Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29 #include <mach/mt_boot.h>
30 #include <linux/dma-mapping.h>
31
32 /*
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
35 *
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38 */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state, gfp_t flags)
41 {
42 struct xhci_segment *seg;
43 dma_addr_t dma;
44 int i;
45
46 seg = kzalloc(sizeof *seg, flags);
47 if (!seg)
48 return NULL;
49
50 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51 if (!seg->trbs) {
52 kfree(seg);
53 return NULL;
54 }
55
56 memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= TRB_CYCLE;
61 }
62 seg->dma = dma;
63 seg->next = NULL;
64
65 return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
73 }
74 kfree(seg);
75 }
76
77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78 struct xhci_segment *first)
79 {
80 struct xhci_segment *seg;
81
82 seg = first->next;
83 while (seg != first) {
84 struct xhci_segment *next = seg->next;
85 xhci_segment_free(xhci, seg);
86 seg = next;
87 }
88 xhci_segment_free(xhci, first);
89 }
90
91 /*
92 * Make the prev segment point to the next segment.
93 *
94 * Change the last TRB in the prev segment to be a Link TRB which points to the
95 * DMA address of the next segment. The caller needs to set any Link TRB
96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
97 */
98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99 struct xhci_segment *next, enum xhci_ring_type type)
100 {
101 u32 val;
102
103 if (!prev || !next)
104 return;
105 prev->next = next;
106 if (type != TYPE_EVENT) {
107 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108 cpu_to_le64(next->dma);
109
110 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112 val &= ~TRB_TYPE_BITMASK;
113 val |= TRB_TYPE(TRB_LINK);
114 /* Always set the chain bit with 0.95 hardware */
115 /* Set chain bit for isoc rings on AMD 0.96 host */
116 #ifndef CONFIG_MTK_XHCI
117 if (xhci_link_trb_quirk(xhci) ||
118 (type == TYPE_ISOC &&
119 (xhci->quirks & XHCI_AMD_0x96_HOST)))
120 val |= TRB_CHAIN;
121 #endif
122 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
123 }
124 }
125
126 /*
127 * Link the ring to the new segments.
128 * Set Toggle Cycle for the new ring if needed.
129 */
130 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
131 struct xhci_segment *first, struct xhci_segment *last,
132 unsigned int num_segs)
133 {
134 struct xhci_segment *next;
135
136 if (!ring || !first || !last)
137 return;
138
139 next = ring->enq_seg->next;
140 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
141 xhci_link_segments(xhci, last, next, ring->type);
142 ring->num_segs += num_segs;
143 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
144
145 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
146 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
147 &= ~cpu_to_le32(LINK_TOGGLE);
148 last->trbs[TRBS_PER_SEGMENT-1].link.control
149 |= cpu_to_le32(LINK_TOGGLE);
150 ring->last_seg = last;
151 }
152 }
153
154 /* XXX: Do we need the hcd structure in all these functions? */
155 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
156 {
157 if (!ring)
158 return;
159
160 if (ring->first_seg)
161 xhci_free_segments_for_ring(xhci, ring->first_seg);
162
163 kfree(ring);
164 }
165
166 static void xhci_initialize_ring_info(struct xhci_ring *ring,
167 unsigned int cycle_state)
168 {
169 /* The ring is empty, so the enqueue pointer == dequeue pointer */
170 ring->enqueue = ring->first_seg->trbs;
171 ring->enq_seg = ring->first_seg;
172 ring->dequeue = ring->enqueue;
173 ring->deq_seg = ring->first_seg;
174 /* The ring is initialized to 0. The producer must write 1 to the cycle
175 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
176 * compare CCS to the cycle bit to check ownership, so CCS = 1.
177 *
178 * New rings are initialized with cycle state equal to 1; if we are
179 * handling ring expansion, set the cycle state equal to the old ring.
180 */
181 ring->cycle_state = cycle_state;
182 /* Not necessary for new rings, but needed for re-initialized rings */
183 ring->enq_updates = 0;
184 ring->deq_updates = 0;
185
186 /*
187 * Each segment has a link TRB, and leave an extra TRB for SW
188 * accounting purpose
189 */
190 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
191 }
192
193 /* Allocate segments and link them for a ring */
194 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
195 struct xhci_segment **first, struct xhci_segment **last,
196 unsigned int num_segs, unsigned int cycle_state,
197 enum xhci_ring_type type, gfp_t flags)
198 {
199 struct xhci_segment *prev;
200
201 prev = xhci_segment_alloc(xhci, cycle_state, flags);
202 if (!prev)
203 return -ENOMEM;
204 num_segs--;
205
206 *first = prev;
207 while (num_segs > 0) {
208 struct xhci_segment *next;
209
210 next = xhci_segment_alloc(xhci, cycle_state, flags);
211 if (!next) {
212 prev = *first;
213 while (prev) {
214 next = prev->next;
215 xhci_segment_free(xhci, prev);
216 prev = next;
217 }
218 return -ENOMEM;
219 }
220 xhci_link_segments(xhci, prev, next, type);
221
222 prev = next;
223 num_segs--;
224 }
225 xhci_link_segments(xhci, prev, *first, type);
226 *last = prev;
227
228 return 0;
229 }
230
231 /**
232 * Create a new ring with zero or more segments.
233 *
234 * Link each segment together into a ring.
235 * Set the end flag and the cycle toggle bit on the last segment.
236 * See section 4.9.1 and figures 15 and 16.
237 */
238 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
239 unsigned int num_segs, unsigned int cycle_state,
240 enum xhci_ring_type type, gfp_t flags)
241 {
242 struct xhci_ring *ring;
243 int ret;
244
245 ring = kzalloc(sizeof *(ring), flags);
246 if (!ring)
247 return NULL;
248
249 ring->num_segs = num_segs;
250 INIT_LIST_HEAD(&ring->td_list);
251 ring->type = type;
252 if (num_segs == 0)
253 return ring;
254
255 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
256 &ring->last_seg, num_segs, cycle_state, type, flags);
257 if (ret)
258 goto fail;
259
260 /* Only event ring does not use link TRB */
261 if (type != TYPE_EVENT) {
262 /* See section 4.9.2.1 and 6.4.4.1 */
263 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
264 cpu_to_le32(LINK_TOGGLE);
265 }
266 xhci_initialize_ring_info(ring, cycle_state);
267 return ring;
268
269 fail:
270 kfree(ring);
271 return NULL;
272 }
273
274 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
275 struct xhci_virt_device *virt_dev,
276 unsigned int ep_index)
277 {
278 int rings_cached;
279
280 rings_cached = virt_dev->num_rings_cached;
281 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
282 virt_dev->ring_cache[rings_cached] =
283 virt_dev->eps[ep_index].ring;
284 virt_dev->num_rings_cached++;
285 xhci_dbg(xhci, "Cached old ring, "
286 "%d ring%s cached\n",
287 virt_dev->num_rings_cached,
288 (virt_dev->num_rings_cached > 1) ? "s" : "");
289 } else {
290 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
291 xhci_dbg(xhci, "Ring cache full (%d rings), "
292 "freeing ring\n",
293 virt_dev->num_rings_cached);
294 }
295 virt_dev->eps[ep_index].ring = NULL;
296 }
297
298 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
299 * pointers to the beginning of the ring.
300 */
301 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
302 struct xhci_ring *ring, unsigned int cycle_state,
303 enum xhci_ring_type type)
304 {
305 struct xhci_segment *seg = ring->first_seg;
306 int i;
307
308 do {
309 memset(seg->trbs, 0,
310 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
311 if (cycle_state == 0) {
312 for (i = 0; i < TRBS_PER_SEGMENT; i++)
313 seg->trbs[i].link.control |= TRB_CYCLE;
314 }
315 /* All endpoint rings have link TRBs */
316 xhci_link_segments(xhci, seg, seg->next, type);
317 seg = seg->next;
318 } while (seg != ring->first_seg);
319 ring->type = type;
320 xhci_initialize_ring_info(ring, cycle_state);
321 /* td list should be empty since all URBs have been cancelled,
322 * but just in case...
323 */
324 INIT_LIST_HEAD(&ring->td_list);
325 }
326
327 /*
328 * Expand an existing ring.
329 * Look for a cached ring or allocate a new ring which has same segment numbers
330 * and link the two rings.
331 */
332 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
333 unsigned int num_trbs, gfp_t flags)
334 {
335 struct xhci_segment *first;
336 struct xhci_segment *last;
337 unsigned int num_segs;
338 unsigned int num_segs_needed;
339 int ret;
340
341 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
342 (TRBS_PER_SEGMENT - 1);
343
344 /* Allocate number of segments we needed, or double the ring size */
345 num_segs = ring->num_segs > num_segs_needed ?
