq_state)
564 {
565 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
566
567 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
568 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
569 deq_state->new_deq_seg,
570 (unsigned long long)deq_state->new_deq_seg->dma,
571 deq_state->new_deq_ptr,
572 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
573 deq_state->new_cycle_state);
574 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
575 deq_state->new_deq_seg,
576 deq_state->new_deq_ptr,
577 (u32) deq_state->new_cycle_state);
578 /* Stop the TD queueing code from ringing the doorbell until
579 * this command completes. The HC won't set the dequeue pointer
580 * if the ring is running, and ringing the doorbell starts the
581 * ring running.
582 */
583 ep->ep_state |= SET_DEQ_PENDING;
584 }
585
586 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
587 struct xhci_virt_ep *ep)
588 {
589 ep->ep_state &= ~EP_HALT_PENDING;
590 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
591 * timer is running on another CPU, we don't decrement stop_cmds_pending
592 * (since we didn't successfully stop the watchdog timer).
593 */
594 if (del_timer(&ep->stop_cmd_timer))
595 ep->stop_cmds_pending--;
596 }
597
598 /* Must be called with xhci->lock held in interrupt context */
599 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
600 struct xhci_td *cur_td, int status, char *adjective)
601 {
602 struct usb_hcd *hcd;
603 struct urb *urb;
604 struct urb_priv *urb_priv;
605
606 urb = cur_td->urb;
607 urb_priv = urb->hcpriv;
608 urb_priv->td_cnt++;
609 hcd = bus_to_hcd(urb->dev->bus);
610
611 /* Only giveback urb when this is the last td in urb */
612 if (urb_priv->td_cnt == urb_priv->length) {
613 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
614 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
615 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
616 if (xhci->quirks & XHCI_AMD_PLL_FIX)
617 usb_amd_quirk_pll_enable();
618 }
619 }
620 usb_hcd_unlink_urb_from_ep(hcd, urb);
621
622 spin_unlock(&xhci->lock);
623 usb_hcd_giveback_urb(hcd, urb, status);
624 xhci_urb_free_priv(xhci, urb_priv);
625 spin_lock(&xhci->lock);
626 }
627 }
628
629 /*
630 * When we get a command completion for a Stop Endpoint Command, we need to
631 * unlink any cancelled TDs from the ring. There are two ways to do that:
632 *
633 * 1. If the HW was in the middle of processing the TD that needs to be
634 * cancelled, then we must move the ring's dequeue pointer past the last TRB
635 * in the TD with a Set Dequeue Pointer Command.
636 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
637 * bit cleared) so that the HW will skip over them.
638 */
639 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
640 union xhci_trb *trb, struct xhci_event_cmd *event)
641 {
642 unsigned int slot_id;
643 unsigned int ep_index;
644 struct xhci_virt_device *virt_dev;
645 struct xhci_ring *ep_ring;
646 struct xhci_virt_ep *ep;
647 struct list_head *entry;
648 struct xhci_td *cur_td = NULL;
649 struct xhci_td *last_unlinked_td;
650
651 struct xhci_dequeue_state deq_state;
652
653 if (unlikely(TRB_TO_SUSPEND_PORT(
654 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
655 slot_id = TRB_TO_SLOT_ID(
656 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
657 virt_dev = xhci->devs[slot_id];
658 if (virt_dev)
659 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
660 event);
661 else
662 xhci_warn(xhci, "Stop endpoint command "
663 "completion for disabled slot %u\n",
664 slot_id);
665 return;
666 }
667
668 memset(&deq_state, 0, sizeof(deq_state));
669 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
670 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
671 ep = &xhci->devs[slot_id]->eps[ep_index];
672
673 if (list_empty(&ep->cancelled_td_list)) {
674 xhci_stop_watchdog_timer_in_irq(xhci, ep);
675 ep->stopped_td = NULL;
676 ep->stopped_trb = NULL;
677 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
678 return;
679 }
680
681 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
682 * We have the xHCI lock, so nothing can modify this list until we drop
683 * it. We're also in the event handler, so we can't get re-interrupted
684 * if another Stop Endpoint command completes
685 */
686 list_for_each(entry, &ep->cancelled_td_list) {
687 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
688 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n",
689 (unsigned long long)xhci_trb_virt_to_dma(
690 cur_td->start_seg, cur_td->first_trb));
691 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
692 if (!ep_ring) {
693 /* This shouldn't happen unless a driver is mucking
694 * with the stream ID after submission. This will
695 * leave the TD on the hardware ring, and the hardware
696 * will try to execute it, and may access a buffer
697 * that has already been freed. In the best case, the
698 * hardware will execute it, and the event handler will
699 * ignore the completion event for that TD, since it was
700 * removed from the td_list for that endpoint. In
701 * short, don't muck with the stream ID after
702 * submission.
703 */
704 xhci_warn(xhci, "WARN Cancelled URB %p "
705 "has invalid stream ID %u.\n",
706 cur_td->urb,
707 cur_td->urb->stream_id);
708 goto remove_finished_td;
709 }
710 /*
711 * If we stopped on the TD we need to cancel, then we have to
712 * move the xHC endpoint ring dequeue pointer past this TD.
713 */
714 if (cur_td == ep->stopped_td)
715 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
716 cur_td->urb->stream_id,
717 cur_td, &deq_state);
718 else
719 td_to_noop(xhci, ep_ring, cur_td, false);
720 remove_finished_td:
721 /*
722 * The event handler won't see a completion for this TD anymore,
723 * so remove it from the endpoint ring's TD list. Keep it in
724 * the cancelled TD list for URB completion later.
725 */
726 list_del_init(&cur_td->td_list);
727 }
728 last_unlinked_td = cur_td;
729 xhci_stop_watchdog_timer_in_irq(xhci, ep);
730
731 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
732 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
733 xhci_queue_new_dequeue_state(xhci,
734 slot_id, ep_index,
735 ep->stopped_td->urb->stream_id,
736 &deq_state);
737 xhci_ring_cmd_db(xhci);
738 } else {
739 /* Otherwise ring the doorbell(s) to restart queued transfers */
740 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
741 }
742 ep->stopped_td = NULL;
743 ep->stopped_trb = NULL;
744
745 /*
746 * Drop the lock and complete the URBs in the cancelled TD list.
747 * New TDs to be cancelled might be added to the end of the list before
748 * we can complete all the URBs for the TDs we already unlinked.
749 * So stop when we've completed the URB for the last TD we unlinked.
750 */
751 do {
752 cur_td = list_entry(ep->cancelled_td_list.next,
753 struct xhci_td, cancelled_td_list);
754 list_del_init(&cur_td->cancelled_td_list);
755
756 /* Clean up the cancelled URB */
757 /* Doesn't matter what we pass for status, since the core will
758 * just overwrite it (because the URB has been unlinked).
759 */
760 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
761
762 /* Stop processing the cancelled list if the watchdog timer is
763 * running.
764 */
765 if (xhci->xhc_state & XHCI_STATE_DYING)
766 return;
767 } while (cur_td != last_unlinked_td);
768
769 /* Return to the event handler with xhci->lock re-acquired */
770 }
771
772 /* Watchdog timer function for when a stop endpoint command fails to complete.
773 * In this case, we assume the host controller is broken or dying or dead. The
774 * host may still be completing some other events, so we have to be careful to
775 * let the event ring handler and the URB dequeueing/enqueueing functions know
776 * through xhci->state.
777 *
778 * The timer may also fire if the host takes a very long time to respond to the
779 * command, and the stop endpoint command completion handler cannot delete the
780 * timer before the timer function is called. Another endpoint cancellation may
781 * sneak in before the timer function can grab the lock, and that may queue
782 * another stop endpoint command and add the timer back. So we cannot use a
783 * simple flag to say whether there is a pending stop endpoint command for a
784 * particular endpoint.
785 *
786 * Instead we use a combination of that flag and a counter for the number of
787 * pending stop endpoint commands. If the timer is the tail end of the last
788 * stop endpoint command, and the endpoint's command is still pending, we assume
789 * the host is dying.
790 */
791 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
792 {
793 struct xhci_hcd *xhci;
794 struct xhci_virt_ep *ep;
795 struct xhci_virt_ep *temp_ep;
796 struct xhci_ring *ring;
797 struct xhci_td *cur_td;
798 int ret, i, j;
799 unsigned long flags;
800
801 ep = (struct xhci_virt_ep *) arg;
802 xhci = ep->xhci;
803
804 spin_lock_irqsave(&xhci->lock, flags);
805
806 ep->stop_cmds_pending--;
807 if (xhci->xhc_state & XHCI_STATE_DYING) {
808 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
809 "xHCI as DYING, exiting.\n");
810 spin_unlock_irqrestore(&xhci->lock, flags);
811 return;
812 }
813 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
814 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
815 "exiting.\n");
816 spin_unlock_irqrestore(&xhci->lock, flags);
817 return;
818 }
819
820 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
821 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
822 /* Oops, HC is dead or dying or at least not responding to the stop
823 * endpoint command.
824 */
825 xhci->xhc_state |= XHCI_STATE_DYING;
826 /* Disable interrupts from the host controller and start halting it */
827 xhci_quiesce(xhci);
828 spin_unlock_irqrestore(&xhci->lock, flags);
829
830 ret = xhci_halt(xhci);
831
832 spin_lock_irqsave(&xhci->lock, flags);
833 if (ret < 0) {
834 /* This is bad; the host is not responding to commands and it's
835 * not allowing itself to be halted. At least interrupts are
836 * disabled. If we call usb_hc_died(), it will attempt to
837 * disconnect all device drivers under this host. Those
838 * disconnect() methods will wait for all URBs to be unlinked,
839 * so we must complete them.
840 */
841 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
842 xhci_warn(xhci, "Completing active URBs anyway.\n");
843 /* We could turn all TDs on the rings to no-ops. This won't
844 * help if the host has cached part of the ring, and is slow if
845 * we want to preserve the cycle bit. Skip it and hope the host
846 * doesn't touch the memory.
847 */
848 }
849 for (i = 0; i < MAX_HC_SLOTS; i++) {
850 if (!xhci->devs[i])
851 continue;
852 for (j = 0; j < 31; j++) {
853 temp_ep = &xhci->devs[i]->eps[j];
854 ring = temp_ep->ring;
855 if (!ring)
856 continue;
857 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
858 "ep index %u\n", i, j);
859 while (!list_empty(&ring->td_list)) {
860 cur_td = list_first_entry(&ring->td_list,
861 struct xhci_td,
862 td_list);
863 list_del_init(&cur_td->td_list);
864 if (!list_empty(&cur_td->cancelled_td_list))
865 list_del_init(&cur_td->cancelled_td_list);
866 xhci_giveback_urb_in_irq(xhci, cur_td,
867 -ESHUTDOWN, "killed");
868 }
869 while (!list_empty(&temp_ep->cancelled_td_list)) {
870 cur_td = list_first_entry(
871 &temp_ep->cancelled_td_list,
872 struct xhci_td,
873 cancelled_td_list);
874 list_del_init(&cur_td->cancelled_td_list);
875 xhci_giveback_urb_in_irq(xhci, cur_td,
876 -ESHUTDOWN, "killed");
877 }
878 }
879 }
880 spin_unlock_irqrestore(&xhci->lock, flags);
881 xhci_dbg(xhci, "Calling usb_hc_died()\n");
882 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
883 xhci_dbg(xhci, "xHCI host controller is dead.\n");
884 }
885
886
887 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
888 struct xhci_virt_device *dev,
889 struct xhci_ring *ep_ring,
890 unsigned int ep_index)
891 {
892 union xhci_trb *dequeue_temp;
893 int num_trbs_free_temp;
894 bool revert = false;
895
896 num_trbs_free_temp = ep_ring->num_trbs_free;
897 dequeue_temp = ep_ring->dequeue;
898
899 /* If we get two back-to-back stalls, and the first stalled transfer
900 * ends just before a link TRB, the dequeue pointer will be left on
901 * the link TRB by the code in the while loop. So we have to update
902 * the dequeue pointer one segment further, or we'll jump off
903 * the segment into la-la-land.
904 */
905 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
906 ep_ring->deq_seg = ep_ring->deq_seg->next;
907 ep_ring->dequeue = ep_ring->deq_seg->trbs;
908 }
909
910 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
911 /* We have more usable TRBs */
912 ep_ring->num_trbs_free++;
913 ep_ring->dequeue++;
914 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
915 ep_ring->dequeue)) {
916 if (ep_ring->dequeue ==
917 dev->eps[ep_index].queued_deq_ptr)
918 break;
919 ep_ring->deq_seg = ep_ring->deq_seg->next;
920 ep_ring->dequeue = ep_ring->deq_seg->trbs;
921 }
922 if (ep_ring->dequeue == dequeue_temp) {
923 revert = true;
924 break;
925 }
926 }
927
928 if (revert) {
929 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
930 ep_ring->num_trbs_free = num_trbs_free_temp;
931 }
932 }
933
934 /*
935 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
936 * we need to clear the set deq pending flag in the endpoint ring state, so that
937 * the TD queueing code can ring the doorbell again. We also need to ring the
938 * endpoint doorbell to restart the ring, but only if there aren't more
939 * cancellations pending.