346 ring->num_segs : num_segs_needed;
347
348 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
349 num_segs, ring->cycle_state, ring->type, flags);
350 if (ret)
351 return -ENOMEM;
352
353 xhci_link_rings(xhci, ring, first, last, num_segs);
354 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
355 ring->num_segs);
356
357 return 0;
358 }
359
360 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
361
362 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
363 int type, gfp_t flags)
364 {
365 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
366 if (!ctx)
367 return NULL;
368
369 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
370 ctx->type = type;
371 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
372 if (type == XHCI_CTX_TYPE_INPUT)
373 ctx->size += CTX_SIZE(xhci->hcc_params);
374
375 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
376 if (!ctx->bytes) {
377 kfree(ctx);
378 return NULL;
379 }
380 memset(ctx->bytes, 0, ctx->size);
381 return ctx;
382 }
383
384 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
385 struct xhci_container_ctx *ctx)
386 {
387 if (!ctx)
388 return;
389 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
390 kfree(ctx);
391 }
392
393 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
394 struct xhci_container_ctx *ctx)
395 {
396 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
397 return (struct xhci_input_control_ctx *)ctx->bytes;
398 }
399
400 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
401 struct xhci_container_ctx *ctx)
402 {
403 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
404 return (struct xhci_slot_ctx *)ctx->bytes;
405
406 return (struct xhci_slot_ctx *)
407 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
408 }
409
410 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
411 struct xhci_container_ctx *ctx,
412 unsigned int ep_index)
413 {
414 /* increment ep index by offset of start of ep ctx array */
415 ep_index++;
416 if (ctx->type == XHCI_CTX_TYPE_INPUT)
417 ep_index++;
418
419 return (struct xhci_ep_ctx *)
420 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
421 }
422
423
424 /***************** Streams structures manipulation *************************/
425
426 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
427 unsigned int num_stream_ctxs,
428 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
429 {
430 struct device *dev = xhci_to_hcd(xhci)->self.controller;
431
432 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
433 dma_free_coherent(dev,
434 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
435 #ifdef CONFIG_MTK_XHCI
436 xhci->erst.entries, xhci->erst.erst_dma_addr);
437 #else
438 stream_ctx, dma);
439 #endif
440 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
441 return dma_pool_free(xhci->small_streams_pool,
442 stream_ctx, dma);
443 else
444 return dma_pool_free(xhci->medium_streams_pool,
445 stream_ctx, dma);
446 }
447
448 /*
449 * The stream context array for each endpoint with bulk streams enabled can
450 * vary in size, based on:
451 * - how many streams the endpoint supports,
452 * - the maximum primary stream array size the host controller supports,
453 * - and how many streams the device driver asks for.
454 *
455 * The stream context array must be a power of 2, and can be as small as
456 * 64 bytes or as large as 1MB.
457 */
458 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
459 unsigned int num_stream_ctxs, dma_addr_t *dma,
460 gfp_t mem_flags)
461 {
462 struct device *dev = xhci_to_hcd(xhci)->self.controller;
463
464 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
465 return dma_alloc_coherent(dev,
466 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
467 dma, mem_flags);
468 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
469 return dma_pool_alloc(xhci->small_streams_pool,
470 mem_flags, dma);
471 else
472 return dma_pool_alloc(xhci->medium_streams_pool,
473 mem_flags, dma);
474 }
475
476 struct xhci_ring *xhci_dma_to_transfer_ring(
477 struct xhci_virt_ep *ep,
478 u64 address)
479 {
480 if (ep->ep_state & EP_HAS_STREAMS)
481 return radix_tree_lookup(&ep->stream_info->trb_address_map,
482 address >> TRB_SEGMENT_SHIFT);
483 return ep->ring;
484 }
485
486 /* Only use this when you know stream_info is valid */
487 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
488 static struct xhci_ring *dma_to_stream_ring(
489 struct xhci_stream_info *stream_info,
490 u64 address)
491 {
492 return radix_tree_lookup(&stream_info->trb_address_map,
493 address >> TRB_SEGMENT_SHIFT);
494 }
495 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
496
497 struct xhci_ring *xhci_stream_id_to_ring(
498 struct xhci_virt_device *dev,
499 unsigned int ep_index,
500 unsigned int stream_id)
501 {
502 struct xhci_virt_ep *ep = &dev->eps[ep_index];
503
504 if (stream_id == 0)
505 return ep->ring;
506 if (!ep->stream_info)
507 return NULL;
508
509 if (stream_id > ep->stream_info->num_streams)
510 return NULL;
511 return ep->stream_info->stream_rings[stream_id];
512 }
513
514 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
515 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
516 unsigned int num_streams,
517 struct xhci_stream_info *stream_info)
518 {
519 u32 cur_stream;
520 struct xhci_ring *cur_ring;
521 u64 addr;
522
523 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
524 struct xhci_ring *mapped_ring;
525 int trb_size = sizeof(union xhci_trb);
526
527 cur_ring = stream_info->stream_rings[cur_stream];
528 for (addr = cur_ring->first_seg->dma;
529 addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
530 addr += trb_size) {
531 mapped_ring = dma_to_stream_ring(stream_info, addr);
532 if (cur_ring != mapped_ring) {
533 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
534 "didn't map to stream ID %u; "
535 "mapped to ring %p\n",
536 (unsigned long long) addr,
537 cur_stream,
538 mapped_ring);
539 return -EINVAL;
540 }
541 }
542 /* One TRB after the end of the ring segment shouldn't return a
543 * pointer to the current ring (although it may be a part of a
544 * different ring).
545 */
546 mapped_ring = dma_to_stream_ring(stream_info, addr);
547 if (mapped_ring != cur_ring) {
548 /* One TRB before should also fail */
549 addr = cur_ring->first_seg->dma - trb_size;
550 mapped_ring = dma_to_stream_ring(stream_info, addr);
551 }
552 if (mapped_ring == cur_ring) {
553 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
554 "mapped to valid stream ID %u; "
555 "mapped ring = %p\n",
556 (unsigned long long) addr,
557 cur_stream,
558 mapped_ring);
559 return -EINVAL;
560 }
561 }
562 return 0;
563 }
564 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
565
566 /*
567 * Change an endpoint's internal structure so it supports stream IDs. The
568 * number of requested streams includes stream 0, which cannot be used by device
569 * drivers.
570 *
571 * The number of stream contexts in the stream context array may be bigger than
572 * the number of streams the driver wants to use. This is because the number of
573 * stream context array entries must be a power of two.
574 *
575 * We need a radix tree for mapping physical addresses of TRBs to which stream
576 * ID they belong to. We need to do this because the host controller won't tell
577 * us which stream ring the TRB came from. We could store the stream ID in an
578 * event data TRB, but that doesn't help us for the cancellation case, since the
579 * endpoint may stop before it reaches that event data TRB.
580 *
581 * The radix tree maps the upper portion of the TRB DMA address to a ring
582 * segment that has the same upper portion of DMA addresses. For example, say I
583 * have segments of size 1KB, that are always 64-byte aligned. A segment may
584 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
585 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
586 * pass the radix tree a key to get the right stream ID:
587 *
588 * 0x10c90fff >> 10 = 0x43243
589 * 0x10c912c0 >> 10 = 0x43244
590 * 0x10c91400 >> 10 = 0x43245
591 *
592 * Obviously, only those TRBs with DMA addresses that are within the segment
593 * will make the radix tree return the stream ID for that ring.
594 *
595 * Caveats for the radix tree:
596 *
597 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
598 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
599 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
600 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
601 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
602 * extended systems (where the DMA address can be bigger than 32-bits),
603 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
604 */
605 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
606 unsigned int num_stream_ctxs,
607 unsigned int num_streams, gfp_t mem_flags)
608 {
609 struct xhci_stream_info *stream_info;
610 u32 cur_stream;
611 struct xhci_ring *cur_ring;
612 unsigned long key;
613 u64 addr;
614 int ret;
615
616 xhci_dbg(xhci, "Allocating %u streams and %u "
617 "stream context array entries.\n",
618 num_streams, num_stream_ctxs);
619 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
620 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
621 return NULL;
622 }
623 xhci->cmd_ring_reserved_trbs++;
624
625 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
626 if (!stream_info)
627 goto cleanup_trbs;
628
629 stream_info->num_streams = num_streams;
630 stream_info->num_stream_ctxs = num_stream_ctxs;
631
632 /* Initialize the array of virtual pointers to stream rings. */
633 stream_info->stream_rings = kzalloc(
634 sizeof(struct xhci_ring *)*num_streams,
635 mem_flags);
636 if (!stream_info->stream_rings)
637 goto cleanup_info;
638
639 /* Initialize the array of DMA addresses for stream rings for the HW. */
640 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
641 num_stream_ctxs, &stream_info->ctx_array_dma,
642 mem_flags);
643 if (!stream_info->stream_ctx_array)
644 goto cleanup_ctx;
645 memset(stream_info->stream_ctx_array, 0,
646 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
647
648 /* Allocate everything needed to free the stream rings later */
649 stream_info->free_streams_command =
650 xhci_alloc_command(xhci, true, true, mem_flags);
651 if (!stream_info->free_streams_command)
652 goto cleanup_ctx;
653
654 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
655
656 /* Allocate rings for all the streams that the driver will use,
657 * and add their segment DMA addresses to the radix tree.
658 * Stream 0 is reserved.
659 */
660 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
661 stream_info->stream_rings[cur_stream] =
662 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
663 cur_ring = stream_info->stream_rings[cur_stream];
664 if (!cur_ring)
665 goto cleanup_rings;
666 cur_ring->stream_id = cur_stream;
667 /* Set deq ptr, cycle bit, and stream context type */
668 addr = cur_ring->first_seg->dma |
669 SCT_FOR_CTX(SCT_PRI_TR) |
670 cur_ring->cycle_state;
671 stream_info->stream_ctx_array[cur_stream].stream_ring =
672 cpu_to_le64(addr);
673 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
674 cur_stream, (unsigned long long) addr);
675
676 key = (unsigned long)
677 (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
678 ret = radix_tree_insert(&stream_info->trb_address_map,
679 key, cur_ring);
680 if (ret) {
681 xhci_ring_free(xhci, cur_ring);
682 stream_info->stream_rings[cur_stream] = NULL;
683 goto cleanup_rings;
684 }
685 }
686 /* Leave the other unused stream ring pointers in the stream context
687 * array initialized to zero. This will cause the xHC to give us an
688 * error if the device asks for a stream ID we don't have setup (if it
689 * was any other way, the host controller would assume the ring is
690 * "empty" and wait forever for data to be queued to that stream ID).