940 */
941 static void handle_set_deq_completion(struct xhci_hcd *xhci,
942 struct xhci_event_cmd *event,
943 union xhci_trb *trb)
944 {
945 unsigned int slot_id;
946 unsigned int ep_index;
947 unsigned int stream_id;
948 struct xhci_ring *ep_ring;
949 struct xhci_virt_device *dev;
950 struct xhci_ep_ctx *ep_ctx;
951 struct xhci_slot_ctx *slot_ctx;
952
953 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
954 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
955 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
956 dev = xhci->devs[slot_id];
957
958 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
959 if (!ep_ring) {
960 xhci_warn(xhci, "WARN Set TR deq ptr command for "
961 "freed stream ID %u\n",
962 stream_id);
963 /* XXX: Harmless??? */
964 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
965 return;
966 }
967
968 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
969 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
970
971 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
972 unsigned int ep_state;
973 unsigned int slot_state;
974
975 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
976 case COMP_TRB_ERR:
977 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
978 "of stream ID configuration\n");
979 break;
980 case COMP_CTX_STATE:
981 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
982 "to incorrect slot or ep state.\n");
983 ep_state = le32_to_cpu(ep_ctx->ep_info);
984 ep_state &= EP_STATE_MASK;
985 slot_state = le32_to_cpu(slot_ctx->dev_state);
986 slot_state = GET_SLOT_STATE(slot_state);
987 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
988 slot_state, ep_state);
989 break;
990 case COMP_EBADSLT:
991 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
992 "slot %u was not enabled.\n", slot_id);
993 break;
994 default:
995 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
996 "completion code of %u.\n",
997 GET_COMP_CODE(le32_to_cpu(event->status)));
998 break;
999 }
1000 /* OK what do we do now? The endpoint state is hosed, and we
1001 * should never get to this point if the synchronization between
1002 * queueing, and endpoint state are correct. This might happen
1003 * if the device gets disconnected after we've finished
1004 * cancelling URBs, which might not be an error...
1005 */
1006 } else {
1007 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
1008 le64_to_cpu(ep_ctx->deq));
1009 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1010 dev->eps[ep_index].queued_deq_ptr) ==
1011 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1012 /* Update the ring's dequeue segment and dequeue pointer
1013 * to reflect the new position.
1014 */
1015 update_ring_for_set_deq_completion(xhci, dev,
1016 ep_ring, ep_index);
1017 } else {
1018 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1019 "Ptr command & xHCI internal state.\n");
1020 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1021 dev->eps[ep_index].queued_deq_seg,
1022 dev->eps[ep_index].queued_deq_ptr);
1023 }
1024 }
1025
1026 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1027 dev->eps[ep_index].queued_deq_seg = NULL;
1028 dev->eps[ep_index].queued_deq_ptr = NULL;
1029 /* Restart any rings with pending URBs */
1030 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1031 }
1032
1033 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1034 struct xhci_event_cmd *event,
1035 union xhci_trb *trb)
1036 {
1037 int slot_id;
1038 unsigned int ep_index;
1039
1040 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1041 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1042 /* This command will only fail if the endpoint wasn't halted,
1043 * but we don't care.
1044 */
1045 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1046 GET_COMP_CODE(le32_to_cpu(event->status)));
1047
1048 /* HW with the reset endpoint quirk needs to have a configure endpoint
1049 * command complete before the endpoint can be used. Queue that here
1050 * because the HW can't handle two commands being queued in a row.
1051 */
1052 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1053 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1054 xhci_queue_configure_endpoint(xhci,
1055 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1056 false);
1057 xhci_ring_cmd_db(xhci);
1058 } else {
1059 /* Clear our internal halted state and restart the ring(s) */
1060 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1061 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1062 }
1063 }
1064
1065 /* Check to see if a command in the device's command queue matches this one.
1066 * Signal the completion or free the command, and return 1. Return 0 if the
1067 * completed command isn't at the head of the command list.
1068 */
1069 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1070 struct xhci_virt_device *virt_dev,
1071 struct xhci_event_cmd *event)
1072 {
1073 struct xhci_command *command;
1074
1075 if (list_empty(&virt_dev->cmd_list))
1076 return 0;
1077
1078 command = list_entry(virt_dev->cmd_list.next,
1079 struct xhci_command, cmd_list);
1080 if (xhci->cmd_ring->dequeue != command->command_trb)
1081 return 0;
1082
1083 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1084 list_del(&command->cmd_list);
1085 if (command->completion)
1086 complete(command->completion);
1087 else
1088 xhci_free_command(xhci, command);
1089 return 1;
1090 }
1091
1092 static void handle_cmd_completion(struct xhci_hcd *xhci,
1093 struct xhci_event_cmd *event)
1094 {
1095 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1096 u64 cmd_dma;
1097 dma_addr_t cmd_dequeue_dma;
1098 struct xhci_input_control_ctx *ctrl_ctx;
1099 struct xhci_virt_device *virt_dev;
1100 unsigned int ep_index;
1101 struct xhci_ring *ep_ring;
1102 unsigned int ep_state;
1103
1104 cmd_dma = le64_to_cpu(event->cmd_trb);
1105 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1106 xhci->cmd_ring->dequeue);
1107 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1108 if (cmd_dequeue_dma == 0) {
1109 xhci->error_bitmask |= 1 << 4;
1110 return;
1111 }
1112 /* Does the DMA address match our internal dequeue pointer address? */
1113 if (cmd_dma != (u64) cmd_dequeue_dma) {
1114 xhci->error_bitmask |= 1 << 5;
1115 return;
1116 }
1117 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1118 & TRB_TYPE_BITMASK) {
1119 case TRB_TYPE(TRB_ENABLE_SLOT):
1120 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1121 xhci->slot_id = slot_id;
1122 else
1123 xhci->slot_id = 0;
1124 complete(&xhci->addr_dev);
1125 break;
1126 case TRB_TYPE(TRB_DISABLE_SLOT):
1127 if (xhci->devs[slot_id]) {
1128 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1129 /* Delete default control endpoint resources */
1130 xhci_free_device_endpoint_resources(xhci,
1131 xhci->devs[slot_id], true);
1132 xhci_free_virt_device(xhci, slot_id);
1133 }
1134 break;
1135 case TRB_TYPE(TRB_CONFIG_EP):
1136 virt_dev = xhci->devs[slot_id];
1137 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1138 break;
1139 /*
1140 * Configure endpoint commands can come from the USB core
1141 * configuration or alt setting changes, or because the HW
1142 * needed an extra configure endpoint command after a reset
1143 * endpoint command or streams were being configured.
1144 * If the command was for a halted endpoint, the xHCI driver
1145 * is not waiting on the configure endpoint command.
1146 */
1147 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1148 virt_dev->in_ctx);
1149 /* Input ctx add_flags are the endpoint index plus one */
1150 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1151 /* A usb_set_interface() call directly after clearing a halted
1152 * condition may race on this quirky hardware. Not worth
1153 * worrying about, since this is prototype hardware. Not sure
1154 * if this will work for streams, but streams support was
1155 * untested on this prototype.
1156 */
1157 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1158 ep_index != (unsigned int) -1 &&
1159 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1160 le32_to_cpu(ctrl_ctx->drop_flags)) {
1161 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1162 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1163 if (!(ep_state & EP_HALTED))
1164 goto bandwidth_change;
1165 xhci_dbg(xhci, "Completed config ep cmd - "
1166 "last ep index = %d, state = %d\n",
1167 ep_index, ep_state);
1168 /* Clear internal halted state and restart ring(s) */
1169 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1170 ~EP_HALTED;
1171 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1172 break;
1173 }
1174 bandwidth_change:
1175 xhci_dbg(xhci, "Completed config ep cmd\n");
1176 xhci->devs[slot_id]->cmd_status =
1177 GET_COMP_CODE(le32_to_cpu(event->status));
1178 complete(&xhci->devs[slot_id]->cmd_completion);
1179 break;
1180 case TRB_TYPE(TRB_EVAL_CONTEXT):
1181 virt_dev = xhci->devs[slot_id];
1182 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1183 break;
1184 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1185 complete(&xhci->devs[slot_id]->cmd_completion);
1186 break;
1187 case TRB_TYPE(TRB_ADDR_DEV):
1188 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1189 complete(&xhci->addr_dev);
1190 break;
1191 case TRB_TYPE(TRB_STOP_RING):
1192 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1193 break;
1194 case TRB_TYPE(TRB_SET_DEQ):
1195 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1196 break;
1197 case TRB_TYPE(TRB_CMD_NOOP):
1198 break;
1199 case TRB_TYPE(TRB_RESET_EP):
1200 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1201 break;
1202 case TRB_TYPE(TRB_RESET_DEV):
1203 xhci_dbg(xhci, "Completed reset device command.\n");
1204 slot_id = TRB_TO_SLOT_ID(
1205 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1206 virt_dev = xhci->devs[slot_id];
1207 if (virt_dev)
1208 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1209 else
1210 xhci_warn(xhci, "Reset device command completion "
1211 "for disabled slot %u\n", slot_id);
1212 break;
1213 case TRB_TYPE(TRB_NEC_GET_FW):
1214 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1215 xhci->error_bitmask |= 1 << 6;
1216 break;
1217 }
1218 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1219 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1220 NEC_FW_MINOR(le32_to_cpu(event->status)));
1221 break;
1222 default:
1223 /* Skip over unknown commands on the event ring */
1224 xhci->error_bitmask |= 1 << 6;
1225 break;
1226 }
1227 inc_deq(xhci, xhci->cmd_ring);
1228 }
1229
1230 static void handle_vendor_event(struct xhci_hcd *xhci,
1231 union xhci_trb *event)
1232 {
1233 u32 trb_type;
1234
1235 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1236 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1237 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1238 handle_cmd_completion(xhci, &event->event_cmd);
1239 }
1240
1241 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1242 * port registers -- USB 3.0 and USB 2.0).
1243 *
1244 * Returns a zero-based port number, which is suitable for indexing into each of
1245 * the split roothubs' port arrays and bus state arrays.
1246 * Add one to it in order to call xhci_find_slot_id_by_port.
1247 */
1248 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1249 struct xhci_hcd *xhci, u32 port_id)
1250 {
1251 unsigned int i;
1252 unsigned int num_similar_speed_ports = 0;
1253
1254 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1255 * and usb2_ports are 0-based indexes. Count the number of similar
1256 * speed ports, up to 1 port before this port.
1257 */
1258 for (i = 0; i < (port_id - 1); i++) {
1259 u8 port_speed = xhci->port_array[i];
1260
1261 /*
1262 * Skip ports that don't have known speeds, or have duplicate
1263 * Extended Capabilities port speed entries.
1264 */
1265 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1266 continue;
1267
1268 /*
1269 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1270 * 1.1 ports are under the USB 2.0 hub. If the port speed
1271 * matches the device speed, it's a similar speed port.
1272 */
1273 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1274 num_similar_speed_ports++;
1275 }
1276 return num_similar_speed_ports;
1277 }
1278
1279 static void handle_device_notification(struct xhci_hcd *xhci,
1280 union xhci_trb *event)
1281 {
1282 u32 slot_id;
1283 struct usb_device *udev;
1284
1285 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1286 if (!xhci->devs[slot_id]) {
1287 xhci_warn(xhci, "Device Notification event for "
1288 "unused slot %u\n", slot_id);
1289 return;
1290 }
1291
1292 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1293 slot_id);
1294 udev = xhci->devs[slot_id]->udev;
1295 if (udev && udev->parent)
1296 usb_wakeup_notification(udev->parent, udev->portnum);
1297 }
1298
1299 static void handle_port_status(struct xhci_hcd *xhci,
1300 union xhci_trb *event)
1301 {
1302 struct usb_hcd *hcd;
1303 u32 port_id;
1304 u32 temp, temp1;
1305 int max_ports;
1306 int slot_id;
1307 unsigned int faked_port_index;
1308 u8 major_revision;
1309 struct xhci_bus_state *bus_state;
1310 __le32 __iomem **port_array;
1311 bool bogus_port_status = false;
1312
1313 /* Port status change events always have a successful completion code */
1314 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1315 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1316 xhci->error_bitmask |= 1 << 8;
1317 }
1318 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1319 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1320
1321 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1322 if ((port_id <= 0) || (port_id > max_ports)) {
1323 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1324 bogus_port_status = true;
1325 goto cleanup;
1326 }
1327
1328 /* Figure out which usb_hcd this port is attached to:
1329 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1330 */
1331 major_revision = xhci->port_array[port_id - 1];
1332 if (major_revision == 0) {
1333 xhci_warn(xhci, "Event for port %u not in "
1334 "Extended Capabilities, ignoring.\n",
1335 port_id);
1336 bogus_port_status = true;
1337 goto cleanup;
1338 }
1339 if (major_revision == DUPLICATE_ENTRY) {
1340 xhci_warn(xhci, "Event for port %u duplicated in"
1341 "Extended Capabilities, ignoring.\n",
1342 port_id);
1343 bogus_port_status = true;
1344 goto cleanup;
1345 }
1346
1347 /*
1348 * Hardware port IDs reported by a Port Status Change Event include USB
1349 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1350 * resume event, but we first need to translate the hardware port ID
1351 * into the index into the ports on the correct split roothub, and the
1352 * correct bus_state structure.
1353 */
1354 /* Find the right roothub. */
1355 hcd = xhci_to_hcd(xhci);
1356 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1357 hcd = xhci->shared_hcd;
1358 bus_state = &xhci->bus_state[hcd_index(hcd)];
1359 if (hcd->speed == HCD_USB3)
1360 port_array = xhci->usb3_ports;
1361 else
1362 port_array = xhci->usb2_ports;
1363 /* Find the faked port hub number */
1364 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1365 port_id);
1366
1367 temp = xhci_readl(xhci, port_array[faked_port_index]);
1368 if (hcd->state == HC_STATE_SUSPENDED) {
1369 xhci_dbg(xhci, "resume root hub\n");
1370 usb_hcd_resume_root_hub(hcd);
1371 }
1372
1373 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1374 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1375
1376 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1377 if (!(temp1 & CMD_RUN)) {
1378 xhci_warn(xhci, "xHC is not running.\n");
1379 goto cleanup;
1380 }
1381
1382 if (DEV_SUPERSPEED(temp)) {
1383 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1384 /* Set a flag to say the port signaled remote wakeup,
1385 * so we can tell the difference between the end of
1386 * device and host initiated resume.
1387 */
1388 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1389 xhci_test_and_clear_bit(xhci, port_array,
1390 faked_port_index, PORT_PLC);
1391 xhci_set_link_state(xhci, port_array, faked_port_index,
1392 XDEV_U0);
1393 /* Need to wait until the next link state change
1394 * indicates the device is actually in U0.
1395 */
1396 bogus_port_status = true;
1397 goto cleanup;
1398 } else {
1399 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1400 bus_state->resume_done[faked_port_index] = jiffies +
1401 msecs_to_jiffies(20);
1402 set_bit(faked_port_index, &bus_state->resuming_ports);
1403 mod_timer(&hcd->rh_timer,
1404 bus_state->resume_done[faked_port_index]);
1405 /* Do the rest in GetPortStatus */
1406 }
1407 }
1408
1409 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1410 DEV_SUPERSPEED(temp)) {
1411 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1412 /* We've just brought the device into U0 through either the
1413 * Resume state after a device remote wakeup, or through the
1414 * U3Exit state after a host-initiated resume. If it's a device
1415 * initiated remote wake, don't pass up the link state change,
1416 * so the roothub behavior is consistent with external
1417 * USB 3.0 hub behavior.
1418 */
1419 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1420 faked_port_index + 1);
1421 if (slot_id && xhci->devs[slot_id])
1422 xhci_ring_device(xhci, slot_id);
1423 if (bus_state->port_remote_wakeup && (1 << faked_port_index)) {
1424 bus_state->port_remote_wakeup &=
1425 ~(1 << faked_port_index);
1426 xhci_test_and_clear_bit(xhci, port_array,
1427 faked_port_index, PORT_PLC);
1428 usb_wakeup_notification(hcd->self.root_hub,
1429 faked_port_index + 1);
1430 bogus_port_status = true;
1431 goto cleanup;
1432 }
1433 }
1434
1435 if (hcd->speed != HCD_USB3)
1436 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1437 PORT_PLC);
1438
1439 cleanup:
1440 /* Update event ring dequeue pointer before dropping the lock */
1441 inc_deq(xhci, xhci->event_ring);
1442
1443 /* Don't make the USB core poll the roothub if we got a bad port status
1444 * change event. Besides, at that point we can't tell which roothub
1445 * (USB 2.0 or USB 3.0) to kick.
1446 */
1447 if (bogus_port_status)
1448 return;
1449
1450 spin_unlock(&xhci->lock);
1451 /* Pass this up to the core */
1452 usb_hcd_poll_rh_status(hcd);
1453 spin_lock(&xhci->lock);
1454 }
1455
1456 /*
1457 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1458 * at end_trb, which may be in another segment. If the suspect DMA address is a
1459 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1460 * returns 0.
1461 */
1462 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1463 union xhci_trb *start_trb,
1464 union xhci_trb *end_trb,
1465 dma_addr_t suspect_dma)
1466 {
1467 dma_addr_t start_dma;
1468 dma_addr_t end_seg_dma;
1469 dma_addr_t end_trb_dma;
1470 struct xhci_segment *cur_seg;
1471
1472 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1473 cur_seg = start_seg;
1474
1475 do {
1476 if (start_dma == 0)
1477 return NULL;
1478 /* We may get an event for a Link TRB in the middle of a TD */
1479 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1480 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1481 /* If the end TRB isn't in this segment, this is set to 0 */
1482 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1483
1484 if (end_trb_dma > 0) {
1485 /* The end TRB is in this segment, so suspect should be here */
1486 if (start_dma <= end_trb_dma) {
1487 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1488 return cur_seg;
1489 } else {
1490 /* Case for one segment with
1491 * a TD wrapped around to the top
1492 */
1493 if ((suspect_dma >= start_dma &&
1494 suspect_dma <= end_seg_dma) ||
1495 (suspect_dma >= cur_seg->dma &&
1496 suspect_dma <= end_trb_dma))
1497 return cur_seg;
1498 }
1499 return NULL;
1500 } else {
1501 /* Might still be somewhere in this segment */
1502 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1503 return cur_seg;
1504 }
1505 cur_seg = cur_seg->next;
1506 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1507 } while (cur_seg != start_seg);
1508
1509 return NULL;
1510 }
1511
1512 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1513 unsigned int slot_id, unsigned int ep_index,
1514 unsigned int stream_id,
1515 struct xhci_td *td, union xhci_trb *event_trb)
1516 {
1517 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1518 ep->ep_state |= EP_HALTED;
1519 ep->stopped_td = td;
1520 ep->stopped_trb = event_trb;
1521 ep->stopped_stream = stream_id;
1522
1523 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1524 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1525
1526 ep->stopped_td = NULL;
1527 ep->stopped_trb = NULL;
1528 ep->stopped_stream = 0;
1529
1530 xhci_ring_cmd_db(xhci);
1531 }
1532
1533 /* Check if an error has halted the endpoint ring. The class driver will
1534 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1535 * However, a babble and other errors also halt the endpoint ring, and the class
1536 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1537 * Ring Dequeue Pointer command manually.
1538 */
1539 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1540 struct xhci_ep_ctx *ep_ctx,
1541 unsigned int trb_comp_code)
1542 {
1543 /* TRB completion codes that may require a manual halt cleanup */
1544 if (trb_comp_code == COMP_TX_ERR ||
1545 trb_comp_code == COMP_BABBLE ||
1546 trb_comp_code == COMP_SPLIT_ERR)
1547 /* The 0.96 spec says a babbling control endpoint
1548 * is not halted. The 0.96 spec says it is. Some HW
1549 * claims to be 0.95 compliant, but it halts the control
1550 * endpoint anyway. Check if a babble halted the
1551 * endpoint.
1552 */
1553 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1554 cpu_to_le32(EP_STATE_HALTED))
1555 return 1;
1556
1557 return 0;
1558 }
1559
1560 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1561 {
1562 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1563 /* Vendor defined "informational" completion code,
1564 * treat as not-an-error.
1565 */
1566 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1567 trb_comp_code);
1568 xhci_dbg(xhci, "Treating code as success.\n");
1569 return 1;
1570 }
1571 return 0;
1572 }
1573
1574 /*
1575 * Finish the td processing, remove the td from td list;
1576 * Return 1 if the urb can be given back.
1577 */
1578 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1579 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1580 struct xhci_virt_ep *ep, int *status, bool skip)
1581 {
1582 struct xhci_virt_device *xdev;
1583 struct xhci_ring *ep_ring;
1584 unsigned int slot_id;
1585 int ep_index;
1586 struct urb *urb = NULL;
1587 struct xhci_ep_ctx *ep_ctx;
1588 int ret = 0;
1589 struct urb_priv *urb_priv;
1590 u32 trb_comp_code;
1591
1592 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1593 xdev = xhci->devs[slot_id];
1594 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1595 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1596 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1597 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1598
1599 if (skip)
1600 goto td_cleanup;
1601
1602 if (trb_comp_code == COMP_STOP_INVAL ||
1603 trb_comp_code == COMP_STOP) {
1604 /* The Endpoint Stop Command completion will take care of any
1605 * stopped TDs. A stopped TD may be restarted, so don't update
1606 * the ring dequeue pointer or take this TD off any lists yet.
1607 */
1608 ep->stopped_td = td;
1609 ep->stopped_trb = event_trb;
1610 return 0;
1611 } else {
1612 if (trb_comp_code == COMP_STALL) {
1613 /* The transfer is completed from the driver's
1614 * perspective, but we need to issue a set dequeue
1615 * command for this stalled endpoint to move the dequeue
1616 * pointer past the TD. We can't do that here because
1617 * the halt condition must be cleared first. Let the
1618 * USB class driver clear the stall later.
1619 */
1620 ep->stopped_td = td;
1621 ep->stopped_trb = event_trb;
1622 ep->stopped_stream = ep_ring->stream_id;
1623 } else if (xhci_requires_manual_halt_cleanup(xhci,
1624 ep_ctx, trb_comp_code)) {
1625 /* Other types of errors halt the endpoint, but the
1626 * class driver doesn't call usb_reset_endpoint() unless
1627 * the error is -EPIPE. Clear the halted status in the
1628 * xHCI hardware manually.
1629 */
1630 xhci_cleanup_halted_endpoint(xhci,
1631 slot_id, ep_index, ep_ring->stream_id,
1632 td, event_trb);
1633 } else {
1634 /* Update ring dequeue pointer */
1635 while (ep_ring->dequeue != td->last_trb)
1636 inc_deq(xhci, ep_ring);
1637 inc_deq(xhci, ep_ring);
1638 }
1639
1640 td_cleanup:
1641 /* Clean up the endpoint's TD list */
1642 urb = td->urb;
1643 urb_priv = urb->hcpriv;
1644
1645 /* Do one last check of the actual transfer length.
1646 * If the host controller said we transferred more data than
1647 * the buffer length, urb->actual_length will be a very big
1648 * number (since it's unsigned). Play it safe and say we didn't
1649 * transfer anything.
1650 */
1651 if (urb->actual_length > urb->transfer_buffer_length) {
1652 xhci_warn(xhci, "URB transfer length is wrong, "
1653 "xHC issue? req. len = %u, "
1654 "act. len = %u\n",
1655 urb->transfer_buffer_length,
1656 urb->actual_length);
1657 urb->actual_length = 0;
1658 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1659 *status = -EREMOTEIO;
1660 else
1661 *status = 0;
1662 }
1663 list_del_init(&td->td_list);
1664 /* Was this TD slated to be cancelled but completed anyway? */
1665 if (!list_empty(&td->cancelled_td_list))
1666 list_del_init(&td->cancelled_td_list);
1667
1668 urb_priv->td_cnt++;
1669 /* Giveback the urb when all the tds are completed */
1670 if (urb_priv->td_cnt == urb_priv->length) {
1671 ret = 1;
1672 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1673 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1674 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1675 == 0) {
1676 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1677 usb_amd_quirk_pll_enable();
1678 }
1679 }
1680 }
1681 }
1682
1683 return ret;
1684 }
1685
1686 /*
1687 * Process control tds, update urb status and actual_length.