691 */
692 #if XHCI_DEBUG
693 /* Do a little test on the radix tree to make sure it returns the
694 * correct values.
695 */
696 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
697 goto cleanup_rings;
698 #endif
699
700 return stream_info;
701
702 cleanup_rings:
703 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
704 cur_ring = stream_info->stream_rings[cur_stream];
705 if (cur_ring) {
706 addr = cur_ring->first_seg->dma;
707 radix_tree_delete(&stream_info->trb_address_map,
708 addr >> TRB_SEGMENT_SHIFT);
709 xhci_ring_free(xhci, cur_ring);
710 stream_info->stream_rings[cur_stream] = NULL;
711 }
712 }
713 xhci_free_command(xhci, stream_info->free_streams_command);
714 cleanup_ctx:
715 kfree(stream_info->stream_rings);
716 cleanup_info:
717 kfree(stream_info);
718 cleanup_trbs:
719 xhci->cmd_ring_reserved_trbs--;
720 return NULL;
721 }
722 /*
723 * Sets the MaxPStreams field and the Linear Stream Array field.
724 * Sets the dequeue pointer to the stream context array.
725 */
726 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
727 struct xhci_ep_ctx *ep_ctx,
728 struct xhci_stream_info *stream_info)
729 {
730 u32 max_primary_streams;
731 /* MaxPStreams is the number of stream context array entries, not the
732 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
733 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
734 */
735 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
736 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
737 1 << (max_primary_streams + 1));
738 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
739 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
740 | EP_HAS_LSA);
741 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
742 }
743
744 /*
745 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
746 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
747 * not at the beginning of the ring).
748 */
749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
750 struct xhci_ep_ctx *ep_ctx,
751 struct xhci_virt_ep *ep)
752 {
753 dma_addr_t addr;
754 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
755 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
756 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
757 }
758
759 /* Frees all stream contexts associated with the endpoint,
760 *
761 * Caller should fix the endpoint context streams fields.
762 */
763 void xhci_free_stream_info(struct xhci_hcd *xhci,
764 struct xhci_stream_info *stream_info)
765 {
766 int cur_stream;
767 struct xhci_ring *cur_ring;
768 dma_addr_t addr;
769
770 if (!stream_info)
771 return;
772
773 for (cur_stream = 1; cur_stream < stream_info->num_streams;
774 cur_stream++) {
775 cur_ring = stream_info->stream_rings[cur_stream];
776 if (cur_ring) {
777 addr = cur_ring->first_seg->dma;
778 radix_tree_delete(&stream_info->trb_address_map,
779 addr >> TRB_SEGMENT_SHIFT);
780 xhci_ring_free(xhci, cur_ring);
781 stream_info->stream_rings[cur_stream] = NULL;
782 }
783 }
784 xhci_free_command(xhci, stream_info->free_streams_command);
785 xhci->cmd_ring_reserved_trbs--;
786 if (stream_info->stream_ctx_array)
787 xhci_free_stream_ctx(xhci,
788 stream_info->num_stream_ctxs,
789 stream_info->stream_ctx_array,
790 stream_info->ctx_array_dma);
791
792 if (stream_info)
793 kfree(stream_info->stream_rings);
794 kfree(stream_info);
795 }
796
797
798 /***************** Device context manipulation *************************/
799
800 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
801 struct xhci_virt_ep *ep)
802 {
803 init_timer(&ep->stop_cmd_timer);
804 ep->stop_cmd_timer.data = (unsigned long) ep;
805 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
806 ep->xhci = xhci;
807 }
808
809 static void xhci_free_tt_info(struct xhci_hcd *xhci,
810 struct xhci_virt_device *virt_dev,
811 int slot_id)
812 {
813 struct list_head *tt_list_head;
814 struct xhci_tt_bw_info *tt_info, *next;
815 bool slot_found = false;
816
817 /* If the device never made it past the Set Address stage,
818 * it may not have the real_port set correctly.
819 */
820 if (virt_dev->real_port == 0 ||
821 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
822 xhci_dbg(xhci, "Bad real port.\n");
823 return;
824 }
825
826 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
827 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
828 /* Multi-TT hubs will have more than one entry */
829 if (tt_info->slot_id == slot_id) {
830 slot_found = true;
831 list_del(&tt_info->tt_list);
832 kfree(tt_info);
833 } else if (slot_found) {
834 break;
835 }
836 }
837 }
838
839 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
840 struct xhci_virt_device *virt_dev,
841 struct usb_device *hdev,
842 struct usb_tt *tt, gfp_t mem_flags)
843 {
844 struct xhci_tt_bw_info *tt_info;
845 unsigned int num_ports;
846 int i, j;
847
848 if (!tt->multi)
849 num_ports = 1;
850 else
851 num_ports = hdev->maxchild;
852
853 for (i = 0; i < num_ports; i++, tt_info++) {
854 struct xhci_interval_bw_table *bw_table;
855
856 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
857 if (!tt_info)
858 goto free_tts;
859 INIT_LIST_HEAD(&tt_info->tt_list);
860 list_add(&tt_info->tt_list,
861 &xhci->rh_bw[virt_dev->real_port - 1].tts);
862 tt_info->slot_id = virt_dev->udev->slot_id;
863 if (tt->multi)
864 tt_info->ttport = i+1;
865 bw_table = &tt_info->bw_table;
866 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
867 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
868 }
869 return 0;
870
871 free_tts:
872 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
873 return -ENOMEM;
874 }
875
876
877 /* All the xhci_tds in the ring's TD list should be freed at this point.
878 * Should be called with xhci->lock held if there is any chance the TT lists
879 * will be manipulated by the configure endpoint, allocate device, or update
880 * hub functions while this function is removing the TT entries from the list.
881 */
882 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
883 {
884 struct xhci_virt_device *dev;
885 int i;
886 int old_active_eps = 0;
887
888 /* Slot ID 0 is reserved */
889 if (slot_id == 0 || !xhci->devs[slot_id])
890 return;
891
892 dev = xhci->devs[slot_id];
893 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
894 if (!dev)
895 return;
896
897 if (dev->tt_info)
898 old_active_eps = dev->tt_info->active_eps;
899
900 for (i = 0; i < 31; ++i) {
901 if (dev->eps[i].ring)
902 xhci_ring_free(xhci, dev->eps[i].ring);
903 if (dev->eps[i].stream_info)
904 xhci_free_stream_info(xhci,
905 dev->eps[i].stream_info);
906 /* Endpoints on the TT/root port lists should have been removed
907 * when usb_disable_device() was called for the device.
908 * We can't drop them anyway, because the udev might have gone
909 * away by this point, and we can't tell what speed it was.
910 */
911 if (!list_empty(&dev->eps[i].bw_endpoint_list))
912 xhci_warn(xhci, "Slot %u endpoint %u "
913 "not removed from BW list!\n",
914 slot_id, i);
915 }
916 /* If this is a hub, free the TT(s) from the TT list */
917 xhci_free_tt_info(xhci, dev, slot_id);
918 /* If necessary, update the number of active TTs on this root port */
919 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
920
921 if (dev->ring_cache) {
922 for (i = 0; i < dev->num_rings_cached; i++)
923 xhci_ring_free(xhci, dev->ring_cache[i]);
924 kfree(dev->ring_cache);
925 }
926
927 if (dev->in_ctx)
928 xhci_free_container_ctx(xhci, dev->in_ctx);
929 if (dev->out_ctx)
930 xhci_free_container_ctx(xhci, dev->out_ctx);
931
932 kfree(xhci->devs[slot_id]);
933 xhci->devs[slot_id] = NULL;
934 }
935
936 /*
937 * Free a virt_device structure.
938 * If the virt_device added a tt_info (a hub) and has children pointing to
939 * that tt_info, then free the child first. Recursive.
940 * We can't rely on udev at this point to find child-parent relationships.
941 */
942 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
943 {
944 struct xhci_virt_device *vdev;
945 struct list_head *tt_list_head;
946 struct xhci_tt_bw_info *tt_info, *next;
947 int i;
948
949 vdev = xhci->devs[slot_id];
950 if (!vdev)
951 return;
952
953 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
954 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
955 /* is this a hub device that added a tt_info to the tts list */
956 if (tt_info->slot_id == slot_id) {
957 /* are any devices using this tt_info? */
958 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
959 vdev = xhci->devs[i];
960 if (vdev && (vdev->tt_info == tt_info))
961 xhci_free_virt_devices_depth_first(
962 xhci, i);
963 }
964 }
965 }
966 /* we are now at a leaf device */
967 xhci_free_virt_device(xhci, slot_id);
968 }
969
970 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
971 struct usb_device *udev, gfp_t flags)
972 {
973 struct xhci_virt_device *dev;
974 int i;
975
976 /* Slot ID 0 is reserved */
977 if (slot_id == 0 || xhci->devs[slot_id]) {
978 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
979 return 0;
980 }
981
982 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
983 if (!xhci->devs[slot_id])
984 return 0;
985 dev = xhci->devs[slot_id];
986
987 /* Allocate the (output) device context that will be used in the HC. */
988 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
989 if (!dev->out_ctx)
990 goto fail;
991
992 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
993 (unsigned long long)dev->out_ctx->dma);
994
995 /* Allocate the (input) device context for address device command */
996 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
997 if (!dev->in_ctx)
998 goto fail;
999
1000 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1001 (unsigned long long)dev->in_ctx->dma);
1002
1003 /* Initialize the cancellation list and watchdog timers for each ep */
1004 for (i = 0; i < 31; i++) {
1005 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1006 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1007 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1008 }
1009
1010 /* Allocate endpoint 0 ring */
1011 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1012 if (!dev->eps[0].ring)
1013 goto fail;
1014
1015 /* Allocate pointers to the ring cache */
1016 dev->ring_cache = kzalloc(
1017 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1018 flags);
1019 if (!dev->ring_cache)
1020 goto fail;
1021 dev->num_rings_cached = 0;
1022
1023 init_completion(&dev->cmd_completion);
1024 INIT_LIST_HEAD(&dev->cmd_list);
1025 dev->udev = udev;
1026
1027 /* Point to output device context in dcbaa. */
1028 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1029 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1030 slot_id,
1031 &xhci->dcbaa->dev_context_ptrs[slot_id],
1032 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1033
1034 return 1;
1035 fail:
1036 xhci_free_virt_device(xhci, slot_id);
1037 return 0;
1038 }
1039
1040 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1041 struct usb_device *udev)
1042 {
1043 struct xhci_virt_device *virt_dev;
1044 struct xhci_ep_ctx *ep0_ctx;
1045 struct xhci_ring *ep_ring;
1046
1047 virt_dev = xhci->devs[udev->slot_id];
1048 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1049 ep_ring = virt_dev->eps[0].ring;
1050 /*
1051 * FIXME we don't keep track of the dequeue pointer very well after a
1052 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1053 * host to our enqueue pointer. This should only be called after a
1054 * configured device has reset, so all control transfers should have
1055 * been completed or cancelled before the reset.
1056 */
1057 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1058 ep_ring->enqueue)
1059 | ep_ring->cycle_state);
1060 }
1061
1062 /*
1063 * The xHCI roothub may have ports of differing speeds in any order in the port
1064 * status registers. xhci->port_array provides an array of the port speed for
1065 * each offset into the port status registers.
1066 *
1067 * The xHCI hardware wants to know the roothub port number that the USB device
1068 * is attached to (or the roothub port its ancestor hub is attached to). All we
1069 * know is the index of that port under either the USB 2.0 or the USB 3.0
1070 * roothub, but that doesn't give us the real index into the HW port status
1071 * registers. Call xhci_find_raw_port_number() to get real index.
1072 */
1073 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1074 struct usb_device *udev)
1075 {
1076 struct usb_device *top_dev;
1077 struct usb_hcd *hcd;
1078
1079 if (udev->speed == USB_SPEED_SUPER)
1080 hcd = xhci->shared_hcd;
1081 else
1082 hcd = xhci->main_hcd;
1083
1084 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1085 top_dev = top_dev->parent)
1086 /* Found device below root hub */;
1087
1088 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1089 }
1090
1091 /* Setup an xHCI virtual device for a Set Address command */
1092 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1093 {
1094 struct xhci_virt_device *dev;
1095 struct xhci_ep_ctx *ep0_ctx;
1096 struct xhci_slot_ctx *slot_ctx;
1097 u32 port_num;
1098 struct usb_device *top_dev;
1099
1100 dev = xhci->devs[udev->slot_id];
1101 /* Slot ID 0 is reserved */
1102 if (udev->slot_id == 0 || !dev) {
1103 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1104 udev->slot_id);
1105 return -EINVAL;
1106 }
1107 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1108 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1109
1110 /* 3) Only the control endpoint is valid - one endpoint context */
1111 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1112 switch (udev->speed) {
1113 case USB_SPEED_SUPER:
1114 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1115 break;
1116 case USB_SPEED_HIGH:
1117 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1118 break;
1119 case USB_SPEED_FULL:
1120 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1121 break;
1122 case USB_SPEED_LOW:
1123 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1124 break;
1125 case USB_SPEED_WIRELESS:
1126 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1127 return -EINVAL;
1128 break;
1129 default:
1130 /* Speed was set earlier, this shouldn't happen. */
1131 BUG();
1132 }
1133 /* Find the root hub port this device is under */
1134 port_num = xhci_find_real_port_number(xhci, udev);
1135 if (!port_num)
1136 return -EINVAL;
1137 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1138 /* Set the port number in the virtual_device to the faked port number */
1139 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1140 top_dev = top_dev->parent)
1141 /* Found device below root hub */;
1142 dev->fake_port = top_dev->portnum;
1143 dev->real_port = port_num;
1144 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1145 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1146
1147 /* Find the right bandwidth table that this device will be a part of.
1148 * If this is a full speed device attached directly to a root port (or a
1149 * decendent of one), it counts as a primary bandwidth domain, not a
1150 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1151 * will never be created for the HS root hub.
1152 */
1153 if (!udev->tt || !udev->tt->hub->parent) {
1154 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1155 } else {
1156 struct xhci_root_port_bw_info *rh_bw;
1157 struct xhci_tt_bw_info *tt_bw;
1158
1159 rh_bw = &xhci->rh_bw[port_num - 1];
1160 /* Find the right TT. */
1161 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1162 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1163 continue;
1164
1165 if (!dev->udev->tt->multi ||
1166 (udev->tt->multi &&
1167 tt_bw->ttport == dev->udev->ttport)) {
1168 dev->bw_table = &tt_bw->bw_table;
1169 dev->tt_info = tt_bw;
1170 break;
1171 }
1172 }
1173 if (!dev->tt_info)
1174 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1175 }
1176
1177 /* Is this a LS/FS device under an external HS hub? */
1178 if (udev->tt && udev->tt->hub->parent) {
1179 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1180 (udev->ttport << 8));
1181 if (udev->tt->multi)
1182 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1183 }
1184 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1185 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1186
1187 /* Step 4 - ring already allocated */
1188 /* Step 5 */
1189 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1190 /*
1191 * XXX: Not sure about wireless USB devices.
1192 */
1193 switch (udev->speed) {
1194 case USB_SPEED_SUPER:
1195 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1196 break;
1197 case USB_SPEED_HIGH:
1198 /* USB core guesses at a 64-byte max packet first for FS devices */
1199 case USB_SPEED_FULL:
1200 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1201 break;
1202 case USB_SPEED_LOW:
1203 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1204 break;
1205 case USB_SPEED_WIRELESS:
1206 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1207 return -EINVAL;
1208 break;
1209 default:
1210 /* New speed? */
1211 BUG();
1212 }
1213 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1214 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1215
1216 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1217 dev->eps[0].ring->cycle_state);
1218
1219 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1220
1221 return 0;
1222 }
1223
1224 /*
1225 * Convert interval expressed as 2^(bInterval - 1) == interval into
1226 * straight exponent value 2^n == interval.
1227 *
1228 */
1229 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1230 struct usb_host_endpoint *ep)
1231 {
1232 unsigned int interval;
1233
1234 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1235 if (interval != ep->desc.bInterval - 1)
1236 dev_warn(&udev->dev,
1237 "ep %#x - rounding interval to %d %sframes\n",
1238 ep->desc.bEndpointAddress,
1239 1 << interval,
1240 udev->speed == USB_SPEED_FULL ? "" : "micro");
1241
1242 if (udev->speed == USB_SPEED_FULL) {
1243 /*
1244 * Full speed isoc endpoints specify interval in frames,
1245 * not microframes. We are using microframes everywhere,
1246 * so adjust accordingly.
1247 */
1248 interval += 3; /* 1 frame = 2^3 uframes */
1249 }
1250
1251 return interval;
1252 }
1253
1254 /*
1255 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1256 * microframes, rounded down to nearest power of 2.
1257 */
1258 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1259 struct usb_host_endpoint *ep, unsigned int desc_interval,
1260 unsigned int min_exponent, unsigned int max_exponent)
1261 {
1262 unsigned int interval;
1263
1264 interval = fls(desc_interval) - 1;
1265 interval = clamp_val(interval, min_exponent, max_exponent);
1266 if ((1 << interval) != desc_interval)
1267 dev_warn(&udev->dev,
1268 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1269 ep->desc.bEndpointAddress,
1270 1 << interval,
1271 desc_interval);
1272
1273 return interval;
1274 }
1275
1276 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1277 struct usb_host_endpoint *ep)
1278 {
1279 if (ep->desc.bInterval == 0)
1280 return 0;
1281 return xhci_microframes_to_exponent(udev, ep,
1282 ep->desc.bInterval, 0, 15);
1283 }
1284
1285
1286 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1287 struct usb_host_endpoint *ep)
1288 {
1289 return xhci_microframes_to_exponent(udev, ep,
1290 ep->desc.bInterval * 8, 3, 10);
1291 }
1292
1293 /* Return the polling or NAK interval.
1294 *
1295 * The polling interval is expressed in "microframes". If xHCI's Interval field
1296 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1297 *
1298 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1299 * is set to 0.
1300 */
1301 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1302 struct usb_host_endpoint *ep)
1303 {
1304 unsigned int interval = 0;
1305
1306 switch (udev->speed) {
1307 case USB_SPEED_HIGH:
1308 /* Max NAK rate */
1309 if (usb_endpoint_xfer_control(&ep->desc) ||
1310 usb_endpoint_xfer_bulk(&ep->desc)) {
1311 interval = xhci_parse_microframe_interval(udev, ep);
1312 break;
1313 }
1314 /* Fall through - SS and HS isoc/int have same decoding */
1315
1316 case USB_SPEED_SUPER:
1317 if (usb_endpoint_xfer_int(&ep->desc) ||
1318 usb_endpoint_xfer_isoc(&ep->desc)) {
1319 interval = xhci_parse_exponent_interval(udev, ep);
1320 }
1321 break;
1322
1323 case USB_SPEED_FULL:
1324 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1325 interval = xhci_parse_exponent_interval(udev, ep);
1326 break;
1327 }
1328 /*
1329 * Fall through for interrupt endpoint interval decoding
1330 * since it uses the same rules as low speed interrupt
1331 * endpoints.