1688 */
1689 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1690 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1691 struct xhci_virt_ep *ep, int *status)
1692 {
1693 struct xhci_virt_device *xdev;
1694 struct xhci_ring *ep_ring;
1695 unsigned int slot_id;
1696 int ep_index;
1697 struct xhci_ep_ctx *ep_ctx;
1698 u32 trb_comp_code;
1699
1700 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1701 xdev = xhci->devs[slot_id];
1702 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1703 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1704 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1705 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1706
1707 switch (trb_comp_code) {
1708 case COMP_SUCCESS:
1709 if (event_trb == ep_ring->dequeue) {
1710 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1711 "without IOC set??\n");
1712 *status = -ESHUTDOWN;
1713 } else if (event_trb != td->last_trb) {
1714 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1715 "without IOC set??\n");
1716 *status = -ESHUTDOWN;
1717 } else {
1718 *status = 0;
1719 }
1720 break;
1721 case COMP_SHORT_TX:
1722 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1723 *status = -EREMOTEIO;
1724 else
1725 *status = 0;
1726 break;
1727 case COMP_STOP_INVAL:
1728 case COMP_STOP:
1729 return finish_td(xhci, td, event_trb, event, ep, status, false);
1730 default:
1731 if (!xhci_requires_manual_halt_cleanup(xhci,
1732 ep_ctx, trb_comp_code))
1733 break;
1734 xhci_dbg(xhci, "TRB error code %u, "
1735 "halted endpoint index = %u\n",
1736 trb_comp_code, ep_index);
1737 /* else fall through */
1738 case COMP_STALL:
1739 /* Did we transfer part of the data (middle) phase? */
1740 if (event_trb != ep_ring->dequeue &&
1741 event_trb != td->last_trb)
1742 td->urb->actual_length =
1743 td->urb->transfer_buffer_length
1744 - TRB_LEN(le32_to_cpu(event->transfer_len));
1745 else
1746 td->urb->actual_length = 0;
1747
1748 xhci_cleanup_halted_endpoint(xhci,
1749 slot_id, ep_index, 0, td, event_trb);
1750 return finish_td(xhci, td, event_trb, event, ep, status, true);
1751 }
1752 /*
1753 * Did we transfer any data, despite the errors that might have
1754 * happened? I.e. did we get past the setup stage?
1755 */
1756 if (event_trb != ep_ring->dequeue) {
1757 /* The event was for the status stage */
1758 if (event_trb == td->last_trb) {
1759 if (td->urb->actual_length != 0) {
1760 /* Don't overwrite a previously set error code
1761 */
1762 if ((*status == -EINPROGRESS || *status == 0) &&
1763 (td->urb->transfer_flags
1764 & URB_SHORT_NOT_OK))
1765 /* Did we already see a short data
1766 * stage? */
1767 *status = -EREMOTEIO;
1768 } else {
1769 td->urb->actual_length =
1770 td->urb->transfer_buffer_length;
1771 }
1772 } else {
1773 /* Maybe the event was for the data stage? */
1774 td->urb->actual_length =
1775 td->urb->transfer_buffer_length -
1776 TRB_LEN(le32_to_cpu(event->transfer_len));
1777 xhci_dbg(xhci, "Waiting for status "
1778 "stage event\n");
1779 return 0;
1780 }
1781 }
1782
1783 return finish_td(xhci, td, event_trb, event, ep, status, false);
1784 }
1785
1786 /*
1787 * Process isochronous tds, update urb packet status and actual_length.
1788 */
1789 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1790 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1791 struct xhci_virt_ep *ep, int *status)
1792 {
1793 struct xhci_ring *ep_ring;
1794 struct urb_priv *urb_priv;
1795 int idx;
1796 int len = 0;
1797 union xhci_trb *cur_trb;
1798 struct xhci_segment *cur_seg;
1799 struct usb_iso_packet_descriptor *frame;
1800 u32 trb_comp_code;
1801 bool skip_td = false;
1802
1803 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1804 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1805 urb_priv = td->urb->hcpriv;
1806 idx = urb_priv->td_cnt;
1807 frame = &td->urb->iso_frame_desc[idx];
1808
1809 /* handle completion code */
1810 switch (trb_comp_code) {
1811 case COMP_SUCCESS:
1812 if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
1813 frame->status = 0;
1814 break;
1815 }
1816 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
1817 trb_comp_code = COMP_SHORT_TX;
1818 case COMP_SHORT_TX:
1819 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1820 -EREMOTEIO : 0;
1821 break;
1822 case COMP_BW_OVER:
1823 frame->status = -ECOMM;
1824 skip_td = true;
1825 break;
1826 case COMP_BUFF_OVER:
1827 case COMP_BABBLE:
1828 frame->status = -EOVERFLOW;
1829 skip_td = true;
1830 break;
1831 case COMP_DEV_ERR:
1832 case COMP_STALL:
1833 case COMP_TX_ERR:
1834 frame->status = -EPROTO;
1835 skip_td = true;
1836 break;
1837 case COMP_STOP:
1838 case COMP_STOP_INVAL:
1839 break;
1840 default:
1841 frame->status = -1;
1842 break;
1843 }
1844
1845 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1846 frame->actual_length = frame->length;
1847 td->urb->actual_length += frame->length;
1848 } else {
1849 for (cur_trb = ep_ring->dequeue,
1850 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1851 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1852 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1853 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1854 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1855 }
1856 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1857 TRB_LEN(le32_to_cpu(event->transfer_len));
1858
1859 if (trb_comp_code != COMP_STOP_INVAL) {
1860 frame->actual_length = len;
1861 td->urb->actual_length += len;
1862 }
1863 }
1864
1865 return finish_td(xhci, td, event_trb, event, ep, status, false);
1866 }
1867
1868 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1869 struct xhci_transfer_event *event,
1870 struct xhci_virt_ep *ep, int *status)
1871 {
1872 struct xhci_ring *ep_ring;
1873 struct urb_priv *urb_priv;
1874 struct usb_iso_packet_descriptor *frame;
1875 int idx;
1876
1877 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1878 urb_priv = td->urb->hcpriv;
1879 idx = urb_priv->td_cnt;
1880 frame = &td->urb->iso_frame_desc[idx];
1881
1882 /* The transfer is partly done. */
1883 frame->status = -EXDEV;
1884
1885 /* calc actual length */
1886 frame->actual_length = 0;
1887
1888 /* Update ring dequeue pointer */
1889 while (ep_ring->dequeue != td->last_trb)
1890 inc_deq(xhci, ep_ring);
1891 inc_deq(xhci, ep_ring);
1892
1893 return finish_td(xhci, td, NULL, event, ep, status, true);
1894 }
1895
1896 /*
1897 * Process bulk and interrupt tds, update urb status and actual_length.
1898 */
1899 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1900 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1901 struct xhci_virt_ep *ep, int *status)
1902 {
1903 struct xhci_ring *ep_ring;
1904 union xhci_trb *cur_trb;
1905 struct xhci_segment *cur_seg;
1906 u32 trb_comp_code;
1907
1908 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1909 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1910
1911 switch (trb_comp_code) {
1912 case COMP_SUCCESS:
1913 /* Double check that the HW transferred everything. */
1914 if (event_trb != td->last_trb ||
1915 TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1916 xhci_warn(xhci, "WARN Successful completion "
1917 "on short TX\n");
1918 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1919 *status = -EREMOTEIO;
1920 else
1921 *status = 0;
1922 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
1923 trb_comp_code = COMP_SHORT_TX;
1924 } else {
1925 *status = 0;
1926 }
1927 break;
1928 case COMP_SHORT_TX:
1929 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1930 *status = -EREMOTEIO;
1931 else
1932 *status = 0;
1933 break;
1934 default:
1935 /* Others already handled above */
1936 break;
1937 }
1938 if (trb_comp_code == COMP_SHORT_TX)
1939 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1940 "%d bytes untransferred\n",
1941 td->urb->ep->desc.bEndpointAddress,
1942 td->urb->transfer_buffer_length,
1943 TRB_LEN(le32_to_cpu(event->transfer_len)));
1944 /* Fast path - was this the last TRB in the TD for this URB? */
1945 if (event_trb == td->last_trb) {
1946 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1947 td->urb->actual_length =
1948 td->urb->transfer_buffer_length -
1949 TRB_LEN(le32_to_cpu(event->transfer_len));
1950 if (td->urb->transfer_buffer_length <
1951 td->urb->actual_length) {
1952 xhci_warn(xhci, "HC gave bad length "
1953 "of %d bytes left\n",
1954 TRB_LEN(le32_to_cpu(event->transfer_len)));
1955 td->urb->actual_length = 0;
1956 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1957 *status = -EREMOTEIO;
1958 else
1959 *status = 0;
1960 }
1961 /* Don't overwrite a previously set error code */
1962 if (*status == -EINPROGRESS) {
1963 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1964 *status = -EREMOTEIO;
1965 else
1966 *status = 0;
1967 }
1968 } else {
1969 td->urb->actual_length =
1970 td->urb->transfer_buffer_length;
1971 /* Ignore a short packet completion if the
1972 * untransferred length was zero.
1973 */
1974 if (*status == -EREMOTEIO)
1975 *status = 0;
1976 }
1977 } else {
1978 /* Slow path - walk the list, starting from the dequeue
1979 * pointer, to get the actual length transferred.
1980 */
1981 td->urb->actual_length = 0;
1982 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1983 cur_trb != event_trb;
1984 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1985 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1986 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1987 td->urb->actual_length +=
1988 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1989 }
1990 /* If the ring didn't stop on a Link or No-op TRB, add
1991 * in the actual bytes transferred from the Normal TRB
1992 */
1993 if (trb_comp_code != COMP_STOP_INVAL)
1994 td->urb->actual_length +=
1995 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1996 TRB_LEN(le32_to_cpu(event->transfer_len));
1997 }
1998
1999 return finish_td(xhci, td, event_trb, event, ep, status, false);
2000 }
2001
2002 /*
2003 * If this function returns an error condition, it means it got a Transfer
2004 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2005 * At this point, the host controller is probably hosed and should be reset.
2006 */
2007 static int handle_tx_event(struct xhci_hcd *xhci,
2008 struct xhci_transfer_event *event)
2009 {
2010 struct xhci_virt_device *xdev;
2011 struct xhci_virt_ep *ep;
2012 struct xhci_ring *ep_ring;
2013 unsigned int slot_id;
2014 int ep_index;
2015 struct xhci_td *td = NULL;
2016 dma_addr_t event_dma;
2017 struct xhci_segment *event_seg;
2018 union xhci_trb *event_trb;
2019 struct urb *urb = NULL;
2020 int status = -EINPROGRESS;
2021 struct urb_priv *urb_priv;
2022 struct xhci_ep_ctx *ep_ctx;
2023 struct list_head *tmp;
2024 u32 trb_comp_code;
2025 int ret = 0;
2026 int td_num = 0;
2027
2028 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2029 xdev = xhci->devs[slot_id];
2030 if (!xdev) {
2031 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2032 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2033 (unsigned long long) xhci_trb_virt_to_dma(
2034 xhci->event_ring->deq_seg,
2035 xhci->event_ring->dequeue),
2036 lower_32_bits(le64_to_cpu(event->buffer)),
2037 upper_32_bits(le64_to_cpu(event->buffer)),
2038 le32_to_cpu(event->transfer_len),
2039 le32_to_cpu(event->flags));
2040 xhci_dbg(xhci, "Event ring:\n");
2041 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2042 return -ENODEV;
2043 }
2044
2045 /* Endpoint ID is 1 based, our index is zero based */
2046 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2047 ep = &xdev->eps[ep_index];
2048 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2049 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2050 if (!ep_ring ||
2051 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2052 EP_STATE_DISABLED) {
2053 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2054 "or incorrect stream ring\n");
2055 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2056 (unsigned long long) xhci_trb_virt_to_dma(
2057 xhci->event_ring->deq_seg,
2058 xhci->event_ring->dequeue),
2059 lower_32_bits(le64_to_cpu(event->buffer)),
2060 upper_32_bits(le64_to_cpu(event->buffer)),
2061 le32_to_cpu(event->transfer_len),
2062 le32_to_cpu(event->flags));
2063 xhci_dbg(xhci, "Event ring:\n");
2064 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2065 return -ENODEV;
2066 }
2067
2068 /* Count current td numbers if ep->skip is set */
2069 if (ep->skip) {
2070 list_for_each(tmp, &ep_ring->td_list)
2071 td_num++;
2072 }
2073
2074 event_dma = le64_to_cpu(event->buffer);
2075 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2076 /* Look for common error cases */
2077 switch (trb_comp_code) {
2078 /* Skip codes that require special handling depending on
2079 * transfer type
2080 */
2081 case COMP_SUCCESS:
2082 if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2083 break;
2084 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2085 trb_comp_code = COMP_SHORT_TX;
2086 else
2087 xhci_warn_ratelimited(xhci,
2088 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2089 case COMP_SHORT_TX:
2090 break;
2091 case COMP_STOP:
2092 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2093 break;
2094 case COMP_STOP_INVAL:
2095 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2096 break;
2097 case COMP_STALL:
2098 xhci_dbg(xhci, "Stalled endpoint\n");
2099 ep->ep_state |= EP_HALTED;
2100 status = -EPIPE;
2101 break;
2102 case COMP_TRB_ERR:
2103 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2104 status = -EILSEQ;
2105 break;
2106 case COMP_SPLIT_ERR:
2107 case COMP_TX_ERR:
2108 xhci_dbg(xhci, "Transfer error on endpoint\n");
2109 status = -EPROTO;
2110 break;
2111 case COMP_BABBLE:
2112 xhci_dbg(xhci, "Babble error on endpoint\n");
2113 status = -EOVERFLOW;
2114 break;
2115 case COMP_DB_ERR:
2116 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2117 status = -ENOSR;
2118 break;
2119 case COMP_BW_OVER:
2120 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2121 break;
2122 case COMP_BUFF_OVER:
2123 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2124 break;
2125 case COMP_UNDERRUN:
2126 /*
2127 * When the Isoch ring is empty, the xHC will generate
2128 * a Ring Overrun Event for IN Isoch endpoint or Ring
2129 * Underrun Event for OUT Isoch endpoint.
2130 */
2131 xhci_dbg(xhci, "underrun event on endpoint\n");
2132 if (!list_empty(&ep_ring->td_list))
2133 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2134 "still with TDs queued?\n",
2135 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2136 ep_index);
2137 goto cleanup;
2138 case COMP_OVERRUN:
2139 xhci_dbg(xhci, "overrun event on endpoint\n");
2140 if (!list_empty(&ep_ring->td_list))
2141 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2142 "still with TDs queued?\n",
2143 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2144 ep_index);
2145 goto cleanup;
2146 case COMP_DEV_ERR:
2147 xhci_warn(xhci, "WARN: detect an incompatible device");
2148 status = -EPROTO;
2149 break;
2150 case COMP_MISSED_INT:
2151 /*
2152 * When encounter missed service error, one or more isoc tds
2153 * may be missed by xHC.
2154 * Set skip flag of the ep_ring; Complete the missed tds as
2155 * short transfer when process the ep_ring next time.
2156 */
2157 ep->skip = true;
2158 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2159 goto cleanup;
2160 default:
2161 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2162 status = 0;
2163 break;
2164 }
2165 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2166 "busted\n");
2167 goto cleanup;
2168 }
2169
2170 do {
2171 /* This TRB should be in the TD at the head of this ring's
2172 * TD list.
2173 */
2174 if (list_empty(&ep_ring->td_list)) {
2175 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2176 "with no TDs queued?\n",
2177 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2178 ep_index);
2179 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2180 (le32_to_cpu(event->flags) &
2181 TRB_TYPE_BITMASK)>>10);
2182 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2183 if (ep->skip) {
2184 ep->skip = false;
2185 xhci_dbg(xhci, "td_list is empty while skip "
2186 "flag set. Clear skip flag.\n");
2187 }
2188 ret = 0;
2189 goto cleanup;
2190 }
2191
2192 /* We've skipped all the TDs on the ep ring when ep->skip set */
2193 if (ep->skip && td_num == 0) {
2194 ep->skip = false;
2195 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2196 "Clear skip flag.\n");
2197 ret = 0;
2198 goto cleanup;
2199 }
2200
2201 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2202 if (ep->skip)
2203 td_num--;
2204
2205 /* Is this a TRB in the currently executing TD? */
2206 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2207 td->last_trb, event_dma);
2208
2209 /*
2210 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2211 * is not in the current TD pointed by ep_ring->dequeue because
2212 * that the hardware dequeue pointer still at the previous TRB
2213 * of the current TD. The previous TRB maybe a Link TD or the
2214 * last TRB of the previous TD. The command completion handle
2215 * will take care the rest.
2216 */
2217 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2218 ret = 0;
2219 goto cleanup;
2220 }
2221
2222 if (!event_seg) {
2223 if (!ep->skip ||
2224 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2225 /* Some host controllers give a spurious
2226 * successful event after a short transfer.
2227 * Ignore it.
2228 */
2229 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2230 ep_ring->last_td_was_short) {
2231 ep_ring->last_td_was_short = false;
2232 ret = 0;
2233 goto cleanup;
2234 }
2235 /* HC is busted, give up! */
2236 xhci_err(xhci,
2237 "ERROR Transfer event TRB DMA ptr not "
2238 "part of current TD\n");
2239 return -ESHUTDOWN;
2240 }
2241
2242 ret = skip_isoc_td(xhci, td, event, ep, &status);
2243 goto cleanup;
2244 }
2245 if (trb_comp_code == COMP_SHORT_TX)
2246 ep_ring->last_td_was_short = true;
2247 else
2248 ep_ring->last_td_was_short = false;
2249
2250 if (ep->skip) {
2251 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2252 ep->skip = false;
2253 }
2254
2255 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2256 sizeof(*event_trb)];
2257 /*
2258 * No-op TRB should not trigger interrupts.
2259 * If event_trb is a no-op TRB, it means the
2260 * corresponding TD has been cancelled. Just ignore
2261 * the TD.
2262 */
2263 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2264 xhci_dbg(xhci,
2265 "event_trb is a no-op TRB. Skip it\n");
2266 goto cleanup;
2267 }
2268
2269 /* Now update the urb's actual_length and give back to
2270 * the core
2271 */
2272 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2273 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2274 &status);
2275 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2276 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2277 &status);
2278 else
2279 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2280 ep, &status);
2281
2282 cleanup:
2283 /*
2284 * Do not update event ring dequeue pointer if ep->skip is set.
2285 * Will roll back to continue process missed tds.
2286 */
2287 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2288 inc_deq(xhci, xhci->event_ring);
2289 }
2290
2291 if (ret) {
2292 urb = td->urb;
2293 urb_priv = urb->hcpriv;
2294 /* Leave the TD around for the reset endpoint function
2295 * to use(but only if it's not a control endpoint,
2296 * since we already queued the Set TR dequeue pointer
2297 * command for stalled control endpoints).
2298 */
2299 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2300 (trb_comp_code != COMP_STALL &&
2301 trb_comp_code != COMP_BABBLE))
2302 xhci_urb_free_priv(xhci, urb_priv);
2303
2304 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2305 if ((urb->actual_length != urb->transfer_buffer_length &&
2306 (urb->transfer_flags &
2307 URB_SHORT_NOT_OK)) ||
2308 (status != 0 &&
2309 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2310 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2311 "expected = %d, status = %d\n",
2312 urb, urb->actual_length,
2313 urb->transfer_buffer_length,
2314 status);
2315 spin_unlock(&xhci->lock);
2316 /* EHCI, UHCI, and OHCI always unconditionally set the
2317 * urb->status of an isochronous endpoint to 0.
2318 */
2319 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2320 status = 0;
2321 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2322 spin_lock(&xhci->lock);
2323 }
2324
2325 /*
2326 * If ep->skip is set, it means there are missed tds on the
2327 * endpoint ring need to take care of.
2328 * Process them as short transfer until reach the td pointed by
2329 * the event.
2330 */
2331 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2332
2333 return 0;
2334 }
2335
2336 /*
2337 * This function handles all OS-owned events on the event ring. It may drop
2338 * xhci->lock between event processing (e.g. to pass up port status changes).
2339 * Returns >0 for "possibly more events to process" (caller should call again),
2340 * otherwise 0 if done. In future, <0 returns should indicate error code.
2341 */
2342 static int xhci_handle_event(struct xhci_hcd *xhci)
2343 {
2344 union xhci_trb *event;
2345 int update_ptrs = 1;
2346 int ret;
2347
2348 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2349 xhci->error_bitmask |= 1 << 1;
2350 return 0;
2351 }
2352
2353 event = xhci->event_ring->dequeue;
2354 /* Does the HC or OS own the TRB? */
2355 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2356 xhci->event_ring->cycle_state) {
2357 xhci->error_bitmask |= 1 << 2;
2358 return 0;
2359 }
2360
2361 /*
2362 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2363 * speculative reads of the event's flags/data below.
2364 */
2365 rmb();
2366 /* FIXME: Handle more event types. */
2367 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2368 case TRB_TYPE(TRB_COMPLETION):
2369 handle_cmd_completion(xhci, &event->event_cmd);
2370 break;
2371 case TRB_TYPE(TRB_PORT_STATUS):
2372 handle_port_status(xhci, event);
2373 update_ptrs = 0;
2374 break;
2375 case TRB_TYPE(TRB_TRANSFER):
2376 ret = handle_tx_event(xhci, &event->trans_event);
2377 if (ret < 0)
2378 xhci->error_bitmask |= 1 << 9;
2379 else
2380 update_ptrs = 0;
2381 break;
2382 case TRB_TYPE(TRB_DEV_NOTE):
2383 handle_device_notification(xhci, event);
2384 break;
2385 default:
2386 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2387 TRB_TYPE(48))
2388 handle_vendor_event(xhci, event);
2389 else
2390 xhci->error_bitmask |= 1 << 3;
2391 }
2392 /* Any of the above functions may drop and re-acquire the lock, so check
2393 * to make sure a watchdog timer didn't mark the host as non-responsive.
2394 */
2395 if (xhci->xhc_state & XHCI_STATE_DYING) {
2396 xhci_dbg(xhci, "xHCI host dying, returning from "
2397 "event handler.\n");
2398 return 0;
2399 }
2400
2401 if (update_ptrs)
2402 /* Update SW event ring dequeue pointer */
2403 inc_deq(xhci, xhci->event_ring);
2404
2405 /* Are there more items on the event ring? Caller will call us again to
2406 * check.
2407 */
2408 return 1;
2409 }
2410
2411 /*
2412 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2413 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2414 * indicators of an event TRB error, but we check the status *first* to be safe.
2415 */
2416 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2417 {
2418 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2419 u32 status;
2420 union xhci_trb *trb;
2421 u64 temp_64;
2422 union xhci_trb *event_ring_deq;
2423 dma_addr_t deq;
2424
2425 spin_lock(&xhci->lock);
2426 trb = xhci->event_ring->dequeue;
2427 /* Check if the xHC generated the interrupt, or the irq is shared */
2428 status = xhci_readl(xhci, &xhci->op_regs->status);
2429 if (status == 0xffffffff)
2430 goto hw_died;
2431
2432 if (!(status & STS_EINT)) {
2433 spin_unlock(&xhci->lock);
2434 return IRQ_NONE;
2435 }
2436 if (status & STS_FATAL) {
2437 xhci_warn(xhci, "WARNING: Host System Error\n");
2438 xhci_halt(xhci);
2439 hw_died:
2440 spin_unlock(&xhci->lock);
2441 return -ESHUTDOWN;
2442 }
2443
2444 /*
2445 * Clear the op reg interrupt status first,
2446 * so we can receive interrupts from other MSI-X interrupters.
2447 * Write 1 to clear the interrupt status.
2448 */
2449 status |= STS_EINT;
2450 xhci_writel(xhci, status, &xhci->op_regs->status);
2451 /* FIXME when MSI-X is supported and there are multiple vectors */
2452 /* Clear the MSI-X event interrupt status */
2453
2454 if (hcd->irq) {
2455 u32 irq_pending;
2456 /* Acknowledge the PCI interrupt */
2457 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2458 irq_pending |= IMAN_IP;
2459 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2460 }
2461
2462 if (xhci->xhc_state & XHCI_STATE_DYING) {
2463 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2464 "Shouldn't IRQs be disabled?\n");
2465 /* Clear the event handler busy flag (RW1C);
2466 * the event ring should be empty.
2467 */
2468 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2469 xhci_write_64(xhci, temp_64 | ERST_EHB,
2470 &xhci->ir_set->erst_dequeue);
2471 spin_unlock(&xhci->lock);
2472
2473 return IRQ_HANDLED;
2474 }
2475
2476 event_ring_deq = xhci->event_ring->dequeue;
2477 /* FIXME this should be a delayed service routine
2478 * that clears the EHB.
2479 */
2480 while (xhci_handle_event(xhci) > 0) {}
2481
2482 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2483 /* If necessary, update the HW's version of the event ring deq ptr. */
2484 if (event_ring_deq != xhci->event_ring->dequeue) {
2485 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2486 xhci->event_ring->dequeue);
2487 if (deq == 0)
2488 xhci_warn(xhci, "WARN something wrong with SW event "
2489 "ring dequeue ptr.\n");
2490 /* Update HC event ring dequeue pointer */
2491 temp_64 &= ERST_PTR_MASK;
2492 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2493 }
2494
2495 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2496 temp_64 |= ERST_EHB;
2497 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2498
2499 spin_unlock(&xhci->lock);
2500
2501 return IRQ_HANDLED;
2502 }
2503
2504 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2505 {
2506 return xhci_irq(hcd);
2507 }
2508
2509 /**** Endpoint Ring Operations ****/
2510
2511 /*
2512 * Generic function for queueing a TRB on a ring.