1332 */
1333
1334 case USB_SPEED_LOW:
1335 if (usb_endpoint_xfer_int(&ep->desc) ||
1336 usb_endpoint_xfer_isoc(&ep->desc)) {
1337
1338 interval = xhci_parse_frame_interval(udev, ep);
1339 }
1340 break;
1341
1342 default:
1343 BUG();
1344 }
1345 return EP_INTERVAL(interval);
1346 }
1347
1348 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1349 * High speed endpoint descriptors can define "the number of additional
1350 * transaction opportunities per microframe", but that goes in the Max Burst
1351 * endpoint context field.
1352 */
1353 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1354 struct usb_host_endpoint *ep)
1355 {
1356 if (udev->speed != USB_SPEED_SUPER ||
1357 !usb_endpoint_xfer_isoc(&ep->desc))
1358 return 0;
1359 return ep->ss_ep_comp.bmAttributes;
1360 }
1361
1362 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1363 struct usb_host_endpoint *ep)
1364 {
1365 int in;
1366 u32 type;
1367
1368 in = usb_endpoint_dir_in(&ep->desc);
1369 if (usb_endpoint_xfer_control(&ep->desc)) {
1370 type = EP_TYPE(CTRL_EP);
1371 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1372 if (in)
1373 type = EP_TYPE(BULK_IN_EP);
1374 else
1375 type = EP_TYPE(BULK_OUT_EP);
1376 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1377 if (in)
1378 type = EP_TYPE(ISOC_IN_EP);
1379 else
1380 type = EP_TYPE(ISOC_OUT_EP);
1381 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1382 if (in)
1383 type = EP_TYPE(INT_IN_EP);
1384 else
1385 type = EP_TYPE(INT_OUT_EP);
1386 } else {
1387 BUG();
1388 }
1389 return type;
1390 }
1391
1392 /* Return the maximum endpoint service interval time (ESIT) payload.
1393 * Basically, this is the maxpacket size, multiplied by the burst size
1394 * and mult size.
1395 */
1396 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1397 struct usb_device *udev,
1398 struct usb_host_endpoint *ep)
1399 {
1400 int max_burst;
1401 int max_packet;
1402
1403 /* Only applies for interrupt or isochronous endpoints */
1404 if (usb_endpoint_xfer_control(&ep->desc) ||
1405 usb_endpoint_xfer_bulk(&ep->desc))
1406 return 0;
1407
1408 if (udev->speed == USB_SPEED_SUPER)
1409 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1410
1411 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1412 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1413 /* A 0 in max burst means 1 transfer per ESIT */
1414 return max_packet * (max_burst + 1);
1415 }
1416
1417 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1418 * Drivers will have to call usb_alloc_streams() to do that.
1419 */
1420 int xhci_endpoint_init(struct xhci_hcd *xhci,
1421 struct xhci_virt_device *virt_dev,
1422 struct usb_device *udev,
1423 struct usb_host_endpoint *ep,
1424 gfp_t mem_flags)
1425 {
1426 unsigned int ep_index;
1427 struct xhci_ep_ctx *ep_ctx;
1428 struct xhci_ring *ep_ring;
1429 unsigned int max_packet;
1430 unsigned int max_burst;
1431 enum xhci_ring_type type;
1432 u32 max_esit_payload;
1433
1434 ep_index = xhci_get_endpoint_index(&ep->desc);
1435 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1436
1437 type = usb_endpoint_type(&ep->desc);
1438 /* Set up the endpoint ring */
1439 virt_dev->eps[ep_index].new_ring =
1440 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1441 if (!virt_dev->eps[ep_index].new_ring) {
1442 /* Attempt to use the ring cache */
1443 if (virt_dev->num_rings_cached == 0)
1444 return -ENOMEM;
1445 virt_dev->num_rings_cached--;
1446 virt_dev->eps[ep_index].new_ring =
1447 virt_dev->ring_cache[virt_dev->num_rings_cached];
1448 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1449 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1450 1, type);
1451 }
1452 virt_dev->eps[ep_index].skip = false;
1453 ep_ring = virt_dev->eps[ep_index].new_ring;
1454 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1455
1456 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1457 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1458
1459 /* FIXME dig Mult and streams info out of ep companion desc */
1460
1461 /* Allow 3 retries for everything but isoc;
1462 * CErr shall be set to 0 for Isoch endpoints.
1463 */
1464 if (!usb_endpoint_xfer_isoc(&ep->desc))
1465 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1466 else
1467 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1468
1469 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1470
1471 /* Set the max packet size and max burst */
1472 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1473 max_burst = 0;
1474 switch (udev->speed) {
1475 case USB_SPEED_SUPER:
1476 /* dig out max burst from ep companion desc */
1477 max_burst = ep->ss_ep_comp.bMaxBurst;
1478 break;
1479 case USB_SPEED_HIGH:
1480 /* Some devices get this wrong */
1481 if (usb_endpoint_xfer_bulk(&ep->desc))
1482 max_packet = 512;
1483 /* bits 11:12 specify the number of additional transaction
1484 * opportunities per microframe (USB 2.0, section 9.6.6)
1485 */
1486 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1487 usb_endpoint_xfer_int(&ep->desc)) {
1488 max_burst = (usb_endpoint_maxp(&ep->desc)
1489 & 0x1800) >> 11;
1490 }
1491 break;
1492 case USB_SPEED_FULL:
1493 case USB_SPEED_LOW:
1494 {
1495 CHIP_SW_VER sw_code = mt_get_chip_sw_ver();
1496 unsigned int hw_code = mt_get_chip_hw_code();
1497
1498 if((hw_code == 0x6595) && (sw_code <= CHIP_SW_VER_01)){
1499 /* workaround for maxp size issue of RXXE */
1500 if((max_packet % 4 == 2) && (max_packet % 16 != 14) &&
1501 (max_burst == 0) && usb_endpoint_dir_in(&ep->desc))
1502 max_packet += 2;
1503 }
1504 break;
1505 }
1506 default:
1507 BUG();
1508 }
1509 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1510 MAX_BURST(max_burst));
1511 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1512 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1513
1514 /*
1515 * XXX no idea how to calculate the average TRB buffer length for bulk
1516 * endpoints, as the driver gives us no clue how big each scatter gather
1517 * list entry (or buffer) is going to be.
1518 *
1519 * For isochronous and interrupt endpoints, we set it to the max
1520 * available, until we have new API in the USB core to allow drivers to
1521 * declare how much bandwidth they actually need.
1522 *
1523 * Normally, it would be calculated by taking the total of the buffer
1524 * lengths in the TD and then dividing by the number of TRBs in a TD,
1525 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1526 * use Event Data TRBs, and we don't chain in a link TRB on short
1527 * transfers, we're basically dividing by 1.
1528 *
1529 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1530 * should be set to 8 for control endpoints.
1531 */
1532 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1533 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1534 else
1535 ep_ctx->tx_info |=
1536 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1537
1538 /* FIXME Debug endpoint context */
1539 return 0;
1540 }
1541
1542 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1543 struct xhci_virt_device *virt_dev,
1544 struct usb_host_endpoint *ep)
1545 {
1546 unsigned int ep_index;
1547 struct xhci_ep_ctx *ep_ctx;
1548
1549 ep_index = xhci_get_endpoint_index(&ep->desc);
1550 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1551
1552 ep_ctx->ep_info = 0;
1553 ep_ctx->ep_info2 = 0;
1554 ep_ctx->deq = 0;
1555 ep_ctx->tx_info = 0;
1556 /* Don't free the endpoint ring until the set interface or configuration
1557 * request succeeds.
1558 */
1559 }
1560
1561 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1562 {
1563 bw_info->ep_interval = 0;
1564 bw_info->mult = 0;
1565 bw_info->num_packets = 0;
1566 bw_info->max_packet_size = 0;
1567 bw_info->type = 0;
1568 bw_info->max_esit_payload = 0;
1569 }
1570
1571 void xhci_update_bw_info(struct xhci_hcd *xhci,
1572 struct xhci_container_ctx *in_ctx,
1573 struct xhci_input_control_ctx *ctrl_ctx,
1574 struct xhci_virt_device *virt_dev)
1575 {
1576 struct xhci_bw_info *bw_info;
1577 struct xhci_ep_ctx *ep_ctx;
1578 unsigned int ep_type;
1579 int i;
1580
1581 for (i = 1; i < 31; ++i) {
1582 bw_info = &virt_dev->eps[i].bw_info;
1583
1584 /* We can't tell what endpoint type is being dropped, but
1585 * unconditionally clearing the bandwidth info for non-periodic
1586 * endpoints should be harmless because the info will never be
1587 * set in the first place.
1588 */
1589 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1590 /* Dropped endpoint */
1591 xhci_clear_endpoint_bw_info(bw_info);
1592 continue;
1593 }
1594
1595 if (EP_IS_ADDED(ctrl_ctx, i)) {
1596 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1597 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1598
1599 /* Ignore non-periodic endpoints */
1600 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1601 ep_type != ISOC_IN_EP &&
1602 ep_type != INT_IN_EP)
1603 continue;
1604
1605 /* Added or changed endpoint */
1606 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1607 le32_to_cpu(ep_ctx->ep_info));
1608 /* Number of packets and mult are zero-based in the
1609 * input context, but we want one-based for the
1610 * interval table.