2513 * The caller must have checked to make sure there's room on the ring.
2514 *
2515 * @more_trbs_coming: Will you enqueue more TRBs before calling
2516 * prepare_transfer()?
2517 */
2518 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2519 bool more_trbs_coming,
2520 u32 field1, u32 field2, u32 field3, u32 field4)
2521 {
2522 struct xhci_generic_trb *trb;
2523
2524 trb = &ring->enqueue->generic;
2525 trb->field[0] = cpu_to_le32(field1);
2526 trb->field[1] = cpu_to_le32(field2);
2527 trb->field[2] = cpu_to_le32(field3);
2528 trb->field[3] = cpu_to_le32(field4);
2529 inc_enq(xhci, ring, more_trbs_coming);
2530 }
2531
2532 /*
2533 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2534 * FIXME allocate segments if the ring is full.
2535 */
2536 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2537 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2538 {
2539 unsigned int num_trbs_needed;
2540
2541 /* Make sure the endpoint has been added to xHC schedule */
2542 switch (ep_state) {
2543 case EP_STATE_DISABLED:
2544 /*
2545 * USB core changed config/interfaces without notifying us,
2546 * or hardware is reporting the wrong state.
2547 */
2548 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2549 return -ENOENT;
2550 case EP_STATE_ERROR:
2551 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2552 /* FIXME event handling code for error needs to clear it */
2553 /* XXX not sure if this should be -ENOENT or not */
2554 return -EINVAL;
2555 case EP_STATE_HALTED:
2556 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2557 case EP_STATE_STOPPED:
2558 case EP_STATE_RUNNING:
2559 break;
2560 default:
2561 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2562 /*
2563 * FIXME issue Configure Endpoint command to try to get the HC
2564 * back into a known state.
2565 */
2566 return -EINVAL;
2567 }
2568
2569 while (1) {
2570 if (room_on_ring(xhci, ep_ring, num_trbs))
2571 break;
2572
2573 if (ep_ring == xhci->cmd_ring) {
2574 xhci_err(xhci, "Do not support expand command ring\n");
2575 return -ENOMEM;
2576 }
2577
2578 xhci_dbg(xhci, "ERROR no room on ep ring, "
2579 "try ring expansion\n");
2580 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2581 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2582 mem_flags)) {
2583 xhci_err(xhci, "Ring expansion failed\n");
2584 return -ENOMEM;
2585 }
2586 };
2587
2588 if (enqueue_is_link_trb(ep_ring)) {
2589 struct xhci_ring *ring = ep_ring;
2590 union xhci_trb *next;
2591
2592 next = ring->enqueue;
2593
2594 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2595 /* If we're not dealing with 0.95 hardware or isoc rings
2596 * on AMD 0.96 host, clear the chain bit.
2597 */
2598 if (!xhci_link_trb_quirk(xhci) &&
2599 !(ring->type == TYPE_ISOC &&
2600 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2601 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2602 else
2603 next->link.control |= cpu_to_le32(TRB_CHAIN);
2604
2605 wmb();
2606 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2607
2608 /* Toggle the cycle bit after the last ring segment. */
2609 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2610 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2611 }
2612 ring->enq_seg = ring->enq_seg->next;
2613 ring->enqueue = ring->enq_seg->trbs;
2614 next = ring->enqueue;
2615 }
2616 }
2617
2618 return 0;
2619 }
2620
2621 static int prepare_transfer(struct xhci_hcd *xhci,
2622 struct xhci_virt_device *xdev,
2623 unsigned int ep_index,
2624 unsigned int stream_id,
2625 unsigned int num_trbs,
2626 struct urb *urb,
2627 unsigned int td_index,
2628 gfp_t mem_flags)
2629 {
2630 int ret;
2631 struct urb_priv *urb_priv;
2632 struct xhci_td *td;
2633 struct xhci_ring *ep_ring;
2634 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2635
2636 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2637 if (!ep_ring) {
2638 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2639 stream_id);
2640 return -EINVAL;
2641 }
2642
2643 ret = prepare_ring(xhci, ep_ring,
2644 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2645 num_trbs, mem_flags);
2646 if (ret)
2647 return ret;
2648
2649 urb_priv = urb->hcpriv;
2650 td = urb_priv->td[td_index];
2651
2652 INIT_LIST_HEAD(&td->td_list);
2653 INIT_LIST_HEAD(&td->cancelled_td_list);
2654
2655 if (td_index == 0) {
2656 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2657 if (unlikely(ret))
2658 return ret;
2659 }
2660
2661 td->urb = urb;
2662 /* Add this TD to the tail of the endpoint ring's TD list */
2663 list_add_tail(&td->td_list, &ep_ring->td_list);
2664 td->start_seg = ep_ring->enq_seg;
2665 td->first_trb = ep_ring->enqueue;
2666
2667 urb_priv->td[td_index] = td;
2668
2669 return 0;
2670 }
2671
2672 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2673 {
2674 int num_sgs, num_trbs, running_total, temp, i;
2675 struct scatterlist *sg;
2676
2677 sg = NULL;
2678 num_sgs = urb->num_mapped_sgs;
2679 temp = urb->transfer_buffer_length;
2680
2681 num_trbs = 0;
2682 for_each_sg(urb->sg, sg, num_sgs, i) {
2683 unsigned int len = sg_dma_len(sg);
2684
2685 /* Scatter gather list entries may cross 64KB boundaries */
2686 running_total = TRB_MAX_BUFF_SIZE -
2687 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2688 running_total &= TRB_MAX_BUFF_SIZE - 1;
2689 if (running_total != 0)
2690 num_trbs++;
2691
2692 /* How many more 64KB chunks to transfer, how many more TRBs? */
2693 while (running_total < sg_dma_len(sg) && running_total < temp) {
2694 num_trbs++;
2695 running_total += TRB_MAX_BUFF_SIZE;
2696 }
2697 len = min_t(int, len, temp);
2698 temp -= len;
2699 if (temp == 0)
2700 break;
2701 }
2702 return num_trbs;
2703 }
2704
2705 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2706 {
2707 if (num_trbs != 0)
2708 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2709 "TRBs, %d left\n", __func__,
2710 urb->ep->desc.bEndpointAddress, num_trbs);
2711 if (running_total != urb->transfer_buffer_length)
2712 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2713 "queued %#x (%d), asked for %#x (%d)\n",
2714 __func__,
2715 urb->ep->desc.bEndpointAddress,
2716 running_total, running_total,
2717 urb->transfer_buffer_length,
2718 urb->transfer_buffer_length);
2719 }
2720
2721 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2722 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2723 struct xhci_generic_trb *start_trb)
2724 {
2725 /*
2726 * Pass all the TRBs to the hardware at once and make sure this write
2727 * isn't reordered.
2728 */
2729 wmb();
2730 if (start_cycle)
2731 start_trb->field[3] |= cpu_to_le32(start_cycle);
2732 else
2733 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2734 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2735 }
2736
2737 /*
2738 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2739 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2740 * (comprised of sg list entries) can take several service intervals to
2741 * transmit.
2742 */
2743 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2744 struct urb *urb, int slot_id, unsigned int ep_index)
2745 {
2746 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2747 xhci->devs[slot_id]->out_ctx, ep_index);
2748 int xhci_interval;
2749 int ep_interval;
2750
2751 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2752 ep_interval = urb->interval;
2753 /* Convert to microframes */
2754 if (urb->dev->speed == USB_SPEED_LOW ||
2755 urb->dev->speed == USB_SPEED_FULL)
2756 ep_interval *= 8;
2757 /* FIXME change this to a warning and a suggestion to use the new API
2758 * to set the polling interval (once the API is added).
2759 */
2760 if (xhci_interval != ep_interval) {
2761 if (printk_ratelimit())
2762 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2763 " (%d microframe%s) than xHCI "
2764 "(%d microframe%s)\n",
2765 ep_interval,
2766 ep_interval == 1 ? "" : "s",
2767 xhci_interval,
2768 xhci_interval == 1 ? "" : "s");
2769 urb->interval = xhci_interval;
2770 /* Convert back to frames for LS/FS devices */
2771 if (urb->dev->speed == USB_SPEED_LOW ||
2772 urb->dev->speed == USB_SPEED_FULL)
2773 urb->interval /= 8;
2774 }
2775 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
2776 }
2777
2778 /*
2779 * The TD size is the number of bytes remaining in the TD (including this TRB),
2780 * right shifted by 10.
2781 * It must fit in bits 21:17, so it can't be bigger than 31.
2782 */
2783 static u32 xhci_td_remainder(unsigned int remainder)
2784 {
2785 u32 max = (1 << (21 - 17 + 1)) - 1;
2786
2787 if ((remainder >> 10) >= max)
2788 return max << 17;
2789 else
2790 return (remainder >> 10) << 17;
2791 }
2792
2793 /*
2794 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2795 * the TD (*not* including this TRB).
2796 *
2797 * Total TD packet count = total_packet_count =
2798 * roundup(TD size in bytes / wMaxPacketSize)
2799 *
2800 * Packets transferred up to and including this TRB = packets_transferred =
2801 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2802 *
2803 * TD size = total_packet_count - packets_transferred
2804 *
2805 * It must fit in bits 21:17, so it can't be bigger than 31.
2806 */
2807
2808 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2809 unsigned int total_packet_count, struct urb *urb)
2810 {
2811 int packets_transferred;
2812
2813 /* One TRB with a zero-length data packet. */
2814 if (running_total == 0 && trb_buff_len == 0)
2815 return 0;
2816
2817 /* All the TRB queueing functions don't count the current TRB in
2818 * running_total.
2819 */
2820 packets_transferred = (running_total + trb_buff_len) /
2821 usb_endpoint_maxp(&urb->ep->desc);
2822
2823 return xhci_td_remainder(total_packet_count - packets_transferred);
2824 }
2825
2826 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2827 struct urb *urb, int slot_id, unsigned int ep_index)
2828 {
2829 struct xhci_ring *ep_ring;
2830 unsigned int num_trbs;
2831 struct urb_priv *urb_priv;
2832 struct xhci_td *td;
2833 struct scatterlist *sg;
2834 int num_sgs;
2835 int trb_buff_len, this_sg_len, running_total;
2836 unsigned int total_packet_count;
2837 bool first_trb;
2838 u64 addr;
2839 bool more_trbs_coming;
2840
2841 struct xhci_generic_trb *start_trb;
2842 int start_cycle;
2843
2844 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2845 if (!ep_ring)
2846 return -EINVAL;
2847
2848 num_trbs = count_sg_trbs_needed(xhci, urb);
2849 num_sgs = urb->num_mapped_sgs;
2850 total_packet_count = roundup(urb->transfer_buffer_length,
2851 usb_endpoint_maxp(&urb->ep->desc));
2852
2853 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2854 ep_index, urb->stream_id,
2855 num_trbs, urb, 0, mem_flags);
2856 if (trb_buff_len < 0)
2857 return trb_buff_len;
2858
2859 urb_priv = urb->hcpriv;
2860 td = urb_priv->td[0];
2861
2862 /*
2863 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2864 * until we've finished creating all the other TRBs. The ring's cycle
2865 * state may change as we enqueue the other TRBs, so save it too.
2866 */
2867 start_trb = &ep_ring->enqueue->generic;
2868 start_cycle = ep_ring->cycle_state;
2869
2870 running_total = 0;
2871 /*
2872 * How much data is in the first TRB?
2873 *
2874 * There are three forces at work for TRB buffer pointers and lengths:
2875 * 1. We don't want to walk off the end of this sg-list entry buffer.
2876 * 2. The transfer length that the driver requested may be smaller than
2877 * the amount of memory allocated for this scatter-gather list.
2878 * 3. TRBs buffers can't cross 64KB boundaries.
2879 */
2880 sg = urb->sg;
2881 addr = (u64) sg_dma_address(sg);
2882 this_sg_len = sg_dma_len(sg);
2883 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2884 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2885 if (trb_buff_len > urb->transfer_buffer_length)
2886 trb_buff_len = urb->transfer_buffer_length;
2887
2888 first_trb = true;
2889 /* Queue the first TRB, even if it's zero-length */
2890 do {
2891 u32 field = 0;
2892 u32 length_field = 0;
2893 u32 remainder = 0;
2894
2895 /* Don't change the cycle bit of the first TRB until later */
2896 if (first_trb) {
2897 first_trb = false;
2898 if (start_cycle == 0)
2899 field |= 0x1;
2900 } else
2901 field |= ep_ring->cycle_state;
2902
2903 /* Chain all the TRBs together; clear the chain bit in the last
2904 * TRB to indicate it's the last TRB in the chain.