1611 */
1612 bw_info->mult = CTX_TO_EP_MULT(
1613 le32_to_cpu(ep_ctx->ep_info)) + 1;
1614 bw_info->num_packets = CTX_TO_MAX_BURST(
1615 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1616 bw_info->max_packet_size = MAX_PACKET_DECODED(
1617 le32_to_cpu(ep_ctx->ep_info2));
1618 bw_info->type = ep_type;
1619 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1620 le32_to_cpu(ep_ctx->tx_info));
1621 }
1622 }
1623 }
1624
1625 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1626 * Useful when you want to change one particular aspect of the endpoint and then
1627 * issue a configure endpoint command.
1628 */
1629 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1630 struct xhci_container_ctx *in_ctx,
1631 struct xhci_container_ctx *out_ctx,
1632 unsigned int ep_index)
1633 {
1634 struct xhci_ep_ctx *out_ep_ctx;
1635 struct xhci_ep_ctx *in_ep_ctx;
1636
1637 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1638 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1639
1640 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1641 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1642 in_ep_ctx->deq = out_ep_ctx->deq;
1643 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1644 }
1645
1646 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1647 * Useful when you want to change one particular aspect of the endpoint and then
1648 * issue a configure endpoint command. Only the context entries field matters,
1649 * but we'll copy the whole thing anyway.
1650 */
1651 void xhci_slot_copy(struct xhci_hcd *xhci,
1652 struct xhci_container_ctx *in_ctx,
1653 struct xhci_container_ctx *out_ctx)
1654 {
1655 struct xhci_slot_ctx *in_slot_ctx;
1656 struct xhci_slot_ctx *out_slot_ctx;
1657
1658 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1659 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1660
1661 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1662 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1663 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1664 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1665 }
1666
1667 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1668 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1669 {
1670 int i;
1671 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1672 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1673
1674 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1675
1676 if (!num_sp)
1677 return 0;
1678
1679 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1680 if (!xhci->scratchpad)
1681 goto fail_sp;
1682
1683 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1684 num_sp * sizeof(u64),
1685 &xhci->scratchpad->sp_dma, flags);
1686 if (!xhci->scratchpad->sp_array)
1687 goto fail_sp2;
1688
1689 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1690 if (!xhci->scratchpad->sp_buffers)
1691 goto fail_sp3;
1692
1693 xhci->scratchpad->sp_dma_buffers =
1694 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1695
1696 if (!xhci->scratchpad->sp_dma_buffers)
1697 goto fail_sp4;
1698
1699 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1700 for (i = 0; i < num_sp; i++) {
1701 dma_addr_t dma;
1702 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1703 flags);
1704 if (!buf)
1705 goto fail_sp5;
1706
1707 xhci->scratchpad->sp_array[i] = dma;
1708 xhci->scratchpad->sp_buffers[i] = buf;
1709 xhci->scratchpad->sp_dma_buffers[i] = dma;
1710 }
1711
1712 return 0;
1713
1714 fail_sp5:
1715 for (i = i - 1; i >= 0; i--) {
1716 dma_free_coherent(dev, xhci->page_size,
1717 xhci->scratchpad->sp_buffers[i],
1718 xhci->scratchpad->sp_dma_buffers[i]);
1719 }
1720 kfree(xhci->scratchpad->sp_dma_buffers);
1721
1722 fail_sp4:
1723 kfree(xhci->scratchpad->sp_buffers);
1724
1725 fail_sp3:
1726 dma_free_coherent(dev, num_sp * sizeof(u64),
1727 xhci->scratchpad->sp_array,
1728 xhci->scratchpad->sp_dma);
1729
1730 fail_sp2:
1731 kfree(xhci->scratchpad);
1732 xhci->scratchpad = NULL;
1733
1734 fail_sp:
1735 return -ENOMEM;
1736 }
1737
1738 static void scratchpad_free(struct xhci_hcd *xhci)
1739 {
1740 int num_sp;
1741 int i;
1742 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1743
1744 if (!xhci->scratchpad)
1745 return;
1746
1747 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1748
1749 for (i = 0; i < num_sp; i++) {
1750 dma_free_coherent(dev, xhci->page_size,
1751 xhci->scratchpad->sp_buffers[i],
1752 xhci->scratchpad->sp_dma_buffers[i]);
1753 }
1754 kfree(xhci->scratchpad->sp_dma_buffers);
1755 kfree(xhci->scratchpad->sp_buffers);
1756 dma_free_coherent(dev, num_sp * sizeof(u64),
1757 xhci->scratchpad->sp_array,
1758 xhci->scratchpad->sp_dma);
1759 kfree(xhci->scratchpad);
1760 xhci->scratchpad = NULL;
1761 }
1762
1763 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1764 bool allocate_in_ctx, bool allocate_completion,
1765 gfp_t mem_flags)
1766 {
1767 struct xhci_command *command;
1768
1769 command = kzalloc(sizeof(*command), mem_flags);
1770 if (!command)
1771 return NULL;
1772
1773 if (allocate_in_ctx) {
1774 command->in_ctx =
1775 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1776 mem_flags);
1777 if (!command->in_ctx) {
1778 kfree(command);
1779 return NULL;
1780 }
1781 }
1782
1783 if (allocate_completion) {
1784 command->completion =
1785 kzalloc(sizeof(struct completion), mem_flags);
1786 if (!command->completion) {
1787 xhci_free_container_ctx(xhci, command->in_ctx);
1788 kfree(command);
1789 return NULL;
1790 }
1791 init_completion(command->completion);
1792 }
1793
1794 command->status = 0;
1795 INIT_LIST_HEAD(&command->cmd_list);
1796 return command;
1797 }
1798
1799 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1800 {
1801 if (urb_priv) {
1802 kfree(urb_priv->td[0]);
1803 kfree(urb_priv);
1804 }
1805 }
1806
1807 void xhci_free_command(struct xhci_hcd *xhci,
1808 struct xhci_command *command)
1809 {
1810 xhci_free_container_ctx(xhci,
1811 command->in_ctx);
1812 kfree(command->completion);
1813 kfree(command);
1814 }
1815
1816 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1817 {
1818 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1819 struct dev_info *dev_info, *next;
1820 struct xhci_cd *cur_cd, *next_cd;
1821 unsigned long flags;
1822 int size;
1823 int i, j, num_ports;
1824
1825 /* Free the Event Ring Segment Table and the actual Event Ring */
1826 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1827 if (xhci->erst.entries)
1828 dma_free_coherent(dev, size,
1829 xhci->erst.entries, xhci->erst.erst_dma_addr);
1830 xhci->erst.entries = NULL;
1831 xhci_dbg(xhci, "Freed ERST\n");
1832 if (xhci->event_ring)
1833 xhci_ring_free(xhci, xhci->event_ring);
1834 xhci->event_ring = NULL;
1835 xhci_dbg(xhci, "Freed event ring\n");
1836
1837 if (xhci->lpm_command)
1838 xhci_free_command(xhci, xhci->lpm_command);
1839 xhci->cmd_ring_reserved_trbs = 0;
1840 if (xhci->cmd_ring)
1841 xhci_ring_free(xhci, xhci->cmd_ring);
1842 xhci->cmd_ring = NULL;
1843 xhci_dbg(xhci, "Freed command ring\n");
1844 list_for_each_entry_safe(cur_cd, next_cd,
1845 &xhci->cancel_cmd_list, cancel_cmd_list) {
1846 list_del(&cur_cd->cancel_cmd_list);
1847 kfree(cur_cd);
1848 }
1849
1850 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1851 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1852 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1853 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1854 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1855 while (!list_empty(ep))
1856 list_del_init(ep->next);
1857 }
1858 }
1859
1860 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1861 xhci_free_virt_devices_depth_first(xhci, i);
1862
1863 if (xhci->segment_pool)
1864 dma_pool_destroy(xhci->segment_pool);
1865 xhci->segment_pool = NULL;
1866 xhci_dbg(xhci, "Freed segment pool\n");
1867
1868 if (xhci->device_pool)
1869 dma_pool_destroy(xhci->device_pool);
1870 xhci->device_pool = NULL;
1871 xhci_dbg(xhci, "Freed device context pool\n");
1872
1873 if (xhci->small_streams_pool)
1874 dma_pool_destroy(xhci->small_streams_pool);
1875 xhci->small_streams_pool = NULL;
1876 xhci_dbg(xhci, "Freed small stream array pool\n");
1877
1878 if (xhci->medium_streams_pool)
1879 dma_pool_destroy(xhci->medium_streams_pool);
1880 xhci->medium_streams_pool = NULL;
1881 xhci_dbg(xhci, "Freed medium stream array pool\n");
1882
1883 if (xhci->dcbaa)
1884 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1885 xhci->dcbaa, xhci->dcbaa->dma);
1886 xhci->dcbaa = NULL;
1887
1888 scratchpad_free(xhci);
1889
1890 spin_lock_irqsave(&xhci->lock, flags);
1891 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1892 list_del(&dev_info->list);
1893 kfree(dev_info);
1894 }
1895 spin_unlock_irqrestore(&xhci->lock, flags);
1896
1897 if (!xhci->rh_bw)
1898 goto no_bw;
1899
1900 for (i = 0; i < num_ports; i++) {
1901 struct xhci_tt_bw_info *tt, *n;
1902 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1903 list_del(&tt->tt_list);
1904 kfree(tt);
1905 }
1906 }
1907
1908 no_bw:
1909 xhci->num_usb2_ports = 0;
1910 xhci->num_usb3_ports = 0;
1911 xhci->num_active_eps = 0;
1912 kfree(xhci->usb2_ports);
1913 kfree(xhci->usb3_ports);
1914 kfree(xhci->port_array);
1915 kfree(xhci->rh_bw);
1916
1917 xhci->usb2_ports = NULL;
1918 xhci->usb3_ports = NULL;
1919 xhci->port_array = NULL;
1920 xhci->rh_bw = NULL;
1921
1922 xhci->page_size = 0;
1923 xhci->page_shift = 0;
1924 xhci->bus_state[0].bus_suspended = 0;
1925 xhci->bus_state[1].bus_suspended = 0;
1926 }
1927
1928 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1929 struct xhci_segment *input_seg,
1930 union xhci_trb *start_trb,
1931 union xhci_trb *end_trb,
1932 dma_addr_t input_dma,
1933 struct xhci_segment *result_seg,
1934 char *test_name, int test_number)
1935 {
1936 unsigned long long start_dma;
1937 unsigned long long end_dma;
1938 struct xhci_segment *seg;
1939
1940 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1941 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1942
1943 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1944 if (seg != result_seg) {
1945 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1946 test_name, test_number);
1947 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1948 "input DMA 0x%llx\n",
1949 input_seg,
1950 (unsigned long long) input_dma);
1951 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1952 "ending TRB %p (0x%llx DMA)\n",
1953 start_trb, start_dma,
1954 end_trb, end_dma);
1955 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1956 result_seg, seg);
1957 return -1;
1958 }
1959 return 0;
1960 }
1961
1962 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1963 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1964 {
1965 struct {
1966 dma_addr_t input_dma;
1967 struct xhci_segment *result_seg;
1968 } simple_test_vector [] = {
1969 /* A zeroed DMA field should fail */
1970 { 0, NULL },
1971 /* One TRB before the ring start should fail */
1972 { xhci->event_ring->first_seg->dma - 16, NULL },
1973 /* One byte before the ring start should fail */
1974 { xhci->event_ring->first_seg->dma - 1, NULL },
1975 /* Starting TRB should succeed */
1976 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1977 /* Ending TRB should succeed */
1978 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1979 xhci->event_ring->first_seg },
1980 /* One byte after the ring end should fail */
1981 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1982 /* One TRB after the ring end should fail */
1983 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1984 /* An address of all ones should fail */
1985 { (dma_addr_t) (~0), NULL },
1986 };
1987 struct {
1988 struct xhci_segment *input_seg;
1989 union xhci_trb *start_trb;
1990 union xhci_trb *end_trb;
1991 dma_addr_t input_dma;
1992 struct xhci_segment *result_seg;
1993 } complex_test_vector [] = {
1994 /* Test feeding a valid DMA address from a different ring */
1995 { .input_seg = xhci->event_ring->first_seg,
1996 .start_trb = xhci->event_ring->first_seg->trbs,
1997 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1998 .input_dma = xhci->cmd_ring->first_seg->dma,
1999 .result_seg = NULL,
2000 },
2001 /* Test feeding a valid end TRB from a different ring */
2002 { .input_seg = xhci->event_ring->first_seg,
2003 .start_trb = xhci->event_ring->first_seg->trbs,
2004 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2005 .input_dma = xhci->cmd_ring->first_seg->dma,
2006 .result_seg = NULL,
2007 },
2008 /* Test feeding a valid start and end TRB from a different ring */
2009 { .input_seg = xhci->event_ring->first_seg,
2010 .start_trb = xhci->cmd_ring->first_seg->trbs,
2011 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2012 .input_dma = xhci->cmd_ring->first_seg->dma,
2013 .result_seg = NULL,
2014 },
2015 /* TRB in this ring, but after this TD */
2016 { .input_seg = xhci->event_ring->first_seg,
2017 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2018 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2019 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2020 .result_seg = NULL,
2021 },
2022 /* TRB in this ring, but before this TD */
2023 { .input_seg = xhci->event_ring->first_seg,
2024 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2025 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2026 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2027 .result_seg = NULL,
2028 },
2029 /* TRB in this ring, but after this wrapped TD */
2030 { .input_seg = xhci->event_ring->first_seg,
2031 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2032 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2033 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2034 .result_seg = NULL,
2035 },
2036 /* TRB in this ring, but before this wrapped TD */
2037 { .input_seg = xhci->event_ring->first_seg,
2038 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2039 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2040 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2041 .result_seg = NULL,
2042 },
2043 /* TRB not in this ring, and we have a wrapped TD */
2044 { .input_seg = xhci->event_ring->first_seg,
2045 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2046 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2047 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2048 .result_seg = NULL,
2049 },
2050 };
2051
2052 unsigned int num_tests;
2053 int i, ret;
2054
2055 num_tests = ARRAY_SIZE(simple_test_vector);
2056 for (i = 0; i < num_tests; i++) {
2057 ret = xhci_test_trb_in_td(xhci,
2058 xhci->event_ring->first_seg,
2059 xhci->event_ring->first_seg->trbs,
2060 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2061 simple_test_vector[i].input_dma,
2062 simple_test_vector[i].result_seg,
2063 "Simple", i);
2064 if (ret < 0)
2065 return ret;
2066 }
2067
2068 num_tests = ARRAY_SIZE(complex_test_vector);
2069 for (i = 0; i < num_tests; i++) {
2070 ret = xhci_test_trb_in_td(xhci,
2071 complex_test_vector[i].input_seg,
2072 complex_test_vector[i].start_trb,
2073 complex_test_vector[i].end_trb,
2074 complex_test_vector[i].input_dma,
2075 complex_test_vector[i].result_seg,
2076 "Complex", i);
2077 if (ret < 0)
2078 return ret;
2079 }
2080 xhci_dbg(xhci, "TRB math tests passed.\n");
2081 return 0;
2082 }
2083
2084 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2085 {
2086 u64 temp;
2087 dma_addr_t deq;
2088
2089 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2090 xhci->event_ring->dequeue);
2091 if (deq == 0 && !in_interrupt())
2092 xhci_warn(xhci, "WARN something wrong with SW event ring "
2093 "dequeue ptr.\n");
2094 /* Update HC event ring dequeue pointer */
2095 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2096 temp &= ERST_PTR_MASK;
2097 /* Don't clear the EHB bit (which is RW1C) because
2098 * there might be more events to service.
2099 */
2100 temp &= ~ERST_EHB;
2101 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2102 "preserving EHB bit\n");
2103 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2104 &xhci->ir_set->erst_dequeue);
2105 }
2106
2107 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2108 __le32 __iomem *addr, u8 major_revision)
2109 {
2110 u32 temp, port_offset, port_count;
2111 int i;
2112
2113 if (major_revision > 0x03) {
2114 xhci_warn(xhci, "Ignoring unknown port speed, "
2115 "Ext Cap %p, revision = 0x%x\n",
2116 addr, major_revision);
2117 /* Ignoring port protocol we can't understand. FIXME */
2118 return;
2119 }
2120
2121 /* Port offset and count in the third dword, see section 7.2 */
2122 temp = xhci_readl(xhci, addr + 2);
2123 port_offset = XHCI_EXT_PORT_OFF(temp);
2124 port_count = XHCI_EXT_PORT_COUNT(temp);
2125 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2126 "count = %u, revision = 0x%x\n",
2127 addr, port_offset, port_count, major_revision);
2128 /* Port count includes the current port offset */
2129 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2130 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2131 return;
2132
2133 /* Check the host's USB2 LPM capability */
2134 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2135 (temp & XHCI_L1C)) {
2136 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2137 xhci->sw_lpm_support = 1;
2138 }
2139
2140 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2141 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2142 xhci->sw_lpm_support = 1;
2143 if (temp & XHCI_HLC) {
2144 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2145 xhci->hw_lpm_support = 1;
2146 }
2147 }
2148
2149 port_offset--;
2150 for (i = port_offset; i < (port_offset + port_count); i++) {
2151 /* Duplicate entry. Ignore the port if the revisions differ. */
2152 if (xhci->port_array[i] != 0) {
2153 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2154 " port %u\n", addr, i);
2155 xhci_warn(xhci, "Port was marked as USB %u, "
2156 "duplicated as USB %u\n",
2157 xhci->port_array[i], major_revision);
2158 /* Only adjust the roothub port counts if we haven't
2159 * found a similar duplicate.
2160 */
2161 if (xhci->port_array[i] != major_revision &&
2162 xhci->port_array[i] != DUPLICATE_ENTRY) {
2163 if (xhci->port_array[i] == 0x03)
2164 xhci->num_usb3_ports--;
2165 else
2166 xhci->num_usb2_ports--;
2167 xhci->port_array[i] = DUPLICATE_ENTRY;
2168 }
2169 /* FIXME: Should we disable the port? */
2170 continue;
2171 }
2172 xhci->port_array[i] = major_revision;
2173 if (major_revision == 0x03)
2174 xhci->num_usb3_ports++;
2175 else
2176 xhci->num_usb2_ports++;
2177 }
2178 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2179 }
2180
2181 /*
2182 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2183 * specify what speeds each port is supposed to be. We can't count on the port
2184 * speed bits in the PORTSC register being correct until a device is connected,
2185 * but we need to set up the two fake roothubs with the correct number of USB
2186 * 3.0 and USB 2.0 ports at host controller initialization time.
2187 */
2188 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2189 {
2190 __le32 __iomem *addr;
2191 u32 offset;
2192 unsigned int num_ports;
2193 int i, j, port_index;
2194
2195 addr = &xhci->cap_regs->hcc_params;
2196 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2197 if (offset == 0) {
2198 xhci_err(xhci, "No Extended Capability registers, "
2199 "unable to set up roothub.\n");
2200 return -ENODEV;
2201 }
2202
2203 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2204 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2205 if (!xhci->port_array)
2206 return -ENOMEM;
2207
2208 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2209 if (!xhci->rh_bw)
2210 return -ENOMEM;
2211 for (i = 0; i < num_ports; i++) {
2212 struct xhci_interval_bw_table *bw_table;
2213
2214 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2215 bw_table = &xhci->rh_bw[i].bw_table;
2216 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2217 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2218 }
2219
2220 /*
2221 * For whatever reason, the first capability offset is from the
2222 * capability register base, not from the HCCPARAMS register.