2905 */
2906 if (num_trbs > 1) {
2907 field |= TRB_CHAIN;
2908 } else {
2909 /* FIXME - add check for ZERO_PACKET flag before this */
2910 td->last_trb = ep_ring->enqueue;
2911 field |= TRB_IOC;
2912 }
2913
2914 /* Only set interrupt on short packet for IN endpoints */
2915 if (usb_urb_dir_in(urb))
2916 field |= TRB_ISP;
2917
2918 if (TRB_MAX_BUFF_SIZE -
2919 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2920 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2921 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2922 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2923 (unsigned int) addr + trb_buff_len);
2924 }
2925
2926 /* Set the TRB length, TD size, and interrupter fields. */
2927 if (xhci->hci_version < 0x100) {
2928 remainder = xhci_td_remainder(
2929 urb->transfer_buffer_length -
2930 running_total);
2931 } else {
2932 remainder = xhci_v1_0_td_remainder(running_total,
2933 trb_buff_len, total_packet_count, urb);
2934 }
2935 length_field = TRB_LEN(trb_buff_len) |
2936 remainder |
2937 TRB_INTR_TARGET(0);
2938
2939 if (num_trbs > 1)
2940 more_trbs_coming = true;
2941 else
2942 more_trbs_coming = false;
2943 queue_trb(xhci, ep_ring, more_trbs_coming,
2944 lower_32_bits(addr),
2945 upper_32_bits(addr),
2946 length_field,
2947 field | TRB_TYPE(TRB_NORMAL));
2948 --num_trbs;
2949 running_total += trb_buff_len;
2950
2951 /* Calculate length for next transfer --
2952 * Are we done queueing all the TRBs for this sg entry?
2953 */
2954 this_sg_len -= trb_buff_len;
2955 if (this_sg_len == 0) {
2956 --num_sgs;
2957 if (num_sgs == 0)
2958 break;
2959 sg = sg_next(sg);
2960 addr = (u64) sg_dma_address(sg);
2961 this_sg_len = sg_dma_len(sg);
2962 } else {
2963 addr += trb_buff_len;
2964 }
2965
2966 trb_buff_len = TRB_MAX_BUFF_SIZE -
2967 (addr & (TRB_MAX_BUFF_SIZE - 1));
2968 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2969 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2970 trb_buff_len =
2971 urb->transfer_buffer_length - running_total;
2972 } while (running_total < urb->transfer_buffer_length);
2973
2974 check_trb_math(urb, num_trbs, running_total);
2975 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2976 start_cycle, start_trb);
2977 return 0;
2978 }
2979
2980 /* This is very similar to what ehci-q.c qtd_fill() does */
2981 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2982 struct urb *urb, int slot_id, unsigned int ep_index)
2983 {
2984 struct xhci_ring *ep_ring;
2985 struct urb_priv *urb_priv;
2986 struct xhci_td *td;
2987 int num_trbs;
2988 struct xhci_generic_trb *start_trb;
2989 bool first_trb;
2990 bool more_trbs_coming;
2991 int start_cycle;
2992 u32 field, length_field;
2993
2994 int running_total, trb_buff_len, ret;
2995 unsigned int total_packet_count;
2996 u64 addr;
2997
2998 if (urb->num_sgs)
2999 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3000
3001 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3002 if (!ep_ring)
3003 return -EINVAL;
3004
3005 num_trbs = 0;
3006 /* How much data is (potentially) left before the 64KB boundary? */
3007 running_total = TRB_MAX_BUFF_SIZE -
3008 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3009 running_total &= TRB_MAX_BUFF_SIZE - 1;
3010
3011 /* If there's some data on this 64KB chunk, or we have to send a
3012 * zero-length transfer, we need at least one TRB
3013 */
3014 if (running_total != 0 || urb->transfer_buffer_length == 0)
3015 num_trbs++;
3016 /* How many more 64KB chunks to transfer, how many more TRBs? */
3017 while (running_total < urb->transfer_buffer_length) {
3018 num_trbs++;
3019 running_total += TRB_MAX_BUFF_SIZE;
3020 }
3021 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3022
3023 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3024 ep_index, urb->stream_id,
3025 num_trbs, urb, 0, mem_flags);
3026 if (ret < 0)
3027 return ret;
3028
3029 urb_priv = urb->hcpriv;
3030 td = urb_priv->td[0];
3031
3032 /*
3033 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3034 * until we've finished creating all the other TRBs. The ring's cycle
3035 * state may change as we enqueue the other TRBs, so save it too.
3036 */
3037 start_trb = &ep_ring->enqueue->generic;
3038 start_cycle = ep_ring->cycle_state;
3039
3040 running_total = 0;
3041 total_packet_count = roundup(urb->transfer_buffer_length,
3042 usb_endpoint_maxp(&urb->ep->desc));
3043 /* How much data is in the first TRB? */
3044 addr = (u64) urb->transfer_dma;
3045 trb_buff_len = TRB_MAX_BUFF_SIZE -
3046 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3047 if (trb_buff_len > urb->transfer_buffer_length)
3048 trb_buff_len = urb->transfer_buffer_length;
3049
3050 first_trb = true;
3051
3052 /* Queue the first TRB, even if it's zero-length */
3053 do {
3054 u32 remainder = 0;
3055 field = 0;
3056
3057 /* Don't change the cycle bit of the first TRB until later */
3058 if (first_trb) {
3059 first_trb = false;
3060 if (start_cycle == 0)
3061 field |= 0x1;
3062 } else
3063 field |= ep_ring->cycle_state;
3064
3065 /* Chain all the TRBs together; clear the chain bit in the last
3066 * TRB to indicate it's the last TRB in the chain.
3067 */
3068 if (num_trbs > 1) {
3069 field |= TRB_CHAIN;
3070 } else {
3071 /* FIXME - add check for ZERO_PACKET flag before this */
3072 td->last_trb = ep_ring->enqueue;
3073 field |= TRB_IOC;
3074 }
3075
3076 /* Only set interrupt on short packet for IN endpoints */
3077 if (usb_urb_dir_in(urb))
3078 field |= TRB_ISP;
3079
3080 /* Set the TRB length, TD size, and interrupter fields. */
3081 if (xhci->hci_version < 0x100) {
3082 remainder = xhci_td_remainder(
3083 urb->transfer_buffer_length -
3084 running_total);
3085 } else {
3086 remainder = xhci_v1_0_td_remainder(running_total,
3087 trb_buff_len, total_packet_count, urb);
3088 }
3089 length_field = TRB_LEN(trb_buff_len) |
3090 remainder |
3091 TRB_INTR_TARGET(0);
3092
3093 if (num_trbs > 1)
3094 more_trbs_coming = true;
3095 else
3096 more_trbs_coming = false;
3097 queue_trb(xhci, ep_ring, more_trbs_coming,
3098 lower_32_bits(addr),
3099 upper_32_bits(addr),
3100 length_field,
3101 field | TRB_TYPE(TRB_NORMAL));
3102 --num_trbs;
3103 running_total += trb_buff_len;
3104
3105 /* Calculate length for next transfer */
3106 addr += trb_buff_len;
3107 trb_buff_len = urb->transfer_buffer_length - running_total;
3108 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3109 trb_buff_len = TRB_MAX_BUFF_SIZE;
3110 } while (running_total < urb->transfer_buffer_length);
3111
3112 check_trb_math(urb, num_trbs, running_total);
3113 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3114 start_cycle, start_trb);
3115 return 0;
3116 }
3117
3118 /* Caller must have locked xhci->lock */
3119 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3120 struct urb *urb, int slot_id, unsigned int ep_index)
3121 {
3122 struct xhci_ring *ep_ring;
3123 int num_trbs;
3124 int ret;
3125 struct usb_ctrlrequest *setup;
3126 struct xhci_generic_trb *start_trb;
3127 int start_cycle;
3128 u32 field, length_field;
3129 struct urb_priv *urb_priv;
3130 struct xhci_td *td;
3131
3132 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3133 if (!ep_ring)
3134 return -EINVAL;
3135
3136 /*
3137 * Need to copy setup packet into setup TRB, so we can't use the setup
3138 * DMA address.
3139 */
3140 if (!urb->setup_packet)
3141 return -EINVAL;
3142
3143 /* 1 TRB for setup, 1 for status */
3144 num_trbs = 2;
3145 /*
3146 * Don't need to check if we need additional event data and normal TRBs,
3147 * since data in control transfers will never get bigger than 16MB
3148 * XXX: can we get a buffer that crosses 64KB boundaries?
3149 */
3150 if (urb->transfer_buffer_length > 0)
3151 num_trbs++;
3152 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3153 ep_index, urb->stream_id,
3154 num_trbs, urb, 0, mem_flags);
3155 if (ret < 0)
3156 return ret;
3157
3158 urb_priv = urb->hcpriv;
3159 td = urb_priv->td[0];
3160
3161 /*
3162 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3163 * until we've finished creating all the other TRBs. The ring's cycle
3164 * state may change as we enqueue the other TRBs, so save it too.
3165 */
3166 start_trb = &ep_ring->enqueue->generic;
3167 start_cycle = ep_ring->cycle_state;
3168
3169 /* Queue setup TRB - see section 6.4.1.2.1 */
3170 /* FIXME better way to translate setup_packet into two u32 fields? */
3171 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3172 field = 0;
3173 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3174 if (start_cycle == 0)
3175 field |= 0x1;
3176
3177 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3178 if (xhci->hci_version == 0x100) {
3179 if (urb->transfer_buffer_length > 0) {
3180 if (setup->bRequestType & USB_DIR_IN)
3181 field |= TRB_TX_TYPE(TRB_DATA_IN);
3182 else
3183 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3184 }
3185 }
3186
3187 queue_trb(xhci, ep_ring, true,
3188 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3189 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3190 TRB_LEN(8) | TRB_INTR_TARGET(0),
3191 /* Immediate data in pointer */
3192 field);
3193
3194 /* If there's data, queue data TRBs */
3195 /* Only set interrupt on short packet for IN endpoints */
3196 if (usb_urb_dir_in(urb))
3197 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3198 else
3199 field = TRB_TYPE(TRB_DATA);
3200
3201 length_field = TRB_LEN(urb->transfer_buffer_length) |
3202 xhci_td_remainder(urb->transfer_buffer_length) |
3203 TRB_INTR_TARGET(0);
3204 if (urb->transfer_buffer_length > 0) {
3205 if (setup->bRequestType & USB_DIR_IN)
3206 field |= TRB_DIR_IN;
3207 queue_trb(xhci, ep_ring, true,
3208 lower_32_bits(urb->transfer_dma),
3209 upper_32_bits(urb->transfer_dma),
3210 length_field,
3211 field | ep_ring->cycle_state);
3212 }
3213
3214 /* Save the DMA address of the last TRB in the TD */
3215 td->last_trb = ep_ring->enqueue;
3216
3217 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3218 /* If the device sent data, the status stage is an OUT transfer */
3219 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3220 field = 0;
3221 else
3222 field = TRB_DIR_IN;
3223 queue_trb(xhci, ep_ring, false,
3224 0,
3225 0,
3226 TRB_INTR_TARGET(0),
3227 /* Event on completion */
3228 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3229
3230 giveback_first_trb(xhci, slot_id, ep_index, 0,
3231 start_cycle, start_trb);
3232 return 0;
3233 }
3234
3235 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3236 struct urb *urb, int i)
3237 {
3238 int num_trbs = 0;
3239 u64 addr, td_len;
3240
3241 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3242 td_len = urb->iso_frame_desc[i].length;
3243
3244 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3245 TRB_MAX_BUFF_SIZE);
3246 if (num_trbs == 0)
3247 num_trbs++;
3248
3249 return num_trbs;
3250 }
3251
3252 /*
3253 * The transfer burst count field of the isochronous TRB defines the number of
3254 * bursts that are required to move all packets in this TD. Only SuperSpeed
3255 * devices can burst up to bMaxBurst number of packets per service interval.
3256 * This field is zero based, meaning a value of zero in the field means one
3257 * burst. Basically, for everything but SuperSpeed devices, this field will be
3258 * zero. Only xHCI 1.0 host controllers support this field.
3259 */
3260 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3261 struct usb_device *udev,
3262 struct urb *urb, unsigned int total_packet_count)
3263 {
3264 unsigned int max_burst;
3265
3266 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3267 return 0;
3268
3269 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3270 return roundup(total_packet_count, max_burst + 1) - 1;
3271 }
3272
3273 /*
3274 * Returns the number of packets in the last "burst" of packets. This field is
3275 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3276 * the last burst packet count is equal to the total number of packets in the
3277 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3278 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3279 * contain 1 to (bMaxBurst + 1) packets.
3280 */
3281 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3282 struct usb_device *udev,
3283 struct urb *urb, unsigned int total_packet_count)
3284 {
3285 unsigned int max_burst;
3286 unsigned int residue;
3287
3288 if (xhci->hci_version < 0x100)
3289 return 0;
3290
3291 switch (udev->speed) {
3292 case USB_SPEED_SUPER:
3293 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3294 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3295 residue = total_packet_count % (max_burst + 1);
3296 /* If residue is zero, the last burst contains (max_burst + 1)
3297 * number of packets, but the TLBPC field is zero-based.
3298 */
3299 if (residue == 0)
3300 return max_burst;
3301 return residue - 1;
3302 default:
3303 if (total_packet_count == 0)
3304 return 0;
3305 return total_packet_count - 1;
3306 }
3307 }
3308
3309 /* This is for isoc transfer */
3310 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3311 struct urb *urb, int slot_id, unsigned int ep_index)
3312 {
3313 struct xhci_ring *ep_ring;
3314 struct urb_priv *urb_priv;
3315 struct xhci_td *td;
3316 int num_tds, trbs_per_td;
3317 struct xhci_generic_trb *start_trb;
3318 bool first_trb;
3319 int start_cycle;
3320 u32 field, length_field;
3321 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3322 u64 start_addr, addr;
3323 int i, j;
3324 bool more_trbs_coming;
3325
3326 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3327
3328 num_tds = urb->number_of_packets;
3329 if (num_tds < 1) {
3330 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3331 return -EINVAL;
3332 }
3333
3334 start_addr = (u64) urb->transfer_dma;
3335 start_trb = &ep_ring->enqueue->generic;
3336 start_cycle = ep_ring->cycle_state;
3337
3338 urb_priv = urb->hcpriv;
3339 /* Queue the first TRB, even if it's zero-length */
3340 for (i = 0; i < num_tds; i++) {
3341 unsigned int total_packet_count;
3342 unsigned int burst_count;
3343 unsigned int residue;
3344
3345 first_trb = true;
3346 running_total = 0;
3347 addr = start_addr + urb->iso_frame_desc[i].offset;
3348 td_len = urb->iso_frame_desc[i].length;
3349 td_remain_len = td_len;
3350 total_packet_count = roundup(td_len,
3351 usb_endpoint_maxp(&urb->ep->desc));
3352 /* A zero-length transfer still involves at least one packet. */
3353 if (total_packet_count == 0)
3354 total_packet_count++;
3355 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3356 total_packet_count);
3357 residue = xhci_get_last_burst_packet_count(xhci,
3358 urb->dev, urb, total_packet_count);
3359
3360 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3361
3362 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3363 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3364 if (ret < 0) {
3365 if (i == 0)
3366 return ret;
3367 goto cleanup;
3368 }
3369
3370 td = urb_priv->td[i];
3371 for (j = 0; j < trbs_per_td; j++) {
3372 u32 remainder = 0;
3373 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3374
3375 if (first_trb) {
3376 /* Queue the isoc TRB */
3377 field |= TRB_TYPE(TRB_ISOC);
3378 /* Assume URB_ISO_ASAP is set */
3379 field |= TRB_SIA;
3380 if (i == 0) {
3381 if (start_cycle == 0)
3382 field |= 0x1;
3383 } else
3384 field |= ep_ring->cycle_state;
3385 first_trb = false;
3386 } else {
3387 /* Queue other normal TRBs */
3388 field |= TRB_TYPE(TRB_NORMAL);
3389 field |= ep_ring->cycle_state;
3390 }
3391
3392 /* Only set interrupt on short packet for IN EPs */
3393 if (usb_urb_dir_in(urb))
3394 field |= TRB_ISP;
3395
3396 /* Chain all the TRBs together; clear the chain bit in
3397 * the last TRB to indicate it's the last TRB in the
3398 * chain.
3399 */
3400 if (j < trbs_per_td - 1) {
3401 field |= TRB_CHAIN;
3402 more_trbs_coming = true;
3403 } else {
3404 td->last_trb = ep_ring->enqueue;
3405 field |= TRB_IOC;
3406 if (xhci->hci_version == 0x100) {
3407 /* Set BEI bit except for the last td */
3408 if (i < num_tds - 1)
3409 field |= TRB_BEI;
3410 }
3411 more_trbs_coming = false;
3412 }
3413
3414 /* Calculate TRB length */
3415 trb_buff_len = TRB_MAX_BUFF_SIZE -
3416 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3417 if (trb_buff_len > td_remain_len)
3418 trb_buff_len = td_remain_len;
3419
3420 /* Set the TRB length, TD size, & interrupter fields. */
3421 if (xhci->hci_version < 0x100) {
3422 remainder = xhci_td_remainder(
3423 td_len - running_total);
3424 } else {
3425 remainder = xhci_v1_0_td_remainder(
3426 running_total, trb_buff_len,
3427 total_packet_count, urb);
3428 }
3429 length_field = TRB_LEN(trb_buff_len) |
3430 remainder |
3431 TRB_INTR_TARGET(0);
3432
3433 queue_trb(xhci, ep_ring, more_trbs_coming,
3434 lower_32_bits(addr),
3435 upper_32_bits(addr),
3436 length_field,
3437 field);
3438 running_total += trb_buff_len;
3439
3440 addr += trb_buff_len;
3441 td_remain_len -= trb_buff_len;
3442 }
3443
3444 /* Check TD length */
3445 if (running_total != td_len) {
3446 xhci_err(xhci, "ISOC TD length unmatch\n");
3447 ret = -EINVAL;
3448 goto cleanup;
3449 }
3450 }
3451
3452 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3453 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3454 usb_amd_quirk_pll_disable();
3455 }
3456 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3457
3458 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3459 start_cycle, start_trb);
3460 return 0;
3461 cleanup:
3462 /* Clean up a partially enqueued isoc transfer. */
3463
3464 for (i--; i >= 0; i--)
3465 list_del_init(&urb_priv->td[i]->td_list);
3466
3467 /* Use the first TD as a temporary variable to turn the TDs we've queued
3468 * into No-ops with a software-owned cycle bit. That way the hardware
3469 * won't accidentally start executing bogus TDs when we partially
3470 * overwrite them. td->first_trb and td->start_seg are already set.
3471 */
3472 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3473 /* Every TRB except the first & last will have its cycle bit flipped. */
3474 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3475
3476 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3477 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3478 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3479 ep_ring->cycle_state = start_cycle;
3480 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3481 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3482 return ret;
3483 }
3484
3485 /*
3486 * Check transfer ring to guarantee there is enough room for the urb.
3487 * Update ISO URB start_frame and interval.
3488 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3489 * update the urb->start_frame by now.
3490 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3491 */
3492 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3493 struct urb *urb, int slot_id, unsigned int ep_index)
3494 {
3495 struct xhci_virt_device *xdev;
3496 struct xhci_ring *ep_ring;
3497 struct xhci_ep_ctx *ep_ctx;
3498 int start_frame;
3499 int xhci_interval;
3500 int ep_interval;
3501 int num_tds, num_trbs, i;
3502 int ret;
3503
3504 xdev = xhci->devs[slot_id];
3505 ep_ring = xdev->eps[ep_index].ring;
3506 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3507
3508 num_trbs = 0;
3509 num_tds = urb->number_of_packets;
3510 for (i = 0; i < num_tds; i++)
3511 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3512
3513 /* Check the ring to guarantee there is enough room for the whole urb.
3514 * Do not insert any td of the urb to the ring if the check failed.
3515 */
3516 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3517 num_trbs, mem_flags);
3518 if (ret)
3519 return ret;
3520
3521 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3522 start_frame &= 0x3fff;
3523
3524 urb->start_frame = start_frame;
3525 if (urb->dev->speed == USB_SPEED_LOW ||
3526 urb->dev->speed == USB_SPEED_FULL)
3527 urb->start_frame >>= 3;
3528
3529 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3530 ep_interval = urb->interval;
3531 /* Convert to microframes */
3532 if (urb->dev->speed == USB_SPEED_LOW ||
3533 urb->dev->speed == USB_SPEED_FULL)
3534 ep_interval *= 8;
3535 /* FIXME change this to a warning and a suggestion to use the new API
3536 * to set the polling interval (once the API is added).
3537 */
3538 if (xhci_interval != ep_interval) {
3539 if (printk_ratelimit())
3540 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3541 " (%d microframe%s) than xHCI "
3542 "(%d microframe%s)\n",
3543 ep_interval,
3544 ep_interval == 1 ? "" : "s",
3545 xhci_interval,
3546 xhci_interval == 1 ? "" : "s");
3547 urb->interval = xhci_interval;
3548 /* Convert back to frames for LS/FS devices */
3549 if (urb->dev->speed == USB_SPEED_LOW ||
3550 urb->dev->speed == USB_SPEED_FULL)
3551 urb->interval /= 8;
3552 }
3553 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3554
3555 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3556 }
3557
3558 /**** Command Ring Operations ****/
3559
3560 /* Generic function for queueing a command TRB on the command ring.
3561 * Check to make sure there's room on the command ring for one command TRB.
3562 * Also check that there's room reserved for commands that must not fail.
3563 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3564 * then only check for the number of reserved spots.
3565 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3566 * because the command event handler may want to resubmit a failed command.
3567 */
3568 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3569 u32 field3, u32 field4, bool command_must_succeed)
3570 {
3571 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3572 int ret;
3573
3574 if (!command_must_succeed)
3575 reserved_trbs++;
3576
3577 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3578 reserved_trbs, GFP_ATOMIC);
3579 if (ret < 0) {
3580 xhci_err(xhci, "ERR: No room for command on command ring\n");
3581 if (command_must_succeed)
3582 xhci_err(xhci, "ERR: Reserved TRB counting for "
3583 "unfailable commands failed.\n");
3584 return ret;
3585 }
3586 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3587 field4 | xhci->cmd_ring->cycle_state);
3588 return 0;
3589 }
3590
3591 /* Queue a slot enable or disable request on the command ring */
3592 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3593 {
3594 return queue_command(xhci, 0, 0, 0,
3595 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3596 }
3597
3598 /* Queue an address device command TRB */
3599 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3600 u32 slot_id)
3601 {
3602 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3603 upper_32_bits(in_ctx_ptr), 0,
3604 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3605 false);
3606 }
3607
3608 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3609 u32 field1, u32 field2, u32 field3, u32 field4)
3610 {
3611 return queue_command(xhci, field1, field2, field3, field4, false);
3612 }
3613
3614 /* Queue a reset device command TRB */
3615 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3616 {
3617 return queue_command(xhci, 0, 0, 0,
3618 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3619 false);
3620 }
3621
3622 /* Queue a configure endpoint command TRB */
3623 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3624 u32 slot_id, bool command_must_succeed)
3625 {
3626 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3627 upper_32_bits(in_ctx_ptr), 0,
3628 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3629 command_must_succeed);
3630 }
3631
3632 /* Queue an evaluate context command TRB */
3633 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3634 u32 slot_id, bool command_must_succeed)
3635 {
3636 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3637 upper_32_bits(in_ctx_ptr), 0,
3638 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3639 command_must_succeed);
3640 }
3641
3642 /*
3643 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3644 * activity on an endpoint that is about to be suspended.
3645 */
3646 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3647 unsigned int ep_index, int suspend)
3648 {
3649 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3650 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3651 u32 type = TRB_TYPE(TRB_STOP_RING);
3652 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3653
3654 return queue_command(xhci, 0, 0, 0,
3655 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3656 }
3657
3658 /* Set Transfer Ring Dequeue Pointer command.
3659 * This should not be used for endpoints that have streams enabled.
3660 */
3661 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3662 unsigned int ep_index, unsigned int stream_id,
3663 struct xhci_segment *deq_seg,
3664 union xhci_trb *deq_ptr, u32 cycle_state)
3665 {
3666 dma_addr_t addr;
3667 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3668 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3669 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3670 u32 type = TRB_TYPE(TRB_SET_DEQ);
3671 struct xhci_virt_ep *ep;
3672
3673 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3674 if (addr == 0) {
3675 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3676 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3677 deq_seg, deq_ptr);
3678 return 0;
3679 }
3680 ep = &xhci->devs[slot_id]->eps[ep_index];
3681 if ((ep->ep_state & SET_DEQ_PENDING)) {
3682 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3683 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3684 return 0;
3685 }
3686 ep->queued_deq_seg = deq_seg;
3687 ep->queued_deq_ptr = deq_ptr;
3688 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3689 upper_32_bits(addr), trb_stream_id,
3690 trb_slot_id | trb_ep_index | type, false);
3691 }
3692
3693 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3694 unsigned int ep_index)
3695 {
3696 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3697 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3698 u32 type = TRB_TYPE(TRB_RESET_EP);
3699
3700 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3701 false);
3702 }