2223 * See section 5.3.6 for offset calculation.
2224 */
2225 addr = &xhci->cap_regs->hc_capbase + offset;
2226 while (1) {
2227 u32 cap_id;
2228
2229 cap_id = xhci_readl(xhci, addr);
2230 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2231 xhci_add_in_port(xhci, num_ports, addr,
2232 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2233 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2234 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2235 == num_ports)
2236 break;
2237 /*
2238 * Once you're into the Extended Capabilities, the offset is
2239 * always relative to the register holding the offset.
2240 */
2241 addr += offset;
2242 }
2243
2244 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2245 xhci_warn(xhci, "No ports on the roothubs?\n");
2246 return -ENODEV;
2247 }
2248 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2249 xhci->num_usb2_ports, xhci->num_usb3_ports);
2250
2251 /* Place limits on the number of roothub ports so that the hub
2252 * descriptors aren't longer than the USB core will allocate.
2253 */
2254 if (xhci->num_usb3_ports > 15) {
2255 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2256 xhci->num_usb3_ports = 15;
2257 }
2258 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2259 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2260 USB_MAXCHILDREN);
2261 xhci->num_usb2_ports = USB_MAXCHILDREN;
2262 }
2263
2264 /*
2265 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2266 * Not sure how the USB core will handle a hub with no ports...
2267 */
2268 if (xhci->num_usb2_ports) {
2269 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2270 xhci->num_usb2_ports, flags);
2271 if (!xhci->usb2_ports)
2272 return -ENOMEM;
2273
2274 port_index = 0;
2275 for (i = 0; i < num_ports; i++) {
2276 if (xhci->port_array[i] == 0x03 ||
2277 xhci->port_array[i] == 0 ||
2278 xhci->port_array[i] == DUPLICATE_ENTRY)
2279 continue;
2280
2281 xhci->usb2_ports[port_index] =
2282 &xhci->op_regs->port_status_base +
2283 NUM_PORT_REGS*i;
2284 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2285 "addr = %p\n", i,
2286 xhci->usb2_ports[port_index]);
2287 port_index++;
2288 if (port_index == xhci->num_usb2_ports)
2289 break;
2290 }
2291 }
2292 if (xhci->num_usb3_ports) {
2293 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2294 xhci->num_usb3_ports, flags);
2295 if (!xhci->usb3_ports)
2296 return -ENOMEM;
2297
2298 port_index = 0;
2299 for (i = 0; i < num_ports; i++)
2300 if (xhci->port_array[i] == 0x03) {
2301 xhci->usb3_ports[port_index] =
2302 &xhci->op_regs->port_status_base +
2303 NUM_PORT_REGS*i;
2304 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2305 "addr = %p\n", i,
2306 xhci->usb3_ports[port_index]);
2307 port_index++;
2308 if (port_index == xhci->num_usb3_ports)
2309 break;
2310 }
2311 }
2312 return 0;
2313 }
2314
2315 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2316 {
2317 dma_addr_t dma;
2318 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2319 unsigned int val, val2;
2320 u64 val_64;
2321 struct xhci_segment *seg;
2322 u32 page_size, temp;
2323 int i;
2324
2325 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2326 INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2327
2328 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2329 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2330 for (i = 0; i < 16; i++) {
2331 if ((0x1 & page_size) != 0)
2332 break;
2333 page_size = page_size >> 1;
2334 }
2335 if (i < 16)
2336 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2337 else
2338 xhci_warn(xhci, "WARN: no supported page size\n");
2339 /* Use 4K pages, since that's common and the minimum the HC supports */
2340 xhci->page_shift = 12;
2341 xhci->page_size = 1 << xhci->page_shift;
2342 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2343
2344 /*
2345 * Program the Number of Device Slots Enabled field in the CONFIG
2346 * register with the max value of slots the HC can handle.
2347 */
2348 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2349 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2350 (unsigned int) val);
2351 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2352 val |= (val2 & ~HCS_SLOTS_MASK);
2353 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2354 (unsigned int) val);
2355 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2356
2357 /*
2358 * Section 5.4.8 - doorbell array must be
2359 * "physically contiguous and 64-byte (cache line) aligned".
2360 */
2361 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2362 flags);
2363 if (!xhci->dcbaa)
2364 goto fail;
2365 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2366 xhci->dcbaa->dma = dma;
2367 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2368 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2369 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2370
2371 /*
2372 * Initialize the ring segment pool. The ring must be a contiguous
2373 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2374 * however, the command ring segment needs 64-byte aligned segments,
2375 * so we pick the greater alignment need.
2376 */
2377 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2378 TRB_SEGMENT_SIZE, 64, xhci->page_size);
2379
2380 /* See Table 46 and Note on Figure 55 */
2381 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2382 2112, 64, xhci->page_size);
2383 if (!xhci->segment_pool || !xhci->device_pool)
2384 goto fail;
2385
2386 /* Linear stream context arrays don't have any boundary restrictions,
2387 * and only need to be 16-byte aligned.
2388 */
2389 xhci->small_streams_pool =
2390 dma_pool_create("xHCI 256 byte stream ctx arrays",
2391 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2392 xhci->medium_streams_pool =
2393 dma_pool_create("xHCI 1KB stream ctx arrays",
2394 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2395 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2396 * will be allocated with dma_alloc_coherent()
2397 */
2398
2399 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2400 goto fail;
2401
2402 /* Set up the command ring to have one segments for now. */
2403 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2404 if (!xhci->cmd_ring)
2405 goto fail;
2406 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2407 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2408 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2409
2410 /* Set the address in the Command Ring Control register */
2411 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2412 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2413 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2414 xhci->cmd_ring->cycle_state;
2415 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2416 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2417 xhci_dbg_cmd_ptrs(xhci);
2418
2419 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2420 if (!xhci->lpm_command)
2421 goto fail;
2422
2423 /* Reserve one command ring TRB for disabling LPM.
2424 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2425 * disabling LPM, we only need to reserve one TRB for all devices.
2426 */
2427 xhci->cmd_ring_reserved_trbs++;
2428
2429 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2430 val &= DBOFF_MASK;
2431 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2432 " from cap regs base addr\n", val);
2433 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2434 xhci_dbg_regs(xhci);
2435 xhci_print_run_regs(xhci);
2436 /* Set ir_set to interrupt register set 0 */
2437 xhci->ir_set = &xhci->run_regs->ir_set[0];
2438
2439 /*
2440 * Event ring setup: Allocate a normal ring, but also setup
2441 * the event ring segment table (ERST). Section 4.9.3.
2442 */
2443 xhci_dbg(xhci, "// Allocating event ring\n");
2444 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2445 flags);
2446 if (!xhci->event_ring)
2447 goto fail;
2448 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2449 goto fail;
2450
2451 xhci->erst.entries = dma_alloc_coherent(dev,
2452 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2453 flags);
2454 if (!xhci->erst.entries)
2455 goto fail;
2456 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2457 (unsigned long long)dma);
2458
2459 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2460 xhci->erst.num_entries = ERST_NUM_SEGS;
2461 xhci->erst.erst_dma_addr = dma;
2462 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2463 xhci->erst.num_entries,
2464 xhci->erst.entries,
2465 (unsigned long long)xhci->erst.erst_dma_addr);
2466
2467 /* set ring base address and size for each segment table entry */
2468 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2469 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2470 entry->seg_addr = cpu_to_le64(seg->dma);
2471 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2472 entry->rsvd = 0;
2473 seg = seg->next;
2474 }
2475
2476 /* set ERST count with the number of entries in the segment table */
2477 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2478 val &= ERST_SIZE_MASK;
2479 val |= ERST_NUM_SEGS;
2480 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2481 val);
2482 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2483
2484 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2485 /* set the segment table base address */
2486 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2487 (unsigned long long)xhci->erst.erst_dma_addr);
2488 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2489 val_64 &= ERST_PTR_MASK;
2490 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2491 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2492
2493 /* Set the event ring dequeue address */
2494 xhci_set_hc_event_deq(xhci);
2495 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2496 xhci_print_ir_set(xhci, 0);
2497
2498 /*
2499 * XXX: Might need to set the Interrupter Moderation Register to
2500 * something other than the default (~1ms minimum between interrupts).
2501 * See section 5.5.1.2.
2502 */
2503 init_completion(&xhci->addr_dev);
2504 for (i = 0; i < MAX_HC_SLOTS; ++i)
2505 xhci->devs[i] = NULL;
2506 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2507 xhci->bus_state[0].resume_done[i] = 0;
2508 xhci->bus_state[1].resume_done[i] = 0;
2509 }
2510
2511 if (scratchpad_alloc(xhci, flags))
2512 goto fail;
2513 if (xhci_setup_port_arrays(xhci, flags))
2514 goto fail;
2515
2516 /* Enable USB 3.0 device notifications for function remote wake, which
2517 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2518 * U3 (device suspend).
2519 */
2520 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2521 temp &= ~DEV_NOTE_MASK;
2522 temp |= DEV_NOTE_FWAKE;
2523 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2524
2525 return 0;
2526
2527 fail:
2528 xhci_warn(xhci, "Couldn't initialize memory\n");
2529 xhci_halt(xhci);
2530 xhci_reset(xhci);
2531 xhci_mem_cleanup(xhci);
2532 return -ENOMEM;
2533 }